WO2019051698A1 - 呼吸机及其供气控制方法 - Google Patents

呼吸机及其供气控制方法 Download PDF

Info

Publication number
WO2019051698A1
WO2019051698A1 PCT/CN2017/101662 CN2017101662W WO2019051698A1 WO 2019051698 A1 WO2019051698 A1 WO 2019051698A1 CN 2017101662 W CN2017101662 W CN 2017101662W WO 2019051698 A1 WO2019051698 A1 WO 2019051698A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure
source interface
gas source
ventilator
Prior art date
Application number
PCT/CN2017/101662
Other languages
English (en)
French (fr)
Inventor
艾世明
姚刚
伍乐平
陈培涛
李新胜
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to EP17925455.2A priority Critical patent/EP3682930B1/en
Priority to CN202310866521.4A priority patent/CN116899058A/zh
Priority to PCT/CN2017/101662 priority patent/WO2019051698A1/zh
Priority to CN201780094885.8A priority patent/CN111801129B/zh
Publication of WO2019051698A1 publication Critical patent/WO2019051698A1/zh
Priority to US16/818,516 priority patent/US11684745B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/207Membrane valves with pneumatic amplification stage, i.e. having master and slave membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen

Definitions

  • the present invention relates to the field of medical devices, and in particular to a ventilator.
  • the ventilator has been widely used in hospitals as a medical device that assists in breathing difficulties or supports mechanical ventilation in patients who cannot breathe spontaneously.
  • a ventilator requires both air and oxygen supply air sources by mixing the two gases to output a mixed gas of the desired oxygen concentration to the patient.
  • the air source of the ventilator is almost always provided by the central air supply system; in the hospital lacking the central air supply system or the air of the central air supply system When the air pressure is unstable, the existing ventilator cannot use the ventilator to rescue the patient in time.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a ventilator having at least two air supply modes independent of a central air supply system.
  • an aspect of the present invention provides a ventilator including a first air passage including a first pressure gas source interface and a first flow rate adjusting device that are sequentially connected, and a second gas path including a sequential connection a second pressure gas source interface and a second flow regulating device; a third gas path including a third pressure gas source interface; a first inspiratory limb that delivers inhaled gas to the patient; and a second inhalation that delivers inhaled gas to the patient a branch comprising a gas compression device; a switching device having a first mixing mode connecting the first gas path and the second gas path to the first gettering branch, and the first a second mixing mode in which the gas path and the third gas path are connected to the second inspiratory limb; and an expiratory limb that manages exhaled gas of the patient.
  • the switching device has a first mixing mode connecting the first gas path and the second gas path with the first gettering branch and the first and third gas paths and the second inhaling a second mixing mode of the branch connection, in the first mixing mode and the first
  • the two mixing modes are switched, whereby it is possible to switch according to the supply air source and supply the mixed gas of the desired oxygen concentration in time.
  • the ventilator described above can be independent of the central air supply system.
  • the second gas path further includes a pressure sensor that detects a gas pressure at the second pressure gas source interface; and a controller based on the pressure sensor Measuring the value to control the switching device to cause the switching device to switch between the first mixing mode and the second mixing mode.
  • the controller can control the switching device by determining the pressure value measured by the pressure sensor in the second gas path.
  • the switching device may include a pilot valve and a pneumatic three-way valve.
  • the controller can conveniently switch between the first mixing mode and the second mixing mode by controlling the conduction and closing of the pilot valve and the corresponding action of the pneumatic three-way valve.
  • the second inhalation branch may further include a first mixing chamber, in the second mixing mode, the switching device passes the first mixing The chamber connects the first gas path and the third gas path to the second gettering branch.
  • the gas of the first gas path and the gas of the third gas path pass through the first mixing chamber to obtain a better mixing effect, thereby providing a mixed gas of a desired oxygen concentration.
  • the second inspiratory branch may include a third flow regulating device.
  • the third flow regulating device can control the supplied gas, it is possible to supply the patient with a prescribed amount of the inhaled gas.
  • the second inhalation branch may further include a second mixing chamber, the second mixing chamber being disposed to be in the second mixing during inhalation
  • the mixed gas of the mode and pressurized by the gas compression device is mixed.
  • the mixing effect of the mixed gas passing through the second mixing chamber can be further improved.
  • the third flow rate adjusting device may further include a flow rate sensor. Thereby, the flow rate of the mixed gas of the second intake branch can be obtained in time.
  • the third flow rate adjusting device may further include a voice coil motor. Thereby, the flow rate of the mixed gas of the second intake branch can be obtained in time.
  • the first inspiratory branch may further include a gas mixing device.
  • the gas from the first gas path and the gas from the second gas path can be sufficiently mixed by the gas mixing device, and the mixing effect of the mixed gas can be improved.
  • the controller performs an operation of detecting an operating state of the ventilator and a pressure of a gas at the second pressure gas source interface when the switching device is in the first mixing mode; according to the detected working state of the ventilator And determining, by the pressure of the gas at the second pressure gas source interface, whether the gas pressure at the second pressure gas source interface is sufficient; when the gas pressure at the second pressure gas source interface is insufficient, switching the switching device to the The second blend mode.
  • the switching device when the switching device is in the first mixing mode, detecting an operating state of the ventilator and a pressure of the gas at the second pressure gas source interface, according to the detected working state of the ventilator and the second pressure The pressure of the gas at the gas source interface determines whether the gas pressure at the second pressure gas source interface is sufficient, and when the gas pressure at the second pressure gas source interface is insufficient, the switching device is switched to the second mixing mode. In this way, by judging whether each of the supply air sources is operating normally, and switching according to the condition of the supply air supply source, the mixed gas of the required oxygen concentration is supplied.
  • the determining, according to the detected operating state of the ventilator and the pressure of the gas at the second pressure gas source interface, determining the second pressure gas source interface includes: determining whether the gas pressure at the second pressure gas source interface satisfies a standby pressure threshold and a standby time threshold when the ventilator is in a standby state; if satisfied, determining the first The gas pressure at the second pressure gas source interface is sufficient; otherwise, the gas pressure at the second pressure gas source interface is determined to be insufficient; when the ventilator is in the working state, it is determined whether the gas pressure at the second pressure gas source interface is Satisfying the first working pressure threshold and the first working time threshold; if not, determining whether the gas pressure at the second pressure gas source interface satisfies the second working pressure threshold and the second working time threshold; if not, Determining the second pressure The gas pressure at the force source interface is insufficient; otherwise, the gas pressure at the second pressure source
  • the first working pressure threshold is smaller than a second working pressure threshold
  • the first working time threshold is smaller than the second working time threshold. In this case, it is possible to more effectively judge whether or not the gas from the second pressure gas source interface is sufficient.
  • the air supply control method further includes: when the switching device is in the second mixing mode, detecting an operating state of the ventilator, and Performing a gas source test ventilation on the second pressure gas source interface; determining whether the pressure or flow rate of the gas at the second pressure gas source interface is restored according to the detected working state and the gas source test ventilation result; The pressure or flow rate of the gas at the two pressure gas source interfaces is restored, and the switching device is switched to the first mixing mode. In this case, whether or not to switch the switching device to the first mixing mode can be considered in accordance with the recovery of the pressure of the gas at the second pressure gas source interface.
  • the determining whether the pressure or the flow rate of the gas at the second pressure gas source interface is restored according to the detected operating state and the air source test ventilation result includes: determining whether the gas pressure or the flow rate at the second pressure gas source interface satisfies a standby ventilation test when the ventilator is in a standby state; if satisfied, determining the second pressure gas source interface The gas pressure or the flow rate is restored; when the ventilator is in the working state, performing a first ventilation test on the second pressure gas source interface; if the first ventilation test fails, performing the second pressure gas source interface The second ventilation test; if the second ventilation test fails, it is determined that the gas pressure or flow rate at the second pressure gas source interface is not restored; otherwise, the gas pressure or flow rate at the second pressure gas source interface is determined to be restored. In this case, it can be more effectively and accurately judged whether or not the pressure of the gas at the second pressure gas source interface is restored.
  • the standby ventilation test, the first ventilation test, and the second ventilation test are performed by performing a ventilation test on the second pressure gas source interface, and determining the The pressure or flow rate of the gas at the second pressure source interface, And time meets the requirements.
  • the aeration test of the second pressurized gas source interface can be achieved by the pressure and time of the gas at the second pressure gas supply interface.
  • the pressure and time requirements of the first ventilation test are lower than the pressure and time requirements of the second ventilation test; or the first ventilation test
  • the flow rate requirement is higher than the flow rate requirement of the second ventilation test, and the time requirement of the first ventilation test is lower than the flow rate and time requirement of the second ventilation test. In this case, it can be provided to ensure smooth switching to the second mixing mode.
  • a ventilator and a ventilator supply control method for a ventilator which does not rely on a central air supply system and switches according to an air supply source and supplies a mixed gas of a desired oxygen concentration in time.
  • FIG. 1 is a system block diagram showing a ventilator according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing an intake branch according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a switching device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic view showing the intake branch according to the first embodiment of the present invention in the first mixing mode.
  • Fig. 5 is a schematic view showing the state of the switching device shown in Fig. 4.
  • FIG. 6 is a schematic view showing the intake branch according to the first embodiment of the present invention in the second mixing mode.
  • Fig. 7 is a schematic view showing the state of the switching device shown in Fig. 6.
  • FIG. 8 is a schematic diagram showing a first modification of the switching device according to the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a second modification of the switching device according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart showing preferential supply of a high-pressure gas source to the air supply control method of the ventilator according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart showing the turbine priority air supply of the air supply control method of the ventilator according to the first embodiment of the present invention.
