WO2019049946A1 - 光電変換素子、光センサ、撮像素子、化合物 - Google Patents

光電変換素子、光センサ、撮像素子、化合物 Download PDF

Info

Publication number
WO2019049946A1
WO2019049946A1 PCT/JP2018/033091 JP2018033091W WO2019049946A1 WO 2019049946 A1 WO2019049946 A1 WO 2019049946A1 JP 2018033091 W JP2018033091 W JP 2018033091W WO 2019049946 A1 WO2019049946 A1 WO 2019049946A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
group
substituent
film
formula
Prior art date
Application number
PCT/JP2018/033091
Other languages
English (en)
French (fr)
Inventor
英治 福▲崎▼
知昭 吉岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18854574.3A priority Critical patent/EP3683211A4/en
Priority to KR1020207004639A priority patent/KR20200029564A/ko
Priority to JP2019541002A priority patent/JP7077326B2/ja
Publication of WO2019049946A1 publication Critical patent/WO2019049946A1/ja
Priority to US16/796,955 priority patent/US11201294B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/66Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/153Ortho-condensed systems the condensed system containing two rings with oxygen as ring hetero atom and one ring with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, an optical sensor, an imaging element, and a compound.
  • solid-state imaging devices flat-type solid-state imaging devices are widely used, in which photodiodes (PDs) are two-dimensionally arrayed and signal charges generated in each PD are read out by a circuit.
  • a color solid-state imaging device a structure in which a color filter for transmitting light of a specific wavelength is disposed on the light incident surface side of the planar solid-state imaging device is generally used.
  • a color filter for transmitting blue (B: blue) light, green (G: green) light, and red (R: red) light is regularly arranged.
  • B blue
  • G green
  • R red
  • Patent Document 1 discloses a photoelectric conversion element in which the photoelectric conversion material includes a material such as quinacridone skeleton ([claim 5]).
  • a photoelectric conversion element it is required that good photoelectric conversion efficiency can be maintained even when thinning of the photoelectric conversion film is advanced (for example, when the thickness of the photoelectric conversion film is 100 nm).
  • the inventors of the present invention manufactured a photoelectric conversion element using a compound having a quinacridone skeleton, and examined the photoelectric conversion efficiency (hereinafter also referred to as “photoelectric conversion efficiency at the time of thin film”) when the photoelectric conversion film is a thin film, It has been found that the characteristics do not necessarily reach the level required nowadays and further improvement is necessary.
  • An object of the present invention is to provide a photoelectric conversion element that exhibits excellent photoelectric conversion efficiency even when the photoelectric conversion film is a thin film in view of the above-mentioned situation.
  • Another object of the present invention is to provide an optical sensor and an imaging device including the photoelectric conversion device. Furthermore, this invention also makes it a subject to provide the compound applied to the said photoelectric conversion element.
  • a photoelectric conversion element comprising a conductive film, a photoelectric conversion film, and a transparent conductive film in this order, The photoelectric conversion element whose said photoelectric conversion film contains the compound represented by Formula (1).
  • at least one of R 1 and R 2 is bonded to any of R 3 and R 4 directly or via a linking group to form a ring, [1] to The photoelectric conversion element in any one of [3].
  • each of R 1 and R 2 represents an aryl group which may have a substituent, and the photoelectric conversion according to any one of [1] to [4] element.
  • the photoelectric conversion film further contains an n-type organic semiconductor, The photoelectric conversion film according to any one of [1] to [6], having a bulk hetero structure formed by mixing the compound represented by the formula (1) and the n-type organic semiconductor. Photoelectric conversion device.
  • the present invention it is possible to provide a photoelectric conversion element which exhibits excellent photoelectric conversion efficiency even when the photoelectric conversion film is a thin film. Further, according to the present invention, it is also possible to provide an optical sensor and an imaging device including the photoelectric conversion device. Furthermore, according to the present invention, it is possible to provide a compound to be applied to the photoelectric conversion device.
  • a substituent for example, a substituent W described later
  • alkyl group means an alkyl group which may be substituted by a substituent (for example, the substituent W described later).
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • FIG. 1 the cross-sectional schematic diagram of one Embodiment of the photoelectric conversion element of this invention is shown.
  • the photoelectric conversion element 10a shown in FIG. 1A includes a conductive film (hereinafter also referred to as a lower electrode) 11 functioning as a lower electrode, an electron blocking film 16A, a photoelectric conversion film 12 containing a specific compound described later, and an upper electrode.
  • a transparent conductive film (hereinafter also referred to as an upper electrode) 15 that functions is laminated in this order.
  • FIG. 1B shows a configuration example of another photoelectric conversion element.
  • FIGS. 1A and 1B has a configuration in which an electron blocking film 16A, a photoelectric conversion film 12, a hole blocking film 16B, and an upper electrode 15 are stacked in this order on the lower electrode 11.
  • the stacking order of the electron blocking film 16A, the photoelectric conversion film 12, and the hole blocking film 16B in FIGS. 1A and 1B may be appropriately changed according to the application and the characteristics.
  • the photoelectric conversion element 10 a (or 10 b) light is preferably incident on the photoelectric conversion film 12 through the upper electrode 15.
  • a voltage can be applied.
  • the lower electrode 11 and the upper electrode 15 form a pair of electrodes, and a voltage of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 7 V / cm is applied between the pair of electrodes.
  • the voltage to be applied is more preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 7 V / cm, and further preferably 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 6 V / cm.
  • the voltage application method is preferably such that the electron blocking film 16A side is a cathode and the photoelectric conversion film 12 side is an anode in FIGS. 1A and 1B.
  • the photoelectric conversion element 10a (or 10b) is used as an optical sensor, or when it is incorporated in an imaging element, a voltage can be applied by the same method.
  • the photoelectric conversion element 10a (or 10b) can be suitably applied to an optical sensor application and an imaging element application, as described in detail later.
  • FIG. 2 the cross-sectional schematic diagram of another embodiment of the photoelectric conversion element of this invention is shown.
