WO2019051896A1 - 适配高频运动摩擦副表面的声发射检测装置及方法 - Google Patents

适配高频运动摩擦副表面的声发射检测装置及方法 Download PDF

Info

Publication number
WO2019051896A1
WO2019051896A1 PCT/CN2017/104327 CN2017104327W WO2019051896A1 WO 2019051896 A1 WO2019051896 A1 WO 2019051896A1 CN 2017104327 W CN2017104327 W CN 2017104327W WO 2019051896 A1 WO2019051896 A1 WO 2019051896A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
mercury
cover
sensor
box
Prior art date
Application number
PCT/CN2017/104327
Other languages
English (en)
French (fr)
Inventor
张彩霞
宋志琼
蔡力钢
刘志峰
杨聪彬
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2019051896A1 publication Critical patent/WO2019051896A1/zh
Priority to US16/728,633 priority Critical patent/US10859535B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Definitions

  • the invention relates to an acoustic emission detecting device and a method for adapting a surface of a high-frequency moving friction pair, and belongs to the technical field of non-destructive testing.
  • acoustic emission detection is widely used to detect defects such as crack propagation, plastic deformation or phase transformation of materials. Combining it with the tribological testing equipment, the surface state of the friction pair material can be tested in real time, and the interface wear mechanism is further analyzed. That is, the method can dynamically monitor the damage mechanism of the friction pair material.
  • the conventional method cannot realize the effective connection of the friction pair surface follow-up acoustic emission probe and the preamplifier.
  • the present invention proposes an acoustic emission detecting device and method for adapting the surface of a high-frequency moving friction pair, and based on this, a linear reciprocating chute with high efficiency and high conductivity is designed.
  • the system, the reciprocating slide solves the problem of data distortion caused by high frequency jitter when the ordinary data line is connected, and can realize the stable and reliable connection between the high frequency reciprocating friction experiment and the acoustic emission detecting device.
  • the friction sub-surface follow-up acoustic emission probe and the preamplifier can realize the real-time monitoring of the acoustic emission equipment and obtain the state change of the friction pair surface during the high-frequency reciprocating friction process through the linear reciprocating slide connection, and further analyze the wear mechanism of different friction pairs. .
  • the invention realizes reliable and stable connection between the follow-up acoustic emission probe and the preamplifier through the linear reciprocating slide, thereby realizing the acoustic emission inspection of the surface of the friction pair of the high frequency reciprocating motion.
  • the technical solution adopted by the present invention is an acoustic emission detecting device adapted to the surface of a high-frequency moving friction pair.
  • the linear reciprocating chute system 1 is a main structure of the detecting device, and the linear reciprocating chute system 1 is composed of a detecting plate. 1.1, fixed clamp 1.2, vacuum cover 1.3, slip wire 1.4 and insulation box 1.5.
  • the detecting plate 1.1 is fixed to the bottom of the liquid pool 7 by double-sided tape, and the fixing clip 1.2 is fixed to the edge of the liquid pool, and the sensor 5 is fixed and connected to the substrate through the coupling grease.
  • the vacuum cover 1.3 is fixed to the side wall of the liquid pool 7, and the wire of the sliding wire 1.4 is connected to the sensor 5 through the vacuum cover 1.3, and the heat insulating box 1.5 is placed on the mercury box of the sliding wire 1.4.
  • the linear reciprocating chute system 1 is placed in the system to be tested composed of the preamplifier 2, the acquisition card 3, the cantilever beam 4, the sensor 5, the ball holder 6 and the liquid pool 7 to realize the surface wear information of the high frequency moving friction pair
  • the real-time acquisition, the acquisition card 3 in the system under test is connected to the linear reciprocating slide system 1 through the preamplifier 2.
  • the detecting board 1.1 includes a test substrate 1.11 and a test material 1.12; the test material 1.12, that is, the lower pattern and the test substrate 1.11 are connected by a coupling grease 1.14, and the signal lossless transmission between the test substrate 1.11 and the test material 1.12 is realized.
  • the test substrate 1.11 is fixed to the bottom of the liquid pool 7.
  • the test substrate 1.11 is connected to the sensor 5 via a coupling grease 1.14 for signal transmission.
  • the sensor 5 is fixed to the edge of the liquid pool 7 by a fixing clip 1.2.
  • the ball holder 6 is fixed on the cantilever beam 4, and the end of the cantilever beam 4 is fixed on the UMT sensor; the vacuum cover 1.3 covers the fixing clip 1.2, the detecting plate 1.1 and the ball holder 6; the sensor 5 passes the sliding wire 1.4 and the front end
  • the amplifiers 2 are connected.
  • the test substrate 1.11 is designed with a stepped groove.
  • the intermediate boss 1.11 in the middle of the groove is used to fix the test material 1.12, and the bottom of the test material 1.12 and the bottom surface of the intermediate boss 1.11 are filled with the coupling grease 1.14.
  • the energy generated during the friction process is transferred to the test material 1.12 without loss by the coupling grease 1.14.
  • Test material 1.12 transfers energy to the acoustic emission sensor via the coupling grease.
  • the bottom four corners of the stepped groove are designed with four round holes 1.112. After the experiment is completed, the test material is removed with a hex wrench and the coupling grease 1.14 is evenly filled during the experiment.
  • a reserved groove 1.13 is formed between the stepped groove of the test substrate 1.11 and the upper surface of the test material 1.12, and grease or lubricating oil is placed in the reserved groove 1.13.
  • the upper surface of the test material 1.12 is contacted with grease or lubricating oil or the lower surface is contacted with the coupling grease to avoid the interaction between the grease or the lubricating oil and the coupling grease from the spatial layout.
  • the fixing clip 1.2 is composed of a tightening rod 1.21, a rotating rod 1.22, a clamping sleeve 1.23, a cushion sleeve 1.24 and an upper end cover 1.25.
  • the tightening rod 1.21 is inserted from the hole of the rotating rod 1.22, and the rotating rod is connected with the clamping sleeve 1.23 through the threaded hole.
  • the cushion sleeve 1.24 is placed on the non-porous end of the tightening rod 1.21, and the upper end cover 1.25 is covered in the 3/4 ring of the clamping sleeve 1.23.
  • the upper fixed clamp 1.2 is formed.
  • One side of the clamping sleeve 1.23 is a 3/4 ring 1.233.
  • the small clearance fit does not affect the signal acquisition of the sensor, and the acoustic emission sensor space is constrained by the degree.
  • the upper end cover 1.25 is fastened on the upper side of the ring of the clamping sleeve 3/4 to restrain the upper and lower movement degrees of freedom of the sensor.
  • the cushion sleeve 1.24 is sleeved on the non-porous end of the tightening rod 1.21, and cooperates with the threaded hole 1.231 on the left U-shaped groove 1.232 of the clamping sleeve to fix the rotating rod 1.22, and fixes the fixing clip on the side wall of the liquid pool 7.
  • the fixing clip is simple to use and takes up little space.
  • the vacuum cover 1.3 is fixed to the side wall of the base of the liquid pool 7 by a double-sided tape. According to the experimental requirements, the vacuum cover is provided with four holes of a hole a1.31, a hole b1.32, a hole c1.33 and a hole d1.34. The role of each hole is as follows: hole a1.31 is passed The sensor leads the wire hole.
  • the hole b1.32 is a frictional upper sample passage hole, and the flexible plastic film is in the range of 10 mm from the edge of the hole b1.32 to satisfy the reciprocating movement of the liquid pool in which the lower sample is fixed when the upper sample is fixed.
  • the holes c1.33 and the holes d1.34 are sequentially channel holes for inputting and outputting gas.
  • the vacuum cover 1.3 can realize the friction experiment under vacuum environment.
  • the vacuum cover 1.3 is made of uneven noise-isolating material, which greatly reduces the interference of external noise on the experiment and ensures the accuracy of the experimental data.
  • the vacuum cover design can simulate various experimental environments such as vacuum, high temperature, dry grinding, grease lubrication and oil lubrication in the absence of interference from dust, noise and vibration.
