WO2019050128A1 - Waterproof ventilation sheet and manufacturing method therefor - Google Patents

Waterproof ventilation sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2019050128A1
WO2019050128A1 PCT/KR2018/005718 KR2018005718W WO2019050128A1 WO 2019050128 A1 WO2019050128 A1 WO 2019050128A1 KR 2018005718 W KR2018005718 W KR 2018005718W WO 2019050128 A1 WO2019050128 A1 WO 2019050128A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanomembrane
waterproof
water
water pressure
pores
Prior art date
Application number
PCT/KR2018/005718
Other languages
French (fr)
Korean (ko)
Inventor
백지숙
김성진
김철기
오흥렬
Original Assignee
코오롱패션머티리얼 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170113769A external-priority patent/KR101812789B1/en
Priority claimed from KR1020170113767A external-priority patent/KR101815585B1/en
Priority claimed from KR1020170113766A external-priority patent/KR101812787B1/en
Priority claimed from KR1020170113768A external-priority patent/KR101812788B1/en
Application filed by 코오롱패션머티리얼 (주) filed Critical 코오롱패션머티리얼 (주)
Priority to CN201880057778.2A priority Critical patent/CN111065772B/en
Publication of WO2019050128A1 publication Critical patent/WO2019050128A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the present invention relates to a waterproof breathable sheet and a method of manufacturing the same. More particularly, the present invention relates to a waterproof breathable sheet in which acoustic distortion is resolved by suppressing absorption and diffuse reflection of a sound and lowering a sound absorption coefficient, .
  • the electronic devices include a waterproof ventilation sheet having both waterproof / dustproof and air permeability.
  • a water repellent coating layer on the nanomembrane to improve the waterproof, dustproof and anti-fouling performance, and by reducing the measured value of the acoustic transmission loss, the distortion of the sound is eliminated and the waterproofing property is further improved by further including the water- A waterproof breathable sheet having improved resistance to pressure deformation due to water pressure applied during water pressure resistance by improving elasticity and strength and improved water pressure.
  • a water permeable ventilation sheet which is excellent in water permeability and water permeability and can enhance stability and usability in a roll-to-roll process can be manufactured by uniaxially orienting the nanofiber prepared by the above-mentioned electrospinning process And to provide a method of manufacturing a waterproof breathable sheet.
  • a nanofiber comprising a nanomembrane in which nanofibers are integrated in the form of a nonwoven fabric including a plurality of pores, wherein the nanofiber has a normal temperature (20 DEG C +/- 5 DEG C)
  • a waterproof breathable sheet that is waterproof and has an acoustic transmission loss of less than 10 dB at 1000 Hz.
  • the nanofiber may have a diameter of 50 nm to 3000 nm, a thickness of 3 to 40 ⁇ , a pore size of 0.1 to 5 ⁇ , and a porosity of 40 to 90%.
  • the nanomembrane has irregular size distribution of the pores so that the nanofibers are irregularly aligned and laminated, and the size distribution of the irregular pores is 100 nm or more in the size difference of the pores per unit area (cm 2 ) of the nanomembrane
  • the probability of finding pores can be over 10/100.
  • the surface of the nanofibers may include a water repellent coating layer.
  • the nanofibers may include 100 parts by weight of a fluoropolymer and 1 to 50 parts by weight of a water-repellent oil additive.
  • the nanomembrane may have an anisotropy (MD elastic modulus / TD elastic modulus) in a machine direction (MD) and a transverse direction (TD) of 1.5 to 10.0.
  • the nanomembrane has a shape (1 character) of 2 to 50 in aspect ratio (SD: LD) of the smallest diameter (SD) of the pore with respect to the longest diameter (LD) of the pore, And the longest diameter (LD) may be oriented in a direction parallel to the longitudinal direction of the nanomembrane.
  • SD aspect ratio
  • LD longest diameter
  • the nanomembrane has an absorption coefficient of less than 0.2 at 1000 Hz and an acoustic transmission loss of less than 10 dB at 1000 Hz
  • the nanomembrane has an air permeability of 0.1 CFM to 20 CFM, a water pressure of 3000 mmH 2 O or more, A grade of 4 or more, a modulus of elasticity of 1 MPa to 1000 MPa, and a basis weight of 0.5 g / m 2 to 20 g / m 2.
  • the waterproof ventilation sheet was subjected to high temperature / high humidity conditions (50 DEG C, 95% humidity, 72 hours, no water leaks for at least 30 minutes at a water pressure of 1.5 m or more in the case of waterproof waterproof property at low temperature (Measured after repeating 30 cycles of one cycle maintaining -40 ° C and 85 ° C for 1 hour respectively) without leaking at a water pressure of 1.5 m or more for 30 minutes or more and 1.5 m or more
  • the waterproof ventilation sheet may have a breathability of 20 cc / min (@ 1 PSI) or more.
  • the nanofibers may be made of polyvinylidene difluoride (PVdF).
  • a method of manufacturing a nanostructure comprising the steps of: preparing an electrospinning solution; and electrospinning the prepared electrospinning solution to produce a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores
  • the present invention also provides a method of manufacturing a waterproof ventilation sheet.
  • a waterproof breathable sheet having a waterproofing and waterproofing property that does not leak at a normal temperature (20 ° C ⁇ 5 ° C) and a water pressure of 1.5 m or more for 30 minutes or more and an acoustic transmission loss of less than 10 dB at 1000 Hz .
  • the concentration of the electrospinning solution is 5% to 35%
  • the viscosity is 100 cP to 10000 cP
  • the electrospinning condition is a voltage of 0 kV to 100 kV and a discharge amount of 0.01 cc / min to 100 cc / min have.
  • the method of manufacturing the waterproof breathable sheet may further include forming a water repellent coating layer on the surface of the nanofibers.
  • the electrospinning solution may include 100 parts by weight of a fluoropolymer, 1 to 50 parts by weight of a water-repellent oil additive, and 250 to 2000 parts by weight of a solvent.
  • the method for manufacturing the waterproof breathable sheet may further include uniaxially orienting the nanomembrane.
  • the uniaxial orientation of the nanomembrane may be performed by applying a tensile force of 1.5 to 20 times the longitudinal direction of the nanomembrane as compared to the width direction of the nanomembrane.
  • the uniaxial orientation of the nanomembrane may be controlled by controlling the winding speed of the nanomembrane to 0.01 m / min to 20 m / min and the TR (traverse) rate to 0.001 m / min to 10 m / min .
  • the waterproof breathable sheet according to the present invention is able to control the microstructure of the nanomembrane, that is, the diameter, thickness and pore size distribution of the nanofiber, thereby suppressing sound absorption and diffuse reflection, and lowering the sound absorption coefficient.
  • the waterproof breathable sheet of the present invention can improve the waterproof, dustproof and anti-fouling performance by forming a water repellent coating layer on the nanomembrane, and control the microstructure of the nanomembrane, that is, the diameter, thickness, By suppressing absorption and diffuse reflection and lowering the acoustic transmission loss measurement, distortion of the sound is resolved.
  • the waterproof breathable sheet of the present invention controls the microstructure of the nanomembrane to suppress sound absorption and diffuse reflection and lower the measured value of acoustic transmission loss, thereby eliminating sound distortion, improving the elastic modulus and strength of the nanomembrane Resistance to pressure deformation due to water pressure applied during water pressure is increased to improve water pressure, and water repellency and oil repellency are further improved by further including a water-repellent oil additive.
  • the waterproof breathable sheet of the present invention controls the microstructure of the nanofiber of the nanomembrane, in particular, the orientation of the nanofiber, thereby suppressing sound absorption and diffusing reflection, lowering the absorption coefficient to eliminate sound distortion,
  • the elastic modulus and strength are improved, resistance to pressure deformation due to water pressure applied during water pressure increase, and water pressure is improved.
  • the method for producing a waterproof breathable sheet according to the present invention is manufactured by electrospinning polyvinylidene fluoride.
  • electrospinning conditions to control the microstructure of the nanomembrane, A waterproof ventilation sheet excellent in water resistance and air permeability can be produced.
  • the method for producing a waterproof breathable sheet of the present invention is a method for preparing a breathable air-permeable sheet, which comprises preparing a composition for forming a water-repellent coating layer by electrospinning polyvinylidene fluoride, By controlling the microstructure of the nanomembrane, it is possible to produce a waterproof breathable sheet having excellent water permeability and excellent waterproofing and waterproofing properties.
  • the method for producing a waterproof breathable sheet according to the present invention is manufactured by electrospinning polyvinylidene fluoride.
  • electrospinning conditions to control the microstructure of the nanomembrane, A waterproof ventilation sheet excellent in water resistance and air permeability can be produced.
  • the method for producing a waterproof breathable sheet of the present invention is manufactured by electrospinning polyvinylidene fluoride.
  • the electrospun nanomembrane is uniaxially oriented to have excellent voicing and waterproofness and water permeability It is possible to manufacture an excellent waterproof ventilation sheet and to enhance stability and usability in a roll-to-roll process.
  • Fig. 1 is a perspective view schematically showing one embodiment of the waterproof breathable sheet of the present invention.
  • FIG. 2 is a perspective view schematically showing another embodiment of the waterproof breathable sheet of the present invention.
  • FIG. 3 is a perspective view schematically showing a jig used in a water pressure measuring instrument for measuring hydraulic waterproofness.
  • FIG. 4 is a schematic view of a nozzle-type electrospinning device.
  • 5 and 6 are scanning electron microscope (SEM) photographs of the nanomembranes prepared in Example 4-1 and Comparative Example 4-1 of the present invention, respectively.
  • the waterproof breathable sheet according to an embodiment of the present invention includes a nanofiber in which nanofibers are integrated into a nonwoven fabric including a plurality of pores.
  • the waterproof breathable sheet has a normal temperature (20 DEG C +/- 5 DEG C) , And the acoustic transmission loss is less than 10 dB at 1000 Hz.
  • Fig. 1 is a perspective view schematically showing one embodiment of the waterproof breathable sheet of the present invention. Fig. Hereinafter, the waterproof breathable sheet will be described with reference to FIG.
  • the waterproof ventilation sheet 100 includes a nanomembrane 10 in which nanofibers are integrated in the form of a nonwoven fabric including a plurality of pores, and, optionally, one or both surfaces of the nanomembrane 10 And may further include an adhesive layer 20.
  • the waterproof ventilation sheet 100 may further include a support (not shown) for supporting the nanomembrane 10.
  • the waterproof ventilation sheet 100 is shown as being circular. However, the present invention is not limited thereto, and the waterproof ventilation sheet 100 may have a circular shape, an elliptical shape, a rectangular shape, P-shaped, or the like.
  • the adhesive layer 20 is located only on one surface of the nanomembrane 10, but the present invention is not limited thereto.
  • the adhesive layer 20 may be formed on the surface of the nanomembrane 10, As shown in FIG.
  • the nanomembrane 10 has a porous structure formed by the nanofibers to prevent foreign matter such as water or dust from passing therethrough and permeate the gas.
  • the nanomembrane 10 allows passage of sound. Therefore, the waterproof ventilation sheet 100 is, for example, an electronic device having a sounding portion or a sound receiving portion, which is disposed in the ventilation hole of the housing corresponding to the sounding portion or the sound receiving portion, And can be used for ensuring dustproofness.
  • the nanomembrane 10 may be made of a polymer having excellent hydrophobicity, chemical resistance, heat resistance, and processing characteristics, and specifically includes, for example, a polyolefin such as polyamide, polyester, polyethylene or polypropylene, polyvinylidene fluoride Such as polyvinylidene difluoride (PVdF), tetrafluoroethylene hexafluoropropylene copolymer (FEP), tetrafluoroethylene (perfluoroacryl) vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE)
  • PVdF polyvinylidene difluoride
  • FEP tetrafluoroethylene hexafluoropropylene copolymer
  • FEP tetrafluoroethylene (perfluoroacryl) vinyl ether copolymer
  • PFA tetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • a polyimide polymer such
  • the waterproof breathable sheet 100 is mainly made of a porous PTFE sheet.
  • the porous PTFE sheet can be produced by forming a kneaded product of a PTFE fine powder and a molding auxiliary agent into a sheet by extrusion molding and rolling, removing the forming auxiliary agent to obtain a sheet body of the formed body, and then stretching the sheet body have.
  • the porous PTFE sheet is liable to shrink due to the passage of time and heat, the waterproof breathable sheet 100 shrinks and the adhesive layer 20 is exposed.
  • the nanomembrane 10 is a nanoweb fabricated by electrospinning the PVdF. Since the PVdF is excellent in hydrophobicity, chemical resistance, and heat resistance, the nanomembrane 10 manufactured by electrospinning it can have excellent waterproofing and waterproofing properties and air permeability.
  • the nano-web produced by electrospinning the PVdF may have a poor sound absorption due to the regularly oriented / laminated nanofibers constituting the nanofibers, because the pores in the fiber are circular or polygonal, and the absorption coefficient is high.
  • the PVDF is electrospun to control the electrospinning conditions during the manufacture of nanofibers to adjust the air permeability of the nanomembrane 10 and the size distribution of the pores, thereby suppressing sound absorption and diffuse reflection, The coefficient is lowered so as to have a superior voice.
  • the waterproof breathable sheet according to an embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, wherein the nanofiber has a diameter of 50 nm to 3000 nm and a thickness Of 3 mu m to 40 mu m, a pore size of 0.1 mu m to 5 mu m, and a porosity of 40% to 90%.
  • the waterproof ventilation sheet has a waterproofing waterproofing property that does not leak at normal temperature (20 ° C ⁇ 5 ° C), a water pressure of 1.5 m or more for 30 minutes or more, and an acoustic transmission loss of less than 10 dB at 1000 Hz.
  • the nanomembrane 10 may have a diameter of 50 nm to 3000 nm, specifically 100 nm to 2000 nm, and the thickness of the nanomembrane 10 may be 3 to 40 ⁇ m, And the pore size of the nanomembrane 10 may be 0.1 to 5 ⁇ ⁇ , specifically 0.1 to 4 ⁇ ⁇ , the porosity may be 40 to 90%, specifically 60% To 90%, and the basis weight of the nanomembrane 10 may be 0.5 g / m 2 to 20 g / m 2, specifically 1 g / m 2 to 15 g / m 2.
  • the pore size and pore distribution of the nanomembrane 10 were measured using a capillary flow porometer (CFP) as specified in ASTM F316 to determine the average pore size and the pore size at the diameter of the limiting pore in the narrowest interval
  • the size distribution of the pores can be measured.
  • the thickness of the nanomembrane 10 can be measured by the thickness measurement method defined in KS K 0506 or by applying KS K ISO 9073-2 and ISO 4593. [
  • the basis weight of the nanomembrane 10 can be measured by applying KS K 0514 or ASTM D 3776.
  • the porosity of the nanomembrane 10 may be calculated according to the ratio of the volume of air to the total volume of the nanomembrane 10 according to Equation (1).
  • the total volume can be obtained by measuring the width, length, and thickness of a rectangular or circular sample, and the air volume can be obtained by subtracting the volume of the polymer inversely calculated from the density after measuring the mass of the sample from the total volume
  • A is the density of the nanomembrane
  • B is the density of the nanomembrane polymer
  • C is the weight of the nanomembrane
  • D is the volume of the nanomembrane
  • the absorption of the nanomembrane 10 and the diffuse reflection can be solved by lowering the sound absorption coefficient.
  • the nanomembrane 10 is advantageous in that the nanofibers are irregularly oriented and laminated so that the size distribution of the pores is irregular, thereby suppressing the negative absorption and the diffuse reflection, thereby lowering the absorption coefficient.
  • the size distribution of the nanomembrane 10 is 100/100 or more
  • the size distribution of the pores is larger than that of the nanomembrane 10 (cm < 2 >).
  • the size distribution of the pores is more irregularly arranged when the probability of finding pores having a pore size difference of 100 nm to 3900 nm per unit area (cm 2 ) of 10/100 to 90/100 is more irregularly arranged, Absorption and diffuse reflection can be suppressed as much as possible.
  • the unit area of the nanomembrane 10 measuring the size distribution of the pores may be any surface of the nanomembrane 10, specifically, both surfaces of the membrane, or an internal cross-section that is exposed by cutting the membrane , Preferably a unit area randomly selected from both surfaces of the membrane.
  • the difference in size of the pores is a value obtained by subtracting the size of the smaller pores from the size of the larger pores among the two pores arbitrarily selected within the unit area.
  • the probability means the number of times when the size difference of the pore is found within the range when the size difference of the pores is measured 100 times within the unit area.
  • the waterproof breathable sheet according to another embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, and the surface of the nanofiber includes a water repellent coating layer.
  • the waterproof ventilation sheet has waterproof waterproofing property that does not leak at normal temperature (20 ° C, ⁇ 5 ° C), water pressure of 1.5 m or more for 30 minutes or more, and acoustic transmission loss is less than 10 dB at 1000 Hz.
  • FIG. 2 is a perspective view schematically showing another embodiment of the waterproof breathable sheet of the present invention.
  • the waterproof breathable sheet 100 includes a nanofiber 10 in which nanofibers 11 are integrated into a nonwoven fabric including a plurality of pores, and the surface of the nanofiber 11 And a water repellent coating layer (12).
  • the nanomembrane 10 may further include an adhesive layer 20 on one or both surfaces thereof.
  • the waterproof ventilation sheet 100 may further include a support (not shown) for supporting the nanomembrane 10.
  • the present invention further includes the water repellent coating layer 12 on the surface of the PVdF nanofiber 11 to maintain the super water-repellent performance in which the range of the waterproofable temperature and pressure (water pressure) is increased as compared with the existing PVdF, To prevent dust and contaminants from penetrating the dust and dirt.
  • the water-repellent coating layer 12 may include a silicone-based water-repellent agent.
  • the silicone-based water repellent agent is preferable in that it can add a high surface resistance performance and excellent thermal stability to the nanofiber 11.
  • the silicone-based water repellent is specifically selected from the group consisting of polysiloxane containing a siloxane bond, polydimethylsiloxane, oligosiloxane, methylphenylpolysiloxane, methoxysilane, ethoxysilane, propoxysilane, isopropoxysilane, and mixtures thereof And may include any one of the silicone-based polymers.
  • the cavity of the fiber is circular or polygonal, and the measured value of the acoustic transmission loss is high, And the pore may be blocked by the water-repellent coating layer 12, so that there is a possibility that the sound emission is lowered.
  • the air permeability of the nanomembrane 10 and the size distribution of pores And the sound absorption loss and the diffuse reflection are suppressed, thereby lowering the measured value of the acoustic transmission loss.
  • the water repellent coating layer 12 may be applied to the nanoweb with the pore size distribution adjusted to further irregularize the thickness, shape, and pore size of the nanoweb, thereby lowering the measured value of the acoustic transmission loss and improving the sound transmission.
  • the water repellent coating layer 12 is preferably applied with a thickness of 10 nm to 500 nm. If the thickness is less than 10 nm, the water repellency of the water repellent coating layer 12 may be insignificant. If the thickness exceeds 500 nm, the pore may be blocked to reduce the sound emission.
  • the water repellent coating layer 12 preferably has a coating weight per area of 0.1 g / m 2 to 1 g / m 2.
  • the coating weight is less than 0.1 g / m 2, the water repellent effect is not expected when compared with before and after the water repellent coating of the nanofiber. If the coating weight exceeds 1 g / m 2, the pore size of the nanomembrane 10 is decreased, Lt; / RTI >
  • the waterproof breathable sheet according to another embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores.
  • the nanofiber includes 100 parts by weight of a fluoropolymer and 1 part by weight of a water- Wherein the nanofiber has a diameter of 50 nm to 3000 nm, a thickness of 3 to 40 ⁇ , a pore size of 0.1 to 5 ⁇ , a porosity of 40 to 90% %to be.
  • the waterproof ventilation sheet has waterproof waterproofing property that does not leak at normal temperature (20 ° C, ⁇ 5 ° C), water pressure of 1.5 m or more for 30 minutes or more, and acoustic transmission loss is less than 10 dB at 1000 Hz.
  • the fluoro polymer and the fluorine-based water repellent and oil repellent additives are used together to improve the elastic modulus and the strength of the nanomembrane 10 in the production of the nano-web, and resistance to pressure deformation
  • the waterproofness and oil repellency of the nanomembrane 10 can be further improved by increasing the water pressure of the increased water-permeable ventilation sheet and imparting super-water repellency and oil repellency to the nanomembrane 10.
  • the water-repellent oil additive may be selected from the group consisting of perfluoroacrylic monomers having a number of carbon bonds of 4 to 9, perfluorinated silicone monomers, perfluoroalcohol monomers, overbased urethane-based monomers, Based additives such as perfluorooctane sulfonic acid, perfluorooctane sulfonyl fluoride, perfluorooctanoic acid, perfluoroalkyl sulfonate, and the like, and more specifically, A fluoroalkyl group or a polyfluoroalkyl group.
  • the waterproof property may be lower or similar to that of the fluorine-based additive, but the oil-repellent performance may be poor and durability of the air-permeable sheet may be lowered.
  • the ventilation performance and the air permeability of the nanomembrane 10 are adjusted to improve the sound performance.
  • the water-repellent breathable additive When the water-repellent breathable additive is included in an amount of 1 part by weight to 50 parts by weight with respect to 100 parts by weight of the fluoropolymer, the condition that the acoustic transmission loss of the waterproof breathable sheet is less than 10 dB at 1000 Hz can be satisfied.
  • the required water pressure (1500 mm H 2 O) can be met.
  • the waterproof breathable sheet according to another embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, and the nanomembrane has a machine direction (MD) (MD elastic modulus / TD elastic modulus) of the transverse direction (TD) elastic modulus is 1.5 to 10.0.
  • MD machine direction
  • TD transverse direction
  • the waterproof ventilation sheet has a waterproofing waterproofing property that does not leak at normal temperature (20 ° C ⁇ 5 ° C), a water pressure of 1.5 m or more for 30 minutes or more, and an acoustic transmission loss of less than 10 dB at 1000 Hz.
  • the nano-web produced by electrospinning the PVdF may have a poor sound absorption due to the regularly oriented / laminated nanofibers constituting the nanofibers, because the pores in the fiber are circular or polygonal, and the absorption coefficient is high.
  • the PVdF is electrospun to fix the orientation of the nano-web in the uniaxial direction when manufacturing the nano-web to control the microstructure of the nanofiber, in particular, the orientation of the nanofiber, thereby suppressing sound absorption and diffuse reflection, Lowering the distortion of the sound.
  • the orientation of the nanofibers in the nanowire fabricated by electrospinning PVdF is substantially equal in the longitudinal direction (MD) and the transverse direction (TD).
  • cavities are generated by the uniform fiber orientation of the nanofibers, and when the acoustic waves pass through the cavities, sound absorption and diffuse reflection occur, resulting in distorted sound.
  • the conventional nanomembrane can not satisfy the water pressure (1500 mmH 2 O) required by the IPX 68 class by the cavity, and the water pressure standard can be attained by adding an additive such as a water repellent.
  • water resistance can be improved by adding an additive such as the water repellent agent, but defects may occur during spinning, or adhesiveness between fibers may be insufficient, resulting in deterioration of handling properties.
  • the orientation of the nanofibers is fixed in the uniaxial direction as in the present invention, the pores in the fibers become closer to the shape of a single character (not a circular or polygonal shape), thereby reducing the overall number of pores, And the sound absorption coefficient is lowered to improve the sound performance.
  • the orientation of the nanofibers is uniaxially fixed, the longest diameter of the linear pores is oriented in a direction substantially parallel to the longitudinal direction of the nanomembrane 10.
  • the linear pores have an aspect ratio (SD: LD) of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores is 1: 2 to 1:50, : 5 to 1:50.
  • SD: LD aspect ratio of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores
  • the aspect ratio (SD: LD) of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores is less than 1: 2, pores are uniformly distributed and diffuse reflection occurs, If it exceeds 1:50, the pore may be deformed by the pressure such as water pressure or air pressure, and the waterproof performance or dustproof performance may be deteriorated.
  • the nanomembrane has an anisotropy (MD elastic modulus / TD elastic modulus) in a machine direction (MD) and a transverse direction (TD) 1.5 to 10.0, and more specifically 2.0 to 10.0.
  • MD elastic modulus / TD elastic modulus the anisotropy of the longitudinal direction elastic modulus and the lateral modulus of elasticity of the nanomembrane
  • the condition that the acoustic transmission loss of the waterproof breathable sheet is less than 10 dB at 1000 Hz can be satisfied, and the water pressure (1500 mmH 2 O) required by the IPX 68 class can be satisfied.
  • the modulus of elasticity of the nanomembrane 10 may be determined by measuring the MD (Machine Direction) and the TD (Transverse Direction) ten times after applying ASTM D 882 and using the average value excluding the maximum value and the minimum value.
  • the longitudinal direction or the machine direction (MD) of the nanomembrane is a length of the nanomembrane in the direction of movement of the roll when the nanomembrane is continuously produced in a roll-to-roll manner or in a direction in which the produced nanomembrane is wound
  • the width direction of the nanomembrane or the transverse direction TD of the machine direction means a width direction in which the length is short in the longitudinal direction or the machine direction.
  • the elastic modulus and strength in the longitudinal direction of the nanomembrane 10 are improved, and resistance to pressure deformation due to water pressure applied during water pressure is increased, 10 can be improved.
  • the absorption coefficient of the nanomembrane 10 may be less than 0.2 at 1000 Hz, and may be 0 to 0.1 at 1000 Hz. At this time, the sound absorption coefficient can be measured by an in-line method sound absorption test (ASTM E 1050-12), and the unit thereof is a constant.
  • ASTM E 1050-12 in-line method sound absorption test
  • the absorption coefficient of the nanomembrane 10 is 0.2 or more at 1000 Hz, a sound absorption effect for absorbing sound may be generated, so that sound performance such as sound loss and distortion may be deteriorated.
  • the acoustic transmission loss of the nanomembrane 10 may be less than 10 dB at 1000 Hz, and specifically less than 0 dB to 5 dB at 1000 Hz.
  • the acoustic transmission loss can be measured by the test method of ASTM E 2611-09 by measuring the acoustical transmission loss of vertical incidence sound, and the measurement frequency band is 100 Hz to 5000 Hz at a 1/3 octave band center frequency. If the acoustic transmission loss of the nanomembrane 10 is 10 dB or more at 1000 Hz, the soundproof effect may occur, and the functionality of the waterproof ventilation sheet 100 may be degraded due to loss or distortion of sound.
  • the acoustic transmission loss of the waterproof ventilation sheet 100 may be less than 10 dB at 1000 Hz as the acoustic transmission loss of the nanomembrane 10 is less than 10 dB at 1000 Hz.
  • the nanomembrane 10 may have an air permeability of 0.1 CFM to 20 CFM, specifically 0.5 CFM to 10 CFM Lt; / RTI >
  • the air permeability of the nanomembrane 10 can be measured under the conditions of an area of 38 cm 2 and a static pressure of 125 Pa by applying the ASTM D 737 method.
  • cm3 / cm2 / s can be converted into CFM, the conversion coefficient is 0.508016, and the unit is ft 3 / ft 2 / min (CFM).
  • the air permeability of the nanomembrane 10 is less than 0.1 CFM, the permeability of sound may be lowered and the acoustic performance may be deteriorated. If the air permeability exceeds 20 CFM, the water pressure may be lowered and water may penetrate into the electronic device, .
  • the nanomembrane 10 since the nanomembrane 10 includes the nanoweb fabricated by electrospinning the PVdF, the nanomembrane 10 has a water pressure of 3000 mmH 2 O or more, specifically, a water pressure of 5000 to 20000 mmH 2 < / RTI > The water pressure of the nanomembrane 10 can be measured at a point of 3 points on the water droplet by applying a pressure of 600 mm H 2 O / min at an area of 100 cm 2 by applying the KS K ISO 811 low pressure method.
  • the nanomembrane 10 since the nanomembrane 10 includes a nanoweb fabricated by electrospinning the PVdF, the nanomembrane 10 has a water repellency grade of 4 or more, specifically, a water repellency grade of 4 to 5 have.
  • the water repellency of the nanomembrane 10 can be measured by the method specified in KS K 0590. If the water-repellency rating of the nanomembrane 10 is lower than 4, the nanomembrane may be wetted due to hydrophilicity with water, or water may penetrate to lower the water pressure, thereby deteriorating the waterproof performance.
  • the nanomembrane 10 may have a modulus of elasticity ranging from 1 MPa to 1000 MPa and a specific elastic modulus ranging from 5 MPa to 500 MPa .
  • the modulus of elasticity of the nanomembrane 10 may be determined by measuring the MD (Machine Direction) and the TD (Transverse Direction) ten times after applying ASTM D 882 and using the average value excluding the maximum value and the minimum value. If the elastic modulus of the nanomembrane 10 is less than 1 MPa, it may be easily deformed by an external stimulus or an impact to reduce the dust / waterproof performance or sound distortion. If the elastic modulus of the nanomembrane 10 exceeds 1000 MPa, Defects such as cutting (punching) and deformation may occur.
  • the waterproof and waterproof performance of the waterproof ventilation sheet 100 can be measured using a water pressure meter capable of applying a constant water pressure of 0 m to 20 m depth used in KS K ISO 811 for a predetermined time. At this time, a jig may be used to measure the waterproofness of the waterproof ventilation sheet 100 in the water pressure measuring device.
  • FIG. 3 is a perspective view schematically showing an embodiment of a jig used for measuring the waterproofing waterproof property of the waterproof ventilation sheet 100 in the water pressure measuring instrument.
  • a jig used for measuring the waterproofing waterproof property of the waterproof ventilation sheet 100 in the water pressure measuring instrument.
  • water pressure resistance can be evaluated by applying a constant water pressure to the water pressure portion 210 using a water pressure meter for a predetermined period of time have.
  • the number of the pressure receiving portions 210 is 19, but the present invention is not limited thereto.
  • the pressure receiving portion 210 may include one, three, five, nine, twenty The number can be adjusted.
  • the size of the perforation hole of the pressure receiving portion 210 is preferably smaller than the open area of the perforated waterproof sheet 100 and can be appropriately adjusted according to the size of the perforated waterproof sheet 100.
  • the waterproof ventilation sheet 100 may be formed to have a thickness of at least 30 minutes at a room temperature (20 ° C ⁇ 5 ° C), a water pressure of 1.5 m or more, specifically, a water pressure of 1.5 m to 6 m
  • a water pressure of 1.5 m or more specifically, a water pressure of 1.5 m to 6 m
  • waterproofing ventilation sheet 100 When the waterproofing ventilation sheet 100 is waterproofed at room temperature (20 ° C ⁇ 5 ° C), water pressure of 1.5 m or more, water pressure of 1.5 m or less at low temperature, water pressure of 1.5 m or more at high temperature / Water or moisture may penetrate into the waterproofing ventilation sheet 100 and the electronic equipment may be damaged.
  • the water pressure at the certain depth can be calculated by the following equation (2), and the water pressure in the ocean increases by 1 atmospheres every time the water depth drops by 10 m.
  • Equation 2 p is the density of water (about 1.03 g / cm3), g is 980 cm / sec 2, z is under the surface of the sea water depth (cm))
  • the waterproof ventilation sheet 100 may have a breathability of 20 cc / min or more, specifically 20 cc / min to 150 cc / min, as the inclusion of the nanomembrane 10.
  • the air permeability of the waterproof ventilation sheet 100 is measured by a gas permeability method in a capillary flow porometer (CFP) using a flow rate of air passing through a 1 mm diameter circular area for 1 minute under 1 PSI pressure Can be measured.
  • CCP capillary flow porometer
  • the adhesive layer 20 is located on the surface of the nanomembrane 10 and specifically the periphery 20a of the adhesive layer 20 is located on the periphery of the surface of the nanomembrane 10,
  • the central portion 20b of the layer 20 may be in the form of an open frame.
  • the nanomembrane 10 is adhered to the inner surface of the vent hole of the housing of the electronic apparatus through the adhesive layer 20 and the vent hole of the housing of the electronic apparatus through the opening of the central portion 20b of the adhesive layer 20 It is possible to impart air permeability and waterproofness to the electronic device while blocking the air.
  • the shape and size of the opening of the central portion 20b of the adhesive layer 20 may be basically the same as the shape and size of the ventilation hole of the housing of the electronic apparatus.
  • the shape and size of the aperture 20a may be circular, oval, Rectangular, polygonal, P-shaped, and the like, but the present invention is not limited thereto.
  • the end of the peripheral portion 20a of the adhesive layer 20 may be formed to coincide with the end of the nanomembrane 10, and the peripheral portion 20a of the adhesive layer 20 May extend beyond the end of the nanomembrane 10 to cover the end of the nanomembrane 10.
  • the adhesive layer 20 may include any one of a pressure sensitive adhesive selected from the group consisting of polyacryl, polyamide, polyacrylamide, polyester, polyolefin, polyurethane, polysilicon, Liquid type or solid type, and may be a thermoplastic type, a heat-converting type, or a reactive curing type.
  • the adhesive layer 20 may be a double-sided adhesive tape.
  • the double-sided adhesive tape may be a double-sided adhesive tape made of polyethylene terephthalate (PET), a polypropylene-based double-sided adhesive tape, a polyethylene-based double-sided adhesive tape, a polyimide double-sided adhesive tape, a nylon- Foam, silicone foam, acrylic foam, polyethylene foam, etc.), double-sided adhesive tape without substrate,
  • the waterproof ventilation sheet 100 may further include a protective substrate (not shown) that can protect the adhesive layer 20 before it is attached to the electronic apparatus.
  • the protective substrate may be made of a rubber or a silicone material, a polyester such as polyethylene terephthalate (PET) or polybutylene terephthalate, a polyolefin such as polypropylene, polyethylene, or polymethylpentene, a resin material such as polycarbonate, A paper material such as a high-temperature paper, a coated paper, an impregnated paper, and a synthetic paper, and a metal foil material such as aluminum and stainless steel.
  • PET polyethylene terephthalate
  • polybutylene terephthalate polybutylene terephthalate
  • a polyolefin such as polypropylene
  • polyethylene polyethylene
  • polymethylpentene a resin material
  • a paper material such as a high-temperature paper, a coated paper, an impregnated paper, and a synthetic paper
  • a metal foil material such as aluminum and stainless steel.
  • a conductive material may be coated on the protective substrate as required, or a conductive material mixed with a conductive material may be used.
  • the thickness of the protective sheet may be, for example, 10 ⁇ to 100 ⁇ , specifically, 25 ⁇ to 50 ⁇ .
  • the surface of the protective substrate may be subjected to a corona discharge treatment, a plasma treatment, a frame plasma treatment, or the like to improve adhesion with the adhesive layer 20, and a primer layer or the like may be formed.
  • the primer layer may be any one selected from the group consisting of polyethylene, polypropylene, styrenic copolymer, polyester, polyurethane, polyvinyl alcohol, polyethyleneimine, polyacrylate, polymethacrylate, A polymer material (made of an anchor coat) can be used.
  • the waterproof ventilation sheet 100 does not further include the adhesive layer 20
  • the waterproof breathable sheet (1) can be applied to the housing of the apparatus by screen printing, spray coating, gravure printing, transfer, powder coating or the like by direct screen printing, spraying, or ultrasonic welding without the pressure- 100 may be attached directly to the housing of the electronic device.
  • the waterproof ventilation sheet 100 may further include the support to reinforce the strength of the nanomembrane 10.
  • the support may be made of a material having a pore size larger than that of the nanomembrane 10 and having excellent gas permeability and excellent strength such as woven fabric, nonwoven fabric, mesh, net, sponge, foam, metal porous material, metal mesh, have.
  • a support made of a polyester, a polyamide, an aramid resin, a polyimide, a polyetherimide, a polyamideimide, a polyether sulfone, a fluororesin, an ultrahigh molecular weight polyethylene, a metal and the like can be used.
  • the nonwoven fabric may be interlaid with the supporting body formed of a plurality of randomly oriented fibers.
  • the nonwoven fabric may be interlaid, but may have a structure of individual fibers or filaments Sheet.
  • the nonwoven fabric may be formed by a variety of processes including carding, garneting, air-laying, wet-laying, melt blowing, spunbonding, thermal bonding ), And stitch bonding.
  • the fibers constituting the nonwoven fabric may include one or more polymer materials, and any of those generally used as a fiber-forming polymer material may be used, and specifically, a hydrocarbon-based fiber-forming polymer material may be used.
  • the fiber-forming polymeric material may be a polyolefin such as polybutylene, polypropylene and polyethylene; Polyesters such as polyethylene terephthalate and polybutylene terephthalate; Polyamides (nylon-6 and nylon-6,6); Polyurethane; Polybutene; Polylactic acid; Polyvinyl alcohol; Polyphenylene sulfide; Polysulfone; A fluid crystalline polymer; Polyethylene-co-vinyl acetate; Polyacrylonitrile; Cyclic polyolefins; Polyoxymethylene; Polyolefinic thermoplastic elastomers; And combinations thereof.
  • the present invention is not limited thereto.
  • the method of laminating the support on the nanomembrane 10 may be simply performed by overlapping or bonding.
  • the bonding may be performed by a method such as adhesive lamination, thermal lamination, thermal vapor deposition, ultrasonic vapor deposition, or adhesion by a pressure sensitive adhesive.
  • a part of the support may be melted and adhered by heating.
  • the supporter adheres to the nanomembrane 10 without using a pressure-sensitive adhesive, and unnecessary weight increase and decrease in air permeability can be avoided.
  • the support and the nanomembrane 10 may be adhered using a fusion agent such as hot melt powder.
  • a method of manufacturing a waterproof breathable sheet includes the steps of preparing an electrospinning solution and electrospinning the prepared electrospinning solution so that the nanofibers are integrated into a nonwoven fabric including a plurality of pores Thereby producing a nanomembrane.
  • a waterproof breathable sheet having a waterproof and waterproof property that does not leak at a normal temperature (20 ° C ⁇ 5 ° C) and a water pressure of 1.5 m or more for 30 minutes or more and an acoustic transmission loss of less than 10 dB at 1000 Hz can do.
  • the method for manufacturing the waterproof breathable sheet can control the microstructure of the nanomembrane by controlling the electrospinning conditions to produce a waterproof breathable sheet having excellent water permeability and excellent waterproofing and water permeability.
  • the step of preparing the electrospinning solution is to prepare a solution containing a polymer for forming nanofibers through electrospinning.
  • the electrospinning solution may include polyvinylidene difluoride (PVdF) (N, N-dimethylacetamide), N, N-dimethyl formamide, dimethylsulphoxide, N-methyl-2-pyrolidone, triethyl phosphate may be prepared by mixing with any one solvent selected from the group consisting of triethylphosphate, methylethylketone, tetrahydrofuran, acetone, and mixtures thereof.
  • PVdF polyvinylidene difluoride
  • the electrospinning solution may further comprise a water-softening additive together with a fluoropolymer such as polyvinylidene difluoride (PVdF).
  • the electrospinning solution may include 100 parts by weight of the fluoropolymer, 1 to 50 parts by weight of the water-repellent oil additive, and 250 to 2000 parts by weight of the solvent.
  • the prepared electrospinning solution is electrospun to prepare a nanomembrane in which the nanofibers are integrated into a nonwoven fabric including a plurality of pores.
  • the electrospinning may be performed using the electrospinning apparatus shown in FIG. 4 is a schematic view of a nozzle-type electrospinning device. 4, the electrospinning is performed by a plurality of nozzles 3 to which a high voltage is applied by the high voltage generator 6 using the metering pump 2 in the solution tank 1 storing the electrospinning solution, The electrospinning solution is fed to the electrospinning solution by the difference in electric energy between the nozzle 3 or the tip of the electrospinning unit and the accumulation unit 4, that is, the voltage difference. The formed jet is whipped and stretched by the electric field to become thinner and the solvent is vaporized so that solid fibers are accumulated in the integrated portion 4. [ At this time, by regulating the micro-structure of the nanomembrane by controlling the electrospinning condition, it is possible to produce a waterproof ventilation sheet having excellent water permeability and excellent waterproofing and waterproofing properties.
  • the concentration of the electrospinning solution may be 5% to 35%, specifically 5% to 25%.
  • the concentration means a percent concentration, and the percent concentration can be obtained as a percentage of the mass of the solute to the mass of the solution. For example, the concentration may be obtained by dividing the mass of the polymer contained in the electrospinning solution by the mass of the solution, and then multiplying by 100. If the concentration of the electrospinning solution is less than 5%, the polymer may not be produced due to the low content of the polymer, and may be injected into the beads. If the concentration exceeds 35%, the polymer may not be dissolved, The pressure may become high and leak or breakage of the solution may occur.
  • the viscosity of the electrospinning solution may be 100 cP to 10000 cP, specifically 200 cP to 5000 cP.
  • the viscosity of the solution can be measured at a temperature of 23 DEG C by the KS M ISO 2555 method. If the viscosity of the electrospinning solution is less than 100 cP, the viscosity may be too low to produce fibers and may be injected onto the beads. If the viscosity exceeds 10000 cP, jets may not be formed during the spinning process, There may be a problem that the defects of the membrane increase.
  • the electrospinning condition may be a voltage of 0 kV to 100 kV, specifically 20 kV to 70 kV. If the voltage exceeds 100 kV, sparks may be generated in a region susceptible to insulation during the spinning process, resulting in damage to the product or transfer or peeling of the product to the transfer roll during transfer due to static electricity.
  • the electrospinning condition may be a discharge rate of 0.01 cc / min to 100 cc / min, specifically 0.5 cc / min to 50 cc / min.
  • the discharge amount is less than 0.01 cc / min, the amount of the laminated fibers is small, resulting in a decrease in productivity or delamination.
  • the discharge amount exceeds 100 cc / min, the saturation concentration of the solvent in the chamber increases, And there is a problem that the product is finally reused and filmed.
  • the method of manufacturing the waterproof breathable sheet may further include forming a water repellent coating layer on the surface of the nanofibers.
  • the water-repellent coating layer-forming step includes the steps of: preparing a composition for forming a water-repellent coating layer; applying the composition for forming a water-repellent coating layer to the nanomembrane; and drying the nanomembrane coated with the composition for forming a water- can do.
  • composition for forming a water repellent coating layer is specifically a polymer composed of a siloxane-containing polymer such as polysiloxane, polydimethylsiloxane, oligosiloxane, methylphenylpolysiloxane, methoxysilane, ethoxysilane, propoxysilane, isopropoxysilane, Based polymer may be one selected from the group consisting of silicon-based polymers.
  • composition for forming a water repellent coating layer may be prepared by diluting the silicone polymer with any one solvent selected from the group consisting of water, isopropyl alcohol (IPA), ethanol, glycerol, and glycol.
  • IPA isopropyl alcohol
  • ethanol ethanol
  • glycerol glycerol
  • glycol glycol
  • the silicone-based polymer may be contained in an amount of 1 wt% to 50 wt% with respect to the total weight of the water repellent coating layer composition, and the content may be controlled according to a solvent.
  • the solvent is an aqueous emulsion
  • 20 to 40% by weight of the silicone-based polymer may be contained.
  • the composition for forming the water repellent coating layer preferably has a viscosity of 1 cP to 1000 cP in view of forming a fibrous coating layer of a nanomembrane.
  • the viscosity of the composition can be measured at a temperature of 23 DEG C in accordance with the KSM ISO 2555 method.
  • the viscosity of the composition for forming a water repellent coating layer is less than 1 cP, it is difficult to form a coating layer having a thickness equal to or more than a certain thickness of the nanofibers. Thus, the surface resistance and antistatic effect may be insufficient. It is difficult to maintain the thickness of the water repellent coating layer at 10 nm to 500 nm, and a porosity of more than a certain level for securing the air permeability and acoustic performance can not be obtained.
  • the step of applying the composition for forming a water-repellent coating layer to the nanomembrane may be carried out by spraying, impregnating, printing, rolling, solution casting, gravure transfer coating by roll coating, screen coating, T- Or the like.
  • the melting temperature of the composition for forming a water repellent coating layer is preferably 80 ° C to 300 ° C, more preferably 80 ° C to 200 ° C.
  • the nanomembrane coated with the composition for forming a water repellent coating layer may be dried in an oven at 80 ° C to 200 ° C for 1 to 5 minutes.
  • the coating layer may not be formed properly due to evaporation of the solvent in the water-repellent composition and the curing of the silicone-based polymer, May not be completely removed and peeling may occur or the coating may flow. If it is dried for more than 5 minutes at a temperature exceeding 200 ° C, there may be a problem that deformation may occur in the nanomembrane product itself. That is, in the case of proceeding within the above range, water as a solvent can be evaporated while maintaining the shape of the nanomembrane, and the coating layer of the water repellent agent of the nanofiber can be uniformly cured.
  • the method for manufacturing the waterproof breathable sheet may further include uniaxially orienting the nanomembrane.
  • the nanomembrane When the nanomembrane is uniaxially oriented, it is possible to control the orientation of the nanofibers to suppress sound absorption and diffuse reflection, and to lower a sound absorption coefficient to eliminate sound distortion.
  • the uniaxial orientation of the nanomembrane can increase the tensile strength and elastic modulus in the longitudinal direction (MD) of the nanomembrane. Through this, the stability and usability in the in-line traveling during the roll-to-roll (R2R) process can be improved and the product yield can be increased.
  • quality control can be stabilized by reducing deviation between existing lots (LOT).
  • the uniaxial orientation of the nanomembrane may be performed by applying a tensile force of 1.5 to 20 times in the longitudinal direction to the width direction of the nanomembrane, and specifically applying a tensile force of 2 to 10 times . If the tensile force in the longitudinal direction is less than 1.5 times the tension in the width direction of the nanomembrane, anisotropy may not be imparted, isotropic properties are developed, negative absorption and diffuse reflection occur, and negative distortion may occur. If it is more than 20 times, the aggregation, strength and elongation modulus of the fibers may be lowered, resulting in breakage or tearing at the time of winding, resulting in deterioration of stability and usability.
  • the width of the nanomembrane is reduced,
  • the width of both sides of the nanomembrane should be at least fixed.
  • the tensile force may be applied to the nanomembrane.
  • uniaxial orientation can also be achieved by applying a tensile force only to the MD and applying a tensile force to the TD.
  • the method of uniaxially orienting the nanomembrane is not particularly limited in the present invention, and any method can be applied as long as it is conventionally a method of orienting a nanomembrane.
  • the uniaxial orientation may be achieved by a separate orientation device, and the integration condition of the integrated portion 4 may be adjusted in the electrospinning device, and the winding condition of the winding roller for winding the manufactured nanomembrane may be adjusted .
  • the winding speed of the nanomembrane is adjusted to 0.01 m / min to 20 m / min, specifically 0.1 m / min to 10 m / min, and TR ( traverse speed from 0.001 m / min to 10 m / min, specifically from 0.01 m / min to 2 m / min.
  • the TR speed means a speed at which the nanomembrane reciprocates in a direction perpendicular to the uniaxial orientation of the fiber, that is, in the width direction (TD).
  • the nanomembrane may reciprocate the nanomembrane in the transverse direction (TD) during the electrospinning or the winding according to various reasons such as the uniform integration of the nanofibers irrespective of the position of the nozzle.
  • TD transverse direction
  • an anisotropy (MD elastic modulus / TD elastic modulus) of the longitudinal elastic modulus and the width modulus of 1.5 to 10.0 can be produced.
  • An electrospinning solution was prepared by dissolving PVdF in dimethylacetamide at a concentration of 18% (w / w).
  • the viscosity of the electrospinning solution was 3000 cP.
  • the electrospinning solution was electrospun by using the electrospinning device of FIG. 4 at a voltage of 60 kV and a discharge rate of 20 cc / min to prepare a nanomembrane.
  • the nano-membrane, the double-sided tape and the protective substrate were continuously introduced to adhere the lower surface of the double-sided tape to the upper surface of the nanomembrane, and the protective substrate was joined. Then, a waterproof breathable sheet was prepared by passing through a mold having a constant pressure and speed and cut to a certain size.
  • a waterproof breathable sheet was prepared in the same manner as in Example 1-1, except that the concentration, viscosity and electrospinning conditions of the electrospun solution in Example 1-1 were changed as shown in Table 1 below.
  • An electrospinning solution was prepared by dissolving PVdF at a concentration of 18% (w / w) in a mixture of dimethylformamide and acetone (DMF 50%: acetone 50%, w / w)
  • the viscosity of the electrospinning solution was 450 cP.
  • a waterproof breathable sheet was prepared in the same manner as in Example 1-1, except that the electrospinning solution was changed to the composition, viscosity and electrospinning conditions in Example 1-1 as shown in Table 1 below.
  • a waterproof breathable sheet was prepared in the same manner as in Example 1-1, except that the concentration, viscosity and electrospinning conditions of the electrospun solution in Example 1-1 were changed as shown in Table 1 below.
  • the diameters, thickness, pore size, porosity, basis weight, and pore size distribution of the nanofibers of the nanomembranes prepared in the above Examples and Comparative Examples were measured and shown in Table 2 below, and the air permeability, Water repellency and elastic modulus were measured and shown in Table 3 below.
  • the pore size and the pore distribution of the nanomembrane were measured by using a capillary flow porometer (CFP) specified in ASTM F316 to calculate the average pore size and the size of the pores in the diameter of the pores of the pore size in the narrowest interval The distribution was measured.
  • CFP capillary flow porometer
  • the thickness of the nanomembrane was measured by the thickness measurement method specified in KS K 0506 or KS K ISO 9073-2, ISO 4593.
  • the basis weight of the nanomembrane was measured by applying ASTM D 3776.
  • the porosity of the nanomembrane was measured according to Equation (1).
  • the size distribution of the pores of the nanomembrane is selected by selecting one pore existing within a unit area (cm 2 ) randomly selected from one surface of the nanomembrane and 100 pores excluding the one pore, The number of pores of 100 nm or more was measured.
  • the air permeability of the nanomembrane was measured using an ASTM D 737 method under the conditions of an area of 38 cm 2 and a static pressure of 125 Pa.
  • the cm3 / cm2 / s were calculated as ft 3 / ft 2 / min ( CFM).
  • the conversion factor is 0.508016.
  • the water pressure of the nanomembrane was measured by applying pressure of 600 mm H 2 O / min at an area of 100 cm2 by applying the KS K ISO 811 low pressure method to measure the pressure at three points on the water drop.
  • the water repellency of the nanomembrane was measured by the method described in KS K 0590.
  • the sound absorption coefficient was measured by an in-line method sound absorption test (ASTM E 1050-12).
  • the modulus of elasticity of the nanomembrane was measured by measuring the machine direction (MD) and the transverse direction (TD) 10 times using ASTM D 882, and the average value except for the maximum value and the minimum value was used.
  • Example 1-1 0.3 to 2.0 20 0.5 to 5 6.27 83 90/100 Examples 1-2 0.3 to 3.0 35 0.1 to 1 13 80 20/100 Example 1-3 0.1 to 1.0 18 0.1 to 2 6.0 81 60/100 Examples 1-4 0.1 to 0.7 21 0.1 to 3 7.0 82 70/100 Comparative Example 1-1 2.0 to 5.0 35 2 to 10 25 60 9/100 Comparative Example 1-2 0.1 to 0.3 2 0.01 to 0.05 1.2 7 1/100
  • Example 1-1 7.01 5,600 4-5 0.01 194 Examples 1-2 6.87 5,270 4th grade 0.08 220 Example 1-3 3.04 12,820 5th grade 0.02 65 Examples 1-4 1.97 11,480 5th grade 0.01 200 Comparative Example 1-1 9.01 1,450 1st grade 0.32 67 Comparative Example 1-2 0.09 700 1st grade 0.51 10
  • the examples 1-1 to 1-4 show that the absorption coefficient is lowered by controlling the microstructure of the nanomembrane, that is, the diameter, thickness and size distribution of the nanofiber, have.
  • the acoustic transmission loss of the waterproof breathable sheet was evaluated by the acoustic transmission loss test. Specifically, the acoustic transmission loss was evaluated by applying (ASTM E 2611-09).
  • the waterproofness of the waterproof breathable sheet was measured using a water pressure meter capable of applying a constant water pressure of 0 m to 20 m depth used in KS K ISO 811 for a predetermined time.
  • the sample was pretreated at -20 ° C for 72 hours and then evaluated. After the pretreatment at 50 ° C and 95% humidity for 72 hours, the samples were evaluated at a temperature of -40 ° C and 85 ° C Were kept for 1 hour, respectively, and the cycle was repeated 30 times and then evaluated under the conditions of room temperature (20 DEG C +/- 5 DEG C).
  • the air permeability of the waterproof ventilation sheet was measured by a gas permeability method of a capillary flow porometer (CFP) using a flow rate of air passing through a 1 mm diameter circular area for 1 minute under 1 PSI pressure.
  • CFP capillary flow porometer
  • the acoustic transmission loss was less than 10 dB and the waterproofing waterproof property (normal temperature, low temperature, high temperature / high humidity, thermal shock)
  • the acoustic transmission loss was 10 dB or more
  • the waterproof and waterproof property room temperature, low temperature, and high temperature
  • the waterproof and waterproof property was not less than 20 cc / min (@ 1 PSI) High temperature / high humidity, thermal shock) leaked even at a water pressure of 1.5 m.
  • An electrospinning solution was prepared by dissolving PVdF in dimethylacetamide at a concentration of 15% (w / w).
  • the viscosity of the electrospinning solution was 2000 cP.
  • the electrospun solution was electrospun using the electrospinning device of FIG. 4 under the conditions of a voltage of 55 kV and a discharge rate of 5 cc / min to prepare a nanoweb.
  • the silicone water repellent was diluted with water to a concentration of 1% to prepare a solution for forming a water repellent coating layer having a viscosity of 30 cP.
  • the prepared solution was sprayed onto the surface of the prepared nanomembrane by spraying to give a weight of 0.15 g / m 2. And then dried in an oven at 80 DEG C for 3 minutes to prepare a nanomembrane.
  • the nanomembrane, the double-sided adhesive tape and the protective substrate were continuously charged to adhere the lower surface of the double-sided adhesive tape to the upper surface of the nanomembrane, and the protective substrate was laminated. Then, a waterproof breathable sheet was produced by passing through a mold having a constant pressure and speed and casting to a certain size.
  • a waterproof breathable sheet was prepared in the same manner as in Example 2-1, except that the concentration, viscosity, electrospinning condition, and water repellent agent application amount of the electrospun solution in Example 2-1 were changed as shown in Table 5 below .
  • Example 2-1 Except that the silicone water-repellent layer was formed in Example 2-1, the concentration, viscosity, and electrospinning conditions of the electrospinning solution were carried out in the same manner to prepare a water-permeable ventilating sheet.
  • Example 2-1 15 2000 55 5 0.15
  • Example 2-2 20 5000 60 5 0.15
  • Example 2-3 15 2000 55 5 0.5
  • Examples 2-4 20 5000 60 5 0.5 Comparative Example 2-1 15 2000 55 5 0
  • Comparative Example 2-2 20 5000 60 5 0
  • the diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembranes prepared in the above Examples and Comparative Examples were measured and shown in Table 6 below.
  • the nanofiber nanofibers were measured for air permeability, water pressure, water repellency, The results are shown in Table 7 below.
  • the method for measuring the diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembrane and the air permeability, water pressure, water repellency, and elastic modulus of the nanomembrane are the same as in Experimental Example 1-1.
  • Example 2-1 0.1 to 1 15 0.7 to 1.5 7.1 73.6
  • Example 2-2 0.16 to 1.8 16 0.5 to 1.2 7.2 74.9
  • Example 2-3 0.15 to 1.5 16 0.5 to 1.3 7.7 73.1
  • Examples 2-4 0.2 to 2 17 0.3 to 1.0 7.8 74.4 Comparative Example 2-1 0.08 to 1 15 0.7 to 1.5 6.9 74.3
  • Comparative Example 2-2 0.16 to 2 16 0.5 to 1.2 7.3 74.3
  • the microstructure of the nanomembrane that is, the diameter and thickness of the nanofiber, was controlled according to the concentration of the polymer, and the permeability was maintained according to the amount of the water repellent applied The water repellency performance is improved.
  • the acoustic transmission loss, waterproofing waterproofness (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet produced in the above Examples and Comparative Examples were measured and shown in Table 8 below.
  • the method of measuring acoustic transmission loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet is the same as in Experimental Example 1-2.
  • Example 2-1 0.3 4m, 100mins 4m, 80 min 4m, 60 minutes 4m, 80 min 60 to 70
  • Example 2-3 0.4 4m, 150 min 4m, 120 minutes 4m, 100mins 4m, 120 minutes 50 to 60
  • Examples 2-4 0.5 4m, 150 min 4m, 120 minutes 4m, 100mins 4m, 120 minutes 50 to 60
  • Comparative Example 2-1 0.2 4m, 3 minutes 4m, 2 min 4m, 0 min 4m, 3 minutes 60 to 70
  • Comparative Example 2-2 0.3 4m, 5mins 4m, 2 min 4m, 0 min 4m, 2 min 60 to 70
  • the acoustic transmission loss was less than 10 dB and the waterproofing waterproof property (normal temperature, low temperature, high temperature / high humidity, thermal shock) And the air permeability is not less than 20 cc / min (@ 1 PSI).
  • the acoustic permeation loss and air permeability are similar to those in Examples 2-1 to 2-2 Similar water pressure (water temperature, low temperature, high temperature / high humidity, thermal shock) leaked even at a water pressure of 4 m.
  • Examples 2-1 to 2-4 polyvinylidene fluoride was electrospun to control the microstructure of the nanomembrane by controlling the electrospinning conditions during production, thereby improving the waterproofing and waterproofing properties, It is understood that a waterproof ventilation sheet having almost no acoustic transmission loss is produced.
  • the viscosity of the electrospinning solution containing the water-repellent oil additive was 3000 cP.
  • the electrospinning solution was electrospun using the electrospinning device of FIG. 4 under the conditions of a voltage of 50 kV and a discharge rate of 6 cc / min to prepare a nanomembrane.
  • the nanomembrane, the double-sided tape and the protective substrate were continuously charged, and the lower surface of the double-sided tape was bonded to the upper surface of the nanomembrane and the protective substrate was laminated. Then, a waterproof breathable sheet was produced by passing through a mold having a constant pressure and speed and casting to a certain size.
  • a waterproof breathable sheet was prepared in the same manner as in Example 3-1, except that the concentration, viscosity, and electrospinning conditions of the electrospun solution in Example 3-1 were changed as shown in Table 9 below.
  • Example 3-1 the same as Example 3-1, except that the water-and-oil additive was not used, and the concentration, viscosity, and electrospinning conditions of the electrospinning solution were changed as shown in Table 9 below To prepare a waterproof ventilation sheet.
  • the diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembrane prepared in the above Examples and Comparative Examples were measured and shown in Table 10 below.
  • the nanofiber nanofibers were measured for air permeability, water pressure, water repellency, The results are shown in Table 11 below.
  • the method for measuring the diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembrane and the air permeability, water pressure, water repellency, and elastic modulus of the nanomembrane are the same as in Experimental Example 1-1.
  • Example 3-1 0.15 to 1 15 0.5 to 1.5 7 73.9
  • Example 3-2 0.5 to 2 17 0.3 to 1.2 7.6 75
  • Example 3-3 0.1 to 0.8 13 0.7 to 1.5 6 74.2 Comparative Example 3-1 0.15 to 1 15 0.6 to 1.5 6.9 74.3
  • Example 3-1 3.1 10000 4-5 69 133
  • Example 3-2 2.7 9000 4-5 82 131
  • Example 3-3 3.4 11000 5th grade 57 140 Comparative Example 3-1 3.0 7000 4th grade 70 122
  • Examples 3-1 to 3-3 and Comparative Example 3-1 show the nanostructure microstructure at the concentration of the fluoropolymer and the water-repellent oil additive, that is, the diameter of the nanofiber, , Pore size and so on, while keeping the air permeability as it is, it is confirmed that there is a difference between the waterproof performance and the water repellency according to the presence or absence of the water and oil additive.
  • the acoustic permeation loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet produced in the above Examples and Comparative Examples are shown in Table 12 below.
  • the method of measuring acoustic transmission loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet is the same as in Experimental Example 1-2.
  • Example 3-1 0.2 4m, 100mins 4m, 80 min 4m, 50 min 4m, 80 min 60 to 70
  • Example 3-3 0.1 4m, 120 minutes 4m, 100mins 4m, 70mins 4m, 100mins 60 to 70 Comparative Example 3-1 0.2 4m, 3 minutes 4m, 2 min 4m, 0 min 4m, 3 minutes 60 to 70
  • the acoustic transmission loss was less than 10 dB and the waterproofing waterproof property (normal temperature, low temperature, high temperature / high humidity, thermal shock)
  • the acoustic transmission loss is similar, but the waterproofing performance at the room temperature, the low temperature, the high temperature / high humidity, and the thermal shock performance is similar. Is low.
  • the polyvinylidene fluoride and the water-repellent oil additive are electrospun to control the microstructure of the nanomembrane by adjusting the concentration of the spinning solution during the production,
  • the waterproof breathable sheet having improved waterproofness, waterproofness and breathability, and water repellent oil additive were further improved.
  • An electrospinning solution was prepared by dissolving PVdF in dimethylacetamide at a concentration of 18% (w / w).
  • the viscosity of the electrospinning solution was 3000 cP.
  • the electrospinning solution was electrospun by using the electrospinning device of FIG. 4 at a voltage of 60 kV and a discharge rate of 20 cc / min to prepare a nanomembrane.
  • the nanomembrane was uniaxially stretched in the machine direction by adjusting the winding speed of the nanomembrane to 5.0 m / min and controlling the TR speed to 0.8 m / min.
  • the nano-membrane, the double-sided tape and the protective substrate were continuously introduced to adhere the lower surface of the double-sided tape to the upper surface of the nanomembrane, and the protective substrate was joined. Then, a waterproof breathable sheet was prepared by passing through a mold having a constant pressure and speed and cut to a certain size.
  • a waterproof breathable sheet was prepared in the same manner as in Example 4-1, except that the preparation conditions of the nanomembrane in Example 4-1 were changed as shown in Table 13 below.
  • a waterproof breathable sheet was prepared in the same manner as in Example 4-1, except that the biaxial orientation of the nanomembrane was adjusted to 1.05: 1.0 by controlling the ratio of the winding speed of the nanomembrane to the TR speed Respectively.
  • Example 4-1 18 3000 60 20 6.25
  • Example 4-2 13 1000 55 20 7.75
  • Example 4-3 10 800 70 50 10.25 Comparative Example 4-1 35 12000 85 0.01 1.05
  • the pores of the nanomembrane prepared in Example 4-1 have an aspect ratio (SD) of the smallest diameter (SD) of the pore to the longest diameter (LD) of the pore, : LD) is 1: 2 to 1: 50, and the longest diameter (LD) of the pores is oriented in a direction parallel to the longitudinal direction of the nanomembrane.
  • SD aspect ratio
  • LD longest diameter
  • the pores of the nanomembrane prepared in Comparative Example 4-1 had an aspect ratio (SD: LD) of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores of 1: 1: 1.5, and it can be observed that the longest diameter (LD) of the pores is randomly oriented.
  • the thickness, the basis weight, the longitudinal direction elastic modulus, the lateral direction elastic modulus and anisotropy of the nanomembrane prepared in the above Examples and Comparative Examples were measured and shown in Table 14 below.
  • the results are shown in Table 14.
  • the air permeability, water pressure, porosity, The absorption coefficient was measured and is shown in Table 15 below.
  • the thickness of the nanomembrane was measured by the thickness measurement method specified in KS K 0506 or KS K ISO 9073-2, ISO 4593.
  • the basis weight of the nanomembrane was measured by applying ASTM D 3776.
  • the modulus of elasticity of the nanomembrane was measured by measuring the machine direction (MD) and the transverse direction (TD) 10 times using ASTM D 882, and the average value except for the maximum value and the minimum value was used.
  • the air permeability of the nanomembrane was measured using an ASTM D 737 method under the conditions of an area of 38 cm 2 and a static pressure of 125 Pa.
  • the cm3 / cm2 / s were calculated as ft 3 / ft 2 / min ( CFM).
  • the conversion factor is 0.508016.
  • the water pressure of the nanomembrane was measured by applying pressure of 600 mm H 2 O / min at an area of 100 cm2 by applying the KS K ISO 811 low pressure method to measure the pressure at three points on the water drop.
  • the porosity of the nanomembrane was measured according to Equation (1).
  • the water repellency of the nanomembrane was measured by the method described in KS K 0590.
  • the sound absorption coefficient was measured by an in-line method sound absorption test (ASTM E 1050-12).
  • Example 4-1 20 6.27 194 31.5 6.2 spurn
  • Example 4-2 35 13 220 26 8.5 spurn
  • Example 4-3 18 6.0 65 8.9 7.3 spurn Comparative Example 4-1 35 25 67 62 1.1 Binocular
  • Example 4-1 7.01 5,600 83 4-5 0.01
  • Example 4-2 6.87 5,270 80 4th grade 0.08
  • Example 4-3 3.04 12,820 81 5th grade 0.02 Comparative Example 4-1 9.01 1,450 60 1st grade 0.32
  • Examples 4-1 to 4-3 lowered the absorption coefficient by controlling the microstructure of the nanofibers of the nanomembrane, particularly the orientation of the nanofibers.
  • the method of measuring acoustic transmission loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet is the same as in Experimental Example 1-2.
  • Example 4-1 2 4m, 50 min 4m, 50 min 4m, 45 minutes 4m, 45 minutes 120
  • Example 4-2 3 4m, 80 min 4m, 75mins 4m, 60 minutes 4m, 60 minutes 100
  • Example 4-3 0.1 6 m, 300 min 6 m, 300 min 6m, 250 min 6m, 280m 80 Comparative Example 4-1 10 1.5m, 3 minutes 1.5m, 3 minutes 1.5m, 1 minute 1.5m, 2 minutes 160
  • the acoustic transmission loss was less than 10 dB, the waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock)
  • the acoustic transmission loss is not less than 10 dB and the waterproof and waterproof property (room temperature, low temperature, high temperature / high humidity, Thermal shock) leaked even at a water pressure of 1.5 m.
  • Examples 4-1 to 4-3 polyvinylidene fluoride is electrospun and uniaxially aligned during manufacture to control the microstructure of the nanomembrane, particularly the orientation of the nanofibers, A waterproof ventilation sheet having excellent waterproofing and waterproofing properties and air permeability was produced.
  • nanofiber 12 water repellent coating layer
  • peripheral portion 20b central portion
  • the present invention relates to a waterproof breathable sheet and a method of manufacturing the same, wherein the waterproof breathable sheet is used for controlling the microstructure of the nanomembrane, that is, controlling the diameter, thickness and size distribution of the nanofiber or controlling the orientation of the nanofiber , Suppressing sound absorption and diffuse reflection, lowering the sound absorption coefficient, forming a water repellent coating layer on the nanomembrane to improve waterproof, dustproof and anti-fouling performance, lowering the acoustic transmission loss measurement value,
  • the water resistance is further improved, and the elastic modulus and strength of the nanomembrane are improved, thereby increasing the resistance to pressure deformation due to the water pressure applied during the water pressure, thereby improving the water pressure.
  • the waterproof ventilation sheet is used in various electronic apparatuses such as mobile apparatuses, electronic apparatuses such as hearing aids, communication apparatuses such as radio transmitters, automobile head lamps, and the like, thereby imparting air permeability to the electronic apparatuses, And waterproof to prevent penetration of water / liquid into the electronic device and dustproof to prevent contamination / dust penetration can be given to the electronic device.

