WO2019052111A1 - 流体输注装置及其驱动系统 - Google Patents

流体输注装置及其驱动系统 Download PDF

Info

Publication number
WO2019052111A1
WO2019052111A1 PCT/CN2018/074572 CN2018074572W WO2019052111A1 WO 2019052111 A1 WO2019052111 A1 WO 2019052111A1 CN 2018074572 W CN2018074572 W CN 2018074572W WO 2019052111 A1 WO2019052111 A1 WO 2019052111A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive system
lead screw
active member
piston
infusion device
Prior art date
Application number
PCT/CN2018/074572
Other languages
English (en)
French (fr)
Inventor
黄霖
李鑫
刘宇程
刘智勇
罗志华
沈玉娟
Original Assignee
美敦力公司
美敦力(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710817809.7A external-priority patent/CN107456625B/zh
Application filed by 美敦力公司, 美敦力(上海)有限公司 filed Critical 美敦力公司
Publication of WO2019052111A1 publication Critical patent/WO2019052111A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons

Definitions

  • the present invention relates to the field of fluid delivery, and more particularly to a fluid infusion device and a drive system therefor.
  • Diabetes is a metabolic disease characterized by high blood sugar.
  • Hyperglycemia is generally caused by defects in insulin secretion or its biological effects, or a combination of both.
  • the long-term presence of hyperglycemia in diabetic patients can cause chronic damage and dysfunction in multiple body organs (eg, eyes, kidneys, heart, blood vessels, nervous system, etc.).
  • Type 1 diabetes also known as insulin-dependent diabetes
  • Type 1 diabetes is usually a disease inherited by a congenital family.
  • Type 1 diabetes is an autoimmune disease in which the body's immune system attacks the beta cells that produce insulin in the body, ultimately leading to the inability to produce insulin in the body.
  • Such patients need to be injected with exogenous insulin to control blood sugar levels in the body.
  • Type 1 diabetes patients typically require 24-hour exposure to an electronic insulin pump, such as the Medtronic Minimed insulin pump.
  • Type 2 diabetes also known as non-insulin-dependent diabetes, is generally caused by adults, especially obese people, whose condition can lead to weight loss.
  • Possible causes include: insulin resistance, which prevents the body from using insulin effectively; the reduction in insulin secretion does not meet the body's needs.
  • Early type 2 diabetes patients can control and even cure diabetes by improving their lifestyles (eg, healthy eating, moderate exercise, safe weight loss, smoking cessation, and avoidance of secondhand smoke).
  • Most people with type 2 diabetes can control their blood sugar levels through oral hypoglycemic agents or control their blood sugar levels through a phased injection of insulin.
  • the conventional drug infusion device adopts a structure in which a motor and a screw are coaxially arranged.
  • This structure in order to detect the working state of the fluid infusion (for example, whether it is blocked), it is necessary to design the drive system including the motor and the screw to be movable, which increases the structural complexity of the drive system and the fluid infusion device. And the stability of the operation and the accuracy of the detection need to be improved.
  • embodiments of the present invention provide a fluid infusion device and a driving system thereof, which are useful for accurately and timely determining the state of the fluid infusion device.
  • an embodiment of the present invention provides a drive system for a fluid infusion device comprising:
  • a driven member configured to cooperate with the active member to enable relative displacement of the two while being relatively rotated, wherein one of the active member and the driven member is configured to: Responding to movement of the other of the active member and the driven member in a first direction of pushing a piston of the fluid infusion device, causing movement in a second direction, the second direction One direction reversed;
  • a detecting mechanism for detecting movement of one of the active member and the driven member in the second direction.
  • a fluid infusion device comprising:
  • a fluid delivery mechanism in communication with the reservoir for delivering fluid to a subject
  • a piston configured to be axially movable within the reservoir along the reservoir;
  • movement in the second direction is generated by causing one of the active member and the driven member to be blocked in response to movement of the other of the active member and the driven member in the first direction, and
  • By detecting the reverse movement by the detecting mechanism it is possible to accurately and timely detect conditions such as clogging of the fluid infusion device and fluid evacuation.
  • FIG. 1 is a schematic structural view of a drive system according to Embodiment 2 of the present invention.
  • FIG. 2 is a schematic structural view showing a driving system according to Embodiment 3 of the present invention and a partial enlarged view thereof;
  • Figure 3 is a cross-sectional view along line A-A of the drive system of Figure 2;
  • FIG. 4 is a schematic structural view of a driving system according to Embodiment 4 of the present invention.
  • Figure 5 is a block diagram showing the structure of a driving system according to Embodiment 5 of the present invention.
  • Figure 6 is a view showing the overall structure of a fluid infusion device according to Embodiment 7 of the present invention.
  • Fig. 7 shows a schematic structural view of a guiding mechanism.
  • the present embodiment provides a drive system that can be applied to a fluid infusion device, for example, in a patch pump that injects a drug solution into a patient.
  • the drive system includes an active member, a drive mechanism, a driven member, and a detection mechanism. The details will be described below.
  • the driven members are configured to cooperate with the active members to enable them to be relatively displaced while being relatively rotated.
  • the active member and the driven member are configured in a manner such as a ball screw and a threaded screw.
  • one of the active member and the driven member is configured to be capable of responding to the hindrance of movement of the other of the active member and the driven member along the first direction of the piston pushing the fluid infusion device, generating an edge Movement in the second direction, the second direction being opposite to the first direction.
  • the active member is configured to urge the piston in a first direction, the driven member being configured to be movable in the second direction in response to the obstruction of movement of the active member in the first direction.
  • the driven member is configured to urge the piston in a first direction, the active member being configured to be movable in the second direction in response to the obstruction of movement of the driven member in the first direction.
  • the drive mechanism is used to drive the active member to rotate.
  • the drive mechanism includes a power source and a transmission device.
  • the power source transmits the driving force to the active member through the transmission device to rotate the active member.
  • the detecting mechanism is configured to detect movement in the second direction of the one of the active member and the driven member (ie, the one of the active member and the driven member moving in the second direction) The case, for example, whether the movement satisfies the set condition.
  • the setting condition may be related to the amount of movement, or may be related to a parameter that indirectly reflects the amount of movement.
  • the driving mechanism provided in this embodiment, by configuring one of the active member and the driven member to be able to reversely move when the movement of the other is blocked, and detecting the reverse movement by the detecting mechanism, accurate and timely Conditions such as blockage of fluid infusion devices, fluid evacuation, and the like are found.
  • the detecting mechanism includes a pressure sensor.
  • the pressure sensor is disposed at a position opposite to an end of the one of the active member and the driven member remote from the piston for detecting the one of the active member and the driven member along the second The pressure generated by the movement of the direction.
  • the detecting mechanism may further include a processing circuit (for example, a processor) for determining whether the pressure reaches a threshold according to the detection result of the pressure sensor.
  • the pressure sensor can integrate the functionality of the processing circuitry.
  • the pressure sensor is a pressure switch that triggers a switching action when a pressure generated by movement of the one of the active member and the driven member in the second direction reaches a threshold.
  • the detecting mechanism includes a displacement sensor, configured to detect displacement of the one of the active member and the driven member along the second direction, for example, detecting Whether to move to the set position.
  • the displacement sensor is a photoelectric sensor.
  • the driving system has a control mechanism in addition to the active component, the driving mechanism, the driven component, and the detecting mechanism.