  • the sliding wire 1.4 is composed of a lead wire 1.41, a double hole cover 1.42 (using polyethylene or the like as a raw material), a boxed wire 1.43, a mercury 1.44, and an oil film 1.45.
  • a lead wire 1.41 is inserted into the double hole cover 1.42, the double hole cover 1.42 is placed on the mercury case 1.432 of the boxed wire 1.43, the mercury case 1.432 is filled with mercury 1.44, and the mercury 1.44 is covered with an oil film 1.45.
  • the lead wire 1.41 is connected to the acoustic emission data line and is fixed to the sensor by a screw connection, and the end is bent at a 90 degree angle.
  • the left side of the boxed wire is a mercury box 1.432
  • the base material of the mercury box is plastic (polystyrene, etc.)
  • the bottom of the box is plated with a copper film 1.433, which is connected to the copper wire 1.431 in the right side wire.
  • the mercury box is filled with mercury 1.44 (the mercury conductivity is extremely high, it will not react with the electrode electrochemically, and the ion concentration will not be affected by the temperature change).
  • the mercury is 1.44 (the upper layer is covered with a layer of oil film 1.45 to prevent mercury from volatilizing.
  • the lower end hole 1.421 of the hole cover 1.42 is inserted into the elliptical stepped groove at the top of the box.
  • the middle of the double hole cover is a flexible plastic film.
  • the end lead of the lead wire 1.411 is vertically inserted into the upper end hole 1.422 of the double hole cover, and the end of the lead wire and the bottom of the box are adjusted.
  • the gap between the copper films is about 0.1mm (the optimal transmission of current between the lead wires and the wire can be realized).
  • the double hole cover can prevent mercury from volatilization again.
  • the design is safe, pollution-free, and not for the experimenter. It will cause any safety hazard. After the experiment is finished, pull out the lead wire from the upper hole and block the upper hole.
  • the heat insulating box 1.5 (using polystyrene as a raw material) is measured on the open port, and the outer wall is hollow. Water in the cavity 1.51 is placed at a temperature of about 0° (in the form of ice water mixture). Put the mercury box into the heat preservation box 1.5, reduce or maintain the mercury in the mercury box to a low temperature state, and ensure that the mercury conductivity is close to 100% to improve the test accuracy.
  • the mercury box 1.432 is placed in the heat preservation box 1.5 to ensure that the mercury temperature in the mercury box is not affected by changes in the outside temperature.
  • the double-hole cover 1.42 is made of polyethylene or the like.
  • the retaining clips 1.2 are all made of stainless steel.
  • the vacuum cover 1.3 is a colorless transparent plastic cover (made of polypropylene or the like).
  • the invention improves the collection mode of the acoustic emission signal and solves the problem that the area of the sample to be tested is small Difficulty (The use of acoustic emission sensors requires that the test sample must have a certain area, both to ensure that the acoustic emission sensor is used properly, and to avoid interference with the upper sample during the movement).
  • the detecting substrate is divided into a test substrate and a material to be tested, and the edge of the material to be tested is fixed on the test substrate, and the material to be tested and the test substrate are filled with the coupling grease.
  • the wear characteristic signal of the material to be tested can be measured by simply placing the probe on the substrate to be tested. When testing different samples, only the material to be tested needs to be replaced.
  • the invention solves the problem of inaccurate high frequency test of the acoustic emission device caused by high frequency jitter of the signal line through the linear reciprocating slide.
  • the coupling between the test material and the test substrate and between the test substrate and the sensor is connected by a coupling grease, which achieves lossless transmission of the signal and reduces the surface area of the test material.
  • the test substrate can avoid the problem of the compatibility of the grease or the lubricating oil with the coupling grease during the experiment, and the test accuracy is ensured.
  • Figure 1 is a schematic diagram of a linear reciprocating slide test.
  • Figure 2.1 Linear reciprocating slide (hidden vacuum cover).
  • Figure 2.2 Linear reciprocating slide (with vacuum cover).
  • Figure 3.1 Schematic diagram of the structure of the probe board.
  • Figure 3.2 Schematic diagram of the structure of the test substrate.
  • Figure 4.1 Schematic diagram of the structure of the retaining clip.
  • Figure 4.2 Schematic diagram of the clamping sleeve.
  • Figure 5 is a schematic view of the structure of the vacuum cover.
  • FIG. 6.1 Schematic diagram of the structure of the slip wire.
  • Figure 6.2 shows the structure of the lead wire.
  • FIG. 6.3 Schematic diagram of the structure of the boxed wire.
  • Figure 6.4 shows the structure of the double-hole cover.
  • Figure 7 is a schematic view of the structure of the thermal insulation box.
  • the acoustic emission detecting device is adapted to the surface of the high-frequency moving friction pair.
  • the linear reciprocating chute system 1 is the main structure of the detecting device.
  • the linear reciprocating chute system 1 is composed of a detecting plate 1.1 and a fixing clip. 1.2, vacuum cover 1.3, slip wire 1.4 and insulation box 1.5.
  • the detecting plate 1.1 is fixed to the bottom of the liquid pool 7 by double-sided tape, and the fixing clip 1.2 is fixed to the edge of the liquid pool, and the sensor 5 is fixed and connected to the substrate through the coupling grease.
  • the vacuum cover 1.3 is fixed to the side wall of the liquid pool 7, and the sliding guide
  • the wire of the wire 1.4 side is connected to the sensor 5 through the vacuum cover 1.3, and the heat box 1.5 is placed on the mercury box of the sliding wire 1.4.
  • the linear reciprocating chute system 1 is placed in the system to be tested composed of the preamplifier 2, the acquisition card 3, the cantilever beam 4, the sensor 5, the ball holder 6 and the liquid pool 7 to realize real-time acquisition of the surface wear information of the high-frequency moving friction pair.
  • the acquisition card 3 in the system under test is connected to the linear reciprocating slide system 1 through the preamplifier 2.
  • the detecting board 1.1 includes a test substrate 1.11 and a test material 1.12; the test material 1.12, that is, the lower pattern and the test substrate 1.11 are connected by a coupling grease 1.14, and the signal lossless transmission between the test substrate 1.11 and the test material 1.12 is realized.
  • the test substrate 1.11 is fixed to the bottom of the liquid pool 7.
  • the test substrate 1.11 is connected to the sensor 5 via a coupling grease 1.14 for signal transmission.
  • the sensor 5 is fixed to the edge of the liquid pool 7 by a fixing clip 1.2.
  • the ball holder 6 is fixed on the cantilever beam 4, and the end of the cantilever beam 4 is fixed on the UMT sensor; the vacuum cover 1.3 covers the fixing clip 1.2, the detecting plate 1.1 and the ball holder 6; the sensor 5 passes the sliding wire 1.4 and the front end
  • the amplifiers 2 are connected.
  • the test substrate 1.11 is designed with a stepped groove.
  • the intermediate boss 1.11 in the middle of the groove is used to fix the test material 1.12, and the bottom of the test material 1.12 and the bottom surface of the intermediate boss 1.11 are filled with the coupling grease 1.14.
  • the energy generated during the friction process is transferred to the test material 1.12 without loss by the coupling grease 1.14.
  • Test material 1.12 transfers energy to the acoustic emission sensor via the coupling grease.
  • the bottom four corners of the stepped groove are designed with four round holes 1.112. After the experiment is completed, the test material is removed with a hex wrench and the coupling grease 1.14 is evenly filled during the experiment.
  • a reserved groove 1.13 is formed between the stepped groove of the test substrate 1.11 and the upper surface of the test material 1.12, and grease or lubricating oil is placed in the reserved groove 1.13.
  • the upper surface of the test material 1.12 is contacted with grease or lubricating oil or the lower surface is contacted with the coupling grease to avoid the interaction between the grease or the lubricating oil and the coupling grease from the spatial layout.