  • the photoelectric conversion element 200 shown in FIG. 2 is a hybrid photoelectric conversion element provided with an organic photoelectric conversion film 209 and an inorganic photoelectric conversion film 201.
  • the organic photoelectric conversion film 209 contains the specific compound mentioned later.
  • the inorganic photoelectric conversion film 201 has an n-type well 202, a p-type well 203, and an n-type well 204 on a p-type silicon substrate 205.
  • Blue light is photoelectrically converted at the pn junction formed between the p-type well 203 and the n-type well 204 (pixel B), and is formed at the pn junction formed between the p-type well 203 and the n-type well 202 Red light is photoelectrically converted (R pixel).
  • the conductivity types of the n-type well 202, the p-type well 203, and the n-type well 204 are not limited to these.
  • a transparent insulating layer 207 is disposed on the inorganic photoelectric conversion film 201.
  • a transparent pixel electrode 208 divided for each pixel is disposed on the insulating layer 207, and an organic photoelectric conversion film 209 that absorbs green light and performs photoelectric conversion is disposed on one pixel common to all pixels.
  • the electron blocking film 212 is disposed in a single sheet common to each pixel, the transparent common electrode 210 of a single sheet is disposed thereon, and the transparent protective film 211 is disposed in the uppermost layer. It is done.
  • the stacking order of the electron blocking film 212 and the organic photoelectric conversion film 209 may be reverse to that in FIG. 2, and the common electrode 210 may be arranged separately for each pixel.
  • the organic photoelectric conversion film 209 constitutes G pixels that detect green light.
  • the pixel electrode 208 is the same as the lower electrode 11 of the photoelectric conversion element 10 a shown in FIG. 1A.
  • the common electrode 210 is the same as the upper electrode 15 of the photoelectric conversion element 10a shown in FIG. 1A.
  • Blue light with a short wavelength is photoelectrically converted mainly at the shallow portion of the semiconductor substrate (inorganic photoelectric conversion film) 201 (near the pn junction formed between the p-type well 203 and the n-type well 204) to generate photocharges.
  • Signal is output to the outside.
  • the red light having a long wavelength is mainly photoelectrically converted at the deep portion of the semiconductor substrate (inorganic photoelectric conversion film) 201 (near the pn junction formed between the p-type well 203 and the n-type well 202) to generate photocharges.
  • the signal is output to the outside.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge Coupled Device
  • MOS Metal-Oxide-Semiconductor
  • the photoelectric conversion film 12 (or the organic photoelectric conversion film 209) is a film containing a specific compound as a photoelectric conversion material. By using this compound, a photoelectric conversion element can be obtained which exhibits excellent thin film photoelectric conversion efficiency.
  • the specific compound will be described in detail.
  • examples of the substituent that the specific compound may have include, independently, a substituent W described later.
  • R 1 and R 2 each independently have an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or a substituent Represents an optionally substituted alkyl group. At least one of R 1 and R 2 represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent. Among them, it is preferable that R 1 and R 2 each represent an aryl group which may have a substituent, from the viewpoint that the photoelectric conversion efficiency in the thin film is more excellent, and both represent an unsubstituted aryl group. It is preferable to represent.
  • a linking group for linking R 1 to R 5 such as a linking group for linking R 1 and R 2 described later is a substituent Not included
  • the number of carbon atoms in the aryl group represented by R 1 and R 2 is not particularly limited, but is preferably 6 to 30, more preferably 6 to 18, and still more preferably 6.
  • the aryl group may be a single ring structure or a condensed ring structure (fused ring structure) in which two or more rings are fused.
  • a phenyl group, a naphthyl group, or an anthryl group is preferable, for example, and a phenyl group is more preferable.
  • Examples of the substituent that the aryl group may have include the substituent W described later, and an alkyl group (preferably having a carbon number of 1 to 3), a halogen atom (more preferably a fluorine atom or a chlorine atom), an alkoxy group (preferably carbon) The number 1-4, more preferably a methoxy group), a cyano group, an acyl group, an aldehyde group, and a silyl group (preferably a trialkylsilyl group, more preferably a trimethylsilyl group) are preferable.
  • the aryl group represented by R 1 and R 2 may have plural types of these substituents.
  • the number of the substituent that the aryl group has is not particularly limited, and is preferably 1 to 3 and more preferably 1 from the viewpoint that the photoelectric conversion efficiency in a thin film is more excellent.
  • the aspect which does not have a substituent is preferable.
  • the number of carbon atoms in the heteroaryl group (monovalent aromatic heterocyclic group) represented by R 1 and R 2 is not particularly limited, but is preferably 3 to 30, and more preferably 3 to 18.
  • Heteroaryl groups have heteroatoms in addition to carbon and hydrogen atoms.
  • a hetero atom a sulfur atom, an oxygen atom, a nitrogen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom etc. are mentioned, for example, A sulfur atom, an oxygen atom, or a nitrogen atom is preferable.
  • the number of heteroatoms in the heteroaryl group is not particularly limited, and is preferably 1 to 10, more preferably 1 to 4, and still more preferably 1 to 2.
  • the number of ring members of the heteroaryl group is not particularly limited, but 3 to 8 is preferable, 5 to 7 is more preferable, and 5 to 6 is more preferable.
  • the heteroaryl group may be a single ring structure or a fused ring structure in which two or more rings are fused. In the case of a condensed ring structure, an aromatic hydrocarbon ring having no hetero atom (eg, a benzene ring) may be included.
  • heteroaryl group examples include furyl group, pyridyl group, quinolyl group, isoquinolyl group, acridinyl group, phenanthridinyl group, pteridinyl group, pyrazinyl group, quinoxalinyl group, pyrimidinyl group, quinazolyl group, pyridazinyl group, cinnolinyl group, Phthalazinyl group, triazinyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, imidazolyl group, benzimidazolyl group, pyrazolyl group, indazolyl group, isoxazolyl group, benzisoxazolyl group, isothiazolyl group, benzisothiazolyl group Group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group,
  • the number of the substituent that the heteroaryl group has is not particularly limited, and is preferably 1 to 3, and more preferably 1.