  • the control mechanism is configured to determine an operating state of the fluid infusion device based on an output of the detecting mechanism, and/or to control the driving mechanism according to an output result of the detecting mechanism. For example, if the output of the detection mechanism does not satisfy the set condition, the control mechanism determines that the fluid infusion device is functioning properly; otherwise, the control mechanism determines that the fluid infusion device is operating abnormally (eg, blocked). For another example, when it is determined that the fluid infusion device is operating abnormally, the control drive mechanism stops applying the driving force and controls peripheral devices (eg, indicator lights, buzzers, displays, etc.) to alert.
  • peripheral devices eg, indicator lights, buzzers, displays, etc.
  • the control mechanism can also integrate the functions of the aforementioned processing circuits.
  • the driving system further has an encoder for encoding and controlling the motor as a power source.
  • Fig. 1 is a block diagram showing the construction of a drive system according to Embodiment 2 of the present invention.
  • the drive system is applied to a fluid infusion device, for example, to an applicator pump that injects a drug solution into a patient.
  • the fluid infusion device provided in Embodiment 2 includes an active member, a driven member, a driving mechanism, and a detecting mechanism.
  • the active member is a lead screw 1
  • the driven member is a nut 2 that is engaged with the thread of the lead screw 1 for pushing the piston in the first direction a.
  • the lead screw 1 as the active member is engaged with the nut 2 as the driven member so that the two can be relatively displaced while being relatively rotated.
  • the nut 2 in this embodiment is only a schematic of the driven member, and is intended to explain the structure and working principle of the drive system. It should be understood by those skilled in the art that the shape of the driven member and the connection relationship between the driven member and the piston (for example, direct connection or may be possible) in the case where the relative displacement of the driven member and the active member can be reversed while being relatively rotated. Indirect connection) flexible design is within the scope of the claims of the present invention.
  • the lead screw 1 illustrated in the various embodiments of the present invention is also a schematic, and the embodiments of the present invention do not specifically limit the thread distribution on the lead screw 1.
  • the lead screw 1 is configured to be movable in response to the movement of the nut 2 in the first direction a of the push piston, resulting in movement in the second direction b, the second direction b and the first Direction a is reversed.
  • a guide structure for pushing the nut 2 to the piston will be described below.
  • the drive mechanism 3 is used to drive the rotation of the lead screw 1
  • the detecting mechanism 4 is used to detect the movement of the lead screw 1 in the second direction b, for example, to check whether the movement of the lead screw 1 satisfies the set condition.
  • the drive mechanism 3 drives the screw 1 to rotate, and the nut 2 is moved in the first direction a to push the piston by being guided by a guide mechanism such as mentioned below.
  • a guide mechanism such as mentioned below.
  • the rotation of the lead screw 1 causes the wire to be rotated while the drive mechanism 3 is driven to rotate the lead screw 1
  • the lever 1 is moved in the second direction b with respect to the nut 2, and then the movement of the lead screw 1 in the second direction b is detected by the detecting mechanism 4, for example, it is detected whether the movement of the lead screw 1 satisfies the set condition.
  • the action of the lead screw 1 in response to the resistance of the nut 2 is generated, and the action of the lead screw 1 is detected by the detecting mechanism, so that the fluid infusion device can be accurately or timely detected or determined.
  • the condition for example, whether it is blocked).
  • FIG. 2 is a schematic structural view showing a drive system according to Embodiment 3 of the present invention and a partially enlarged view thereof
  • FIG. 3 is a cross-sectional view (A power source) in which the drive system shown in FIG. 2 is cut away.
  • the drive system provided in the third embodiment is applied to a fluid infusion device, for example, in an attaching pump for injecting a drug solution into a patient.
  • the fluid infusion device provided in Embodiment 3 includes an active member, a driven member, a driving mechanism, and a detecting mechanism.
  • the screw 1 is the active member and the nut 2 is the driven member, similarly or similarly to the embodiment 2.
  • the nut 2 is used to push the piston of the fluid infusion device to move in the first direction a
  • the lead screw 1 is configured to be responsive to the movement of the nut 2 in the first direction a, resulting in movement in the second direction b .
  • the detecting mechanism 4 is for detecting the movement of the lead screw 1 in the second direction b.
  • the drive mechanism 3 includes a power source 31 (for example, a motor) and a transmission gear 32.
  • the last driven gear 321 of the transmission gear 32 is located at one end of the screw 1 away from the piston for rotation together with the lead screw 1.
  • the final driven gear 321 is fixedly coupled to the lead screw 1, and the final stage driving gear 322 and the final stage are The moving gears 321 are all spur gears.
  • both the final stage drive gear 322 and the final stage driven gear 321 can slide relative to each other, enabling the lead screw 1 to move in the second direction b even during the transmission of the driving force.
  • the length of the teeth of the final stage drive gear 322 is greater than the length of the teeth of the last stage driven gear 321.
  • the gear case 5 accommodating the transmission gear 32, there is a space that allows the final stage driven gear 321 to move in the second direction b.
  • a gap is provided between the gear case 5 and the final driven gear 321 , and a space where the lead screw 1 extends is provided at one end of the lead screw 1 away from the piston.
  • the final driven gear 321 of the transmission gear 32 and the lead screw 1 are slidably coupled, for example, the connection between the lead screw 1 and the final driven gear 321 Set to a uniform flat shape.
  • the final driven gear 321 and the lead screw 1 can rotate together and can slide relative to each other, so that the lead screw 1 can be rotated by the driving force and has the ability to move in the second direction b.
  • the gear shape of the final driven gear 321 is not limited in the present embodiment.
  • the detecting mechanism 4 is a pressure sensor disposed at a position opposite to an end of the lead screw 1 away from the piston, for example, The lead screw 1 remains in contact.
  • the pressure sensor 4 is adapted to withstand the pressure generated by the movement of the lead screw 1 in the second direction b, and when the pressure reaches a threshold value, outputs a signal indicating that the pressure reaches a threshold value.
  • a displacement sensor can also be employed in place of the pressure sensor.
  • the detecting mechanism 4 can be fixed on a specially provided base such as a gear box, and can be flexibly set by a person skilled in the art according to the needs, which is not specifically limited in the present invention.
  • the driving system may further include a control mechanism (not shown) for determining an operating state of the fluid infusion device according to an output result of the detecting mechanism 4, and/or, It is used to control the drive mechanism 3 in accordance with the output result of the detecting mechanism 4.
  • a control mechanism (not shown) for determining an operating state of the fluid infusion device according to an output result of the detecting mechanism 4, and/or, It is used to control the drive mechanism 3 in accordance with the output result of the detecting mechanism 4.
  • the power source 31 is a motor and the output shaft of the motor is not coaxial with the lead screw 1.
  • the output shaft of the motor is perpendicular to the lead screw 1, horizontally offset, or at any desired angle.
  • a structural design suitable for flexibly arranging the motor, the transmission gear 32, the lead screw 1 and the like according to the size of the fluid infusion device is provided. It is beneficial to reduce the size of the fluid infusion device and improve the portability.
  • the power source 31 is a motor and the position of the motor is fixed.
  • the utility model has the advantages of simple structure, stable operation and the like.
  • the power source 31 is not limited to a motor.
  • those skilled in the art can use a shape memory alloy drive instead of a motor drive.
  • Fig. 4 is a block diagram showing the construction of a drive system according to Embodiment 4 of the present invention, which is applied to a fluid infusion device, for example, in an applicator pump for injecting a drug solution into a patient.
  • the fluid infusion device provided in Embodiment 4 includes an active member, a driven member, a driving mechanism, and a detecting mechanism.
  • the lead screw 1 is a driven member for pushing the piston in the first direction a, and the active member 2' is engaged with the thread of the lead screw 1.