  • FIG. 12 is a flowchart showing an air supply shortage determination and recovery strategy of the air supply control method of the ventilator according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart showing an oxygen gas source shortage determination and recovery strategy of the air supply control method of the ventilator according to the first embodiment of the present invention.
  • FIG. 14 is a schematic view showing an intake branch according to a second embodiment of the present invention.
  • FIG. 15 is a schematic view showing the intake branch according to the second embodiment of the present invention in the second mixing mode.
  • FIG. 1 is a system block diagram showing a ventilator 1 according to a first embodiment of the present invention.
  • the ventilator 1 may include an inspiratory limb 10 and an expiratory limb 20.
  • the inspiratory limb 10 can be used to manage the inspiratory behavior of the patient 2, and can provide the patient 2 with a mixed gas of the desired oxygen concentration.
  • the expiratory limb 20 can be used to manage the expiratory behavior of the patient 2 and to receive the gas exhaled by the patient 2.
  • the expiratory limb 20 can also include a controller 30.
  • the controller 30 can control the actions of the inspiratory limb 10 and the expiratory limb 20 by feedback from the inspiratory limb 10 and the expiratory limb 20 to assist the patient 2 in performing inspiratory or expiratory behavior.
  • the side close to the patient 2 is referred to as “downstream side” or “downstream end", and the side away from the patient 2 is “upstream side” or “upstream end”.
  • the upstream side of the intake branch 10 is supplied with various supply gases (for example, high-pressure oxygen, high-pressure air, or ambient air), and the supply gas is mixed and supplied to the patient on the downstream side along the intake branch 10 .
  • FIG. 2 is a schematic view showing the intake branch 10 according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the switching device 14 according to the first embodiment of the present invention.
  • the intake branch 10 may include a first air passage 11, a second air passage 12, a third air passage 13, and a switching device 14.
  • the first gas path 11, the second gas path 12, and the third gas path 13 can be switched by the switching device 14 to achieve different gas paths and gas mixing.
  • the inspiratory branch 10 further includes a first inspiratory branch 15 and a second inspiratory branch 16, and the first air passage 11 and the second air passage 12 and the first suction can be realized by the switching device 14.
  • the first mixing mode M1 to which the gas branch 15 is connected and the second mixing mode M2 (described later) to which the first gas path 11 and the third gas path 13 are connected to the second suction branch 16 are described.
  • the first gas path 11 may include a first pressure gas source interface 110 and a first flow rate adjusting device 111 that are sequentially connected.
  • the first pressure gas source interface 110 can receive the first pressure gas source, that is, the first pressure gas source interface 110 can be connected to the first pressure gas source, whereby the first pressure gas source can pass the gas through the first pressure gas source
  • the interface 110 is supplied to the first air passage 11.
  • the first source of pressurized gas may be high pressure oxygen.
  • the first source of pressurized gas received by the first pressurized gas source interface 110 can be a bottled compressed gas.
  • a gas such as high pressure oxygen gas may be sent to the first flow rate adjusting device 111 via the first pressure gas source interface 110.
  • the first flow regulating device 111 can perform flow adjustment on the second pressurized gas source received by the first pressurized gas source interface 110.
  • the first flow regulating device 111 may be an electromagnetic proportional valve, but the embodiment is not limited thereto.
  • the first flow regulating device 111 may be a valve group, a valve island composed of an opening valve of different diameters, or A flow control valve composed of a motor, and the like.
  • the first gas path 11 may further include a first flow sensor 112.
  • the first flow sensor 112 can measure the flow of gas through the first flow regulating device 111.
  • the controller 30 can also control the first flow regulating device 111 according to the received flow value detected by the first flow sensor 112 to achieve precise control of the flow.
  • the first flow sensor 112 may be an oxygen flow sensor, but the embodiment is not limited thereto, and the first flow sensor 112 may also be a flow sensor capable of performing the same function.
  • the first air passage 11 may further include a first pressure regulating device 113.
  • the first pressure regulating device 113 may be disposed between the first pressure gas source interface 110 and the first flow rate adjusting device 111. In the first gas path 11, the first pressure regulating device 113 can regulate the first pressure gas source, thereby being able to supply a gas of a desired pressure.
  • the first pressure regulating device 113 may be a pressure regulating valve, but the embodiment is not limited thereto, and the first pressure regulating device 113 may also be a pressure regulating device capable of achieving the same function.
  • the second gas path 12 may include a second pressure gas source interface 120 and a second flow rate adjusting device 121 that are sequentially connected.
  • the second pressure gas source interface 120 can receive the second pressure gas source, that is, the second pressure gas source interface 120 can be connected to the second pressure gas source, whereby the second pressure gas source can pass the gas to the second pressure gas source
  • the interface 120 is supplied to the second air passage 12.
  • the second source of pressurized gas may be a high pressure air or a high pressure helium oxygen mixed gas.
  • the second source of pressurized air received by the second source of pressurized gas source 120 may be compressed air from a central air supply system, such as a central air supply system of a hospital.
  • a gas such as high pressure air may be delivered to the second flow rate adjusting device 121 via the second pressure gas source interface 120.
  • the second flow regulating device 121 can perform flow adjustment on the second pressurized gas source received by the second pressurized gas source interface 120.
  • the second flow regulating device 121 may be an electromagnetic proportional valve, but the embodiment is not limited thereto.
  • the second flow regulating device 121 may be a valve group, a valve island, or a valve island composed of different diameter opening and closing valves, or A flow control valve composed of a motor, and the like.
  • the second gas path 12 may also include a second flow sensor 122.
  • the second flow sensor 122 can measure the flow of gas through the second flow regulating device 121.
  • the controller 30 can also control the second flow regulating device 121 according to the received flow value detected by the second flow sensor 122 to achieve precise control of the flow.
  • the second flow sensor 122 may be an air flow sensor, but the embodiment is not limited thereto, and the second flow sensor 122 may also be a flow sensor capable of performing the same function.
  • the volume of the passage of the first flow sensor 112 to the gas mixing device 150 (described later) in the first mixing mode M1 is considered from the viewpoint of ensuring the oxygen concentration of the gas supplied to the patient 2
  • the difference between the volumes of the two flow sensors 122 to the passage of the gas mixing device 150 is, for example, not more than 40 mL, and the switching device 14 is switched to the first
  • the internal volume at the time of the mixing mode M1 is, for example, not more than 30 mL.
  • the second gas path 12 further includes a pressure sensor 123 that detects the gas pressure at the second pressure gas source interface 120. That is, in the second gas path 12, the pressure sensor 123 can measure the pressure of the second pressure gas source received by the second pressure gas source interface 120. In addition, the pressure information (measured value) obtained by the pressure sensor 123 can be transmitted to the controller 30. Thereby, the controller 30 can control the switching device 14 based on the measured value of the pressure sensor 123 to switch the switching device 14 between the first mixing mode M1 and the second mixing mode M2. Additionally, the pressure sensor 123 can be a pressure switch.
  • the second air passage 12 may further include a second pressure regulating device 124.
  • the second pressure regulating device 124 may be disposed between the pressure sensor 123 and the second flow rate adjusting device 121.
  • the second pressure regulating device 124 can regulate the second pressure gas source received by the second pressure gas source interface 120.
  • the second pressure regulating device 124 may be a pressure regulating valve, but the embodiment is not limited thereto, and the second pressure regulating device 124 may also be a pressure regulating device that achieves the same function.
  • the third gas path 13 may include a third pressure gas source interface 130.
  • the third pressure gas source interface 130 can receive the third pressure gas source, that is, the third pressure gas source interface 130 can be connected to the third pressure gas source, whereby the third pressure gas source can pass the gas to the third pressure gas source.
  • the interface 130 is supplied to the third gas path 13.
  • the third source of pressurized gas may be ambient air.
  • the ambient air can be the ambient air of a hospital.
  • the third air passage 13 may be provided with a filtering device 131.
  • the filtering device 131 can filter a third pressurized gas source, such as ambient air, that is received by the third pressurized gas source interface 130.
  • a third pressurized gas source such as ambient air
  • the filter device 131 it is possible to generate air that meets prescribed standards such as compliance with medical and health standards.
  • the filtration device 131 can be a high efficiency air filter (HEPA).
  • the air pressure of the first pressure source supplied to the first pressure source interface 110 is P1 (first pressure)
  • the pressure of the second pressure source supplied to the second pressure source interface 120 is P2 (second pressure)
  • the air pressure of the third pressure gas source supplied to the third pressure gas source interface 130 is P3 (second pressure)
  • the air pressure P1 may be greater than the air pressure P3
  • the air pressure P2 may be greater than the air pressure P3.
  • the gas having the air pressure P1 or the air pressure P2 is regarded as a high pressure gas.
  • the gas pressure P1 or the gas pressure P2 ranges from 280 kPa to 650 kPa.
  • a gas having a gas pressure P3 is regarded as a non-high pressure gas.
  • the second pressure may vary as the pressure of the central air supply system changes.
  • the controller 30 can control the switching device 14 to switch from the first mixing mode M1 to the first Two mixed mode M2 (described later).
  • the first inspiratory limb 15 can deliver inhaled gas (eg, an oxygen-containing mixed gas) to the patient.
  • inhaled gas eg, an oxygen-containing mixed gas
  • the switching device 14 is in the first mixing mode M1 (described later)
  • the first air path 11 and the second air path 12 are connected (connected) to the first air intake branch 15, in which case, The gas of one gas path 11 and the gas of the second gas path 12 enter the first gettering branch 15 for mixing and supply to the patient 2.
  • the first gettering branch 15 can include a gas mixing device 150.
  • a gas mixing device 150 it is possible to further mix the gas from the first gas path 11 (the first pressure gas source) with the gas from the second gas path 12 (the second pressure gas source) and obtain an improved mixing effect. Mixed gas.
  • the second inspiratory limb 16 can deliver aspiration gas (eg, an oxygen-containing gas mixture) to the patient.
  • aspiration gas eg, an oxygen-containing gas mixture
  • the switching device 14 is in the second mixing mode M2 (described later)
  • the first air passage 11 and the third air passage 13 are connected (connected) to the second intake branch 16, in which case, The gas of one gas path 11 and the gas of the third gas path 12 are mixed into the second inspiratory limb 16 and supplied to the patient 2.
  • the second inspiratory limb 16 may also include a gas compression device 160 (see Figure 6).
  • the gas compression device 160 is capable of compressing and pressurizing the gas flowing through the second suction branch 16.
  • the gas compression device 160 may be a gas compression device having a lower maximum static output pressure, such as a turbine, but the embodiment is not limited thereto, and the gas compression device 160 may also be other devices that perform the same function, such as a small compressor. .
  • the second intake branch 16 may further include a third flow regulating device 161.
  • the third flow regulating device 161 can control the flow of gas through the second intake branch 16.
