WO2019052072A1 - 一种磁流变传动线控制动器 - Google Patents

一种磁流变传动线控制动器 Download PDF

Info

Publication number
WO2019052072A1
WO2019052072A1 PCT/CN2017/117147 CN2017117147W WO2019052072A1 WO 2019052072 A1 WO2019052072 A1 WO 2019052072A1 CN 2017117147 W CN2017117147 W CN 2017117147W WO 2019052072 A1 WO2019052072 A1 WO 2019052072A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
clutch
motor
magnetorheological
ball screw
Prior art date
Application number
PCT/CN2017/117147
Other languages
English (en)
French (fr)
Inventor
白先旭
刘洋
李洋
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Priority to US16/473,511 priority Critical patent/US11268586B2/en
Publication of WO2019052072A1 publication Critical patent/WO2019052072A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • F16D67/02Clutch-brake combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/2245Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members in which the common actuating member acts on two levers carrying the braking members, e.g. tong-type brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/008Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being carried by a fluid, to vary viscosity when subjected to electric change, i.e. electro-rheological or smart fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • F16D63/002Brakes with direct electrical or electro-magnetic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • F16D65/183Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes with force-transmitting members arranged side by side acting on a spot type force-applying member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • F16D67/02Clutch-brake combinations
    • F16D67/06Clutch-brake combinations electromagnetically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/14Mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/28Electric or magnetic using electrostrictive or magnetostrictive elements, e.g. piezoelectric elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/50Rotating members in mutual engagement with parallel non-stationary axes, e.g. planetary gearing

