WO2019050226A1 - 3차원 뇌지도 생성 방법 및 프로그램 - Google Patents

3차원 뇌지도 생성 방법 및 프로그램 Download PDF

Info

Publication number
WO2019050226A1
WO2019050226A1 PCT/KR2018/010170 KR2018010170W WO2019050226A1 WO 2019050226 A1 WO2019050226 A1 WO 2019050226A1 KR 2018010170 W KR2018010170 W KR 2018010170W WO 2019050226 A1 WO2019050226 A1 WO 2019050226A1
Authority
WO
WIPO (PCT)
Prior art keywords
brain
image
subject
dimensional
generating
Prior art date
Application number
PCT/KR2018/010170
Other languages
English (en)
French (fr)
Inventor
김동현
Original Assignee
뉴로핏 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 뉴로핏 주식회사 filed Critical 뉴로핏 주식회사
Priority to JP2020514533A priority Critical patent/JP7263324B2/ja
Publication of WO2019050226A1 publication Critical patent/WO2019050226A1/ko
Priority to US16/814,852 priority patent/US11744465B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0036Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room including treatment, e.g., using an implantable medical device, ablating, ventilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56341Diffusion imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to a three-dimensional brain map generation method and a program.
  • the MRI system is a device for acquiring an image of a single-layer region of a target object by expressing intensity of an MR (Magnetic Resonance) signal for a RF (Radio Frequency) signal generated in a magnetic field of a specific intensity in contrast.
  • an MR signal is emitted from the specific nucleus when an object is instantaneously examined and discontinued after an RF signal that lies in a strong magnetic field and resonates only with a specific nucleus (e.g., a hydrogen nucleus)
  • the MR image can be acquired by receiving the MR signal.
  • the MR signal means an RF signal radiated from the object.
  • the magnitude of the MR signal can be determined by the concentration of a predetermined atom (e.g., hydrogen) included in the object, the relaxation time T1, the relaxation time T2, and the flow of blood.
  • the MRI system includes features different from other imaging devices. Unlike imaging devices, such as CT, where acquisitions of images are dependent on the direction of the detecting hardware, the MRI system can acquire oriented 2D images or 3D volume images at any point. Further, unlike CT, X-ray, PET, and SPECT, the MRI system does not expose radiation to the subject and the examiner, and it is possible to acquire images having a high soft tissue contrast, The neurological image, the intravascular image, the musculoskeletal image and the oncologic image can be acquired.
  • Transcranial Magnetic Stimulation is a non-invasive treatment for the nervous system. It has the advantage of treating neurological diseases without medication or invasive treatment.
  • the TMS can apply electrical stimulation to the object using the magnetic field change.
  • TMS is performed by applying electrical stimulation to a clinically or empirically known stimulation point, or by allowing the user to gradually move the stimulation position to determine the stimulation position. Therefore, it is difficult to reflect the kind of the coil used in the procedure or the difference in the body structure between individuals, and it is difficult to directly confirm the effect of the procedure.
  • Electroencephalogram which can measure electrical activity according to the brain activity of a subject, and methods for treating brain diseases through electrical stimulation are widely used.
  • TMS Electroencephalogram
  • a method of generating a three-dimensional brain map comprising: acquiring a brain MRI image of a subject; segmenting the brain MRI image into a plurality of regions; Generating a three-dimensional brain image of the object including the plurality of regions by using an image, and generating a three-dimensional image of the object including the plurality of regions based on the characteristics of the plurality of regions included in the three- And generating a three-dimensional brain map of the subject capable of simulating the process, wherein the segmenting is performed by inputting a brain MRI image of the subject to a model learned using a plurality of processed brain MRI images And obtaining a brain MRI image of the segmented subject.
  • the processed brain MRI image is a labeled image of each of a plurality of regions included in the processed brain MRI image
  • the learned model receives a brain MRI image and outputs a segmented brain MRI image Model.
  • the step of generating the three-dimensional brain map of the object may further include a step of generating a three-dimensional brain map of the object by using a three-dimensional brain image of the object, which is composed of a plurality of meshes capable of simulating the process of transferring electrical stimulation to the brain Dimensional stereoscopic image.
  • the step of generating a three-dimensional brain map of the object may include acquiring physical characteristics of each of the plurality of areas for simulating the flow of electric current according to electric stimulation of the brain of the object,
  • the characteristic may include at least one of an isotropic electrical conductivity and an anisotropic electrical conductivity of each of the plurality of regions.
  • the acquiring of the physical characteristics may further include acquiring a conduction tensor image for the brain of the subject from a brain MRI image of the subject, and acquiring an anisotropic electrical conductivity of each of the plurality of regions using the conduction tensor image And a step of acquiring.
  • the brain MRI image of the subject includes a diffusion tensor image
  • the step of acquiring the physical property includes acquiring anisotropic electrical conductivity of each of the plurality of regions using the diffusion tensor image of the subject can do.
  • the method further includes the step of simulating a state in which the specific electrical stimulus is propagated in the brain of the subject when a specific electrical stimulus is applied to a head of the subject using the 3D brain map Step < / RTI >
  • the three-dimensional brain map generation method may further include acquiring a stimulus target point to which electrical stimulation is to be applied in the brain of the subject, and acquiring a stimulus target point of the target body using the three- And acquiring a position to apply electrical stimulation to the head.
  • the acquiring of the position to which the electrical stimulation is to be applied may include acquiring a recommended path for delivering electrical stimulation from the scalp of the subject to the stimulation target point using the 3D brain map, And acquiring a position to apply electrical stimulation to the head of the object.
  • a computer readable recording medium storing a computer-readable program for performing a three-dimensional brain map generation method.
  • segmentation of a brain MRI image is performed using a previously learned model, thereby automatically segmenting a brain MRI image within a short time.
  • anyone in the medical field can acquire a three-dimensional brain image of a subject in a short time, and furthermore, it is possible to provide a simulation result that can visually confirm the effect of electrical stimulation on the brain of the subject.
  • FIG. 1 is a flow diagram illustrating a method for generating a 3D brain map in accordance with one embodiment.
  • FIG. 2 is a flowchart illustrating a method of generating a 3D brain map of a subject and performing a simulation according to an embodiment.
  • FIG. 3 is a diagram showing a result of performing segmentation on a brain MRI image.
  • connection component-based noise removal method is a diagram illustrating an example of a connection component-based noise removal method.
  • FIG. 5 is a diagram showing an example of a post-processing method using hole-injection.
  • FIG. 6 is a diagram showing an example of a 3D brain image generated from a brain MRI image of a subject.
  • FIG. 7 is a view showing an example of a diffusion tensor image.
  • FIG. 8 is a diagram showing an example of a simulation result.
  • FIG. 9 is a flowchart illustrating a TMS stimulus navigation method according to an embodiment.
  • FIG. 10 is a diagram showing an example of a TMS procedure.
  • FIG. 11 is a diagram showing the relationship between the magnetic field and the electric field applied to the brain of the subject.
  • FIG. 12 is a diagram showing information obtained by visualizing the magnetic vector potential according to the type of the surgical coil.
  • FIG. 13 is a diagram showing an example of a method of calculating the position and direction of a coil.
  • FIG. 14 is a diagram showing examples of visualizing a state where electrical stimulation derived from the magnetic field of the surgical coil is propagated in the brain of a subject.
  • 15 is a flowchart illustrating a patch guide method according to an embodiment.
  • 16 is a diagram illustrating the results of simulating electrical stimulation results in accordance with one embodiment.
  • 17 is a diagram illustrating an embodiment of a method of matching images.
  • 18 is a view showing an example of a three-dimensional scan model obtained using a depth camera.
  • 19 is a view showing an example in which a computing device to which a depth camera module is connected captures two images of a target object and guides a position for attaching a patch to two images of the captured object.
  • 20 is a diagram illustrating a portable computing device and a depth camera module connected thereto.
  • part or module refers to a hardware component, such as a software, FPGA, or ASIC, and a “component” or “module” performs certain roles.
  • part “ or “ module” is not meant to be limited to software or hardware.
  • a “ module “ or “ module” may be configured to reside on an addressable storage medium and configured to play back one or more processors.
  • " a " or " module &quot is intended to encompass all types of elements, such as software components, object oriented software components, class components and task components, Microcode, circuitry, data, databases, data structures, tables, arrays, and variables, as used herein.
  • " modules &quot may be combined with a smaller number of components and " parts " or " modules " Can be further separated.
  • an " object" may include a person or an animal, or a portion of a person or an animal.
  • the subject may include a liver, a heart, a uterus, a brain, a breast, an organ such as the abdomen, or a blood vessel.
  • the " object " may also include a phantom.
  • a phantom is a material that has a volume that is very close to the density of the organism and the effective atomic number, and can include a spheric phantom that has body-like properties.
  • the term "user" may be a doctor, a nurse, a clinical pathologist, a medical imaging expert or the like as a medical professional and may be a technician repairing a medical device, but is not limited thereto.
  • MR image Magnetic Resonance image
  • FIG. 1 is a flow diagram illustrating a method for generating a 3D brain map in accordance with one embodiment.
  • the method shown in FIG. 1 is a time-wise illustration of steps performed by a computer.
  • a computer is used to mean a computing device including at least one processor.
  • step S110 the computer acquires a brain MRI image of the object.
  • the computer is a workstation connected to an MRI image acquisition device and can acquire brain MRI images of the subject directly from the MRI image acquisition device.
  • the computer may also acquire a brain MRI image of the subject from an external server or other computer.
  • a brain MRI image of a subject means an MRI image of a head portion including a brain of the subject. That is, the brain MRI image of the object means an MRI image including not only the brain of the object but also the skull and scalp of the object.
  • step S120 the computer segments (divides) the brain MRI image obtained in step S110 into a plurality of areas.
  • the computer segments the brain MRI images obtained in step S110 by site.
  • the computer may segment the brain MRI image obtained in step S110 into white matter, gray matter, cerebrospinal fluid, skull, and scalp, but the type in which the brain MRI image can be segmented is not limited thereto.
  • the computer acquires a brain MRI image of the segmented subject by inputting the brain MRI image of the subject into the learned model using a plurality of processed brain MRI images.
  • the processed brain MRI image is an image in which each of a plurality of regions included in the brain MRI image is labeled.
  • the learned model is a model that receives brain MRI images and outputs segmented brain MRI images.
  • the learned model refers to a model learned using Machine Learning, and may specifically mean a model learned using Deep Learning.
  • the learned model may be, but is not limited to, a model comprising one or more batch normalization layers, an activation layer, and a convolution layer.
  • the learned model includes a horizontal pipeline composed of a plurality of blocks for extracting high-level characteristics from low-level characteristics of the MRI image, and a vertical pipeline for grouping the features extracted from the horizontal pipeline to perform segmentation So as to perform segmentation of the MRI which is relatively inferior in image quality.
  • FIG. 3 there is shown a result 300 (b) of segmentation of a brain MRI image 300 (a).
  • the computer performs post-processing on the segmentation result.
  • the computer performs Connected Component-based Noise Rejection.
  • the connection component-based noise reduction method is used to improve the result of segmentation performed using a Convolution Neural Network (CNN).
  • CNN Convolution Neural Network
  • connection component-based noise removal method is shown.
  • the computer obtains the enhanced segmentation image 410 by removing the remaining components 402 except for the connection component which is the largest chunk in the segmentation image 400.
  • the computer performs Hole Rejection.
  • Holy Rejection is used to eliminate holes, one of the errors of convolutional neural network based segmentation.
  • FIG. 5 an example of a post-processing method using hole injection is shown.
  • the computer removes at least a portion of the hole 502 included in the segmentation image 500 to obtain an improved segmentation image 510.
  • step S130 the computer generates a three-dimensional brain image of a target object including a plurality of regions segmented using the brain MRI image of the segmented object in step S120.
  • a 3D brain image 600 generated from a brain MRI image of a subject is shown.
  • FIG. 6 An example of the result of generating a three-dimensional brain image 610 of a segmented object from a two-dimensional brain MRI image of a segmented object is shown in FIG.
  • step S140 the computer generates a three-dimensional brain map of the object capable of simulating the process of transferring the electric stimulus to the brain of the object based on the properties of each of the plurality of areas included in the three-dimensional brain image generated in step S130 do.
  • FIG. 2 is a flowchart illustrating a method of generating a 3D brain map of a subject and performing a simulation according to an embodiment.
  • the method shown in FIG. 2 corresponds to an embodiment of the method shown in FIG. Therefore, the contents described in connection with FIG. 1 apply to the method shown in FIG. 2 even if the contents are omitted in connection with FIG.
  • step S210 the computer generates a three-dimensional stereoscopic image composed of a plurality of meshes capable of simulating the transmission process of the electrical stimulus to the brain of the object using the 3D brain image of the object.
  • the computer generates a three-dimensional stereoscopic image consisting of a plurality of surface meshes including triangles or squares.
  • the computer generates a three-dimensional stereoscopic image composed of a plurality of volumetric meshes including a tetrahedron or a cube.
  • the type of the lattice composing the three-dimensional image can be set differently according to the purpose of the simulation.
  • step S220 the computer acquires the physical characteristics of each of the plurality of areas to simulate the flow of electric current according to electric stimulation of the brain of the object.
  • the physical properties obtained in step S220 include at least one of an isotropic electrical conductivity and an anisotropic electrical conductivity of each of the segmented plurality of regions.
  • isotropic electrical conductivity can be obtained by assigning known electrical conductivities through experimentation for each segmented region.
  • Anisotropic electrical conductivity is the anisotropy of white matter fibers in the brain white matter.
  • the anisotropic electrical conductivity is obtained from the conduction tensor image for the brain of the subject.
  • the computer acquires a conduction tensor image of a subject's brain from a brain MRI image of the subject, and acquires anisotropic electrical conductivity of each of the plurality of segmented regions using the obtained conduction tensor image.
  • a brain MRI image of a subject comprises a diffusion tensor image
  • the computer acquires an anisotropic electrical conductivity of each of the plurality of regions segmented using the diffusion threshold image of the subject.
  • FIG. 7 an example of a diffusion tensor image 700 is shown.
  • the eigenvector of the diffusion tensor image is known to be coincident with the eigenvector of the conduction tensor.
  • the computer can acquire anisotropic electrical conductivity according to the orientation of the nerve fibers included in the diffusion tensor image. For example, the direction of the nerve fibers has a high electrical conductivity, and the direction perpendicular to the nerve fibers has a low electrical conductivity.
  • step S230 the computer simulates a state in which a specific electrical stimulus is propagated in the brain of the subject when a specific electrical stimulus is applied to one point of the head of the subject, using a three-dimensional brain map.
  • the computer simulates a state in which electrical stimulation is propagated in the brain of a subject using the lattice image obtained in step S210 and the physical characteristics acquired in step S220.
  • FIG. 8 an example of a simulation result is shown.
  • An electrical stimulus that can be applied to the head of a subject may include at least one of a magnetic field, an electric field, and a current.
  • a magnetic field When a magnetic field is applied to the head of the subject, a current induced by the magnetic field may propagate to the brain of the subject.
  • the computer acquires a stimulus target point for applying electrical stimulation in the brain of the subject.
  • the computer acquires a position to apply electrical stimulation to the head of the subject in order to apply electrical stimulation to the stimulation target point using the 3D brain map of the subject.
  • the computer acquires a recommended path for delivering electrical stimulation from the scalp of the subject to the stimulation target point using a 3D brain map of the object, acquires a position to apply electrical stimulation to the head of the object from the recommended path can do.
  • FIG. 9 is a flowchart illustrating a TMS (Transcranial Magnetic Stimulation) stimulation navigation method according to an embodiment.