  • the third flow regulating device 161 may be a flow control valve composed of a motor, but the embodiment is not limited thereto.
  • the third flow regulating device 161 may also be a valve group composed of switching valves of different diameters. Valve island, or electromagnetic proportional valve.
  • the second inspiratory limb 16 may also include a third flow sensor 162.
  • the third flow sensor 162 can measure the flow rate of the gas passing through the third flow regulating device 161.
  • the third flow sensor 162 may be an air flow sensor, but the embodiment is not limited thereto, and may be other flow sensors that perform the same function.
  • the second inspiratory limb 16 may also include a first mixing chamber 163.
  • the switching device 14 connects (connects) the first air passage 11 and the third air passage 13 with the second intake branch 16 through the first mixing chamber 163. That is, the gas supplied from the first gas path 11 and the gas supplied from the third gas path 13 are mixed in the first mixing chamber 163, whereby a mixed gas having an improved mixing effect can be obtained, thereby obtaining a desired oxygen concentration.
  • the mixed gas is supplied to the patient 2.
  • the first mixing chamber 163 may be a mixed oxygen chamber.
  • the second inspiratory limb 16 may also include a second mixing chamber 164 that is configured to mix the mixed gas in the second mixing mode M2 and pressurized by the gas compression device 160 during inhalation. Thereby, the mixing effect of the mixed gas can be further improved.
  • the second mixing chamber 164 may be a mixed oxygen chamber.
  • 4 is a schematic view showing the intake branch according to the first embodiment of the present invention in the first mixing mode.
  • Fig. 5 is a schematic view showing the state of the switching device shown in Fig. 4.
  • FIG. 6 is a schematic view showing the intake branch according to the first embodiment of the present invention in the second mixing mode.
  • Fig. 7 is a schematic view showing the state of the switching device shown in Fig. 6.
  • the switching device 14 has a first mixing mode M1 (see FIG. 4) connecting the first air path 11 and the second air path 12 with the first air intake branch 15, and will be first.
  • the second mixing mode M2 in which the gas path 11 and the third gas path 13 are connected to the second gettering branch 16 (see Fig. 6).
  • controller 30 may control switching device 14 based on measurements of pressure sensor 123 disposed at second air path 12 such that switching device 14 Switching is performed between the first mixing mode M1 and the second mixing mode M2.
  • the controller 30 may control the switching device 14 based on the measured value of the pressure sensor 123, in some cases (eg, the measured value of the pressure sensor 123 is in a normal range), so that the switching device 14 is in the first mixing mode M1. (See Fig. 4), at which time the first gas path 11 and the second gas path 12 are in communication with the first gettering branch 15, and the supply gas is transported along the first gas path 11 and the second gas path 12 to the first getter.
  • the branch 15 (in the direction of the straight arrow shown in Fig. 4) is supplied to the patient 2 so that the patient 2 can obtain a mixed gas such as a desired oxygen concentration.
  • the controller 30 may control the switching device 14 based on the measured value of the pressure sensor 123, and in other cases (eg, the measured value of the pressure sensor 123 is outside the normal range), causing the switching device 14 to be in the second mixing mode.
  • M2 see FIG. 6
  • the first gas path 11 and the third gas path 13 are in communication with the second gettering branch 16, and the supply gas is transported along the first gas path 11 and the third gas path 13 to the second suction.
  • the gas branch 16 (in the direction of the straight arrow shown in Fig. 6) is supplied to the patient 2, thereby enabling the patient 2 to obtain a mixed gas such as a desired oxygen concentration.
  • the switching device 14 can include a pilot valve 141 and a pneumatic three-way valve 142. Additionally, the pilot valve 141 can be controlled by the controller 30. The pilot valve 141 is connected to the pneumatic three-way valve 142, and the different connecting passages of the pneumatic three-way valve 142 can be realized pneumatically by controlling the pilot valve 141.
  • the pilot valve 141 has connection ends E, F, wherein the connection end E can communicate with the first air passage 11 via the drive air passage 17; the connection end F is connected with the pneumatic three-way valve 142 for driving the pneumatic tee Valve 142.
  • the pneumatic three-way valve 142 includes an intake end A and two outlet ends B, C. The intake end A of the pneumatic three-way valve 142 may be connected to the first air passage 11, the outlet end B may be connected to the second air passage 12, and the outlet end C may be connected to the third pneumatic passage 13.
  • the embodiment is not limited thereto.
  • the intake end A of the pneumatic three-way valve 142 may be connected to the first air passage 11, and the outlet end C may be connected to the second air passage 12, and the outlet end B may be connected to the third pneumatic path. 13 connection, in this case also the switching of the switching device 14 between the first mixing mode M1 and the second mixing mode M2.
  • the driving gas path 17 may be a manifold of the first gas path 11 and supplied with gas by the first gas path 11.
  • the driving air passage 17 is not limited to the first A gas path 11 supplies gas, which may be supplied by the second gas path 12, or may be supplied by a separate gas path.
  • the pilot valve 141 is a solenoid valve that can be turned “on” or “off” by the controller 30.
  • the first pressure air source after the pressure regulation from the first air path 11 drives the pneumatic three-way valve 142 via the driving air path 17, so that the first air path 11 and the second air path 12 and the first An intake branch 15 is connected (connected), that is, the gas of the first gas path 11 merges with the gas of the second gas path 12 and enters the first intake branch 15.
  • the switching device 14 is in the first mixing mode M1 (see FIG. 4).
  • the driving air passage 17 is disconnected from the pneumatic three-way valve 142, and the pneumatic three-way valve 142 causes the first air passage 11, the third air passage 13 and the second suction under the action of the spring force.
  • the gas branch 16 is connected (connected), that is, the gas of the first gas path 11 merges with the gas of the third gas path 13 and enters the second intake branch 16.
  • the switching device 14 is in the second mixing mode M2 (see Fig. 6).
  • the controller 30 can control the switching device 14 based on the measured value of the pressure sensor 123 such that the switching device 14 can take the first air path 11 and the second air path 12 and the first air intake.
  • the first mixing mode M1 connected to the branch 15 is switched between the second mixing mode M2 connecting the first air path 11 and the third air path 13 and the second intake branch 16, thereby enabling the gas supply according to the supply gas
  • the source is switched and a mixed gas such as a desired oxygen concentration is provided in time.
  • the controller 30 when the controller 30 detects that the value measured by the pressure sensor 123 meets a prescribed value (eg, the pressure value is greater than 200 kPa), when the controller 30 turns on the pilot valve 141, the gas that drives the gas path 17 directly pushes, for example,
  • the inner spring of the pneumatic three-way valve 142 communicates the intake end A of the pneumatic three-way valve 142 with the air outlet end B, so that the switching device 14 is in the first air path 11, the second air path 12 and the first intake branch 15 connected (connected) first mixing mode M1.
  • the controller 30 when the controller 30 detects that the value measured by the pressure sensor 123 does not satisfy the prescribed value (eg, the pressure value is less than or equal to 200 kPa), the controller 30 closes the pilot valve 141, at which time the air circuit 17 is driven.
  • the gas is disconnected from the pneumatic three-way valve 142, and the internal spring of the pneumatic three-way valve 142 is restored to the original state, so that the intake end A of the pneumatic three-way valve 142 communicates with the outlet end C, so that the switching device 14 is in the first gas path 11 and
  • the second mixing mode M2 is connected to the third air passage 13 and the second intake branch 16.
  • the switching device 14 of the present embodiment is not limited to the above-described example, and a modification of the switching device 14 of the present embodiment will be described below with reference to FIGS. 8 and 9.
  • FIG. 8 is a schematic diagram showing a first modification of the switching device according to the first embodiment of the present invention.
  • the switching device 14 may be an electromagnetic three-way valve 14A for replacing the above-described pilot valve 141 and pneumatic three-way valve 142.
  • the electromagnetic three-way valve 14A is directly controlled by the controller 30, and the communication between the intake end A1 of the electromagnetic three-way valve 14A and the outlet end B1 or the outlet end C1 can be realized, thereby realizing the switching device 14 Switching between a hybrid mode M1 and a second hybrid mode M2.
  • the driving air passage 17 of the present embodiment is also omitted by using the electromagnetic three-way valve 14A.
  • FIG. 9 is a schematic diagram showing a second modification of the switching device according to the first embodiment of the present invention.
  • the switching device 14 may be a motor-driven three-way valve 14B for replacing the above-described pilot valve 141 and pneumatic three-way valve 142. That is, the switching device 14 can be a three-way valve that is controlled by a motor.
  • the controller 30 by directly controlling the motor-driven three-way valve 14B by the controller 30, the communication between the intake end A2 of the motor-driven three-way valve 14B and the outlet end B2 or the outlet end C2 can be realized, thereby realizing the switching device 14 Switching between the first mixing mode M1 and the second mixing mode M2.
  • the drive air passage 17 of the present embodiment is also omitted by using the motor-driven three-way valve 14B.
  • FIG. 10 is a flowchart showing preferential supply of a high-pressure gas source to the air supply control method of the ventilator according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart showing the turbine priority air supply of the air supply control method of the ventilator according to the first embodiment of the present invention.
  • the supply air source of the ventilator 1 includes the first pressure gas source that supplies the gas to the first gas path 11, the second pressure gas source that supplies the gas to the second gas path 12, and the supply.
  • the gas is supplied to the third pressure source of the third gas path 13.
  • the first pressure gas source may be a high pressure oxygen gas source
  • the second pressure gas source may be a high pressure air gas source
  • the third pressure gas source may be an ambient air gas source.
  • the high-pressure oxygen, the high-pressure air, and the ambient air (the turbine air source) can be switched to each other.
  • the controller 30 may perform the steps of: detecting the operating state of the ventilator 1 and the pressure of the gas at the second pressurized gas source interface 120 when the switching device 14 is in the first mixing mode M1; The working state and the second pressure of the ventilator 1 The pressure of the gas at the force gas source interface 120 determines whether the gas pressure at the second pressure gas source interface 120 is sufficient; when the gas pressure at the second pressure gas source interface 120 is insufficient, the switching device 14 is switched to the second mixing mode M2.
  • the detection may be performed at a constant frequency, but the embodiment is not limited thereto, and the ventilator 1 may not be detected at a constant frequency.
  • step of determining whether the gas pressure at the second pressure air source interface 120 is sufficient according to the detected operating state of the ventilator and the pressure of the gas at the second pressure air source interface 120, specifically: when the ventilator 1 is in standby In the state, it is determined whether the gas pressure at the second pressure gas source interface 120 satisfies the standby pressure threshold and the standby time threshold; if satisfied, it is determined that the gas pressure at the second pressure gas source interface 120 is sufficient; otherwise, the second pressure gas is determined.
  • the gas pressure at the source interface 120 is insufficient; when the ventilator 1 is in the working state, it is determined whether the gas pressure at the second pressure gas source interface 120 satisfies the first working pressure threshold and the first working time threshold; if not, then Determining whether the gas pressure at the second pressure gas source interface 120 satisfies the second working pressure threshold and the second working time threshold; if not, determining that the gas pressure at the second pressure gas source interface is insufficient; otherwise, determining the second pressure The gas pressure at the gas source interface 120 is sufficient.