  • the carbon number of the alkyl group represented by R 1 and R 2 is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, and still more preferably 1.
  • the alkyl group may be linear, branched or cyclic. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-hexyl group, cyclopentyl group, and cyclohexyl group.
  • Each of R 3 to R 5 independently represents a hydrogen atom or a substituent.
  • the substituent W mentioned later is mentioned, for example, Especially, a methyl group is preferable.
  • All of R 3 to R 5 preferably represent a hydrogen atom.
  • A represents a ring containing at least 2 carbon atoms.
  • the carbon atom in the carbonyl group in Formula (1) and the carbon atom adjacent to the carbon atom of a carbonyl group are intended, and all carbon atoms are atoms which constitute A. .
  • the carbon number of the ring formed by A is preferably 3 to 30, more preferably 3 to 20, and still more preferably 3 to 15.
  • the above carbon number is a number including two carbon atoms specified in the formula.
  • A may have a hetero atom, and examples thereof include a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom.
  • an oxygen atom is preferable, and an oxygen atom is more preferable.
  • A may have a substituent, and the substituent is preferably a halogen atom (preferably a chlorine atom).
  • the number of heteroatoms in A is preferably 0 to 10, more preferably 0 to 5, and still more preferably 0 to 2.
  • the number of hetero atoms is the number not including the number of oxygen atoms contained in the carbonyl group constituting A shown in the formula (1) and the number of hetero atoms possessed by the substituent of A. .
  • A may or may not show aromaticity.
  • A may be a single ring structure or a condensed ring structure, but is preferably a fused ring containing at least one of a 5-, 6-, or 5- and 6-membered ring.
  • the number of rings forming the above-mentioned fused ring is preferably 1 to 4, and more preferably 1 to 3.
  • the ring represented by A is preferably a merocyanine dye which is generally used as an acidic nucleus, and specific examples thereof include the following.
  • (B) pyrazolinone nucleus for example, 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, and 1- (2-benzothiazolyl) -3-methyl- 2-pyrazolin-5-one and the like.
  • (C) Isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • (E) 2,4,6-trioxohexahydropyrimidine nucleus for example, barbituric acid or 2-thiobarbituric acid and derivatives thereof and the like.
  • the derivative include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, and 1,3- 1,3-Diaryls such as diphenyl, 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryls such as 1-ethyl-3-phenyl And 1,3-diheteroaryl such as 1,3-di (2-pyridyl).
  • (F) 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and derivatives thereof and the like.
  • derivatives include 3-methylrhodane, 3-ethylrhodane such as 3-alkylrhodanine such as 3-ethylrhodane, 3-arylrhodanine, 3-arylrhodane such as 3-phenylrhodanine, and 3- (2) And 3-heteroaryl rhodanine such as -pyridyl) rhodanine and the like.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (K) Thiazolin-4-one nucleus for example, 4-thiazolinone, and 2-ethyl-4-thiazolinone and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, and 3-ethyl-2-thio-2,4- Imidazolidinediones and the like.
  • (N) Imidazolin-5-one nucleus for example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, and 1,2-dimethyl-3,5-pyrazolidinedione.
  • R 1 to R 5 may be bonded to each other directly or via a linking group to form a ring.
  • R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4 , R 3 and R 4 , and R 4 and R 5 are each directly or They may be linked via a linking group to form a ring.
  • at least one of R 1 and R 2 may be bonded to any one of R 3 and R 4 directly or via a linking group to form a ring, from the viewpoint that the photoelectric conversion efficiency in the thin film is more excellent. preferable.
  • Direct coupling is intended to be coupled via a so-called single bond.
  • the linking group may be, for example, an alkylene group (linear, branched, cyclic or cyclic), preferably having 1 to 7 carbon atoms, eg, methylene, dimethylmethylene, 1,1 1-cycloalkylene group), - Si (CH 3) 2 -, - O -, - CO -, - S-, and, -Ge (CH 3) 2 - and the like.
  • a specific compound is a compound represented by Formula (2) from the point which the photoelectric conversion efficiency at the time of a thin film is more excellent.
  • Each of R 1 and R 2 independently represents an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or an alkyl group which may have a substituent. Represent. However, at least one of R 1 and R 2 represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent.
  • R 3 to R 9 each independently represent a hydrogen atom or a substituent.
  • R 1 to R 5 each have the same meaning as R 1 to R 5 in the formula (1), and the preferred ranges are also the same.
  • R 6 to R 9 in the formula (2) examples include the substituent W described later.
  • Each of R 6 to R 9 is preferably independently a hydrogen atom, an alkyl group or a halogen atom, more preferably a methyl group, a fluorine atom or a chlorine atom, and still more preferably a hydrogen atom or a chlorine atom.
  • X is a carbonyl group, a thiocarbonyl group, dicyano methylene group, -S -, - O-, or, -CR 10 R 11 - represents a.
  • R 10 and R 11 independently represents a hydrogen atom or a substituent.
  • R 10 and R 11 independently represents a hydrogen atom or a substituent.
  • Each of R 10 and R 11 is preferably independently a hydrogen atom or an alkyl group (more preferably an alkyl group having 1 to 2 carbon atoms).
  • R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R 7 And R 8 and R 8 and R 9 may be each independently bonded directly or via a linking group to form a ring.
  • Examples of the linking group are as described above. Among these, from the viewpoint of photoelectric conversion efficiency at the time the thin film is more excellent, at least one of R 1 and R 2, either R 3 and R 4, to form a ring directly or via a linking group preferable.
  • a ring formed by connecting R 6 and R 7 , R 7 and R 8 , and R 8 and R 9 to each other is preferably a benzene ring.
  • R 7 and R 8 are preferably linked to each other to form a ring.
  • the ring formed is preferably a benzene ring.
  • a specific compound is a compound represented by Formula (3) from the point which the photoelectric conversion efficiency at the time of a thin film is more excellent.