  • the fixing clip 1.2 is composed of a tightening rod 1.21, a rotating rod 1.22, a clamping sleeve 1.23, a cushion sleeve 1.24 and an upper end cover 1.25.
  • the tightening rod 1.21 is inserted from the hole of the rotating rod 1.22, and the rotating rod is connected with the clamping sleeve 1.23 through the threaded hole.
  • the cushion sleeve 1.24 is placed on the non-porous end of the tightening rod 1.21, and the upper end cover 1.25 is covered in the 3/4 ring of the clamping sleeve 1.23.
  • the upper fixed clamp 1.2 is formed.
  • One side of the clamping sleeve 1.23 is a 3/4 ring 1.233.
  • the small clearance fit does not affect the signal acquisition of the sensor, and the acoustic emission sensor space is constrained by the degree.
  • the upper end cover 1.25 is fastened on the upper side of the ring of the clamping sleeve 3/4 to restrain the upper and lower movement degrees of freedom of the sensor.
  • the cushion sleeve 1.24 is sleeved on the non-porous end of the tightening rod 1.21, and cooperates with the threaded hole 1.231 on the left U-shaped groove 1.232 of the clamping sleeve to fix the rotating rod 1.22, and fixes the fixing clip on the side wall of the liquid pool 7.
  • the fixing clip is simple to use. Take up little space.
  • the vacuum cover 1.3 is fixed to the side wall of the base of the liquid pool 7 by a double-sided tape. According to the experimental requirements, the vacuum cover is provided with four holes of a hole a1.31, a hole b1.32, a hole c1.33 and a hole d1.34.
  • the function of each hole is as follows: hole a1.31 is the sensor lead wire hole.
  • the hole b1.32 is a frictional upper sample passage hole, and the flexible plastic film is in the range of 10 mm from the edge of the hole b1.32 to satisfy the reciprocating movement of the liquid pool in which the lower sample is fixed when the upper sample is fixed.
  • the holes c1.33 and the holes d1.34 are sequentially channel holes for inputting and outputting gas.
  • the vacuum cover 1.3 can realize the friction experiment under vacuum environment.
  • the vacuum cover 1.3 is made of uneven noise-isolating material, which greatly reduces the interference of external noise on the experiment and ensures the accuracy of the experimental data.
  • the vacuum cover design can simulate various experimental environments such as vacuum, high temperature, dry grinding, grease lubrication and oil lubrication in the absence of interference from dust, noise and vibration.
  • the sliding wire 1.4 is composed of a lead wire 1.41, a double hole cover 1.42 (using polyethylene or the like as a raw material), a boxed wire 1.43, a mercury 1.44, and an oil film 1.45.
  • a lead wire 1.41 is inserted into the double hole cover 1.42, the double hole cover 1.42 is placed on the mercury case 1.432 of the boxed wire 1.43, the mercury case 1.432 is filled with mercury 1.44, and the mercury 1.44 is covered with an oil film 1.45.
  • the lead wire 1.41 is connected to the acoustic emission data line and is fixed to the sensor by a screw connection, and the end is bent at a 90 degree angle.
  • the left side of the boxed wire is a mercury box 1.432
  • the base material of the mercury box is plastic (polystyrene, etc.)
  • the bottom of the box is plated with a copper film 1.433, which is connected to the copper wire 1.431 in the right side wire.
  • the mercury box is filled with mercury 1.44 (the mercury conductivity is extremely high, it will not react with the electrode electrochemically, and the ion concentration will not be affected by the temperature change).
  • the mercury is 1.44 (the upper layer is covered with a layer of oil film 1.45 to prevent mercury from volatilizing.
  • the lower end hole 1.421 of the hole cover 1.42 is inserted into the elliptical stepped groove at the top of the box.
  • the middle of the double hole cover is a flexible plastic film.
  • the end lead of the lead wire 1.411 is vertically inserted into the upper end hole 1.422 of the double hole cover, and the end of the lead wire and the bottom of the box are adjusted.
  • the gap between the copper films is about 0.1mm (the optimal transmission of current between the lead wires and the wire can be realized).
  • the double hole cover can prevent mercury from volatilization again.
  • the design is safe, pollution-free, and not for the experimenter. It will cause any safety hazard. After the experiment is finished, pull out the lead wire from the upper hole and block the upper hole.
  • the heat insulating box 1.5 (using polystyrene as a raw material) is measured on the open port, and the outer wall is hollow. Water in the cavity 1.51 is placed at a temperature of about 0° (in the form of ice water mixture). Put the mercury box into the heat preservation box 1.5, reduce or maintain the mercury in the mercury box to a low temperature state, and ensure that the mercury conductivity is close to 100% to improve the test accuracy.
  • the mercury box 1.432 is placed in the heat preservation box 1.5 to ensure that the mercury temperature in the mercury box is not affected by changes in the outside temperature.
  • the double-hole cover 1.42 is made of polyethylene or the like.
  • the retaining clips 1.2 are all made of stainless steel.
  • the vacuum cover 1.3 is a colorless transparent plastic cover (made of polypropylene or the like).
  • the invention improves the collection mode of the acoustic emission signal and solves the problem that the area of the sample to be tested is small (the use of the acoustic emission sensor requires that the test sample must have a certain area, and it is necessary to ensure the normal use of the acoustic emission sensor and avoid It interferes with the upper sample during the movement).
  • the detecting substrate is divided into a test substrate and a material to be tested, and the edge of the material to be tested is fixed on the test substrate, and the material to be tested and the test substrate are filled with the coupling grease.
  • the wear characteristic signal of the material to be tested can be measured by simply placing the probe on the substrate to be tested. When testing different samples, only the material to be tested needs to be replaced.
  • the SR150N sensor 5, the SAEU2 acquisition card 3, and the PXPA6 preamplifier 2 are taken as examples to describe the acoustic emission detection method using the linear reciprocating slide in the CETR-UMT5 for reciprocating high frequency friction experiments.
  • the liquid pool 7 and the ball drag 6 of the reciprocating module and the cantilever beam 4 portion are shown.
  • Step 1 Fix the probe plate in the liquid pool with double-sided tape, add appropriate amount of coupling grease to the groove at the bottom of the substrate, and fix the test material on the test substrate through the double-sided tape on the upper surface of the test substrate and the material to be tested.
  • a lubricant such as grease or lubricating oil is placed in the reserved groove between the upper surfaces.
  • the test substrate was an alloy steel having a length of 40 mm, a width of 28 mm, and a thickness of 1.8 mm.
  • the test material was a titanium alloy having a length of 10 mm, a width of 10 mm, and a thickness of 0.5 mm.
  • Step 2 Apply the coupling grease to the test substrate and fix the sensor to the liquid pool with the fixing clip.
  • the size of the clip holder is determined by the size of the sensor.
  • Step 3 Install the lead wire on the sensor, put on the vacuum cover (can skip this step if vacuum is not required) and fix it. Install the sample, adjust the position of the upper sample, and ensure that the upper sample ball is dragged into the two holes of the vacuum cover. An inert gas is introduced into the vacuum hood, and the hole c and the hole d are closed.
  • Step 4 Connect the refrigerated boxed wires and the lead wires at the end of the lead wire are inserted vertically into the upper hole of the double hole cover. Keep a distance of about 0.1 mm between the end surface and the copper film in the mercury case.
  • Step 5 Connect the preamplifier, the capture card, turn on the power, and test.
  • test substrate in the size design must consider the size of the lumen of the UMT reciprocating module liquid pool.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种适配高频运动摩擦副表面的声发射检测装置及方法,基于此设计了高效率、高导电率的线性往复式滑道系统,线性往复式滑道系统为检测装置的主体结构,线性往复式滑道系统(1)由探测板(1.1)、固定夹(1.2)、真空罩(1.3)、滑移导线(1.4)和保温盒(1.5)组成。该往复式滑道解决了普通数据线连接时因高频抖动造成的数据失真问题,可实现高频往复摩擦实验与声发射检测设备的稳定可靠连接。摩擦副表面随动声发射探头与前置放大器通过线性往复式滑道连接可实现声发射设备实时监测、获取高频往复磨擦过程中摩擦副表面的状态变化,并进一步分析不同摩擦副的磨损机理。