  • the first working pressure threshold may be smaller than the second working pressure threshold
  • the first working time threshold may be smaller than the second working time threshold.
  • the switching device 14 provides a first mixing mode M1 (hereinafter referred to as “high-pressure gas source preferential gas supply” or “high-pressure gas source gas supply”) and a second mixing mode M2 (hereinafter referred to as “turbine”
  • the gas source is preferentially supplied to the gas or the “turbine gas supply”).
  • the high-pressure gas source preferentially supplies air, as shown in FIG. 10 and FIG.
  • step S102 it is first determined whether the first pressure gas source (for example, the oxygen gas source) is normal (step S102), and if it is not normally switched to the turbine gas supply (step S105), if the oxygen gas source is normal, determining whether the second pressure gas source (for example, the air source) is normal (step S103), if the air source is normal or setting the 100% oxygen concentration to supply air (step S104), maintaining the high voltage
  • the air source is ventilated, otherwise it is switched to the turbine air supply (step S105).
  • step S107 it is judged whether or not the turbine is operating normally
  • step S108 it is judged whether or not the turbine is operating normally
  • step S108 if the turbine supply is normally maintained, otherwise switching to the high-pressure gas supply is performed (step S108).
  • a first pressure gas source eg, an oxygen gas source
  • the step of recovering the pressure of the gas at the pressure gas source interface specifically includes: when the ventilator 1 is in the standby state, determining whether the gas pressure at the second pressure gas source interface 120 satisfies the standby ventilation test; if satisfied, determining The gas pressure at the second pressure gas source interface 120 is restored; when the ventilator 1 is in the working state, the second pressure gas source interface 120 is subjected to a first ventilation test; if the first ventilation test fails, the second pressure is applied The air source interface performs a second ventilation test; if the second ventilation test fails, it is determined that the gas pressure at the second pressure gas source interface 120 is not restored; otherwise, the gas pressure at the second pressure gas source interface 120 is determined to be restored.
  • the standby ventilation test, the first ventilation test, and the second ventilation test perform a ventilation test on the second pressure gas source interface to determine whether the pressure and time of the gas at the second pressure gas source interface meet the requirements.
  • the pressure and time requirements of the first ventilation test may be lower than the pressure and time requirements of the second ventilation test.
  • the test flow rate ventilation may be at other fixed flow rates, such as 10 liters per minute or 100 liters per minute.
  • the flow velocity ventilation may be a variable flow rate including a linear change, a sinusoidal change, etc., for example, 10 liters per minute is increased to 100 liters per minute.
  • the flow rate form is variable, and the sinusoidal change is similar to the flow rate form of the ventilator ventilation, at which time it is detected whether the air source pressure satisfies the pressure threshold at this flow rate.
  • the flow velocity is judged for other lengths of time, such as 10 seconds, 30 seconds, and the like.
  • FIG. 12 is a flowchart showing an air supply shortage determination and recovery strategy of the air supply control method of the ventilator according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart showing an oxygen gas source shortage determination and recovery strategy of the air supply control method of the ventilator according to the first embodiment of the present invention.
  • an example of the determination of the second pressure gas source such as the shortage of the air source is that, in the standby state (step S110), the air source pressure is detected, for example, for 1 second and less than 160 kPa (Ste S112).
  • the selection of the pressure value is related to the selected gas source and the accessories selected by the gas path; the time is selected as the empirical value, and the value range can be selected from 0.1 to 1 second.
  • the time value range can be selected from 1 second to 10 minutes, then it is judged that the air source is insufficient, otherwise it is normal.
  • step S110 when the air source detects, for example, continues to 0.5 If the second is less than 5 kPa (step S111) (5 kPa is the pressure value when the air cylinder is empty), it is judged that the air supply is insufficient, otherwise it is judged whether for example, for 1 second and less than 50 kPa (the pressure value is to maintain the typical working state of the adult)
  • the lower air source pressure can be lower for infants and young children (step S113), and if so, it is judged that the air source is insufficient, otherwise it is normal.
  • the air source pressure is detected, for example, for 1 s and greater than 280 kPa (the pressure value is the second pressure source operating) Minimum value) (Step S117), the air supply to the air source is restored, otherwise the air supply is insufficient.
  • the air source pressure is detected to be, for example, greater than 400 kPa for 1 s (step S115), then the air source supply is restored, otherwise it is determined whether the air source pressure detection is, for example, for 5 seconds. It is greater than 280 kPa (step S118), and if so, the air supply of the air source is restored, otherwise the air supply is insufficient.
  • the oxygen gas source shortage is determined such that the oxygen gas source pressure is detected to be, for example, less than 160 kPa for 1 second (step S120). Then, it is judged that the oxygen gas source is insufficient, otherwise the oxygen gas source is normal (step S119).
  • An example of the oxygen gas source recovery determination is to first determine whether the oxygen gas source pressure detection is greater than 280 kPa (step S122), if not, to maintain the oxygen source insufficient, and if so, further perform the gas source test ventilation, that is, open the oxygen valve to supply air to the gas 100 mM The air is supplied for 3 seconds (step S123), and it is detected whether the oxygen source pressure continues for 3 seconds and is greater than 280 kPa, and if so, it is determined that the oxygen source is normal. If the oxygen proportional valve is otherwise closed (step S125), it is waited for 3 minutes to retest the oxygen gas source (step S121).
  • the switching device 14 may employ a motor-controlled pneumatic three-way valve or an electromagnetic three-way valve. In this case, it may be unnecessary to perform pilot gasification of the gas source when determining whether the oxygen source is restored.
  • the shortage of the gas source can be judged by using the segmented pressure threshold and the time delay combined value.
  • the pressure switch or the pressure sensor is used to directly judge the air source. If the threshold is too low, the judgment speed is slow, and the threshold is too high, which may cause misjudgment. Judging by the combination of the segmented pressure threshold and the time delay can improve the judgment efficiency. The lower the gas source pressure, the faster the judgment speed.
  • the recovery of the gas source is judged by experimental ventilation and pressure change of the gas source.
  • switching is performed to prevent misidentification of the gas source recovery. Prevent the influence of equipment ventilation effect caused by switching back and forth between the first pressure gas source and the third pressure gas source.
  • the determination as to whether or not the air source is restored is not limited to the above method, and the air source pressure switch may be used instead of the air source pressure sensor, and the flow rate detection may be used. For example, it may be detected whether the flow rate exceeds 60 LPM within a certain period of time. Further, in the present embodiment, the larger the flow rate at the time of setting, the shorter the time required to be continued. In addition, it is also possible to use segmented detection. If the flow rate cannot exceed 100LPM within 200ms, it can be detected whether the flow rate exceeds 80LPM within 500ms. If it is not satisfied, it can maintain the flow rate of 60PLM for 1s. If the flow rate can reach the standard, the gas source is recovered, and the following test is not required. In the present embodiment, each numerical value is not limited to this.
  • the first pressure gas source is used to drive the pneumatic three-way valve 142, so that the first pressure gas source needs to be tested for gas source ventilation, otherwise it is not required. If the pneumatic three-way valve is driven by the second pressure gas source, it is necessary to perform the air source test ventilation when detecting whether the second pressure gas source is restored. If the switching device 14 does not employ the pilot valve 141, it may not be necessary to perform pilot gas venting.
  • any one of the high-pressure gas sources may be selected to select the remaining one of the normal high-pressure gas sources, Enable turbine air supply.
  • FIG. 14 is a schematic view showing an intake branch according to a second embodiment of the present invention.
  • FIG. 15 is a schematic view showing the intake branch according to the second embodiment of the present invention in the second mixing mode.
  • the intake branch 10A according to the present embodiment is different from the intake branch 10 according to the first embodiment in that the second intake branch 16A and the second intake branch according to the first embodiment are different. 16 different. That is, in the second intake branch 16A according to the present embodiment, the third flow rate adjusting device 161 is connected to the second flow rate adjusting device 121, and the third flow rate adjusting device 161 is connected to the second flow rate sensor 122 (see Figure 14). In addition, a check valve 165 may be disposed between the third flow rate adjusting device 161 and the second flow rate sensor 122. Further, the third intake flow path 16A also omits the third flow rate sensor 162 according to the first embodiment. In this case, the intake branch 10A according to the present embodiment can also switch between the supply air source and supply the mixed gas of the desired oxygen concentration in time.
  • the check valve 165 is turned on along the upstream side to the downstream side of the second intake branch 16A, whereby the gas flowing from the upstream side to the downstream side along the second intake branch 16A can flow. Pass the check valve 165. Further, along the downstream side to the upper right side of the second intake branch 16A, the check valve 165 is closed, and at this time, the gas on the downstream side cannot flow into the second intake branch 16A through the check valve 165.
  • the one-way valve 165 can effectively isolate the second air passage 12 and the second suction branch 16, reducing the volume of the second air passage 12, so that the second The impedance and the capacitance of the gas path 12 are matched with the first gas path 11, and the flow velocity reflection shock of the gas of the first gas path 11 to the second gas path 12 can be reduced, thereby ensuring the measurement accuracy of the second gas path 12.
  • the check valve 165 is closed, thereby preventing the gas of the first gas path 11 from entering the second intake branch. 16 in the air guiding line.
  • the first air passage 11 and the second air passage 12 are in communication with the first intake branch 15 , and the supply gas is supplied to the first intake branch 15 via the first air passage 11 and the second air passage 12 to provide Give the patient 2.
  • the check valve 165 is opened, and the second flow regulating device 121 (for example, the electromagnetic proportional valve) is closed.
  • the mixed gas from the third pressure gas source and the first pressure gas source is introduced into the second inspiratory limb 16 through the one-way valve 165 and the second flow sensor 122 and supplied to the patient 2.
  • the third flow rate sensor 162 is omitted, and thus the same In the case where it is possible to switch according to the supply air source and supply the mixed gas of the required oxygen concentration in time, the increase in the cost of the intake branch 10A is effectively suppressed.
  • the one-way valve 165 may not be provided.
  • the impedance and the capacitance of the second gas path 12 can be matched with the first gas path 11 by the gas path design, and the gas pair of the first gas path 11 can be circumvented or reduced by an algorithm or the like.
  • the flow rate by the two gas passages 12 reflects the influence of the impact, so that the third flow rate sensor 162 can also be omitted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