Definitions

  • This invention relates to a floating caliper disc brake for a vehicle, and more particularly to a pure motor drive line control actuator using a magnetorheological clutch as a transmission.
  • the car brake system is an extremely important system to ensure the safety of the car.
  • the most reliable and widely used automotive brake system is a system that uses conventional hydraulic disc brakes as actuators for various braking purposes.
  • the hydraulic disc brake consists of a brake master cylinder, a brake pipe, a brake cylinder, a brake caliper, a brake block and a brake disc.
  • the brake master cylinder When braking demand, the brake master cylinder generates brake pressure, which is transmitted through the brake pipe. After each brake cylinder, the corresponding brake caliper generates pressure to push the brake block to clamp the brake disc to generate brake rotation. Moment, to achieve the brakes of the car.
  • the traditional automotive brake system cannot avoid complicated hydraulic oil pipes and numerous valve components, which means that the system is complicated (not conducive to simplifying system control) and the quality is high (not conducive to "lightweight” targets).
  • the complicated hydraulic oil pipe and valve components due to the complicated hydraulic oil pipe and valve components, there are phenomena such as slow system brake pressure transmission and brake lag. Further, the braking distance will increase and the braking safety of the vehicle will be threatened.
  • the automotive industry which is the highest/most advanced technology represented by smart/unmanned vehicles, is bringing together the science and technology of the whole society to “renovate” at an extremely fast pace.
  • the important automotive hardware that cooperates with the intelligent/unmanned vehicle software decision-making system that is, the vehicle-controlled implementation system, is not satisfactory. It fails to complete the expectation of innovation, and it is rare to see reliable products, most of which are still in the original. A “compromise” improvement was made in the system.
  • the expectations of the automotive industry and consumer mass control systems are: safer and lighter. In other words, it is to ban all the complicated components such as the brake master cylinder, vacuum booster pump and heavy weight, and realize a brake system with lighter weight and shorter braking distance.
  • ABS anti-lock Braking System
  • ESD Electronic Brake Force Distribution
  • ESP Electronic Stability Program
  • active safety control systems as well as extended systems such as the Advanced Emergency Braking System (AEBS).
  • AEBS Advanced Emergency Braking System
  • Bosch's iBooster system is the representative.
  • the driver depresses the brake pedal and detects the displacement signal from the pedal stroke sensor integrated in the iBooster and sends it to the electronic control unit.
  • the control unit calculates the torque request that the motor should generate and converts it into a boost through the secondary gear unit.
  • the servo braking force of the valve body so that the output force of the booster valve body and the input force of the booster input rod are jointly converted into brake hydraulic pressure in the brake master cylinder to realize the brake pressure establishment.
  • the brake system with the motor as a single drive must face and properly solve the problem of the motor "blocking" during the long-term braking process, because the motor will burn out due to "blocking" Directly causing the brake system to fail, the consequences are unimaginable.
  • adding the motor drive mechanism to the original hydraulic brake system can improve the braking efficiency to a certain extent, but still can not avoid complicated hydraulic oil pipes and numerous valve components, not completely meaningful line control. Dynamic system.
  • the present invention has been made to solve the above-mentioned deficiencies of the prior art, and provides a line control device realized by an intermediate device that transmits a magnetorheological clutch as a braking driving force to meet higher braking performance requirements.
  • Magnetorheological clutches are a typical application based on smart material magnetorheological fluids.
  • Magnetorheological fluid is a kind of smart material with rheological properties. Under the action of magnetic field, the material properties (especially viscosity) of magnetorheological fluid can be fast (millisecond), continuous and reversible between Newtonian fluid and semi-solid state. Ground adjustment.
  • the magnetorheological fluid-based magnetorheological clutch has the advantages of millisecond response speed, large transmittable torque range, simple structure, good durability and low energy consumption. Under the control of the magnetic field, the transmission torque of the magnetorheological clutch can be adjusted in real time.
  • the structural feature of a magnetorheological transmission line control device is composed of a motor, a transmission mechanism and a floating caliper mechanism;
  • the transmission mechanism is composed of a magnetorheological clutch, a planetary gear train and a ball screw;
  • the bar mechanism is composed of a ball, a ball screw and a sleeve;
  • the floating caliper mechanism is composed of a brake back plate, a brake block, a brake caliper, a brake disk and a guide pin;
  • the motor and the magnetorheological The clutch is connected in series, and the output torque of the motor transmitted by the magnetorheological clutch is decelerated and twisted by the planetary gear train to push the sleeve in the ball screw mechanism, and the sleeve drives the brake back plate fixedly connected to form a linear movement, and finally Push the brake block to rub the brake disc to achieve braking.
  • the structural feature of the magnetorheological transmission line control device of the present invention is also that the output shaft of the motor is connected in series with the input shaft of the magnetorheological clutch through the first coupling, and the magneto-rheological clutch transmits the drive of the motor in real time. Moment.
  • the structural feature of a magnetorheological transmission line control device of the present invention is also that the magnetorheological transformer is mainly composed of an input shaft fixed to the right shearing disc, an exciting coil, an output shaft fixed to the left shearing disc, and a magneto-rheological fluid filled with a cavity; an excitation magnetic field generated by the current-exciting coil, the magnetic flux perpendicularly passing through the magnetic flux between the right-shear disk fixed to the input shaft and the left-cut disk fixed to the output shaft Changing the input current allows real-time, continuous, and efficient transfer of torque between the input shaft and the output shaft.
  • the structural feature of the magnetorheological transmission line control device of the present invention is also that the sun gear of the planetary gear train is coupled to the output shaft of the magnetorheological transformer through a key, and the planet carrier is coaxially assembled with the sun gear, and passes through the The two couplings are fixedly connected with the ball screw to achieve deceleration and twisting.
  • the structural feature of a magnetorheological transmission line control device of the present invention is also that the ball screw mechanism is mainly composed of balls, The ball screw and the sleeve are configured; the ball screw is fixed to the carrier through the coupling.
  • the structural feature of the magnetorheological transmission line control device of the present invention is also that the sleeve and the brake back plate are fixedly connected by the key in the floating caliper mechanism; the right brake block is mounted on the brake back plate.
  • the left brake block is mounted on the brake caliper; when braking, the right brake block is driven by the sleeve to push the right brake block to press the brake disc, and the reaction force acting on the brake caliper causes it to follow
  • the guide pin moves to the right, and the left brake block of the fixed brake caliper presses the brake disc to achieve braking.
  • the structural feature of the magnetorheological transmission line control device of the present invention is also that: a guiding device is disposed in the brake caliper, including a bracket, a guiding pin and a return spring; the guiding pin penetrates the bracket, and the brake back plate is in the The guiding pin is guided; after the braking is completed, the brake caliper is reset by the return spring.
  • the control flow of setting the brake is: when the braking demand is required, the motor and the magneto-rheological clutch work together, the motor continuously inputs a sufficient driving current to provide the required driving torque, and the exciting coil of the magneto-rheological clutch inputs a suitable current.
  • the structural feature of a magnetorheological transmission line control device of the present invention is also that during the braking process, the magneto-rheological clutch effectively transmits the motor driving torque while the input and output shafts always keep slipping.
  • Another structure of the present invention is that the magnetorheological clutch is disposed at the end of the motor and the planetary gear train, the torque transmission sequence is different, and the transmitted output torque error is also different. If the motor is connected to the clutch first, the size is small. The disadvantage is that the torque transmitted by the clutch will have an error. This error will be amplified in the planetary gear train, so it may affect the rear clamping force. If the motor is connected to the planetary gear train first, There will be no problem of error amplification. The error of the system is mainly at the position of the ball screw, but in this case, the size of the clutch will increase.
  • Another configuration of the present invention is that the floating caliper mechanism can be replaced with a floating wedge caliper mechanism.
  • the magnetorheological clutch can be replaced by an electro-rheological clutch and a magnetic powder clutch.
  • the electrorheological fluid is used in the electrorheological clutch, and the basic principle is similar.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a partially enlarged schematic view showing the structure of Figure 3;
  • Figure 3 is a schematic structural view of another embodiment of Figure 3;