  • the TMS stimulus navigation method shown in FIG. 9 is a time-series representation of the steps performed by the computer.
  • the TMS stimulates a specific part of the brain by using an electric field induced in the brain of the target body 10 by a magnetic field generated by the coil 1000 so as to be adjacent to one side of the head of the target body 10, .
  • the intensity and shape of the magnetic field generated around the coil 1000 are different according to the shape of the surgical coil 1000 and the electric signal propagates depending on the shape of the head and the brain of the target body 10.
  • a stimulation point corresponding to the type of the coil 1000 is calculated and provided, and a simulation result according to the head and brain shape of the target body 10 is provided.
  • step S910 the computer acquires a stimulus target point for applying an electrical stimulus in the brain of the object.
  • the stimulus target point is selected based on the clinical or theoretical basis, depending on the disease to be treated.
  • the stimulus target point is indicated using a 3D brain image or a 3D brain map of the object generated by the disclosed embodiment.
  • step S920 the computer obtains information on the spatial distribution of the magnetic vector potential of the TMS surgical coil.
  • the information on the spatial distribution includes information on visualization of magnetic vector potential using a magnetic dipole according to the shape of the surgical coil.
  • information 1210 and 1260 showing the magnetic vector potential according to the types of surgical coils 1200 and 1250 are shown.
  • step S930 the computer obtains, from the spatial distribution obtained in step S920, one or more parameters for obtaining an optimal stimulation condition for the stimulation target point obtained in step S910.
  • the optimal stimulation condition for the stimulation target point means a condition that the strength of the magnetic field applied by the surgical coil to the stimulation target point is maximized.
  • FIG. 11 there is shown the relationship between the magnetic field and the electric field applied to the brain of the subject.
  • an image obtained by visualizing the magnitude of the magnetic field applied to the brain of the subject, the magnitude of the gradient (potential), and the magnitude of the electric field induced by the magnetic field is shown.
  • the magnitude of the electric field applied to the brain of the subject can be calculated by adding a magnetic field and a gradient applied to the brain of the subject.
  • the optimal stimulation condition for the stimulation target point is to maximize the strength of the magnetic field applied to the stimulation target point by the surgical coil.
  • the parameters that the computer acquires include an optimal point having the highest magnetic vector potential value in the spatial distribution of the magnetic vector potential induced by the coil.
  • the parameter acquired by the computer includes an optimal vector, which is a law vector that minimizes a product of a normal vector with a gradient at an optimal point.
  • optimal points 1212 and 1262 and optimal vectors 1214 and 1264 of magnetic vector potentials 1210 and 1250, respectively, are shown.
  • the optimal point (x, y, z) and the optimal vector v are calculated by the following equations (1) and (2).
  • Equation (1) f denotes a magnetic vector potential map, and (x, y, z), which is a position having the largest value in the magnetic vector positive map f, is calculated as an optimum point according to Equation (1).
  • Equation (2) Is the optimal point used to define the optimal point.
  • v (x, y, z) denotes a law vector in the (x, y, z) direction.
  • step S940 the computer calculates the position and direction of the coil that satisfies the optimal stimulation condition for the stimulation target point obtained in step S910, using the parameters obtained in step S930.
  • calculating the position and orientation of the coil includes calculating the position and orientation of the coil such that the stimulus target point is closest to the optimal vector direction from the optimal point.
  • FIG. 13 an example of a method of calculating the position and direction of a coil is shown.
  • the computer determines a point 14 on the scalp closest to the stimulation target point 12.
  • the distance between the stimulation target point 12 and one point 14 on the scalp closest to the stimulus target point 12 is D
  • the point 14 is the starting point
  • the stimulus target point 12 The vector to be the end point is called K.
  • the thickness of the coil 1310 is referred to as 2P.
  • the computer generates and applies a matrix as shown in Equation (3) below, which aligns the vector K 1320 and the optimal vector 1312 of the coil 1310.
  • the position of the coil is calculated according to the following equation (4).
  • step S950 when the computer places the surgical coil in the direction calculated in step S950 to the position calculated in step S940, the electrical stimulation derived from the magnetic field of the surgical coil simulates the state of propagation in the brain of the object.
  • the computer performs a simulation using a three-dimensional brain map generated in accordance with the method shown in FIGS. 1 and 2.
  • a computer may acquire a brain MRI image of a subject, and may be a computer program that can simulate the process of transferring an electrical stimulus to a brain of a subject based on the properties of a plurality of regions included in the obtained brain MRI image. Dimensional brain map can be generated.
  • the computer simulates the state where the electrical stimulation by the coil is propagated in the brain of the object using the generated 3D brain map.
  • the 3D brain map may include a three-dimensional stereoscopic image composed of a plurality of grids capable of simulating a process of transferring an electric stimulus to a brain of a subject.
  • the computer visualizes the state of electrical stimulation derived from the magnetic field of the surgical coil being propagated in the brain of the subject using a 3D stereoscopic image.
  • FIG. 14 there are shown examples of visualizing a state in which electrical stimulation derived from a magnetic field of a surgical coil is propagated in a brain of a subject.
  • the computer is connected to a robotic arm device equipped with a TMS procedure coil.
  • the robotic arm device includes a mechanical device capable of moving the TMS procedure coil to a position designated by the computer.
  • the robot arm device can automatically perform the procedure using the TMS coil according to the calculation result of the computer by moving the TMS procedure coil to the position designated by the computer according to the disclosed embodiment.
  • 15 is a flowchart illustrating a patch guide method according to an embodiment.
  • the patch comprises a brain stimulation patch.
  • the brain stimulation patch may include, but is not limited to, an electric stimulation patch and an ultrasonic stimulation patch.
  • the patch includes an EEG patch.
  • the types of patches according to the disclosed embodiments are not limited to the above-described examples.
  • step S1510 the computer acquires a three-dimensional scan model including two phases of the object using the depth camera.
  • the depth camera may include a three-dimensional laser scanner of a triangulation method, a depth camera using a structural ray pattern, and a depth camera using a TOF (Time Of Flight) method using a difference in reflection time of infrared rays,
  • the type is not limited thereto.
  • the depth camera is used to acquire the 3D scan model by reflecting the distance information to the image.
  • the subject i. E., The patient is seated in a circular chair without a backrest, and the user, i.e., the physician, uses a temporary fixture, such as a tripod, to position the depth camera so that the patient ' s face is clearly visible at the patient '
  • a temporary fixture such as a tripod
  • the doctor starts a deep camera scan and gently turns the patient one turn to acquire a three-dimensional scan model that includes the patient's head.
  • the depth camera is provided in an auto-rotatable fixed module so that the depth camera can acquire a three-dimensional scan model by rotating around a centrally located patient.
  • a depth camera module is connected to a portable computing device (e.g., a smart phone, a tablet PC, etc.) so that three-dimensional scanning is possible without a separate expensive equipment,
  • a portable computing device e.g., a smart phone, a tablet PC, etc.
  • a three-dimensional scan model can be obtained by fixing a computing device to which a depth camera module is connected by using a temporary fixing device, rotating the patient after sitting on a stool or the like.
  • a portable computing device 2000 and a depth camera module 2010 connected thereto are shown.
  • the computer generates a three-dimensional model that includes two images of the object using the captured distance image using a depth camera, aligns images photographed at different viewpoints, Reconstruct the model.
  • a computer reconstructs a model by gathering three-dimensional data in the form of a point cloud in a distance image collected using a depth camera.
  • the method of generating the three-dimensional model is not limited.
  • step S1520 the computer acquires a 3D brain MRI model of the object.
  • acquiring a 3D brain MRI model of a subject comprises acquiring a brain MRI image of the subject, and acquiring a brain MRI image of the subject based on the properties of each of the plurality of regions included in the brain MRI image of the subject, And generating a three-dimensional brain map of the object capable of simulating the delivery process of the electrical stimulus.
  • the step of generating a three-dimensional brain map of the object includes a step of generating a three-dimensional image composed of a plurality of meshes capable of simulating a process of transferring electrical stimulation to the brain of the object.
  • a three-dimensional brain map generation method described with reference to Figs. 1 to 8 may be used.
  • step S1530 the computer performs matching with a three-dimensional scan model including two phases of the object and a brain MRI model of the object.
  • FIG. 17 an embodiment of a method of matching images is shown.
  • a brain MRI photograph of the subject and an image modeled of the brain structure of the subject are superimposed.
  • the following three images correspond to an example in which the brain MRI photograph and the image modeling the brain structure are not matched. Also, in the image 1700, the upper three images correspond to examples in which a brain MRI photograph and an image modeling the brain structure are matched.
  • the computer uses a brain MRI model to calculate changes in the brain of the subject by the electrical or ultrasound stimulation of the patch depending on where the patch is attached. Further, the computer calculates a position at which the patch should be actually attached using a three-dimensional scan model including two phases of the object.
  • the computer calculates the position where the patch should be attached to the head of the object by performing matching with the 3D scanning model including the head of the object and the brain MRI model of the object, and thereby, Can be calculated.
  • the computer can use the matched result to calculate the position at which the patch should be attached to the head of the subject to produce a specific change in the brain of the subject, and provide the result.
  • the step of the computer performing the matching includes calculating a facial feature of the scan model and the brain MRI model, and calculating a scan model and a brain MRI model using the scan feature model and the face feature of the brain MRI model And performing a matching operation.
  • the scan model including the head of the object and the brain MRI model of the object are difficult to match because of their different forms.
  • the computer can match the two models using the facial characteristics of the object.
  • the step of calculating a face characteristic of a scan model including two phases of a target object includes the steps of acquiring a color image and a depth image including two phases of the target object, And calculating the three-dimensional position of the face characteristic of the object using the depth image including the two-phase image of the object.
  • FIG. 18 an example of generating a matched model 1820 by matching a scan model 1800 including two sides of a target object and a brain MRI model 1810 of a target object is shown.
  • step S1540 the computer acquires an image of a head of the object using a depth camera.
  • a doctor can move a patient holding a temporary fixed depth camera directly on the patient's head.
  • step S1550 the computer matches the one position of the captured image with the one position on the matched model in step S1540.
  • the computer when a computer is photographing a point on two sides of an object using a depth camera, the computer performs a calculation on which part of the matched model corresponds to a point being photographed.
  • the computer displays an image guiding the position of the patch to be attached to the two phases of the object by matching the photographed image with the matched model.
  • a computing device 1900 to which a depth camera module is connected captures a head of a subject 1910, and the computing device 1900 is adapted to attach a patch 1930 to a head of a photographed object 1910 And displays an image guiding the position 1920.
  • the computing device 1900 determines a location to which to attach the patch 1930 on the matched model and displays a location 1920 corresponding to the determined location in the photographed image.
  • the computing device 1900 also recognizes the patches 1930 in the photographed images and guides the direction of movement of the recognized patches 1930.
  • the computing device 1900 determines whether the recognized patch 1930 has been attached to the determined location 1920.
  • At least one marker is affixed to or displayed on the patch 1930.
  • at least one of a particular shape, color, and two-dimensional code is attached or displayed in the patch 1930, and the computing device 1900 recognizes the patch 1930 using a marker attached to or displayed in the patch 1930 And tracks the movement of the patch 1930.
  • the computing device 1900 when a physician photographs a patient's head using a depth camera connected to the computing device 1900 or the computing device 1900, the position of the patient's head displayed on the computing device 1900 And the position of the patch 1930, which is similarly recognized by the computing device 1900, is also changed.
  • the computing device 1900 also tracks the patch 1930, even when the computing device 1900 is moving, to guide the physician to attach the patch 1930 to the correct location of the patient's head.
  • the computing device 1900 recognizes the patch 1930 in the photographed image and guides the direction of movement of the recognized patch. For example, the computing device 1900 displays the direction of movement of the patch 1930 so that the patch 1930 can be attached to the determined location 1920.
  • the computing device 1900 determines whether the recognized patch 1930 has been attached to the determined location 1920. For example, the computing device 1900 may determine whether the patch 1930 corresponds to a location 1920 at which the last recognized location is determined and determine if the determined location 1920 and patch 1930 are in different locations A notification may be provided requesting that the location of the patch 1930 be changed.
  • the computing device 1900 recognizes a patch 1930 attached to the two sides of the object in the photographed image and determines the location of the recognized patch 1930.
  • the computing device 1900 obtains the location on the matched model, corresponding to the location of the determined patch 1930.
  • an EEG patch is attached to a consistent position regardless of the shape and structure of the user's head, or an EEG patch is attached to an arbitrary position. In this case, it is difficult to know in detail the brain waves received from the EEG patch acquired from the brain of the subject.
  • computing device 1900 captures two images of an object that has attached one or more EEG patches and acquires the location of one or more recognized EEG patches in the captured image.
  • the computing device 1900 obtains the position on the matched model of the object corresponding to the position of the obtained EEG patch and determines the position of the brain in the brain of the object in the EEG patch attached to the head of the object, It can be judged.
  • the computing device 1900 may utilize the disclosed embodiment to analyze the sources of EEG received in each EEG patch.
  • 16 is a diagram illustrating the results of simulating electrical stimulation results in accordance with one embodiment.
  • a patch 1610 is attached to a three-dimensional model of a forehead 1600 of a target object and to a position on a three-dimensional model.
  • the computer simulates the effect that electrical stimulation by the patch 1610 is delivered in the brain 1650 of the subject when the patch 1610 is attached to a position of the three-dimensional model of the subject's head 1600.
  • the computer acquires a three-dimensional brain map of the subject's brain 1650 and uses the three-dimensional brain map to determine the position of the patch 1610 to be attached to the two faces of the subject.
  • the step of determining the position of the patch 1610 includes obtaining a purpose using the patch 1610, determining a position of the patch 1610 in accordance with the position of the patch 1610 attached to the head 1600 of the object, Simulating the process of delivering an electrical stimulus to the target 1650, and determining the location of the patch 1610 using the obtained objective and simulation results.
  • the simulation results may be used to determine the location of the patch 1610 that may apply a particular stimulus to the brain 1650 of the subject.
  • the computer can match the position of the patch 1610 determined in accordance with the embodiment shown in FIG. 16 with one point on two sides of the photographed object using the depth camera, and display the image guiding the patch to the matched position .
  • the steps of a method or algorithm described in connection with the embodiments of the present invention may be embodied directly in hardware, in software modules executed in hardware, or in a combination of both.
  • the software module may be a random access memory (RAM), a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically erasable programmable ROM (EEPROM), a flash memory, a hard disk, a removable disk, a CD- May reside in any form of computer readable recording medium known in the art to which the invention pertains.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Psychiatry (AREA)
  • Multimedia (AREA)
  • Physiology (AREA)
  • Developmental Disabilities (AREA)
  • Databases & Information Systems (AREA)
  • Signal Processing (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Computer Graphics (AREA)
  • Hospice & Palliative Care (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)