  • the active member 2' is engaged with the lead screw 1 as a driven member so that the two can be relatively displaced while being relatively rotated. Also, the active member 2' is configured to be movable in response to the movement of the lead screw 1 in the first direction a of the push piston, resulting in a movement in the second direction b, the second direction b being opposite to the first direction a.
  • the drive mechanism 3 is for driving the rotation of the active member 2'
  • the detecting mechanism is for detecting whether the movement of the active member 2' in the second direction b satisfies the set condition.
  • the detecting mechanism is located inside the gear case 5, and thus is not shown.
  • the active member 2' may be located outside the gearbox 5, and the detecting mechanism may also be disposed outside the gearbox 5, which can be flexibly set by a person skilled in the art as needed.
  • the drive mechanism 3 drives the drive member 2' to rotate, and the lead screw 1 is moved in the first direction a to push the piston under the guidance of a guide mechanism such as the one mentioned below.
  • a guide mechanism such as the one mentioned below.
  • the action can be accurately and timely detected or determined by causing the active member 2' to act in response to the resistance of the lead screw 1, and detecting the action of the active member 2' by the detecting mechanism.
  • the condition of the infusion set eg, blockage
  • Fig. 5 is a view showing the configuration of a drive system according to Embodiment 5 of the present invention, in which the power source is omitted.
  • the drive system is applied to a fluid infusion device, for example, to an applicator pump that injects a drug solution into a patient.
  • the fluid infusion device provided in Embodiment 5 includes an active member, a driven member, a driving mechanism, and a detecting mechanism.
  • the screw 1 is the driven member for pushing the piston in the first direction a, similarly or similarly to the embodiment 4.
  • the active member 2' is mated with the thread of the lead screw 1 and is configured to be movable in response to movement of the lead screw 1 in the first direction a of the push piston, resulting in movement in the second direction b.
  • the screw 1 is the driven member for pushing the piston in the first direction a, similarly or similarly to the embodiment 4.
  • the active member 2' is mated with the thread of the lead screw 1 and is configured to be movable in response to movement of the lead screw 1 in the first direction a of the push piston, resulting in movement in the second direction b.
  • the drive mechanism includes a power source (e.g., a motor, not shown) and a transmission gear 32' as shown in FIG.
  • the final driven gear 321' of the transmission gear 32' is a spur gear
  • the outer circumference of the active member 2' has straight teeth that cooperate with the final driven gear 321'.
  • the active member 2' is engaged with both the thread of the lead screw 1 and the final driven gear 321' in a cylindrical straight tooth manner, so that when the movement of the lead screw 1 in the first direction a is blocked, a The movement of the second direction b.
  • a structural arrangement in which the active member 2' is reversely moved in response to the movement of the lead screw 1 in the first direction a.
  • the action of detecting the mechanism 1 can be generated in response to the resistance of the lead screw 1 in the first direction a, so that the state of the fluid infusion device can be accurately and timely detected.
  • the detecting mechanism 4 is a pressure sensor.
  • the pressure sensor is disposed at a position opposite to the end of the active member 2' remote from the piston, for example, the pressure sensor remains in contact with the active member 2'.
  • the pressure sensor is adapted to withstand the pressure generated by the movement of the active member 2' in the second direction b, and when the pressure reaches a threshold, outputs a signal indicating that the pressure reaches a threshold.
  • a displacement sensor can also be employed in place of the pressure sensor 4.
  • the detection mechanism 4 can be attached to, for example, a gearbox, a specially provided base, or the like.
  • a gearbox for example, a gearbox, a specially provided base, or the like.
  • a person skilled in the art can flexibly set as needed, and the present invention does not specifically limit this.
  • the driving system may further include a control mechanism (not shown) for determining an operating state of the fluid infusion device according to an output result of the detecting mechanism 4, and/or, It is used to control the drive mechanism 3 in accordance with the output result of the detecting mechanism 4.
  • a control mechanism (not shown) for determining an operating state of the fluid infusion device according to an output result of the detecting mechanism 4, and/or, It is used to control the drive mechanism 3 in accordance with the output result of the detecting mechanism 4.
  • Embodiment 6 of the present invention provides a fluid infusion device.
  • the fluid device includes a reservoir, a fluid delivery mechanism, a piston, and a drive system.
  • the reservoir is for containing a fluid (eg, a liquid).
  • a fluid delivery mechanism is in communication with the reservoir for delivering fluid to a target subject (eg, a patient).
  • the piston is configured to be movable axially along the reservoir within the reservoir.
  • the drive system is then used to axially move the piston within the reservoir to deliver fluid within the reservoir to the subject via the fluid delivery mechanism.
  • the state of the fluid infusion device can be found/determined accurately and timely.
  • Fig. 6 is a view showing the entire structure of a fluid infusion device according to Embodiment 7 of the present invention
  • Fig. 7 is a view showing the structure of a guiding mechanism.
  • the guiding mechanism shown in FIG. 7 can be used in conjunction with the driving system provided in Embodiment 2 or Embodiment 3 of the present invention to guide the nut 2 to push the piston in the first direction a; the fluid infusion device shown in FIG.
  • the drive system provided by Embodiment 2 or Embodiment 3 of the present invention can be employed. The details will be described below with reference to the accompanying drawings.
  • the fluid infusion device includes a reservoir 9, a piston 7, a fluid delivery mechanism, a drive mechanism 3, a detection mechanism 4, a lead screw 1, and a nut 2.
  • the reservoir 9 is for containing fluid;
  • the fluid delivery mechanism in communication with the reservoir 9 is for delivering fluid to the subject, for example, by the fluid injection needle 10;
  • the piston 7 is configured to be capable of being in the reservoir 9 is moved axially along the reservoir 9;
  • the drive mechanism 3, the detection mechanism 4, the lead screw 1 and the nut 2 constitute a drive system as described in Embodiment 2 or Embodiment 3.
  • the nut 2 is fixedly coupled to the pusher 6.
  • the pusher 6 is coupled to the piston 7 for pushing the piston 7.
  • a guide portion (for example, a rectangular lug) 61 is provided at an end of the pusher 6 away from the piston 7.
  • a guide sleeve 8 having a fixed position is formed on the outer circumference of the pusher 6, and the guide portion 61 is fitted into the guide groove in the guide sleeve 8.
  • the lead screw 1 rotates with the rotation of the final driven gear 321 of the transmission gear 32, so that the nut 2 and the pusher 6 (in In one embodiment of the invention, the two can act together as a driven component to push the piston 7 in a first direction a under the guidance of the guide sleeve 8 to discharge fluid from the reservoir 9.
  • Embodiment 7 a guide mechanism for guiding the nut 2 to move axially along the screw shaft 1 is described in conjunction with FIG. 7, which is suitable for cooperation with the drive systems provided in Embodiment 2 and Embodiment 3.
  • a guide mechanism suitable for cooperation with the drive systems provided in the fourth embodiment and the fifth embodiment is provided.
  • the guiding mechanism (not shown) includes: a first guiding portion disposed on the lead screw 1, and a positionally fixed guiding member having a cooperation with the first guiding portion to cause the lead screw 1 along the own axis Moving to the second guide.
  • the first guiding portion and the guiding member are both disposed on a side of the active member 2' remote from the piston, with the position of the active member 2' being bounded.
  • one of the first guiding portion and the second guiding portion is a protruding structure, and the other is a concave structure that cooperates with the protruding structure.
  • the first guiding portion is similar to the guiding portion 61 shown in FIG. 7, and the second guiding portion is similar to the guiding groove of the guide sleeve 8 shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种流体输注装置及其驱动系统,其中,该驱动系统包括:主动构件(2');驱动机构(3),该驱动机构(3)用于驱动该主动构件(2')转动;从动构件,该从动构件配置成与该主动构件(2')配合以使二者能够在相对转动的同时产生相对位移,其中,该主动构件(2')和从动构件中的一者被配置为:能够响应该主动构件(2')和从动构件中的另一者沿推动该流体输注装置的活塞(7)的第一方向的移动的受阻,产生沿第二方向的移动,该第二方向与该第一方向反向;和检测机构(4),用于检测该主动构件(2')和该从动构件中的一者沿该第二方向的移动是否满足设定条件。采用该驱动系统,有利于准确、及时地确定流体输注装置的状态。