  • Each of R 1 and R 2 independently represents an aryl group which may have a substituent, a heteroaryl group which may have a substituent, or an alkyl group which may have a substituent. Represent. However, at least one of R 1 and R 2 represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent.
  • R 3 to R 9 each independently represent a hydrogen atom or a substituent.
  • R 1 to R 9 each have the same meaning as R 1 to R 9 in the formula (2), and the preferred ranges are also the same.
  • R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 2 and R 3 , R 2 and R 4 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R 7 And R 8 and R 8 and R 9 may be each independently bonded directly or via a linking group to form a ring.
  • at least one of R 1 and R 2 may be bonded to any one of R 3 and R 4 directly or via a linking group to form a ring, from the viewpoint that the photoelectric conversion efficiency in the thin film is more excellent. preferable.
  • the specific compound is more preferably a compound represented by Formula (4) from the viewpoint that the photoelectric conversion efficiency at the time of a thin film is more excellent.
  • R 3 to R 9 each independently represent a hydrogen atom or a substituent.
  • R 3 to R 9 each have the same meaning as R 3 to R 9 in the formula (3), and the preferred ranges are also the same.
  • Each L independently represents a single bond or a linking group (divalent linking group). Examples of the linking group are as described above. It is preferable that s and t each independently represent 0 or 1, and at least one of s and t represents 1. When s (or t) is 0,-(L) s- (or-(L) t- ) is intended to be unconnected, which does not connect two rings. For example, when both s and t are 0, the following compounds are represented.
  • substituent W for example, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc.), an alkyl group (including a cycloalkyl group, a bicycloalkyl group and a tricycloalkyl group), an alkenyl group (cyclo Alkenyl group and bicycloalkenyl group), alkynyl group, aryl group, heterocyclic group (may be referred to as heterocyclic group and heteroaryl group), cyano group, hydroxy group, nitro group, alkoxy group, Aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxy carbonyloxy group, amino group (including anilino group), ammonio group, acylamino group, aminocarbony
  • a halogen atom a fluorine atom, a chlorine
  • the alkyl group may be substituted with a halogen atom.
  • the details of the substituent W are described in paragraph [0023] of JP-A-2007-234651.
  • the specific compound is a carboxy group, a phosphoric acid group, a sulfonic acid group, a monosulfuric acid ester group, a monophosphoric acid ester group, a phosphonic acid group, a phosphinic acid group, a boric acid group, And, it is preferred not to have any of the salts of these groups.
  • the molecular weight of the specific compound is not particularly limited, but is preferably 300 to 700. If the molecular weight is 700 or less, the deposition temperature does not increase, and decomposition of the compound hardly occurs. When the molecular weight is 30 or more, the glass transition point of the deposited film does not decrease, and the heat resistance of the photoelectric conversion element is improved.
  • the specific compound is particularly useful as a material of a photoelectric conversion film used for an optical sensor, an imaging device, or a photovoltaic cell. Usually, the specific compound often functions as a p-type organic semiconductor in the photoelectric conversion film.
  • the specific compounds can also be used as coloring materials, liquid crystal materials, organic semiconductor materials, charge transport materials, pharmaceutical materials, and fluorescent diagnostic materials.
  • the specific compound is a compound having an ionization potential of -5.0 to -6.0 eV in a single film in terms of the stability when used as a p-type organic semiconductor and the matching of the energy level with the n-type organic semiconductor Is preferred.
  • the maximum absorption wavelength of the specific compound is preferably in the range of 500 to 600 nm, and in the range of 530 to 600 nm Is more preferable.
  • the maximum absorption wavelength is a value measured in a solution state (solvent: chloroform) by adjusting the absorption spectrum of the specific compound to a concentration at which the absorbance becomes 0.5 to 1.
  • the photoelectric conversion film preferably contains an n-type organic semiconductor as a component other than the specific compound described above.
  • the n-type organic semiconductor is an acceptor type organic semiconductor material (compound), and refers to an organic compound having a property of easily accepting an electron. More specifically, an n-type organic semiconductor refers to an organic compound having larger electron affinity when used in contact with two organic compounds.
  • n-type organic semiconductor for example, fused aromatic carbocyclic compounds (for example, fullerene, naphthalene derivative, anthracene derivative, phenanthrene derivative, tetracene derivative, pyrene derivative, perylene derivative and fluoranthene derivative); nitrogen atom, oxygen atom, And 5- to 7-membered heterocyclic compounds having at least one sulfur atom (eg, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, Phenanthroline, tetrazole, pyrazole, imidazole, and thiazole etc .; polyarylene compounds; fluorene compounds; cyclopentadiene compounds; silyl compounds; and nitrogen-containing heterocyclization Metal complexes having an
  • An organic dye may be used as the n-type organic semiconductor.
  • the molecular weight of the n-type organic semiconductor is preferably 200 to 1,200, and more preferably 200 to 900.
  • the n-type organic semiconductor is colorless or has an absorption maximum wavelength close to a specific compound and / or an absorption waveform.
  • the absorption maximum wavelength of the n-type organic semiconductor is preferably 400 nm or less, or 500 to 600 nm.
  • the photoelectric conversion film preferably has a bulk heterostructure formed by mixing the specific compound and the n-type organic semiconductor.
  • the bulk heterostructure is a layer in which the specific compound and the n-type organic semiconductor are mixed and dispersed in the photoelectric conversion film.
  • the photoelectric conversion film having a bulk heterostructure can be formed by either a wet method or a dry method.
  • the bulk heterostructure is described in detail in, for example, paragraphs [0013] to [0014] of JP-A-2005-303266.
  • the photoelectric conversion film is preferably substantially composed of the specific compound and the n-type organic semiconductor. To be substantially means that the total content of the specific compound and the n-type organic semiconductor is 95% by mass or more with respect to the total mass of the photoelectric conversion film.
  • the n-type organic semiconductor contained in the photoelectric conversion film may be used singly or in combination of two or more.
  • the photoelectric conversion film may further include a p-type organic semiconductor.
  • the p-type organic semiconductor include the following.