Abstract

The present invention relates to a waterproof ventilation sheet and a manufacturing method therefor, and the waterproof ventilation sheet comprises a nanomembrane, in which nanofibers are integrated in a non-woven fabric form including a plurality of pores, the waterproof ventilation sheet has a waterproof property against water pressure without leaking for 30 minutes or more under a water pressure of 1.5 m or more at a room temperature (20°C ± 5°C), and a sound transmission loss is less than 10 dB at 1000 Hz. The waterproof ventilation sheet controls a fine structure of a nanomembrane or orientation of a nanofiber so as to suppress absorption and diffused reflection of sound and to lower a sound absorption coefficient, improves waterproof, dustproof, and antifouling performance by forming a water repellent coating layer in the nanomembrane, resolves sound distortion by lowering a sound transmission loss measurement value, improves more a waterproof property by further including water repellent and oil repellent additives, and improves resistance to water pressure by improving the modulus of elasticity and strength of the nanomembrane and having great resistance to pressure strain caused by applied water pressure during resistance to water pressure.

Description

방수성 통기 시트 및 이의 제조 방법Waterproof breathable sheet and manufacturing method thereof
본 발명은 방수성 통기 시트 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 음(音, sound)의 흡수와 난반사를 억제하고 흡음 계수를 낮춤으로써 음향의 왜곡이 해소된 방수성 통기 시트 및 이의 제조 방법에 관한 것이다.The present invention relates to a waterproof breathable sheet and a method of manufacturing the same. More particularly, the present invention relates to a waterproof breathable sheet in which acoustic distortion is resolved by suppressing absorption and diffuse reflection of a sound and lowering a sound absorption coefficient, .
모바일 기기, 보청기 등의 전자 기기, 무전기 등의 통신 장비, 자동차 헤드램프 등의 다양한 전자 기기에서는, 상기 전자 기기에 통기성을 부여하여 상기 전자 기기 내부/외부의 압력 평형을 유지시키는 동시에, 상기 전자 기기 내부로 물/액체의 침투를 방지하는 방수 성능(waterproof)과 오염/먼지 등의 침투를 방지하는 방진 성능(dustproof)을 동시에 요구하고 있다. 이에, 상기 전자 기기들은 방수/방진성과 통기성을 모두 가지는 방수성 통기 시트를 포함하고 있다.In a variety of electronic devices such as mobile devices and hearing aids, communication devices such as radio transmitters, automobile head lamps, etc., permeability is imparted to the electronic devices to maintain pressure balance inside / outside the electronic devices, Waterproof to prevent penetration of water / liquid into the inside, and dustproof to prevent contamination / dust penetration. Accordingly, the electronic devices include a waterproof ventilation sheet having both waterproof / dustproof and air permeability.
특히, 상기 모바일 기기와 같은 전자 기기는 다양한 성능과 기능이 추가되고 이에 따라 사용 빈도가 잦아지고 있어 다양한 환경에서 방수/방진 기능뿐만 아니라 소리를 왜곡 없이 원음에 가까운 형태로 전달시키는 음향(Acoustic) 성능도 함께 요구되고 있다.Particularly, electronic devices such as mobile devices have various performance and functions, and thus frequency of use has been increased. As a result, not only waterproof / dustproof functions in various environments, but also acoustic performance Are also required.
본 발명의 목적은 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께, 기공의 크기 분포 등을 제어하거나, 또는 나노 섬유의 배향성을 제어하여, 음의 흡수와 난반사를 억제하고 흡음 계수를 낮추며, 나노 멤브레인에 발수성 코팅층을 형성하여 방수, 방진 및 방오 성능을 향상시키고, 음향 투과 손실 측정값을 낮춤으로써 음향의 왜곡이 해소되며, 발수발유 첨가제를 더 포함함으로써 방수성이 더욱 향상되고, 나노 멤브레인의 탄성률과 강도를 개선하여 내수압시 인가되는 수압에 의한 압력 변형에 대한 저항성이 커져 내수압이 향상된 방수성 통기 시트를 제공하는 것이다.It is an object of the present invention to provide a method of controlling nanostructures of a nanomembrane, that is, controlling the diameter, thickness, pore size distribution, By forming a water repellent coating layer on the nanomembrane to improve the waterproof, dustproof and anti-fouling performance, and by reducing the measured value of the acoustic transmission loss, the distortion of the sound is eliminated and the waterproofing property is further improved by further including the water- A waterproof breathable sheet having improved resistance to pressure deformation due to water pressure applied during water pressure resistance by improving elasticity and strength and improved water pressure.
본 발명의 또 다른 목적은 폴리비닐리덴 플루오라이드를 전기 방사하여 제조되며, 이때 상기 전기 방사 조건을 조절하거나 상기 전기 방사 조건과 발수성 코팅층 형성용 조성물의 점도를 적절히 조절하여 상기 나노 멤브레인의 미세 구조를 조절하거나, 상기 전기 방사하여 제조된 나노 멤브레인을 일축 배향시킴으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수하고, 롤투롤 공정시 안정성 및 사용성을 강화할 수 있는 방수성 통기 시트를 제조할 수 있는 방수성 통기 시트의 제조 방법을 제공하는 것이다.It is still another object of the present invention to provide a nanofiltration membrane that is prepared by electrospinning polyvinylidene fluoride, wherein the electrospinning conditions are controlled or the microstructure of the nanomembrane is adjusted by appropriately adjusting the electrospinning conditions and the composition for forming the water- A water permeable ventilation sheet which is excellent in water permeability and water permeability and can enhance stability and usability in a roll-to-roll process can be manufactured by uniaxially orienting the nanofiber prepared by the above-mentioned electrospinning process And to provide a method of manufacturing a waterproof breathable sheet.
본 발명의 일 실시예에 따르면, 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며, 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만인 방수성 통기 시트를 제공한다.According to an embodiment of the present invention, there is provided a nanofiber comprising a nanomembrane in which nanofibers are integrated in the form of a nonwoven fabric including a plurality of pores, wherein the nanofiber has a normal temperature (20 DEG C +/- 5 DEG C) Provides a waterproof breathable sheet that is waterproof and has an acoustic transmission loss of less than 10 dB at 1000 Hz.
상기 나노 멤브레인은 상기 나노 섬유들의 직경이 50 nm 내지 3000 nm이고, 두께가 3 ㎛ 내지 40 ㎛이고, 기공 크기가 0.1 ㎛ 내지 5 ㎛, 기공도가 40 % 내지 90 %일 수 있다.The nanofiber may have a diameter of 50 nm to 3000 nm, a thickness of 3 to 40 탆, a pore size of 0.1 to 5 탆, and a porosity of 40 to 90%.
상기 나노 멤브레인은 상기 나노 섬유가 불규칙적으로 배향 및 적층되어 상기 기공의 크기 분포가 불규칙적이고, 상기 불규칙적인 기공의 크기 분포는 상기 나노 멤브레인의 단위 면적(cm2) 당 기공의 크기 차이가 100 nm 이상인 기공이 발견될 확률이 10/100 이상일 수 있다.Wherein the nanomembrane has irregular size distribution of the pores so that the nanofibers are irregularly aligned and laminated, and the size distribution of the irregular pores is 100 nm or more in the size difference of the pores per unit area (cm 2 ) of the nanomembrane The probability of finding pores can be over 10/100.
상기 나노 섬유의 표면은 발수성 코팅층을 포함할 수 있다.The surface of the nanofibers may include a water repellent coating layer.
상기 나노 섬유는 플루오르폴리머 100 중량부 및 발수발유 첨가제 1 중량부 내지 50 중량부를 포함할 수 있다.The nanofibers may include 100 parts by weight of a fluoropolymer and 1 to 50 parts by weight of a water-repellent oil additive.
상기 나노 멤브레인은 길이 방향(machine direction, MD) 탄성률과 폭 방향(transverse direction, TD) 탄성률의 이방성(MD 탄성률/TD 탄성률)이 1.5 내지 10.0일 수 있다.The nanomembrane may have an anisotropy (MD elastic modulus / TD elastic modulus) in a machine direction (MD) and a transverse direction (TD) of 1.5 to 10.0.
상기 나노 멤브레인은 상기 기공의 가장 긴 직경(LD)에 대한 상기 기공의 가장 작은 직경(SD)의 어스펙트비(SD:LD)가 2 내지 50인 일자(1자) 형상을 가지고, 상기 기공의 가장 긴 직경(LD)이 상기 나노 멤브레인의 길이 방향과 평행한 방향으로 배향된 것일 수 있다.The nanomembrane has a shape (1 character) of 2 to 50 in aspect ratio (SD: LD) of the smallest diameter (SD) of the pore with respect to the longest diameter (LD) of the pore, And the longest diameter (LD) may be oriented in a direction parallel to the longitudinal direction of the nanomembrane.
상기 나노 멤브레인의 흡음 계수가 1000 Hz에서 0.2 미만이고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이고, 상기 나노 멤브레인은 공기 투과도가 0.1 CFM 내지 20 CFM이고 내수압이 3000 ㎜H2O 이상이고, 발수 등급이 4 급 이상이고, 탄성률이 1 MPa 내지 1000 MPa이고, 평량이 0.5 g/㎡ 내지 20 g/㎡일 수 있다.Wherein the nanomembrane has an absorption coefficient of less than 0.2 at 1000 Hz and an acoustic transmission loss of less than 10 dB at 1000 Hz, the nanomembrane has an air permeability of 0.1 CFM to 20 CFM, a water pressure of 3000 mmH 2 O or more, A grade of 4 or more, a modulus of elasticity of 1 MPa to 1000 MPa, and a basis weight of 0.5 g / m 2 to 20 g / m 2.
상기 방수성 통기 시트는 수압 방수성이 저온 조건(-20 ℃, 72 시간 유지한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상 누수되지 않고, 고온/고습 조건(50 ℃, 습도 95 %, 72 시간 유지한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상 누수되지 않고, 열충격 조건(-40 ℃, 85 ℃를 각각 1 시간 동안 유지하는 한 사이클을 30 사이클 반복한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 것이고, 상기 방수성 통기 시트는 통기성이 20 cc/min(@1 PSI) 이상일 수 있다.The waterproof ventilation sheet was subjected to high temperature / high humidity conditions (50 DEG C, 95% humidity, 72 hours, no water leaks for at least 30 minutes at a water pressure of 1.5 m or more in the case of waterproof waterproof property at low temperature (Measured after repeating 30 cycles of one cycle maintaining -40 ° C and 85 ° C for 1 hour respectively) without leaking at a water pressure of 1.5 m or more for 30 minutes or more and 1.5 m or more And the waterproof ventilation sheet may have a breathability of 20 cc / min (@ 1 PSI) or more.
상기 나노 섬유는 폴리비닐리덴 플루오라이드(PVdF, polyvinylidene difluoride)로 이루어질 수 있다.The nanofibers may be made of polyvinylidene difluoride (PVdF).
본 발명의 다른 일 실시예에 따르면, 전기 방사 용액을 제조하는 단계, 그리고 상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 제조하는 단계를 포함하는 방수성 통기 시트의 제조 방법을 제공한다. 상기 방수성 통기 시트의 제조 방법에 의하면 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만인 방수성 통기 시트를 제조할 수 있다.According to another embodiment of the present invention, there is provided a method of manufacturing a nanostructure, comprising the steps of: preparing an electrospinning solution; and electrospinning the prepared electrospinning solution to produce a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores The present invention also provides a method of manufacturing a waterproof ventilation sheet. According to the method for producing a waterproof breathable sheet, a waterproof breathable sheet having a waterproofing and waterproofing property that does not leak at a normal temperature (20 ° C ± 5 ° C) and a water pressure of 1.5 m or more for 30 minutes or more and an acoustic transmission loss of less than 10 dB at 1000 Hz .
상기 전기 방사 용액의 농도는 5 % 내지 35 %이고, 점도는 100 cP 내지 10000 cP이고, 상기 전기 방사 조건은 전압이 0 kV 내지 100 kV이고, 토출량이 0.01 cc/min 내지 100 cc/min일 수 있다.Wherein the concentration of the electrospinning solution is 5% to 35%, the viscosity is 100 cP to 10000 cP, the electrospinning condition is a voltage of 0 kV to 100 kV and a discharge amount of 0.01 cc / min to 100 cc / min have.
상기 방수성 통기 시트의 제조 방법은 상기 나노 섬유 표면에 발수성 코팅층 형성 단계를 더 포함할 수 있다.The method of manufacturing the waterproof breathable sheet may further include forming a water repellent coating layer on the surface of the nanofibers.
상기 전기 방사 용액은 플루오르폴리머 100 중량부, 발수발유 첨가제 1 중량부 내지 50 중량부 및 용매 250 중량부 내지 2000 중량부를 포함할 수 있다.The electrospinning solution may include 100 parts by weight of a fluoropolymer, 1 to 50 parts by weight of a water-repellent oil additive, and 250 to 2000 parts by weight of a solvent.
상기 방수성 통기 시트의 제조 방법은 상기 나노 멤브레인을 일축 배향시키는 단계를 더 포함할 수 있다.The method for manufacturing the waterproof breathable sheet may further include uniaxially orienting the nanomembrane.
상기 나노 멤브레인을 일축 배향시키는 단계는 상기 나노 멤브레인의 폭 방향에 비하여 상기 길이 방향에 1.5 배 내지 20 배의 장력을 인가하여 이루어질 수 있다.The uniaxial orientation of the nanomembrane may be performed by applying a tensile force of 1.5 to 20 times the longitudinal direction of the nanomembrane as compared to the width direction of the nanomembrane.
상기 나노 멤브레인을 일축 배향시키는 단계는 상기 나노 멤브레인의 권취 속도를 0.01 m/min 내지 20 m/min로 조절하고, TR(traverse) 속도를 0.001 m/min 내지 10 m/min로 조절하여 이루어질 수 있다.The uniaxial orientation of the nanomembrane may be controlled by controlling the winding speed of the nanomembrane to 0.01 m / min to 20 m / min and the TR (traverse) rate to 0.001 m / min to 10 m / min .
본 발명의 방수성 통기 시트는 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께, 기공의 크기 분포 등을 제어하여 음의 흡수와 난반사를 억제하고 흡음 계수를 낮춤으로써 음향의 왜곡이 해소된 것이다.The waterproof breathable sheet according to the present invention is able to control the microstructure of the nanomembrane, that is, the diameter, thickness and pore size distribution of the nanofiber, thereby suppressing sound absorption and diffuse reflection, and lowering the sound absorption coefficient.
또한, 본 발명의 방수성 통기 시트는 나노 멤브레인에 발수성 코팅층을 형성하여 방수, 방진 및 방오 성능을 향상시키고, 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께, 기공의 크기 등을 제어하여 음의 흡수와 난반사를 억제하고 음향 투과 손실 측정값을 낮춤으로써 음향의 왜곡이 해소된 것이다.Further, the waterproof breathable sheet of the present invention can improve the waterproof, dustproof and anti-fouling performance by forming a water repellent coating layer on the nanomembrane, and control the microstructure of the nanomembrane, that is, the diameter, thickness, By suppressing absorption and diffuse reflection and lowering the acoustic transmission loss measurement, distortion of the sound is resolved.
또한, 본 발명의 방수성 통기 시트는 나노 멤브레인의 미세 구조를 제어하여 음의 흡수와 난반사를 억제하고 음향투과 손실 측정값을 낮춤으로써 음향의 왜곡을 해소하고, 상기 나노 멤브레인의 탄성률과 강도를 개선하여 내수압시 인가되는 수압에 의한 압력 변형에 대한 저항성이 커져 내수압이 향상되고, 발수발유 첨가제를 더 포함함으로써 발수성 및 발유성이 더욱 향상된다.Further, the waterproof breathable sheet of the present invention controls the microstructure of the nanomembrane to suppress sound absorption and diffuse reflection and lower the measured value of acoustic transmission loss, thereby eliminating sound distortion, improving the elastic modulus and strength of the nanomembrane Resistance to pressure deformation due to water pressure applied during water pressure is increased to improve water pressure, and water repellency and oil repellency are further improved by further including a water-repellent oil additive.
또한, 본 발명의 방수성 통기 시트는 나노 멤브레인의 나노 섬유의 미세 구조, 특히 나노 섬유의 배향성을 제어함으로써, 음의 흡수와 난반사를 억제하고 흡음 계수를 낮춰 음향의 왜곡을 해소하고, 상기 나노 멤브레인의 탄성률과 강도를 개선하여 내수압시 인가되는 수압에 의한 압력 변형에 대한 저항성이 커져 내수압이 향상된다.The waterproof breathable sheet of the present invention controls the microstructure of the nanofiber of the nanomembrane, in particular, the orientation of the nanofiber, thereby suppressing sound absorption and diffusing reflection, lowering the absorption coefficient to eliminate sound distortion, The elastic modulus and strength are improved, resistance to pressure deformation due to water pressure applied during water pressure increase, and water pressure is improved.
또한, 본 발명의 방수성 통기 시트의 제조 방법은 폴리비닐리덴 플루오라이드를 전기 방사하여 제조되며, 이때 상기 전기 방사 조건을 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있다.The method for producing a waterproof breathable sheet according to the present invention is manufactured by electrospinning polyvinylidene fluoride. In this case, by controlling the electrospinning conditions to control the microstructure of the nanomembrane, A waterproof ventilation sheet excellent in water resistance and air permeability can be produced.
또한, 본 발명의 방수성 통기 시트의 제조 방법은 폴리비닐리덴 플루오라이드를 전기 방사한 후 발수성 코팅층 형성용 조성물을 도포하여 제조되며, 이때 상기 전기 방사 조건과 발수성 코팅층 형성용 조성물의 점도를 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있다.The method for producing a waterproof breathable sheet of the present invention is a method for preparing a breathable air-permeable sheet, which comprises preparing a composition for forming a water-repellent coating layer by electrospinning polyvinylidene fluoride, By controlling the microstructure of the nanomembrane, it is possible to produce a waterproof breathable sheet having excellent water permeability and excellent waterproofing and waterproofing properties.
또한, 본 발명의 방수성 통기 시트의 제조 방법은 폴리비닐리덴 플루오라이드를 전기 방사하여 제조되며, 이때 상기 전기 방사 조건을 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있다.The method for producing a waterproof breathable sheet according to the present invention is manufactured by electrospinning polyvinylidene fluoride. In this case, by controlling the electrospinning conditions to control the microstructure of the nanomembrane, A waterproof ventilation sheet excellent in water resistance and air permeability can be produced.
또한, 본 발명의 방수성 통기 시트의 제조 방법은 폴리비닐리덴 플루오라이드를 전기 방사하여 제조되며, 이때 상기 전기 방사하여 제조된 나노 멤브레인을 일축 배향시켜 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있으며, 롤투롤 공정시 안정성 및 사용성을 강화할 수 있다.In addition, the method for producing a waterproof breathable sheet of the present invention is manufactured by electrospinning polyvinylidene fluoride. In this case, the electrospun nanomembrane is uniaxially oriented to have excellent voicing and waterproofness and water permeability It is possible to manufacture an excellent waterproof ventilation sheet and to enhance stability and usability in a roll-to-roll process.
도 1은 본 발명의 방수성 통기 시트의 일 실시 형태를 모식적으로 나타내는 사시도이다.Fig. 1 is a perspective view schematically showing one embodiment of the waterproof breathable sheet of the present invention. Fig.
도 2는 본 발명의 방수성 통기 시트의 다른 일 실시 형태를 모식적으로 나타내는 사시도이다.2 is a perspective view schematically showing another embodiment of the waterproof breathable sheet of the present invention.
도 3은 수압 방수성을 측정하기 위하여 내수압 측정기에서 사용되는 지그를 모식적으로 나타내는 사시도이다.3 is a perspective view schematically showing a jig used in a water pressure measuring instrument for measuring hydraulic waterproofness.
도 4는 노즐형 전기 방사 장치의 개략도이다.4 is a schematic view of a nozzle-type electrospinning device.
도 5 및 도 6은 각각 본 발명의 실시예 4-1 및 비교예 4-1에서 제조된 나노 멤브레인의 주사 전자 현미경(SEM) 사진이다.5 and 6 are scanning electron microscope (SEM) photographs of the nanomembranes prepared in Example 4-1 and Comparative Example 4-1 of the present invention, respectively.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Further, the embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art.
본 발명의 일 실시예에 따른 방수성 통기 시트는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며, 상기 방수성 통기 시트는 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이다.The waterproof breathable sheet according to an embodiment of the present invention includes a nanofiber in which nanofibers are integrated into a nonwoven fabric including a plurality of pores. The waterproof breathable sheet has a normal temperature (20 DEG C +/- 5 DEG C) , And the acoustic transmission loss is less than 10 dB at 1000 Hz.
도 1은 본 발명의 방수성 통기 시트의 일 실시 형태를 모식적으로 나타내는 사시도이다. 이하, 도 1을 참고하여 상기 방수성 통기 시트에 대하여 설명한다.Fig. 1 is a perspective view schematically showing one embodiment of the waterproof breathable sheet of the present invention. Fig. Hereinafter, the waterproof breathable sheet will be described with reference to FIG.
상기 도 1을 참고하면, 상기 방수성 통기 시트(100)는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인(10), 및 선택적으로 상기 상기 나노 멤브레인(10)의 일면 또는 양면에 점착층(20)을 더 포함할 수 있다. 또한, 상기 방수성 통기 시트(100)는 상기 도 1에 도시되어 있지 않지만, 상기 나노 멤브레인(10)을 지지하는 지지체(도시하지 않음)를 더 포함할 수도 있다.1, the waterproof ventilation sheet 100 includes a nanomembrane 10 in which nanofibers are integrated in the form of a nonwoven fabric including a plurality of pores, and, optionally, one or both surfaces of the nanomembrane 10 And may further include an adhesive layer 20. 1, the waterproof ventilation sheet 100 may further include a support (not shown) for supporting the nanomembrane 10.
상기 도 1에서 상기 방수성 통기 시트(100)가 원형인 것으로 도시되어 있으나, 본 발명은 이에 한정되지 않고, 상기 방수성 통기 시트(100)는 일 예로 원형, 타원형, 직사각형, 끝이 둥근 직사각형, 다각형, P자 형태 등의 형상일 수 있다.1, the waterproof ventilation sheet 100 is shown as being circular. However, the present invention is not limited thereto, and the waterproof ventilation sheet 100 may have a circular shape, an elliptical shape, a rectangular shape, P-shaped, or the like.
또한, 상기 도 1에서 상기 점착층(20)이 상기 나노 멤브레인(10)의 일면에만 위치하는 것이 도시되어 있으나, 본 발명은 이에 한정되지 않고, 상기 점착층(20)은 상기 나노 멤브레인(10)의 양면에 위치할 수도 있다. 1, the adhesive layer 20 is located only on one surface of the nanomembrane 10, but the present invention is not limited thereto. The adhesive layer 20 may be formed on the surface of the nanomembrane 10, As shown in FIG.
상기 나노 멤브레인(10)은 상기 나노 섬유들에 의해 형성된 다공질 구조에 의해, 물 또는 분진 등의 이물이 통과하는 것을 저지하고, 기체를 투과시키는 특성을 갖는다. 또한, 상기 나노 멤브레인(10)은 소리의 통과를 허용한다. 이로 인해, 상기 방수성 통기 시트(100)는 예를 들어 발음부 또는 수음부를 구비한 전자 기기에 있어서, 그 발음부 또는 수음부에 대응하는 하우징의 통기구에 배치되고, 그 통기구에 통음성, 방수성 및 방진성을 확보하기 위하여 사용될 수 있다.The nanomembrane 10 has a porous structure formed by the nanofibers to prevent foreign matter such as water or dust from passing therethrough and permeate the gas. In addition, the nanomembrane 10 allows passage of sound. Therefore, the waterproof ventilation sheet 100 is, for example, an electronic device having a sounding portion or a sound receiving portion, which is disposed in the ventilation hole of the housing corresponding to the sounding portion or the sound receiving portion, And can be used for ensuring dustproofness.
이를 위하여, 상기 나노 멤브레인(10)은 소수성, 내화학성, 내열성 및 가공 특성이 우수한 폴리머로 이루어질 수 있고, 구체적으로 예를 들면 폴리아미드, 폴리에스테르, 폴리에틸렌 또는 폴리프로필렌와 같은 폴리올레핀, 폴리비닐리덴 플루오라이드(PVdF, polyvinylidene difluoride), 테트라플루오로 에틸렌 헥사플루오로프로필렌 코폴리머(FEP), 테트라플루오로 에틸렌(퍼플루오로 아크릴)비닐 에테르 코폴리머(PFA) 또는 폴리테트라플루오로 에틸렌(PTFE) 등과 같은 플루오르폴리머, 폴리이미드(PI), 폴리에테르이미드(PEI), 폴리아미드이미드(PAI) 등과 같은 폴리이미드폴리머, 폴리에테르설폰(PES), 폴리아크릴로니트릴(PAN) 등으로 이루어질 수 있다. For this purpose, the nanomembrane 10 may be made of a polymer having excellent hydrophobicity, chemical resistance, heat resistance, and processing characteristics, and specifically includes, for example, a polyolefin such as polyamide, polyester, polyethylene or polypropylene, polyvinylidene fluoride Such as polyvinylidene difluoride (PVdF), tetrafluoroethylene hexafluoropropylene copolymer (FEP), tetrafluoroethylene (perfluoroacryl) vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE) A polyimide polymer such as polyimide (PI), polyetherimide (PEI) and polyamideimide (PAI), polyether sulfone (PES), polyacrylonitrile (PAN) and the like.
종래 상기 방수성 통기 시트(100)는 주로 다공성 PTFE 시트를 이용하여 제조되었다. 구체적으로 상기 다공성 PTFE 시트는 PTFE 파인 파우더와 성형 보조제의 혼련물을 압출 성형 및 압연에 의해 시트 형상으로 하고, 형성 보조제를 제거하여 성형체의 시트체를 얻은 후, 이 시트체를 연신함으로써 제조할 수 있다. 그러나, 상기 다공성 PTFE 시트는 시간의 경과나 열에 의해 수축하기 쉽기 때문에, 상기 방수성 통기 시트(100)가 수축하여 상기 점착층(20)이 노출되는 문제가 있다.Conventionally, the waterproof breathable sheet 100 is mainly made of a porous PTFE sheet. Specifically, the porous PTFE sheet can be produced by forming a kneaded product of a PTFE fine powder and a molding auxiliary agent into a sheet by extrusion molding and rolling, removing the forming auxiliary agent to obtain a sheet body of the formed body, and then stretching the sheet body have. However, since the porous PTFE sheet is liable to shrink due to the passage of time and heat, the waterproof breathable sheet 100 shrinks and the adhesive layer 20 is exposed.
이에 따라, 상기 나노 멤브레인(10)은 상기 PVdF를 전기 방사하여 제조된 나노웹인 것이 더 바람직하다. 상기 PVdF는 소수성, 내화학성 및 내열성이 우수하기 때문에 이를 전기 방사하여 제조된 나노 멤브레인(10)은 우수한 수압 방수성 및 통기성을 가질 수 있다.Accordingly, it is preferable that the nanomembrane 10 is a nanoweb fabricated by electrospinning the PVdF. Since the PVdF is excellent in hydrophobicity, chemical resistance, and heat resistance, the nanomembrane 10 manufactured by electrospinning it can have excellent waterproofing and waterproofing properties and air permeability.
다만, 상기 PVdF를 전기 방사하여 제조된 나노웹은 이를 구성하는 나노 섬유가 규칙적으로 배향/적층되어 섬유 내 기공(cavity)이 원형 또는 다각형 형태로 흡음 계수가 높아 통음성이 저하될 수 있다. 이에 본 발명에서는 상기 PVdF를 전기 방사하여 나노웹 제조시 상기 전기 방사 조건을 조절함으로써, 상기 나노 멤브레인(10)의 통기도와 기공의 크기 분포를 조절하고, 이로 인하여 음의 흡수와 난반사를 억제하여 흡음 계수를 낮추어 우수한 통음성을 가지도록 한 것이다.However, the nano-web produced by electrospinning the PVdF may have a poor sound absorption due to the regularly oriented / laminated nanofibers constituting the nanofibers, because the pores in the fiber are circular or polygonal, and the absorption coefficient is high. Accordingly, in the present invention, the PVDF is electrospun to control the electrospinning conditions during the manufacture of nanofibers to adjust the air permeability of the nanomembrane 10 and the size distribution of the pores, thereby suppressing sound absorption and diffuse reflection, The coefficient is lowered so as to have a superior voice.
본 발명의 일 실시예에 따른 방수성 통기 시트는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며, 상기 나노 멤브레인은 상기 나노 섬유들의 직경이 50 nm 내지 3000 nm이고, 두께가 3 ㎛ 내지 40 ㎛이고, 기공 크기가 0.1 ㎛ 내지 5 ㎛, 기공도가 40 % 내지 90 %이다. 상기 방수성 통기 시트는 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이다.The waterproof breathable sheet according to an embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, wherein the nanofiber has a diameter of 50 nm to 3000 nm and a thickness Of 3 mu m to 40 mu m, a pore size of 0.1 mu m to 5 mu m, and a porosity of 40% to 90%. The waterproof ventilation sheet has a waterproofing waterproofing property that does not leak at normal temperature (20 ° C ± 5 ° C), a water pressure of 1.5 m or more for 30 minutes or more, and an acoustic transmission loss of less than 10 dB at 1000 Hz.
상기 나노 멤브레인(10)은 상기 나노 섬유들의 직경이 50 nm 내지 3000 nm이고, 구체적으로 100 nm 내지 2000 nm일 수 있고, 상기 나노 멤브레인(10)의 두께는 3 ㎛ 내지 40 ㎛이고, 구체적으로 5 ㎛ 내지 35 ㎛일 수 있고, 상기 나노 멤브레인(10)의 기공 크기는 0.1 ㎛ 내지 5 ㎛이고, 구체적으로 0.1 ㎛ 내지 4 ㎛일 수 있고, 기공도는 40 % 내지 90 %이고, 구체적으로 60 % 내지 90 %일 수 있고, 상기 나노 멤브레인(10)의 평량이 0.5 g/㎡ 내지 20 g/㎡이고, 구체적으로 1 g/㎡ 내지 15 g/㎡일 수 있다. The nanomembrane 10 may have a diameter of 50 nm to 3000 nm, specifically 100 nm to 2000 nm, and the thickness of the nanomembrane 10 may be 3 to 40 μm, And the pore size of the nanomembrane 10 may be 0.1 to 5 占 퐉, specifically 0.1 to 4 占 퐉, the porosity may be 40 to 90%, specifically 60% To 90%, and the basis weight of the nanomembrane 10 may be 0.5 g / m 2 to 20 g / m 2, specifically 1 g / m 2 to 15 g / m 2.