Description

流体输注装置及其驱动系统
相关申请的交叉引用
本申请要求于2017年9月12日提交的申请号为201710817809.7、发明名称为“流体输注装置及其驱动系统”的中国专利申请、以及2017年9月12日提交的申请号为201721164928.9、发明名称为“流体输注装置及其驱动系统”的中国专利申请的优先权,上述中国专利申请的全部内容通过引用并入本文。
技术领域
本发明涉及流体递送领域,更为具体而言,涉及一种流体输注装置及其驱动系统。
背景技术
糖尿病是一种以高血糖为特征的代谢性疾病。高血糖一般是由于胰岛素分泌缺陷或其生物作用受损,或两者综合作用引起。糖尿病患者体内长期存在的高血糖会导致多个身体器官(例如,眼、肾、心脏、血管、神经系统等)的慢性损害、功能障碍。
糖尿病临床诊断可分为1型糖尿病和2型糖尿病。1型糖尿病,也称为胰岛素依赖型糖尿病,患者病状通常出现在儿童或青少年时期,是一种由先天家族遗传的疾病。1型糖尿病属于一种自体免疫性疾病,身体的免疫系统对体内生产胰岛素的β细胞做出攻击,最终导致体内无法生产胰岛素。这类患者需要注射外源性的胰岛素来控制体内的血糖水平。1型糖尿病患者一般需要24小时佩戴电子式胰岛素泵治疗,例如,美敦力Minimed系列胰岛素泵。2型糖尿病,也称非胰岛素依赖型糖尿病,一般患者为成年人,特别是肥胖人群,其病症会导致消瘦。可能的病因包括:胰岛素抵抗,使身体不能有效地使用胰岛素;胰岛素分泌的减少,无法满足身体所需。早期的2型糖尿病患者可以通过改善生活方式(例如,健康饮食、适量运动、安全减肥、戒烟及避免二手烟等)来控制,甚至治愈糖尿病。大多数2型糖尿病患者可通过口服降糖药帮助控制身体 血糖水平或者通过阶段性注射胰岛素控制血糖水平。
传统的药物输注装置采用马达与丝杠共轴设置的结构。这种结构,为了检测流体输注的工作状态(例如,是否堵塞),需要将包括马达、丝杠在内的驱动系统设计为可移动,这增加了驱动系统以及流体输注装置的结构复杂程度,且运行的稳定性、检测的精确度均有待提高。
发明内容
为了解决现有流体输注装置所存在的缺陷,本发明实施方式提供一种流体输注装置及其驱动系统,有利于准确、及时地确定流体输注装置的状态。
一方面,根据本发明的实施例提供了一种流体输注装置的驱动系统,包括:
主动构件;
驱动机构,所述驱动机构用于驱动所述主动构件转动;
从动构件,所述从动构件配置成与所述主动构件配合以使二者能够在相对转动的同时产生相对位移,其中,所述主动构件和从动构件中的一者被配置为:能够响应所述主动构件和从动构件中的另一者沿推动所述流体输注装置的活塞的第一方向的移动的受阻,产生沿第二方向的移动,所述第二方向与所述第一方向反向;和
检测机构,用于检测所述主动构件和从动构件中的一者沿所述第二方向的移动情况。
相应地,根据本发明实施例提供了一种流体输注装置,该流体输注装置包括:
贮液器,用于容纳流体;
流体递送机构,与所述贮液器连通,用于向对象递送流体;
活塞,设置为能够在所述贮液器内沿该贮液器轴向移动;以及
如前所述的驱动系统,用于使所述活塞在所述贮液器内轴向移动,以使所述贮液器内的流体经由所述流体递送机构递送至对象。
采用本发明各实施例,通过使主动构件和从动构件中的一者响应主动构件和从动构件中的另一者沿第一方向的移动的受阻,而产生沿第二方向的移动,并通过检测机构检测该反向移动,能够准确、及时地发现诸如流体输注 装置堵塞、流体排空之类的状况。
附图说明
图1示出了根据本发明实施例2的一种驱动系统的结构示意图;
图2示出了根据本发明实施例3的一种驱动系统的结构示意图及其局部放大图;
图3示出了图2所示驱动系统的A-A剖视图;
图4示出了根据本发明实施例4的一种驱动系统的结构示意图;
图5示出了根据本发明实施例5的一种驱动系统的结构示意图;
图6示出了根据本发明实施例7的一种流体输注装置的整体结构示意图;
图7示出了一种导向机构的结构示意图。
具体实施方式
以下结合附图和具体实施方式对本发明的各个方面进行详细阐述。其中,众所周知的结构、部件及其相互之间的连接、链接或操作没有示出或未作详细说明。并且,所描述的部件、结构或功能可在一个或一个以上实施方式中以任何方式组合。本领域技术人员应当理解,下述的各种实施方式只用于举例说明,而非用于限制本发明的保护范围。也可以容易理解,本文所述和附图所示的各实施方式中的部件、结构、单元或步骤可以按各种不同配置进行组合和设计。还可以容易理解,虽然可能仅在部分实施例中对特定名称、术语、范围等进行解释,但该解释同样适用于其它实施例,除非特别说明。
【实施例1】
本实施例提供一种驱动系统,该驱动系统可应用于流体输注装置,例如,应用于向患者注射药液的贴附泵(patch pump)中。整体而言,所述驱动系统包括主动构件、驱动机构、从动构件和检测机构。下面进行详细说明。
在本实施例中,从动构件被配置为与主动构件配合以使它们二者能够在相对转动的同时产生相对位移。例如,主动构件和从动构件构成为诸如滚珠丝杠、螺纹丝杠的配合方式。并且,主动构件和从动构件中的一者被配置为:能够响应所述主动构件和从动构件中的另一者沿推动流体输注装置的活塞的第一方向的移动的受阻,产生沿第二方向的移动,所述第二方向与所述第一 方向反向。例如,主动构件被配置为沿第一方向推动活塞,从动构件则被配置为能够响应主动构件沿第一方向的移动的受阻而沿第二方向移动。作为选择,从动构件被配置为沿第一方向推动活塞,主动构件则被配置为能够响应从动构件沿第一方向的移动的受阻而沿第二方向移动。