  • the said p-type organic semiconductor intends p-type organic semiconductor other than a specific compound.
  • the p-type organic semiconductor is a donor type organic semiconductor material (compound) and refers to an organic compound having a property of easily giving an electron. More specifically, the p-type organic semiconductor refers to an organic compound having a smaller ionization potential when used in contact with two organic compounds.
  • Examples of p-type organic semiconductors include triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, carbazole compounds, polysilane compounds, thiophene compounds, cyanine compounds, oxonol Examples thereof include compounds, polyamine compounds, indole compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, fused aromatic carbocyclic compounds, and metal complexes having a nitrogen-containing heterocyclic compound as a ligand.
  • the p-type organic semiconductor one having an ionization potential smaller than that of the n-type organic semiconductor can be mentioned, and the organic dye exemplified as the n-type organic semiconductor can be used if this condition is satisfied.
  • the photoelectric conversion film containing the specific compound is a non-light emitting film, and has a feature different from that of an organic electroluminescent device (OLED: Organic Light Emitting Diode).
  • OLED Organic Light Emitting Diode
  • the nonluminous film is intended for a film having a light emission quantum efficiency of 1% or less, preferably 0.5% or less, and more preferably 0.1% or less.
  • the photoelectric conversion film can be mainly formed by a dry film formation method.
  • the dry film formation method include physical vapor deposition methods such as vapor deposition (in particular, vacuum deposition), sputtering, ion plating, and MBE (Molecular Beam Epitaxy), and plasma polymerization, etc. And CVD (Chemical Vapor Deposition).
  • the vacuum evaporation method is preferable.
  • manufacturing conditions such as a vacuum degree and vapor deposition temperature, can be set according to a conventional method.
  • the thickness of the photoelectric conversion film is preferably 10 to 1000 nm, more preferably 50 to 800 nm, still more preferably 50 to 500 nm, and particularly preferably 50 to 300 nm.
  • the electrodes are made of a conductive material.
  • the conductive material include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Since light is incident from the upper electrode 15, the upper electrode 15 is preferably transparent to the light to be detected.
  • Examples of materials constituting the upper electrode 15 include tin oxide doped with antimony or fluorine (ATO: Antimony Tin Oxide, FTO: Fluorine doped Tin Oxide), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO Conductive metal oxides such as indium tin oxide (IZO) and metal thin films such as gold, silver, chromium and nickel; these metals and conductive metal oxides And polyaniline, polythiophene, and organic conductive materials such as polypyrrole, and the like. Among them, conductive metal oxides are preferable in terms of high conductivity and transparency.
  • the sheet resistance is preferably 100 to 10000 ⁇ / ⁇ .
  • the degree of freedom in the range of film thickness that can be made thin is large.
  • the thickness of the upper electrode (transparent conductive film) 15 decreases, the amount of light absorbed decreases, and the light transmittance generally increases.
  • An increase in light transmittance is preferable because it increases the light absorption in the photoelectric conversion film and the photoelectric conversion ability.
  • the thickness of the upper electrode 15 is preferably 5 to 100 nm, and more preferably 5 to 20 nm, in consideration of suppression of leakage current, increase in resistance of the thin film, and increase in transmittance as the film thickness decreases.
  • the lower electrode 11 may be either transparent or non-transparent and reflect light.
  • the material constituting the lower electrode 11 include tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO).
  • Conductive metals such as gold), metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides or nitrides of these metals (for example, titanium nitride (TiN) And mixtures or laminates of these metals and conductive metal oxides; and organic conductive materials such as polyaniline, polythiophene, and polypyrrole.
  • the method for forming the electrode is not particularly limited, and can be appropriately selected according to the electrode material. Specifically, printing methods and wet methods such as coating methods; physical methods such as vacuum evaporation method, sputtering method and ion plating method; and chemical methods such as CVD and plasma CVD method , Etc.
  • the material of the electrode is ITO, methods such as an electron beam method, a sputtering method, a resistance heating evaporation method, a chemical reaction method (sol-gel method etc.), and a dispersion of indium tin oxide can be mentioned.
  • the photoelectric conversion element of the present invention has one or more kinds of intermediate layers in addition to the photoelectric conversion film between the conductive film and the transparent conductive film.
  • the intermediate layer include a charge blocking film.
  • the charge blocking film include an electron blocking film and a hole blocking film. Below, each film is explained in full detail.
  • the electron blocking film contains an electron donating compound.
  • low molecular weight materials such as N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD) and 4,4'-bis [Aromatic diamine compounds such as [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD); porphyrin compounds such as porphyrin, tetraphenylporphyrin copper, phthalocyanine, copper phthalocyanine, and titanium phthalocyanine oxide; Oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene, 4,4 ', 4''-tris (N- (3-methylphenyl) N-phenylamino ) Tri
  • polymer material examples include polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, and diacetylene, and derivatives thereof.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, and diacetylene, and derivatives thereof.
  • the electron blocking film may be composed of a plurality of films.
  • the electron blocking film may be made of an inorganic material.
  • the inorganic material has a dielectric constant larger than that of the organic material, when the inorganic material is used for the electron blocking film, a large voltage is applied to the photoelectric conversion film, and the photoelectric conversion efficiency is increased.
  • an inorganic material that can be an electron blocking film for example, calcium oxide, chromium oxide, chromium copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, copper oxide, gallium oxide copper, strontium oxide copper, niobium oxide, molybdenum oxide, indium oxide Copper, indium silver oxide, iridium oxide and the like can be mentioned.
  • Hole blocking film contains an electron accepting compound.
  • the electron accepting compound oxadiazole derivatives such as 1,3-bis (4-tert-butylphenyl-1,3,4-oxadiazolyl) phenylene (OXD-7); anthraquinodimethane derivatives; diphenylquinone derivatives Vasocuproin, vasophenanthroline, and derivatives thereof; triazole compounds; tris (8-hydroxyquinolinate) aluminum complexes; bis (4-methyl-8-quinolinate) aluminum complexes; distyrylarylene derivatives; Etc. Further, compounds described in paragraphs [0056] to [0057] of JP-A-2006-100767 can be mentioned.