一种呼吸机(1),其包括第一气路(11),其包括顺序连接的第一压力气源接口(110)和第一流量调节装置(111);第二气路(12),其包括顺序连接的第二压力气源接口(120)和第二流量调节装置(121);第三气路(13),其包括第三压力气源接口(130);向患者输送吸入气体的第一吸气支路(15);向患者输送吸入气体的第二吸气支路(16),其包括气体压缩设备(160);切换装置(14),其具有将第一气路(11)和第二气路(12)与第一吸气支路(15)连接的第一混合模式(M1)、以及将第一气路(11)和第三气路(13)与第二吸气支路(16)连接的第二混合模式(M2);以及管理患者呼出气体的呼气支路(20)。由此,能够在第一混合模式(M1)和第二混合模式(M2)间切换并提供所需氧浓度的混合气体,并且不依赖中央供气系统。此外,还提供一种呼吸机(1)的供气控制方法。

Description

呼吸机及其供气控制方法 技术领域
本发明涉及医疗器械领域,具体涉及一种呼吸机。
背景技术
呼吸机作为辅助呼吸困难或者支持不能自主呼吸的患者完成机械通气的医疗设备,已经广泛应用于医院。一般而言,呼吸机需要空气和氧气两种供气气源,通过混合这两种气体以便为患者输出所需氧浓度的混合气体。
目前,在设有能够提供空气气源的中央供气系统的医院中,呼吸机的空气来源几乎均由中央供气系统提供;而在缺少中央供气系统的医院中或者中央供气系统的空气气压不稳定时,现有呼吸机则无法及时地使用呼吸机对患者进行救助。
发明内容
本发明是鉴于上述情况而作出的,其目的在于提供一种不依赖中央供气系统的具有至少两种供气模式的呼吸机。
为此,本发明的一方面提供了一种呼吸机,其包括第一气路,其包括顺序连接的第一压力气源接口和第一流量调节装置;第二气路,其包括顺序连接的第二压力气源接口和第二流量调节装置;第三气路,其包括第三压力气源接口;向患者输送吸入气体的第一吸气支路;向患者输送吸入气体的第二吸气支路,其包括气体压缩设备;切换装置,其具有将所述第一气路和所述第二气路与所述第一吸气支路连接的第一混合模式、以及将所述第一气路和所述第三气路与所述第二吸气支路连接的第二混合模式;以及管理患者呼出气体的呼气支路。
在本发明的一方面中,切换装置具有将第一气路和第二气路与第一吸气支路连接的第一混合模式以及将第一气路和第三气路与第二吸气支路连接的第二混合模式,通过切换装置在第一混合模式与所述第 二混合模式之间进行切换,由此能够根据供气气源进行切换并及时提供所需氧浓度的混合气体。另外,上述呼吸机能够不依赖中央供气系统。
另外,在本发明的一方面所涉及的呼吸机中,所述第二气路还包括检测所述第二压力气源接口处气体压力的压力传感器;以及控制器,其基于所述压力传感器的测量值来控制所述切换装置,使所述切换装置在所述第一混合模式与所述第二混合模式之间进行切换。由此,控制器能够通过判断第二气路中由压力传感器测量的压力值来控制切换装置。
另外,在本发明的一方面所涉及的呼吸机中,切换装置可以包括先导阀和气动三通阀。在这种情况下,控制器可以通过控制先导阀的导通和关闭以及气动三通阀相应的动作,能够方便地实现切换装置在第一混合模式与所述第二混合模式之间进行切换。
另外,在本发明的一方面所涉及的呼吸机中,所述第二吸气支路还可以包括第一混合腔,在所述第二混合模式中,所述切换装置通过所述第一混合腔将所述第一气路和所述第三气路与第二吸气支路连接。在这种情况下,第一气路的气体和所述第三气路的气体经过该第一混合腔能够得到更好混合效果,从而提供所需氧浓度的混合气体。
另外,在本发明的一方面所涉及的呼吸机中,所述第二吸气支路可以包括第三流量调节装置。在这种情况下,由于第三流量调节装置能够控制所供应的气体,因此能够为患者提供规定量的吸入气体。
另外,在本发明的一方面所涉及的呼吸机中,所述第二吸气支路还可以包括第二混合腔,所述第二混合腔设置成在吸气期间对处于所述第二混合模式且被所述气体压缩设备加压的所述混合气体进行混合。由此,能够使经过第二混合腔的混合气体的混合效果得到进一步改善。
另外,在本发明的一方面所涉及的呼吸机中,所述第三流量调节装置还可以包括流量传感器。由此,能够及时地得到第二吸气支路的混合气体的流量。
另外,在本发明的一方面所涉及的呼吸机中,所述第三流量调节装置还可以包括音圈电机。由此,能够及时地得到第二吸气支路的混合气体的流量。
此外,在本发明的一方面所涉及的呼吸机中,所述第一吸气支路还可以包括气体混合装置。由此,通过气体混合装置,能够使来自于第一气路的气体和来自于第二气路的气体得到充分混合,改善混合气体的混合效果。
本发明的另一方面提供了一种呼吸机的供气控制方法,所述呼吸机包括第一压力气源接口、第二压力气源接口、气体压缩设备、切换装置和控制器,所述切换装置具有采用第一压力气源接口和第二压力气源接口进行供气的第一混合模式,以及采用所述第一压力气源接口和所述气体压缩设备进行供气的第二混合模式;所述控制器执行下述操作:当所述切换装置处于第一混合模式时,检测呼吸机的工作状态和所述第二压力气源接口处气体的压力;根据检测到的呼吸机的工作状态和所述第二压力气源接口处气体的压力判断第二压力气源接口处的气体压力是否充足;当第二压力气源接口处的气体压力不足,则将所述切换装置切换至所述第二混合模式。
在本发明的另一方面中,当切换装置处于第一混合模式时,检测呼吸机的工作状态和第二压力气源接口处气体的压力,根据检测到的呼吸机的工作状态和第二压力气源接口处气体的压力判断第二压力气源接口处的气体压力是否充足,当第二压力气源接口处的气体压力不足,则将所述切换装置切换至所述第二混合模式。如此,通过判断各个供气气源是否正常工作,并根据供气气源的状况及时进行切换,由此提供所需氧浓度的混合气体。
另外,在本发明的另一方面所涉及的供气控制方法中,所述根据检测到的呼吸机的工作状态和所述第二压力气源接口处气体的压力判断第二压力气源接口处的气体压力是否充足的步骤具体包括:当呼吸机处于待机状态下时,判断所述第二压力气源接口处的气体压力是否满足待机压力阈值和待机时间阈值;如果满足,则判定所述第二压力气源接口处的气体压力充足;否则判定所述第二压力气源接口处的气体压力不足;当呼吸机处于工作状态下时,判断所述第二压力气源接口处的气体压力是否满足第一工作压力阈值和第一工作时间阈值;如果不满足,则判定所述第二压力气源接口处的气体压力是否满足第二工作压力阈值和第二工作时间阈值;如果不满足,则判定所述第二压 力气源接口处的气体压力不足;否则,判定所述第二压力气源接口处的气体压力充足。在这种情况下,在呼吸机分别处于待机状态和工作状态的情况下,通过判断第二压力气源的气体压力是否满足相应的条件,从而判断第二压力气源的气体是否充足。
另外,在本发明的另一方面所涉及的供气控制方法中,所述第一工作压力阈值小于第二工作压力阈值,所述第一工作时间阈值小于所述第二工作时间阈值。在这种情况下,能够更加有效地判断第二压力气源接口出的气体是否充足。
另外,在本发明的另一方面所涉及的供气控制方法中,所述供气控制方法还包括:当所述切换装置处于第二混合模式时,检测所述呼吸机的工作状态,并对所述第二压力气源接口进行气源试验性通气;根据检测到的工作状态和气源试验性通气结果判断所述第二压力气源接口处气体的压力或者流速是否恢复;如果所述第二压力气源接口处气体的压力或者流速恢复,则将所述切换装置切换至所述第一混合模式。在这种情况下,能够根据第二压力气源接口处气体的压力的恢复情况来考虑是否将切换装置切换至第一混合模式。
另外,在本发明的另一方面所涉及的供气控制方法中,所述根据检测到的工作状态和气源试验性通气结果判断所述第二压力气源接口处气体的压力或者流速是否恢复的步骤具体包括:当呼吸机处于待机状态下时,判断所述第二压力气源接口处的气体压力或者流速是否满足待机通气试验;如果满足,则判断所述第二压力气源接口处的气体压力或者流速恢复;当呼吸机处于工作状态下时,对所述第二压力气源接口进行第一通气试验;如果第一通气试验没通过,则对所述第二压力气源接口进行第二通气试验;如果第二通气试验没通过,则判断所述第二压力气源接口处的气体压力或者流速没恢复;否则,判断所述第二压力气源接口处的气体压力或者流速恢复。在这种情况下,能够更加有效且准确地判断第二压力气源接口处的气体的压力是否恢复了。
另外,在本发明的另一方面所涉及的供气控制方法中,所述待机通气试验、第一通气试验和第二通气试验为对所述第二压力气源接口进行通气试验,判断所述第二压力气源接口处气体的压力或者流速, 和时间是否满足要求。在这种情况下,能够通过第二压力气源接口处气体的压力和时间来实现第二压力气源接口的通气试验。
此外,在本发明的另一方面所涉及的供气控制方法中,所述第一通气试验的压力和时间要求低于所述第二通气试验的压力和时间要求;或者所述第一通气试验的流速要求高于所述第二通气试验的流速要求,所述第一通气试验的时间要求低于所述第二通气试验的流速和时间要求。在这种情况下,能够提供确保顺利地切换到第二混合模式。
根据本发明,由此能够不依赖中央供气系统并根据供气气源进行切换并及时提供所需氧浓度的混合气体的呼吸机及呼吸机的供气控制方法。
附图说明
图1是示出了本发明的第1实施方式所涉及的呼吸机的系统框图。
图2是示出了本发明的第1实施方式所涉及的吸气支路的示意图。
图3是示出了本发明的第1实施方式所涉及的切换装置的示意图。
图4是示出了本发明的第1实施方式所涉及的吸气支路处于第一混合模式下的示意图。
图5是示出了图4所示的切换装置的状态示意图。
图6是示出了本发明的第1实施方式所涉及的吸气支路处于第二混合模式下的示意图。
图7是示出了图6所示的切换装置的状态示意图。
图8是示出了本发明的第1实施方式所涉及的切换装置的第1变形例的示意图。
图9是示出了本发明的第1实施方式所涉及的切换装置的第2变形例的示意图。
图10是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的高压气源优先供气的流程图。
图11是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的涡轮优先供气的流程图。
图12是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的空气气源不足判断及恢复策略的流程图。
图13是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的氧气气源不足判断及恢复策略的流程图。
图14是示出了本发明的第2实施方式所涉及的吸气支路的示意图。
图15是示出了本发明的第2实施方式所涉及的吸气支路处于第二混合模式下的示意图。
主要标号说明:
1…呼吸机,2…患者,10…吸气支路,20…呼气支路,20…控制器,11…第一气路,12…第二气路,13…第三气路,14…切换装置,15…第一吸气支路,16…第二吸气支路,17…驱动气路。
具体实施方式
以下,参考附图,详细地说明本发明的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
[第1实施方式]
图1是示出了本发明的第1实施方式所涉及的呼吸机1的系统框图。如图1所示,在本实施方式中,呼吸机1可以包括吸气支路10和呼气支路20。在呼吸机1中,吸气支路10可以用于管理患者2的吸气行为,能够为患者2提供所需氧浓度的混合气体。呼气支路20可以用来管理患者2的呼气行为,能够接收患者2呼出的气体。
另外,呼气支路20还可以包括控制器30。控制器30可以通过来自于吸气支路10和呼气支路20的反馈来控制吸气支路10和呼气支路20的动作,从而协助患者2完成吸气或呼气行为。
在本实施方式中,在吸气支路10中,令靠近患者2的一侧为“下游侧”或“下游端”,远离患者2的一侧为“上游侧”或“上游端”。如稍后描述,吸气支路10的上游侧接入各种供应气体(例如高压氧气、高压空气或环境空气),供应气体经过混合后沿着吸气支路10供应给下游侧的患者2。
图2是示出了本发明的第1实施方式所涉及的吸气支路10的示意图。图3是示出了本发明的第1实施方式所涉及的切换装置14的示意图。
在本实施方式中,如图2所示,吸气支路10可以包括第一气路11、第二气路12、第三气路13和切换装置14。在该吸气支路10中,第一气路11、第二气路12和第三气路13可以通过切换装置14实现不同气路的切换和气体的混合。
在本实施方式中,吸气支路10还包括第一吸气支路15和第二吸气支路16,通过切换装置14可以实现第一气路11和第二气路12与第一吸气支路15连接的第一混合模式M1、以及第一气路11和第三气路13与第二吸气支路16连接的第二混合模式M2(稍后描述)。
在本实施方式中,如图2和稍后描述的图4所示,第一气路11可以包括顺序连接的第一压力气源接口110和第一流量调节装置111。第一压力气源接口110可以接受第一压力气源,也即,第一压力气源接口110可以连接第一压力气源,由此,第一压力气源能够将气体经由第一压力气源接口110供应给第一气路11。在一些示例中,第一压力气源可以为高压氧气。另外,在一些示例中,第一压力气源接口110所接受的第一压力气源可以是瓶装的压缩气体。