在本实施例中,驱动机构用于驱动主动构件转动。例如,驱动机构包括动力源和传动设备。动力源通过传动设备将驱动力传递至主动构件,使主动构件转动。
在本实施例中,检测机构用于检测主动构件和从动构件中的所述一者(即,主动构件和从动构件中沿第二方向移动的那一个)沿所述第二方向的移动情况,例如,所述移动是否满足设定条件。可选地,所述设定条件可以与移动量相关,也可以与间接反映所述移动量的参数相关。
采用本实施例提供的驱动机构,通过将主动构件和从动构件中的一者配置为能够在另一者的移动受阻时反向移动,并通过检测机构检测该反向移动,能够准确、及时地发现诸如流体输注装置堵塞、流体排空之类的状况。
可选地,在本实施例的一种实现方式中,所述检测机构包括压力传感器。所述压力传感器设置在与主动构件和从动构件中的所述一者的远离活塞的一端相对的位置,用于检测所述主动构件和从动构件中的所述一者沿所述第二方向的移动所产生的压力。此外,检测机构还可以包括处理电路(例如,处理器),用于根据压力传感器的检测结果判断压力是否达到阈值。
在与该实现方式等同或类似的另一种实现方式中,压力传感器可以集成所述处理电路的功能。例如,所述压力传感器是压力开关,在主动构件和从动构件中的所述一者沿所述第二方向的移动所产生的压力达到阈值时,触发开关动作。
可选地,在本实施例的一种实现方式中,所述检测机构包括位移传感器,用于检测主动构件和从动构件中的所述一者沿所述第二方向的位移,例如,检测是否移动到设定位置。例如,位移传感器为光电传感器。随着在本实施例或下文所述的实施例中对驱动系统的描述,本实施例或下文所述实施例的驱动系统的结构及工作原理将变得更加清楚,在此基础上,本领域技术人员可以根据实际需要设置位移传感器,因此,本发明并不限制位移传感器的具体设置方式。
可选地,在本实施例的一种实现方式中,所述驱动系统除了包括主动构件、驱动机构、从动构件和检测机构之外,还具有控制机构。该控制机构用于根据检测机构的输出结果确定流体输注装置的工作状态,和/或,用于根据检测机构的输出结果控制驱动机构。例如,如果检测机构的输出结果不满足设定条件,则控制机构确定流体输注装置工作正常;反之,控制机构确定流体输注装置工作异常(例如,堵塞)。再例如,当确定流体输注装置工作异常时,控制驱动机构停止施加驱动力,控制外围设备(例如,指示灯、蜂鸣器、显示器等)报警。此外,控制机构还可以集成前述处理电路的功能。
可选地,在本实施例的一种实现方式中,所述驱动系统还具有编码器,用于对作为动力源的马达进行编码控制。
【实施例2】
图1示出了根据本发明实施例2的一种驱动系统的结构示意图。所述驱动系统应用于流体输注装置,例如,应用于向患者注射药液的贴附泵中。整体而言,实施例2所提供的流体输注装置包括主动构件、从动构件、驱动机构和检测机构。
在实施例2中,参照图1,主动构件为丝杠1,从动构件则是与丝杠1的螺纹配合的螺母2,用于沿第一方向a推动活塞。下面结合附图进行详细说明。
在本实施例中,参照图1,作为主动构件的丝杠1与作为从动构件的螺母2配合,使得二者能够在相对转动的同时产生相对位移。需要说明的是,在本实施例中的螺母2仅为从动构件的一种示意,意在说明驱动系统的结构以及工作原理。本领域技术人员应当理解,在保证从动构件与主动构件能够在相对转动的同时产生相对位移的情况下,可以对从动构件的形状、从动构件与活塞的连接关系(例如,直接连接或间接连接)进行灵活设计,这均落在本发明权利要求的保护范围内。此外,本发明各实施例所图示的丝杠1也是一种示意,本发明的各实施例并不对丝杠1上的螺纹分布做具体限制。
在本实施例中,丝杠1被配置为:能够响应螺母2沿推动活塞的第一方向a的移动的受阻,产生沿第二方向b的移动,所述第二方向b与所述第一方向a反向。其中,关于使螺母2推动活塞的导向结构,将在下文进行说明。
在本实施例中,驱动机构3用于驱动丝杠1转动,检测机构4则用于检测丝杠1沿第二方向b的移动情况,例如,检测丝杠1的移动是否满足设定 条件。
在本实施例提供的驱动系统中,驱动机构3驱动丝杠1转动,螺母2受例如下文提及的导向机构的引导而沿第一方向a移动以推动活塞。当螺母2沿第一方向a的移动受阻时,由于丝杠1被配置为可沿第二方向b移动,所以在保持驱动机构3驱动丝杠1转动的情况下,丝杠1的转动导致丝杠1相对于螺母2沿第二方向b移动,继而,由检测机构4检测丝杠1沿第二方向b的移动情况,例如,检测丝杠1的移动是否满足设定条件。
所以,采用本实施例2提供的驱动系统,通过使丝杠1响应螺母2的受阻而产生动作,并且通过检测机构检测丝杠1的该动作,能够准确、及时地发现或确定流体输注装置的状况(例如,是否堵塞)。
【实施例3】
图2示出了根据本发明实施例3的驱动系统的结构示意图及其局部放大图,图3示出了图2所示驱动系统的A-A剖视图(省略了动力源)。本实施例3提供的驱动系统应用于流体输注装置,例如,应用于向患者注射药液的贴附泵中。
整体而言,实施例3所提供的流体输注装置包括主动构件、从动构件、驱动机构和检测机构。
在本实施例中,与实施例2相同或类似地,丝杠1为主动构件,螺母2为从动构件。其中,螺母2用于推动流体输注装置的活塞沿第一方向a移动,丝杠1则被配置为:能够响应螺母2沿第一方向a的移动的受阻,产生沿第二方向b的移动。检测机构4,则用于检测丝杠1沿第二方向b的移动情况。相关描述请参照实施例2中的说明,此处不赘述。