Abstract

대상체의 뇌 MRI 영상을 획득하는 단계, 상기 뇌 MRI 영상을 복수의 영역으로 세그멘테이션하는 단계, 상기 세그멘테이션된 뇌 MRI 영상을 이용하여 상기 복수의 영역을 포함하는 상기 대상체의 3차원 뇌 영상을 생성하는 단계 및 상기 3차원 뇌 영상에 포함된 복수의 영역 각각의 성질에 기초하여 상기 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 상기 대상체의 3차원 뇌지도를 생성하는 단계를 포함하고, 상기 세그멘테이션하는 단계는, 복수의 가공된 뇌 MRI 영상을 이용하여 학습된 모델에 상기 대상체의 뇌 MRI 영상을 입력하여 세그멘테이션된 상기 대상체의 뇌 MRI 영상을 획득하는 단계를 포함하는, 3차원 뇌지도 생성 방법이 개시된다.

Description

3차원 뇌지도 생성 방법 및 프로그램
본 발명은 3차원 뇌지도 생성 방법 및 프로그램에 관한 것이다.
MRI 시스템은 특정 세기의 자기장에서 발생하는 RF(Radio Frequency) 신호에 대한 MR(Magnetic Resonance) 신호의 세기를 명암 대비로 표현하여 대상체의 단층 부위에 대한 이미지를 획득하는 기기이다. 예를 들어, 대상체를 강력한 자기장 속에 눕힌 후 특정의 원자핵(예컨대, 수소 원자핵 등)만을 공명시키는 RF 신호를 대상체에 순간적으로 조사했다가 중단하면 상기 특정의 원자핵에서 MR 신호가 방출되는데, MRI 시스템은 이 MR 신호를 수신하여 MR 이미지를 획득할 수 있다. MR 신호는 대상체로부터 방사되는 RF 신호를 의미한다. MR 신호의 크기는 대상체에 포함된 소정의 원자(예컨대, 수소 등)의 농도, 이완시간 T1, 이완시간 T2 및 혈류 등의 흐름에 의해 결정될 수 있다.
MRI 시스템은 다른 이미징 장치들과는 다른 특징들을 포함한다. 이미지의 획득이 감지 하드웨어(detecting hardware)의 방향에 의존하는 CT와 같은 이미징 장치들과 달리, MRI 시스템은 임의의 지점으로 지향된 2D 이미지 또는 3D 볼륨 이미지를 획득할 수 있다. 또한, MRI 시스템은, CT, X-ray, PET 및 SPECT와 달리, 대상체 및 검사자에게 방사선을 노출시키지 않으며, 높은 연부 조직(soft tissue) 대조도를 갖는 이미지의 획득이 가능하여, 비정상적인 조직의 명확한 묘사가 중요한 신경(neurological) 이미지, 혈관 내부(intravascular) 이미지, 근 골격(musculoskeletal) 이미지 및 종양(oncologic) 이미지 등을 획득할 수 있다.
TMS(Transcranial Magnetic Stimulation, 경두개 자기자극술)는 신경계에 대한 비침습적인 치료방법으로, 약물치료나 침습치료 없이 신경계 질환을 치료할 수 있는 장점이 있다. TMS는 자장변화를 이용하여 대상체에 전기적 자극을 가할 수 있다.
일반적으로 TMS는 임상적 또는 경험적으로 알려진 자극지점에 전기적 자극을 가하거나, 사용자가 조금씩 자극위치를 옮기면서 자극위치를 결정하는 방식으로 시술되었다. 따라서, 시술에 사용되는 코일의 종류나 개인 간 신체구조의 차이를 반영하기 어려우며, 시술에 따른 효과를 직접적으로 확인하기 어려운 문제점이 있었다.
또한, 대상체의 뇌 활동에 따른 전기활동을 측정할 수 있는 뇌파검사(Electroencephalogram, EEG) 및 전기자극을 통한 뇌질환 치료방법이 널리 이용되고 있다. 하지만, TMS와 마찬가지로 EEG와 전기자극 또한 사람마다 상이한 두상의 모양을 반영한 가이드방법의 개발이 요구된다.
본 발명이 해결하고자 하는 과제는 3차원 뇌지도 생성 방법 및 프로그램을 제공하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 3차원 뇌지도 생성방법은, 대상체의 뇌 MRI 영상을 획득하는 단계, 상기 뇌 MRI 영상을 복수의 영역으로 세그멘테이션하는 단계, 상기 세그멘테이션된 뇌 MRI 영상을 이용하여 상기 복수의 영역을 포함하는 상기 대상체의 3차원 뇌 영상을 생성하는 단계 및 상기 3차원 뇌 영상에 포함된 복수의 영역 각각의 성질에 기초하여 상기 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 상기 대상체의 3차원 뇌지도를 생성하는 단계를 포함하고, 상기 세그멘테이션하는 단계는, 복수의 가공된 뇌 MRI 영상을 이용하여 학습된 모델에 상기 대상체의 뇌 MRI 영상을 입력하여 세그멘테이션된 상기 대상체의 뇌 MRI 영상을 획득하는 단계를 포함한다.
또한, 상기 가공된 뇌 MRI 영상은, 상기 가공된 뇌 MRI 영상에 포함된 복수의 영역 각각이 라벨링된 영상이고, 상기 학습된 모델은, 뇌 MRI 영상을 입력받아, 세그멘테이션된 뇌 MRI 영상을 출력하는 모델일 수 있다.
또한, 상기 대상체의 3차원 뇌지도를 생성하는 단계는, 상기 대상체의 3차원 뇌 영상을 이용하여 상기 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 복수의 격자(mesh)로 구성된 3차원 입체 영상을 생성하는 단계를 포함할 수 있다.
또한, 상기 대상체의 3차원 뇌지도를 생성하는 단계는, 상기 대상체의 뇌에 대한 전기적 자극에 따른 전류의 흐름을 시뮬레이션하기 위한 상기 복수의 영역 각각의 물리적 특성을 획득하는 단계를 포함하고, 상기 물리적 특성은, 상기 복수의 영역 각각의 등방성(isotropic) 전기전도도 및 비등방성(anisotropic) 전기전도도 중 적어도 하나를 포함할 수 있다.
또한, 상기 물리적 특성을 획득하는 단계는, 상기 대상체의 뇌 MRI 영상으로부터 상기 대상체의 뇌에 대한 전도 텐서 영상을 획득하는 단계 및 상기 전도 텐서 영상을 이용하여 상기 복수의 영역 각각의 비등방성 전기전도도를 획득하는 단계를 포함할 수 있다.
또한, 상기 대상체의 뇌 MRI 영상은 확산 텐서 영상을 포함하고, 상기 물리적 특성을 획득하는 단계는, 상기 대상체의 확산 텐서 영상을 이용하여 상기 복수의 영역 각각의 비등방성 전기전도도를 획득하는 단계를 포함할 수 있다.
또한, 상기 3차원 뇌지도 생성방법은, 상기 3차원 뇌지도를 이용하여, 상기 대상체의 머리 일 지점에 특정 전기적 자극이 가해지는 경우 상기 특정 전기적 자극이 상기 대상체의 뇌에서 전파되는 상태를 시뮬레이션하는 단계를 더 포함할 수 있다.
또한, 상기 3차원 뇌지도 생성방법은, 상기 대상체의 뇌에서 전기적 자극을 가할 자극목표지점을 획득하는 단계 및 상기 3차원 뇌지도를 이용하여, 상기 자극목표지점에 전기적 자극을 가하기 위하여 상기 대상체의 머리에 전기적 자극을 가할 위치를 획득하는 단계를 더 포함할 수 있다.
또한, 상기 전기적 자극을 가할 위치를 획득하는 단계는, 상기 3차원 뇌지도를 이용하여, 상기 대상체의 두피로부터 상기 자극목표지점까지 전기적 자극이 전달되기 위한 추천 경로를 획득하는 단계 및 상기 추천 경로로부터 상기 대상체의 머리에 전기적 자극을 가할 위치를 획득하는 단계를 포함할 수 있다.
상술한 과제를 해결하기 위한 본 발명의 일 면에 따른 컴퓨터프로그램은, 하드웨어인 컴퓨터와 결합되어, 3차원 뇌지도 생성 방법을 수행할 수 있도록 컴퓨터에서 독출가능한 기록매체에 저장된다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
개시된 실시 예에 따르면, 사전에 학습된 모델을 활용하여 뇌 MRI 영상의 세그멘테이션을 수행함으로써, 자동으로 빠른 시간 내에 뇌 MRI 영상의 세그멘테이션을 수행할 수 있는 효과가 있다.
따라서, 의료 현장에서 누구나 짧은 시간 안에 대상체의 3차원 뇌 영상을 획득할 수 있으며, 나아가 대상체의 뇌에 대한 전기적 자극의 효과를 시각적으로 확인할 수 있는 시뮬레이션 결과를 제공할 수 있는 효과가 있다.
또한, 경두개 자기자극술 시술용 코일의 종류에 따른 자기 벡터 포텐셜 정보를 함께 활용함으로써, 자극목표지점에 최적의 자극을 가할 수 있는 자극지점을 산출 및 제공하여 시술의 효과를 높일 수 있는 효과가 있다.
또한, 두상 모델링 및 MRI 모델링을 이용하여 전기 자극 패치의 위치를 가이드함으로써, 사람다다 상이한 두상 및 뇌 구조를 고려한 전기 자극 패치의 위치를 가이드할 수 있는 효과가 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 일 실시 예에 따라 3차원 뇌지도를 생성하는 방법을 도시한 흐름도이다.
도 2는 일 실시 예에 따라 대상체의 3차원 뇌지도를 생성하고, 시뮬레이션을 수행하는 방법을 도시한 흐름도이다.
도 3은 뇌 MRI 영상에 대한 세그멘테이션을 수행한 결과를 도시한 도면이다.
도 4는 연결 구성요소 기반 노이즈 제거 방법의 일 예를 도시한 도면이다.
도 5는 홀 리젝션을 이용한 후처리 방식의 일 예를 도시한 도면이다.
도 6은 대상체의 뇌 MRI 영상으로부터 생성된 3차원 뇌 영상의 일 예를 도시한 도면이다.
도 7은 확산 텐서 영상의 일 예를 도시한 도면이다.
도 8은 시뮬레이션 결과의 일 예를 도시한 도면이다.
도 9는 일 실시 예에 따른 TMS 자극 내비게이션 방법을 도시한 흐름도이다.
도 10은 TMS 시술 방법의 일 예를 도시한 도면이다.
도 11은 대상체의 뇌에 인가되는 자기장과 전기장의 관계를 도시한 도면이다.
도 12는 시술용 코일의 종류에 따른 자기 벡터 포텐셜을 가시화한 정보를 도시한 도면이다.
도 13은 코일의 위치 및 방향을 산출하는 방법의 일 예를 도시한 도면이다.
도 14는 시술용 코일의 자기장으로부터 유도되는 전기적 자극이 대상체의 뇌에서 전파되는 상태를 시각화한 예시들을 도시한 도면이다.
도 15는 일 실시 예에 따른 패치 가이드 방법을 도시한 흐름도이다.
도 16은 일 실시 예에 따라 전기자극 결과를 시뮬레이션하는 결과를 도시한 도면이다.
도 17은 이미지를 정합하는 방법의 일 실시 예를 도시한 도면이다.
도 18은 깊이 카메라를 이용하여 획득된 3차원 스캔 모델의 일 예를 도시한 도면이다.
도 19는 깊이 카메라 모듈이 연결된 컴퓨팅 장치가 대상체의 두상을 촬영하고, 촬영된 대상체의 두상에 패치를 부착하기 위한 위치를 가이드하는 일 예를 도시한 도면이다.
도 20은 휴대가능한 컴퓨팅 장치와 그에 연결된 깊이 카메라 모듈을 도시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