  • Figure 4 is a schematic structural view of another embodiment of Figure 3;
  • Figure 5 is a schematic structural view of another embodiment of Figure 3.
  • Figure 6 is a schematic structural view of another embodiment of Figure 3.
  • Figure 7 is a schematic structural view of another embodiment of the present invention.
  • Figure 8 is a schematic structural view of another embodiment of the present invention.
  • Figure 9 is a flow chart showing the control of the motor and the magnetorheological clutch of the present invention.
  • a magnetorheological transmission line control actuator in this embodiment is composed of a motor 1, a transmission mechanism 20, and a floating caliper mechanism 11.
  • the output shaft of the motor 1 is connected in series with the input shaft 21 of the magnetorheological clutch 3 via the first coupling 2,
  • the magnetorheological clutch 3 transmits the driving torque of the motor 1 in real time.
  • the transmission mechanism 20 is composed of a magnetorheological clutch 3, a planetary gear train, and a ball screw mechanism.
  • the magnetorheological clutch 3 is mainly composed of an input shaft 21 fixed to the right shearing disc 22, an exciting coil 26, an output shaft 31 fixed to the left shearing disc 30, and a magnetorheological fluid 32 filled in the cavity.
  • the energized excitation coil 26 generates an exciting magnetic field, and the magnetic field line 23 is vertically changed through the magnetorheological fluid 32 fixed between the right shearing disk 22 fixed to the input shaft 21 and the left shearing disk 30 fixed to the output shaft 31.
  • the input current can realize real-time, continuous and effective transmission of the torque between the input shaft 21 and the output shaft 31;
  • the sun gear 4 of the planetary gear train is fixedly connected to the magneto-rheological clutch output shaft 31 by a key, and the carrier 7 and The sun gear 4 is coaxially assembled, and is fixed to the ball screw 9 through the second coupling 2 in FIG. 7 to realize deceleration and torque increase;
  • the ball screw mechanism is composed of the ball 8, the ball screw 9 and the sleeve 10 Composition.
  • the sleeve 10 is connected to the brake back plate 16 by a key in the floating caliper mechanism, the right brake block 15 is mounted on the brake back plate 16, and the left brake block 13 is mounted on the brake caliper.
  • the right brake block 15 is driven by the sleeve 10, pushing the right brake block 15 against the brake disc 14, and the reaction force acting on the brake caliper 12 is guided along
  • the pin 18 moves to the right, and the left brake block 13 of the fixed brake caliper 12 presses the brake disc 14 to achieve braking;
  • the caliper body is equipped with a guiding device, which is composed of a bracket 17, a guide pin 18 and a return spring 19, and is guided.
  • the pin 18 extends through the bracket 17, which is guided on the guide pin 18.
  • the control flow for setting the brake is:
  • Figure 3 shows another embodiment of 3 in Figure 1, with input shaft 21 and output shaft 31 nested, input shaft 21 and output
  • the shaft 31 is provided with a plurality of sets of shearing discs, which are positioned by the positioning ring 29, and there is a magnetorheological fluid 32 filled with the cavity between the shearing discs; the contact ends of the input shaft 21 and the output shaft 31 are sealed by the O-ring 33
  • the excitation coil 26 fixed in the clutch housing generates a field magnetic field through a current, and the magnetorheological fluid 32 filled in the cavity transmits the torque at the input end to the output end.
  • Fig. 4 shows another embodiment of Fig. 1 in which the input shaft 21 and the output shaft 31 are nested, and one end of the output shaft 31 is enlarged in the radial direction to form a "flywheel" structure to increase the magnetorheological fluid.
  • the two-axis gap is filled with magnetorheological fluid 32; the input shaft 21 and the output shaft 31 contact end are sealed by the O-ring 33; the excitation coil 26 fixed in the clutch housing generates an exciting magnetic field through the current, which is full
  • the magnetorheological fluid 32 of the chamber transfers the input torque to the output.
  • Figure 5 shows another embodiment of the type 3 of Figure 1, replacing the magnetorheological clutch 3 with an ER clutch, the structure of which is comprised of the input shaft 21, the output shaft 31, the conductive ring 34, the high pressure device 35, and the clutch
  • the insulating structure should be performed in two parts according to the clutch structure
  • the first part is the insulation of the input shaft 21, the output shaft 31 and the left and right end caps 22 of the clutch, and thus is provided with an insulating sleeve 38, and the second part is provided with a spacer between the clutch driving piece 37 and the clutch follower piece 36. (40 and 42), the insulation between the main clutch and the driven piece is realized; and an O-ring 33 is interposed between the left and right end caps 22 of the clutch and the clutch cover 25 to prevent
  • FIG. 6 shows another embodiment of FIG. 1 in which the magneto-rheological clutch 3 is replaced by a magnetic powder clutch, the structure of which is composed of an input shaft 21, an exciting coil 26, an output shaft 31, a driven rotor 44, and a magnetic powder 45.
  • the active rotor 46 is constructed in which the input shaft 21 is fixed to the active rotor 46, the output shaft 31 is fixed to the driven rotor 44, and the driven rotor 46 and the driven rotor 44 are separated by an O-ring 33 at the active rotor 46 and the slave A working gap is formed between the moving rotors 44, and the magnetic powder 45 with high magnetic permeability and good heat resistance is added; the exciting coil 26 fixed in the clutch housing generates an exciting magnetic field through the current, and the magnetic powder 45 in the working gap will input the torque at the input end. Pass to the output.
  • Fig. 7 shows another embodiment of the present invention.
  • the embodiment provides the magnetorheological clutch 3 at the end of the motor and the planetary gear train, and the output shaft 31 of the magnetorheological clutch 3 acts on the system.
  • a moving back plate 16 the motor includes a stator 47 and a rotor 48; the outer ring gear 5 of the planetary gear train is fixedly coupled to the motor rotor 48, and the sun gear 4 of the planetary gear train is fixed to the motor stator 47, and the carrier 7 is fixedly connected to the input shaft 21 of the magnetorheological clutch 3, and is driven to rotate by a motor.
  • FIG 8 illustrates another embodiment of the present invention.
  • the floating caliper mechanism can be replaced with a floating wedge caliper mechanism consisting of a movable wedge 49, a stationary wedge 50, and two The roller 51 between the wedges, the upper brake block 53 and the lower brake block 54; in the wedge brake, the stationary wedge 50 is fixedly connected to the brake caliper 12, and the movable wedge 49 and the brake back plate 16
  • the brake block 53 is attached and mounted to move linearly in the direction of the roller 51.
  • the motor 1 and the magnetorheological clutch 3 work together, so that the upper brake block 53 and the lower brake block 54 overcome the resistance and the brake gap, and quickly press the brake disc 14 to achieve braking; if the wheel tends to Locked, appropriately reduce the input current into the decompression phase of the anti-lock braking system; if the wheel is in the optimal braking state, keep the input currents into the holding phase of the anti-lock braking system, if the wheel Braking force Insufficient, appropriately increase the input current into the decompression phase of the anti-lock braking system; when the braking demand is terminated, the motor 1 is supplied with the reverse driving current, and the current on the exciting coil 26 of the magnetorheological clutch 3 remains unchanged. When the ball screw is reset, the motor 1 stops inputting the drive current, the exciting coil 26 of the magneto-rheological clutch 3 stops the input current, and the brake caliper 12 is reset by the return spring 19.
  • Figure 9 is a flow chart showing the control of the motor 1 and the magnetorheological clutch 3 of the present invention.
  • the motor 1 and the magnetorheological clutch 3 work together, the motor 1 is supplied with a sufficiently large driving current, and the exciting coil 26 is supplied with a suitable current value to cause the brake pads (13 and 15) to overcome the resistance and the braking gap.
  • the brake disc 14 is pressed, when the braking force reaches the set value, the driving current of the motor 1 remains unchanged, and the pressing force is controlled only by changing the current value of the exciting coil 26 in the magnetorheological clutch 3, thereby realizing the ABS braking effect.
  • the input current of the exciting coil 26 is increased, and the wheel brake pressure is increased.
  • the wheel acceleration reaches the set threshold value -a, and the input current of the exciting coil 26 remains unchanged.
  • the control enters the second stage; this fashion does not need to reduce the current of the exciting coil 26 until the slip ratio is greater than the reference slip ratio threshold S 0 , at which time the wheel tends to lock and the excitation coil should be appropriately reduced. 26 current value, the control process enters the third stage; due to the reduction of the current value of the excitation coil 26, the brake pressure is reduced, the wheel accelerates under the inertia of the vehicle, and the wheel deceleration starts to rise and will rise above the threshold -a.
  • Excitation coil 26 The input current value remains unchanged, and the control enters the fourth stage; during this time, the wheel continues to accelerate due to the inertia of the braking system until the acceleration exceeds the threshold a, and the input current of the exciting coil 26 remains unchanged.
  • the input current of the exciting coil 26 increases until the acceleration is lower than the threshold A, and the input current value of the exciting coil 26 is maintained. It does not change until the acceleration is lower than a; therefore, when entering the fifth stage, the input current value of the exciting coil 26 is continuously switched by the increasing and holding manner until the wheel acceleration is again lower than -a.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Braking Arrangements (AREA)