상기 나노 멤브레인(10)의 기공 크기 및 기공 분포는 ASTM F316에 규정된 모세관 흐름 공극 측정기(capillary flow porometer, CFP)를 사용하여 가장 협소한 구간에서의 공극 크기인 제한 공극의 직경에서 평균 공극 크기 및 공극의 크기 분포를 측정할 수 있다. 상기 나노 멤브레인(10)의 두께는 KS K 0506에 규정된 두께 측정법 또는 KS K ISO 9073-2, ISO 4593을 적용하여 두께를 측정할 수 있다. 상기 나노 멤브레인(10)의 평량은 KS K 0514 또는 ASTM D 3776 적용하여 측정할 수 있다. 상기 나노 멤브레인(10)의 기공도는 하기 수학식 1에 따라 상기 나노 멤브레인(10) 전체 부피 대비 공기 부피의 비율에 의하여 계산할 수 있다. 이때, 전체 부피는 직사각형 또는 원형 형태의 샘플을 제조하여 가로, 세로, 두께를 측정하여 계산하고, 공기 부피는 샘플의 질량을 측정 후 밀도로부터 역산한 고분자 부피를 전체 부피에서 빼서 얻을 수 있다.The pore size and pore distribution of the nanomembrane 10 were measured using a capillary flow porometer (CFP) as specified in ASTM F316 to determine the average pore size and the pore size at the diameter of the limiting pore in the narrowest interval The size distribution of the pores can be measured. The thickness of the nanomembrane 10 can be measured by the thickness measurement method defined in KS K 0506 or by applying KS K ISO 9073-2 and ISO 4593. [ The basis weight of the nanomembrane 10 can be measured by applying KS K 0514 or ASTM D 3776. The porosity of the nanomembrane 10 may be calculated according to the ratio of the volume of air to the total volume of the nanomembrane 10 according to Equation (1). The total volume can be obtained by measuring the width, length, and thickness of a rectangular or circular sample, and the air volume can be obtained by subtracting the volume of the polymer inversely calculated from the density after measuring the mass of the sample from the total volume.
[수학식 1][Equation 1]
기공도(%) = [1 - (A/B)]×100 = {1 - [(C/D)/ B]}×100The porosity (%) = [1 - (A / B)] 100 = {1 - [(C / D) / B]
(상기 수학식 1에서, A는 나노 멤브레인의 밀도, B는 나노 멤브레인 고분자의 밀도, C는 나노 멤브레인의 중량, D는 나노 멤브레인의 부피이다)(Where A is the density of the nanomembrane, B is the density of the nanomembrane polymer, C is the weight of the nanomembrane, and D is the volume of the nanomembrane)
상기와 같이, 상기 나노 멤브레인(10)을 구성하는 나노 섬유의 직경, 및 상기 나노 멤브레인(10)의 두께, 기공 크기 및 기공 분포가 상기 범위 내인 경우 상기 나노 멤브레인(10)의 음의 흡수와 난반사를 억제하여 흡음 계수를 낮춤으로써 음향의 왜곡을 해소할 수 있다.As described above, when the diameter of the nanofiber composing the nanomembrane 10 and the thickness, pore size, and pore distribution of the nanomembrane 10 are within the above ranges, the absorption of the nanomembrane 10 and the diffuse reflection The distortion of the sound can be solved by lowering the sound absorption coefficient.
보다 구체적으로, 상기 나노 멤브레인(10)은 상기 나노 섬유가 불규칙적으로 배향 및 적층되어 상기 기공의 크기 분포가 불규칙적인 것이 상기 음의 흡수와 난반사를 억제하여 흡음 계수를 낮추는데 유리하며, 구체적으로 상기 기공의 크기 분포가 상기 나노 멤브레인(10)의 단위 면적(cm2) 당 기공의 크기 차이가 100 nm 이상인 기공이 발견될 확률이 10/100 이상인 경우, 구체적으로 상기 기공의 크기 분포가 상기 나노 멤브레인(10)의 단위 면적(cm2) 당 기공의 크기 차이가 100 nm 내지 3900 nm인 기공이 발견될 확률이 10/100 내지 90/100인 경우 상기 기공의 크기 분포가 더욱 불규칙적으로 배치되어 상기 음의 흡수와 난반사를 최대한 억제할 수 있다. More specifically, the nanomembrane 10 is advantageous in that the nanofibers are irregularly oriented and laminated so that the size distribution of the pores is irregular, thereby suppressing the negative absorption and the diffuse reflection, thereby lowering the absorption coefficient. Specifically, When the size distribution of the nanomembrane 10 is 100/100 or more, the size distribution of the pores is larger than that of the nanomembrane 10 (cm < 2 >). The size distribution of the pores is more irregularly arranged when the probability of finding pores having a pore size difference of 100 nm to 3900 nm per unit area (cm 2 ) of 10/100 to 90/100 is more irregularly arranged, Absorption and diffuse reflection can be suppressed as much as possible.
여기서 상기 기공의 크기 분포를 측정하는 상기 나노 멤브레인(10)의 단위 면적은 상기 나노 멤브레인(10)의 어떤 표면이라도 가능하고 구체적으로 상기 멤브레인의 양쪽 표면, 또는 상기 멤브레인을 절단하여 드러나는 내부 단면도 가능하나, 바람직하게는 상기 멤브레인의 양쪽 표면에서 무작위로 선택된 단위 면적일 수 있다. 상기 기공의 크기 차이는 상기 단위 면적 내에서 임의로 선택된 2 개의 기공 중 크기가 더 큰 기공의 크기에서 크기가 더 작은 기공의 크기를 뺀 값이다. 상기 확률은 상기 하나의 단위 면적 내에서 상기 기공의 크기 차이를 100 번 측정하는 경우에 상기 기공의 크기 차이가 상기 범위 내인 경우가 발견되는 경우의 수를 의미한다. Here, the unit area of the nanomembrane 10 measuring the size distribution of the pores may be any surface of the nanomembrane 10, specifically, both surfaces of the membrane, or an internal cross-section that is exposed by cutting the membrane , Preferably a unit area randomly selected from both surfaces of the membrane. The difference in size of the pores is a value obtained by subtracting the size of the smaller pores from the size of the larger pores among the two pores arbitrarily selected within the unit area. The probability means the number of times when the size difference of the pore is found within the range when the size difference of the pores is measured 100 times within the unit area.
본 발명의 다른 일 실시예에 따른 방수성 통기 시트는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며, 상기 나노 섬유의 표면은 발수성 코팅층을 포함한다. 상기 방수성 통기 시트는 상온(20 ℃, ±5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이다.The waterproof breathable sheet according to another embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, and the surface of the nanofiber includes a water repellent coating layer. The waterproof ventilation sheet has waterproof waterproofing property that does not leak at normal temperature (20 ° C, ± 5 ° C), water pressure of 1.5 m or more for 30 minutes or more, and acoustic transmission loss is less than 10 dB at 1000 Hz.
도 2는 본 발명의 방수성 통기 시트의 다른 일 실시 형태를 모식적으로 나타내는 사시도이다.2 is a perspective view schematically showing another embodiment of the waterproof breathable sheet of the present invention.
상기 도 2를 참고하면, 상기 방수성 통기 시트(100)는 나노 섬유(11)들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인(10)을 포함하고, 상기 나노 섬유(11)의 표면은 발수성 코팅층(12)을 포함한다. 선택적으로 상기 나노 멤브레인(10)의 일면 또는 양면에 점착층(20)을 더 포함할 수 있다. 또한, 상기 방수성 통기 시트(100)는 상기 도 2에 도시되어 있지 않지만, 상기 나노 멤브레인(10)을 지지하는 지지체(도시하지 않음)를 더 포함할 수도 있다.2, the waterproof breathable sheet 100 includes a nanofiber 10 in which nanofibers 11 are integrated into a nonwoven fabric including a plurality of pores, and the surface of the nanofiber 11 And a water repellent coating layer (12). Optionally, the nanomembrane 10 may further include an adhesive layer 20 on one or both surfaces thereof. 2, the waterproof ventilation sheet 100 may further include a support (not shown) for supporting the nanomembrane 10.
특히 본 발명은 상기 PVdF 나노 섬유(11)의 표면에 발수성 코팅층(12)을 더 포함하여 기존 PVdF에 비하여 방수 가능 온도 및 압력(수압)의 범위가 증대된 초발수 성능을 유지할 수 있으며, 정전기를 방지하여 미세먼지 및 오염물질의 침투를 막는 방진 및 방오 성능을 가질 수 있다. Particularly, the present invention further includes the water repellent coating layer 12 on the surface of the PVdF nanofiber 11 to maintain the super water-repellent performance in which the range of the waterproofable temperature and pressure (water pressure) is increased as compared with the existing PVdF, To prevent dust and contaminants from penetrating the dust and dirt.
구체적으로 상기 발수성 코팅층(12)은 실리콘계 발수제를 포함하는 것일 수 있다. 상기 실리콘계 발수제는 상기 나노 섬유(11)에 높은 표면저항 성능 및 우수한 열적 안정성을 부가할 수 있다는 점에서 바람직하다.Specifically, the water-repellent coating layer 12 may include a silicone-based water-repellent agent. The silicone-based water repellent agent is preferable in that it can add a high surface resistance performance and excellent thermal stability to the nanofiber 11.
상기 실리콘계 발수제는 구체적으로 실록산 결합을 포함한 고분자인 폴리실록산, 폴리디메틸실록산, 올리고실록산, 메틸페닐폴리실록산, 메톡시실란, 에톡시실란, 프로폭시실란, 이소프로폭시실란 및 이들의 혼합물로 이루어지는 군에서 선택되는 어느 하나의 실리콘계 고분자를 포함하는 것일 수 있다.The silicone-based water repellent is specifically selected from the group consisting of polysiloxane containing a siloxane bond, polydimethylsiloxane, oligosiloxane, methylphenylpolysiloxane, methoxysilane, ethoxysilane, propoxysilane, isopropoxysilane, and mixtures thereof And may include any one of the silicone-based polymers.
다만, 상기 플루오르폴리머를 전기 방사하여 제조된 나노웹은 이를 구성하는 나노 섬유(11)가 규칙적으로 배향/적층되어 섬유 내 기공(cavity)이 원형 또는 다각형 형태로 음향 투과 손실 측정값이 높아 통음성이 저하될 수 있고, 상기 발수성 코팅층(12)에 의하여 상기 기공이 차단되어 통음성이 저하될 우려가 있다. However, since the nanofibers 11 fabricated by electrospinning the fluoropolymer are regularly aligned / laminated, the cavity of the fiber is circular or polygonal, and the measured value of the acoustic transmission loss is high, And the pore may be blocked by the water-repellent coating layer 12, so that there is a possibility that the sound emission is lowered.
이에 본 발명에서는 나노 섬유를 전기 방사하여 나노웹 제조시 상기 전기 방사 조건을 조절하고, 상기 발수성 코팅층(12)의 두께 및 도포 중량을 조절함으로써, 상기 나노 멤브레인(10)의 통기도와 기공의 크기 분포를 조절하고, 이로 인하여 음의 흡수와 난반사를 억제하여 음향 투과 손실 측정값을 낮추어 우수한 통음성을 가지도록 한 것이다.In the present invention, by adjusting the thickness of the water repellent coating layer 12 and the weight of the water repellent coating layer 12, the air permeability of the nanomembrane 10 and the size distribution of pores And the sound absorption loss and the diffuse reflection are suppressed, thereby lowering the measured value of the acoustic transmission loss.
상기 발수성 코팅층(12)은 상기 기공 크기 분포가 조절된 나노웹에 도포되어 나노 웹의 두께, 형상 및 기공 크기를 더욱 불규칙하게 함으로써, 음향 투과 손실 측정값을 낮추고 통음성을 향상시킬 수 있다. The water repellent coating layer 12 may be applied to the nanoweb with the pore size distribution adjusted to further irregularize the thickness, shape, and pore size of the nanoweb, thereby lowering the measured value of the acoustic transmission loss and improving the sound transmission.
구체적으로 상기 발수성 코팅층(12)은 두께가 10 nm 내지 500 nm로 도포되는 것이 바람직하다. 상기 두께가 10 nm 미만인 경우 발수성 코팅층(12)의 발수 효과가 미미할 수 있고, 500 nm를 초과하면 기공을 차단하여 통음성이 저하될 수 있다. Specifically, the water repellent coating layer 12 is preferably applied with a thickness of 10 nm to 500 nm. If the thickness is less than 10 nm, the water repellency of the water repellent coating layer 12 may be insignificant. If the thickness exceeds 500 nm, the pore may be blocked to reduce the sound emission.
더욱 구체적으로 상기 발수성 코팅층(12)은 면적당 도포 중량이 0.1 g/㎡ 내지 1 g/㎡인 것이 바람직하다. 도포 중량이 0.1 g/㎡ 미만인 경우 나노 섬유의 발수성 코팅 전후 비교 시 발수 효과를 기대하기 어렵고, 1 g/㎡을 초과하는 경우 나노 멤브레인(10)의 기공 크기가 줄어들어 통기도 및 통음성이 떨어지는 문제가 발생할 수 있다.More specifically, the water repellent coating layer 12 preferably has a coating weight per area of 0.1 g / m 2 to 1 g / m 2. When the coating weight is less than 0.1 g / m 2, the water repellent effect is not expected when compared with before and after the water repellent coating of the nanofiber. If the coating weight exceeds 1 g / m 2, the pore size of the nanomembrane 10 is decreased, Lt; / RTI >
본 발명의 또 다른 일 실시예에 따른 방수성 통기 시트는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며, 상기 나노 섬유는 플루오르폴리머 100 중량부 및 발수발유 첨가제 1 중량부 내지 50 중량부를 포함하고, 상기 나노 멤브레인은 상기 나노 섬유들의 직경이 50 nm 내지 3000 nm이고, 두께가 3 ㎛ 내지 40 ㎛이고, 기공 크기가 0.1 ㎛ 내지 5 ㎛, 기공도가 40 % 내지 90 %이다. 상기 방수성 통기 시트는 상온(20 ℃, ±5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이다.The waterproof breathable sheet according to another embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores. The nanofiber includes 100 parts by weight of a fluoropolymer and 1 part by weight of a water- Wherein the nanofiber has a diameter of 50 nm to 3000 nm, a thickness of 3 to 40 탆, a pore size of 0.1 to 5 탆, a porosity of 40 to 90% %to be. The waterproof ventilation sheet has waterproof waterproofing property that does not leak at normal temperature (20 ° C, ± 5 ° C), water pressure of 1.5 m or more for 30 minutes or more, and acoustic transmission loss is less than 10 dB at 1000 Hz.
본 발명에서는 상기 나노웹 제조시 플루오르폴리머와 불소계 발수 및 발유성 첨가제를 함께 사용하여 상기 나노 멤브레인(10)의 탄성률 및 강도를 개선하고, 이로 인하여 내수압시 인가되는 수압에 의한 압력 변형에 대한 저항성이 커져 방수성 통기시트의 내수압을 향상시키고, 상기 나노 멤브레인(10)에 초발수성 및 발유성을 부여하여 상기 나노 멤브레인(10)의 방수성 및 발유성을 더욱 향상시킬 수 있다.In the present invention, the fluoro polymer and the fluorine-based water repellent and oil repellent additives are used together to improve the elastic modulus and the strength of the nanomembrane 10 in the production of the nano-web, and resistance to pressure deformation The waterproofness and oil repellency of the nanomembrane 10 can be further improved by increasing the water pressure of the increased water-permeable ventilation sheet and imparting super-water repellency and oil repellency to the nanomembrane 10.
상기 발수발유 첨가제는 탄소 결합 개수가 4 개 내지 9 개인 과불소아크릴계 모노머, 과불소실리콘계 모노머, 과불소알코올계 모노머, 과불소요오드계 모노머, 과불소설페이트계 모노머 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 모노머를 포함하는 불소계 첨가제인 것일 수 있고, 더욱 구체적으로 퍼플루오로옥탄술폰산, 퍼플루오로옥탄술포닐플로라이드, 퍼플루오로옥타노익산, 퍼플루오로알킬설포네이트 등의 퍼플로오로알킬기 또는 폴리플로오루알킬기인 것일 수 있다. The water-repellent oil additive may be selected from the group consisting of perfluoroacrylic monomers having a number of carbon bonds of 4 to 9, perfluorinated silicone monomers, perfluoroalcohol monomers, overbased urethane-based monomers, Based additives such as perfluorooctane sulfonic acid, perfluorooctane sulfonyl fluoride, perfluorooctanoic acid, perfluoroalkyl sulfonate, and the like, and more specifically, A fluoroalkyl group or a polyfluoroalkyl group.
일반적인 실리콘계 첨가제 또는 아크릴계 첨가제를 포함하는 경우, 방수성은 불소계 첨가제와 비교했을 때 더 낮거나 유사할 수 있지만 발유 성능이 없어 물 이외의 것에 대해 통기 시트의 내구성이 저하될 수 있다.When a general silicone additive or an acrylic additive is included, the waterproof property may be lower or similar to that of the fluorine-based additive, but the oil-repellent performance may be poor and durability of the air-permeable sheet may be lowered.
또한 본 발명에서는 상기와 같이 상기 플루오르폴리머를 전기 방사하여 나노웹 제조 시 상기 전기 방사 조건을 조절함으로써, 상기 나노 멤브레인(10)의 통기도와 기공의 크기를 조절하여 통음 성능이 개선된다.In the present invention, as described above, when the fluoropolymer is electrospun to control the electrospinning conditions during the manufacture of the nanofibers, the ventilation performance and the air permeability of the nanomembrane 10 are adjusted to improve the sound performance.
상기 발수발유 첨가제는 상기 플루오르폴리머 100 중량부에 대하여 1 중량부 내지 50 중량부로 포함되는 경우 상기 방수성 통기 시트의 음향 투과 손실이 1000 Hz에서 10 dB 미만인 조건을 만족시킬 수 있고, IPX 68 등급에서 요구하는 내수압(1500 mm H2O)을 충족시킬 수 있다.When the water-repellent breathable additive is included in an amount of 1 part by weight to 50 parts by weight with respect to 100 parts by weight of the fluoropolymer, the condition that the acoustic transmission loss of the waterproof breathable sheet is less than 10 dB at 1000 Hz can be satisfied. The required water pressure (1500 mm H 2 O) can be met.
본 발명의 또 다른 일 실시예에 따른 방수성 통기 시트는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며, 상기 나노 멤브레인은 길이 방향(machine direction, MD) 탄성률과 폭 방향(transverse direction, TD) 탄성률의 이방성(MD 탄성률/TD 탄성률)이 1.5 내지 10.0이다. 상기 방수성 통기 시트는 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이다.The waterproof breathable sheet according to another embodiment of the present invention includes a nanomembrane in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, and the nanomembrane has a machine direction (MD) (MD elastic modulus / TD elastic modulus) of the transverse direction (TD) elastic modulus is 1.5 to 10.0. The waterproof ventilation sheet has a waterproofing waterproofing property that does not leak at normal temperature (20 ° C ± 5 ° C), a water pressure of 1.5 m or more for 30 minutes or more, and an acoustic transmission loss of less than 10 dB at 1000 Hz.
다만, 상기 PVdF를 전기 방사하여 제조된 나노웹은 이를 구성하는 나노 섬유가 규칙적으로 배향/적층되어 섬유 내 기공(cavity)이 원형 또는 다각형 형태로 흡음 계수가 높아 통음성이 저하될 수 있다. 이에 본 발명에서는 상기 PVdF를 전기 방사하여 나노웹 제조시 상기 나노웹의 배향을 일축 방향으로 고정시켜 나노 섬유의 미세 구조, 특히 나노 섬유의 배향성을 제어함으로써 음의 흡수와 난반사를 억제하고 흡음 계수를 낮춰 음향의 왜곡을 해소한 것이다.However, the nano-web produced by electrospinning the PVdF may have a poor sound absorption due to the regularly oriented / laminated nanofibers constituting the nanofibers, because the pores in the fiber are circular or polygonal, and the absorption coefficient is high. In the present invention, the PVdF is electrospun to fix the orientation of the nano-web in the uniaxial direction when manufacturing the nano-web to control the microstructure of the nanofiber, in particular, the orientation of the nanofiber, thereby suppressing sound absorption and diffuse reflection, Lowering the distortion of the sound.
구체적으로, 종래에 PVdF를 전기 방사하여 제조된 나노웹은 나노 섬유의 배향이 길이 방향(MD)과 폭 방향(TD)이 거의 균등하다. 하지만 이러한 나노 섬유의 균등한 섬유 배향에 의해 공동(cavity)가 발생하고, 상기 공동에 의하여 음향의 통과시 소리의 흡수 및 난반사가 발생하여 소리의 왜곡이 발생하게 된다. 또한, 상기 종래의 나노 멤브레인은 상기 공동에 의하여 IPX 68 등급에서 요구하는 내수압(1500 ㎜H2O)을 충족시킬 수 없는데, 발수제 등의 첨가제를 첨가하여 내수압 기준을 달성할 수 있다. 그러나, 상기 발수제 등의 첨가제를 첨가함으로써 방수성은 개선할 수 있지만 방사시 결점이 발생하거나 섬유간 접착력이 부족하여 취급성이 저하될 수 있다. Specifically, conventionally, the orientation of the nanofibers in the nanowire fabricated by electrospinning PVdF is substantially equal in the longitudinal direction (MD) and the transverse direction (TD). However, cavities are generated by the uniform fiber orientation of the nanofibers, and when the acoustic waves pass through the cavities, sound absorption and diffuse reflection occur, resulting in distorted sound. In addition, the conventional nanomembrane can not satisfy the water pressure (1500 mmH 2 O) required by the IPX 68 class by the cavity, and the water pressure standard can be attained by adding an additive such as a water repellent. However, water resistance can be improved by adding an additive such as the water repellent agent, but defects may occur during spinning, or adhesiveness between fibers may be insufficient, resulting in deterioration of handling properties.
그러나, 본 발명에서와 같이 상기 나노 섬유의 배향을 일축 방향으로 고정시키면 상기 섬유 내 기공이 원형 또는 다각형 형태가 아닌 일자(1자) 형상에 가까워지고 이로 인해 기공의 전체적인 개수를 감소시킬 뿐만 아니라 음의 난반사를 억제하여 흡음 계수를 낮추어 통음 성능이 개선된다. 이때, 상기 나노 섬유의 배향을 일축 방향으로 고정시켰기 때문에 상기 일자형 기공의 가장 긴 직경은 상기 나노 멤브레인(10)의 길이 방향과 실질적으로 평행한 방향으로 배향된다. However, if the orientation of the nanofibers is fixed in the uniaxial direction as in the present invention, the pores in the fibers become closer to the shape of a single character (not a circular or polygonal shape), thereby reducing the overall number of pores, And the sound absorption coefficient is lowered to improve the sound performance. At this time, since the orientation of the nanofibers is uniaxially fixed, the longest diameter of the linear pores is oriented in a direction substantially parallel to the longitudinal direction of the nanomembrane 10.
이때, 상기 일자 형상의 기공은 상기 기공의 가장 긴 직경(LD)에 대한 상기 기공의 가장 작은 직경(SD)의 어스펙트비(SD:LD)가 1:2 내지 1:50이고, 구체적으로 1:5 내지 1:50이다. 상기 기공의 가장 긴 직경(LD)에 대한 상기 기공의 가장 작은 직경(SD)의 어스펙트비(SD:LD)가 1:2 미만인 경우 기공이 균일하게 분포하여 난반사가 발생하여 흡음되어 통음 성능이 저하될 수 있고, 1:50을 초과하는 경우 기공이 수압이나 공기압 등의 압력에 의해 변형되어 방수 성능 또는 방진 성능이 저하될 수 있다. At this time, the linear pores have an aspect ratio (SD: LD) of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores is 1: 2 to 1:50, : 5 to 1:50. When the aspect ratio (SD: LD) of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores is less than 1: 2, pores are uniformly distributed and diffuse reflection occurs, If it exceeds 1:50, the pore may be deformed by the pressure such as water pressure or air pressure, and the waterproof performance or dustproof performance may be deteriorated.
상기와 같이, 상기 나노 섬유의 배향이 일축 방향으로 고정됨에 따라, 상기 나노 멤브레인은 길이 방향(machine direction, MD) 탄성률과 폭 방향(transverse direction, TD) 탄성률의 이방성(MD 탄성률/TD 탄성률)이 1.5 내지 10.0일 수 있고, 구체적으로 2.0 내지 10.0일 수 있다. 상기 나노 멤브레인의 상기 길이 방향 탄성률과 폭 방향 탄성률의 이방성(MD 탄성률/TD 탄성률)이 1.5 내지 10.0인 경우 상기 방수성 통기 시트의 음향 투과 손실이 1000 Hz에서 10 dB 미만인 조건을 만족시킬 수 있고, IPX 68 등급에서 요구하는 내수압(1500 ㎜H2O)을 충족시킬 수 있다. 상기 나노 멤브레인(10)의 탄성률은 ASTM D 882를 적용하여 MD(machine direction)와 TD(transverse direction)를 각 10 회 측정 후 최대값과 최소값을 제외한 평균값을 사용할 수 있다. 상기 나노 멤브레인의 길이 방향 또는 기계 방향(machine direction, MD)은 상기 나노 멤브레인이 롤투롤 등의 방식으로 연속 생산될 때 롤의 진행 방향 또는 상기 제조된 나노 멤브레인이 권취되는 방향으로 상기 나노 멤브레인의 길이가 긴 길이 방향 등을 의미하고, 상기 나노 멤브레인의 폭 방향 또는 기계 방향의 수직 방향(transverse direction, TD)은 상기 길이 방향 또는 기계 방향의 수직 방향으로 길이가 짧은 폭 방향 등을 의미한다.As described above, as the orientation of the nanofiber is fixed in the uniaxial direction, the nanomembrane has an anisotropy (MD elastic modulus / TD elastic modulus) in a machine direction (MD) and a transverse direction (TD) 1.5 to 10.0, and more specifically 2.0 to 10.0. When the anisotropy (MD elastic modulus / TD elastic modulus) of the longitudinal direction elastic modulus and the lateral modulus of elasticity of the nanomembrane is 1.5 To 10.0, the condition that the acoustic transmission loss of the waterproof breathable sheet is less than 10 dB at 1000 Hz can be satisfied, and the water pressure (1500 mmH 2 O) required by the IPX 68 class can be satisfied. The modulus of elasticity of the nanomembrane 10 may be determined by measuring the MD (Machine Direction) and the TD (Transverse Direction) ten times after applying ASTM D 882 and using the average value excluding the maximum value and the minimum value. The longitudinal direction or the machine direction (MD) of the nanomembrane is a length of the nanomembrane in the direction of movement of the roll when the nanomembrane is continuously produced in a roll-to-roll manner or in a direction in which the produced nanomembrane is wound, And the width direction of the nanomembrane or the transverse direction TD of the machine direction means a width direction in which the length is short in the longitudinal direction or the machine direction.
또한, 상기 나노 섬유의 배향을 일축 방향으로 고정시킴에 따라, 상기 나노 멤브레인(10)의 길이 방향의 탄성률과 강도가 개선되어 내수압시 인가되는 수압에 의한 압력 변형에 대한 저항성이 커져 상기 나노 멤브레인(10)의 내수압이 향상될 수 있다.In addition, by fixing the orientation of the nanofibers in the uniaxial direction, the elastic modulus and strength in the longitudinal direction of the nanomembrane 10 are improved, and resistance to pressure deformation due to water pressure applied during water pressure is increased, 10 can be improved.
한편, 상기 PVdF를 전기 방사하여 나노웹 제조시 상기 전기 방사 조건을 조절함으로써, 상기 나노 멤브레인(10)의 통기도와 기공의 크기 분포를 조절하고, 이로 인하여 음의 흡수와 난반사를 억제하여 흡음 계수를 낮추어 더욱 우수한 통음성을 가지도록 할 수 있다.On the other hand, by controlling the electrospinning conditions during the production of nanofibers by electrospinning the PVdF, the air permeability of the nanomembrane 10 and the size distribution of the pores are controlled, thereby suppressing sound absorption and diffuse reflection, So that it is possible to have a better voice.
상기와 같은 구성들을 통하여, 상기 나노 멤브레인(10)의 흡음 계수는 1000 Hz에서 0.2 미만일 수 있고, 구체적으로 1000 Hz에서 0 내지 0.1일 수 있다. 이때, 상기 흡음 계수는 관내법 흡음 시험(ASTM E 1050-12) 방법으로 측정할 수 있고, 그 단위는 상수이다. 상기 나노 멤브레인(10)의 흡음 계수가 1000 Hz에서 0.2 이상인 경우 음을 흡수하는 흡음 효과가 발생하여 음향의 손실, 왜곡 등 음향 성능이 저하될 수 있다.Through the above-described configurations, the absorption coefficient of the nanomembrane 10 may be less than 0.2 at 1000 Hz, and may be 0 to 0.1 at 1000 Hz. At this time, the sound absorption coefficient can be measured by an in-line method sound absorption test (ASTM E 1050-12), and the unit thereof is a constant. When the absorption coefficient of the nanomembrane 10 is 0.2 or more at 1000 Hz, a sound absorption effect for absorbing sound may be generated, so that sound performance such as sound loss and distortion may be deteriorated.
상기 나노 멤브레인(10)의 음향 투과 손실은 1000 Hz에서 10 dB 미만일 수 있고, 구체적으로 1000 Hz에서 0 dB 내지 5 dB 이하일 수 있다. 이때, 상기 음향 투과 손실은 ASTM E 2611-09의 시험 방법으로 수직 입사음의 음향 투과 손실을 측정할 수 있고, 측정 주파수 대역은 1/3 옥타브밴드 중심 주파수로 100 Hz 내지 5000 Hz이다. 상기 나노 멤브레인(10)의 음향 투과 손실이 1000 Hz에서 10 dB 이상인 경우 방음 효과가 발생하여 음향의 손실, 왜곡으로 상기 방수성 통기 시트(100)의 기능성이 저하될 수 있다. 상기 나노 멤브레인(10)의 음향 투과 손실이 1000 Hz에서 10 dB 미만임에 따라, 상기 방수성 통기 시트(100)의 음향 투과 손실도 1000 Hz에서 10 dB 미만일 수 있다.The acoustic transmission loss of the nanomembrane 10 may be less than 10 dB at 1000 Hz, and specifically less than 0 dB to 5 dB at 1000 Hz. In this case, the acoustic transmission loss can be measured by the test method of ASTM E 2611-09 by measuring the acoustical transmission loss of vertical incidence sound, and the measurement frequency band is 100 Hz to 5000 Hz at a 1/3 octave band center frequency. If the acoustic transmission loss of the nanomembrane 10 is 10 dB or more at 1000 Hz, the soundproof effect may occur, and the functionality of the waterproof ventilation sheet 100 may be degraded due to loss or distortion of sound. The acoustic transmission loss of the waterproof ventilation sheet 100 may be less than 10 dB at 1000 Hz as the acoustic transmission loss of the nanomembrane 10 is less than 10 dB at 1000 Hz.
또한, 상기 나노 멤브레인(10)이 상기 PVdF를 전기 방사하여 제조된 나노웹을 포함함에 따라, 상기 나노 멤브레인(10)은 공기 투과도가 0.1 CFM 내지 20 CFM일 수 있고, 구체적으로 0.5 CFM 내지 10 CFM일 수 있다. 상기 나노 멤브레인(10)의 공기 투과도는 ASTM D 737 방법을 적용하여 면적 38㎠, 정압 125Pa의 조건으로 측정할 수 있다. 이때 ㎤/㎠/s를 CFM으로 환산할 수 있고, 환산계수는 0.508016이며 그 단위는 ft3/ft2/min(CFM)이다. 상기 나노 멤브레인(10)의 공기 투과도가 0.1 CFM 미만인 경우 음향의 투과성이 저하되어 어쿠스틱 성능이 저하될 수 있고, 20 CFM을 초과하는 경우 내수압이 저하되어 수분이 전자 기기 안으로 침투하여 상기 전자 기기를 파손시킬 수 있다.Also, as the nanomembrane 10 includes the nanoweb fabricated by electrospinning the PVdF, the nanomembrane 10 may have an air permeability of 0.1 CFM to 20 CFM, specifically 0.5 CFM to 10 CFM Lt; / RTI > The air permeability of the nanomembrane 10 can be measured under the conditions of an area of 38 cm 2 and a static pressure of 125 Pa by applying the ASTM D 737 method. In this case, ㎤ / ㎠ / s can be converted into CFM, the conversion coefficient is 0.508016, and the unit is ft 3 / ft 2 / min (CFM). If the air permeability of the nanomembrane 10 is less than 0.1 CFM, the permeability of sound may be lowered and the acoustic performance may be deteriorated. If the air permeability exceeds 20 CFM, the water pressure may be lowered and water may penetrate into the electronic device, .
또한, 상기 나노 멤브레인(10)이 상기 PVdF를 전기 방사하여 제조된 나노웹을 포함함에 따라, 상기 나노 멤브레인(10)은 내수압이 3000 ㎜H2O 이상이고, 구체적으로 내수압이 5000 내지 20000 ㎜H2O일 수 있다. 상기 나노 멤브레인(10)의 내수압은 KS K ISO 811 저수압법을 적용하여 면적 100 ㎠에서 600 ㎜H2O/min으로 가압하여 물방울에 3 포인트 생기는 지점에서의 압력을 측정할 수 있다. In addition, since the nanomembrane 10 includes the nanoweb fabricated by electrospinning the PVdF, the nanomembrane 10 has a water pressure of 3000 mmH 2 O or more, specifically, a water pressure of 5000 to 20000 mmH 2 < / RTI > The water pressure of the nanomembrane 10 can be measured at a point of 3 points on the water droplet by applying a pressure of 600 ㎜ H 2 O / min at an area of 100 cm 2 by applying the KS K ISO 811 low pressure method.
또한, 상기 나노 멤브레인(10)이 상기 PVdF를 전기 방사하여 제조된 나노웹을 포함함에 따라, 상기 나노 멤브레인(10)은 발수 등급이 4 급 이상이고, 구체적으로 발수 등급이 4 급 내지 5 급일 수 있다. 상기 나노 멤브레인(10)의 발수 등급은 KS K 0590에 규정된 방법으로 측정할 수 있다. 상기 나노 멤브레인(10)의 발수 등급이 4 급 미만인 경우 물과의 친수성으로 나노 멤브레인이 젖거나 물이 침투하여 내수압이 저하되어 방수 성능이 저하될 수 있다.In addition, since the nanomembrane 10 includes a nanoweb fabricated by electrospinning the PVdF, the nanomembrane 10 has a water repellency grade of 4 or more, specifically, a water repellency grade of 4 to 5 have. The water repellency of the nanomembrane 10 can be measured by the method specified in KS K 0590. If the water-repellency rating of the nanomembrane 10 is lower than 4, the nanomembrane may be wetted due to hydrophilicity with water, or water may penetrate to lower the water pressure, thereby deteriorating the waterproof performance.