  • the method for producing the charge blocking film is not particularly limited, and examples thereof include a dry film formation method and a wet film formation method.
  • the dry film forming method includes a vapor deposition method and a sputtering method.
  • the vapor deposition method may be any of physical vapor deposition (PVD) and chemical vapor deposition (CVD), preferably physical vapor deposition such as vacuum vapor deposition.
  • Examples of the wet film forming method include an inkjet method, a spray method, a nozzle printing method, a spin coating method, a dip coating method, a casting method, a die coating method, a roll coating method, a bar coating method, and a gravure coating method. From the viewpoint of precision patterning, the inkjet method is preferred.
  • the thickness of the charge blocking film is preferably 3 to 200 nm, more preferably 5 to 100 nm, and still more preferably 5 to 30 nm.
  • the photoelectric conversion element may further have a substrate.
  • the type of substrate used is not particularly limited, and examples include semiconductor substrates, glass substrates, and plastic substrates.
  • the position of the substrate is not particularly limited, in general, a conductive film, a photoelectric conversion film, and a transparent conductive film are stacked in this order on the substrate.
  • the photoelectric conversion element may further have a sealing layer.
  • the performance of the photoelectric conversion material may significantly deteriorate due to the presence of deterioration factors such as water molecules. Therefore, the entire photoelectric conversion film can be formed of a dense metal oxide, metal nitride, or a metal nitride oxide ceramic that does not allow water molecules to permeate, or a sealing layer such as diamond-like carbon (DLC).
  • DLC diamond-like carbon
  • the above-mentioned deterioration can be prevented by covering and sealing.
  • materials may be selected and manufactured according to the description in paragraphs [0210] to [0215] of JP-A-2011-082508.
  • Optical sensor As a use of a photoelectric conversion element, although a photovoltaic cell and an optical sensor are mentioned, for example, it is preferred to use a photoelectric conversion element of the present invention as an optical sensor. As an optical sensor, you may use by the said photoelectric conversion element independent, and may be used as a line sensor which distribute
  • the photoelectric conversion element of the present invention converts optical image information into an electrical signal using an optical system and a driving unit such as a scanner in a line sensor, and the two-dimensional sensor converts optical image information into an optical signal as an imaging module.
  • the system functions as an imaging element by forming an image on a sensor and converting it into an electric signal.
  • An image pickup element is an element for converting light information of an image into an electric signal, and a plurality of photoelectric conversion elements are arranged on a matrix in the same plane, and an optical signal is converted into an electric signal in each photoelectric conversion element (pixel). And the electric signal can be sequentially output to the outside of the imaging device for each pixel. Therefore, one photoelectric conversion element and one or more transistors are provided per pixel.
  • FIG. 3 is a schematic cross-sectional view showing a schematic configuration of an imaging device for describing an embodiment of the present invention.
  • the imaging device is mounted on an imaging device such as a digital camera and a digital video camera, an electronic endoscope, and an imaging module such as a cellular phone.
  • This imaging device has a plurality of photoelectric conversion devices configured as shown in FIG. 1A, and a circuit board on which a readout circuit for reading out a signal corresponding to the charge generated in the photoelectric conversion film of each photoelectric conversion device is formed.
  • a plurality of photoelectric conversion elements are arranged in one dimension or two dimensions on the same plane above the circuit board.
  • the imaging device 100 illustrated in FIG. 3 includes a substrate 101, an insulating layer 102, a connection electrode 103, a pixel electrode (lower electrode) 104, a connection portion 105, a connection portion 106, a photoelectric conversion film 107, and an opposite electrode.
  • CF Color Filter
  • the pixel electrode 104 has the same function as the lower electrode 11 of the photoelectric conversion element 10a shown in FIG. 1A.
  • the counter electrode 108 has the same function as the upper electrode 15 of the photoelectric conversion element 10 a shown in FIG. 1A.
  • the photoelectric conversion film 107 has the same configuration as the layer provided between the lower electrode 11 and the upper electrode 15 of the photoelectric conversion element 10 a shown in FIG. 1A.
  • the substrate 101 is a glass substrate or a semiconductor substrate such as Si.
  • An insulating layer 102 is formed on the substrate 101.
  • a plurality of pixel electrodes 104 and a plurality of connection electrodes 103 are formed on the surface of the insulating layer 102.
  • the photoelectric conversion film 107 is a layer common to all the photoelectric conversion elements provided on the plurality of pixel electrodes 104 so as to cover them.
  • the counter electrode 108 is one electrode provided on the photoelectric conversion film 107 and common to all the photoelectric conversion elements.
  • the counter electrode 108 is formed on the connection electrode 103 disposed outside the photoelectric conversion film 107 and is electrically connected to the connection electrode 103.
  • connection portion 106 is embedded in the insulating layer 102 and is a plug for electrically connecting the connection electrode 103 and the counter electrode voltage supply portion 115.
  • the counter electrode voltage supply unit 115 is formed on the substrate 101, and applies a predetermined voltage to the counter electrode 108 through the connection portion 106 and the connection electrode 103.
  • the power supply voltage is boosted by a charge pump or other booster circuit to supply the predetermined voltage.
  • the readout circuit 116 is provided on the substrate 101 corresponding to each of the plurality of pixel electrodes 104, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 104.
  • the readout circuit 116 is configured of, for example, a CCD, a CMOS circuit, or a TFT (Thin Film Transistor) circuit, and is shielded by a light shielding layer (not shown) disposed in the insulating layer 102.
  • the readout circuit 116 is electrically connected to the corresponding pixel electrode 104 via the connection portion 105.
  • the buffer layer 109 is formed on the counter electrode 108 so as to cover the counter electrode 108.
  • the sealing layer 110 is formed on the buffer layer 109 so as to cover the buffer layer 109.
  • the color filter 111 is formed on the sealing layer 110 so as to face each pixel electrode 104.