Abstract

一种磁流变传动线控制动器,包括电机(1)、传动机构(20)和浮动钳盘机构(11);所述传动机构(20)包括磁流变离合器(3)、电流变离合器或磁粉离合器,行星轮系(20a)和滚珠丝杠机构(20b);所述滚珠丝杠机构(20b)包括滚珠(8)、滚珠丝杆(9)和套筒(10);所述浮动钳盘机构(11)包括制动背板(16)、制动块(13;15)、制动钳(12)、制动盘(14)和导向销(18);所述电机(1)与所述磁流变离合器(3)串联联接,经磁流变离合器(3)传递的电机(1)输出转矩经行星轮系(20a)减速增扭后推动滚珠丝杠机构(20b)中的套筒(10),套筒(10)带动与其固连的制动背板(16)形成直线移动,并最终推动制动块(13;15)摩擦制动盘(14)实现制动。通过在电机(1)驱动的线控制动器中设置磁流变传动装置,使得整个系统的响应速度快、可传递转矩范围大、制动安全性高,且能够解决长时间制动过程中的电机(1)堵转的问题。

Description

一种磁流变传动线控制动器 技术领域
本发明涉及车用浮动钳盘式制动器,更具体地说是一种以磁流变离合器为传动装置的纯电机驱动线控制动器。
背景技术
汽车制动系统是保障汽车行驶安全性的极为重要的系统。目前最可靠、应用最广泛的汽车制动系统是以传统的液压盘式制动器为执行器实现各种制动目的的系统。硬件上,液压盘式制动器由制动主缸、制动管道、制动分泵、制动钳、制动块和制动盘构成。制动需求时,制动主缸产生制动压力,通过制动管道传递,经各个制动分泵,使相对应的制动钳内产生压力推动制动块夹持制动盘产生制动转矩,实现汽车的制动。然而,传统的汽车制动系统,无法避免复杂的液压油管和众多的阀类元件,这意味着系统复杂(不利于简化系统控制)、质量大(不利于“轻量化”目标)。除此之外,因复杂的液压油管和阀类元件,会出现系统制动压力传递慢和制动滞后等现象,进一步,制动距离会增加,汽车的制动安全性受到威胁。
以智能/无人驾驶汽车为最高/最先进科技代表的汽车工业,正在集合全社会的科学和技术以极快的速度“革新”。而配合智能/无人驾驶汽车软件决策系统的重要汽车硬件,即汽车线控执行系统,却不尽如人意,未能完成期待的推陈出新,更鲜见有可靠的产品推出,多数依然是在原始系统中进行“妥协”改进。以线控制动系统为例,汽车行业和消费大众对线控制动系统的期望是:更安全和更轻质量。换句话说,就是取缔一切原有诸如制动主缸、真空助力泵等复杂零部件和繁重质量之后,实现一种质量更轻、制动距离更短制动系统。与此同时,实现性能更优越的制动防抱死系统(Anti-lock Braking System,ABS)、电子制动力分配系统(Electronic Brake force Distribution,EBD)和电子稳定性程序(Electronic Stability Program,ESP)等主动安全控制系统,以及扩展的主动紧急制动系统(Advanced Emergency Braking System,AEBS)等系统。然而,目前已有的两种技术手段:一是以电机为单一驱动器的制动系统;二是在原有的液压制动系统中增加电机驱动机构,博世的iBooster系统为其代表。正常工作时,驾驶员踩下制动踏板,由集成在iBooster内的踏板行程传感器检测位移信号并发送至电子控制单元,控制单元计算出电机应产生的扭矩要求并通过二级齿轮装置转化为助力器阀体的伺服制动力,从而助力器阀体的输出力和助力器输入杆的输入力在制动主缸内共同转化为制动液压实现制动压力建立。而以电机为单一驱动器的制动系统必须面对并妥善解决长时间制动过程中电机“堵转”问题,因为因“堵转”而造成电机烧毁会 直接导致制动系统失效,后果不堪设想。使用“妥协”的解决方案,在原有的液压制动系统中增加电机驱动机构一定程度上可提高制动效能,但仍不能规避复杂的液压油管和众多的阀类元件,并非完全意义的线控制动系统。
发明内容
本发明是为了解决上述现有技术所存在的不足,提供了一种以磁流变离合器为制动驱动力传递的中间装置实现的线控制动器以满足更高的制动性能要求。磁流变离合器是基于智能材料磁流变液的一种典型应用。磁流变液是一种具有流变特性的智能材料,在磁场作用下,磁流变液的材料属性(尤其是粘度)能够在牛顿流体和半固体状态之间快速(毫秒)、连续并可逆地调节。基于磁流变液的磁流变离合器具有毫秒级的响应速度、可传递转矩范围大、结构简单、耐久性好和耗能低等优点。在磁场的控制下,可以实现磁流变离合器的传递转矩实时调节。
本发明为解决技术问题采用如下技术方案:
本发明一种磁流变传动线控制动器的结构特点是由电机、传动机构和浮动钳盘机构组成;所述传动机构由磁流变离合器、行星轮系和滚珠丝杠构成;所述滚珠丝杠机构由滚珠、滚珠丝杆和套筒构成;所述浮动钳盘机构由制动背板、制动块、制动钳、制动盘和导向销构成;所述电机与所述磁流变离合器串联联接,经磁流变离合器传递的电机输出转矩经行星轮系减速增扭后推动滚珠丝杠机构中的套筒,套筒带动与其固连的制动背板形成直线移动,并最终推动制动块摩擦制动盘实现制动。
本发明一种磁流变传动线控制动器的结构特点也在于:所述电机的输出轴通过第一联轴器与磁流变离合器的输入轴串联联接,磁流变离合器实时传递电机的驱动转矩。
本发明一种磁流变传动线控制动器的结构特点也在于:所述磁流变离合器主要由固接右剪切圆盘的输入轴、励磁线圈、固接左剪切圆盘的输出轴和充满腔体的磁流变液构成;通电流励磁线圈产生励磁磁场,磁力线垂直穿过固连于输入轴的右剪切圆盘和固连于输出轴的左剪切圆盘之间的磁流变液,改变输入电流可实现输入轴与输出轴之间的转矩实时、连续、有效的传递。
本发明一种磁流变传动线控制动器的结构特点也在于:所述行星轮系的太阳轮通过键与磁流变离合器输出轴联接,行星架与所述太阳轮同轴装配,并通过第二联轴器与滚珠丝杆固连,实现减速增扭。
本发明一种磁流变传动线控制动器的结构特点也在于:所述滚珠丝杠机构主要由滚珠、 滚珠丝杆和套筒构成;所述滚珠丝杆通过联轴器与行星架固连。
本发明一种磁流变传动线控制动器的结构特点也在于:所述浮动钳盘机构中套筒与制动背板通过键固连;右制动块安装在所述制动背板上,左制动块安装在制动钳上;制动时,所述右制动块由套筒带动,推动右制动块压紧制动盘,同时作用于制动钳上的反作用力使其沿导向销向右移动,固连制动钳的左制动块压紧制动盘实现制动。
本发明一种磁流变传动线控制动器的结构特点也在于:在制动钳中设置导向装置,包括支架、导向销和回位弹簧;所述导向销贯穿支架,制动背板在所述导向销上获得导向;制动结束后,制动钳在所述回位弹簧作用下复位。
设置所述制动器的控制流程为:制动需求时,电机和磁流变离合器协同工作,电机持续通入足够大的驱动电流提供所需驱动转矩,磁流变离合器中励磁线圈输入合适的电流以产生励磁磁场作用于右剪切圆盘和左剪切圆盘之间的磁流变液,并实时传递由电机输出的转矩到输出轴以驱动滚珠丝杠中的套筒向前直线移动,并推动右制动块和左制动块克服阻力和制动间隙,压紧制动盘实现制动;若车轮趋于抱死,适当减小磁流变离合器的励磁线圈上的电流以降低传递到套筒上的电机输出的转矩,并相应适当减小电机的驱动电流,进入制动防抱死系统的减压阶段;若车轮处于最佳制动状态,保持原先电机输入驱动电流和磁流变离合器的励磁线圈上的电流,保持恒定转矩输出,进入制动防抱死系统的保压阶段;若车轮制动力不足,适当增加电机的驱动电流,并相应增加磁流变离合器的励磁线圈上的电流,进入制动防抱死系统的增压阶段;制动需求终止时,电机通入反向驱动电流,磁流变离合器的励磁线圈上的电流保持不变,滚珠丝杠复位,电机停止输入驱动电流、磁流变离合器的励磁线圈停止输入电流;制动钳在回位弹簧作用下复位。
本发明一种磁流变传动线控制动器的结构特点也在于:在制动过程中,磁流变离合器在有效传递电机驱动转矩的同时,输入和输出轴之间始终保持滑转。
本发明的另一种结构为:将所述磁流变离合器设置于电机与行星轮系的末端,力矩传递顺序不一样,传递的输出转矩误差也会不一样。电机先连接离合器的话,尺寸小,缺点是经离合器传递的转矩会有误差,这个误差会在行星轮系放大,所以对后面的夹紧力可能有影响;如果是电机先连接行星轮系,就不会有误差放大的问题,系统的误差就主要是在滚珠丝杆位置,但这样的话,离合器的尺寸会增大。
本发明的另一种结构为:浮动钳盘机构可用浮动楔式钳盘机构代替。
本发明的另一种结构为:磁流变离合器可由电流变离合器、磁粉离合器替换,除介质不同外,例如电流变离合器使用的是电流变液,其基本原理类似。
与已有技术相比,以磁流变离合器为制动驱动力传递的中间装置实现的线控制动器的优 点体现在:
1.能够有效解决传统的液压或气压制动系统过重的管路所带的燃油经济性问题,以及液压油泄露所带来的环境污染和碰撞安全性问题;
2.能够有效解决汽车在长时间制动时的电机堵转问题;
3.采用电机与磁流变离合器协同工作,能够有效提升制动系统响应速度,有利于实现制动系统性能的极限优化;
4.有利于实现各种性能更加优越的ABS、EBD、ESP和AEBS主动安全控制系统。
附图说明
图1位本发明结构示意图;