명세서에서 사용되는 "부" 또는 “모듈”이라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부" 또는 “모듈”은 어떤 역할들을 수행한다. 그렇지만 "부" 또는 “모듈”은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부" 또는 “모듈”은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부" 또는 “모듈”은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부" 또는 “모듈”들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부" 또는 “모듈”들로 결합되거나 추가적인 구성요소들과 "부" 또는 “모듈”들로 더 분리될 수 있다.
본 명세서에서 "대상체(object)"는 사람 또는 동물, 또는 사람 또는 동물의 일부를 포함할 수 있다. 예를 들어, 대상체는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관을 포함할 수 있다. 또한, "대상체"는 팬텀(phantom)을 포함할 수도 있다. 팬텀은 생물의 밀도와 실효 원자 번호에 아주 근사한 부피를 갖는 물질을 의미하는 것으로, 신체와 유사한 성질을 갖는 구형(sphere)의 팬텀을 포함할 수 있다.
또한, 본 명세서에서 "사용자"는 의료 전문가로서 의사, 간호사, 임상 병리사, 의료 영상 전문가 등이 될 수 있으며, 의료 장치를 수리하는 기술자가 될 수 있으나, 이에 한정되지 않는다.
또한, 본 명세서에서 "자기 공명 영상 (MR image: Magnetic Resonance image)"이란 핵자기 공명 원리를 이용하여 획득된 대상체에 대한 영상을 의미한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 일 실시 예에 따라 3차원 뇌지도를 생성하는 방법을 도시한 흐름도이다.
도 1에 도시된 방법은 컴퓨터에 의하여 수행되는 단계들을 시계열적으로 도시한 것이다. 본 명세서에서 컴퓨터는 적어도 하나의 프로세서를 포함하는 컴퓨팅 장치를 포괄하는 의미로 사용된다.
단계 S110에서, 컴퓨터는 대상체의 뇌 MRI 영상을 획득한다.
일 실시 예에서, 컴퓨터는 MRI 영상 획득장치와 연결된 워크스테이션으로서 MRI 영상 획득장치로부터 직접 대상체의 뇌 MRI 영상을 획득할 수 있다.
또한, 컴퓨터는 외부 서버 또는 다른 컴퓨터로부터 대상체의 뇌 MRI 영상을 획득할 수도 있다.
개시된 실시 예에서, 대상체의 뇌 MRI 영상은 대상체의 뇌를 포함하는 머리 부분을 촬영한 MRI 영상을 의미한다. 즉, 대상체의 뇌 MRI 영상은 대상체의 뇌뿐 아니라 대상체의 두개골 및 두피를 포함하는 MRI 영상을 의미한다.
단계 S120에서, 컴퓨터는 단계 S110에서 획득된 뇌 MRI 영상을 복수의 영역으로 세그멘테이션(구획화)한다.
일 실시 예에서, 컴퓨터는 단계 S110에서 획득된 뇌 MRI 영상을 부위별로 세그멘테이션한다. 예를 들어, 컴퓨터는 단계 S110에서 획득된 뇌 MRI 영상을 백질, 회백질, 뇌척수액, 두개골 및 두피로 세그멘테이션할 수 있으나, 뇌 MRI 영상을 세그멘테이션할 수 있는 종류는 이에 제한되지 않는다.
일 실시 예에서, 컴퓨터는 복수의 가공된 뇌 MRI 영상을 이용하여 학습된 모델에 대상체의 뇌 MRI 영상을 입력하여 세그멘테이션된 대상체의 뇌 MRI 영상을 획득한다.
일 실시 예에서, 가공된 뇌 MRI 영상은 뇌 MRI 영상에 포함된 복수의 영역 각각이 라벨링된 영상이다. 또한, 학습된 모델은 뇌 MRI 영상을 입력받아, 세그멘테이션된 뇌 MRI 영상을 출력하는 모델이다.
일 실시 예에서, 학습된 모델은 기계학습(Machine Learning)을 이용하여 학습된 모델을 의미하고, 특히 딥 러닝(Deep Learning)을 이용하여 학습된 모델을 의미할 수 있다.
일 실시 예에서, 학습된 모델은 하나 이상의 배치 정규화(Batch Normalization) 레이어, 활성화(Activation) 레이어 및 컨볼루션(Convolution) 레이어를 포함하는 모델일 수 있으나, 이에 제한되지 않는다.
일 실시 예에서, 학습된 모델은 MRI 영상의 저 레벨 특성으로부터 고 레벨 특성을 추출하는 복수의 블록으로 구성된 수평 파이프라인과, 수평 파이프라인에서 추출된 특성을 모아 세그멘테이션을 수행하는 수직 파이프라인을 포함하여 상대적으로 화질이 떨어지는 MRI의 세그멘테이션을 수행할 수 있도록 구성될 수도 있다.
도 3을 참조하면, 뇌 MRI 영상(300(a))에 대한 세그멘테이션을 수행한 결과(300(b))가 도시되어 있다.
일 실시 예에서, 컴퓨터는 세그멘테이션 결과에 대한 후처리를 수행한다.
일 실시 예에서, 컴퓨터는 연결 구성요소 기반 노이즈 제거(Connected Component-based Noise Rejection)를 수행한다. 연결 구성요소 기반 노이즈 제거 방법은, 콘벌루션 신경망(Convolution Neural Network, CNN)을 이용하여 수행된 세그멘테이션의 결과를 향상시키는 데 사용된다.
도 4를 참조하면, 연결 구성요소 기반 노이즈 제거 방법의 일 예가 도시되어 있다.
컴퓨터는 세그멘테이션 영상(400)에서 가장 큰 덩어리(chunk)인 연결 구성요소를 제외한 나머지 구성요소(402)들을 제거함으로써, 향상된 세그멘테이션 영상(410)을 획득한다.
일 실시 예에서, 컴퓨터는 홀 리젝션(Hole Rejection)을 수행한다. 홀 리젝션은 콘벌루션 신경망 기반 세그멘테이션의 오류 중 하나인 홀을 제거하는 데 이용된다.
도 5를 참조하면, 홀 리젝션을 이용한 후처리 방식의 일 예가 도시되어 있다.
컴퓨터는 세그멘테이션 영상(500)에 포함된 홀(502)의 적어도 일부를 제거하여, 향상된 세그멘테이션 영상(510)을 획득한다.
단계 S130에서, 컴퓨터는 단계 S120에서 세그멘테이션된 대상체의 뇌 MRI 영상을 이용하여 세그멘테이션된 복수의 영역을 포함하는 대상체의 3차원 뇌 영상을 생성한다.
도 6을 참조하면, 대상체의 뇌 MRI 영상으로부터 생성된 3차원 뇌 영상(600)이 도시되어 있다.
또한, 세그멘테이션된 대상체의 2차원 뇌 MRI 영상으로부터, 세그멘테이션된 대상체의 3차원 뇌 영상(610)을 생성한 결과의 일 예가 도 6에 도시되어 있다.
단계 S140에서, 컴퓨터는 단계 S130에서 생성된 3차원 뇌 영상에 포함된 복수의 영역 각각의 성질에 기초하여 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 대상체의 3차원 뇌지도를 생성한다.
대상체의 3차원 뇌지도를 생성하고, 생성된 뇌지도를 이용하여 시뮬레이션을 수행하는 구체적인 방법은 도 2에서 후술한다.
도 2는 일 실시 예에 따라 대상체의 3차원 뇌지도를 생성하고, 시뮬레이션을 수행하는 방법을 도시한 흐름도이다.
도 2에 도시된 방법은 도 1에 도시된 방법의 일 실시 예에 해당한다. 따라서, 도 2와 관련하여 생략된 내용이라 하더라도 도 1과 관련하여 설명된 내용은 도 2에 도시된 방법에도 적용된다.
단계 S210에서, 컴퓨터는 대상체의 3차원 뇌 영상을 이용하여 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 복수의 격자(mesh)로 구성된 3차원 입체 영상을 생성한다.
일 실시 예에서, 컴퓨터는 삼각형 또는 사각형을 포함하는 복수의 표면 격자(Surface Mesh)로 구성된 3차원 입체 영상을 생성한다.
일 실시 예에서, 컴퓨터는 사면체 또는 육면체를 포함하는 복수의 공간 격자(Volumetric Mesh)로 구성된 3차원 입체 영상을 생성한다.
3차원 입체 영상을 구성하는 격자의 종류는 시뮬레이션의 용도에 따라 다르게 설정될 수 있다.
단계 S220에서, 컴퓨터는 대상체의 뇌에 대한 전기적 자극에 따른 전류의 흐름을 시뮬레이션하기 위한 상기 복수의 영역 각각의 물리적 특성을 획득한다.
일 실시 예에서, 단계 S220에서 획득되는 물리적 특성은, 세그멘테이션된 복수의 영역 각각의 등방성(isotropic) 전기전도도 및 비등방성(anisotropic) 전기전도도 중 적어도 하나를 포함한다.
일 실시 예에서, 등방성 전기전도도는 세그멘테이션된 각 영역에 대하여 실험을 통하여 알려진 전기전도도를 할당함으로써 획득할 수 있다.
예를 들어, 뇌의 각 영역에 대하여 알려진 전기전도도는 아래 표 1과 같다.
영역 전기전도도 (S/m)
백질 0.126
회백질 0.276
뇌척수액 1.65
두개골 0.01
피부 0.465
비등방성 전기전도도는 뇌 백색질에 있는 백색질 섬유의 비등방성을 구현한 것이다.
일 실시 예에서, 비등방성 전기전도도는 대상체의 뇌에 대한 전도 텐서 영상으로부터 획득된다.
예를 들어, 컴퓨터는 대상체의 뇌 MRI 영상으로부터 대상체의 뇌에 대한 전도 텐서 영상을 획득하고, 획득된 전도 텐서 영상을 이용하여 세그멘테이션된 복수의 영역 각각의 비등방성 전기전도도를 획득한다.
다른 실시 예에서, 대상체의 뇌 MRI 영상은 확산 텐서 영상을 포함하고, 컴퓨터는 대상체의 확산 텐서 영상을 이용하여 세그멘테이션된 복수의 영역 각각의 비등방성 전기전도도를 획득한다.
도 7을 참조하면, 확산 텐서 영상(700)의 일 예가 도시되어 있다.
확산텐서 영상의 고유벡터는 전도텐서의 고유벡터와 일치하는 것으로 알려져 있는 바, 컴퓨터는 확산텐서 영상에 포함된 신경섬유의 방향에 따라 비등방성 전기전도도를 획득할 수 있다. 예를 들어, 신경섬유의 방향은 높은 전기전도도를 갖고, 신경섬유와 수직한 방향은 낮은 전기전도도를 갖는다.
단계 S230에서, 컴퓨터는 3차원 뇌지도를 이용하여, 대상체의 머리 일 지점에 특정 전기적 자극이 가해지는 경우 특정 전기적 자극이 대상체의 뇌에서 전파되는 상태를 시뮬레이션한다.
일 실시 예에서, 컴퓨터는 단계 S210에서 획득된 격자 영상과, 단계 S220에서 획득된 물리적 특성을 이용하여 전기적 자극이 대상체의 뇌에서 전파되는 상태를 시뮬레이션한다.
도 8을 참조하면, 시뮬레이션 결과의 일 예가 도시되어 있다.
대상체의 머리에 가해질 수 있는 전기적 자극은 자기장, 전기장 및 전류 중 적어도 하나를 포함할 수 있으며, 대상체의 머리에 자기장이 가해지는 경우, 대상체의 뇌에는 자기장에 의하여 유도된 전류가 전파될 수 있다.