또한, 상기 나노 멤브레인(10)이 상기 PVdF를 전기 방사하여 제조된 나노웹을 포함함에 따라, 상기 나노 멤브레인(10)은 탄성률이 1 MPa 내지 1000 MPa이고, 구체적으로 탄성률이 5 MPa 내지 500 MPa일 수 있다. 상기 나노 멤브레인(10)의 탄성률은 ASTM D 882를 적용하여 MD(machine direction)와 TD(transverse direction)를 각 10 회 측정 후 최대값과 최소값을 제외한 평균값을 사용할 수 있다. 상기 나노 멤브레인(10)의 탄성률이 1 MPa 미만인 경우 외부 자극이나 충격에 의해 쉽게 변형이 되어 방진/방수 성능이 저하되거나 음향의 왜곡이 발생할 수 있고, 1000 MPa를 초과하는 경우 통기성 방수막의 가공 공정에서 재단(타발) 불량 및 변형이 발생할 수 있다. 상기 방수성 통기 시트(100)의 수압 방수성은 KS K ISO 811에서 사용하는 0 m 내지 20 m 깊이의 일정 수압을 일정 시간 동안 가할 수 있는 내수압 측정기를 사용하여 측정할 수 있다. 이때, 상기 내수압 측정기에서 상기 방수성 통기 시트(100)의 수압 방수성을 측정하기 위하여 지그를 사용할 수 있다. The nanomembrane 10 may have a modulus of elasticity ranging from 1 MPa to 1000 MPa and a specific elastic modulus ranging from 5 MPa to 500 MPa . The modulus of elasticity of the nanomembrane 10 may be determined by measuring the MD (Machine Direction) and the TD (Transverse Direction) ten times after applying ASTM D 882 and using the average value excluding the maximum value and the minimum value. If the elastic modulus of the nanomembrane 10 is less than 1 MPa, it may be easily deformed by an external stimulus or an impact to reduce the dust / waterproof performance or sound distortion. If the elastic modulus of the nanomembrane 10 exceeds 1000 MPa, Defects such as cutting (punching) and deformation may occur. The waterproof and waterproof performance of the waterproof ventilation sheet 100 can be measured using a water pressure meter capable of applying a constant water pressure of 0 m to 20 m depth used in KS K ISO 811 for a predetermined time. At this time, a jig may be used to measure the waterproofness of the waterproof ventilation sheet 100 in the water pressure measuring device.
도 3은 상기 내수압 측정기에서 상기 방수성 통기 시트(100)의 수압 방수성을 측정하기 위하여 사용하는 지그의 일 실시 형태를 모식적으로 나타내는 사시도이다. 상기 도 3을 참고하면, 상기 지그(200)에 상기 방수성 통기 시트(100)을 고정 또는 점착한 상태에서 수압부(210)에 내수압 측정기를 이용하여 일정 수압을 일정 시간 동안 가하여 수압 방수성을 평가할 수 있다. 상기 도 3에서 수압부(210)의 개수가 19 개로 도시되어 있으나, 본 발명은 이에 한정되지 않고, 상기 수압부(210)는 일 예로 1 개, 3 개, 5 개, 9 개, 20 개 등으로 개수의 조절이 가능하다. 또한, 상기 수압부(210)의 타공 홀의 크기는 상기 통기성 방수 시트(100)의 개구된 면적보다 작은 것이 바람직하며, 이는 상기 통기성 방수 시트(100)의 크기에 따라 적절하게 조절이 가능하다.3 is a perspective view schematically showing an embodiment of a jig used for measuring the waterproofing waterproof property of the waterproof ventilation sheet 100 in the water pressure measuring instrument. 3, when the waterproof ventilation sheet 100 is fixed or adhered to the jig 200, water pressure resistance can be evaluated by applying a constant water pressure to the water pressure portion 210 using a water pressure meter for a predetermined period of time have. 3, the number of the pressure receiving portions 210 is 19, but the present invention is not limited thereto. For example, the pressure receiving portion 210 may include one, three, five, nine, twenty The number can be adjusted. The size of the perforation hole of the pressure receiving portion 210 is preferably smaller than the open area of the perforated waterproof sheet 100 and can be appropriately adjusted according to the size of the perforated waterproof sheet 100.
다양한 환경에서의 방수 성능을 확인하기 위해 저온, 고온/고습, 열충격 조건하에서 전처리 후 수압 방수성을 평가할 수 있다. 저온의 경우에는 -20 ℃에서 72 시간 동안 전처리 후 평가하고, 고온/고습 조건은 50 ℃, 습도 95 %에서 72 시간 동안 전처리 후 평가하고, 열충격 조건은 -40 ℃, 85 ℃를 각각 1 시간 동안 유지하는 한 사이클을 30 사이클 반복한 후 평가할 수 있다.In order to confirm the waterproof performance in various environments, it is possible to evaluate the waterproofing property after pretreatment under low temperature, high temperature / high humidity, thermal shock condition. In the case of low temperature, it was evaluated after pretreatment at -20 ° C for 72 hours. In the case of high temperature / high humidity condition, it was evaluated after pretreatment at 50 ° C and humidity 95% for 72 hours. Thermal shock conditions were -40 ° C and 85 ° C for 1 hour It can be evaluated after repeating 30 cycles of maintaining one cycle.
상기 방수성 통기 시트(100)는 상기 나노 멤브레인(10)을 포함함에 따라, 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상, 구체적으로 1.5 m 내지 6 m의 수압에서 30 분 이상 누수되지 않고, 저온 조건(-20 ℃, 72 시간 유지한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상, 구체적으로 1.5 m 내지 6 m의 수압에서 30 분 이상 누수되지 않고, 고온/고습 조건(50℃, 습도 95 %, 72 시간 유지한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상, 구체적으로 1.5 m 내지 6 m의 수압에서 30 분 이상 누수되지 않고, 열충격 조건(-40℃, 85℃를 각각 1 시간 동안 유지하는 사이클을 30 사이클 반복한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상, 구체적으로 1.5 m 내지 6 m의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가질 수 있다. 상기 방수성 통기 시트(100)의 수압 방수성이 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압, 저온 1.5 m 이상의 수압, 고온/고습 1.5 m 이상의 수압, 열충격 1.5 m 이상의 수압 조건에서 30 분 미만인 경우 상기 방수성 통기 시트(100)의 안쪽으로 물 또는 수분이 침투하여 전자 기기가 파손되어 사용하지 못할 수 있다. The waterproof ventilation sheet 100 may be formed to have a thickness of at least 30 minutes at a room temperature (20 ° C ± 5 ° C), a water pressure of 1.5 m or more, specifically, a water pressure of 1.5 m to 6 m In the case of low temperature (measured after holding at -20 ° C for 72 hours) without leaking, it does not leak for 30 minutes or more at a water pressure of 1.5 m or more, specifically for 30 minutes or more at a water pressure of 1.5 m to 6 m, (At -40 ° C, at 50 ° C, 95% humidity, after 72 hours of holding), it does not leak for at least 30 minutes at a water pressure of 1.5 m or more, specifically for at least 30 minutes at a water pressure of 1.5 m to 6 m, And 85 ° C for 1 hour, respectively), it is possible to have a hydraulic waterproof property that does not leak more than 30 minutes at a water pressure of 1.5 m or more, specifically, 30 minutes or more at a water pressure of 1.5 m to 6 m have. When the waterproofing ventilation sheet 100 is waterproofed at room temperature (20 ° C ± 5 ° C), water pressure of 1.5 m or more, water pressure of 1.5 m or less at low temperature, water pressure of 1.5 m or more at high temperature / Water or moisture may penetrate into the waterproofing ventilation sheet 100 and the electronic equipment may be damaged.
참고로, 상기 일정 깊이에서의 수압은 하기 수학식 2에 의하여 계산할 수 있으며, 해양에서 수압은 수심이 10 m 내려갈 때마다 보통 1 기압씩 증가한다.For reference, the water pressure at the certain depth can be calculated by the following equation (2), and the water pressure in the ocean increases by 1 atmospheres every time the water depth drops by 10 m.
[수학식 2]&Quot; (2) "
수압(p) = pgzWater pressure (p) = pgz
(상기 수학식 2에서, p는 해수의 밀도(약 1.03 g/㎤), g는 980 cm/sec2, z는 해면 하의 수심(cm)이다)(In Equation 2, p is the density of water (about 1.03 g / ㎤), g is 980 cm / sec 2, z is under the surface of the sea water depth (cm))
상기 방수성 통기 시트(100)는 상기 나노 멤브레인(10)을 포함함에 따라, 통기성이 20 cc/min 이상, 구체적으로 20 cc/min 내지 150 cc/min일 수 있다. 상기 방수성 통기 시트(100)의 통기성은 모세관 흐름 공극 측정기(capillary flow porometer, CFP)에서 가스 투과 방법(Gas permeability method)으로 1 PSI 압력 하에서 직경 1 mm 원형 면적을 1분 동안 통과하는 공기의 유량을 측정할 수 있다. 상기 방수성 통기 시트(100)의 통기성이 20 cc/min 미만인 경우 통기성이 저하되어 음향의 왜곡이 생기거나 APU(Accelerated Processing Unit), 디스플레이 또는 BLU(Back Light Unit) 등에서 발생하는 열의 배출이 저하되어 발열될 수 있다.The waterproof ventilation sheet 100 may have a breathability of 20 cc / min or more, specifically 20 cc / min to 150 cc / min, as the inclusion of the nanomembrane 10. The air permeability of the waterproof ventilation sheet 100 is measured by a gas permeability method in a capillary flow porometer (CFP) using a flow rate of air passing through a 1 mm diameter circular area for 1 minute under 1 PSI pressure Can be measured. When the air permeability of the waterproof breathable sheet 100 is less than 20 cc / min, air permeability is lowered to cause distortion of sound, or heat emission from an APU (Accelerated Processing Unit), a display or a BLU (Back Light Unit) .
한편, 상기 점착층(20)은 상기 나노 멤브레인(10)의 표면에 위치하며, 구체적으로 상기 점착층(20)의 둘레부(20a)는 상기 나노 멤브레인(10)의 표면의 둘레에 위치하고 상기 점착층(20)의 중앙부(20b)는 개구된 프레임 형상일 수 있다. 상기 나노 멤브레인(10)은 상기 점착층(20)을 통하여 전자 기기의 하우징의 통기구 내부면에 부착되며, 상기 점착층(20)의 중앙부(20b)의 개구를 통하여 상기 전자 기기의 하우징의 통기구를 막으면서 상기 전자 기기에 통기성 및 방수성을 부여할 수 있다.The adhesive layer 20 is located on the surface of the nanomembrane 10 and specifically the periphery 20a of the adhesive layer 20 is located on the periphery of the surface of the nanomembrane 10, The central portion 20b of the layer 20 may be in the form of an open frame. The nanomembrane 10 is adhered to the inner surface of the vent hole of the housing of the electronic apparatus through the adhesive layer 20 and the vent hole of the housing of the electronic apparatus through the opening of the central portion 20b of the adhesive layer 20 It is possible to impart air permeability and waterproofness to the electronic device while blocking the air.
상기 점착층(20)의 중앙부(20b)의 개구의 형상 및 크기는 기본적으로 상기 전자 기기의 하우징의 통기구의 형상 및 크기와 동일하게 형성될 수 있고, 구체적으로 원형, 타원형, 직사각형, 끝이 둥근 직사각형, 다각형, P자 형태 등의 형상일 수 있으나, 본 발명이 이에 한정되는 것은 아니다. The shape and size of the opening of the central portion 20b of the adhesive layer 20 may be basically the same as the shape and size of the ventilation hole of the housing of the electronic apparatus. Specifically, the shape and size of the aperture 20a may be circular, oval, Rectangular, polygonal, P-shaped, and the like, but the present invention is not limited thereto.
또한, 상기 도 1에서와 같이 상기 점착층(20)의 둘레부(20a)의 끝단은 상기 나노 멤브레인(10)의 끝단과 일치하도록 형성될 수 있고, 상기 점착층(20)의 둘레부(20a)의 끝단은 상기 나노 멤브레인(10)의 끝단 보다 연장되어 상기 나노 멤브레인(10)의 끝단을 덮도록 형성될 수도 있다. 1, the end of the peripheral portion 20a of the adhesive layer 20 may be formed to coincide with the end of the nanomembrane 10, and the peripheral portion 20a of the adhesive layer 20 May extend beyond the end of the nanomembrane 10 to cover the end of the nanomembrane 10.
상기 점착층(20)은 예를 들면 폴리아크릴, 폴리아미드, 폴리아크릴아미드, 폴리에스테르, 폴리올레핀, 폴리우레탄, 폴리실리콘 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 점착제를 포함할 수 있고, 액체형 또는 고체형일 수 있고, 열가소성 타입, 열변화성 타입 또는 반응성 경화 타입일 수 있다.The adhesive layer 20 may include any one of a pressure sensitive adhesive selected from the group consisting of polyacryl, polyamide, polyacrylamide, polyester, polyolefin, polyurethane, polysilicon, Liquid type or solid type, and may be a thermoplastic type, a heat-converting type, or a reactive curing type.
한편, 상기 점착층(20)은 양면 점착 테이프 일 수 있다. 상기 양면 점착 테이프는 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 기재 양면 점착 테이프, 폴리프로필렌 기재 양면 점착 테이프, 폴리에틸렌 기재 양면 점착 테이프, 폴리이미드 기재 양면 점착 테이프, 나일론 기재 양면 점착 테이프, 발포체(예컨대, 우레탄폼, 실리콘폼, 아크릴폼, 폴리에틸렌폼 등) 기재 양면 점착 테이프, 기재가 없는 양면 점착 테이프 등일 수 있다. On the other hand, the adhesive layer 20 may be a double-sided adhesive tape. The double-sided adhesive tape may be a double-sided adhesive tape made of polyethylene terephthalate (PET), a polypropylene-based double-sided adhesive tape, a polyethylene-based double-sided adhesive tape, a polyimide double-sided adhesive tape, a nylon- Foam, silicone foam, acrylic foam, polyethylene foam, etc.), double-sided adhesive tape without substrate,
한편, 상기 방수성 통기 시트(100)는 전자 기기와 부착되기 전까지 상기 점착층(20)을 보호할 수 있는 보호 기재(도시 하지 않음)를 더 포함할 수 있다. The waterproof ventilation sheet 100 may further include a protective substrate (not shown) that can protect the adhesive layer 20 before it is attached to the electronic apparatus.
상기 보호 기재는 고무 또는 실리콘 소재, 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 또는 폴리부틸렌 테레프탈레이트 등의 폴리에스테르, 폴리프로필렌, 폴리에틸렌, 폴리메틸펜텐 등의 폴리올레핀, 폴리카보네이트 등의 수지 소재, 글라신지, 상질지, 코트지, 함침지, 합성지 등의 종이 소재, 알루미늄, 스테인레스 강 등의 금속박 소재 등을 사용할 수 있다.The protective substrate may be made of a rubber or a silicone material, a polyester such as polyethylene terephthalate (PET) or polybutylene terephthalate, a polyolefin such as polypropylene, polyethylene, or polymethylpentene, a resin material such as polycarbonate, A paper material such as a high-temperature paper, a coated paper, an impregnated paper, and a synthetic paper, and a metal foil material such as aluminum and stainless steel.
또한, 대전 방지의 목적으로 필요에 따라 상기 보호 기재에 도전성 재료를 코팅할 수 있고, 상기 보호 기재 자체에 도전성 재료를 혼합시킨 것을 이용할 수도 있다. 이에 따라, 상기 방수성 통기 시트(100)가 대전되는 것을 방지할 수 있다. 상기 보호 시트의 두께는, 예컨대, 10 ㎛ 내지 100 ㎛, 구체적으로 25 ㎛ 내지 50 ㎛일 수 있다. 상기 보호 기재의 표면에는 상기 점착층(20)과의 점착성을 향상시키기 위해 코로나 방전 처리, 플라즈마 처리, 프레임 플라즈마 처리 등을 실시할 수 있고, 프라이머층 등을 형성할 수도 있다. 상기 프라이머층으로는 폴리에틸렌, 폴리프로필렌, 스티렌계 공중합체, 폴리에스테르, 폴리우레탄, 폴리비닐알코올, 폴리에틸렌이민, 폴리아크릴레이트, 폴리메타크릴레이트, 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 고분자 재료(앵커 코트제)를 사용할 수 있다.For the purpose of preventing electrification, a conductive material may be coated on the protective substrate as required, or a conductive material mixed with a conductive material may be used. As a result, the waterproof ventilation sheet 100 can be prevented from being charged. The thickness of the protective sheet may be, for example, 10 탆 to 100 탆, specifically, 25 탆 to 50 탆. The surface of the protective substrate may be subjected to a corona discharge treatment, a plasma treatment, a frame plasma treatment, or the like to improve adhesion with the adhesive layer 20, and a primer layer or the like may be formed. The primer layer may be any one selected from the group consisting of polyethylene, polypropylene, styrenic copolymer, polyester, polyurethane, polyvinyl alcohol, polyethyleneimine, polyacrylate, polymethacrylate, A polymer material (made of an anchor coat) can be used.
한편, 상기 방수성 통기 시트(100)가 상기 점착층(20)을 더 포함하지 않는 경우, 상기 방수성 통기 시트(100)를 전자 기기의 하우징에 부착시 상기 점착제를 상기 방수성 통기 시트(100) 또는 전자 기기의 하우징에 직접 스크린 인쇄, 스프레이 코팅, 그라비어 인쇄, 전사, 또는 분말 코팅 등의 방법에 의해 도포한 후 부착할 수 있고, 상기 점착제 없이 가열 융착 또는 초음파 융착 등의 방법에 의하여 상기 방수성 통기 시트(100)를 상기 전자 기기의 하우징에 직접 부착시킬 수도 있다.When the waterproof ventilation sheet 100 does not further include the adhesive layer 20, when the waterproof ventilation sheet 100 is attached to the housing of the electronic apparatus, the pressure sensitive air permeable sheet 100 or electronic The waterproof breathable sheet (1) can be applied to the housing of the apparatus by screen printing, spray coating, gravure printing, transfer, powder coating or the like by direct screen printing, spraying, or ultrasonic welding without the pressure- 100 may be attached directly to the housing of the electronic device.
상기 방수성 통기 시트(100)는 상기 나노 멤브레인(10)의 강도를 보강하기 위하여 상기 지지체를 더 포함할 수 있다. The waterproof ventilation sheet 100 may further include the support to reinforce the strength of the nanomembrane 10.
상기 지지체는 상기 나노 멤브레인(10) 보다 큰 크기의 기공을 가지고 기체 투과성이 우수하며 강도가 우수한 재료, 예컨대, 직포, 부직포, 메쉬, 네트, 스펀지, 폼, 금속 다공재, 금속 메쉬 등을 사용할 수 있다. 또한, 내열성이 요구되는 경우에는, 폴리에스테르, 폴리아미드, 아라미드 수지, 폴리이미드, 폴리에테르이미드, 폴리아미드이미드, 폴리에테르설폰, 불소 수지, 초고분자량 폴리에틸렌, 금속 등으로 이루어진 지지체를 사용할 수 있다.The support may be made of a material having a pore size larger than that of the nanomembrane 10 and having excellent gas permeability and excellent strength such as woven fabric, nonwoven fabric, mesh, net, sponge, foam, metal porous material, metal mesh, have. When heat resistance is required, a support made of a polyester, a polyamide, an aramid resin, a polyimide, a polyetherimide, a polyamideimide, a polyether sulfone, a fluororesin, an ultrahigh molecular weight polyethylene, a metal and the like can be used.
구체적으로, 상기 지지체가 무작위로 배향된 복수개의 섬유로 이루어지는 상기 부직포인 경우를 예시하면, 상기 부직포는 인터레이드(interlaid)되지만, 직포 천과 동일한 방식이 아닌, 개개의 섬유 또는 필라멘트의 구조를 갖는 시트를 의미한다. 상기 부직포는 카딩(carding), 가네팅(garneting), 에어-레잉(air-laying), 웨트-레잉(wet-laying), 멜트 블로잉(melt blowing), 스펀본딩(spunbonding), 써멀본딩(thermal bonding) 및 스티치 본딩(stitch bonding)로 이루어진 군에서 선택되는 어느 하나의 방법에 의하여 제조될 수 있다. 상기 부직포를 이루는 섬유는 하나 이상의 중합체 재료를 포함할 수 있고, 일반적으로 섬유 형성 중합체 재료로 사용되는 것이면 어느 것이나 사용 가능하고, 구체적으로 탄화수소계 섬유 형성 중합체 재료를 사용할 수 있다. 예를 들어, 상기 섬유 형성 중합체 재료는 폴리올레핀, 예컨대 폴리부틸렌, 폴리프로필렌 및 폴리에틸렌; 폴리에스테르, 예컨대 폴리에틸렌 테레프탈레이트 및 폴리부틸렌 테레프탈레이트; 폴리아미드(나일론-6 및 나일론-6,6); 폴리우레탄; 폴리부텐; 폴리락트산; 폴리비닐 알코올; 폴리페닐렌 설파이드; 폴리설폰; 유체 결정질 중합체; 폴리에틸렌-코-비닐아세테이트; 폴리아크릴로니트릴; 사이클릭 폴리올레핀; 폴리옥시메틸렌; 폴리올레핀계 열가소성 탄성중합체; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나를 포함하지만 이로 제한되지 않는다.Specifically, the nonwoven fabric may be interlaid with the supporting body formed of a plurality of randomly oriented fibers. The nonwoven fabric may be interlaid, but may have a structure of individual fibers or filaments Sheet. The nonwoven fabric may be formed by a variety of processes including carding, garneting, air-laying, wet-laying, melt blowing, spunbonding, thermal bonding ), And stitch bonding. [0035] The term " stitch bonding " The fibers constituting the nonwoven fabric may include one or more polymer materials, and any of those generally used as a fiber-forming polymer material may be used, and specifically, a hydrocarbon-based fiber-forming polymer material may be used. For example, the fiber-forming polymeric material may be a polyolefin such as polybutylene, polypropylene and polyethylene; Polyesters such as polyethylene terephthalate and polybutylene terephthalate; Polyamides (nylon-6 and nylon-6,6); Polyurethane; Polybutene; Polylactic acid; Polyvinyl alcohol; Polyphenylene sulfide; Polysulfone; A fluid crystalline polymer; Polyethylene-co-vinyl acetate; Polyacrylonitrile; Cyclic polyolefins; Polyoxymethylene; Polyolefinic thermoplastic elastomers; And combinations thereof. However, the present invention is not limited thereto.
또한, 상기 지지체를 상기 나노 멤브레인(10)에 적층하는 방법은 단순히 서로 겹치거나 접합하여 이루어질 수 있다. 예를 들어, 상기 접합은 점착성 적층, 열적 적층, 가열 증착, 초음파 증착, 점착제에 의한 점착 등의 방법에 의해 이루어질 수 있다. 예컨대, 상기 지지체가 상기 나노 멤브레인(10)과 열적 적층에 의해 적층되는 경우는, 가열에 의해 상기 지지체의 일부를 용융하여 점착할 수 있다. 이 경우, 점착제를 사용하지 않고 상기 지지체가 상기 나노 멤브레인(10) 에 점착되며, 불필요한 중량 증가 및 통기성의 저하를 피할 수 있다. 또한, 상기 지지체와 상기 나노 멤브레인(10)은 핫 멜트 파우더(hot melt powder) 등의 융착제를 이용하여 점착될 수도 있다.In addition, the method of laminating the support on the nanomembrane 10 may be simply performed by overlapping or bonding. For example, the bonding may be performed by a method such as adhesive lamination, thermal lamination, thermal vapor deposition, ultrasonic vapor deposition, or adhesion by a pressure sensitive adhesive. For example, when the support is laminated with the nanomembrane 10 by thermal lamination, a part of the support may be melted and adhered by heating. In this case, the supporter adheres to the nanomembrane 10 without using a pressure-sensitive adhesive, and unnecessary weight increase and decrease in air permeability can be avoided. In addition, the support and the nanomembrane 10 may be adhered using a fusion agent such as hot melt powder.
본 발명의 또 다른 일 실시예에 따른 방수성 통기 시트의 제조 방법은 전기 방사 용액을 제조하는 단계, 그리고 상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 제조하는 단계를 포함한다. 상기 방수성 통기 시트의 제조 방법에 의하면, 상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만인 방수성 통기 시트를 제조할 수 있다.A method of manufacturing a waterproof breathable sheet according to another embodiment of the present invention includes the steps of preparing an electrospinning solution and electrospinning the prepared electrospinning solution so that the nanofibers are integrated into a nonwoven fabric including a plurality of pores Thereby producing a nanomembrane. According to the manufacturing method of the waterproof breathable sheet, a waterproof breathable sheet having a waterproof and waterproof property that does not leak at a normal temperature (20 ° C ± 5 ° C) and a water pressure of 1.5 m or more for 30 minutes or more and an acoustic transmission loss of less than 10 dB at 1000 Hz can do.
상기 방수성 통기 시트의 제조 방법은 상기 전기 방사 조건을 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있다.The method for manufacturing the waterproof breathable sheet can control the microstructure of the nanomembrane by controlling the electrospinning conditions to produce a waterproof breathable sheet having excellent water permeability and excellent waterproofing and water permeability.
우선, 상기 전기 방사 용액을 제조하는 단계는 전기 방사를 통하여 나노 섬유를 형성하기 위한 고분자를 포함하는 용액을 제조하는 것으로, 예를 들면, 상기 전기 방사 용액은 폴리비닐리덴 디플루오라이드(PVdF) 등의 고분자를 디메틸아세트아미드(N,N-dimethylacetamide), 디메틸포름아미드(N,N-dimethyl formamide), 디메틸설프옥사이드(dimethylsulphoxide), 메틸피롤리돈(N-methyl-2-pyrolidone), 트리에틸포스페이트(triethylphosphate), 메틸에틸케톤(methylethylketone), 테트라하이드로퓨란(tetrahydrofuran), 아세톤(acetone) 및 이들의 혼합물로 이루어지는 군에서 선택되는 어느 하나의 용매와 혼합하여 제조할 수 있다.First, the step of preparing the electrospinning solution is to prepare a solution containing a polymer for forming nanofibers through electrospinning. For example, the electrospinning solution may include polyvinylidene difluoride (PVdF) (N, N-dimethylacetamide), N, N-dimethyl formamide, dimethylsulphoxide, N-methyl-2-pyrolidone, triethyl phosphate may be prepared by mixing with any one solvent selected from the group consisting of triethylphosphate, methylethylketone, tetrahydrofuran, acetone, and mixtures thereof.
상기 전기 방사 용액은 폴리비닐리덴 디플루오라이드(PVdF) 등의 플루오르폴리머와 함께 발수발유 첨가제를 더 포함할 수 있다. 이때, 상기 전기 방사 용액은 상기 플루오르폴리머 100 중량부, 발수발유 첨가제 1 중량부 내지 50 중량부 및 용매 250 중량부 내지 2000 중량부를 포함할 수 있다.The electrospinning solution may further comprise a water-softening additive together with a fluoropolymer such as polyvinylidene difluoride (PVdF). The electrospinning solution may include 100 parts by weight of the fluoropolymer, 1 to 50 parts by weight of the water-repellent oil additive, and 250 to 2000 parts by weight of the solvent.
다음으로 상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 제조한다.Next, the prepared electrospinning solution is electrospun to prepare a nanomembrane in which the nanofibers are integrated into a nonwoven fabric including a plurality of pores.
상기 전기 방사는 하기 도 4에 도시된 전기 방사 장치를 이용하여 이루어질 수 있다. 상기 도 4는 노즐형 전기 방사 장치의 개략도이다. 상기 도 4를 참고하면, 상기 전기 방사는 상기 전기 방사 용액이 보관된 용액 탱크(1)에서 정량 펌프(2)를 이용하여 고전압 발생 장치(6)에 의해 고전압이 인가된 다수의 노즐(3) 또는 구금에 상기 전기 방사 용액을 공급하고, 이때 상기 노즐(3) 또는 구금 선단과 집적부(4)와의 전기에너지 차이 즉, 전압 차이에 의해 상기 전기 방사 용액이 제트를 형성하여 이송된다. 상기 형성된 제트는 전기장에 의하여 휘핑 및 스트레칭되어서 더욱 가늘어지고 용매는 기화되어 고체상의 섬유들이 상기 집적부(4)에 집적된다. 이때, 상기 전기 방사 조건을 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압 방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있다.The electrospinning may be performed using the electrospinning apparatus shown in FIG. 4 is a schematic view of a nozzle-type electrospinning device. 4, the electrospinning is performed by a plurality of nozzles 3 to which a high voltage is applied by the high voltage generator 6 using the metering pump 2 in the solution tank 1 storing the electrospinning solution, The electrospinning solution is fed to the electrospinning solution by the difference in electric energy between the nozzle 3 or the tip of the electrospinning unit and the accumulation unit 4, that is, the voltage difference. The formed jet is whipped and stretched by the electric field to become thinner and the solvent is vaporized so that solid fibers are accumulated in the integrated portion 4. [ At this time, by regulating the micro-structure of the nanomembrane by controlling the electrospinning condition, it is possible to produce a waterproof ventilation sheet having excellent water permeability and excellent waterproofing and waterproofing properties.
상기 전기 방사 용액의 농도는 5 % 내지 35 %이고, 구체적으로 5 % 내지 25 %일 수 있다. 상기 농도는 퍼센트 농도를 의미하는 것으로서, 퍼센트 농도는 용액의 질량에 대한 용질의 질량의 백분율로 구할 수 있다. 예를 들어, 상기 농도는 상기 전기 방사 용액에 포함된 고분자의 질량을 용액의 질량으로 나눈 후 100을 곱하여 구할 수 있다. 상기 전기 방사 용액의 농도가 5 % 미만인 경우 고분자의 함량이 낮아 섬유가 생성되지 못하고 비드상으로 분사될 수 있고, 35 %를 초과하는 경우 고분자의 용해가 어려우며, 토출이 안되거나, 용액 이송 라인에 압력이 높아져 용액의 누출(leak) 또는 파손될 수 있다.The concentration of the electrospinning solution may be 5% to 35%, specifically 5% to 25%. The concentration means a percent concentration, and the percent concentration can be obtained as a percentage of the mass of the solute to the mass of the solution. For example, the concentration may be obtained by dividing the mass of the polymer contained in the electrospinning solution by the mass of the solution, and then multiplying by 100. If the concentration of the electrospinning solution is less than 5%, the polymer may not be produced due to the low content of the polymer, and may be injected into the beads. If the concentration exceeds 35%, the polymer may not be dissolved, The pressure may become high and leak or breakage of the solution may occur.
상기 전기 방사 용액의 점도는 100 cP 내지 10000 cP이고, 구체적으로 200 cP 내지 5000 cP일 수 있다. 상기 용액의 점도는 KS M ISO 2555 방법으로 23 ℃ 온도에서 측정할 수 있다. 상기 전기 방사 용액의 점도가 100 cP 미만인 경우 점도가 너무 낮아 섬유가 생성되지 못하고 비드상으로 분사될 수 있고, 10000 cP를 초과하는 경우 방사 과정에서 제트가 형성되지 못하거나, 고화가 발생하여 상기 나노 멤브레인의 결점이 증가하는 문제가 있을 수 있다.The viscosity of the electrospinning solution may be 100 cP to 10000 cP, specifically 200 cP to 5000 cP. The viscosity of the solution can be measured at a temperature of 23 DEG C by the KS M ISO 2555 method. If the viscosity of the electrospinning solution is less than 100 cP, the viscosity may be too low to produce fibers and may be injected onto the beads. If the viscosity exceeds 10000 cP, jets may not be formed during the spinning process, There may be a problem that the defects of the membrane increase.
또한, 상기 전기 방사 조건은 전압이 0 kV 내지 100 kV이고, 구체적으로 20 kV 내지 70 kV일 수 있다. 상기 전압이 100 kV를 초과하는 경우 방사 공정 중 절연에 취약한 부분에서 스파크가 발생하여 제품의 손상이 발생하거나 정전기에 의해 이송 중 이송 롤에 전사 또는 박리될 수 있다.Further, the electrospinning condition may be a voltage of 0 kV to 100 kV, specifically 20 kV to 70 kV. If the voltage exceeds 100 kV, sparks may be generated in a region susceptible to insulation during the spinning process, resulting in damage to the product or transfer or peeling of the product to the transfer roll during transfer due to static electricity.
상기 전기 방사 조건은 토출량이 0.01 cc/min 내지 100 cc/min이고, 구체적으로 0.5 cc/min 내지 50 cc/min일 수 있다. 상기 토출량이 0.01 cc/min 미만인 경우 적층되는 섬유의 양이 적어 생산성이 저하되거나 층간 박리가 발생할 수 있고, 100 cc/min를 초과하는 경우 챔버 내 용매의 포화 농도가 증가하여 용매의 미휘발이 진행되어 최종적으로 제품이 재용해되어 필름화하는 문제가 있을 수 있다.The electrospinning condition may be a discharge rate of 0.01 cc / min to 100 cc / min, specifically 0.5 cc / min to 50 cc / min. When the discharge amount is less than 0.01 cc / min, the amount of the laminated fibers is small, resulting in a decrease in productivity or delamination. When the discharge amount exceeds 100 cc / min, the saturation concentration of the solvent in the chamber increases, And there is a problem that the product is finally reused and filmed.
상기 방수성 통기 시트의 제조 방법은 상기 나노 섬유 표면에 발수성 코팅층 형성 단계를 더 포함할 수 있다.The method of manufacturing the waterproof breathable sheet may further include forming a water repellent coating layer on the surface of the nanofibers.
상기 발수성 코팅층 형성 단계는, 발수성 코팅층 형성용 조성물을 제조하는 단계, 상기 발수성 코팅층 형성용 조성물을 상기 나노 멤브레인에 도포하는 단계, 및 상기 발수성 코팅층 형성용 조성물이 도포된 나노 멤브레인을 건조하는 단계를 포함할 수 있다.The water-repellent coating layer-forming step includes the steps of: preparing a composition for forming a water-repellent coating layer; applying the composition for forming a water-repellent coating layer to the nanomembrane; and drying the nanomembrane coated with the composition for forming a water- can do.