  • the partition wall 112 is provided between the color filters 111 and is for improving the light transmittance of the color filter 111.
  • the light shielding layer 113 is formed on the sealing layer 110 except the area where the color filter 111 and the partition wall 112 are provided, and prevents light from entering the photoelectric conversion film 107 formed in areas other than the effective pixel area. Do.
  • the protective layer 114 is formed on the color filter 111, the partition wall 112, and the light shielding layer 113, and protects the entire imaging element 100.
  • the imaging device 100 when light is incident, the light is incident on the photoelectric conversion film 107, and a charge is generated here. Holes among the generated charges are collected by the pixel electrode 104, and a voltage signal corresponding to the amount is output to the outside of the imaging element 100 by the readout circuit 116.
  • the method of manufacturing the imaging device 100 is as follows.
  • the connection portions 105 and 106, the plurality of connection electrodes 103, the plurality of pixel electrodes 104, and the insulating layer 102 are formed on the circuit substrate on which the counter electrode voltage supply portion 115 and the readout circuit 116 are formed.
  • the plurality of pixel electrodes 104 are arranged on the surface of the insulating layer 102 in, for example, a square lattice.
  • the photoelectric conversion film 107 is formed on the plurality of pixel electrodes 104 by, for example, a vacuum evaporation method.
  • the counter electrode 108 is formed on the photoelectric conversion film 107 under vacuum, for example, by sputtering.
  • the buffer layer 109 and the sealing layer 110 are sequentially formed on the counter electrode 108 by, for example, a vacuum evaporation method.
  • the protective layer 114 is formed, and the imaging device 100 is completed.
  • good solvent THF (tetrahydrofuran), a poor solvent : Acetonitrile
  • the photoelectric conversion element of the form of FIG. 1A was produced using the obtained compound. That is, the photoelectric conversion element to be evaluated in this example includes the lower electrode 11, the electron blocking film 16A, the photoelectric conversion film 12, and the upper electrode 15. Specifically, amorphous ITO is deposited on a glass substrate by sputtering to form the lower electrode 11 (thickness: 30 nm), and the following compound (EB-1) is vacuum-deposited on the lower electrode 11 The film was formed by vapor deposition to form an electron blocking film 16A (thickness: 30 nm).
  • the compound (D-1) as a p-type organic semiconductor and the fullerene (C 60 ) as an n-type organic semiconductor are each 100 nm in single layer conversion on the electron blocking film 16A.
  • the film was co-evaporated by vacuum evaporation so as to have a thickness of 100 nm to form a film, and a photoelectric conversion film 12 having a bulk heterostructure of 200 nm was formed.
  • amorphous ITO was formed into a film on the photoelectric conversion film 12 by a sputtering method to form an upper electrode 15 (transparent conductive film) (thickness: 10 nm).
  • an aluminum oxide (Al 2 O 3 ) layer is formed thereon by an ALCVD (Atomic Layer Chemical Vapor Deposition) method, and the photoelectric conversion element is formed.
  • ALCVD Atomic Layer Chemical Vapor Deposition
  • the compound (D-1) is further changed to the compound (R-1) in the same manner as the device (A) (that is, the film thickness of the photoelectric conversion film is Device ( BR-1 ') was also fabricated.
  • the photoelectric conversion efficiency of each element (B) was evaluated relative to that. If the relative value of the photoelectric conversion efficiency of each element (B) is 1.10 or more, “AA”, if 1.00 or more and less than 1.10, if "A”, 0.90 or more and 1.00. "B”, the case of 0.80 or more and less than 0.90 is “C”, and the case of less than 0.80 is "D”. For practical use, “B” to “AA” is preferable, “A” to “AA” is more preferable, and “AA” is more preferable. The results are shown in Table 1.
  • Table 1 below shows the evaluation results of devices manufactured using each compound.
  • the group represented by R 1 or R 2 is It represents whether or not a ring is formed by linking to a group represented by R 3 .
  • the column “R 1 and R 2 are unsubstituted aryl groups” is a table of R 1 and R 2 .
  • Each of the groups represented is an aryl group, and indicates whether or not the aryl group represented by R 1 and R 2 is unsubstituted.
  • the photoelectric conversion element of the present invention exhibits excellent photoelectric conversion efficiency even when the photoelectric conversion film is a thin film.
  • the element (B D-1 ) (Example 1) which differs only in that the thickness of the photoelectric conversion film is thinner than that of the reference photoelectric conversion element (element (A)) is the same as the element (A) In comparison, they showed equal or higher photoelectric conversion efficiency.
  • the present inventors believe that this is because the specific compound has a high ⁇ (absorptivity coefficient), so that even a thin film can sufficiently absorb light.
  • Imaging elements similar to those shown in FIG. 3 were produced. That is, after depositing amorphous TiN 30 nm on a CMOS substrate by sputtering, it is patterned by photolithography so that one pixel exists on each of the photodiodes (PD) on the CMOS substrate, to form a lower electrode. After forming the electron blocking material, an imaging device was manufactured in the same manner as the device (A) or (B). The evaluation of the photoelectric conversion efficiency in the case where the photoelectric conversion film was a thin film was similarly evaluated for the obtained imaging device, and the same result as Table 1 was obtained. From this, it was found that the photoelectric conversion element of the present invention exhibits excellent performance also in the imaging element.