Description

适配高频运动摩擦副表面的声发射检测装置及方法 技术领域
本发明涉及一种适配高频运动摩擦副表面的声发射检测装置及方法,属于无损检测技术领域。
背景技术
声发射检测作为一种动态无损检测方法,被广泛的应用于检测材料的裂纹扩展、塑性变形或相变等缺陷。将其与摩擦学测试设备相结合,能够实时测试摩擦副材料的表面状态,并进一步分析界面磨损机理,即该方法可实现动态监测摩擦副材料的破损机理。但是,由于摩擦过程中摩擦副处于不断运动过程,常规方法无法实现摩擦副表面随动声发射探头与前置放大器的有效连接。
为了实现上述传统方法不能解决的技术问题,本发明提出了一种适配高频运动摩擦副表面的声发射检测装置及方法,并基于此设计了高效率、高导电率的线性往复式滑道系统,该往复式滑道解决了普通数据线连接时因高频抖动造成的数据失真问题,可实现高频往复摩擦实验与声发射检测设备的稳定可靠连接。摩擦副表面随动声发射探头与前置放大器通过线性往复式滑道连接可实现声发射设备实时监测、获取高频往复磨擦过程中摩擦副表面的状态变化,并进一步分析不同摩擦副的磨损机理。
发明内容
本发明的目的是提供一种适配高频运动摩擦副表面的声发射检查方法。本发明通过线性往复式滑道实现对随动声发射探头与前置放大器的可靠稳定连接,进而实现高频往复运动摩擦副表面的声发射检查。
为实现上述目的,本发明采用的技术方案为适配高频运动摩擦副表面的声发射检测装置,线性往复式滑道系统1为检测装置的主体结构,线性往复式滑道系统1由探测板1.1、固定夹1.2、真空罩1.3、滑移导线1.4和保温盒1.5组成。
探测板1.1通过双面胶固定在液池7底部,固定夹1.2固定在液池边缘,固定传感器5并通过耦合脂与基板相连接。真空罩1.3固定在液池7侧壁,滑移导线1.4一侧导线穿过真空罩1.3与传感器5相连,保温盒1.5套在滑移导线1.4的水银盒上。线性往复式滑道系统1放置在前置放大器2、采集卡3、悬臂梁4、传感器5、球托6和液池7组成的待测系统中实现高频运动摩擦副表面磨损信息 的实时采集,待测系统中的采集卡3通过前置放大器2与线性往复式滑道系统1连接。
探测板1.1包括测试基板1.11和测试材料1.12;测试材料1.12即下式样和测试基板1.11中间通过耦合脂1.14连接,实现测试基板1.11和测试材料1.12间的信号无损传递。测试基板1.11固定在液池7底部。
测试基板1.11通过耦合脂1.14与传感器5连接实现信号传输。传感器5通过固定夹1.2固定在液池7的边缘。球托6固定在悬臂梁4上,悬臂梁4的端部固定在UMT传感器上;真空罩1.3将固定夹1.2、探测板1.1和球托6罩住;传感器5通过滑移导线1.4与前置放大器2相连接。
测试基板1.11上设计有阶梯状凹槽,凹槽中部的中间凸台1.111用于固定测试材料1.12,测试材料1.12的底部与中间凸台1.111的底面之间填充有耦合脂1.14。摩擦过程中产生的能量经耦合脂1.14无损耗的传递到测试材料1.12。测试材料1.12将能量经耦合脂传递给声发射传感器。阶梯状凹槽的底部四角设计有四个圆孔1.112,在实验完成后配合六角扳手将测试材料拆下并保证实验过程中耦合脂1.14均匀填充。测试基板1.11的阶梯状凹槽与测试材料1.12上表面之间形成预留槽1.13,预留槽1.13内放入润滑脂或润滑油。测试材料1.12上表面接触润滑脂或润滑油油或下表面接触耦合脂,从空间布局上避免润滑脂或润滑油与耦合脂之间的互融。
所述固定夹1.2由拧紧棒1.21、旋转棒1.22、夹持套1.23、垫套1.24和上端盖1.25组成。拧紧棒1.21从旋转棒1.22的孔插入,旋转棒通过螺纹孔与夹持套1.23连接,垫套1.24套在拧紧棒1.21无孔一端,上端盖1.25盖在夹持套1.23的3/4圆环上构成固定夹1.2。夹持套1.23的一侧部为3/4圆环1.233通过小间隙配合,小间隙配合不会影响传感器的信号采集,对声发射传感器空间各自由度进行约束。上端盖1.25扣在夹持套3/4圆环上侧,约束传感器的上下移动自由度。垫套1.24套在拧紧棒1.21无孔一端,与夹持套左侧U型槽1.232上螺纹孔1.231配合,固定旋转棒1.22,将固定夹固定在液池7的侧壁。该固定夹使用方法简单,占用空间小。
真空罩1.3通过双面胶与液池7底座侧壁固定。根据实验要求真空罩上布有孔a1.31、孔b1.32、孔c1.33及孔d1.34四个孔。各孔的作用如下:孔a1.31为传 感器引出线孔。孔b1.32为摩擦上试样通过孔,孔b1.32边缘10mm范围内为柔性塑料薄膜,以满足上试样固定时下试样所在液池的往复移动。孔c1.33及孔d1.34依次为输入、输出气体的通道孔。
真空罩1.3可实现真空环境下的摩擦实验,真空罩1.3由凹凸不平的隔噪声材料制成,大大降低外部噪音对实验的干扰,保证实验数据的准确性。真空罩设计可在排除粉尘、噪音、振动等干扰的情况下模拟真空、高温、干磨、脂润滑、油润滑等多种实验环境。