图2为图1中3的局部放大结构示意图;
图3为图1中3的另一实施方式结构示意图;
图4为图1中3的另一实施方式结构示意图;
图5为图1中3的另一实施方式结构示意图;
图6为图1中3的另一实施方式结构示意图;
图7为本发明的另一实施方式结构示意图;
图8为本发明的另一实施方式结构示意图;
图9为一种本发明中电机和磁流变离合器的控制流程图。
图中标号:1电机,2联轴器,3磁流变离合器,4太阳轮,5外齿圈,6行星轮,7行星架,8滚珠,9滚珠丝杆,10套筒,11浮动钳盘机构,12制动钳,13左制动块,14制动盘,15右制动块,16制动背板,17支架,18导向销,19回位弹簧,20传动机构,20a行星轮系,20b滚珠丝杠,21输入轴,22右剪切圆盘,23磁力线,24离合器右端盖,25离合器盖,26励磁线圈,27励磁线圈底座,28不导磁材料,29定位环,30左剪切圆盘,31输出轴,32磁流变液,33O形密封圈,34导电环,35高压装置,36离合器从动片,37离合器主动片,38绝缘套筒,39挡圈,40隔套1,41绝缘板,42隔套2,43电流变液,44从动转子,45磁粉,46主动转子,47定子,48转子,49活动楔块,50静止楔块,51滚子,52浮动楔式钳盘机构,53上制动块,54下制动块。
具体实施方案
参见图1,本实施例中一种磁流变传动线控制动器是由电机1、传动机构20以及浮动钳盘机构11构成。所述电机1的输出轴通过第一联轴器2与磁流变离合器3的输入轴21串联, 磁流变离合器3实时传递电机1的驱动转矩。
如图1和图2所示,所述传动机构20由磁流变离合器3、行星轮系和滚珠丝杠机构构成。所述磁流变离合器3主要由固接右剪切圆盘22的输入轴21、励磁线圈26、固接左剪切圆盘30的输出轴31以及充满腔体的磁流变液32构成,通电励磁线圈26产生励磁磁场,磁力线23垂直穿过固连于输入轴21的右剪切圆盘22和固连于输出轴31的左剪切圆盘30之间的磁流变液32,改变输入电流可实现输入轴21与输出轴31之间的转矩实时、连续、有效的传递;所述行星轮系的太阳轮4通过键与磁流变离合器输出轴31固连,行星架7与太阳轮4同轴装配,并通过图7中的第二联轴器2与滚珠丝杆9固连,实现减速增矩;所述滚珠丝杠机构由滚珠8、滚珠丝杆9和套筒10构成。
如图1所示,所述浮动钳盘机构中套筒10与制动背板16通过键连接,右制动块15安装在制动背板16上,左制动块13安装在制动钳12上,制动时,所述右制动块15由套筒10带动,推动右制动块15压紧在制动盘14上,同时作用在制动钳12上的反作用力使其沿导向销18向右移动,固连制动钳12的左制动块13压紧制动盘14实现制动;钳体装有导向装置,由支架17、导向销18和回位弹簧19构成,导向销18贯穿支架17,所述制动背板16在导向销18上获得导向。
设置制动器的控制流程为:
(a)制动需求时,电机1和磁流变离合器3协同工作,电机1持续通入足够大的驱动电流提供所需驱动转矩;磁流变离合器3励磁线圈26输入合适的电流以产生励磁磁场作用于右剪切圆盘22和左剪切圆盘30之间的磁流变液32,磁流变离合器3实时传递由电机1输出的转矩到磁流变离合器3的输出轴31以驱动滚珠丝杠中的套筒10向前直线移动,并推动右制动块15和左制动块13克服阻力和制动间隙,迅速压紧制动盘14实现制动;
(b)若车轮趋于抱死,适当减小磁流变离合器3的励磁线圈26上的电流以降低传递到套筒10段的输出转矩,并相应适当减小电机1的驱动电流,进入制动防抱死系统的减压阶段;
(c)若车轮处于最佳制动状态,保持原先电机1输入驱动电流和保持磁流变离合器3的励磁线圈26上的电流,保持恒定转矩输出,进入制动防抱死系统的保压阶段;
(d)若车轮制动力不足,适当增加电机1的驱动电流,并相应增加磁流变离合器3的励磁线圈26上的电流,进入制动防抱死系统的增压阶段;
(e)制动需求终止时,电机1通入反向驱动电流,磁流变离合器3的励磁线圈26上的电流保持不变,滚珠丝杠复位,电机1停止输入驱动电流、磁流变离合器3的励磁线圈26停止输入电流;制动钳12在回位弹簧19作用下复位。
图3给出了图1中3的另一种实施方式,输入轴21和输出轴31嵌套,输入轴21和输出 轴31均装有多组剪切圆盘,用定位环29定位,剪切圆盘间有充满腔体的磁流变液32;输入轴21和输出轴31接触端使用O形密封圈33密封;固装在离合器壳体中的励磁线圈26通电流产生励磁磁场,充满腔体的磁流变液32将输入端转矩传递至输出端。
图4给出了图1中3的另一种实施方式,输入轴21和输出轴31嵌套,输出轴31的一端,在径向上尺寸加大,形成“飞轮”结构增大磁流变液32工作范围,两轴间隙处充满磁流变液32;输入轴21和输出轴31接触端使用O性密封圈33密封;固装在离合器壳体中的励磁线圈26通电流产生励磁磁场,充满腔体的磁流变液32将输入端转矩传递至输出端。
图5给出了图1中3的另一种实施方式,采用电流变离合器替换所述磁流变离合器3,其结构由输入轴21、输出轴31、导电环34、高压装置35、离合器从动片36、离合器主动片37、绝缘套筒38、挡圈39、绝缘板41、挡圈(40和42)和充满腔体的电流变液43构成;根据离合器结构应在两部分进行绝缘处理,第一部分是在输入轴21、输出轴31和离合器左右端盖22的绝缘,因而装有绝缘套筒38,第二部分是在离合器主动片37和离合器从动片36之间装有隔套(40和42),实现对离合器主、从动片之间绝缘;此外在离合器左右端盖22和离合器盖25间装有O形密封圈33防止液体泄漏。
图6给出了图1中3的另一种实施方式,采用磁粉离合器替换所述磁流变离合器3,其结构由输入轴21、励磁线圈26、输出轴31、从动转子44、磁粉45以及主动转子46构成,其中输入轴21与主动转子46固装,输出轴31与从动转子44固装;主动转子46和从动转子44用O形密封圈33隔离,在主动转子46和从动转子44间形成一工作隙,加入导磁率高、耐热性好的磁粉45;固装在离合器壳体中的励磁线圈26通电流产生励磁磁场,工作隙中的磁粉45将输入端转矩传递至输出端。
图7给出了本发明的另一种实施方式,此实施例将所述磁流变离合器3设置于电机与行星轮系的末端,以所述磁流变离合器3的输出轴31作用于制动背板16;所述电机包括定子47和转子48;所述行星轮系的外齿圈5与电机转子48固连,所述行星轮系的太阳轮4与电机定子47固连,行星架7与磁流变离合器3的输入轴21固连,由电机驱动转动。
图8给出了本发明的另一种实施方式,所述浮动钳盘机构可用浮动楔式钳盘机构代替,所述浮动楔式钳盘机构由活动楔块49、静止楔块50、位于两楔块间的滚子51、上制动块53和下制动块54构成;所述楔式制动器中,静止楔块50与制动钳12固连,活动楔块49与制动背板16固连并安装上制动块53,可沿滚子51方向直线移动。制动需求时,电机1和磁流变离合器3协同工作,使上制动块53和下制动块54克服阻力和制动间隙,迅速压紧制动盘14实现制动;若车轮趋于抱死,适当减小各输入电流进入制动防抱死系统的减压阶段;若车轮处于最佳制动状态,保持各输入电流不变进入制动防抱死系统的保压阶段,若车轮制动力 不足,适当增大各输入电流进入制动防抱死系统的减压阶段;制动需求终止时,电机1通入反向驱动电流,磁流变离合器3的励磁线圈26上的电流保持不变使滚珠丝杠复位,电机1停止输入驱动电流、磁流变离合器3的励磁线圈26停止输入电流,制动钳12在回位弹簧19作用下复位。
图9给出了一种本发明中电机1和磁流变离合器3的控制流程图。车辆开始制动时,电机1和磁流变离合器3协同工作,电机1通入足够大的驱动电流、励磁线圈26通入合适电流值使制动块(13和15)克服阻力和制动间隙压紧制动盘14,当制动力达到设定值时,电机1的驱动电流保持不变,仅通过改变磁流变离合器3中的励磁线圈26电流值控制压紧力,实现ABS制动作用;在ABS制动初始阶段,增大励磁线圈26输入电流,车轮制动压力升高,在第一阶段末,车轮加速度达到设定的门限值-a,励磁线圈26输入电流保持不变,以使车轮充分制动,控制进入第二阶段;此时尚不需要减小励磁线圈26电流,直到滑移率大于参考滑移率门限S0,此时车轮趋于抱死应适当减小励磁线圈26电流值,控制过程进入第三阶段;由于减小励磁线圈26电流值,制动压力降低,车轮在汽车惯性作用下加速,车轮减速度开始回升并将高于门限值-a,此时励磁线圈26输入电流值保持不变,控制进入第四阶段;在这段时间内,由于制动系统的惯性作用,车轮继续加速,直到加速度超过门限值a,励磁线圈26输入电流保持不变,在第四阶段结束时,车轮加速度若超过设定的较大加速度门限值A(A>a),励磁线圈26输入电流加大,直到加速度低于门限值A,再保持励磁线圈26输入电流值不变直至加速度低于a;因此在进入第五阶段时,励磁线圈26输入电流值采用增加和保持方式不断切换直到车轮加速度再次低于-a。以上为ABS一个循环结束,可选择重复循环或结束制动过程,若制动过程结束,首先电机1通入反向驱动电流,励磁线圈26电流不变使滚珠丝杠复位,之后停止电机1和励磁线圈26的电流输入,制动钳12在回位弹簧19作用下复位。