상기 발수성 코팅층 형성용 조성물은 구체적으로 실록산 결합을 포함한 고분자인 폴리실록산, 폴리디메틸실록산, 올리고실록산, 메틸페닐폴리실록산, 메톡시실란, 에톡시실란, 프로폭시실란, 이소프로폭시실란 및 이들의 혼합물로 이루어지는 군에서 선택되는 어느 하나의 실리콘계 고분자를 포함하는 것일 수 있다. The composition for forming a water repellent coating layer is specifically a polymer composed of a siloxane-containing polymer such as polysiloxane, polydimethylsiloxane, oligosiloxane, methylphenylpolysiloxane, methoxysilane, ethoxysilane, propoxysilane, isopropoxysilane, Based polymer may be one selected from the group consisting of silicon-based polymers.
상기 발수성 코팅층 형성용 조성물은 상기 실리콘계 고분자를 물, 이소프로필알코올(IPA), 에탄올, 글리세롤, 및 글리콜로 이루어진 군에서 선택되는 어느 하나의 용매로 희석하여 사용하는 것일 수 있다. The composition for forming a water repellent coating layer may be prepared by diluting the silicone polymer with any one solvent selected from the group consisting of water, isopropyl alcohol (IPA), ethanol, glycerol, and glycol.
상기 실리콘계 고분자는 상기 발수성 코팅층 조성물 전체 중량에 대하여 1 중량% 내지 50 중량%로 포함되는 것일 수 있고, 용매에 따라 함량을 조절할 수 있다. 본 발명에 따른 일 실시예에서, 용매가 물인 수성 에멀젼인 경우 상기 실리콘계 고분자를 20 중량% 내지 40 중량%로 포함할 수 있다.The silicone-based polymer may be contained in an amount of 1 wt% to 50 wt% with respect to the total weight of the water repellent coating layer composition, and the content may be controlled according to a solvent. In one embodiment of the present invention, when the solvent is an aqueous emulsion, 20 to 40% by weight of the silicone-based polymer may be contained.
상기 발수성 코팅층 형성용 조성물은 점도가 1 cP 내지 1000 cP인 것이 나노 멤브레인의 섬유 코팅층 형성면에서 바람직하다. 상기 조성물의 점도는 KS M ISO 2555 방법으로 23 ℃ 온도에서 측정할 수 있다. 상기 발수성 코팅층 형성용 조성물의 점도가 1 cP 미만인 경우 나노 섬유의 일정 두께 이상의 코팅층 형성이 어려워 표면 저항 및 정전기 방지 효과에 의한 방진, 방오 성능이 미미할 수 있으며, 1000 cP를 초과하는 경우 용융 흐름성이 저하되어 발수성 코팅층의 두께를 10 nm 내지 500 nm로 유지하기 어렵고, 통기도 및 음향 성능을 확보하기 위한 일정 이상의 기공도를 얻을 수 없다.The composition for forming the water repellent coating layer preferably has a viscosity of 1 cP to 1000 cP in view of forming a fibrous coating layer of a nanomembrane. The viscosity of the composition can be measured at a temperature of 23 DEG C in accordance with the KSM ISO 2555 method. When the viscosity of the composition for forming a water repellent coating layer is less than 1 cP, it is difficult to form a coating layer having a thickness equal to or more than a certain thickness of the nanofibers. Thus, the surface resistance and antistatic effect may be insufficient. It is difficult to maintain the thickness of the water repellent coating layer at 10 nm to 500 nm, and a porosity of more than a certain level for securing the air permeability and acoustic performance can not be obtained.
상기 발수성 코팅층 형성용 조성물을 상기 나노 멤브레인에 도포하는 단계는 스프레이, 함침, 프린팅, 롤링, 용액 캐스팅, 롤에 조각을 실시한 그라비어 전사 코팅법, 스크린 코팅법, T-다이 코팅법, 파이바 코팅법 등의 방법으로 표면에 균일하게 도포하는 것일 수 있다. 이때 상기 발수성 코팅층 형성용 조성물의 용융 온도는, 80 ℃ 내지 300 ℃인 것이 바람직하고, 80 ℃ 내지 200 ℃인 것이 보다 바람직하다.The step of applying the composition for forming a water-repellent coating layer to the nanomembrane may be carried out by spraying, impregnating, printing, rolling, solution casting, gravure transfer coating by roll coating, screen coating, T- Or the like. At this time, the melting temperature of the composition for forming a water repellent coating layer is preferably 80 ° C to 300 ° C, more preferably 80 ° C to 200 ° C.
다음으로 건조 단계는 상기 발수성 코팅층 형성용 조성물이 도포된 나노 멤브레인을 80 ℃ 내지 200 ℃ 오븐에서 1 내지 5분 동안 건조시키는 것일 수 있다. Next, in the drying step, the nanomembrane coated with the composition for forming a water repellent coating layer may be dried in an oven at 80 ° C to 200 ° C for 1 to 5 minutes.
상기 건조 조건이 80 ℃ 미만에서 1분 미만으로 실시되는 경우 발수성 형성용 조성물 내 용매의 증발 및 실리콘계 고분자가 경화되기에 시간이 짧아 코팅층 형성이 제대로 이루어지지 않을 수 있고, 나노 섬유 표면에 생성된 수분이 완전히 제거되지 않아 박리가 일어나거나 코팅이 흐를 수 있다. 200 ℃를 초과하는 조건에서, 5분을 초과하여 건조 시키는 경우 나노 멤브레인 제품 자체에 변형이 일어 날 수 있어 문제가 있을 수 있다. 즉 상기 범위 내에서 진행하는 경우 나노 멤브레인의 형태를 유지하면서 용매인 물을 증발시킬 수 있고, 나노 섬유의 발수제 코팅층이 균일하도록 경화시킬 수 있다.If the drying conditions are less than 80 ° C for less than one minute, the coating layer may not be formed properly due to evaporation of the solvent in the water-repellent composition and the curing of the silicone-based polymer, May not be completely removed and peeling may occur or the coating may flow. If it is dried for more than 5 minutes at a temperature exceeding 200 ° C, there may be a problem that deformation may occur in the nanomembrane product itself. That is, in the case of proceeding within the above range, water as a solvent can be evaporated while maintaining the shape of the nanomembrane, and the coating layer of the water repellent agent of the nanofiber can be uniformly cured.
또한, 상기 방수성 통기 시트의 제조 방법은 상기 나노 멤브레인을 일축 배향시키는 단계를 더 포함할 수 있다.The method for manufacturing the waterproof breathable sheet may further include uniaxially orienting the nanomembrane.
상기 나노 멤브레인을 일축 배향시킴으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조할 수 있으며, 롤투롤 공정시 안정성 및 사용성을 강화할 수 있다.By uniaxially orienting the nanomembrane, it is possible to produce a waterproof breathable sheet having excellent water permeability, waterproofing and waterproofing properties and breathability, and enhancing stability and usability in a roll-to-roll process.
상기 나노 멤브레인을 일축 배향시키면 상기 나노 섬유의 배향성을 제어하여 음의 흡수와 난반사를 억제하고 흡음 계수를 낮춰 음향의 왜곡을 해소할 수 있다. 또한, 상기 나노 멤브레인을 일축 배향시킴으로써 상기 나노 멤브레인의 길이 방향(MD) 인장 강도와 탄성률을 증가시킬 수 있다. 이를 통하여, 롤투롤(Roll to Roll, R2R) 공정시 인라인(In-line) 주행에서의 안정성 및 사용성이 개선되어 제품의 수율이 증가시킬 수 있다. 아울러 기존 대비 로트(LOT) 간 편차를 감소시켜 품질 관리도 안정적일 수 있다.When the nanomembrane is uniaxially oriented, it is possible to control the orientation of the nanofibers to suppress sound absorption and diffuse reflection, and to lower a sound absorption coefficient to eliminate sound distortion. In addition, the uniaxial orientation of the nanomembrane can increase the tensile strength and elastic modulus in the longitudinal direction (MD) of the nanomembrane. Through this, the stability and usability in the in-line traveling during the roll-to-roll (R2R) process can be improved and the product yield can be increased. In addition, quality control can be stabilized by reducing deviation between existing lots (LOT).
구체적으로, 상기 나노 멤브레인을 일축 배향시키는 단계는 상기 나노 멤브레인의 폭 방향에 비하여 상기 길이 방향에 1.5 배 내지 20 배의 장력을 인가하고, 구체적으로 2 배 내지 10 배의 장력을 인가하여 이루어질 수 있다. 상기 나노 멤브레인의 폭 방향의 장력에 비하여 상기 길이 방향의 장력이 1.5 배 미만인 경우 이방성이 부여되지 않을 수 있고 등방성의 물성이 발현되어 음의 흡수와 난반사가 발생하여 음의 왜곡이 발생될 수 있고, 20 배를 초과하는 경우 섬유의 집적, 강도, 신도 탄성률 저하에 의하여 권취시 파단 혹은 인열되어 안정성 및 사용성이 저하될 수 있다. 이때, 상기 나노 멤브레인의 일축 배향시 MD에만 장력을 인가하고 TD에는 장력을 인가하지 않을 경우, 즉 TD에 인가되는 장력이 음수 또는 0인 경우, 상기 나노 멤브레인의 폭이 줄어들기 때문에 상기 폭이 줄어들지 않도록 상기 나노 멤브레인의 양쪽 폭을 적어도 고정을 시켜야 하고, 이 경우에도 TD로 장력이 인가될 수 있다. 물론, 본 발명에서 상기 MD에만 장력을 인가하고 TD에는 장력을 인가하는 방법으로 일축 배향시키는 것도 가능하다.Specifically, the uniaxial orientation of the nanomembrane may be performed by applying a tensile force of 1.5 to 20 times in the longitudinal direction to the width direction of the nanomembrane, and specifically applying a tensile force of 2 to 10 times . If the tensile force in the longitudinal direction is less than 1.5 times the tension in the width direction of the nanomembrane, anisotropy may not be imparted, isotropic properties are developed, negative absorption and diffuse reflection occur, and negative distortion may occur. If it is more than 20 times, the aggregation, strength and elongation modulus of the fibers may be lowered, resulting in breakage or tearing at the time of winding, resulting in deterioration of stability and usability. At this time, when the tensile force is applied only to the MD in the uniaxial orientation of the nanomembrane, and when the tensile force is not applied to the TD, i.e., when the tensile force applied to the TD is negative or zero, the width of the nanomembrane is reduced, The width of both sides of the nanomembrane should be at least fixed. In this case, the tensile force may be applied to the nanomembrane. Of course, in the present invention, uniaxial orientation can also be achieved by applying a tensile force only to the MD and applying a tensile force to the TD.
상기 나노 멤브레인을 일축 배향시키는 방법은 본 발명에서 특별히 한정되지 않으며, 종래에 나노 멤브레인을 배향시키는 방법이면 어느 방법이나 적용 가능하다. 일 예로 상기 일축 배향은 별도의 배향 장치에서 이루어질 수 있고, 상기 전기 방사 장치에서 집적부(4)의 집적 조건을 조정하여 이루어질 수도 있고, 상기 제조된 나노 멤브레인을 권취하는 권취 롤러의 권취 조건을 조정하여 이루어질 수도 있다. The method of uniaxially orienting the nanomembrane is not particularly limited in the present invention, and any method can be applied as long as it is conventionally a method of orienting a nanomembrane. For example, the uniaxial orientation may be achieved by a separate orientation device, and the integration condition of the integrated portion 4 may be adjusted in the electrospinning device, and the winding condition of the winding roller for winding the manufactured nanomembrane may be adjusted .
더욱 구체적으로 예를 들면, 상기 나노 멤브레인을 일축 배향시키는 단계는 상기 나노 멤브레인의 권취 속도를 0.01 m/min 내지 20 m/min, 구체적으로 0.1 m/min 내지 10 m/min로 조절하고, TR(traverse) 속도를 0.001 m/min 내지 10 m/min, 구체적으로 0.01 m/min 내지 2 m/min로 조절하여 이루어질 수 있다. 상기 TR 속도는 섬유의 일축 배향과 직각 방향으로, 즉 폭 방향(TD)으로 상기 나노 멤브레인을 왕복 운동시키는 속도를 의미한다. 상기 나노 멤브레인은 상기 나노 섬유가 상기 노즐의 위치와 상관 없이 고르게 집적되도록 하는 등의 여러 가지 이유에 의하여 상기 전기 방사시 또는 상기 권취시 상기 나노 멤브레인을 폭 방향(TD)으로 왕복 운동시킬 수 있다. 상기 권취 속도와 상기 TR 속도가 상기 범위 내인 경우 상기 길이 방향 탄성률과 폭 방향 탄성률의 이방성(MD 탄성률/TD 탄성률)이 1.5 내지 10.0인 나노 멤브레인을 제조할 수 있다.More specifically, for example, in the uniaxial orientation of the nanomembrane, the winding speed of the nanomembrane is adjusted to 0.01 m / min to 20 m / min, specifically 0.1 m / min to 10 m / min, and TR ( traverse speed from 0.001 m / min to 10 m / min, specifically from 0.01 m / min to 2 m / min. The TR speed means a speed at which the nanomembrane reciprocates in a direction perpendicular to the uniaxial orientation of the fiber, that is, in the width direction (TD). The nanomembrane may reciprocate the nanomembrane in the transverse direction (TD) during the electrospinning or the winding according to various reasons such as the uniform integration of the nanofibers irrespective of the position of the nozzle. When the winding speed and the TR speed are within the above range, an anisotropy (MD elastic modulus / TD elastic modulus) of the longitudinal elastic modulus and the width modulus of 1.5 to 10.0 can be produced.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
[제조예 1: 통기성 방수 시트의 제조][Preparation Example 1: Preparation of breathable waterproof sheet]
(실시예 1-1)(Example 1-1)
PVdF를 디메틸아세트아미드에 18 %(w/w)의 농도로 용해하여 전기 방사 용액을 제조하였다. 상기 전기 방사 용액의 점도는 3000 cP이었다.An electrospinning solution was prepared by dissolving PVdF in dimethylacetamide at a concentration of 18% (w / w). The viscosity of the electrospinning solution was 3000 cP.
상기 전기 방사 용액을 상기 도 4의 전기 방사 장치를 이용하여 전압 60 kV, 토출량 20 cc/min의 조건으로 전기 방사하여 나노 멤브레인을 제조하였다.The electrospinning solution was electrospun by using the electrospinning device of FIG. 4 at a voltage of 60 kV and a discharge rate of 20 cc / min to prepare a nanomembrane.
상기 나노 멤브레인과 양면 테이프 및 보호 기재를 연속 투입하여 상기 나노 멤브레인의 상면에 상기 양면 테이프의 하면이 점착되고 보호 기재를 합지하였다. 그 다음 일정 압력과 속도로 움직이는 금형틀 사이를 통과하여 일정 크기로 재단하여 방수성 통기 시트를 제조하였다.The nano-membrane, the double-sided tape and the protective substrate were continuously introduced to adhere the lower surface of the double-sided tape to the upper surface of the nanomembrane, and the protective substrate was joined. Then, a waterproof breathable sheet was prepared by passing through a mold having a constant pressure and speed and cut to a certain size.
(실시예 1-2 내지 실시예 1-3)(Examples 1-2 to 1-3)
상기 실시예 1-1에서 상기 전기 방사 용액의 농도, 점도, 전기 방사 조건을 하기 표 1과 같이 변경한 것을 제외하고는 상기 실시예 1-1 과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 1-1, except that the concentration, viscosity and electrospinning conditions of the electrospun solution in Example 1-1 were changed as shown in Table 1 below.
(실시예 1-4)(Examples 1-4)
PVdF를 디메틸포름아미드와 아세톤 혼합액(DMF 50%: 아세톤 50%, w/w)에 18 %(w/w)의 농도로 용해하여 전기 방사 용액을 제조하였다. 상기 전기 방사 용액의 점도는 450 cP이었다.An electrospinning solution was prepared by dissolving PVdF at a concentration of 18% (w / w) in a mixture of dimethylformamide and acetone (DMF 50%: acetone 50%, w / w) The viscosity of the electrospinning solution was 450 cP.
상기 전기 방사 용액을 실시예 1-1에서 조성, 점도, 전기 방사 조건을 하기 표 1과 같이 변경한 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 1-1, except that the electrospinning solution was changed to the composition, viscosity and electrospinning conditions in Example 1-1 as shown in Table 1 below.
(비교예 1-1 및 비교예 1-2)(Comparative Example 1-1 and Comparative Example 1-2)
상기 실시예 1-1에서 상기 전기 방사 용액의 농도, 점도, 전기 방사 조건을 하기 표 1과 같이 변경한 것을 제외하고는 상기 실시예 1-1 과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 1-1, except that the concentration, viscosity and electrospinning conditions of the electrospun solution in Example 1-1 were changed as shown in Table 1 below.
구분division 농도(%)density(%) 점도(cP)Viscosity (cP) 전압(kV)Voltage (kV) 토출량(cc/min)Discharge amount (cc / min)
실시예 1-1Example 1-1 1818 30003000 6060 2020
실시예 1-2Examples 1-2 1313 10001000 5555 2020
실시예 1-3Example 1-3 1010 800800 7070 5050
실시예 1-4Examples 1-4 1818 450450 6565 2525
비교예 1-1Comparative Example 1-1 3535 1200012000 8585 0.010.01
비교예 1-2Comparative Example 1-2 55 5050 7575 0.50.5
[실험예 1-1: 나노 멤브레인의 특성 측정][Experimental Example 1-1: Characteristic measurement of nanomembrane]
상기 실시예 및 비교예에서 제조된 나노 멤브레인의 나노 섬유들의 직경, 두께, 기공 크기, 기공도, 평량, 기공의 크기 분포를 측정하여 하기 표 2에 나타내었고, 상기 나노 멤브레인의 공기 투과도, 내수압, 발수 등급, 탄성률을 측정하여 하기 표 3에 나타내었다. The diameters, thickness, pore size, porosity, basis weight, and pore size distribution of the nanofibers of the nanomembranes prepared in the above Examples and Comparative Examples were measured and shown in Table 2 below, and the air permeability, Water repellency and elastic modulus were measured and shown in Table 3 below.
상기 나노 멤브레인의 기공 크기 및 기공 분포는 ASTM F316에 규정된 모세관 흐름 공극 측정기(capillary flow porometer, CFP)를 사용하여 가장 협소한 구간에서의 공극 크기인 제한 공극의 직경에서 평균 공극 크기 및 공극의 크기 분포를 측정하였다.The pore size and the pore distribution of the nanomembrane were measured by using a capillary flow porometer (CFP) specified in ASTM F316 to calculate the average pore size and the size of the pores in the diameter of the pores of the pore size in the narrowest interval The distribution was measured.
상기 나노 멤브레인의 두께는 KS K 0506에 규정된 두께 측정법 또는 KS K ISO 9073-2, ISO 4593을 적용하여 두께를 측정하였다. The thickness of the nanomembrane was measured by the thickness measurement method specified in KS K 0506 or KS K ISO 9073-2, ISO 4593.
상기 나노 멤브레인의 평량은 ASTM D 3776을 적용하여 측정하였다.The basis weight of the nanomembrane was measured by applying ASTM D 3776.
상기 나노 멤브레인의 기공도는 상기 수학식 1에 따라 측정하였다.The porosity of the nanomembrane was measured according to Equation (1).
상기 나노 멤브레인의 기공의 크기 분포는 상기 나노 멤브레인의 일 표면에서 무작위로 선택된 단위 면적(cm2) 내에 존재하는 기공 1 개와 이를 제외한 나머지 기공 100 개를 선택하여, 상기 선택된 1 개의 기공과 크기 차이가 100 nm 이상인 기공의 개수를 측정하였다.The size distribution of the pores of the nanomembrane is selected by selecting one pore existing within a unit area (cm 2 ) randomly selected from one surface of the nanomembrane and 100 pores excluding the one pore, The number of pores of 100 nm or more was measured.
상기 나노 멤브레인의 공기 투과도는 ASTM D 737 방법을 적용하여 면적 38㎠, 정압 125Pa의 조건으로 측정하였다. 이때 ㎤/㎠/s를 ft3/ft2/min(CFM)으로 환산하였다. 환산계수는 0.508016 이다.The air permeability of the nanomembrane was measured using an ASTM D 737 method under the conditions of an area of 38 cm 2 and a static pressure of 125 Pa. The ㎤ / ㎠ / s were calculated as ft 3 / ft 2 / min ( CFM). The conversion factor is 0.508016.
상기 나노 멤브레인의 내수압은 KS K ISO 811 저수압법을 적용하여 면적 100 ㎠에서 600 ㎜H2O/min으로 가압하여 물방울에 3 포인트 생기는 지점에서의 압력을 측정하였다.The water pressure of the nanomembrane was measured by applying pressure of 600 ㎜ H 2 O / min at an area of 100 ㎠ by applying the KS K ISO 811 low pressure method to measure the pressure at three points on the water drop.
상기 나노 멤브레인의 발수 등급은 KS K 0590에 규정된 방법으로 측정하였다.The water repellency of the nanomembrane was measured by the method described in KS K 0590.
상기 흡음 계수는 관내법 흡음 시험(ASTM E 1050-12) 방법으로 측정하였다.The sound absorption coefficient was measured by an in-line method sound absorption test (ASTM E 1050-12).
상기 나노 멤브레인의 탄성률은 ASTM D 882를 적용하여 MD(machine direction)와 TD(transverse direction)를 각 10 회 측정 후 최대값과 최소값을 제외한 평균값을 사용하였다.The modulus of elasticity of the nanomembrane was measured by measuring the machine direction (MD) and the transverse direction (TD) 10 times using ASTM D 882, and the average value except for the maximum value and the minimum value was used.
구분division 나노 섬유 직경(㎛)Diameter of nanofiber (탆) 두께 (㎛)Thickness (㎛) 기공 크기(㎛)Pore size (탆) 평량 (g/㎡)Basis weight (g / ㎡) 기공도(%)Porosity (%) 기공 크기의 불규칙성(개)Pore size irregularities ()
실시예 1-1Example 1-1 0.3~2.00.3 to 2.0 2020 0.5~50.5 to 5 6.276.27 8383 90/10090/100
실시예 1-2Examples 1-2 0.3~3.00.3 to 3.0 3535 0.1~10.1 to 1 1313 8080 20/10020/100
실시예 1-3Example 1-3 0.1~1.00.1 to 1.0 1818 0.1~20.1 to 2 6.06.0 8181 60/10060/100
실시예 1-4Examples 1-4 0.1~0.70.1 to 0.7 2121 0.1~30.1 to 3 7.07.0 8282 70/10070/100
비교예 1-1Comparative Example 1-1 2.0~5.02.0 to 5.0 3535 2~102 to 10 2525 6060 9/1009/100
비교예 1-2Comparative Example 1-2 0.1~0.30.1 to 0.3 22 0.01~0.050.01 to 0.05 1.21.2 77 1/1001/100
구분division 공기투과도(CFM)Air permeability (CFM) 내수압(㎜H2O)Water pressure (mmH 2 O) 발수 등급Water-repellency rating 흡음계수Absorption coefficient 탄성률(MPa)Modulus of elasticity (MPa)
실시예 1-1Example 1-1 7.017.01 5,6005,600 4-5 급4-5 0.010.01 194194
실시예 1-2Examples 1-2 6.876.87 5,2705,270 4 급4th grade 0.080.08 220220
실시예 1-3Example 1-3 3.043.04 12,82012,820 5 급5th grade 0.020.02 6565
실시예 1-4Examples 1-4 1.971.97 11,48011,480 5 급5th grade 0.010.01 200200
비교예 1-1Comparative Example 1-1 9.019.01 1,4501,450 1 급1st grade 0.320.32 6767
비교예 1-2Comparative Example 1-2 0.090.09 700700 1 급1st grade 0.510.51 1010
상기 표 2 및 표 3을 참고하면, 상기 실시예 1-1 내지 1-4는 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께, 기공의 크기 분포 등을 제어하여 흡음 계수가 낮아진 것을 알 수 있다.Referring to Tables 2 and 3, it can be seen that the examples 1-1 to 1-4 show that the absorption coefficient is lowered by controlling the microstructure of the nanomembrane, that is, the diameter, thickness and size distribution of the nanofiber, have.
[실험예 1-2: 방수성 통기 시트의 특성 측정][Experimental Example 1-2: Measurement of properties of waterproof breathable sheet]
상기 실시예 및 비교예에서 제조된 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성을 측정하여 하기 표 4에 나타내었다. The acoustic permeation loss, waterproofness (normal temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet produced in the above Examples and Comparative Examples were measured and shown in Table 4 below.
상기 방수성 통기 시트의 음향 투과 손실은 음향 전송 손실 시험으로 평가하였고, 구체적으로 평가 방법은 음향 투과 손실은(ASTM E 2611-09)을 적용하여 평가하였다.The acoustic transmission loss of the waterproof breathable sheet was evaluated by the acoustic transmission loss test. Specifically, the acoustic transmission loss was evaluated by applying (ASTM E 2611-09).
상기 방수성 통기 시트의 수압 방수성은 KS K ISO 811에서 사용하는 0 m 내지 20 m 깊이의 일정 수압을 일정 시간 동안 가할 수 있는 내수압 측정기를 사용하여 측정하였다. 또한, 상기 저온의 경우에는 -20 ℃에서 72 시간 동안 전처리한 후 평가하고, 고온/고습 조건은 50 ℃, 습도 95 %에서 72 시간 동안 전처리한 후 평가하고, 열충격 조건은 -40 ℃, 85 ℃를 각각 1 시간 동안 유지하는 한 사이클을 30 사이클 반복한 후 상온(20 ℃ ± 5 ℃)의 조건으로 평가하였다.The waterproofness of the waterproof breathable sheet was measured using a water pressure meter capable of applying a constant water pressure of 0 m to 20 m depth used in KS K ISO 811 for a predetermined time. In the case of the low temperature, the sample was pretreated at -20 ° C for 72 hours and then evaluated. After the pretreatment at 50 ° C and 95% humidity for 72 hours, the samples were evaluated at a temperature of -40 ° C and 85 ° C Were kept for 1 hour, respectively, and the cycle was repeated 30 times and then evaluated under the conditions of room temperature (20 DEG C +/- 5 DEG C).
상기 방수성 통기 시트의 통기성은 모세관 흐름 공극 측정기(capillary flow porometer, CFP)의 가스 투과 방법(Gas permeability method)으로 1 PSI 압력 하에서 직경 1 mm 원형 면적을 1분 동안 통과하는 공기의 유량을 측정하였다.The air permeability of the waterproof ventilation sheet was measured by a gas permeability method of a capillary flow porometer (CFP) using a flow rate of air passing through a 1 mm diameter circular area for 1 minute under 1 PSI pressure.
구분division 음향투과손실(dB)Acoustic transmission loss (dB) 수압방수(상온)Water pressure (room temperature) 수압방수(저온)Water pressure (low temperature) 수압방수 (고온고습)Water pressure (high temperature and high humidity) 수압방수(열충격)Waterproofing (thermal shock) 통기성 (cc/min@1PSI)Air permeability (cc / min @ 1PSI)
실시예 1-1Example 1-1 22 4m, 50분4m, 50 min 4m, 50분4m, 50 min 4m, 45분4m, 45 minutes 4m, 45분4m, 45 minutes 120120
실시예 1-2Examples 1-2 33 4m, 80분4m, 80 min 4m, 75분4m, 75mins 4m, 60분4m, 60 minutes 4m, 60분4m, 60 minutes 100100
실시예 1-3Example 1-3 0.10.1 6m, 300분6 m, 300 min 6m, 300분6 m, 300 min 6m, 250분6m, 250 min 6m, 280분6m, 280m 8080
실시예 1-4Examples 1-4 0.10.1 6m, 300분6 m, 300 min 6m, 300분6 m, 300 min 6m, 260분6m, 260m 6m, 290분6m, 290m 7070
비교예 1-1Comparative Example 1-1 1010 1.5m, 3분 1.5m, 3 minutes 1.5m, 3분1.5m, 3 minutes 1.5m, 1분1.5m, 1 minute 1.5m, 2분1.5m, 2 minutes 160160
비교예 1-2Comparative Example 1-2 3030 1.5m, 1분1.5m, 1 minute 1.5m, 1분1.5m, 1 minute 1.5m, 1분1.5m, 1 minute 1.5m, 1분1.5m, 1 minute 1One
상기 표 4를 참조하면, 상기 실시예 1-1 내지 1-4는 음향 투과 손실이 10 dB 미만이고, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 4 m 이상의 수압에서 30 분 이상 누수되지 않았고, 통기성이 20 cc/min(@1 PSI) 이상인 것을 알 수 있다.그러나, 상기 비교예 1-1 및 1-2의 경우 음향 투과 손실이 10 dB 이상이고, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 1.5 m의 수압에서도 누수되었다.Referring to Table 4, in Examples 1-1 to 1-4, the acoustic transmission loss was less than 10 dB and the waterproofing waterproof property (normal temperature, low temperature, high temperature / high humidity, thermal shock) However, in the case of the comparative examples 1-1 and 1-2, the acoustic transmission loss was 10 dB or more, and the waterproof and waterproof property (room temperature, low temperature, and high temperature) was not less than 20 cc / min (@ 1 PSI) High temperature / high humidity, thermal shock) leaked even at a water pressure of 1.5 m.
즉, 상기 실시예 1-1 내지 1-4는 폴리비닐리덴 플루오라이드를 전기 방사하여 제조시 전기 방사 조건을 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조하였음을 알 수 있다.That is, in Examples 1-1 to 1-4, polyvinylidene fluoride was electrospun to control the microstructure of the nanomembrane by adjusting the electrospinning conditions during production, It can be seen that a waterproof ventilation sheet having excellent air permeability was produced.
[제조예 2: 통기성 방수 시트의 제조][Preparation Example 2: Preparation of breathable waterproof sheet]
(실시예 2-1)(Example 2-1)
PVdF를 디메틸아세트아미드에 15 %(w/w)의 농도로 용해하여 전기 방사 용액을 제조하였다. 상기 전기 방사 용액의 점도는 2000 cP이었다.An electrospinning solution was prepared by dissolving PVdF in dimethylacetamide at a concentration of 15% (w / w). The viscosity of the electrospinning solution was 2000 cP.
상기 전기 방사 용액을 상기 도 4의 전기 방사 장치를 이용하여 전압 55 kV, 토출량 5 cc/min의 조건으로 전기 방사하여 나노웹을 제조하였다.The electrospun solution was electrospun using the electrospinning device of FIG. 4 under the conditions of a voltage of 55 kV and a discharge rate of 5 cc / min to prepare a nanoweb.
실리콘계 발수제를 물에 1 %의 농도로 희석하여 점도가 30 cP인 발수성 코팅층 형성용 용액을 제조하였다. 제조된 용액을 상기 제조된 나노 멤브레인 표면에 스프레이를 이용하여 분사하여 중량이 0.15 g/㎡가 되도록 도포하였다. 도포한 후 80 ℃ 오븐에서 3 분간 건조시켜 나노 멤브레인을 제조하였다.The silicone water repellent was diluted with water to a concentration of 1% to prepare a solution for forming a water repellent coating layer having a viscosity of 30 cP. The prepared solution was sprayed onto the surface of the prepared nanomembrane by spraying to give a weight of 0.15 g / m 2. And then dried in an oven at 80 DEG C for 3 minutes to prepare a nanomembrane.
상기 나노 멤브레인과 양면 점착 테이프 및 보호 기재를 연속 투입하여 상기 나노 멤브레인의 상면에 상기 양면 점착 테이프의 하면이 점착되고 보호 기재를 합지하였다. 그 다음 일정 압력과 속도로 움직이는 금형틀 사이를 통과하여 일정 크기로 타발하여 방수성 통기 시트를 제조하였다.The nanomembrane, the double-sided adhesive tape and the protective substrate were continuously charged to adhere the lower surface of the double-sided adhesive tape to the upper surface of the nanomembrane, and the protective substrate was laminated. Then, a waterproof breathable sheet was produced by passing through a mold having a constant pressure and speed and casting to a certain size.
(실시예 2-2 내지 실시예 2-4)(Examples 2-2 to 2-4)
상기 실시예 2-1에서 상기 전기 방사 용액의 농도, 점도, 전기 방사 조건 및 발수제 도포량을 하기 표 5와 같이 변경한 것을 제외하고는 상기 실시예 2-1 과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 2-1, except that the concentration, viscosity, electrospinning condition, and water repellent agent application amount of the electrospun solution in Example 2-1 were changed as shown in Table 5 below .
(비교예 2-1 및 비교예 2-2)(Comparative Example 2-1 and Comparative Example 2-2)
상기 실시예 2-1에서 실리콘계 발수층 형성한 것을 제외하고 전기 방사 용액의 농도, 점도, 전기 방사 조건을 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.Except that the silicone water-repellent layer was formed in Example 2-1, the concentration, viscosity, and electrospinning conditions of the electrospinning solution were carried out in the same manner to prepare a water-permeable ventilating sheet.
구분division 농도(%)density(%) 점도(cP)Viscosity (cP) 전압(kV)Voltage (kV) 토출량(cc/min)Discharge amount (cc / min) 발수제 도포량(g/㎡)Water repellent application amount (g / ㎡)
실시예 2-1Example 2-1 1515 20002000 5555 55 0.150.15
실시예 2-2Example 2-2 2020 50005000 6060 55 0.150.15
실시예 2-3Example 2-3 1515 20002000 5555 55 0.50.5
실시예 2-4Examples 2-4 2020 50005000 6060 55 0.50.5
비교예 2-1Comparative Example 2-1 1515 20002000 5555 55 00
비교예 2-2Comparative Example 2-2 2020 50005000 6060 55 00
[실험예 2-1: 나노 멤브레인의 특성 측정][Experimental Example 2-1: Characteristic measurement of nanomembrane]
상기 실시예 및 비교예에서 제조된 나노 멤브레인의 나노 섬유들의 직경, 두께, 기공 크기, 기공도, 평량을 측정하여 하기 표 6에 나타내었고, 상기 나노 멤브레인의 공기 투과도, 내수압, 발수 등급, 탄성률을 측정하여 하기 표 7에 나타내었다. The diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembranes prepared in the above Examples and Comparative Examples were measured and shown in Table 6 below. The nanofiber nanofibers were measured for air permeability, water pressure, water repellency, The results are shown in Table 7 below.