所述滑移导线1.4由引出线1.41、双孔盖1.42(采用聚乙烯等为原材料)、划盒导线1.43、水银1.44、油膜1.45组成。引出线1.41一端插入双孔盖1.42中,双孔盖1.42盖在划盒导线1.43的水银盒1.432上,水银盒1.432内装有水银1.44,水银1.44上覆盖一层油膜1.45。引出线1.41与声发射数据线连接,并通过螺纹连接固定于传感器上,末端成90度弯角。划盒导线左侧为水银盒1.432,水银盒基体材料为塑料(聚苯乙烯等),盒子底部镀有铜膜1.433,其与右侧导线中的铜线1.431相连。水银盒内部装有水银1.44(水银导电率极高、不会与电极发生电化学反应、离子浓度不会受温度变化的影响),水银1.44(上覆盖有一层油膜1.45,以防止水银挥发。双孔盖1.42的下端孔1.421插入到划盒顶部椭圆形阶梯槽中,双孔盖中间为柔性塑料薄膜,引出线的末端引线1.411垂直插入双孔盖上端孔1.422,调整引出线末端与划盒底部铜膜之间的间隙,约为0.1mm左右(可实现引出线和划盒导线之间电流的最佳传输)。双孔盖可再次防止水银挥发,该设计安全、无污染、对实验者不会造成任何安全隐患。实验结束后将引出线从上端孔拔出,并将上端孔堵住即可。
所述保温盒1.5(采用聚苯乙烯为原材料)上测敞口,外壁中空。中空腔1.51内放入温度为0°左右(冰水混合物状态)的水。将水银盒放入保温盒1.5内,降低或维持水银盒内水银为低温状态,确保水银导电率接近100%,以提高试验精度。水银盒1.432放入保温盒1.5中,确保水银盒内水银温度不受外界温度变化的影响。
双孔盖1.42采用聚乙烯等为原材料。固定夹1.2均由不锈钢材制成。真空罩1.3为无色透明塑料罩(以聚丙烯等为原材料)。
本发明对声发射信号的采集方式进行了改进,解决了被测样品面积较小时的 难题(声发射传感器的使用要求测试样品必须有一定的面积,既要保证声发射传感器正常使用,又要避免其在移动过程中与上试样发生干涉)。本设计中探测基板分为测试基板和被测材料,被测材料边缘固定于测试基板,被测材料和测试基板中间被耦合脂填充。测试过程中,只需将探测头置于被测基板上即可测得被测材料的磨损特征信号。测试不同样品时只需要更换被测材料即可。
本发明通过线性往复式滑道解决了信号线高频抖动引起的声发射设备高频测试不准确问题。测试材料和测试基板之间、测试基板和传感器之间均通过耦合脂连接,既实现了信号的无损耗传递,又降低了对测试材料表面积的要求。测试基板可避润滑脂或者润滑油在实验过程中与耦合脂的互融问题,保证了试验精度。
附图说明
图1为线性往复式滑道测试示意图。
图2.1线性往复式滑道(隐藏真空罩)。
图2.2线性往复式滑道(含真空罩)。
图3.1探测板的结构示意图。
图3.2测试基板的结构示意图。
图4.1固定夹的结构示意图。
图4.2夹持套的结构示意图。
图5真空罩的结构示意图。
图6.1滑移导线的结构示意图。
图6.2引出线的结构示意图。
图6.3划盒导线的结构示意图。
图6.4双孔盖的结构示意图。
图7保温盒的结构示意图。
具体实施方式
如图1-7所示,适配高频运动摩擦副表面的声发射检测装置,线性往复式滑道系统1为检测装置的主体结构,线性往复式滑道系统1由探测板1.1、固定夹1.2、真空罩1.3、滑移导线1.4和保温盒1.5组成。
探测板1.1通过双面胶固定在液池7底部,固定夹1.2固定在液池边缘,固定传感器5并通过耦合脂与基板相连接。真空罩1.3固定在液池7侧壁,滑移导 线1.4一侧导线穿过真空罩1.3与传感器5相连,保温盒1.5套在滑移导线1.4的水银盒上。线性往复式滑道系统1放置在前置放大器2、采集卡3、悬臂梁4、传感器5、球托6和液池7组成的待测系统中实现高频运动摩擦副表面磨损信息的实时采集,待测系统中的采集卡3通过前置放大器2与线性往复式滑道系统1连接。
探测板1.1包括测试基板1.11和测试材料1.12;测试材料1.12即下式样和测试基板1.11中间通过耦合脂1.14连接,实现测试基板1.11和测试材料1.12间的信号无损传递。测试基板1.11固定在液池7底部。
测试基板1.11通过耦合脂1.14与传感器5连接实现信号传输。传感器5通过固定夹1.2固定在液池7的边缘。球托6固定在悬臂梁4上,悬臂梁4的端部固定在UMT传感器上;真空罩1.3将固定夹1.2、探测板1.1和球托6罩住;传感器5通过滑移导线1.4与前置放大器2相连接。
测试基板1.11上设计有阶梯状凹槽,凹槽中部的中间凸台1.111用于固定测试材料1.12,测试材料1.12的底部与中间凸台1.111的底面之间填充有耦合脂1.14。摩擦过程中产生的能量经耦合脂1.14无损耗的传递到测试材料1.12。测试材料1.12将能量经耦合脂传递给声发射传感器。阶梯状凹槽的底部四角设计有四个圆孔1.112,在实验完成后配合六角扳手将测试材料拆下并保证实验过程中耦合脂1.14均匀填充。测试基板1.11的阶梯状凹槽与测试材料1.12上表面之间形成预留槽1.13,预留槽1.13内放入润滑脂或润滑油。测试材料1.12上表面接触润滑脂或润滑油油或下表面接触耦合脂,从空间布局上避免润滑脂或润滑油与耦合脂之间的互融。