Claims (10)

  1. 一种磁流变传动线控制动器,其特征是:包括电机(1)、传动机构(20)和浮动钳盘机构(11);所述传动机构(20)包括磁流变离合器(3)、电流变离合器或磁粉离合器,行星轮系(20a)和滚珠丝杠机构(20b);所述滚珠丝杠机构包括滚珠(8)、滚珠丝杆(9)和套筒(10);所述浮动钳盘机构包括制动背板(16)、制动块(13;15)、制动钳(12)、制动盘(14)和导向销(18)构成;所述电机(1)与所述磁流变离合器(3)串联联接,经磁流变离合器(3)传递的电机输出转矩经行星轮系减速增扭后推动滚珠丝杠机构中的套筒(10),套筒(10)带动与其固连的制动背板(16)形成直线移动,并最终推动制动块(13;15)摩擦制动盘(14)实现制动。
  2. 根据权利要求1所述的磁流变传动线控制动器,其特征是:电机(1)的输出轴通过第一联轴器(2)与磁流变离合器(3)的输入轴(21)串联联接,磁流变离合器(3)实时传递电机(1)的驱动转矩。
  3. 根据权利要求1或2所述的磁流变传动线控制动器,其特征是:所述磁流变离合器(3)主要由固接右剪切圆盘(22)的输入轴(21)、励磁线圈(26)、固接左剪切圆盘(30)的输出轴(31)和充满腔体的磁流变液(32)构成;通电流励磁线圈(26)产生励磁磁场,磁力线(23)垂直穿过固连于输入轴(21)的右剪切圆盘(22)和固连于输出轴(31)的左剪切圆盘(30)之间的磁流变液(32),改变输入电流实现输入轴(21)与输出轴(31)之间的转矩实时、连续的传递。
  4. 根据权利要求1所述的磁流变传动线控制动器,其特征是:所述行星轮系的太阳轮(4)通过键与磁流变离合器输出轴(31)联接,行星架(7)与所述太阳轮(4)同轴装配,并通过第二联轴器与滚珠丝杆(9)固连,实现减速增扭。
  5. 根据权利要求1所述的磁流变传动线控制动器,其特征是:所述浮动钳盘机构中套筒(10)与制动背板(16)通过键固连;右制动块(15)安装在所述制动背板(16)上,左制动块(13)安装在制动钳(12)上;制动时,所述右制动块(15)由套筒(10)带动,推动右制动块(15)压紧制动盘(14),同时作用于制动钳(12)上的反作用力使其沿导向销(18)向右移动,固连制动钳(12)的左制动块(13)压紧制动盘(14)实现制动。
  6. 根据权利要求1或5所述的磁流变传动线控制动器,其特征是:在制动钳(12)中设置导向装置,包括支架(17)、导向销(18)和回位弹簧(19);所述导向销(18)贯穿支架(17),制动背板(16)在所述导向销(18)上获得导向;制动结束后,制动钳(12)在所述回位弹簧(19)作用下复位。
  7. 根据权利要求1所述的磁流变传动线控制动器,其特征是:设置所述制动器的控制流程为:
    (a)制动需求时,电机(1)和磁流变离合器(3)协同工作,电机(1)持续通入驱动电流提供所需驱动转矩;磁流变离合器(3)中励磁线圈(26)输入电流以产生励磁磁场作用于右剪切圆盘(22)和左剪切圆盘(30)之间的磁流变液(32),并实时传递由电机(1)输出的转矩到输出轴(31)以驱动滚珠丝杠中的套筒(10)向前直线移动,并推动右制动块(15)和左制动块(13)克服阻力和制动间隙,压紧制动盘(14)实现制动;
    (b)若车轮趋于抱死,减小磁流变离合器(3)的励磁线圈(26)上的电流以降低传递到套筒(10)上的电机(1)输出的转矩,并相应减小电机(1)的驱动电流,进入制动防抱死系统的减压阶段;
    (c)若车轮处于最佳制动状态,保持原先电机(1)输入驱动电流和磁流变离合器(3)的励磁线圈(26)上的电流,保持恒定转矩输出,进入制动防抱死系统的保压阶段;
    (d)若车轮制动力不足,增加电机(1)的驱动电流,并相应增加磁流变离合器(3)的励磁线圈(26)上的电流,进入制动防抱死系统的增压阶段;
    (e)制动需求终止时,电机(1)通入反向驱动电流,磁流变离合器(3)的励磁线圈(26)上的电流保持不变,滚珠丝杠复位,电机(1)停止输入驱动电流、磁流变离合器(3)的励磁线圈(26)停止输入电流;制动钳(12)在回位弹簧(19)作用下复位。
  8. 根据权利要求7所述的磁流变传动线控制动器,其特征是:在制动过程中,磁流变离合器(3)在有效传递电机(1)驱动转矩的同时,输入轴(21)和输出轴(31)之间始终保持滑转。
  9. 一种磁流变传动线控制动器,其特征是:包括电机、传动机构和浮动钳盘机构;所述传动机构包括行星轮系,磁流变离合器、电流变离合器或磁粉离合器,和滚珠丝杠机构;所述滚珠丝杠机构包括滚珠(8)、滚珠丝杆(9)和套筒(10);所述浮动钳盘机构包括制动背板(16)、制动块(13;15)、制动钳(12)、制动盘(14)和导向销(18);将所述磁流变离合器(3)设置于电机(1)与行星轮系(20a)的末端,所述磁流变离合器的输出轴(31)作用于滚珠丝杠机构后通过套筒(10)连接制动背板(16);所述电机(1)包括定子(47)和转子(48);所述行星轮系的外齿圈(5)与电机(1)的转子(48)固连,所述行星轮系的太阳轮(4)与电机(1)的定子(47)固连,行星架(7)则与磁流变离合器(3)的输入轴(21)固连,由电机(1)驱动转动;电机输出转矩经行星轮系减速增扭后经磁流变离合器(3)传递推动滚珠丝杠机构中的套筒(10),套筒(10)带动与其固连的制动背板(16)形成直线移动,并最终推动制动块(13;15)摩擦制动盘(14)实现制动。
  10. 一种磁流变传动线控制动器,其特征是:包括电机(1)、传动机构(20)和浮动楔式钳盘机构(52);所述传动机构(20)包括磁流变离合器(3)、电流变离合器或磁粉离合器, 行星轮系(20a)和滚珠丝杠机构(20b);所述滚珠丝杠机构包括滚珠(8)、滚珠丝杆(9)和套筒(10);所述浮动楔式钳盘机构主要由活动楔块(49)、静止楔块(50)、位于两楔块间的滚子(51)、上制动块(53)、下制动块(54)和制动盘(14)组成;所述电机(1)与行星轮系联接,减速增扭后通过磁流变离合器(3)传递转矩,并通过滚珠丝杠机构带动套筒(10)与其固连的活动楔块(49)形成直线移动,最终推动上制动块(53)和下制动块(54)压紧制动盘(14)实现制动。
PCT/CN2017/117147 2017-09-14 2017-12-19 一种磁流变传动线控制动器 WO2019052072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/473,511 US11268586B2 (en) 2017-09-14 2017-12-19 Brake using magnetorheological transmission and brake-by-wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710828772.8A CN107355490A (zh) 2017-09-14 2017-09-14 一种磁流变传动线控制动器
CN201710828772.8 2017-09-14
CN201711268000.X 2017-12-05
CN201711268000.XA CN108006117B (zh) 2017-09-14 2017-12-05 一种磁流变传动线控制动器