일 실시 예에서, 컴퓨터는 대상체의 뇌에서 전기적 자극을 가할 자극목표지점을 획득한다. 컴퓨터는 대상체의 3차원 뇌지도를 이용하여, 자극목표지점에 전기적 자극을 가하기 위하여 대상체의 머리에 전기적 자극을 가할 위치를 획득한다.
예를 들어, 컴퓨터는 대상체의 3차원 뇌지도를 이용하여, 대상체의 두피로부터 자극목표지점까지 전기적 자극이 전달되기 위한 추천 경로를 획득하고, 추천 경로로부터 대상체의 머리에 전기적 자극을 가할 위치를 획득할 수 있다.
컴퓨터가 대상체의 뇌에 전기적 자극을 가하기 위한 위치 및 방향을 산출 및 제공하는 방법에 대해서는 이하에서 후술한다.
도 9는 일 실시 예에 따른 TMS(Transcranial Magnetic Stimulation, 경두개 자기자극술) 자극 내비게이션 방법을 도시한 흐름도이다.
도 9에 도시된 TMS 자극 내비게이션 방법은 컴퓨터에 의하여 수행되는 단계들을 시계열적으로 도시한 것이다.
도 10을 참조하면, TMS 시술 방법의 일 예가 도시되어 있다.
TMS는 시술용 코일(1000)을 대상체(10)의 머리 일 측면에 인접시켜, 코일(1000)에서 발생되는 자기장에 의하여 대상체(10)의 뇌에 유도되는 전기장을 이용, 뇌의 특정 부분을 자극하는 치료방법이다.
시술용 코일(1000)의 모양에 따라 코일(1000) 주변에 발생하는 자기장의 세기와 모양이 상이하고, 대상체(10)의 머리 및 뇌 형태에 따라 전기적 신호가 전파되는 모습 또한 상이할 것이다.
따라서, 개시된 실시 예에 따르면 코일(1000)의 종류에 따른 자극지점을 산출하여 제공하고, 대상체(10)의 머리 및 뇌 형태에 따른 시뮬레이션 결과를 제공한다.
단계 S910에서, 컴퓨터는 대상체의 뇌에서 전기적 자극을 가할 자극목표지점을 획득한다.
자극목표지점은 치료하고자 하는 질환에 따라 임상적 또는 이론적 근거에 기반하여 선택된다. 일 실시 예에서, 자극목표지점은 개시된 실시 예에 의하여 생성된 대상체의 3차원 뇌 영상 또는 3차원 뇌 지도를 이용하여 지시된다.
단계 S920에서, 컴퓨터는 TMS 시술용 코일의 자기 벡터 포텐셜(Magnetic Vector Potential)의 공간적 분포에 대한 정보를 획득한다.
일 실시 예에서, 공간적 분포에 대한 정보는, 시술용 코일의 모양에 따른 자기쌍극자(Magnetic Dipole)를 이용하여 자기 벡터 포텐셜을 가시화한 정보를 포함한다.
도 12를 참조하면, 시술용 코일(1200 및 1250)의 종류에 따른 자기 벡터 포텐셜을 가시화한 정보(1210 및 1260)가 도시되어 있다.
단계 S930에서, 컴퓨터는 단계 S920에서 획득된 공간적 분포로부터, 단계 S910에서 획득된 자극목표지점에 대한 최적자극조건을 획득하기 위한 하나 이상의 파라미터를 획득한다.
일 실시 예에서, 자극목표지점에 대한 최적자극조건은, 시술용 코일에 의하여 자극목표지점에 인가되는 자기장의 세기가 최대가 되도록 하는 조건을 의미한다.
도 11을 참조하면, 대상체의 뇌에 인가되는 자기장과 전기장의 관계가 도시되어 있다.
도 11의 시뮬레이션 영상(1100(a))을 참조하면, 대상체의 뇌에 인가되는 자기장의 크기, 그래디언트(전위)의 크기 및 자기장에 의하여 유도되는 전기장의 크기를 시각화한 이미지가 각각 도시되어 있다. 대상체의 뇌에 인가되는 전기장의 크기는 대상체의 뇌에 인가되는 자기장과 그래디언트를 더하여 산출될 수 있다.
도 11의 그래프(1100(b))를 참조하면, 대상체의 뇌에 인가되는 자기장과, 자기장에 의하여 유도되는 전기장 사이의 상관관계가 도시되어 있다.
그래프(1100(b))에 따르면, 대상체의 뇌에 강한 자기장이 인가될수록, 대상체의 뇌에 강한 전기장이 유도됨을 알 수 있다.
따라서, 자극목표지점에 대한 최적자극조건은, 시술용 코일에 의하여 자극목표지점에 인가되는 자기장의 세기가 최대가 되도록 하는 것임을 알 수 있다.
일 실시 예에서, 컴퓨터가 획득하는 파라미터는 코일에 의하여 유도되는 자기 벡터 포텐셜의 공간적 분포에서 가장 높은 자기 벡터 포텐셜 값을 갖는 최적점(Optimal Point)을 포함한다.
또한, 컴퓨터가 획득하는 파라미터는 최적점을 시점으로 하는 법벡터(Normal Vector) 중 최적점에서의 그래디언트(Gradient)와의 곱이 최소가 되는 법벡터인 최적벡터(Optimal Vector)를 포함한다.
도 12를 참조하면, 자기 벡터 포텐셜(1210 및 1250) 각각의 최적점(1212 및 1262)및 최적벡터(1214 및 1264)가 도시되어 있다.
최적점 (x, y, z)와 최적벡터 v는 아래 수학식 1 및 수학식 2에 의하여 산출된다.
Figure PCTKR2018010170-appb-M000001
위 수학식 1에서, f는 자기벡터 포텐셜 맵을 의미하고, 수학식 1에 의하여 자기벡터 포센셜 맵 f에서 가장 큰 값을 갖는 위치인 (x, y, z)이 최적점으로서 산출된다.
Figure PCTKR2018010170-appb-M000002
위 수학식 2에서,
Figure PCTKR2018010170-appb-I000001
는 최적점을 정의할 때 사용된 f를 최적점인
Figure PCTKR2018010170-appb-I000002
에서 미분한 값이고, v(x, y, z)는 (x, y, z) 방향으로의 법벡터를 의미한다.
단계 S940에서, 컴퓨터는 단계 S930에서 획득된 파라미터를 이용하여, 단계 S910에서 획득된 자극목표지점에 대한 최적자극조건을 만족하는 코일의 위치 및 방향을 산출한다.
일 실시 예에서, 코일의 위치 및 방향을 산출하는 단계는, 자극목표지점이 최적점으로부터 최적벡터 방향으로 가장 근접하도록 하는 코일의 위치 및 방향을 산출하는 단계를 포함한다.
도 13을 참조하면, 코일의 위치 및 방향을 산출하는 방법의 일 예가 도시되어 있다.
대상체(10) 및 대상체(10)의 자극목표지점(S, 12)이 획득되면, 컴퓨터는 자극목표지점(12)으로부터 가장 가까운 두피 상의 일 지점(14)을 결정한다.
이 때, 자극목표지점(12) 및 자극목표지점(12)으로부터 가장 가까운 두피 상의 일 지점(14) 사이의 거리를 D라 하고, 지점(14)을 시점으로 하고, 자극목표지점(12)을 종점으로 하는 벡터를 K라 한다. 또한, 코일(1310)의 두께를 2P라 한다.
컴퓨터는 벡터 K(1320)와 코일(1310)의 최적벡터(1312)를 정렬하는 아래 수학식 3과 같은 행렬을 생성 및 적용한다.
Figure PCTKR2018010170-appb-M000003
이에 따라, 코일의 위치는 아래 수학식 4와 같이 산출된다.
Figure PCTKR2018010170-appb-M000004
단계 S950에서, 컴퓨터는 시술용 코일을 단계 S940에서 산출된 위치에 단계 S950에서 산출된 방향으로 위치시키는 경우, 시술용 코일의 자기장으로부터 유도되는 전기적 자극이 대상체의 뇌에서 전파되는 상태를 시뮬레이션한다.
일 실시 예에서, 컴퓨터는 도 1 및 도 2에 도시된 방법에 따라 생성된 3차원 뇌지도를 이용하여 시뮬레이션을 수행한다.
예를 들어, 컴퓨터는 대상체의 뇌 MRI 영상을 획득하고, 획득된 뇌 MRI 영상에 포함된 복수의 영역 각각의 성질에 기초하여 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 대상체의 3차원 뇌지도를 생성할 수 있다.
컴퓨터는 생성된 3차원 뇌지도를 이용하여 코일에 의한 전기적 자극이 대상체의 뇌에서 전파되는 상태를 시뮬레이션한다.
또한, 3차원 뇌지도는 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 복수의 격자로 구성된 3차원 입체 영상을 포함할 수 있다.
일 실시 예에서, 컴퓨터는 시술용 코일의 자기장으로부터 유도되는 전기적 자극이 대상체의 뇌에서 전파되는 상태를 3차원 입체 영상을 이용하여 시각화한다.
도 14를 참조하면, 시술용 코일의 자기장으로부터 유도되는 전기적 자극이 대상체의 뇌에서 전파되는 상태를 시각화한 예시들이 도시되어 있다.
개시된 실시 예에서, 컴퓨터는 TMS 시술용 코일이 구비된 로봇 팔 장치와 연결된다. 로봇 팔 장치는 컴퓨터가 지정한 위치로 TMS 시술용 코일을 이동시킬 수 있는 기계장치를 포함한다.
로봇 팔 장치는 개시된 실시 예에 따라 컴퓨터가 지정한 위치로 TMS 시술용 코일을 이동시킴으로써, 컴퓨터의 연산 결과에 따라 자동으로 환자에게 TMS 코일을 이용한 시술을 수행할 수 있다.
도 15는 일 실시 예에 따른 패치 가이드 방법을 도시한 흐름도이다.
개시된 실시 예에서, 패치는 뇌자극 패치를 포함한다. 예를 들어, 뇌자극 패치는 전기 자극 패치 및 초음파 자극 패치를 포함할 수 있으나, 이에 제한되지 않는다. 또한, 패치는 EEG 패치를 포함한다. 단, 개시된 실시 예에 따른 패치의 종류는 상술한 예시에 제한되지 않는다.
단계 S1510에서, 컴퓨터는 깊이 카메라를 이용하여 대상체의 두상을 포함하는 3차원 스캔 모델을 획득한다.
깊이 카메라(depth camera)는 삼각측량 방식의 3차원 레이저 스캐너, 구조 광선패턴을 이용한 깊이 카메라, 적외선의 반사 시간 차이를 이용한 TOF(Time Of Flight) 방식을 이용한 깊이 카메라 등을 포함할 수 있지만, 그 종류는 이에 제한되지 않는다.
깊이 카메라는 영상에 거리 정보를 반영하여 3차원 스캔 모델을 획득하는 데 이용된다.
일 실시 예에서, 대상체, 즉 환자는 등받이가 없는 원형 의자에 착석하고, 사용자, 즉 의사는 삼각대 등 임시고정장치를 이용하여 깊이 카메라를 환자의 얼굴 높이에서 환자의 얼굴이 잘 보이도록 위치시킨다.
의사는 깊이 카메라를 이용한 스캔을 시작하고, 환자를 천천히 한바퀴 돌림으로써 환자의 두상을 포함하는 3차원 스캔 모델을 획득한다.
일 실시 예에서, 깊이 카메라는 자동 회전가능한 고정 모듈에 구비되어, 깊이 카메라가 중앙에 위치한 환자 주변을 회전함으로써 3차원 스캔 모델을 획득할 수 있다.
반면, 개시된 실시 예에 따르면 별도의 고가 장비가 없어도 3차원 스캔이 가능하도록, 휴대가능한 컴퓨팅 장치(예를 들어, 스마트폰, 태블릿 PC 등)에 깊이 카메라 모듈을 연결하고, 삼각대 등 흔히 구할 수 있는 임시 고정장치를 이용하여 깊이 카메라 모듈이 연결된 컴퓨팅 장치를 고정하고, 환자를 스툴 등에 착석시킨 뒤 회전시킴으로써 3차원 스캔 모델을 획득할 수 있다.