另外,在第一气路11中,例如高压氧气等气体经过第一压力气源接口110可以输送至第一流量调节装置111。第一流量调节装置111可以对由第一压力气源接口110所接受的第二压力气源进行流量调节。在一些示例中,第一流量调节装置111可以为电磁比例阀,但是本实施方式不限于此,例如,第一流量调节装置111可以是不同通径的开关阀组成的阀组、阀岛,或者由电机组成的流量控制阀等。
另外,第一气路11还可以包括第一流量传感器112。第一流量传感器112可以测量经过第一流量调节装置111的气体的流量。在一些示例中,控制器30还可以根据接收到的第一流量传感器112所检测的流量值来控制第一流量调节装置111,以实现流量的精确控制。在一些示例中,第一流量传感器112可以是氧气流量传感器,但是本实施方式不限于此,第一流量传感器112也可以是能够实现完成相同功能的流量传感器。
另外,在本实施方式中,第一气路11还可以包括第一调压装置113。第一调压装置113可以设置在第一压力气源接口110与第一流量调节装置111之间。在第一气路11中,第一调压装置113可以对第一压力气源进行调压,由此能够提供所需压力的气体。在一些示例中,第一调压装置113可以是调压阀,但本实施方式不限于此,第一调压装置113也可以是能够实现相同功能的调压装置。
在本实施方式中,如图2和图4所示,第二气路12可以包括顺序连接的第二压力气源接口120和第二流量调节装置121。第二压力气源接口120可以接受第二压力气源,也即,第二压力气源接口120可以连接第二压力气源,由此,第二压力气源能够将气体经由第二压力气源接口120供应给第二气路12。在一些示例中,第二压力气源可以是高压空气或高压氦氧混合气体。在一些示例中,第二压力气源接口120所接受的第二压力气源可以是来自中央供气系统例如医院的中央供气系统的压缩空气。
在第二气路12中,例如高压空气等气体经过第二压力气源接口120可以输送至第二流量调节装置121。第二流量调节装置121可以对由第二压力气源接口120所接受的第二压力气源进行流量调节。在一些示例中,第二流量调节装置121可以为电磁比例阀,但是本实施方式不限于此,例如,第二流量调节装置121可以是不同通径的开关阀组成的阀组、阀岛,或者由电机组成的流量控制阀等。
另外,第二气路12还可以包括第二流量传感器122。第二流量传感器122可以测量经过第二流量调节装置121的气体的流量。在一些示例中,控制器30还可以根据接收到的第二流量传感器122所检测的流量值来控制第二流量调节装置121,以实现流量的精确控制。在一些示例中,第二流量传感器122可以是空气流量传感器,但是本实施方式不限于此,第二流量传感器122也可以是能够实现完成相同功能的流量传感器。
另外,在一些示例中,从确保输送给患者2的气体氧浓度的角度考虑,在第一混合模式M1下,第一流量传感器112至气体混合装置150(稍后描述)的通路的容积与第二流量传感器122至气体混合装置150的通路的容积之差例如不超过40mL,且切换装置14切换为第一 混合模式M1时的内部容腔例如不超过30mL。
如图4所示,第二气路12还包括检测第二压力气源接口120处气体压力的压力传感器123。也即,在第二气路12中,压力传感器123可以测量由第二压力气源接口120所接受的第二压力气源的压力。另外,由压力传感器123所获得的压力信息(测量值)能够传送给控制器30。由此,控制器30能够基于压力传感器123的测量值来控制切换装置14,使切换装置14在第一混合模式M1与第二混合模式M2之间进行切换。另外,压力传感器123可以是压力开关。
另外,在本实施方式中,第二气路12还可以包括第二调压装置124。另外,第二调压装置124可以设置在压力传感器123与第二流量调节装置121之间。第二调压装置124可以对由第二压力气源接口120接受的第二压力气源进行调压。在一些示例中,第二调压装置124可以为调压阀,但本实施方式不限于此,第二调压装置124也可以是实现相同功能的调压装置。
在本实施方式中,第三气路13可以包括第三压力气源接口130。第三压力气源接口130可以接受第三压力气源,也即,第三压力气源接口130可以连接第三压力气源,由此,第三压力气源能够将气体经由第三压力气源接口130供应给第三气路13。在一些示例中,第三压力气源可以是环境空气。例如,该环境空气可以是医院的环境空气。
另外,如稍后描述的图6所示,第三气路13还可以设置有过滤装置131。过滤装置131可以对由第三压力气源接口130接受的第三压力气源例如环境空气进行过滤。通过过滤装置131,能够产生符合规定标准例如符合医疗卫生标准的空气。在一些示例中,过滤装置131可以为高效空气过滤器(HEPA)。
在本实施方式中,令供应给第一压力气源接口110的第一压力气源的气压为P1(第一压力),供应给第二压力气源接口120的第二压力气源的气压为P2(第二压力),且供应给第三压力气源接口130的第三压力气源的气压为P3(第二压力),则气压P1可以大于气压P3,且气压P2可以大于气压P3。
另外,在本实施方式中,具有气压P1或气压P2的气体被视为高压气体。优选地,气压P1或气压P2的范围为280kPa至650kPa。另外,具有气压P3的气体被视为非高压气体。
另外,在第二压力气源接口120接入中央供气系统的情况下,第二压力(气压P2)有可能随着中央供气系统的压力变化而变化。在本实施方式所涉及的呼吸机1中,当切换装置14处于第一混合模式M1且气压P2低于规定值时,控制器30能够控制切换装置14,以便从第一混合模式M1切换到第二混合模式M2(稍后描述)。
在本实施方式中,第一吸气支路15可以向患者输送吸入气体(例如含氧的混合气体)。在切换装置14处于第一混合模式M1的情形下(稍后描述),第一气路11和第二气路12与第一吸气支路15连接(连通),在这种情况下,第一气路11的气体和第二气路12的气体进入第一吸气支路15进行混合并供应给患者2。
另外,第一吸气支路15可以包括气体混合装置150。在这种情况下,能够进一步将来自于第一气路11的气体(第一压力气源)与来自于第二气路12的气体(第二压力气源)进行混合并获得混合效果得到改善的混合气体。
在本实施方式中,第二吸气支路16可以向患者输送吸入气体(例如含氧的混合气体)。在切换装置14处于第二混合模式M2的情形下(稍后描述),第一气路11和第三气路13与第二吸气支路16连接(连通),在这种情况下,第一气路11的气体和第三气路12的气体进入第二吸气支路16混合并供应给患者2。
在本实施方式中,第二吸气支路16还可以包括气体压缩设备160(参见图6)。气体压缩设备160能够对流经第二吸气支路16的气体进行压缩和加压。气体压缩设备160的最大静态输出压力小于210cmH20(1cmH20=0.098kPa);优选地,气体压缩设备160的最大静态输出压力小于140cmH20,这样可以使得呼吸机更安静、功耗更低、体积更小、重量更轻。在一些示例中,气体压缩设备160可以为最大静态输出压力较低的气体压缩设备例如涡轮,但本实施方式不限于此,气体压缩设备160也可以是其它完成相同功能的装置,例如小型压缩机。
在本实施方式中,第二吸气支路16还可以包括第三流量调节装置161。第三流量调节装置161可以控制流经第二吸气支路16的气体流量。在一些示例中,第三流量调节装置161可以是由电机组成的流量控制阀,但是本实施方式不限于此,例如第三流量调节装置161也可以是不同通径的开关阀组成的阀组、阀岛,或者电磁比例阀等。
另外,第二吸气支路16还可以包括第三流量传感器162。第三流量传感器162可以测量经过第三流量调节装置161的气体的流量。另外,在一些示例中,第三流量传感器162可以是空气流量传感器,但是本实施方式不限于此,可以是其它完成相同功能的流量传感器。
另外,第二吸气支路16还可以包括第一混合腔163。在第二混合模式M2中,切换装置14通过第一混合腔163将第一气路11和第三气路13与第二吸气支路16连接(连通)。也即,第一气路11所供应的气体和第三气路13所供应的气体在第一混合腔163进行混合,由此能够获得混合效果得到改善的混合气体,从而将所需氧浓度的混合气体提供给患者2。在一些示例中,在供应给第一气路11的气体为氧气时,第一混合腔163可以是混氧腔。
另外,第二吸气支路16还可以包括第二混合腔164,第二混合腔164设置成在吸气期间对处于第二混合模式M2且被气体压缩设备160加压的混合气体进行混合。由此能够进一步改善混合气体的混合效果。在一些示例中,在供应给第一气路11的气体为氧气时,第二混合腔164可以是混氧腔。
以下,结合图4至图7详细地描述切换装置14及其切换模式。图4是示出了本发明的第1实施方式所涉及的吸气支路处于第一混合模式下的示意图。图5是示出了图4所示的切换装置的状态示意图。图6是示出了本发明的第1实施方式所涉及的吸气支路处于第二混合模式下的示意图。图7是示出了图6所示的切换装置的状态示意图。
如图4和图6所示,切换装置14具有将第一气路11和第二气路12与第一吸气支路15连接的第一混合模式M1(参见图4)、以及将第一气路11和第三气路13与第二吸气支路16连接的第二混合模式M2(参见图6)。在一些示例中,控制器30可以基于设置在第二气路12的压力传感器123的测量值来控制切换装置14,从而使切换装置14 在第一混合模式M1与第二混合模式M2之间进行切换。
具体而言,控制器30可以基于压力传感器123的测量值,在一些情况下(例如压力传感器123的测量值处于正常范围的情况下)控制切换装置14,使切换装置14处于第一混合模式M1(参见图4),这时第一气路11和第二气路12与第一吸气支路15连通,供应气体沿着第一气路11和第二气路12输送到第一吸气支路15(如图4所示直线箭头方向),并提供给患者2,从而使患者2能够得到例如所需氧浓度的混合气体。
另外,控制器30可以基于压力传感器123的测量值,在另一些情况下(例如压力传感器123的测量值在正常范围之外的情况下)控制切换装置14,使切换装置14处于第二混合模式M2(参见图6),这时第一气路11和第三气路13与第二吸气支路16连通,供应气体沿着第一气路11和第三气路13输送到第二吸气支路16(如图6所示直线箭头方向),并提供给患者2,从而使患者2能够得到例如所需氧浓度的混合气体。
再参见图3,在本实施方式中,切换装置14可以包括先导阀141和气动三通阀142。另外,先导阀141可以由控制器30控制。先导阀141与气动三通阀142连接,通过控制先导阀141能够以气动的方式来实现气动三通阀142的不同连接通路。
具体而言,先导阀141具有连接端E、F,其中,连接端E可以经由驱动气路17与第一气路11连通;连接端F与气动三通阀142连接,用于驱动气动三通阀142。另外,气动三通阀142包括进气端A和两个出气端B、C。气动三通阀142的进气端A可以与第一气路11连接,出气端B可以与第二气路12连接,出气端C可以与第三气路13连接。此外,本实施方式不限于此,例如气动三通阀142的进气端A可以与第一气路11连接,出气端C可以与第二气路12连接,出气端B可以与第三气路13连接,在这种情况下也同样能够实现切换装置14在第一混合模式M1与第二混合模式M2之间的切换。
如图4所示,驱动气路17可以是第一气路11的歧管并且由第一气路11供应气体。另外,在本实施方式中,驱动气路17不限于由第 一气路11供应气体,可以是由第二气路12供应气体,也可以由单独的气路供应气体。
另外,在一些示例中,例如先导阀141为电磁阀,该电磁阀可以在控制器30的作用下导通或关闭。先导阀141导通后,来自第一气路11的调压后的第一压力气源会经由驱动气路17驱动气动三通阀142,使得第一气路11、第二气路12与第一吸气支路15连接(连通),也即,第一气路11的气体与第二气路12的气体汇合而进入第一吸气支路15。此时,切换装置14处于第一混合模式M1(参见图4)。另外,当先导阀141关闭后,驱动气路17与气动三通阀142断开,气动三通阀142在弹簧力的作用下,使得第一气路11、第三气路13与第二吸气支路16连接(连通),也即,第一气路11的气体与第三气路13的气体汇合而进入第二吸气支路16。此时,切换装置14处于第二混合模式M2(参见图6)。
如上所述,在本实施方式中,控制器30能够基于压力传感器123的测量值来控制切换装置14,使得切换装置14可以在将第一气路11与第二气路12和第一吸气支路15连接的第一混合模式M1与将第一气路11与第三气路13和第二吸气支路16连接的第二混合模式M2之间进行切换,由此能够根据供气气源进行切换并及时提供例如所需氧浓度的混合气体。
在一些示例中,当控制器30检测到压力传感器123所测量的值满足规定值(例如压力值大于200kPa)时,控制器30使先导阀141导通时,驱动气路17的气体直接推动例如气动三通阀142的内部弹簧,使气动三通阀142的进气端A与出气端B连通,从而使切换装置14处于第一气路11、第二气路12与第一吸气支路15连接(连通)的第一混合模式M1。在另一些示例中,当控制器30检测到压力传感器123所测量的值不满足规定值(例如压力值小于或等于200kPa)时,控制器30使先导阀141关闭,此时驱动气路17的气体与气动三通阀142断开,气动三通阀142的内部弹簧恢复原状,使气动三通阀142的进气端A与出气端C连通,从而使切换装置14处于第一气路11与第三气路13和第二吸气支路16连接的第二混合模式M2。由此,能够根据供气气源进行切换并及时提供所需氧浓度的混合气体。另外,还可以 不依赖中央供气系统。