Publications (1)

Publication Number Publication Date
WO2019052072A1 true WO2019052072A1 (zh) 2019-03-21

Family

ID=60291183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117147 WO2019052072A1 (zh) 2017-09-14 2017-12-19 一种磁流变传动线控制动器

Country Status (3)

Country Link
US (1) US11268586B2 (zh)
CN (2) CN107355490A (zh)
WO (1) WO2019052072A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090590A (zh) * 2020-07-17 2020-12-18 成都川一机械有限公司 一种豆瓣酱的挑选设备
CN112739929A (zh) * 2020-12-24 2021-04-30 华为技术有限公司 一种液压装置、制动装置、制动系统及制动控制方法
CN113389825A (zh) * 2021-05-18 2021-09-14 江苏大学 一种电子机械制动器的间隙调控装置及方法
CN113446331A (zh) * 2020-10-20 2021-09-28 柳州职业技术学院 一种四电机磁流变液制动装置
CN113531081A (zh) * 2021-06-29 2021-10-22 范金来 一种基于磁流变液的液力偶合器
CN114922919A (zh) * 2022-02-09 2022-08-19 富奥汽车零部件股份有限公司 一种摆线转子式磁流变液高压缓速器
US11788561B2 (en) 2020-04-15 2023-10-17 Goodrich Corporation Hydraulic fluid flow control
US11920615B2 (en) 2022-04-19 2024-03-05 Goodrich Corporation Hydraulic fluid flow control

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107355490A (zh) * 2017-09-14 2017-11-17 合肥工业大学 一种磁流变传动线控制动器
JP6732712B2 (ja) * 2017-09-29 2020-07-29 日立オートモティブシステムズ株式会社 電動ディスクブレーキ
CN110030298A (zh) * 2018-01-12 2019-07-19 比亚迪股份有限公司 鼓式制动器以及具有其的车辆
CN110307273B (zh) * 2018-03-27 2021-01-12 广州朗晴电动车有限公司 一种电动清查车刹车装置及控制方法
CN108799369A (zh) * 2018-06-11 2018-11-13 浙江亚太机电股份有限公司 电磁式电子机械制动器
CN108582151A (zh) * 2018-06-12 2018-09-28 浙江工业大学 一种机器人柔顺关节的混合液励磁控制器
CN108582150A (zh) * 2018-06-12 2018-09-28 浙江工业大学 一种基于磁流变液的混合励磁式机器人柔顺关节
CN110966321B (zh) * 2018-09-30 2021-08-20 长城汽车股份有限公司 用于车辆的制动器及车辆
CN109268406B (zh) * 2018-10-18 2020-02-28 中国矿业大学 一种磁流体盘式制动器
CN109703381A (zh) * 2019-02-14 2019-05-03 深圳市澜润科技有限公司 汽车行驶惯性能量回收系统
CN110254197A (zh) * 2019-05-17 2019-09-20 北京理工大学 一种盘式电子机械式制动器的双电机驱动装置及驱动方法
CN110340878A (zh) * 2019-07-24 2019-10-18 东南大学 一种分布式有源无源混合绳索驱动系统
EP3782944B1 (en) * 2019-08-21 2023-06-28 KONE Corporation An elevator disc brake
CN112443594B (zh) * 2019-08-30 2022-03-18 比亚迪股份有限公司 线控制动系统和车辆
CN113135170A (zh) * 2020-01-17 2021-07-20 扬州五环龙电动车有限公司 一种汽车线控制动系统
CN111231923B (zh) * 2020-02-26 2021-11-02 奇瑞汽车股份有限公司 电机堵转保护装置和线控液压制动系统
CN111221367B (zh) * 2020-03-12 2021-08-17 合肥工业大学 一种联合电机与可控离合器的多功能执行器的控制方法
CN111692234B (zh) * 2020-06-01 2021-06-29 中国矿业大学 基于挤压-剪切模式的水冷式磁流变离合器及控制方法
CN111731252B (zh) * 2020-06-01 2021-09-17 南京航空航天大学 一种具有备份制动系统的线控制动系统及其控制方法
CN111911565A (zh) * 2020-06-08 2020-11-10 许飚 一种基于磁流变液的主轴制动机构
CN111692248A (zh) * 2020-06-22 2020-09-22 浙江火萌互娱信息技术有限公司 一种用于电动轮椅传动轴的失速制动装置
CN111810556B (zh) * 2020-07-20 2024-04-26 中国矿业大学 一种液压挤压式磁流变液离合器
CN111697785B (zh) * 2020-07-20 2024-06-11 中国矿业大学 一种非接触式磁流变液传动装置
CN112080945B (zh) * 2020-09-16 2023-01-03 福建锐信合成革有限公司 高强度环保合成革的制备工艺
CN112709770B (zh) * 2020-12-23 2021-11-05 南京航空航天大学 一种基于串联磁致伸缩的间隙自调节制动器及其控制方法
CN112762111B (zh) * 2020-12-28 2021-12-21 南京航空航天大学 一种具有制动间隙自调节功能的电磁制动器及其控制方法
CN112744288B (zh) * 2021-01-26 2022-08-26 上海工程技术大学 一种基于多盘式磁流变液离合器的电动助力转向系统
CN112727951B (zh) * 2021-01-29 2022-03-08 山东交通学院 一种带有辅助制动功能的制动器
CN113062935B (zh) * 2021-04-22 2022-12-06 合肥工业大学 一种多摩擦片式纯线控制动器
CN113294460B (zh) * 2021-05-17 2022-04-22 南京航空航天大学 一种新型盘式制动器及其参数多目标优化设计方法
CN113915266A (zh) * 2021-10-08 2022-01-11 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 电子机械制动装置及新能源汽车
US11940017B2 (en) * 2022-02-28 2024-03-26 Safran Landing Systems Canada Inc. Electrorheological brake