도 20을 참조하면, 휴대가능한 컴퓨팅 장치(2000)와 그에 연결된 깊이 카메라 모듈(2010)이 도시되어 있다.
또한, 도 18을 참조하면, 깊이 카메라를 이용하여 획득된 3차원 스캔 모델(1800)의 일 예가 도시되어 있다.
일 실시 예에서, 컴퓨터는 깊이 카메라를 이용하여 모아진 거리 영상을 이용하여 대상체의 두상을 포함하는 3차원 모델을 생성하되, 서로 다른 시점에서 촬영된 영상들을 서로 위치를 맞추어 준 다음 합쳐 객체의 3차원 모델을 재구성한다. 예를 들어, 컴퓨터는 깊이 카메라를 이용하여 모아진 거리 영상에서 점 구름(point cloud) 형태의 3차원 데이터들을 모아 모델을 재구성한다. 하지만, 3차원 모델을 생성하는 방법은 제한되지 않는다.
단계 S1520에서, 컴퓨터는 대상체의 3차원 뇌 MRI 모델을 획득한다.
일 실시 예에서, 대상체의 3차원 뇌 MRI 모델을 획득하는 단계는, 대상체의 뇌 MRI 영상을 획득하는 단계 및 대상체의 뇌 MRI 영상에 포함된 복수의 영역 각각의 성질에 기초하여 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 대상체의 3차원 뇌지도를 생성하는 단계를 포함한다.
또한, 대상체의 3차원 뇌지도를 생성하는 단계는, 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 복수의 격자(mesh)로 구성된 3차원 입체 영상을 생성하는 단계를 포함한다.
단계 S1520에서 컴퓨터가 대상체의 3차원 뇌 MRI 모델을 획득하는 방법은, 도 1 내지 도 8과 관련하여 설명된, 3차원 뇌지도 생성 방법이 이용될 수 있다.
단계 S1530에서, 컴퓨터는 대상체의 두상을 포함하는 3차원 스캔 모델과 대상체의 뇌 MRI 모델에 대한 정합을 수행한다.
도 17을 참조하면, 이미지를 정합하는 방법의 일 실시 예가 도시되어 있다. 도 17에 도시된 이미지(1700)를 참조하면, 대상체의 뇌 MRI 사진과, 대상체의 뇌 구조를 모델링한 이미지가 중첩되어 있다.
이미지(1700)에서, 아래의 세 이미지들은 뇌 MRI 사진과 뇌 구조를 모델링한 이미지가 정합되지 않은 예시에 해당한다. 또한, 이미지(1700)에서, 위쪽의 세 이미지들은 뇌 MRI 사진과 뇌 구조를 모델링한 이미지가 정합된 예시에 해당한다.
컴퓨터는 뇌 MRI 모델을 이용하여 패치가 부착되는 위치에 따라 패치의 전기 또는 초음파 자극에 의해 대상체의 뇌에 발생하는 변화를 계산한다. 또한, 컴퓨터는 대상체의 두상을 포함하는 3차원 스캔 모델을 이용하여 패치를 실제로 부착하여야 하는 위치를 계산한다.
따라서, 컴퓨터는 대상체의 두상을 포함하는 3차원 스캔 모델과 대상체의 뇌 MRI 모델에 대한 정합을 수행함으로써 대상체의 두상에 패치를 부착하여야 하는 위치를 계산하고, 그에 따라 대상체의 뇌에 발생하는 변화를 계산할 수 있다. 마찬가지로, 컴퓨터는 정합된 결과를 이용하여, 대상체의 뇌에 특정 변화를 일으키기 위하여 대상체의 두상에 패치를 부착하여야 하는 위치를 계산하고, 그 결과를 제공할 수 있다.
일 실시 예에서, 컴퓨터가 정합을 수행하는 단계는, 스캔 모델과 뇌 MRI 모델의 얼굴 특성(facial feature)을 계산하는 단계 및 스캔 모델과 뇌 MRI 모델의 얼굴 특성을 이용하여 스캔 모델과 뇌 MRI 모델의 정합을 수행하는 단계를 포함한다.
대상체의 두상을 포함하는 스캔 모델과, 대상체의 뇌 MRI 모델은 그 양식이 상이하므로 정합이 어렵다. 따라서, 컴퓨터는 대상체의 얼굴 특성을 이용하여 두 모델을 정합시킬 수 있다.
일 실시 예에서, 대상체의 두상을 포함하는 스캔 모델의 얼굴 특성을 계산하는 단계는, 대상체의 두상을 포함하는 색상 영상 및 깊이 영상을 획득하는 단계, 대상체의 두상을 포함하는 색상 영상을 이용하여 대상체의 얼굴 특성을 계산하는 단계 및 대상체의 두상을 포함하는 깊이 영상을 이용하여 대상체의 얼굴 특성의 3차원 위치를 계산하는 단계를 포함한다.
도 18을 참조하면, 대상체의 두상을 포함하는 스캔 모델(1800) 및 대상체의 뇌 MRI 모델(1810)을 정합하여 정합된 모델(1820)을 생성하는 일 예가 도시되어 있다.
단계 S1540에서, 컴퓨터는 깊이 카메라를 이용하여 대상체의 두상을 촬영한 영상을 획득한다.
예를 들어, 의사는 임시 고정된 깊이 카메라를 직접 들고 환자의 두상을 비추면서 움직일 수 있다.
단계 S1550에서, 컴퓨터는 단계 S1540에서 촬영된 영상의 일 위치와 정합된 모델 상의 일 위치를 매칭시킨다.
예를 들어, 컴퓨터가 깊이 카메라를 이용하여 대상체의 두상의 일 지점을 촬영하고 있는 경우, 컴퓨터는 촬영되고 있는 일 지점이 정합된 모델 상에서 어느 부분에 해당하는지에 대한 계산을 수행한다.
일 실시 예에서, 컴퓨터는 촬영된 영상과 정합된 모델을 매칭하여, 대상체의 두상에 부착할 패치의 위치를 가이드하는 영상을 디스플레이한다.
도 19를 참조하면, 깊이 카메라 모듈이 연결된 컴퓨팅 장치(1900)가 대상체의 두상(1910)을 촬영하고, 컴퓨팅 장치(1900)는 촬영된 대상체의 두상(1910)에 패치(1930)를 부착하기 위한 위치(1920)를 가이드하는 영상을 디스플레이한다.
일 실시 예에서, 컴퓨팅 장치(1900)는 정합된 모델 상에서 패치(1930)를 부착할 위치를 결정하고, 촬영된 영상에서 결정된 위치에 대응하는 위치(1920)를 디스플레이한다.
또한, 컴퓨팅 장치(1900)는 촬영된 영상에서 패치(1930)를 인식하고, 인식된 패치(1930)의 이동방향을 가이드한다.
또한, 컴퓨팅 장치(1900)는 인식된 패치(1930)가 결정된 위치(1920)에 부착되었는지 여부를 판단한다.
일 실시 예에서, 패치(1930)에는 적어도 하나의 마커가 부착되거나 표시된다. 예를 들어, 패치(1930)에는 특정 도형, 색상 및 2차원 코드 중 적어도 하나가 부착 또는 표시되고, 컴퓨팅 장치(1900)는 패치(1930)에 부착되거나 표시된 마커를 이용하여 패치(1930)를 인식하고, 패치(1930)의 움직임을 트래킹한다.
예를 들어, 의사가 환자의 두상을 컴퓨팅 장치(1900) 또는 컴퓨팅 장치(1900)와 연결된 깊이 카메라를 이용하여 위치를 변경하면서 촬영하는 경우, 컴퓨팅 장치(1900)에 표시되는 환자의 두상의 위치 또한 변경되고, 마찬가지로 컴퓨팅 장치(1900)가 인식하는 패치(1930)의 위치도 변경된다. 이 경우, 컴퓨팅 장치(1900)는 컴퓨팅 장치(1900)가 이동하는 경우에도 패치(1930)를 트래킹하여, 의사가 환자의 두상의 정확한 위치에 패치(1930)를 부착할 수 있도록 가이드한다.
일 실시 예에서, 컴퓨팅 장치(1900)는 촬영된 영상에서 패치(1930)를 인식하고, 인식된 패치의 이동방향을 가이드한다. 예를 들어, 컴퓨팅 장치(1900)는 패치(1930)가 결정된 위치(1920)에 부착될 수 있도록, 패치(1930)의 이동방향을 디스플레이한다.
또한, 컴퓨팅 장치(1900)는 인식된 패치(1930)가 결정된 위치(1920)에 부착되었는지 여부를 판단한다. 예를 들어, 컴퓨팅 장치(1900)는 패치(1930)가 최종적으로 인식된 위치가 결정된 위치(1920)에 대응하는지 여부를 판단하고, 결정된 위치(1920)와 패치(1930)가 부착된 위치가 상이한 경우, 패치(1930)의 위치를 변경할 것을 요청하는 알림을 제공할 수 있다.
일 실시 예에서, 컴퓨팅 장치(1900)는 촬영된 영상에서 대상체의 두상에 부착된 패치(1930)를 인식하고, 인식된 패치(1930)의 위치를 판단한다. 컴퓨팅 장치(1900)는 판단된 패치(1930)의 위치에 대응하는, 정합된 모델 상의 위치를 획득한다.
예를 들어, EEG 뇌파검사를 수행하는 경우, 사용자의 두상 모양 및 구조와 무관하게 일관된 위치에 EEG 패치를 부착하거나, 임의의 위치에 EEG 패치를 부착하게 된다. 이 경우, EEG 패치가 획득한 뇌파가 대상체의 뇌의 어느 위치로부터 수신된 뇌파인지 구체적으로 알기 어렵다.
따라서, 개시된 실시 예에 따르면, 컴퓨팅 장치(1900)는 하나 이상의 EEG 패치를 부착한 대상체의 두상을 촬영하고, 촬영된 영상에서 인식된 하나 이상의 EEG 패치의 위치를 획득한다.
컴퓨팅 장치(1900)는 획득된 EEG 패치의 위치에 대응하는 대상체의 정합된 모델 상의 위치를 획득하여, 대상체의 두상에 부착된 EEG 패치에서 획득된 뇌파가 대상체의 뇌의 어느 부분에서 수신되었는지 구체적으로 판단할 수 있다. 예를 들어, 컴퓨팅 장치(1900)는 개시된 실시 예를 활용하여 각 EEG 패치에서 수신된 뇌파의 신호원을 분석할 수 있다.
도 16은 일 실시 예에 따라 전기자극 결과를 시뮬레이션하는 결과를 도시한 도면이다.
도 16을 참조하면, 대상체의 두상(1600)의 3차원 모델 및 3차원 모델 상의 일 위치에 패치(1610)를 부착한 실시 예가 도시되어 있다.
컴퓨터는 대상체의 두상(1600)의 3차원 모델의 일 위치에 패치(1610)가 부착된 경우, 패치(1610)에 의한 전기 자극이 대상체의 뇌(1650)에서 전달되는 결과를 시뮬레이션한다.
일 실시 예에서, 컴퓨터는 대상체의 뇌(1650)에 대한 3차원 뇌지도를 획득하고, 3차원 뇌지도를 이용하여 대상체의 두상에 부착될 패치(1610)의 위치를 결정한다.
일 실시 예에서, 패치(1610)의 위치를 결정하는 단계는, 패치(1610)를 이용하는 목적을 획득하는 단계, 대상체의 두상(1600)에 패치(1610)가 부착되는 위치에 따라 상기 대상체의 뇌(1650)에 전기적 자극이 전달되는 과정을 시뮬레이션하는 단계 및 획득된 목적과 시뮬레이션 결과를 이용하여 패치(1610)의 위치를 결정하는 단계를 포함한다.
예를 들어, 컴퓨터는 대상체의 뇌(1650)에 특정 자극을 가하고자 하는 경우, 시뮬레이션 결과를 이용하여 대상체의 뇌(1650)에 특정 자극을 가할 수 있는 패치(1610)의 위치를 결정할 수 있다.
컴퓨터는 도 16에 도시된 실시 예에 따라 결정된 패치(1610)의 위치를 깊이 카메라를 이용하여 촬영된 대상체의 두상의 일 지점과 매칭시키고, 매칭된 위치로 패치를 가이드하는 영상을 디스플레이할 수 있다.
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (10)