此外,本实施方式的切换装置14不限于上述描述的例子,以下结合图8和图9描述本实施方式的切换装置14的变形例。
图8是示出了本发明的第1实施方式所涉及的切换装置的第1变形例的示意图。如图8所示,切换装置14可以为电磁三通阀14A,用于替代上述的先导阀141和气动三通阀142。在这种情况下,通过控制器30直接控制电磁三通阀14A,同样能够实现电磁三通阀14A的进气端A1与出气端B1或出气端C1的连通,由此实现切换装置14在第一混合模式M1与第二混合模式M2之间的切换。另外,使用电磁三通阀14A还省略了本实施方式的驱动气路17。
图9是示出了本发明的第1实施方式所涉及的切换装置的第2变形例的示意图。如图9所示,切换装置14可以为电机驱动三通阀14B,用于替代上述的先导阀141和气动三通阀142。也即,切换装置14可以是受电机控制的三通阀。在这种情况下,通过控制器30直接控制电机驱动三通阀14B,同样能够实现电机驱动三通阀14B的进气端A2与出气端B2或出气端C2的连通,由此实现切换装置14在第一混合模式M1与第二混合模式M2之间的切换。另外,使用电机驱动三通阀14B还省略了本实施方式的驱动气路17。
图10是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的高压气源优先供气的流程图。图11是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的涡轮优先供气的流程图。
如上所述,本实施方式所涉及的呼吸机1的供气气源包括提供气体给第一气路11的第一压力气源、提供气体给第二气路12的第二压力气源和提供气体给第三气路13的第三压力气源。在本实施方式中,第一压力气源可以为高压氧气气源,第二压力气源可以为高压空气气源,第三压力气源可以为环境空气气源。在本实施方式所涉及的呼吸机1的供气控制方法中,可以针对上述高压氧气、高压空气和环境空气(涡轮气源)进行相互切换。
在上述的呼吸机中,控制器30可以执行下述步骤:当切换装置14处于第一混合模式M1时,检测呼吸机1的工作状态和第二压力气源接口120处气体的压力;根据检测到的呼吸机1的工作状态和第二压 力气源接口120处气体的压力判断第二压力气源接口120处的气体压力是否充足;当第二压力气源接口120处的气体压力不足,则将切换装置14切换至第二混合模式M2。这里,上述检测呼吸机1的工作状态中,可以按一定的频率检测,但本实施方式不限于此,呼吸机1也可以不按一定的频率检测。
在上述根据检测到的呼吸机的工作状态和第二压力气源接口120处气体的压力判断第二压力气源接口120处的气体压力是否充足的步骤中,具体包括:当呼吸机1处于待机状态下时,判断第二压力气源接口120处的气体压力是否满足待机压力阈值和待机时间阈值;如果满足,则判断第二压力气源接口120处的气体压力充足;否则判断第二压力气源接口120处的气体压力不足;当呼吸机1处于工作状态下时,判断第二压力气源接口120处的气体压力是否满足第一工作压力阈值和第一工作时间阈值;如果不满足,则判断第二压力气源接口120处的气体压力是否满足第二工作压力阈值和第二工作时间阈值;如果不满足,则判断第二压力气源接口处的气体压力不足;否则,判断第二压力气源接口120处的气体压力充足。此外,在本实施方式中,第一工作压力阈值可以小于第二工作压力阈值,第一工作时间阈值可以小于第二工作时间阈值。
具体而言,在本实施方式中,切换装置14提供第一混合模式M1(下称“高压气源优先供气”或“高压气源供气”)和第二混合模式M2(下称“涡轮气源优先供气”或“涡轮供气”)。在高压气源优先供气的情况下,如图10和图11所示,先判断第一压力气源(例如氧气气源)是否正常(步骤S102),若不正常切换为涡轮供气(步骤S105),若氧气气源正常,则判断第二压力气源(例如空气气源)是否正常(步骤S103),若空气气源正常或者设置100%氧浓度供气(步骤S104),则保持高压气源通气,否则切换为涡轮供气(步骤S105)。在涡轮优先供气的情况下,如图11所示,判断涡轮是否工作正常(步骤S107),若正常保持涡轮供气,否则切换至高压气源供气(步骤S108)。另外,在一些示例中,在涡轮供气的情况下,也可以不需要第一压力气源(例如氧气气源)供气,而由涡轮单独供气。
此外,在根据检测到的工作状态和气源试验性通气结果判断第二 压力气源接口处气体的压力是否恢复的步骤中,具体包括:当呼吸机1处于待机状态下时,判断第二压力气源接口120处的气体压力是否满足待机通气试验;如果满足,则判断第二压力气源接口120处的气体压力恢复;当呼吸机1处于工作状态下时,对第二压力气源接口120进行第一通气试验;如果第一通气试验没通过,则对第二压力气源接口进行第二通气试验;如果第二通气试验没通过,则判断第二压力气源接口120处的气体压力没恢复;否则,判断第二压力气源接口120处的气体压力恢复。
另外,上述待机通气试验、第一通气试验和第二通气试验为对第二压力气源接口进行通气试验,判断第二压力气源接口处气体的压力和时间是否满足要求。此外,第一通气试验的压力和时间要求可以低于第二通气试验的压力和时间要求。
在一些示例中,在通气试验中,测试流速通气大小可采用其他固定流速,例如10升每分或者100升每分等。另外,在上述通气试验中,流速通气大小可采用可变流速,包括线性变化,正弦变化等,例如10升每分增加到100升每分等。
另外,在上述通气试验中,流速形式可变,正弦变化就类似于呼吸机通气的流速形态,此时检测气源压力在此流速下是否满足压力的阈值。另外,在一些示例中,在通气试验中,流速通气判断的其他时间长短,例如10秒、30秒等。
图12是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的空气气源不足判断及恢复策略的流程图。图13是示出了本发明的第1实施方式所涉及的呼吸机的供气控制方法的氧气气源不足判断及恢复策略的流程图。
此外,如图12和图13所示,第二压力气源例如空气气源不足的判断的示例为,在待机状态下(步骤S110),空气气源压力检测到例如持续1秒且小于160kPa(步骤S112)。这里,该压力值的选取与所采用的气源和气路所选取的配件有关;该时间选取为经验值,取值范围可以选0.1至1秒。当然,如果对响应速度要求不是很高,时间取值范围可以选1秒至10分钟,则判断为空气气源不足,否则正常。在非待机状态下(通气状态)(步骤S110),当空气气源检测到例如持续0.5 秒且小于5kPa(步骤S111)(5kPa是空气气瓶空时的压力值),则判断空气气源不足,否则再进行判断是否例如持续1秒且小于50kPa(该压力值是维持成人典型工作状态下的气源压力,对于婴幼儿,这个值可以更低)(步骤S113),如果是则判断空气气源不足,否则正常。
此外,针对第二压力气源例如空气气源不足恢复的示例,在待机状态下(步骤S116),空气气源压力检测到例如持续1s且大于280kPa(该压力值为第二压力气源工作的最小值)(步骤S117),则空气气源供气恢复,否则维持空气气源不足。在非待机状态下(通气状态)(步骤S116),空气气源压力检测到例如持续1s大于400kPa(步骤S115),则空气气源供气恢复,否则判断空气气源压力检测是否例如持续5秒大于280kPa(步骤S118),若是,则空气气源供气恢复,否则维持空气气源不足。
此外,针对第一压力气源例如氧气气源不足判断及恢复策略的示例,如图13所示,氧气气源不足的判断为,氧气气源压力检测到例如持续1秒小于160kPa(步骤S120),则判断为氧气气源不足,否则氧气气源正常(步骤S119)。氧气气源恢复判断的示例为,先判断氧气气源压力检测是否大于280kPa(步骤S122),如果不是,则维持氧气源不足,如果是,进一步进行气源试验性通气,即打开氧气阀门送气60LPM,送气3秒(步骤S123),检测氧气气源压力是否持续3秒且大于280kPa,如果是,则判定为氧气气源正常。如果否则关闭氧气比例阀(步骤S125),等待3分钟重新测试氧气气源(步骤S121)。
另外,在一些示例中,切换装置14可以采用电机控制气动三通阀或者采用电磁三通阀,此时,判断氧气气源是否恢复时可以不需要进行气源试验性通气。
在本实施方式中,气源的不足可以通过采用分段式压力阈值和时间延迟结合值来判断。一般情况下,采用压力开关或者压力传感器直接判断气源情况,阈值过低容易造成判断速度慢,而阈值过高容易造成误判。采用分段式压力阈值和时间延迟结合值来判断可以提高判断效率,气源压力越低,判断速度越快。
另外,气源的恢复情况是通过实验性通气和气源压力变化来判断的,当确定气源稳定恢复才进行切换,防止气源恢复的误识别,可以 预防第一压力气源和第三压力气源间来回切换和不断切换带来的设备通气效果的影响。
另外,判断气源是否恢复的判断不限于上述方法,也可以用气源压力开关代替气源压力传感器,配合流速检测使用,例如可以检测一定时间内流速是否超过60LPM。另外,在本实施方式中,设置时流速越大,需要持续的时间可以越短。另外,也可以采用分段式检测,在200ms内流速不可以超过100LPM时再检测500ms内流速能否超过80LPM,若不满足再检测1s能否维持60PLM的流量。如果流速能达标就判断气源恢复,不用继续下面的检测。本实施方式中,各个数值不限于此。
另外,在本实施方式中采用第一压力气源驱动气动三通阀142,因而对于第一压力气源需要做气源试验性通气,否则不需要。如果采用第二压力气源驱动气动三通阀,则检测第二压力气源是否恢复时需要做气源试验性通气。如果切换装置14不采用先导阀141,则可以都不需要做气源试验性通气。
此外,在本实施方式所涉及的供气控制方法中,在一些示例中,任意一路高压气源(第一压力气源或第二压力气源)缺失都可以选择其余一路正常高压气源,不启用涡轮供气。
[第2实施方式]
图14是示出了本发明的第2实施方式所涉及的吸气支路的示意图。图15是示出了本发明的第2实施方式所涉及的吸气支路处于第二混合模式下的示意图。
本实施方式所涉及的吸气支路10A与第1实施方式所涉及的吸气支路10的不同点在于,第二吸气支路16A与第1实施方式所涉及的第二吸气支路16不同。也即,在本实施方式所涉及的第二吸气支路16A中,第三流量调节装置161与第二流量调节装置121连接,且第三流量调节装置161与第二流量传感器122连接(参见图14)。另外,在第三流量调节装置161与第二流量传感器122之间还可以设置有单向阀165。此外,第二吸气支路16A还省略了第1实施方式所涉及的第三流量传感器162。在这种情况下,本实施方式所涉及的吸气支路10A同样能够根据供气气源进行切换并及时提供所需氧浓度的混合气体。
在本实施方式中,沿着第二吸气支路16A的上游侧至下游侧,单向阀165导通,由此沿着第二吸气支路16A从上游侧流向下游侧的气体能够流过单向阀165。另外,沿着第二吸气支路16A的下游侧至上右侧,单向阀165关闭,此时下游侧的气体无法经过单向阀165流入到第二吸气支路16A。
另外,特别是在第一混合模式M1的情况下,单向阀165可以有效地隔离第二气路12与第二吸气支路16,减少第二气路12的容腔体积,使得第二气路12的阻抗和容性与第一气路11匹配,能够减少第一气路11的气体对第二气路12带来的流速反射冲击,从而保证第二气路12的测量精度。
具体而言,如图14所示,当吸气支路10A的切换装置14处于第一混合模式M1时,单向阀165关闭,从而避免第一气路11的气体进入第二吸气支路16的导气管路内。此时,第一气路11和第二气路12与第一吸气支路15连通,供应气体经由第一气路11和第二气路12汇入到第一吸气支路15而提供给患者2。
在本实施方式中,如图15所示,当吸气支路10A的切换装置14处于第二混合模式M2时,单向阀165打开,第二流量调节装置121(例如电磁比例阀)关闭,来自第三压力气源和第一压力气源的混合气体经过单向阀165、第二流量传感器122而汇入到第二吸气支路16并提供给患者2。
在本实施方式所涉及的吸气支路10A中,通过在第三流量调节装置161与第二流量传感器122之间设置单向阀165,从而省略了第三流量传感器162,由此,在同样能够根据供气气源进行切换并及时提供所需氧浓度的混合气体的情况下,有效地抑制吸气支路10A成本的增加。
另外,在一些示例中,也可以不设置单向阀165。在这种情况下,可以通过气路设计来使得第二气路12的阻抗和容性与第一气路11匹配,另外可以通过算法等方式来规避或降低第一气路11的气体对第二气路12带来的流速反射冲击的影响,从而也能够省略第三流量传感器162。
虽然以上结合附图和实施例对本发明进行了具体说明,但是可以理解,上述说明不以任何形式限制本发明。本领域技术人员在不偏离 本发明的实质精神和范围的情况下可以根据需要对本发明进行变形和变化,这些变形和变化均落入本发明的范围内。