상기 나노 멤브레인의 나노 섬유들의 직경, 두께, 기공 크기, 기공도, 평량의 측정 방법과 상기 나노 멤브레인의 공기 투과도, 내수압, 발수 등급, 탄성률의 측정 방법은 상기 실험예 1-1에서와 동일하다.The method for measuring the diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembrane and the air permeability, water pressure, water repellency, and elastic modulus of the nanomembrane are the same as in Experimental Example 1-1.
구분division 나노 섬유 직경(㎛)Diameter of nanofiber (탆) 두께(㎛)Thickness (㎛) 기공 크기(㎛)Pore size (탆) 평량(g/㎡)Basis weight (g / ㎡) 기공도(%)Porosity (%)
실시예 2-1Example 2-1 0.1~10.1 to 1 1515 0.7~1.50.7 to 1.5 7.17.1 73.673.6
실시예 2-2Example 2-2 0.16~1.80.16 to 1.8 1616 0.5~1.20.5 to 1.2 7.27.2 74.974.9
실시예 2-3Example 2-3 0.15~1.50.15 to 1.5 1616 0.5~1.30.5 to 1.3 7.77.7 73.173.1
실시예 2-4Examples 2-4 0.2~20.2 to 2 1717 0.3~1.00.3 to 1.0 7.87.8 74.474.4
비교예 2-1Comparative Example 2-1 0.08~10.08 to 1 1515 0.7~1.50.7 to 1.5 6.96.9 74.374.3
비교예 2-2Comparative Example 2-2 0.16~20.16 to 2 1616 0.5~1.20.5 to 1.2 7.37.3 74.374.3
구분division 공기투과도(CFM)Air permeability (CFM) 내수압(㎜H2O)Water pressure (mmH 2 O) 발수 등급Water-repellency rating 탄성률(MD방향, ㎫)Modulus of elasticity (MD direction, MPa) 접촉각(°)Contact angle (°)
실시예 2-1Example 2-1 3.23.2 1000010000 4~5급4 to 5 6262 137137
실시예 2-2Example 2-2 3.13.1 1000010000 4~5급4 to 5 6666 137137
실시예 2-3Example 2-3 3.03.0 1200012000 5급5th grade 7070 142142
실시예 2-4Examples 2-4 3.03.0 1200012000 5급5th grade 7171 143143
비교예 2-1Comparative Example 2-1 3.23.2 70007000 4급4th grade 4949 122122
비교예 2-2Comparative Example 2-2 3.13.1 70007000 4급4th grade 5252 123123
상기 표 6 및 표 7을 참고하면, 상기 실시예 2-1 내지 2-4는 고분자 농도에 따라 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께를 제어하였으며, 발수제 도포량에 따라 통기도는 유지하면서 발수 성능은 향상된 것을 알 수 있다.Referring to Tables 6 and 7, the microstructure of the nanomembrane, that is, the diameter and thickness of the nanofiber, was controlled according to the concentration of the polymer, and the permeability was maintained according to the amount of the water repellent applied The water repellency performance is improved.
[실험예 2-2: 방수성 통기 시트의 특성 측정][Experimental Example 2-2: Measurement of properties of waterproof breathable sheet]
상기 실시예 및 비교예에서 제조된 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성을 측정하여 하기 표 8에 나타내었다. The acoustic transmission loss, waterproofing waterproofness (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet produced in the above Examples and Comparative Examples were measured and shown in Table 8 below.
상기 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성의 측정 방법은 상기 실험예 1-2에서와 동일하다.The method of measuring acoustic transmission loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet is the same as in Experimental Example 1-2.
구분division 음향투과손실(dB)Acoustic transmission loss (dB) 수압방수(상온)Water pressure (room temperature) 수압방수(저온)Water pressure (low temperature) 수압방수 (고온고습)Water pressure (high temperature and high humidity) 수압방수(열충격)Waterproofing (thermal shock) 통기성 (cc/min@1PSI)Air permeability (cc / min @ 1PSI)
실시예 2-1Example 2-1 0.30.3 4m, 100분4m, 100mins 4m, 80분4m, 80 min 4m, 60분4m, 60 minutes 4m, 80분4m, 80 min 60~7060 to 70
실시예 2-2Example 2-2 0.20.2 4m, 100분4m, 100mins 4m, 80분4m, 80 min 4m, 60분4m, 60 minutes 4m. 80분4m. 80 minutes 60~7060 to 70
실시예 2-3Example 2-3 0.40.4 4m, 150분 4m, 150 min 4m, 120분4m, 120 minutes 4m, 100분4m, 100mins 4m, 120분4m, 120 minutes 50~6050 to 60
실시예 2-4Examples 2-4 0.50.5 4m, 150분4m, 150 min 4m, 120분4m, 120 minutes 4m, 100분4m, 100mins 4m, 120분4m, 120 minutes 50~6050 to 60
비교예 2-1Comparative Example 2-1 0.20.2 4m, 3분4m, 3 minutes 4m, 2분4m, 2 min 4m, 0분4m, 0 min 4m, 3분4m, 3 minutes 60~7060 to 70
비교예 2-2Comparative Example 2-2 0.30.3 4m, 5분4m, 5mins 4m, 2분4m, 2 min 4m, 0분4m, 0 min 4m, 2분4m, 2 min 60~7060 to 70
상기 표 8을 참조하면, 상기 실시예 2-1 내지 2-4는 음향 투과 손실이 10 dB 미만이고, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 4 m의 수압에서 30 분 이상 누수되지 않았고, 통기성이 20 cc/min(@1 PSI) 이상인 것을 알 수 있다.그러나, 상기 비교예 2-1 및 2-2의 경우 음향 투과 손실과 통기성은 실시예 2-1 내지 2-2와 비슷했지만, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 4 m의 수압에서도 누수되었다.Referring to Table 8, in Examples 2-1 to 2-4, the acoustic transmission loss was less than 10 dB and the waterproofing waterproof property (normal temperature, low temperature, high temperature / high humidity, thermal shock) And the air permeability is not less than 20 cc / min (@ 1 PSI). However, in the case of Comparative Examples 2-1 and 2-2, the acoustic permeation loss and air permeability are similar to those in Examples 2-1 to 2-2 Similar water pressure (water temperature, low temperature, high temperature / high humidity, thermal shock) leaked even at a water pressure of 4 m.
즉, 상기 실시예 2-1 내지 2-4는 폴리비닐리덴 플루오라이드를 전기 방사하여 제조시 전기 방사 조건을 조절하여 상기 나노 멤브레인의 미세 구조를 조절함과 동시에 수압방수성 높이고, 우수한 통기성을 가질 뿐만 아니라 음향 투과 손실이 거의 없는 방수성 통기 시트를 제조하였음을 알 수 있다.In other words, in Examples 2-1 to 2-4, polyvinylidene fluoride was electrospun to control the microstructure of the nanomembrane by controlling the electrospinning conditions during production, thereby improving the waterproofing and waterproofing properties, It is understood that a waterproof ventilation sheet having almost no acoustic transmission loss is produced.
[제조예 3: 통기성 방수 시트의 제조][Preparation Example 3: Preparation of breathable waterproof sheet]
(실시예 3-1)(Example 3-1)
플루오르폴리머 PVdF 100 중량부 및 탄소결합 6개인 불소계 발수발유 첨가제 KF GUARD 910(니카코리아) 15.4 중량부를 다이메틸폼아마이드 653.6 중량부에 15 %(w/w)의 농도로 용해하여 전기 방사 용액을 제조하였다. 100 parts by weight of a fluoropolymer PVdF and 15.4 parts by weight of a fluorine-containing water-repellent oil additive KF GUARD 910 (Nika Korea) having 6 carbon bonds were dissolved in 653.6 parts by weight of dimethylformamide at a concentration of 15% (w / w) .
상기 발수발유 첨가제를 포함하는 전기 방사 용액의 점도는 3000 cP이었다.The viscosity of the electrospinning solution containing the water-repellent oil additive was 3000 cP.
상기 전기 방사 용액을 상기 도 4의 전기 방사 장치를 이용하여 전압 50 kV, 토출량 6 cc/min의 조건으로 전기 방사하여 나노 멤브레인을 제조하였다.The electrospinning solution was electrospun using the electrospinning device of FIG. 4 under the conditions of a voltage of 50 kV and a discharge rate of 6 cc / min to prepare a nanomembrane.
상기 나노 멤브레인과 양면 테이프 및 보호 기재를 연속 투입하여 상기 나노 멤브레인의 상면에 상기 양면 테이프의 하면이 접착되고 보호 기재를 합지하였다. 그 다음 일정 압력과 속도로 움직이는 금형틀 사이를 통과하여 일정 크기로 타발하여 방수성 통기 시트를 제조하였다.The nanomembrane, the double-sided tape and the protective substrate were continuously charged, and the lower surface of the double-sided tape was bonded to the upper surface of the nanomembrane and the protective substrate was laminated. Then, a waterproof breathable sheet was produced by passing through a mold having a constant pressure and speed and casting to a certain size.
(실시예 3-2 내지 실시예 3-3)(Examples 3-2 to 3-3)
상기 실시예 3-1에서 상기 전기 방사 용액의 농도, 점도, 전기 방사 조건을 하기 표 9와 같이 변경한 것을 제외하고는 상기 실시예 3-1 과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 3-1, except that the concentration, viscosity, and electrospinning conditions of the electrospun solution in Example 3-1 were changed as shown in Table 9 below.
(비교예 3-1)(Comparative Example 3-1)
상기 실시예 3-1에서, 상기 발수발유 첨가제를 사용하지 않고, 상기 전기 방사 용액의 농도, 점도, 전기 방사 조건을 하기 표 9와 같이 변경한 것을 제외하고는 상기 실시예 3-1 과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.In Example 3-1, the same as Example 3-1, except that the water-and-oil additive was not used, and the concentration, viscosity, and electrospinning conditions of the electrospinning solution were changed as shown in Table 9 below To prepare a waterproof ventilation sheet.
구분division 발수발유 첨가제 농도(%)Water and oil additive concentration (%) 고분자 및 발수발유 첨가제 농도(%)Concentration of Polymer and Water-Solubility Additives (%) 점도(cP)Viscosity (cP) 전압(kV)Voltage (kV) 토출량(cc/min)Discharge amount (cc / min)
실시예 3-1Example 3-1 22 1515 30003000 5050 66
실시예 3-2Example 3-2 22 2020 10001000 5555 66
실시예 3-3Example 3-3 22 1010 600600 4545 66
비교예 3-1Comparative Example 3-1 00 1515 30003000 5050 66
[실험예 3-1: 나노 멤브레인의 특성 측정][Experimental Example 3-1: Characteristic measurement of nanomembrane]
상기 실시예 및 비교예에서 제조된 나노 멤브레인의 나노 섬유들의 직경, 두께, 기공 크기, 기공도, 평량을 측정하여 하기 표 10에 나타내었고, 상기 나노 멤브레인의 공기 투과도, 내수압, 발수 등급, 탄성률을 측정하여 하기 표 11에 나타내었다. The diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembrane prepared in the above Examples and Comparative Examples were measured and shown in Table 10 below. The nanofiber nanofibers were measured for air permeability, water pressure, water repellency, The results are shown in Table 11 below.
상기 나노 멤브레인의 나노 섬유들의 직경, 두께, 기공 크기, 기공도, 평량의 측정 방법과 상기 나노 멤브레인의 공기 투과도, 내수압, 발수 등급, 탄성률의 측정 방법은 상기 실험예 1-1에서와 동일하다.The method for measuring the diameter, thickness, pore size, porosity and basis weight of the nanofibers of the nanomembrane and the air permeability, water pressure, water repellency, and elastic modulus of the nanomembrane are the same as in Experimental Example 1-1.
구분division 나노 섬유 직경(㎛)Diameter of nanofiber (탆) 두께 (㎛)Thickness (㎛) 기공 크기(㎛)Pore size (탆) 평량(g/㎡)Basis weight (g / ㎡) 기공도(%)Porosity (%)
실시예 3-1Example 3-1 0.15~10.15 to 1 1515 0.5~1.50.5 to 1.5 77 73.973.9
실시예 3-2Example 3-2 0.5~20.5 to 2 1717 0.3~1.20.3 to 1.2 7.67.6 7575
실시예 3-3Example 3-3 0.1~0.80.1 to 0.8 1313 0.7~1.50.7 to 1.5 66 74.274.2
비교예 3-1Comparative Example 3-1 0.15~10.15 to 1 1515 0.6~1.50.6 to 1.5 6.96.9 74.374.3
구분division 공기투과도(CFM)Air permeability (CFM) 내수압(㎜H2O)Water pressure (mmH 2 O) 발수 등급Water-repellency rating 탄성률(MD방향, ㎫)Modulus of elasticity (MD direction, MPa) 접촉각(°)Contact angle (°)
실시예 3-1Example 3-1 3.13.1 1000010000 4-5 급4-5 6969 133133
실시예 3-2Example 3-2 2.72.7 90009000 4-5 급4-5 8282 131131
실시예 3-3Example 3-3 3.43.4 1100011000 5 급5th grade 5757 140140
비교예 3-1Comparative Example 3-1 3.03.0 70007000 4 급4th grade 7070 122122
상기 표 10 및 표 11을 참고하면, 상기 실시예 3-1 내지 3-3 및 비교예 3-1은 플루오르폴리머 및 발수발유 첨가제의 농도로 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께, 기공의 크기 등을 제어하여 공기 투과도는 그대로 유지하면서, 발수발유 첨가제의 유무에 따라 방수 성능과 발수 등급의 차이가 있는 것을 확인할 수 있었다.Referring to Table 10 and Table 11, Examples 3-1 to 3-3 and Comparative Example 3-1 show the nanostructure microstructure at the concentration of the fluoropolymer and the water-repellent oil additive, that is, the diameter of the nanofiber, , Pore size and so on, while keeping the air permeability as it is, it is confirmed that there is a difference between the waterproof performance and the water repellency according to the presence or absence of the water and oil additive.
[실험예 3-2: 방수성 통기 시트의 특성 측정][Experimental Example 3-2: Measurement of properties of waterproof breathable sheet]
상기 실시예 및 비교예에서 제조된 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성을 측정하여 하기 표 12에 나타내었다. The acoustic permeation loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet produced in the above Examples and Comparative Examples are shown in Table 12 below.
상기 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성의 측정 방법은 상기 실험예 1-2에서와 동일하다.The method of measuring acoustic transmission loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet is the same as in Experimental Example 1-2.
구분division 음향투과손실(dB)Acoustic transmission loss (dB) 수압방수(상온)Water pressure (room temperature) 수압방수(저온)Water pressure (low temperature) 수압방수 (고온고습)Water pressure (high temperature and high humidity) 수압방수(열충격)Waterproofing (thermal shock) 통기성 (cc/min@1PSI)Air permeability (cc / min @ 1PSI)
실시예 3-1Example 3-1 0.20.2 4m, 100분4m, 100mins 4m, 80분4m, 80 min 4m, 50분4m, 50 min 4m, 80분4m, 80 min 60~7060 to 70
실시예 3-2Example 3-2 0.30.3 4m, 80분4m, 80 min 4m, 60분4m, 60 minutes 4m, 40분4m, 40 minutes 4m, 60분4m, 60 minutes 60~7060 to 70
실시예 3-3Example 3-3 0.10.1 4m, 120분4m, 120 minutes 4m, 100분4m, 100mins 4m, 70분4m, 70mins 4m, 100분4m, 100mins 60~7060 to 70
비교예 3-1Comparative Example 3-1 0.20.2 4m, 3분4m, 3 minutes 4m, 2분4m, 2 min 4m, 0분4m, 0 min 4m, 3분4m, 3 minutes 60~7060 to 70
상기 표 12를 참조하면, 상기 실시예 3-1 내지 3-3은 음향 투과 손실이 10 dB 미만이고, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 4 m의 수압에서 30 분 이상 누수되지 않았고, 통기성이 20 cc/min(@1 PSI) 이상인 것을 알 수 있다.그러나, 상기 비교예 3-1의 경우 음향 투과 손실은 유사하지만 상온, 저온, 고온/고습, 열충격 조건에서 수압 방수성능이 낮은 것을 확인할 수 있다.Referring to Table 12, in Examples 3-1 to 3-3, the acoustic transmission loss was less than 10 dB and the waterproofing waterproof property (normal temperature, low temperature, high temperature / high humidity, thermal shock) However, in the case of Comparative Example 3-1, the acoustic transmission loss is similar, but the waterproofing performance at the room temperature, the low temperature, the high temperature / high humidity, and the thermal shock performance is similar. Is low.
즉, 상기 실시예 3-1 내지 3-3은 폴리비닐리덴 플루오라이드 및 발수발유 첨가제를 전기 방사하여 제조 시 방사용액의 농도를 조절하여 상기 나노 멤브레인의 미세 구조를 조절함으로써 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수하고, 발수발유 첨가제를 더 포함함으로써 방수성이 더욱 향상된 방수성 통기 시트를 제조하였음을 알 수 있었다.That is, in Examples 3-1 to 3-3, the polyvinylidene fluoride and the water-repellent oil additive are electrospun to control the microstructure of the nanomembrane by adjusting the concentration of the spinning solution during the production, In addition, it was found that the waterproof breathable sheet having improved waterproofness, waterproofness and breathability, and water repellent oil additive were further improved.
[제조예 4: 통기성 방수 시트의 제조][Preparation Example 4: Preparation of breathable waterproof sheet]
(실시예 4-1)(Example 4-1)
PVdF를 디메틸아세트아미드에 18 %(w/w)의 농도로 용해하여 전기 방사 용액을 제조하였다. 상기 전기 방사 용액의 점도는 3000 cP이었다.An electrospinning solution was prepared by dissolving PVdF in dimethylacetamide at a concentration of 18% (w / w). The viscosity of the electrospinning solution was 3000 cP.
상기 전기 방사 용액을 상기 도 4의 전기 방사 장치를 이용하여 전압 60 kV, 토출량 20 cc/min의 조건으로 전기 방사하여 나노 멤브레인을 제조하였다.The electrospinning solution was electrospun by using the electrospinning device of FIG. 4 at a voltage of 60 kV and a discharge rate of 20 cc / min to prepare a nanomembrane.
이때, 상기 나노 멤브레인의 권취 속도를 5.0 m/min로 조절하고, TR 속도를 0.8 m/min로 조절하여 상기 나노 멤브레인을 기계 방향으로 일축 연신시켰다. At this time, the nanomembrane was uniaxially stretched in the machine direction by adjusting the winding speed of the nanomembrane to 5.0 m / min and controlling the TR speed to 0.8 m / min.
상기 나노 멤브레인과 양면 테이프 및 보호 기재를 연속 투입하여 상기 나노 멤브레인의 상면에 상기 양면 테이프의 하면이 점착되고 보호 기재를 합지하였다. 그 다음 일정 압력과 속도로 움직이는 금형틀 사이를 통과하여 일정 크기로 재단하여 방수성 통기 시트를 제조하였다.The nano-membrane, the double-sided tape and the protective substrate were continuously introduced to adhere the lower surface of the double-sided tape to the upper surface of the nanomembrane, and the protective substrate was joined. Then, a waterproof breathable sheet was prepared by passing through a mold having a constant pressure and speed and cut to a certain size.
(실시예 4-2 내지 실시예 4-3)(Examples 4-2 to 4-3)
상기 실시예 4-1에서 상기 나노 멤브레인의 제조 조건을 하기 표 13과 같이 변경한 것을 제외하고는 상기 실시예 4-1과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 4-1, except that the preparation conditions of the nanomembrane in Example 4-1 were changed as shown in Table 13 below.
(비교예 4-1)(Comparative Example 4-1)
상기 실시예 4-1에서, 상기 나노 멤브레인의 권취 속도와 TR 속도의 비율을 1.05:1.0로 조절하여 이축 배향시킨 것을 제외하고는 상기 실시예 4-1과 동일한 방법으로 실시하여 방수성 통기 시트를 제조하였다.A waterproof breathable sheet was prepared in the same manner as in Example 4-1, except that the biaxial orientation of the nanomembrane was adjusted to 1.05: 1.0 by controlling the ratio of the winding speed of the nanomembrane to the TR speed Respectively.
구분division 농도(%)density(%) 점도(cP)Viscosity (cP) 전압(kV)Voltage (kV) 토출량(cc/min)Discharge amount (cc / min) 배향 비율(권취속도/TR속도)Orientation ratio (winding speed / TR speed)
실시예 4-1Example 4-1 1818 30003000 6060 2020 6.256.25
실시예 4-2Example 4-2 1313 10001000 5555 2020 7.757.75
실시예 4-3Example 4-3 1010 800800 7070 5050 10.2510.25
비교예 4-1Comparative Example 4-1 3535 1200012000 8585 0.010.01 1.051.05
[실험예 4-1: 나노 멤브레인의 형상 관찰][Experimental Example 4-1: Observation of shape of nanomembrane]
상기 실시예 4-1 및 비교예 4-1에서 제조된 나노 멤브레인의 주사 전자 현미경(SEM) 사진을 각각 도 5 및 도 6에 나타내었다.SEM photographs of the nanomembranes prepared in Example 4-1 and Comparative Example 4-1 are shown in FIGS. 5 and 6, respectively.
상기 도 5 및 도 6을 참고하면, 상기 실시예 4-1에서 제조된 나노 멤브레인의 기공은 상기 기공의 가장 긴 직경(LD)에 대한 상기 기공의 가장 작은 직경(SD)의 어스펙트비(SD:LD)가 1:2 내지 1:50인 일자(1자)형이고, 상기 기공의 가장 긴 직경(LD)이 상기 나노 멤브레인의 길이 방향과 평행한 방향으로 배향된 것을 관찰할 수 있다.5 and 6, the pores of the nanomembrane prepared in Example 4-1 have an aspect ratio (SD) of the smallest diameter (SD) of the pore to the longest diameter (LD) of the pore, : LD) is 1: 2 to 1: 50, and the longest diameter (LD) of the pores is oriented in a direction parallel to the longitudinal direction of the nanomembrane.
반면, 상기 비교예 4-1에서 제조된 나노 멤브레인의 기공은 상기 기공의 가장 긴 직경(LD)에 대한 상기 기공의 가장 작은 직경(SD)의 어스펙트비(SD:LD)가 1:1 내지 1:1.5인 원형 또는 다각형 형상이고, 상기 기공의 가장 긴 직경(LD)이 무작위적으로 배향된 것을 관찰할 수 있다.On the other hand, the pores of the nanomembrane prepared in Comparative Example 4-1 had an aspect ratio (SD: LD) of the smallest diameter (SD) of the pores with respect to the longest diameter (LD) of the pores of 1: 1: 1.5, and it can be observed that the longest diameter (LD) of the pores is randomly oriented.
[실험예 4-2: 나노 멤브레인의 특성 측정][Experimental Example 4-2: Characteristic measurement of nanomembrane]
상기 실시예 및 비교예에서 제조된 나노 멤브레인의 두께, 평량, 길이 방향 탄성률, 폭 방향 탄성률 및 이방성을 측정하여 하기 표 14에 나타내었고, 상기 나노 멤브레인의 공기 투과도, 내수압, 기공도, 발수 등급, 흡음 계수를 측정하여 하기 표 15에 나타내었다. The thickness, the basis weight, the longitudinal direction elastic modulus, the lateral direction elastic modulus and anisotropy of the nanomembrane prepared in the above Examples and Comparative Examples were measured and shown in Table 14 below. The results are shown in Table 14. The air permeability, water pressure, porosity, The absorption coefficient was measured and is shown in Table 15 below.
상기 나노 멤브레인의 두께는 KS K 0506에 규정된 두께 측정법 또는 KS K ISO 9073-2, ISO 4593을 적용하여 두께를 측정하였다. The thickness of the nanomembrane was measured by the thickness measurement method specified in KS K 0506 or KS K ISO 9073-2, ISO 4593.
상기 나노 멤브레인의 평량은 ASTM D 3776을 적용하여 측정하였다.The basis weight of the nanomembrane was measured by applying ASTM D 3776.
상기 나노 멤브레인의 탄성률은 ASTM D 882를 적용하여 MD(machine direction)와 TD(transverse direction)를 각 10 회 측정 후 최대값과 최소값을 제외한 평균값을 사용하였다.The modulus of elasticity of the nanomembrane was measured by measuring the machine direction (MD) and the transverse direction (TD) 10 times using ASTM D 882, and the average value except for the maximum value and the minimum value was used.
상기 나노 멤브레인의 공기 투과도는 ASTM D 737 방법을 적용하여 면적 38㎠, 정압 125Pa의 조건으로 측정하였다. 이때 ㎤/㎠/s를 ft3/ft2/min(CFM)으로 환산하였다. 환산계수는 0.508016 이다.The air permeability of the nanomembrane was measured using an ASTM D 737 method under the conditions of an area of 38 cm 2 and a static pressure of 125 Pa. The ㎤ / ㎠ / s were calculated as ft 3 / ft 2 / min ( CFM). The conversion factor is 0.508016.
상기 나노 멤브레인의 내수압은 KS K ISO 811 저수압법을 적용하여 면적 100 ㎠에서 600 ㎜H2O/min으로 가압하여 물방울에 3 포인트 생기는 지점에서의 압력을 측정하였다.The water pressure of the nanomembrane was measured by applying pressure of 600 ㎜ H 2 O / min at an area of 100 ㎠ by applying the KS K ISO 811 low pressure method to measure the pressure at three points on the water drop.
상기 나노 멤브레인의 기공도는 상기 수학식 1에 따라 측정하였다.The porosity of the nanomembrane was measured according to Equation (1).
상기 나노 멤브레인의 발수 등급은 KS K 0590에 규정된 방법으로 측정하였다.The water repellency of the nanomembrane was measured by the method described in KS K 0590.
상기 흡음 계수는 관내법 흡음 시험(ASTM E 1050-12) 방법으로 측정하였다.The sound absorption coefficient was measured by an in-line method sound absorption test (ASTM E 1050-12).
구분division 두께 (㎛)Thickness (㎛) 중량 (g/㎡)Weight (g / ㎡) 탄성률 (MD, ㎫)Modulus of elasticity (MD, MPa) 탄성률 (TD, ㎫)Modulus of elasticity (TD, MPa) 이방성 (MD/TD)Anisotropy (MD / TD) 배향성Orientation
실시예 4-1Example 4-1 2020 6.276.27 194194 31.531.5 6.26.2 일축spurn
실시예 4-2Example 4-2 3535 1313 220220 2626 8.58.5 일축spurn
실시예 4-3Example 4-3 1818 6.06.0 6565 8.98.9 7.37.3 일축spurn
비교예 4-1Comparative Example 4-1 3535 2525 6767 6262 1.11.1 이축Binocular
구분division 공기투과도 (CFM)Air permeability (CFM) 내수압(㎜H2O)Water pressure (mmH 2 O) 기공도(%)Porosity (%) 발수성Water repellency 흡음계수Absorption coefficient
실시예 4-1Example 4-1 7.017.01 5,6005,600 8383 4-5급4-5 0.010.01
실시예 4-2Example 4-2 6.876.87 5,2705,270 8080 4급4th grade 0.080.08
실시예 4-3Example 4-3 3.043.04 12,82012,820 8181 5급5th grade 0.020.02
비교예 4-1Comparative Example 4-1 9.019.01 1,4501,450 6060 1급1st grade 0.320.32
상기 표 14 및 표 15을 참고하면, 상기 실시예 4-1 내지 4-3은 상기 나노 멤브레인의 나노 섬유의 미세 구조, 특히 나노 섬유의 배향성을 제어함으로써, 흡음 계수가 낮아진 것을 알 수 있다.Referring to Tables 14 and 15, it can be seen that Examples 4-1 to 4-3 lowered the absorption coefficient by controlling the microstructure of the nanofibers of the nanomembrane, particularly the orientation of the nanofibers.
[실험예 4-3: 방수성 통기 시트의 특성 측정][Experimental Example 4-3: Measurement of properties of waterproof breathable sheet]
상기 실시예 및 비교예에서 제조된 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성을 측정하여 하기 표 16에 나타내었다. The acoustic permeation loss, waterproofing (water temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet prepared in the above Examples and Comparative Examples were measured and shown in Table 16 below.
상기 방수성 통기 시트의 음향 투과 손실, 수압 방수성(상온, 저온, 고온/고습, 열충격) 및 통기성의 측정 방법은 상기 실험예 1-2에서와 동일하다.The method of measuring acoustic transmission loss, waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) and air permeability of the waterproof breathable sheet is the same as in Experimental Example 1-2.
구분division 음향투과손실(dB)Acoustic transmission loss (dB) 수압방수(상온)Water pressure (room temperature) 수압방수(저온)Water pressure (low temperature) 수압방수 (고온고습)Water pressure (high temperature and high humidity) 수압방수(열충격)Waterproofing (thermal shock) 통기성 (cc/min@1PSI)Air permeability (cc / min @ 1PSI)
실시예 4-1Example 4-1 22 4m, 50분4m, 50 min 4m, 50분4m, 50 min 4m, 45분4m, 45 minutes 4m, 45분4m, 45 minutes 120120
실시예 4-2Example 4-2 33 4m, 80분4m, 80 min 4m, 75분4m, 75mins 4m, 60분4m, 60 minutes 4m, 60분4m, 60 minutes 100100
실시예 4-3Example 4-3 0.10.1 6m, 300분6 m, 300 min 6m, 300분6 m, 300 min 6m, 250분6m, 250 min 6m, 280분6m, 280m 8080
비교예 4-1Comparative Example 4-1 1010 1.5m, 3분 1.5m, 3 minutes 1.5m, 3분1.5m, 3 minutes 1.5m, 1분1.5m, 1 minute 1.5m, 2분1.5m, 2 minutes 160160
상기 표 16을 참조하면, 상기 실시예 4-1 내지 4-3은 음향 투과 손실이 10 dB 미만이고, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 4 m의 수압에서 30 분 이상 누수되지 않았고, 통기성이 20 cc/min(@1 PSI) 이상인 것을 알 수 있다.그러나, 상기 비교예 4-1의 경우 음향 투과 손실이 10 dB 이상이고, 수압 방수성(상온, 저온, 고온/고습, 열충격)이 1.5 m의 수압에서도 누수되었다.Referring to Table 16, in Examples 4-1 to 4-3, the acoustic transmission loss was less than 10 dB, the waterproofing waterproof property (room temperature, low temperature, high temperature / high humidity, thermal shock) However, in the case of the comparative example 4-1, the acoustic transmission loss is not less than 10 dB and the waterproof and waterproof property (room temperature, low temperature, high temperature / high humidity, Thermal shock) leaked even at a water pressure of 1.5 m.
즉, 상기 실시예 4-1 내지 4-3은 폴리비닐리덴 플루오라이드를 전기 방사하여 제조시 일축 배향시킴으로써 상기 나노 멤브레인의 미세 구조, 특히 나노 섬유의 배향성을 제어하여 우수한 통음성을 가질 뿐만 아니라, 수압방수성 및 통기성이 우수한 방수성 통기 시트를 제조하였음을 알 수 있다.That is, in Examples 4-1 to 4-3, polyvinylidene fluoride is electrospun and uniaxially aligned during manufacture to control the microstructure of the nanomembrane, particularly the orientation of the nanofibers, A waterproof ventilation sheet having excellent waterproofing and waterproofing properties and air permeability was produced.
이상에서 본 명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed exemplary embodiments, but various modifications and changes may be made without departing from the scope of the invention. To those of ordinary skill in the art.
[부호의 설명][Description of Symbols]
1: 용액 탱크1: solution tank
2: 정량 펌프2: metering pump
3: 노즐3: Nozzle
4: 집적부4:
6: 고전압 발생 장치6: High voltage generator
100: 방수성 통기 시트100: Waterproof ventilation sheet
10: 나노 멤브레인10: nanomembrane
11: 나노 섬유 12: 발수성 코팅층11: nanofiber 12: water repellent coating layer
20: 점착층20: Adhesive layer
20a: 둘레부 20b: 중앙부20a: peripheral portion 20b: central portion
200: 지그200: jig
210: 수압부210:
본 발명은 방수성 통기 시트 및 이의 제조 방법에 관한 것으로서, 상기 방수성 통기 시트는 나노 멤브레인의 미세 구조, 즉 나노 섬유의 직경, 두께, 기공의 크기 분포 등을 제어하거나, 또는 나노 섬유의 배향성을 제어하여, 음의 흡수와 난반사를 억제하고 흡음 계수를 낮추며, 나노 멤브레인에 발수성 코팅층을 형성하여 방수, 방진 및 방오 성능을 향상시키고, 음향 투과 손실 측정값을 낮춤으로써 음향의 왜곡이 해소되며, 발수발유 첨가제를 더 포함함으로써 방수성이 더욱 향상되고, 나노 멤브레인의 탄성률과 강도를 개선하여 내수압시 인가되는 수압에 의한 압력 변형에 대한 저항성이 커져 내수압이 향상된 것이다.The present invention relates to a waterproof breathable sheet and a method of manufacturing the same, wherein the waterproof breathable sheet is used for controlling the microstructure of the nanomembrane, that is, controlling the diameter, thickness and size distribution of the nanofiber or controlling the orientation of the nanofiber , Suppressing sound absorption and diffuse reflection, lowering the sound absorption coefficient, forming a water repellent coating layer on the nanomembrane to improve waterproof, dustproof and anti-fouling performance, lowering the acoustic transmission loss measurement value, By further including an additive, the water resistance is further improved, and the elastic modulus and strength of the nanomembrane are improved, thereby increasing the resistance to pressure deformation due to the water pressure applied during the water pressure, thereby improving the water pressure.
상기 방수성 통기 시트는 모바일 기기, 보청기 등의 전자 기기, 무전기 등의 통신 장비, 자동차 헤드램프 등의 다양한 전자 기기에 사용되어, 상기 전자 기기에 통기성을 부여하여 상기 전자 기기 내부/외부의 압력 평형을 유지시키는 동시에, 상기 전자 기기 내부로 물/액체의 침투를 방지하는 방수 성능(waterproof)과 오염/먼지 등의 침투를 방지하는 방진 성능(dustproof)을 부여할 수 있다.The waterproof ventilation sheet is used in various electronic apparatuses such as mobile apparatuses, electronic apparatuses such as hearing aids, communication apparatuses such as radio transmitters, automobile head lamps, and the like, thereby imparting air permeability to the electronic apparatuses, And waterproof to prevent penetration of water / liquid into the electronic device and dustproof to prevent contamination / dust penetration can be given to the electronic device.