  1. 대상체의 뇌 MRI 영상을 획득하는 단계;
    상기 뇌 MRI 영상을 복수의 영역으로 세그멘테이션하는 단계;
    상기 세그멘테이션된 뇌 MRI 영상을 이용하여 상기 복수의 영역을 포함하는 상기 대상체의 3차원 뇌 영상을 생성하는 단계; 및
    상기 3차원 뇌 영상에 포함된 복수의 영역 각각의 성질에 기초하여 상기 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 상기 대상체의 3차원 뇌지도를 생성하는 단계; 를 포함하고,
    상기 세그멘테이션하는 단계는,
    복수의 가공된 뇌 MRI 영상을 이용하여 학습된 모델에 상기 대상체의 뇌 MRI 영상을 입력하여 세그멘테이션된 상기 대상체의 뇌 MRI 영상을 획득하는 단계를 포함하는, 3차원 뇌지도 생성 방법.
  2. 제1 항에 있어서,
    상기 가공된 뇌 MRI 영상은, 상기 가공된 뇌 MRI 영상에 포함된 복수의 영역 각각이 라벨링된 영상이고,
    상기 학습된 모델은,
    뇌 MRI 영상을 입력받아, 세그멘테이션된 뇌 MRI 영상을 출력하는 모델인, 3차원 뇌지도 생성 방법.
  3. 제1 항에 있어서,
    상기 대상체의 3차원 뇌지도를 생성하는 단계는,
    상기 대상체의 3차원 뇌 영상을 이용하여 상기 대상체의 뇌에 대한 전기적 자극의 전달과정을 시뮬레이션할 수 있는 복수의 격자(mesh)로 구성된 3차원 입체 영상을 생성하는 단계를 포함하는, 3차원 뇌지도 생성 방법.
  4. 제1 항에 있어서,
    상기 대상체의 3차원 뇌지도를 생성하는 단계는,
    상기 대상체의 뇌에 대한 전기적 자극에 따른 전류의 흐름을 시뮬레이션하기 위한 상기 복수의 영역 각각의 물리적 특성을 획득하는 단계를 포함하고,
    상기 물리적 특성은, 상기 복수의 영역 각각의 등방성(isotropic) 전기전도도 및 비등방성(anisotropic) 전기전도도 중 적어도 하나를 포함하는, 3차원 뇌지도 생성 방법.
  5. 제4 항에 있어서,
    상기 물리적 특성을 획득하는 단계는,
    상기 대상체의 뇌 MRI 영상으로부터 상기 대상체의 뇌에 대한 전도 텐서 영상을 획득하는 단계; 및
    상기 전도 텐서 영상을 이용하여 상기 복수의 영역 각각의 비등방성 전기전도도를 획득하는 단계를 포함하는, 3차원 뇌지도 생성 방법.
  6. 제4 항에 있어서,
    상기 대상체의 뇌 MRI 영상은 확산 텐서 영상을 포함하고,
    상기 물리적 특성을 획득하는 단계는,
    상기 대상체의 확산 텐서 영상을 이용하여 상기 복수의 영역 각각의 비등방성 전기전도도를 획득하는 단계를 포함하는, 3차원 뇌지도 생성 방법.
  7. 제1 항에 있어서,
    상기 3차원 뇌지도를 이용하여, 상기 대상체의 머리 일 지점에 특정 전기적 자극이 가해지는 경우 상기 특정 전기적 자극이 상기 대상체의 뇌에서 전파되는 상태를 시뮬레이션하는 단계; 를 더 포함하는, 3차원 뇌지도 생성 방법.
  8. 제1 항에 있어서,
    상기 대상체의 뇌에서 전기적 자극을 가할 자극목표지점을 획득하는 단계; 및
    상기 3차원 뇌지도를 이용하여, 상기 자극목표지점에 전기적 자극을 가하기 위하여 상기 대상체의 머리에 전기적 자극을 가할 위치를 획득하는 단계; 를 더 포함하는, 3차원 뇌지도 생성 방법.
  9. 제8 항에 있어서,
    상기 전기적 자극을 가할 위치를 획득하는 단계는,
    상기 3차원 뇌지도를 이용하여, 상기 대상체의 두피로부터 상기 자극목표지점까지 전기적 자극이 전달되기 위한 추천 경로를 획득하는 단계; 및
    상기 추천 경로로부터 상기 대상체의 머리에 전기적 자극을 가할 위치를 획득하는 단계; 를 포함하는, 3차원 뇌지도 생성 방법.
  10. 하드웨어인 컴퓨터와 결합되어, 제1 항의 방법을 수행할 수 있도록 컴퓨터에서 독출가능한 기록매체에 저장된 컴퓨터프로그램.
PCT/KR2018/010170 2017-09-11 2018-08-31 3차원 뇌지도 생성 방법 및 프로그램 WO2019050226A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020514533A JP7263324B2 (ja) 2017-09-11 2018-08-31 3次元脳地図の生成方法及びプログラム
US16/814,852 US11744465B2 (en) 2017-09-11 2020-03-10 Method and program for generating three-dimensional brain map