在本实施例中,如图2所示,驱动机构3包括动力源31(例如,马达)和传动齿轮32。其中,传动齿轮32的末级从动齿轮321位于丝杠1的远离活塞的一端,用于与丝杠1一起转动。
可选地,在本实施例的一种实现方式中,如图2中的局部放大图所示,末级从动齿轮321与丝杠1固定连接,并且,末级主动齿轮322和末级从动齿轮321均为直齿圆柱齿轮。这样,末级主动齿轮322和末级从动齿轮321二者可以相对滑动,使丝杠1能够沿第二方向b移动,即使是在驱动力的传递过程中。在本实现方式的一种示例中,末级主动齿轮322的齿的长度大于 末级从动齿轮321的齿的长度。在本实现方式的一种示例中,为了允许丝杠1沿第二方向b移动,在容纳传动齿轮32的齿轮箱5中,具有允许末级从动齿轮321沿第二方向b移动的空间。例如,在齿轮箱5与末级从动齿轮321之间设置间隙、在丝杠1远离活塞的一端设置供丝杠1延伸的空间等。
可选地,在本实施例的一种实现方式中,传动齿轮32的末级从动齿轮321与丝杠1可相对滑动地连接,例如,将丝杠1与末级从动齿轮321的连接处设置为均匀的扁平状。换言之,末级从动齿轮321与丝杠1即可共同转动,又可相对滑动,从而使丝杠1即能受驱动力而转动,又具有沿第二方向b移动的能力。与前述实现方式不同的是,本实现方式中并不限制末级从动齿轮321的齿轮形状。
在本实施例中,示例性地提供了使丝杠1响应螺母2沿第一方向a的移动的受阻而反向移动的数种结构配置方式。采用具有这种结构配置方式的驱动系统,能够响应螺母2沿第一方向a的受阻而产生可供检测机构4检测的动作,便于准确及时地检测流体输注装置的状态。
可选地,在本实施例的一种实现方式中,如图2和图3所示,检测机构4为压力传感器,其设置在与丝杠1的远离活塞的一端相对的位置,例如,与丝杠1保持接触。所述压力传感器4用于承受丝杠1沿第二方向b的移动所产生的压力,并在该压力达到阈值时,输出表示压力达到阈值的信号。在本实施例的其它实现方式中,也可以采用位移传感器代替压力传感器。
可选地,在该实现方式中,检测机构4可以固定在例如齿轮箱上、专门设置的基座上,本领域技术人员可以根据需要灵活设置,本发明对此不作具体限制。
可选地,在本实施例的一种实现方式中,驱动系统还可以包括控制机构(未图示),用于根据检测机构4的输出结果确定流体输注装置的工作状态,和/或,用于根据检测机构4的输出结果控制驱动机构3。
可选地,在本实施例的一种实现方式中,动力源31为马达,并且,所述马达的输出轴与丝杠1不共轴。例如,马达的输出轴与丝杠1垂直、水平错位、或者呈任意需要的角度。采用该实现方式,提供了一种适于根据流体输注装置(例如,贴附泵)的尺寸对马达、传动齿轮32、丝杠1等进行灵活地布局的结构设计,换个角度而言,有利于减小流体输注装置的尺寸,提高便 携度。
可选地,在本实施例的一种实现方式中,动力源31为马达,并且,所述马达的位置固定。采用该实现方式,相对于马达需随着丝杠一起移动的现有技术而言,具有结构简单、运行稳定等效果。
可选地,在本实施例的其它实现方式中,动力源31不限于马达。例如,本领域技术人员可以采用形状记忆合金驱动代替马达驱动。
【实施例4】
图4示出了根据本发明实施例4的驱动系统的结构示意图,所述驱动系统应用于流体输注装置,例如,应用于向患者注射药液的贴附泵中。整体而言,实施例4所提供的流体输注装置包括主动构件、从动构件、驱动机构和检测机构。
在本实施例中,与实施例2不同的是,如图4所示,丝杠1为从动构件,用于沿第一方向a推动活塞,主动构件2′与丝杠1的螺纹配合。下面进行详细说明。
在本实施例中,参照图4,主动构件2′与作为从动构件的丝杠1配合,使得二者能够在相对转动的同时产生相对位移。并且,主动构件2′被配置为:能够响应丝杠1沿推动活塞的第一方向a的移动的受阻,产生沿第二方向b的移动,第二方向b与第一方向a反向。
在本实施例中,驱动机构3用于驱动主动构件2′转动,检测机构用于检测主动构件2′沿第二方向b的移动是否满足设定条件。在本实施例中,检测机构位于齿轮箱5内部,故未图示。而在其它实施例中,主动构件2′可以位于齿轮箱5外部,检测机构也可以设置于齿轮箱5外部,本领域技术人员可以根据需要灵活设置。
在本实施例提供的驱动系统中,驱动机构3驱动主动构件2′转动,丝杠1在例如下文提及的导向机构的引导下沿第一方向a移动以推动活塞。当丝杠1沿第一方向a的移动受阻时,由于主动构件2′被配置为可沿第二方向b移动,所以在保持驱动机构3驱动主动构件2′转动的情况下,主动构件2′的转动导致主动构件2′相对于丝杠1沿第二方向b移动,继而,由检测机构检测主动构件2′沿第二方向b的移动是否满足设定条件。
所以,采用本实施例4提供的驱动系统,通过使主动构件2′响应丝杠1 的受阻而产生动作,并且通过检测机构检测主动构件2′的该动作,能够准确、及时地发现或确定流体输注装置的状况(例如,是否堵塞)。
【实施例5】
图5示出了根据本发明实施例5的驱动系统的结构示意图,图中省略了动力源。所述驱动系统应用于流体输注装置,例如,应用于向患者注射药液的贴附泵中。整体而言,实施例5提供的流体输注装置包括主动构件、从动构件、驱动机构和检测机构。
在本实施例中,与实施例4相同或类似地,丝杠1为从动构件,用于沿第一方向a推动活塞。主动构件2′与丝杠1的螺纹配合,并被配置为能够响应丝杠1沿推动活塞的第一方向a的移动的受阻,产生沿第二方向b的移动。相关描述请参照实施例4中的描述,此处不赘述。