所述固定夹1.2由拧紧棒1.21、旋转棒1.22、夹持套1.23、垫套1.24和上端盖1.25组成。拧紧棒1.21从旋转棒1.22的孔插入,旋转棒通过螺纹孔与夹持套1.23连接,垫套1.24套在拧紧棒1.21无孔一端,上端盖1.25盖在夹持套1.23的3/4圆环上构成固定夹1.2。夹持套1.23的一侧部为3/4圆环1.233通过小间隙配合,小间隙配合不会影响传感器的信号采集,对声发射传感器空间各自由度进行约束。上端盖1.25扣在夹持套3/4圆环上侧,约束传感器的上下移动自由度。垫套1.24套在拧紧棒1.21无孔一端,与夹持套左侧U型槽1.232上螺纹孔1.231配合,固定旋转棒1.22,将固定夹固定在液池7的侧壁。该固定夹使用方法简单, 占用空间小。
真空罩1.3通过双面胶与液池7底座侧壁固定。根据实验要求真空罩上布有孔a1.31、孔b1.32、孔c1.33及孔d1.34四个孔。各孔的作用如下:孔a1.31为传感器引出线孔。孔b1.32为摩擦上试样通过孔,孔b1.32边缘10mm范围内为柔性塑料薄膜,以满足上试样固定时下试样所在液池的往复移动。孔c1.33及孔d1.34依次为输入、输出气体的通道孔。
真空罩1.3可实现真空环境下的摩擦实验,真空罩1.3由凹凸不平的隔噪声材料制成,大大降低外部噪音对实验的干扰,保证实验数据的准确性。真空罩设计可在排除粉尘、噪音、振动等干扰的情况下模拟真空、高温、干磨、脂润滑、油润滑等多种实验环境。
所述滑移导线1.4由引出线1.41、双孔盖1.42(采用聚乙烯等为原材料)、划盒导线1.43、水银1.44、油膜1.45组成。引出线1.41一端插入双孔盖1.42中,双孔盖1.42盖在划盒导线1.43的水银盒1.432上,水银盒1.432内装有水银1.44,水银1.44上覆盖一层油膜1.45。引出线1.41与声发射数据线连接,并通过螺纹连接固定于传感器上,末端成90度弯角。划盒导线左侧为水银盒1.432,水银盒基体材料为塑料(聚苯乙烯等),盒子底部镀有铜膜1.433,其与右侧导线中的铜线1.431相连。水银盒内部装有水银1.44(水银导电率极高、不会与电极发生电化学反应、离子浓度不会受温度变化的影响),水银1.44(上覆盖有一层油膜1.45,以防止水银挥发。双孔盖1.42的下端孔1.421插入到划盒顶部椭圆形阶梯槽中,双孔盖中间为柔性塑料薄膜,引出线的末端引线1.411垂直插入双孔盖上端孔1.422,调整引出线末端与划盒底部铜膜之间的间隙,约为0.1mm左右(可实现引出线和划盒导线之间电流的最佳传输)。双孔盖可再次防止水银挥发,该设计安全、无污染、对实验者不会造成任何安全隐患。实验结束后将引出线从上端孔拔出,并将上端孔堵住即可。
所述保温盒1.5(采用聚苯乙烯为原材料)上测敞口,外壁中空。中空腔1.51内放入温度为0°左右(冰水混合物状态)的水。将水银盒放入保温盒1.5内,降低或维持水银盒内水银为低温状态,确保水银导电率接近100%,以提高试验精度。水银盒1.432放入保温盒1.5中,确保水银盒内水银温度不受外界温度变化的影响。
双孔盖1.42采用聚乙烯等为原材料。固定夹1.2均由不锈钢材制成。真空罩1.3为无色透明塑料罩(以聚丙烯等为原材料)。
本发明对声发射信号的采集方式进行了改进,解决了被测样品面积较小时的难题(声发射传感器的使用要求测试样品必须有一定的面积,既要保证声发射传感器正常使用,又要避免其在移动过程中与上试样发生干涉)。本设计中探测基板分为测试基板和被测材料,被测材料边缘固定于测试基板,被测材料和测试基板中间被耦合脂填充。测试过程中,只需将探测头置于被测基板上即可测得被测材料的磨损特征信号。测试不同样品时只需要更换被测材料即可。
下面以SR150N型传感器5、SAEU2采集卡3、PXPA6型前置放大器2为例,介绍利用线性往复式滑道在CETR-UMT5做往复高频摩擦实验时的声发射检测方法。在实例中仅展示往复模块的液池7和球拖6以及悬臂梁4部分。
测试中各部件安装操作步骤如下
第一步:用双面胶将探测板固定于液池中,在基板底部凹槽处加入适量耦合脂,将测试材料通过双面胶固定在测试基板上,在测试基板上表面与被测材料上表面间的预留槽内放入润滑脂或润滑油等润滑剂。本实例中测试基板为长40mm、宽28mm、厚1.8mm的合金钢,测试材料为长10mm、宽10mm、厚0.5mm的钛合金。
第二步:在测试基板上涂抹耦合脂、利用固定夹将传感器固定在液池上。固定夹夹持套的尺寸要根据传感器的大小来确定。
第三步:将引出线安装于传感器上,套上真空罩(若不要求真空等环境可略过此步)并固定。安装上试样,调整上试样位置,并保证上试样球拖进入真空罩二孔中。向真空罩内输入惰性气体,并封闭孔c和孔d。
第四步:将冷藏过的划盒导线进行连接、引出线末端引线垂直插入双孔盖上端孔。保持末端面与水银盒内铜膜间0.1mm左右的距离。
第五步:依次连接前置放大器、采集卡,接通电源,并进行试验。
需要注意的是:
1、试验结束后要对划盒导线进行低温冷藏处理。
2、试验结束以后一定要将惰性气体安全排除,然后再拆真空罩,取下测试基板。
3、试验过程中要保证引出线末端与水银盒内铜膜的距离。
4、测试基板在进行尺寸设计时一定要考虑UMT往复模块液池的内腔尺寸。