Claims (16)

  1. 一种呼吸机,其特征在于:
    包括:
    第一气路,其包括顺序连接的第一压力气源接口和第一流量调节装置;
    第二气路,其包括顺序连接的第二压力气源接口和第二流量调节装置;
    第三气路,其包括第三压力气源接口;
    向患者输送吸入气体的第一吸气支路;
    向患者输送吸入气体的第二吸气支路,其包括气体压缩设备;
    切换装置,其具有将所述第一气路和所述第二气路与所述第一吸气支路连接的第一混合模式、以及将所述第一气路和所述第三气路与所述第二吸气支路连接的第二混合模式;以及
    管理患者呼出气体的呼气支路。
  2. 根据权利要求1所述的呼吸机,其特征在于:
    所述第二气路还包括检测所述第二压力气源接口处气体压力的压力传感器;以及
    控制器,其基于所述压力传感器的测量值来控制所述切换装置,使所述切换装置在所述第一混合模式与所述第二混合模式之间进行切换。
  3. 根据权利要求1或2所述的呼吸机,其特征在于:
    所述切换装置包括先导阀和气动三通阀。
  4. 根据权利要求1所述的呼吸机,其特征在于:
    所述第二吸气支路还包括第一混合腔,在所述第二混合模式中,所述切换装置通过所述第一混合腔将所述第一气路和所述第三气路与第二吸气支路连接。
  5. 根据权利要求1所述的呼吸机,其特征在于:
    所述第二吸气支路还包括第三流量调节装置。
  6. 根据权利要求1所述的呼吸机,其特征在于:
    所述第二吸气支路还包括第二混合腔,所述第二混合腔设置成在吸气期间对处于所述第二混合模式且被所述气体压缩设备加压的混合气体进行混合。
  7. 根据权利要求5所述的呼吸机,其特征在于:
    所述第三流量调节装置还包括流量传感器。
  8. 根据权利要求6所述的呼吸机,其特征在于:
    所述第三流量调节装置包括音圈电机。
  9. 根据权利要求1所述的呼吸机,其特征在于:
    所述第一吸气支路还包括气体混合装置。
  10. 一种呼吸机的供气控制方法,其特征在于:
    所述呼吸机包括第一压力气源接口、第二压力气源接口、气体压缩设备、切换装置和控制器,所述切换装置具有采用第一压力气源接口和第二压力气源接口进行供气的第一混合模式,以及采用所述第一压力气源接口和所述气体压缩设备进行供气的第二混合模式;
    所述控制器执行下述操作:
    当所述切换装置处于第一混合模式时,检测呼吸机的工作状态和所述第二压力气源接口处气体的压力;
    根据检测到的呼吸机的工作状态和所述第二压力气源接口处气体的压力判断第二压力气源接口处的气体压力是否充足;
    当第二压力气源接口处的气体压力不足,则将所述切换装置切换至所述第二混合模式。
  11. 根据权利要求9所述的供气控制方法,其特征在于:
    所述根据检测到的呼吸机的工作状态和所述第二压力气源接口处气体的压力判断第二压力气源接口处的气体压力是否充足的步骤具体 包括:
    当呼吸机处于待机状态下时,判断所述第二压力气源接口处的气体压力是否满足待机压力阈值和待机时间阈值;
    如果满足,则判定所述第二压力气源接口处的气体压力充足;
    否则判定所述第二压力气源接口处的气体压力不足;
    当呼吸机处于工作状态下时,判断所述第二压力气源接口处的气体压力是否满足第一工作压力阈值和第一工作时间阈值;
    如果不满足,则判定所述第二压力气源接口处的气体压力是否满足第二工作压力阈值和第二工作时间阈值;
    如果不满足,则判定所述第二压力气源接口处的气体压力不足;
    否则,判定所述第二压力气源接口处的气体压力充足。
  12. 根据权利要求10所述的供气控制方法,其特征在于:
    所述第一工作压力阈值小于第二工作压力阈值,所述第一工作时间阈值小于所述第二工作时间阈值。
  13. 根据权利要求9所述的供气控制方法,其特征在于:
    所述供气控制方法还包括:
    当所述切换装置处于第二混合模式时,检测所述呼吸机的工作状态,并对所述第二压力气源接口进行气源试验性通气;
    根据检测到的工作状态和气源试验性通气结果判断所述第二压力气源接口处气体的压力或者流速是否恢复;
    如果所述第二压力气源接口处气体的压力或者流速恢复,则将所述切换装置切换至所述第一混合模式。
  14. 根据权利要求12所述的供气控制方法,其特征在于:
    所述根据检测到的工作状态和气源试验性通气结果判断所述第二压力气源接口处气体的压力或者流速是否恢复的步骤具体包括:
    当呼吸机处于待机状态下时,判断所述第二压力气源接口处的气体压力或者流速是否满足待机通气试验;
    如果满足,则判定所述第二压力气源接口处的气体压力或者流速 恢复;
    当呼吸机处于工作状态下时,对所述第二压力气源接口进行第一通气试验;
    如果第一通气试验没通过,则对所述第二压力气源接口进行第二通气试验;
    如果第二通气试验没通过,则判断所述第二压力气源接口处的气体压力或者流速没恢复;
    否则,判断所述第二压力气源接口处的气体压力或者流速恢复。
  15. 根据权利要求13所述的供气控制方法,其特征在于:
    所述待机通气试验、第一通气试验和第二通气试验为对所述第二压力气源接口进行通气试验,判断所述第二压力气源接口处气体的压力或者流速,和时间是否满足要求。
  16. 根据权利要求14所述的供气控制方法,其特征在于:
    所述第一通气试验的压力和时间要求低于所述第二通气试验的压力和时间要求;或者
    所述第一通气试验的流速要求高于所述第二通气试验的流速要求,所述第一通气试验的时间要求低于所述第二通气试验的流速和时间要求。
PCT/CN2017/101662 2017-09-13 2017-09-13 呼吸机及其供气控制方法 WO2019051698A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17925455.2A EP3682930B1 (en) 2017-09-13 2017-09-13 Ventilator for gas supply control
CN202310866521.4A CN116899058A (zh) 2017-09-13 2017-09-13 呼吸机及其供气控制方法
PCT/CN2017/101662 WO2019051698A1 (zh) 2017-09-13 2017-09-13 呼吸机及其供气控制方法
CN201780094885.8A CN111801129B (zh) 2017-09-13 2017-09-13 呼吸机及其供气控制方法
US16/818,516 US11684745B2 (en) 2017-09-13 2020-03-13 Ventilator and gas supply control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101662 WO2019051698A1 (zh) 2017-09-13 2017-09-13 呼吸机及其供气控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/818,516 Continuation US11684745B2 (en) 2017-09-13 2020-03-13 Ventilator and gas supply control method thereof

Publications (1)

Publication Number Publication Date
WO2019051698A1 true WO2019051698A1 (zh) 2019-03-21

Family

ID=65723468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101662 WO2019051698A1 (zh) 2017-09-13 2017-09-13 呼吸机及其供气控制方法

Country Status (4)

Country Link
US (1) US11684745B2 (zh)
EP (1) EP3682930B1 (zh)
CN (2) CN111801129B (zh)
WO (1) WO2019051698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222039A1 (zh) * 2021-04-20 2022-10-27 深圳麦科田生物医疗技术股份有限公司 气体混合装置、呼吸供气系统和医疗设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657032B (zh) * 2020-11-30 2022-11-18 深圳市科曼医疗设备有限公司 气路结构及呼吸机
CN112790889A (zh) * 2021-02-01 2021-05-14 成都森威实验动物有限公司 一种间歇性缺氧动物模型制备用混合气体制备方法及系统
CN113577477A (zh) * 2021-07-29 2021-11-02 深圳市安保科技有限公司 气路系统和呼吸机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121233A1 (en) * 2006-11-25 2008-05-29 Drager Medical Ag & Co. Kg Gas-mixing device for respirators
CN101474451A (zh) * 2009-01-20 2009-07-08 张培林 智能型呼吸机氧浓度控制装置
CN102500026A (zh) * 2011-12-01 2012-06-20 于邦仲 一种呼吸机气路系统
CN103055396A (zh) * 2013-01-31 2013-04-24 北京北辰亚奥科技有限公司 一种供气装置
CN104548296A (zh) * 2014-12-31 2015-04-29 深圳市心之星医疗技术有限公司 一种呼吸机气路控制装置
CN106470725A (zh) * 2014-07-04 2017-03-01 欧根·卡根 呼吸装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392514A (en) * 1981-01-26 1983-07-12 Queue Systems, Inc. Apparatus and method for precision gas mixing
US5237987A (en) * 1990-06-07 1993-08-24 Infrasonics, Inc. Human lung ventilator system
FR2830454A1 (fr) * 2001-10-10 2003-04-11 Taema Appareil d'assistance respiratoire a melangeur de gaz
JP2007097931A (ja) 2005-10-06 2007-04-19 Senko Medical Instr Mfg Co Ltd 吸入麻酔装置、吸気ガスの流量変更方法及び吸気ガスの麻酔薬濃度変更方法
EP1795222B1 (en) * 2005-12-07 2010-08-18 General Electric Company Anesthesia ventilator system including manual ventilation
EP2089112B1 (en) * 2006-12-05 2017-10-11 Zodiac Aerotechnics A respiratory gas supply circuit to feed crew members and passengers of an aircraft with oxygen
CN201052323Y (zh) 2007-07-10 2008-04-30 复旦大学附属上海市第五人民医院 一种用于病人供气的自动切换装置
EP2168623B1 (en) * 2008-09-26 2011-09-21 General Electric Company Arrangement for detecting a leak in anesthesia system
JP5818214B2 (ja) * 2009-11-11 2015-11-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 人工呼吸器
CN102114289B (zh) 2009-12-31 2014-06-11 北京谊安医疗系统股份有限公司 气源自动切换装置
US20110197889A1 (en) * 2010-02-16 2011-08-18 Ninna Lahde Arrangement and method for supplying breathing gas for respiration
CN203469165U (zh) 2013-08-21 2014-03-12 江苏富林医疗设备有限公司 一种呼吸机
CN105963837B (zh) 2016-06-08 2019-02-22 湖南明康中锦医疗科技发展有限公司 一种空氧混合控制的呼吸机及控制方法
CN106581833B (zh) 2017-01-18 2024-02-06 北京雅果科技有限公司 一种呼吸机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121233A1 (en) * 2006-11-25 2008-05-29 Drager Medical Ag & Co. Kg Gas-mixing device for respirators
CN101474451A (zh) * 2009-01-20 2009-07-08 张培林 智能型呼吸机氧浓度控制装置
CN102500026A (zh) * 2011-12-01 2012-06-20 于邦仲 一种呼吸机气路系统
CN103055396A (zh) * 2013-01-31 2013-04-24 北京北辰亚奥科技有限公司 一种供气装置
CN106470725A (zh) * 2014-07-04 2017-03-01 欧根·卡根 呼吸装置
CN104548296A (zh) * 2014-12-31 2015-04-29 深圳市心之星医疗技术有限公司 一种呼吸机气路控制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222039A1 (zh) * 2021-04-20 2022-10-27 深圳麦科田生物医疗技术股份有限公司 气体混合装置、呼吸供气系统和医疗设备

Also Published As

Publication number Publication date
US11684745B2 (en) 2023-06-27
EP3682930B1 (en) 2022-11-02
EP3682930A4 (en) 2020-09-16
CN111801129A (zh) 2020-10-20
CN116899058A (zh) 2023-10-20
CN111801129B (zh) 2023-07-28
US20200206452A1 (en) 2020-07-02
EP3682930A1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2019051698A1 (zh) 呼吸机及其供气控制方法
US10112023B2 (en) Breathing-gas delivery and sharing system and method
JP2013510677A5 (zh)
CA2614370A1 (en) Modular supplemental gas regulator system and respiratory treatment system using same
CN106492321B (zh) 一种呼吸机
CN102500021A (zh) 一种先导式控制带智能peep呼吸机气路系统
CN109481804B (zh) 呼吸机
US8915249B2 (en) Systems and methods for conserving oxygen in a breathing assistance device
GB2409168A (en) Device and method for dosing respiration gas
CN105169539B (zh) 一种急救呼吸机
US20080035148A1 (en) Device And Method Of Isolating Bias Flow Using Partition Position
CN217040993U (zh) 一种呼吸麻醉机
JP6844080B2 (ja) 呼吸同調装置、酸素供給システム
JP2015080699A (ja) 高濃度酸素吸入システム
JPH08187289A (ja) 呼吸用気体供給装置
CN110074894B (zh) 麻醉呼吸机的通气系统及麻醉呼吸机
CN220588726U (zh) 氧浓度检测装置
CN116637260A (zh) 呼吸气路和呼吸机
CN102500025B (zh) 一种呼吸机防窒息自由吸气系统
JP2002210012A (ja) 呼吸用気体供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017925455

Country of ref document: EP

Effective date: 20200414