在本实施例中,驱动机构包括动力源(例如,马达,未图示)和如图5所示的传动齿轮32′。其中,传动齿轮32′的末级从动齿轮321′为直齿圆柱齿轮,并且,主动构件2′的外周具有与末级从动齿轮321′配合的直齿。换言之,主动构件2′既与丝杠1的螺纹配合,又与末级从动齿轮321′以圆柱直齿的方式配合,从而能够在丝杠1沿第一方向a的移动受阻时,产生沿第二方向b的移动。
在本实施例中,提供了使主动构件2′响应丝杠1沿第一方向a的移动的受阻而反向移动的结构配置方式。采用具有这种结构配置方式的驱动系统,能够响应丝杠1沿第一方向a的受阻而产生可供检测机构4检测的动作,便于准确及时地检测流体输注装置的状态。
可选地,在本实施例的一种实现方式中,检测机构4为压力传感器。如图5所示,压力传感器设置在与主动构件2′的远离活塞的一端相对的位置,例如,压力传感器保持与主动构件2′接触。所述压力传感器用于承受主动构件2′沿第二方向b的移动所产生的压力,并在该压力达到阈值时,输出表示压力达到阈值的信号。在本实施例的其它实现方式中,也可以采用位移传感器代替压力传感器4。
可选地,在该实现方式中,检测机构4可以固定在例如齿轮箱上、专门设置的基座上等。本领域技术人员可以根据需要灵活设置,本发明对此不作具体限制。
可选地,在本实施例的一种实现方式中,驱动系统还可以包括控制机构(未图示),用于根据检测机构4的输出结果确定流体输注装置的工作状态,和/或,用于根据检测机构4的输出结果控制驱动机构3。
【实施例6】
本发明实施例6提供一种流体输注装置。该流体所述装置包括贮液器、流体递送机构、活塞和驱动系统。其中,所述贮液器用于容纳流体(例如,药液)。流体递送机构与贮液器连通,用于向目标对象(例如,患者)递送流体。活塞设置为能够在贮液器内沿贮液器轴向移动。驱动系统则用于使活塞在贮液器内轴向移动,以使贮液器内的流体经由所述流体递送机构递送至对象。
关于所述驱动系统的说明,请参照前文各个实施例中的相关描述,此处不在赘述。
采用本实施例提供的流体输注系统,能够准确及时地发现/确定流体输注装置的状态。
【实施例7】
图6示出了根据本发明实施例7的一种流体输注装置的整体结构示意图,图7示出了一种导向机构的结构示意图。其中,图7所示的导向机构可以与本发明的实施例2或实施例3提供的驱动系统配合使用,以引导螺母2沿第一方向a推动活塞;图6所示的流体输注装置则可采用本发明实施例2或实施例3提供的驱动系统。下面结合附图进行详细说明。
在本实施例中,如图6所示,流体输注装置包括贮液器9、活塞7、流体递送机构、驱动机构3、检测机构4、丝杠1和螺母2。其中,贮液器9用于容纳流体;与贮液器9连通的流体递送机构用于向对象递送流体,例如,通过流体注射针10向患者递送药液;活塞7设置为能够在贮液器9内沿贮液器9的轴向移动;驱动机构3、检测机构4、丝杠1和螺母2则构成如实施例2或实施例3中所描述的驱动系统。
在本实施例中,参照图6和图7,螺母2与推动件6固定连接。推动件6与活塞7连接,用于推动活塞7。在推动件6的远离活塞7的一端具有引导部(例如,矩形凸耳)61。在推动件6的外周具有位置固定的导向套8,引导部61嵌入导向套8中的导向槽。由此,随着丝杆1的转动,螺母2可以产生前 进或后退的直线运动。
在本实施例中,参照图2、图6和图7,在驱动力作用下,丝杠1随传动齿轮32的末级从动齿轮321的转动而转动,使得螺母2和推动件6(在本发明的一种实施例中,二者可以共同作为从动部件)在导向套8的引导下沿第一方向a推动活塞7,从而将流体从贮液器9中排出。
需要说明的是,在本实施例以及下文实施例中提及的导向机构,其意在辅助说明本发明相关实施例所提供的驱动系统的工作过程,以更加清楚地描述本发明各个实施例,而并不对本发明各实施例的保护范围构成限制。
【实施例8】
在实施例7中,结合图7,对用于引导螺母2沿丝杠1轴向移动的导向机构进行了说明,该导向机构适用于与实施例2和实施例3所提供的驱动系统配合。
在本实施例8中,则提供一种适用于与实施例4和实施例5所提供的驱动系统配合的导向机构。该导向机构(未图示)包括:设置在丝杠1上的第一引导部,和位置固定的导向件,所述导向件具有与所述第一引导部配合以使丝杠1沿自身轴向移动的第二引导部。其中,以主动构件2′所在位置为界,所述第一引导部和所述导向件均设置在主动构件2′的远离活塞的一侧。
可选地,在本实施例的一种实现方式中,所述第一引导部和第二引导部中的一者为凸出结构,另一者则为与所述凸出结构配合的凹部结构。示例性地,第一引导部类似于图7所示的引导部61,第二引导部类似于图7所示的导向套8的导向槽。
以上结合附图对根据本发明的多个实施例进行了详细说明。本领域技术人员应当理解,在各个实施例中的构件、机构等,可以采用合理的方式进行组合。当然,通过相关结构的结合,本发明其它实施例的驱动系统和流体输注装置还可以同时具有上述的多项优点。本领域技术人员基于本发明提供的技术以及设计思想,进行特征的组合、增加以及替换等,这均属于本发明的保护范围。
本发明说明书中使用的术语和措辞仅仅为了举例说明,并不意味构成限定。本领域技术人员应当理解,在不脱离所公开的实施方式的基本原理的前 提下,对上述实施方式中的各细节可进行各种变化。因此,本发明的范围只由权利要求确定,在权利要求中,除非另有说明,所有的术语应按最宽泛合理的意思进行理解。