Claims (17)

  1. 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 포함하며,Wherein the nanofibers comprise a nanomembrane integrated into a nonwoven fabric comprising a plurality of pores,
    상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만인 방수성 통기 시트.Waterproof breathable sheet with waterproof waterproofing that does not leak at normal temperature (20 ℃ ± 5 ℃), water pressure over 1.5 m for 30 minutes, and acoustic transmission loss less than 10 dB at 1000 Hz.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 멤브레인은 상기 나노 섬유들의 직경이 50 nm 내지 3000 nm이고, 두께가 3 ㎛ 내지 40 ㎛이고, 기공 크기가 0.1 ㎛ 내지 5 ㎛, 기공도가 40 % 내지 90 %인 것인 방수성 통기 시트.Wherein the nanofiber has a diameter of 50 nm to 3000 nm, a thickness of 3 to 40 탆, a pore size of 0.1 to 5 탆, and a porosity of 40 to 90%.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 나노 멤브레인은 상기 나노 섬유가 불규칙적으로 배향 및 적층되어 상기 기공의 크기 분포가 불규칙적이고,The nanomembrane is characterized in that the nanofibers are irregularly oriented and laminated so that the size distribution of the pores is irregular,
    상기 불규칙적인 기공의 크기 분포는 상기 나노 멤브레인의 단위 면적(cm2) 당 기공의 크기 차이가 100 nm 이상인 기공이 발견될 확률이 10/100 이상인 것인 방수성 통기 시트.Wherein the irregular pore size distribution has a probability of finding pores having a pore size difference of 100 nm or more per unit area (cm 2 ) of the nanomembrane of 10/100 or more.
  4. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 섬유의 표면은 발수성 코팅층을 포함하는 것인 방수성 통기 시트.Wherein the surface of the nanofibers comprises a water repellent coating layer.
  5. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 섬유는 플루오르폴리머 100 중량부 및 발수발유 첨가제 1 중량부 내지 50 중량부를 포함하는 것인 방수성 통기 시트.Wherein the nanofiber includes 100 parts by weight of a fluoropolymer and 1 to 50 parts by weight of a water-repellent oil additive.
  6. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 멤브레인은 길이 방향(machine direction, MD) 탄성률과 폭 방향(transverse direction, TD) 탄성률의 이방성(MD 탄성률/TD 탄성률)이 1.5 내지 10.0인 것인 방수성 통기 시트.Wherein the nanomembrane has a machine direction (MD) elastic modulus and a transverse direction (TD) elastic modulus anisotropy (MD elastic modulus / TD elastic modulus) of 1.5 to 10.0.
  7. 제 6 항에 있어서,The method according to claim 6,
    상기 나노 멤브레인은 상기 기공의 가장 긴 직경(LD)에 대한 상기 기공의 가장 작은 직경(SD)의 어스펙트비(SD:LD)가 2 내지 50인 일자(1자) 형상을 가지고,The nanomembrane has a shape of a date (1 character) having an aspect ratio (SD: LD) of the smallest diameter (SD) of the pore to the longest diameter (LD) of the pore is 2 to 50,
    상기 기공의 가장 긴 직경(LD)이 상기 나노 멤브레인의 길이 방향과 평행한 방향으로 배향된 것인 방수성 통기 시트.And the longest diameter (LD) of the pores is oriented in a direction parallel to the longitudinal direction of the nanomembrane.
  8. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 멤브레인의 흡음 계수가 1000 Hz에서 0.2 미만이고, 음향 투과 손실이 1000 Hz에서 10 dB 미만이고, The absorption coefficient of the nanomembrane is less than 0.2 at 1000 Hz, the acoustic transmission loss is less than 10 dB at 1000 Hz,
    상기 나노 멤브레인은 공기 투과도가 0.1 CFM 내지 20 CFM이고 내수압이 3000 ㎜H2O 이상이고, 발수 등급이 4 급 이상이고, 탄성률이 1 MPa 내지 1000 MPa이고, 평량이 0.5 g/㎡ 내지 20 g/㎡인 것인 방수성 통기 시트.Wherein the nanomembrane has an air permeability of 0.1 CFM to 20 CFM, a water pressure of 3000 mmH 2 O or more, a water repellency of 4 or more, an elastic modulus of 1 MPa to 1000 MPa, a basis weight of 0.5 g / M < 2 >.
  9. 제 1 항에 있어서,The method according to claim 1,
    상기 방수성 통기 시트는 수압 방수성이 저온 조건(-20 ℃, 72 시간 유지한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상 누수되지 않고, 고온/고습 조건(50 ℃, 습도 95 %, 72 시간 유지한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상 누수되지 않고, 열충격 조건(-40 ℃, 85 ℃를 각각 1 시간 동안 유지하는 한 사이클을 30 사이클 반복한 후 측정)의 경우 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 것이고, The waterproof ventilation sheet was subjected to high temperature / high humidity conditions (50 DEG C, 95% humidity, 72 hours, no water leaks for at least 30 minutes at a water pressure of 1.5 m or more in the case of waterproof waterproof property at low temperature (Measured after repeating 30 cycles of one cycle maintaining -40 ° C and 85 ° C for 1 hour respectively) without leaking at a water pressure of 1.5 m or more for 30 minutes or more and 1.5 m or more It does not leak more than 30 minutes under water pressure,
    상기 방수성 통기 시트는 통기성이 20 cc/min(@1 PSI) 이상인 것인 방수성 통기 시트.Wherein the waterproof breathable sheet has a breathability of 20 cc / min (@ 1 PSI) or more.
  10. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 섬유는 폴리비닐리덴 플루오라이드(PVdF, polyvinylidene difluoride)로 이루어진 것인 방수성 통기 시트.Wherein the nanofiber is made of polyvinylidene difluoride (PVdF).
  11. 전기 방사 용액을 제조하는 단계, 그리고Preparing an electrospinning solution, and
    상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노 멤브레인을 제조하는 단계를 포함하며,And electro-spinning the prepared electrospinning solution to prepare a nanomembrane in which the nanofibers are integrated into a nonwoven fabric including a plurality of pores,
    상온(20 ℃ ± 5 ℃), 1.5 m 이상의 수압에서 30 분 이상 누수되지 않는 수압 방수성을 가지고, 음향 투과 손실이 1000 Hz에서 10 dB 미만인 방수성 통기 시트의 제조 방법.A method for producing a waterproof breathable sheet having a waterproof waterproofing property that does not leak at a room temperature (20 ° C ± 5 ° C), a water pressure of 1.5 m or more for 30 minutes or more, and an acoustic transmission loss of less than 10 dB at 1000 Hz.
  12. 제 11 항에 있어서,12. The method of claim 11,
    상기 전기 방사 용액의 농도는 5 % 내지 35 %이고, 점도는 100 cP 내지 10000 cP이고, The concentration of the electrospinning solution is 5% to 35%, the viscosity is 100 cP to 10000 cP,
    상기 전기 방사 조건은 전압이 0 kV 내지 100 kV이고, 토출량이 0.01 cc/min 내지 100 cc/min인 것인 방수성 통기 시트의 제조 방법.Wherein the electrospinning condition is a voltage of 0 kV to 100 kV and a discharge amount of 0.01 cc / min to 100 cc / min.
  13. 제 11 항에 있어서,12. The method of claim 11,
    상기 방수성 통기 시트의 제조 방법은 상기 나노 섬유 표면에 발수성 코팅층 형성 단계를 더 포함하는 것인 방수성 통기 시트의 제조방법.Wherein the waterproof breathable sheet further comprises a water repellent coating layer on the surface of the nanofibers.
  14. 제 11 항에 있어서,12. The method of claim 11,
    상기 전기 방사 용액은 플루오르폴리머 100 중량부, 발수발유 첨가제 1 중량부 내지 50 중량부 및 용매 250 중량부 내지 2000 중량부를 포함하는 것인 방수성 통기 시트의 제조 방법.Wherein the electrospinning solution comprises 100 parts by weight of a fluoropolymer, 1 to 50 parts by weight of a water-repellent oil additive, and 250 to 2000 parts by weight of a solvent.
  15. 제 11 항에 있어서, 12. The method of claim 11,
    상기 방수성 통기 시트의 제조 방법은 상기 나노 멤브레인을 일축 배향시키는 단계를 더 포함하는 것인 방수성 통기 시트의 제조 방법.Wherein the waterproof breathable sheet further comprises uniaxial orientation of the nanomembrane.
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 나노 멤브레인을 일축 배향시키는 단계는 상기 나노 멤브레인의 폭 방향에 비하여 상기 길이 방향에 1.5 배 내지 20 배의 장력을 인가하여 이루어지는 것인 방수성 통기 시트의 제조 방법.Wherein the uniaxial orientation of the nanomembrane is performed by applying a tensile force of 1.5 to 20 times in the longitudinal direction to the width direction of the nanomembrane.
  17. 제 15 항에 있어서,16. The method of claim 15,
    상기 나노 멤브레인을 일축 배향시키는 단계는 상기 나노 멤브레인의 권취 속도를 0.01 m/min 내지 20 m/min로 조절하고, TR(traverse) 속도를 0.001 m/min 내지 10 m/min로 조절하여 이루어지는 것인 방수성 통기 시트의 제조 방법.In the uniaxial orientation of the nanomembrane, the winding speed of the nanomembrane is adjusted to 0.01 m / min to 20 m / min, and the TR (traverse) speed is adjusted to 0.001 m / min to 10 m / min. A method for manufacturing a waterproof breathable sheet.
PCT/KR2018/005718 2017-09-06 2018-05-18 Waterproof ventilation sheet and manufacturing method therefor WO2019050128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880057778.2A CN111065772B (en) 2017-09-06 2018-05-18 Waterproof and breathable sheet and manufacturing method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020170113769A KR101812789B1 (en) 2017-09-06 2017-09-06 Waterproof ventilation sheet and method for manufacturing the same
KR10-2017-0113767 2017-09-06
KR10-2017-0113769 2017-09-06
KR10-2017-0113766 2017-09-06
KR10-2017-0113768 2017-09-06
KR1020170113767A KR101815585B1 (en) 2017-09-06 2017-09-06 Waterproof ventilation sheet and method for manufacturing the same
KR1020170113766A KR101812787B1 (en) 2017-09-06 2017-09-06 Waterproof ventilation sheet and method for manufacturing the same
KR1020170113768A KR101812788B1 (en) 2017-09-06 2017-09-06 Waterproof ventilation sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019050128A1 true WO2019050128A1 (en) 2019-03-14