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2676483Y (zh) * 2003-12-04 2005-02-02 张力军 新型磁粉离合器无级调速电机
WO2005124181A1 (de) * 2004-06-19 2005-12-29 Robert Bosch Gmbh Selbstverstärkende elektromechanische reibungsbremse
US20070209888A1 (en) * 2006-03-13 2007-09-13 Nissin Kogyo Co., Ltd. Vehicular disk brake
CN201007692Y (zh) * 2006-12-30 2008-01-16 重庆大学 汽车abs动态模拟试验台
CN105317955A (zh) * 2014-08-01 2016-02-10 株式会社捷太格特 滚珠丝杠装置
CN106594115A (zh) * 2016-12-29 2017-04-26 合肥工业大学 一种电机联合磁致伸缩作用的线控制动器
CN107355490A (zh) * 2017-09-14 2017-11-17 合肥工业大学 一种磁流变传动线控制动器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5826683A (en) * 1996-01-29 1998-10-27 Akebono Brake Industry Co., Ltd. Magnetostrictive brake
NL1006540C2 (nl) * 1997-07-10 1999-01-15 Skf Ind Trading & Dev Elektrische actuator met regelsensor, alsmede schijfrem omvattende een dergelijke actuator.
DE10127664C1 (de) * 2001-06-07 2003-04-17 Kendrion Binder Magnete Gmbh Elektromagnetisch betätigbare Bremsvorrichtung
WO2003056205A1 (en) * 2001-12-31 2003-07-10 Nasan Nireco Co., Ltd. Brake apparatus using magnetic powder
US7891474B2 (en) * 2008-04-29 2011-02-22 Honda Motor Co., Ltd. Magneto-rheological brake-clutch apparatuses and methods
CN201262205Y (zh) * 2008-08-19 2009-06-24 浙江亚太机电股份有限公司 一种电子机械式制动系统执行机构
CN102128223B (zh) * 2011-03-07 2012-12-12 山东交通学院 一种利用车辆动能进行制动的电子制动器
KR20130038432A (ko) * 2011-10-10 2013-04-18 주식회사 만도 전자식 디스크 브레이크
CN203463530U (zh) * 2013-07-31 2014-03-05 沈锡鹤 一种磁流变动力传动装置
CN103697089B (zh) * 2013-12-27 2016-01-20 清华大学 一种可进行制动能量回收的自增力式磁流变液制动装置
CN204113970U (zh) * 2014-09-01 2015-01-21 伍方彬 一种磁粉制动器
KR101876006B1 (ko) * 2015-12-10 2018-08-02 현대자동차주식회사 코깅 토크 저감장치를 가진 전동식 브레이크

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2676483Y (zh) * 2003-12-04 2005-02-02 张力军 新型磁粉离合器无级调速电机
WO2005124181A1 (de) * 2004-06-19 2005-12-29 Robert Bosch Gmbh Selbstverstärkende elektromechanische reibungsbremse
US20070209888A1 (en) * 2006-03-13 2007-09-13 Nissin Kogyo Co., Ltd. Vehicular disk brake
CN201007692Y (zh) * 2006-12-30 2008-01-16 重庆大学 汽车abs动态模拟试验台
CN105317955A (zh) * 2014-08-01 2016-02-10 株式会社捷太格特 滚珠丝杠装置
CN106594115A (zh) * 2016-12-29 2017-04-26 合肥工业大学 一种电机联合磁致伸缩作用的线控制动器
CN107355490A (zh) * 2017-09-14 2017-11-17 合肥工业大学 一种磁流变传动线控制动器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11788561B2 (en) 2020-04-15 2023-10-17 Goodrich Corporation Hydraulic fluid flow control
CN112090590A (zh) * 2020-07-17 2020-12-18 成都川一机械有限公司 一种豆瓣酱的挑选设备
CN112090590B (zh) * 2020-07-17 2023-01-03 成都川一机械有限公司 一种豆瓣酱的挑选设备
CN113446331A (zh) * 2020-10-20 2021-09-28 柳州职业技术学院 一种四电机磁流变液制动装置
CN112739929A (zh) * 2020-12-24 2021-04-30 华为技术有限公司 一种液压装置、制动装置、制动系统及制动控制方法
CN113389825A (zh) * 2021-05-18 2021-09-14 江苏大学 一种电子机械制动器的间隙调控装置及方法
CN113531081A (zh) * 2021-06-29 2021-10-22 范金来 一种基于磁流变液的液力偶合器
CN114922919A (zh) * 2022-02-09 2022-08-19 富奥汽车零部件股份有限公司 一种摆线转子式磁流变液高压缓速器
CN114922919B (zh) * 2022-02-09 2023-07-04 富奥汽车零部件股份有限公司 一种摆线转子式磁流变液高压缓速器
US11920615B2 (en) 2022-04-19 2024-03-05 Goodrich Corporation Hydraulic fluid flow control

Also Published As

Publication number Publication date
US11268586B2 (en) 2022-03-08
CN108006117A (zh) 2018-05-08
CN107355490A (zh) 2017-11-17
CN108006117B (zh) 2019-08-02
US20200049217A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2019052072A1 (zh) 一种磁流变传动线控制动器
WO2018120786A1 (zh) 一种电机联合磁致伸缩作用的线控制动器
WO2010110027A1 (ja) インホイールモーター用ブレーキ装置
GB1341682A (en) Vehicle ouput brake assemblies
CN102518710B (zh) 一种半储能式电子机械制动器以及汽车
WO2019042319A1 (zh) 盘式制动器及车辆
CN207145487U (zh) 盘式制动器及车辆
GB1131100A (en) Hydraulic servomotor assemblies
WO2019042309A1 (zh) 盘式制动器及车辆
CN106828445B (zh) 一种汽车应急辅助制动装置及方法
CN107461428A (zh) 一种汽车线控制动器及控制方法
WO2019042308A1 (zh) 鼓式制动器及车辆
WO2019042316A1 (zh) 盘式制动器及车辆
CN111942344A (zh) 一种含电机堵转保护装置的线控液压制动系统及控制方法
CN109114134B (zh) 一种肘杆增力式电子机械制动器
WO2019042318A1 (zh) 盘式制动器及车辆
CN207687222U (zh) 鼓式制动器及车辆
CN113135170A (zh) 一种汽车线控制动系统
CN204548061U (zh) 中功率轮式拖拉机静液压制动操纵系统
CN116146625A (zh) 一种电子机械制动器摩擦片与制动盘间隙的保持方法
US5388669A (en) Brake actuator with electromagnet, cam, and hydraulic piston components
CN105179523B (zh) 单边双斜面盘式制动器
CN116373827A (zh) 一种实现制动系统零拖滞的制动方法
CN108357484A (zh) 一种具有制动储能功能的汽车
CN214661650U (zh) 一种低能耗电子机械制动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925417

Country of ref document: EP

Kind code of ref document: A1