Claims (4)

  1. 适配高频运动摩擦副表面的声发射检测装置,其特征在于:线性往复式滑道系统(1)为检测装置的主体结构,线性往复式滑道系统(1)由探测板(1.1)、固定夹(1.2)、真空罩(1.3)、滑移导线(1.4)和保温盒(1.5)组成;
    探测板(1.1)通过双面胶固定在液池(7)底部,固定夹(1.2)固定在液池边缘,固定传感器(5)并通过耦合脂与基板相连接;真空罩(1.3)固定在液池(7)侧壁,滑移导线(1.4)一侧导线穿过真空罩(1.3)与传感器(5)相连,保温盒(1.5)套在滑移导线(1.4)的水银盒上;线性往复式滑道系统(1)放置在前置放大器(2)、采集卡(3)、悬臂梁(4)、传感器(5)、球托(6)和液池(7)组成的待测系统中实现高频运动摩擦副表面磨损信息的实时采集,待测系统中的采集卡(3)通过前置放大器(2)与线性往复式滑道系统(1)连接;
    探测板(1.1)包括测试基板(1.11)和测试材料(1.12);测试材料(1.12)即下式样和测试基板(1.11)中间通过耦合脂(1.14)连接,实现测试基板(1.11)和测试材料(1.12)间的信号无损传递;测试基板(1.11)固定在液池(7)底部;
    测试基板(1.11)通过耦合脂(1.14)与传感器(5)连接实现信号传输;传感器(5)通过固定夹(1.2)固定在液池(7)的边缘;球托(6)固定在悬臂梁(4)上,悬臂梁(4)的端部固定在UMT传感器上;真空罩(1.3)将固定夹(1.2)、探测板(1.1)和球托(6)罩住;传感器(5)通过滑移导线(1.4)与前置放大器(2)相连接;
    测试基板(1.11)上设计有阶梯状凹槽,凹槽中部的中间凸台(1.111)用于固定测试材料(1.12),测试材料(1.12)的底部与中间凸台(1.111)的底面之间填充有耦合脂(1.14);摩擦过程中产生的能量经耦合脂(1.14)无损耗的传递到测试材料(1.12);测试材料(1.12)将能量经耦合脂传递给声发射传感器;阶梯状凹槽的底部四角设计有四个圆孔(1.112),在实验完成后配合六角扳手将测试材料拆下并保证实验过程中耦合脂(1.14)均匀填充;测试基板(1.11)的阶梯状凹槽与测试材料(1.12)上表面之间形成预留槽(1.13),预留槽(1.13)内放入润滑脂或润滑油;测试材料(1.12)上表面接触润滑脂或润滑油油或下表面接触耦合脂,从空间布局上避免润滑脂或润滑油与耦合脂之间的互融;
    所述固定夹(1.2)由拧紧棒(1.21)、旋转棒(1.22)、夹持套(1.23)、垫套(1.24)和上端盖(1.25)组成;拧紧棒(1.21)从旋转棒(1.22)的孔插入, 旋转棒通过螺纹孔与夹持套(1.23)连接,垫套(1.24)套在拧紧棒(1.21)无孔一端,上端盖(1.25)盖在夹持套(1.23)的3/4圆环上构成固定夹(1.2);夹持套(1.23)的一侧部为3/4圆环(1.233)通过小间隙配合,小间隙配合不会影响传感器的信号采集,对声发射传感器空间各自由度进行约束;上端盖(1.25)扣在夹持套3/4圆环上侧,约束传感器的上下移动自由度;垫套(1.24)套在拧紧棒(1.21)无孔一端,与夹持套左侧U型槽(1.232)上螺纹孔(1.231)配合,固定旋转棒(1.22),将固定夹固定在液池(7)的侧壁;
    真空罩(1.3)通过双面胶与液池(7)底座侧壁固定;根据实验要求真空罩上布有孔a(1.31)、孔b(1.32)、孔c(1.33)及孔d(1.34)四个孔;各孔的作用如下:孔a(1.31)为传感器引出线孔;孔b(1.32)为摩擦上试样通过孔,孔b(1.32)边缘10mm范围内为柔性塑料薄膜,以满足上试样固定时下试样所在液池的往复移动;孔c(1.33)及孔d(1.34)依次为输入、输出气体的通道孔;
    真空罩(1.3)可实现真空环境下的摩擦实验,真空罩(1.3)由凹凸不平的隔噪声材料制成;
    所述滑移导线(1.4)由引出线(1.41)、双孔盖(1.42)、划盒导线(1.43)、水银(1.44)、油膜(1.45)组成;引出线(1.41)一端插入双孔盖(1.42)中,双孔盖(1.42)盖在划盒导线(1.43)的水银盒(1.432)上,水银盒(1.432)内装有水银(1.44),水银(1.44)上覆盖一层油膜(1.45);引出线(1.41)与声发射数据线连接,并通过螺纹连接固定于传感器上,末端成90度弯角;划盒导线左侧为水银盒(1.432),水银盒基体材料为塑料,盒子底部镀有铜膜(1.433),其与右侧导线中的铜线(1.431)相连;水银盒内部装有水银(1.44),水银(1.44)上覆盖有一层油膜(1.45),以防止水银挥发;双孔盖(1.42)的下端孔(1.421)插入到划盒顶部椭圆形阶梯槽中,双孔盖中间为柔性塑料薄膜,引出线的末端引线(1.411)垂直插入双孔盖上端孔(1.422),调整引出线末端与划盒底部铜膜之间的间隙,为0.1mm;
    所述保温盒(1.5)上测敞口,外壁中空;中空腔(1.51)内放入温度为0°的水;将水银盒放入保温盒(1.5)内,降低或维持水银盒内水银为低温状态,确保水银导电率接近100%;水银盒(1.432)放入保温盒(1.5)中,确保水银盒内水银温度不受外界温度变化的影响。
  2. 根据权利要求1所述的适配高频运动摩擦副表面的声发射检测装置,其特征在于:双孔盖(1.42)采用聚乙烯为原材料;固定夹(1.2)均由不锈钢材制成;真空罩(1.3)为无色透明塑料罩。
  3. 根据权利要求1所述的适配高频运动摩擦副表面的声发射检测装置,其特征在于:双孔盖(1.42)采用聚乙烯。
  4. 利用权利要求1所述装置进行的适配高频运动摩擦副表面的声发射检测方法,其特征在于:
    测试中各部件安装操作步骤如下,
    第一步:用双面胶将探测板固定于液池中,在基板底部凹槽处加入适量耦合脂,将测试材料通过双面胶固定在测试基板上,在测试基板上表面与被测材料上表面间的预留槽内放入润滑脂或润滑油润滑剂;
    第二步:在测试基板上涂抹耦合脂、利用固定夹将传感器固定在液池上;固定夹夹持套的尺寸要根据传感器的大小来确定;
    第三步:将引出线安装于传感器上,套上真空罩并固定;安装上试样,调整上试样位置,并保证上试样球拖进入真空罩二孔中;向真空罩内输入惰性气体,并封闭孔c和孔d;
    第四步:将冷藏过的划盒导线进行连接、引出线末端引线垂直插入双孔盖上端孔;保持末端面与水银盒内铜膜间0.1mm左右的距离;
    第五步:依次连接前置放大器、采集卡,接通电源,并进行试验。
PCT/CN2017/104327 2017-09-12 2017-09-29 适配高频运动摩擦副表面的声发射检测装置及方法 WO2019051896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/728,633 US10859535B2 (en) 2017-09-12 2019-12-27 Detecting device and method for acoustic emission on high-frequency motion rubbing pair surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710815637.XA CN107607624B (zh) 2017-09-12 2017-09-12 适配高频运动摩擦副表面的声发射检测装置及方法
CN201710815637.X 2017-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,633 Continuation US10859535B2 (en) 2017-09-12 2019-12-27 Detecting device and method for acoustic emission on high-frequency motion rubbing pair surface