Family

ID=65634320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005718 WO2019050128A1 (en) 2017-09-06 2018-05-18 Waterproof ventilation sheet and manufacturing method therefor

Country Status (2)

Country Link
CN (1) CN111065772B (en)
WO (1) WO2019050128A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020883A (en) * 2019-12-21 2020-04-17 郑州四维特种材料有限责任公司 Preparation method of hierarchical composite electrostatic spinning waterproof moisture-permeable film with antibacterial performance
CN112482044A (en) * 2020-11-02 2021-03-12 东莞质研工业设计服务有限公司 Glass fiber reinforced spray-melt non-woven fabric and preparation method thereof
CN112929798A (en) * 2021-01-29 2021-06-08 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) provided with same
CN113301741A (en) * 2021-05-15 2021-08-24 杭州安普鲁薄膜科技有限公司 Electronic equipment with waterproof breathable membrane component
CN113445210A (en) * 2020-03-27 2021-09-28 现代摩比斯株式会社 Ventilation member for vehicle lamp and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398128A (en) * 2020-04-26 2020-07-10 安徽科达新材料有限公司 Method for testing aperture distribution of lithium ion battery pole piece
CN111787459A (en) * 2020-06-23 2020-10-16 深圳酷特威科技有限公司 Outdoor waterproof stereo set
WO2022131377A1 (en) * 2020-12-17 2022-06-23 エム・テックス株式会社 Gas-permeable waterproof sheet
CN113933224A (en) * 2021-10-26 2022-01-14 航天特种材料及工艺技术研究所 System and method for testing high-temperature air permeability of thermal protection material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176056A1 (en) * 2008-01-08 2009-07-09 E.I. Du Pont De Nemours And Company Liquid water resistant and water vapor permeable garments
KR20120078329A (en) * 2010-12-31 2012-07-10 주식회사 효성 Non-woven adhesive tape and preparation method thereof
KR20120110468A (en) * 2011-03-29 2012-10-10 (주)에프티이앤이 Method for manufacturing non-woven fabric composed of polyamide nanofiber with excellent water repellency and oil repellency
KR20130129104A (en) * 2012-05-18 2013-11-27 주식회사 아모그린텍 Waterproof sound passing sheet, method for manufacturing the same and electronic device having the waterproof sound passing sheet
KR101397063B1 (en) * 2012-06-25 2014-05-21 충남대학교산학협력단 Composite non-woven fabrics, manufacturing method thereof and backing film for patch of drug delivery using the same
KR101812788B1 (en) * 2017-09-06 2017-12-27 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same
KR101812789B1 (en) * 2017-09-06 2017-12-27 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same
KR101812787B1 (en) * 2017-09-06 2017-12-27 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same
KR101815585B1 (en) * 2017-09-06 2018-01-05 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104189942A (en) * 2014-09-09 2014-12-10 东华大学 Antibacterial wound dressing and preparation method thereof
KR101778248B1 (en) * 2015-04-23 2017-09-26 (주)에프티이앤이 Filter including polyvinylidene fluoride nanofiber having multiple fiber-diameter group with low melting point polymer adhension layer and its manufacturing method
CN104805598B (en) * 2015-04-28 2017-08-25 武汉纺织大学 A kind of electro-spinning for vinyl polysiloxane nano fibrous membrane method
CN106835499B (en) * 2017-02-22 2019-01-11 广东宝泓新材料股份有限公司 Three layers of composite separating film backing material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176056A1 (en) * 2008-01-08 2009-07-09 E.I. Du Pont De Nemours And Company Liquid water resistant and water vapor permeable garments
KR20120078329A (en) * 2010-12-31 2012-07-10 주식회사 효성 Non-woven adhesive tape and preparation method thereof
KR20120110468A (en) * 2011-03-29 2012-10-10 (주)에프티이앤이 Method for manufacturing non-woven fabric composed of polyamide nanofiber with excellent water repellency and oil repellency
KR20130129104A (en) * 2012-05-18 2013-11-27 주식회사 아모그린텍 Waterproof sound passing sheet, method for manufacturing the same and electronic device having the waterproof sound passing sheet
KR101397063B1 (en) * 2012-06-25 2014-05-21 충남대학교산학협력단 Composite non-woven fabrics, manufacturing method thereof and backing film for patch of drug delivery using the same
KR101812788B1 (en) * 2017-09-06 2017-12-27 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same
KR101812789B1 (en) * 2017-09-06 2017-12-27 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same
KR101812787B1 (en) * 2017-09-06 2017-12-27 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same
KR101815585B1 (en) * 2017-09-06 2018-01-05 코오롱패션머티리얼(주) Waterproof ventilation sheet and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020883A (en) * 2019-12-21 2020-04-17 郑州四维特种材料有限责任公司 Preparation method of hierarchical composite electrostatic spinning waterproof moisture-permeable film with antibacterial performance
CN113445210A (en) * 2020-03-27 2021-09-28 现代摩比斯株式会社 Ventilation member for vehicle lamp and method of manufacturing the same
CN112482044A (en) * 2020-11-02 2021-03-12 东莞质研工业设计服务有限公司 Glass fiber reinforced spray-melt non-woven fabric and preparation method thereof
CN112929798A (en) * 2021-01-29 2021-06-08 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) provided with same
CN112929798B (en) * 2021-01-29 2022-11-01 杭州安普鲁薄膜科技有限公司 Waterproof sound-transmitting membrane assembly and MEMS (micro-electromechanical system) with same
CN113301741A (en) * 2021-05-15 2021-08-24 杭州安普鲁薄膜科技有限公司 Electronic equipment with waterproof breathable membrane component
CN113301741B (en) * 2021-05-15 2022-05-10 杭州安普鲁薄膜科技有限公司 Electronic equipment with waterproof breathable membrane component

Also Published As

Publication number Publication date
CN111065772B (en) 2022-08-09
CN111065772A (en) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2019050128A1 (en) Waterproof ventilation sheet and manufacturing method therefor
WO2015016449A1 (en) Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same
WO2015016450A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
WO2012077872A1 (en) Nanofiber manufacturing device
KR102320057B1 (en) Waterproof sound-permeable cover, waterproof sound-permeable cover member and sound device
WO2020022848A1 (en) Crosslinked polyolefin separator and manufacturing method therefor
WO2015053444A1 (en) Filter comprising nanofiber between substrates and method for manufacturing same
WO2014142450A1 (en) Method for preparing porous separation membrane for second battery and porous separation membrane for second battery prepared thereby
WO2017209520A1 (en) Filter assembly, method for manufacturing same, and filter module comprising same
WO2014081232A1 (en) High-flow water treatment separation membrane having superior chlorine resistance
KR101815585B1 (en) Waterproof ventilation sheet and method for manufacturing the same
WO2021242072A1 (en) Separator for electrochemical device and electrochemical device comprising same
WO2015053443A1 (en) Filter having nano-fiber on both surfaces of substrate thereof and method for manufacturing same
KR101812789B1 (en) Waterproof ventilation sheet and method for manufacturing the same
WO2019017750A1 (en) Filter medium, manufacturing method therefor, and filter unit comprising same
WO2016171327A1 (en) Nano membrane including nanofiber
WO2014142449A1 (en) Method for manufacturing multi-layer separation film for secondary battery having improved heat resistance, and multi-layer separation film manufactured thereby
WO2018074889A2 (en) Method for preparing graphite sheet
JP6979612B2 (en) Method for Producing Porous Membrane Support, Gas Separation Membrane Complex, Porous Membrane Support and Method for Producing Gas Separation Membrane Complex
KR101812787B1 (en) Waterproof ventilation sheet and method for manufacturing the same
WO2019050127A1 (en) Waterproof breathable sheet and manufacturing method thereof
WO2014137095A1 (en) Filter medium having nanofibers on both sides of base and having improved heat resistance, and manufacturing method therefor
KR101812786B1 (en) Waterproof ventilation sheet and method for manufacturing the same
KR101812784B1 (en) Waterproof ventilation sheet and method for manufacturing the same
KR101812788B1 (en) Waterproof ventilation sheet and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854139

Country of ref document: EP

Kind code of ref document: A1