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0115779 2017-09-11
KR1020170115779A KR101995900B1 (ko) 2017-09-11 2017-09-11 3차원 뇌지도 생성 방법 및 프로그램

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/814,852 Continuation US11744465B2 (en) 2017-09-11 2020-03-10 Method and program for generating three-dimensional brain map

Publications (1)

Publication Number Publication Date
WO2019050226A1 true WO2019050226A1 (ko) 2019-03-14

Family

ID=65635034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010170 WO2019050226A1 (ko) 2017-09-11 2018-08-31 3차원 뇌지도 생성 방법 및 프로그램

Country Status (4)

Country Link
US (1) US11744465B2 (ko)
JP (1) JP7263324B2 (ko)
KR (1) KR101995900B1 (ko)
WO (1) WO2019050226A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4138995A4 (en) * 2020-04-22 2024-04-17 The General Hospital Corporation SYSTEMS AND METHODS FOR INTEGRATED ELECTRICAL FIELD SIMULATION AND NEURONAVIGATION FOR TRANSCRANIAL MAGNETIC STIMULATION

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995900B1 (ko) 2017-09-11 2019-07-04 뉴로핏 주식회사 3차원 뇌지도 생성 방법 및 프로그램
KR102204371B1 (ko) * 2019-03-25 2021-01-19 세종대학교산학협력단 다중시기 측부혈류 영상을 생성하기 위한 학습 방법 및 기계 학습을 이용한 다중시기 측부혈류 영상 생성 방법
US11620789B2 (en) * 2019-05-03 2023-04-04 Novocure Gmbh Methods, systems, and apparatuses for managing transducer array placement
KR102403686B1 (ko) * 2020-05-15 2022-05-31 뉴로핏 주식회사 뇌자극 위치 제공장치 및 방법
US11087877B1 (en) 2020-07-02 2021-08-10 Omniscient Neurotechnology Pty Limited Identifying anomalous brain data
KR102385708B1 (ko) * 2020-07-20 2022-04-13 경희대학교 산학협력단 알츠하이머병 진단을 위한 인공지능 기반의 전도도 영상 복원 장치 및 방법
CN111729200B (zh) * 2020-07-27 2022-06-17 浙江大学 基于深度相机和磁共振的经颅磁刺激自动导航系统和方法
CN112435212A (zh) * 2020-10-15 2021-03-02 杭州脉流科技有限公司 基于深度学习的脑部病灶区域体积得到方法、装置、计算机设备和存储介质
KR102478278B1 (ko) * 2020-10-20 2022-12-16 서울대학교산학협력단 뇌의 기능적 활성도에 기반한 뇌 지도 결정 장치 및 방법
CN112819950B (zh) * 2021-02-07 2024-05-17 清华-伯克利深圳学院筹备办公室 脑组织切片模具制备方法、装置、设备及存储介质
WO2023282403A1 (ko) * 2021-07-06 2023-01-12 뉴로핏 주식회사 기 설정된 가이드 시스템을 이용한 최적 자극 위치 조합 결정방법 및 최적 자극 위치 조합을 결정하기 위한 전기 자극 시뮬레이션 방법, 서버 및 컴퓨터프로그램
KR102373757B1 (ko) * 2021-07-06 2022-03-15 뉴로핏 주식회사 최적 자극 위치 조합을 결정하기 위한 전기 자극 시뮬레이션 방법, 서버, 및 컴퓨터프로그램
KR102338087B1 (ko) * 2021-07-06 2021-12-14 뉴로핏 주식회사 기 설정된 가이드 시스템을 이용한 최적 자극 위치 조합 결정방법, 서버 및 컴퓨터프로그램
KR102373761B1 (ko) * 2021-07-07 2022-03-15 뉴로핏 주식회사 뇌 병변 환자의 뇌 모델을 이용한 자극 시뮬레이션 방법, 서버 및 컴퓨터프로그램
KR102373760B1 (ko) * 2021-07-07 2022-03-15 뉴로핏 주식회사 익명화된 데이터 기반 외부 서버를 이용한 기 설정된 가이드 시스템에 따른 뇌 자극 시뮬레이션 시스템 및 방법
KR102373767B1 (ko) * 2021-07-07 2022-03-14 뉴로핏 주식회사 뇌 병변 환자의 빅데이터 기반 치료 전략 수립 방법, 서버 및 컴퓨터프로그램
KR20230078217A (ko) 2021-11-26 2023-06-02 연세대학교 산학협력단 자기 공명 영상으로부터 뇌 전기전도도 지도를 재구성하는 방법 및 장치
US20230204699A1 (en) 2021-12-10 2023-06-29 POSTECH Research and Business Development Foundation Method and Apparatus for Evaluating Subject with Excitation Time Map

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090105007A (ko) * 2008-04-01 2009-10-07 한국과학기술원 3차원 영상데이터 획득방법 및 장치
US20100074499A1 (en) * 2008-09-19 2010-03-25 Siemens Corporate Research, Inc Method and System for Segmentation of Brain Structures in 3D Magnetic Resonance Images
US20120099779A1 (en) * 2009-06-23 2012-04-26 Varsha Gupta method and system for segmenting a brain image
KR101718130B1 (ko) * 2016-02-12 2017-03-20 서울대학교산학협력단 자기공명영상을 이용한 뇌 영역의 분할 방법 및 시스템
US20170120041A1 (en) * 2015-10-28 2017-05-04 Novocure Limited TTField Treatment with Optimization of Electrode Positions on the Head Based on MRI-Based Conductivity Measurements

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346382B2 (en) * 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
CN101578119A (zh) * 2005-06-16 2009-11-11 迈克尔·J·拉塞尔 引导的经颅电刺激技术
JP4972751B2 (ja) * 2006-11-27 2012-07-11 株式会社日立製作所 神経線維束計測システム及び画像処理システム
GB0917154D0 (en) * 2009-09-30 2009-11-11 Imp Innovations Ltd Method and apparatus for processing medical images
CN103619406B (zh) * 2011-06-03 2016-09-21 奈科斯迪姆公司 用于组合解剖连接模式和导航脑刺激的方法和系统
KR101185727B1 (ko) * 2011-09-14 2012-09-25 주식회사 인피니트헬스케어 의료영상에서의 세그멘테이션 방법 및 그 장치
SG11201507610RA (en) * 2013-03-15 2015-10-29 Synaptive Medical Barbados Inc Planning, navigation and simulation systems and methods for minimally invasive therapy
CA2906414C (en) * 2013-03-15 2016-07-26 Synaptive Medical (Barbados) Inc. Systems and methods for navigation and simulation of minimally invasive therapy
CN104123416A (zh) * 2014-07-21 2014-10-29 中国医学科学院生物医学工程研究所 一种模拟真实人体颅脑电特性分布的有限元仿真模型
JP6758290B2 (ja) * 2014-12-05 2020-09-23 ラッシュ・ユニバーシティ・メディカル・センター 電極設置治療システムおよびこれを用いる方法
KR101612394B1 (ko) 2015-03-25 2016-04-14 서울대학교산학협력단 자극기 조절 장치, 시스템 및 방법
US20170021339A1 (en) 2015-07-02 2017-01-26 The University Of Notre Dame Du Lac Methods of making and using layered cobalt nano-catalysts
US10169871B2 (en) * 2016-01-21 2019-01-01 Elekta, Inc. Systems and methods for segmentation of intra-patient medical images
US9965863B2 (en) * 2016-08-26 2018-05-08 Elekta, Inc. System and methods for image segmentation using convolutional neural network
KR101950815B1 (ko) 2017-08-25 2019-02-21 뉴로핏 주식회사 패치 가이드 방법 및 프로그램
KR101995900B1 (ko) 2017-09-11 2019-07-04 뉴로핏 주식회사 3차원 뇌지도 생성 방법 및 프로그램
KR102060483B1 (ko) 2017-09-11 2019-12-30 뉴로핏 주식회사 Tms 자극 내비게이션 방법 및 프로그램

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090105007A (ko) * 2008-04-01 2009-10-07 한국과학기술원 3차원 영상데이터 획득방법 및 장치
US20100074499A1 (en) * 2008-09-19 2010-03-25 Siemens Corporate Research, Inc Method and System for Segmentation of Brain Structures in 3D Magnetic Resonance Images
US20120099779A1 (en) * 2009-06-23 2012-04-26 Varsha Gupta method and system for segmenting a brain image
US20170120041A1 (en) * 2015-10-28 2017-05-04 Novocure Limited TTField Treatment with Optimization of Electrode Positions on the Head Based on MRI-Based Conductivity Measurements
KR101718130B1 (ko) * 2016-02-12 2017-03-20 서울대학교산학협력단 자기공명영상을 이용한 뇌 영역의 분할 방법 및 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4138995A4 (en) * 2020-04-22 2024-04-17 The General Hospital Corporation SYSTEMS AND METHODS FOR INTEGRATED ELECTRICAL FIELD SIMULATION AND NEURONAVIGATION FOR TRANSCRANIAL MAGNETIC STIMULATION

Also Published As

Publication number Publication date
KR101995900B1 (ko) 2019-07-04
US20200214570A1 (en) 2020-07-09
KR20190028901A (ko) 2019-03-20
US11744465B2 (en) 2023-09-05
JP7263324B2 (ja) 2023-04-24
JP2020533102A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019050226A1 (ko) 3차원 뇌지도 생성 방법 및 프로그램
WO2019050225A1 (ko) Tms 자극 내비게이션 방법 및 프로그램
WO2019039636A1 (ko) 패치 가이드 방법 및 프로그램
CN106572839B (zh) 用于大脑的功能性成像的方法和装置
WO2018155894A1 (ko) 영상 정합 장치 및 영상 정합 방법
WO2016186279A1 (en) Method and apparatus for synthesizing medical images
WO2014200230A1 (en) Method and apparatus for image registration
JP2017524430A5 (ko)
WO2015122698A1 (en) Computed tomography apparatus and method of reconstructing a computed tomography image by the computed tomography apparatus
EP3097691A1 (en) Method and apparatus for reproducing medical image, and computer-readable recording medium
WO2024111913A1 (ko) 인공지능에 의한 의료영상 변환방법 및 그 장치
DE112021005277T5 (de) Objektschlüsselpunkterfassung
WO2023282406A1 (ko) 뇌 병변 환자의 뇌 모델을 이용한 자극 시뮬레이션 방법, 서버 및 컴퓨터프로그램
WO2023282407A1 (ko) 뇌 병변 환자의 빅데이터 기반 치료 전략 수립 방법, 서버 및 컴퓨터프로그램
WO2021242053A1 (ko) 3차원 데이터 획득 방법, 장치 및 그 방법을 수행하는 프로그램이 저장된 컴퓨터 판독 가능 저장 매체
WO2014208977A1 (en) Ultrasonic imaging apparatus and control method thereof
Zagorchev et al. Patient-specific sensor registration for electrical source imaging using a deformable head model
WO2018038396A1 (ko) 자기공명영상장치 및 그 제어방법
WO2018135812A1 (ko) 의료 영상 장치 및 의료 영상 처리 방법
WO2024122981A1 (ko) 분광 이미지 기반의 흑색종 판정 방법, 검사 방법 및 이를 지원하는 장치
WO2024071508A1 (ko) 경두개 집속초음파 음압장 예측 장치, 경두개 집속초음파 음압장 예측 프로그램 및 음압장 생성 인공지능 구현 방법
US20210267547A1 (en) Patch guide method and program
Dalton et al. Medical image matching
Kozińska et al. Presentation of brain electrical activity distribution on its cortex surface derived from MR images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854902

Country of ref document: EP

Kind code of ref document: A1