Claims (13)

  1. 一种流体输注装置的驱动系统,其特征在于,所述驱动系统包括:
    主动构件;
    驱动机构,所述驱动机构用于驱动所述主动构件转动;
    从动构件,所述从动构件配置成与所述主动构件配合以使二者能够在相对转动的同时产生相对位移,其中,所述主动构件和从动构件中的一者被配置为:能够响应所述主动构件和从动构件中的另一者沿推动所述流体输注装置的活塞的第一方向的移动的受阻,产生沿第二方向的移动,所述第二方向与所述第一方向反向;和
    检测机构,用于检测所述主动构件和从动构件中的一者沿所述第二方向的移动情况。
  2. 如权利要求1所述的驱动系统,其特征在于,所述检测机构包括:
    压力传感器,设置在与所述主动构件和从动构件中的一者的远离所述活塞的一端相对的位置,用于检测所述主动构件和从动构件中的一者沿所述第二方向的移动所产生的压力。
  3. 如权利要求1所述的驱动系统,其特征在于,所述检测机构包括:
    位移传感器,用于检测所述主动构件和从动构件中的一者沿所述第二方向的位移。
  4. 如权利要求2或3所述的驱动系统,其特征在于,所述驱动系统还包括:
    控制机构,所述控制机构用于根据所述检测机构的输出结果确定所述流体输注装置的工作状态,和/或,用于根据所述检测机构的输出结果控制所述驱动机构。
  5. 如权利要求1-3中任一项所述的驱动系统,其特征在于,
    所述主动构件为丝杠;
    所述从动构件与所述主动构件的螺纹配合,用于沿所述第一方向推动所述活塞。
  6. 如权利要求5所述的驱动系统,其特征在于,所述驱动机构包括:
    动力源;
    传动齿轮;
    其中,所述传动齿轮的末级从动齿轮位于所述丝杠远离所述活塞的一端,用于与所述丝杠一起转动。
  7. 如权利要求6所述的驱动系统,其特征在于,
    所述传动齿轮的末级从动齿轮与所述丝杠固定连接;
    所述传动齿轮的末级主动齿轮和末级从动齿轮均为直齿圆柱齿轮;
    在容纳所述传动齿轮的齿轮箱中具有允许所述末级从动齿轮沿所述第二方向移动的空间。
  8. 如权利要求6所述的驱动系统,其特征在于,
    所述传动齿轮的末级从动齿轮与所述丝杠可相对滑动地连接。
  9. 如权利要求1-3中任一项所述的驱动系统,其特征在于,
    所述从动构件为丝杠,用于沿所述第一方向推动所述活塞;
    所述主动构件与所述丝杠的螺纹配合。
  10. 如权利要求9所述的驱动系统,其特征在于,所述驱动机构包括:
    动力源;
    传动齿轮;
    其中,所述传动齿轮的末级从动齿轮为直齿圆柱齿轮;
    所述主动构件的外周具有与所述末级从动齿轮配合的直齿。
  11. 如权利要求6或10所述的驱动系统,其特征在于,
    所述动力源为马达,所述马达的输出轴与所述丝杠不共轴。
  12. 如权利要求6或10所述的驱动系统,其特征在于,
    所述动力源为马达,所述马达的位置固定。
  13. 一种流体输注装置,其特征在于,包括:
    贮液器,用于容纳流体;
    流体递送机构,与所述贮液器连通,用于向对象递送流体;
    活塞,设置为能够在所述贮液器内沿该贮液器轴向移动;以及
    如权利要求1-12中任一项所述的驱动系统,用于使所述活塞在所述贮液器内轴向移动,以使所述贮液器内的流体经由所述流体递送机构递送至对象。
PCT/CN2018/074572 2017-09-12 2018-01-30 流体输注装置及其驱动系统 WO2019052111A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721164928 2017-09-12
CN201710817809.7 2017-09-12
CN201710817809.7A CN107456625B (zh) 2017-09-12 2017-09-12 流体输注装置及其驱动系统
CN201721164928.9 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019052111A1 true WO2019052111A1 (zh) 2019-03-21

Family

ID=65722351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074572 WO2019052111A1 (zh) 2017-09-12 2018-01-30 流体输注装置及其驱动系统

Country Status (1)

Country Link
WO (1) WO2019052111A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542210A (ja) * 1991-08-09 1993-02-23 Atom Kk 輸液装置
US20030073954A1 (en) * 2000-03-29 2003-04-17 Minimed Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
CN1620317A (zh) * 2002-01-25 2005-05-25 Dca设计国际有限公司 带有轴向可移动导螺杆的药物注射装置
CN1674949A (zh) * 2002-02-28 2005-09-28 德尔泰克公司 轴向装载的药筒和泵
CN201181249Y (zh) * 2008-02-25 2009-01-14 北京东方诚益通科技开发中心 注射泵压力检测机构
CN101470036A (zh) * 2007-12-28 2009-07-01 北京谊安医疗系统股份有限公司 注射泵阻塞压力检测处理装置及方法
CN102526833A (zh) * 2010-12-30 2012-07-04 上海微创生命科技有限公司 输液泵
CN202505905U (zh) * 2012-03-09 2012-10-31 中国人民解放军第三军医大学第一附属医院 自动微量注射器
CN203417371U (zh) * 2013-08-26 2014-02-05 苏州鼎诺医疗设备有限公司 输液泵
CN107456625A (zh) * 2017-09-12 2017-12-12 美敦力公司 流体输注装置及其驱动系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542210A (ja) * 1991-08-09 1993-02-23 Atom Kk 輸液装置
US20030073954A1 (en) * 2000-03-29 2003-04-17 Minimed Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
CN1620317A (zh) * 2002-01-25 2005-05-25 Dca设计国际有限公司 带有轴向可移动导螺杆的药物注射装置
CN1674949A (zh) * 2002-02-28 2005-09-28 德尔泰克公司 轴向装载的药筒和泵
CN101470036A (zh) * 2007-12-28 2009-07-01 北京谊安医疗系统股份有限公司 注射泵阻塞压力检测处理装置及方法
CN201181249Y (zh) * 2008-02-25 2009-01-14 北京东方诚益通科技开发中心 注射泵压力检测机构
CN102526833A (zh) * 2010-12-30 2012-07-04 上海微创生命科技有限公司 输液泵
CN202505905U (zh) * 2012-03-09 2012-10-31 中国人民解放军第三军医大学第一附属医院 自动微量注射器
CN203417371U (zh) * 2013-08-26 2014-02-05 苏州鼎诺医疗设备有限公司 输液泵
CN107456625A (zh) * 2017-09-12 2017-12-12 美敦力公司 流体输注装置及其驱动系统

Similar Documents

Publication Publication Date Title
US8034019B2 (en) Dual microcontroller-based liquid infusion system
US10603431B2 (en) Dispensing fluid from an infusion pump system
US11383034B2 (en) Monitoring a physiological parameter associated with tissue of a host to confirm delivery of medication
CA2854687C (en) Syringe pump and drive system thereof
US10099005B2 (en) Drive mechanism
EP2361646A1 (en) Dosing unit and ambulatory infusion device comprising dosing unit
US20230173174A1 (en) Bilaterally driven intelligent control infusion device
WO2021129403A1 (zh) 给药驱动传动状态监控系统和方法以及装置
CN107456625B (zh) 流体输注装置及其驱动系统
JP6926206B2 (ja) 携帯型注入装置
US20140088507A1 (en) Articulating power supply for medical infusion device
US20210015996A1 (en) Method and devices for delivering insulin
WO2019052111A1 (zh) 流体输注装置及其驱动系统
CN117797359B (zh) 一种透皮给药用注射泵控制系统
BR112019010693B1 (pt) Aparelho de infusão de ambulatório e sistema de infusão de ambulatório
AU2015224373A1 (en) An injection pump and driving system thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857373

Country of ref document: EP

Kind code of ref document: A1