Publications (1)

Publication Number Publication Date
WO2019051896A1 true WO2019051896A1 (zh) 2019-03-21

Family

ID=61062631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104327 WO2019051896A1 (zh) 2017-09-12 2017-09-29 适配高频运动摩擦副表面的声发射检测装置及方法

Country Status (3)

Country Link
US (1) US10859535B2 (zh)
CN (1) CN107607624B (zh)
WO (1) WO2019051896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112348926A (zh) * 2020-11-23 2021-02-09 杭州美册科技有限公司 一种基于安卓的视频剪接类app的处理方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108803B (zh) * 2019-05-08 2021-10-01 上海航天设备制造总厂有限公司 一种基于声发射传感的搅拌针断针检测的装置及方法
CN113109248B (zh) * 2021-03-22 2023-01-03 北京工业大学 一种通过外加电路实现摩擦副间摩擦系数高低切换的装置及方法
CN114216970B (zh) * 2021-12-16 2023-12-22 广西大学 岩石室内试验中声发射/微震传感器安装机构及安装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793835A (zh) * 2005-12-19 2006-06-28 大连海事大学 一种内孔缺陷预应力-声发射集成检测设备和方法
CN102680580A (zh) * 2012-05-30 2012-09-19 天津工业大学 一种金属薄板的声发射检测装置
EP2607894B1 (de) * 2011-12-23 2015-10-07 Kronotec AG Verfahren und Vorrichtung zur zerstörungsfreien Körperschallprüfung von Holzwerkstoffplatten
CN106525710A (zh) * 2016-12-19 2017-03-22 天津大学 一种声发射检测材料腐蚀性能的电化学测试装置及其使用方法
CN106546663A (zh) * 2016-09-30 2017-03-29 杭州市特种设备检测研究院 多层包扎式容器装配质量的声发射检测方法
CN206300859U (zh) * 2016-11-18 2017-07-04 上海工程技术大学 一种基于声发射信号检测分析材料摩擦性能的测试系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2113858U (zh) * 1991-12-30 1992-08-26 西北工业大学 声发射磨削接触检测装置
CN204330686U (zh) * 2015-01-14 2015-05-13 湖南科技大学 一种高速焊热裂纹声发射动态检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793835A (zh) * 2005-12-19 2006-06-28 大连海事大学 一种内孔缺陷预应力-声发射集成检测设备和方法
EP2607894B1 (de) * 2011-12-23 2015-10-07 Kronotec AG Verfahren und Vorrichtung zur zerstörungsfreien Körperschallprüfung von Holzwerkstoffplatten
CN102680580A (zh) * 2012-05-30 2012-09-19 天津工业大学 一种金属薄板的声发射检测装置
CN106546663A (zh) * 2016-09-30 2017-03-29 杭州市特种设备检测研究院 多层包扎式容器装配质量的声发射检测方法
CN206300859U (zh) * 2016-11-18 2017-07-04 上海工程技术大学 一种基于声发射信号检测分析材料摩擦性能的测试系统
CN106525710A (zh) * 2016-12-19 2017-03-22 天津大学 一种声发射检测材料腐蚀性能的电化学测试装置及其使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112348926A (zh) * 2020-11-23 2021-02-09 杭州美册科技有限公司 一种基于安卓的视频剪接类app的处理方法和装置

Also Published As

Publication number Publication date
CN107607624A (zh) 2018-01-19
CN107607624B (zh) 2021-03-02
US20200132636A1 (en) 2020-04-30
US10859535B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2019051896A1 (zh) 适配高频运动摩擦副表面的声发射检测装置及方法
Zeng et al. Depth prediction of non-air interface defect using pulsed thermography
NZ614201A (en) Diagnostic devices and related methods
CN108489812A (zh) 一种材料显微组织力学性能表征实验装置
WO2006117530A3 (en) Apparatus and method for determining magnetic properties of materials
CN103163069B (zh) 一种固体材料表面粘附力测量方法及系统
JP2012503304A (ja) 定義された熱条件の下で試験器内の試験物質を検査する方法
CN200996956Y (zh) 探头调节装置
CN101923028B (zh) 高温涂层结构蠕变/热变形和内部裂纹检测装置
WO2010004289A3 (en) Hydrate monitoring system with measurement of sound velocity and electrical conductivity
CN202196000U (zh) 采用真实液滴法的便携式接触角测试装置
CN207488497U (zh) 一种检测材料伸缩率的装置以及薄膜热缩测试仪
WO2018190941A3 (en) Nuclear magnetic resonance microprobe detectors and method for detection of low-volume samples
FR3006448B1 (fr) Sonde impedancemetrique ultrasonore a guides d'ondes solides ou solides-liquides projetes
CN110567877A (zh) 激光薄膜内耗仪及材料内耗的检测方法
CN207703672U (zh) 一种自动锥入度金属浴恒温测定器
CN104569155A (zh) 一种表面缺陷电磁超声检测方法
JP5013363B2 (ja) 非破壊検査装置
CN112394081A (zh) 一种用于超薄均热板临界热流密度研究的可视化实验装置
RU2225977C1 (ru) Внутритрубный дефектоскоп
CN202256226U (zh) 纺织品远红外温升测定装置
KR20100011133A (ko) 광열 효과 검출 장치 및 방법
CN203908978U (zh) 一种保温隔热涂料的温度对比测试装置
CN210070847U (zh) 一种评估电容式非接触位移测量系统稳定性的装置
RU2422799C1 (ru) Устройство для испытания механической прочности изоляции проводов или кабелей на истирание

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925496

Country of ref document: EP

Kind code of ref document: A1