  • Photoelectric conversion element 11 Conductive film (lower electrode) 12 photoelectric conversion film 15 transparent conductive film (upper electrode) 16A electron blocking film 16B hole blocking film 100 pixel separation type imaging device 101 substrate 102 insulating layer 103 connection electrode 104 pixel electrode (lower electrode) 105 connection portion 106 connection portion 107 photoelectric conversion film 108 counter electrode (upper electrode) 109 buffer layer 110 sealing layer 111 color filter (CF) 112 partition wall 113 light shielding layer 114 protective layer 115 counter electrode voltage supply unit 116 readout circuit 200 photoelectric conversion element (hybrid type photoelectric conversion element) 201 inorganic photoelectric conversion film 202 n-type well 203 p-type well 204 n-type well 205 p-type silicon substrate 207 insulating layer 208 pixel electrode 209 organic photoelectric conversion film 210 common electrode 211 protective film 212 electron blocking film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本発明は、光電変換膜が薄膜である場合においても優れた光電変換効率を示す光電変換素子を提供する。また、本発明は、上記光電変換素子を含む光センサおよび撮像素子を提供する。上記光電変換素子に適用される化合物を提供する。 本発明の光電変換素子は、導電性膜、光電変換膜、および、透明導電性膜をこの順で有する光電変換素子であって、光電変換膜が、式(1)で表される化合物を含む。

Description

光電変換素子、光センサ、撮像素子、化合物
 本発明は、光電変換素子、光センサ、撮像素子、および、化合物に関する。
 従来、固体撮像素子としては、フォトダイオード(PD:photodiode)を2次元的に配列し、各PDで発生した信号電荷を回路で読み出す平面型固体撮像素子が広く用いられている。
 カラー固体撮像素子を実現するには、平面型固体撮像素子の光入射面側に、特定の波長の光を透過するカラーフィルタを配した構造が一般的である。現在、2次元的に配列した各PD上に、青色(B:blue)光、緑色(G:green)光、および、赤色(R:red)光を透過するカラーフィルタを規則的に配した単板式固体撮像素子がよく知られている。しかし、この単板式固体撮像素子においては、カラーフィルタを透過しなかった光が利用されず光利用効率が悪い。
 これらの欠点を解決するため、近年、有機光電変換膜を信号読み出し用基板上に配置した構造を有する光電変換素子の開発が進んでいる。
 例えば、特許文献1では、光電変換材料が、キナクリドン骨格等の材料を含む光電変換素子が開示されている([請求項5])。
特開2007-273894号公報
 近年、撮像素子および光センサ等の性能向上の要求に伴い、これらに使用される光電変換素子に求められる諸特性に関してもさらなる向上が求められている。
 例えば、光電変換素子においては、光電変換膜の薄膜化を進めた場合(例えば、光電変換膜の厚みを100nmとした場合)でも良好な光電変換効率を維持できることが求められている。
 本発明者は、キナクリドン骨格を有する化合物を用いて光電変換素子を作製し、光電変換膜が薄膜である場合の光電変換効率(以下「薄膜時の光電変換効率」ともいう)について検討したところ、その特性は必ずしも昨今求められるレベルに達しておらず、さらなる向上が必要であることを見出した。
 本発明は、上記実情を鑑みて、光電変換膜が薄膜である場合においても優れた光電変換効率を示す光電変換素子を提供することを課題とする。
 また、本発明は、上記光電変換素子を含む光センサおよび撮像素子を提供することも課題とする。さらに、本発明は、上記光電変換素子に適用される化合物を提供することも課題とする。
 本発明者らは、上記課題について鋭意検討した結果、所定の構造を有する化合物を光電変換膜に用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。
 〔1〕
 導電性膜、光電変換膜、および、透明導電性膜をこの順で有する光電変換素子であって、
 上記光電変換膜が、式(1)で表される化合物を含む、光電変換素子。
 〔2〕
 上記式(1)で表される化合物が、式(2)で表される化合物である、〔1〕に記載の光電変換素子。
 〔3〕
 上記式(1)で表される化合物が、式(3)で表される化合物である、〔1〕または〔2〕に記載の光電変換素子。
 〔4〕
 上記式(1)~(3)中、RおよびRのうち少なくとも一方が、RおよびRのいずれかと、直接または連結基を介して結合して環を形成する、〔1〕~〔3〕のいずれかに記載の光電変換素子。
 〔5〕
 上記式(1)~(3)中、RおよびRが、いずれも、置換基を有していてもよいアリール基を表す、〔1〕~〔4〕のいずれかに記載の光電変換素子。
 〔6〕
 上記式(1)~(3)中、RおよびRが、いずれも、無置換のアリール基を表す、〔1〕~〔5〕のいずれかに記載の光電変換素子。
 〔7〕
 上記光電変換膜が、さらにn型有機半導体を含み、
 上記光電変換膜が、上記式(1)で表される化合物と上記n型有機半導体とが混合された状態で形成するバルクへテロ構造を有する、〔1〕~〔6〕のいずれかに記載の光電変換素子。
 〔8〕
 上記導電性膜と上記透明導電性膜の間に、上記光電変換膜の他に1種以上の中間層を有する、〔1〕~〔7〕のいずれかに記載の光電変換素子。
 〔9〕
 〔1〕~〔8〕のいずれかに記載の光電変換素子を有する、光センサ。
 〔10〕
 〔1〕~〔8〕のいずれかに記載の光電変換素子を有する、撮像素子。
 〔11〕
 式(1)で表される化合物。
 〔12〕
 式(2)で表される化合物である、〔11〕に記載の化合物。
 〔13〕
 式(3)で表される化合物である、〔11〕または〔12〕に記載の化合物。
 本発明によれば、光電変換膜が薄膜である場合においても優れた光電変換効率を示す光電変換素子を提供できる。
 また、本発明によれば、上記光電変換素子を含む光センサおよび撮像素子を提供することもできる。さらに、本発明によれば、上記光電変換素子に適用される化合物を提供することもできる。
光電変換素子の一構成例を示す断面模式図である。 光電変換素子の一構成例を示す断面模式図である。 ハイブリッド型光電変換素子の1画素分の断面模式図である。 撮像素子の1画素分の断面模式図である。
 以下に、本発明の光電変換素子の好適実施形態について説明する。
 なお、本明細書において、置換または無置換を明記していない置換基等については、目的とする効果を損なわない範囲で、その基にさらに置換基(例えば、後述する置換基W)が置換していてもよい。例えば、「アルキル基」という表記は、置換基(例えば、後述する置換基W)が置換していてもよいアルキル基を意味する。
 また、本明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
〔光電変換素子〕
 従来技術と比較した本発明の特徴点としては、光電変換膜に、後述する式(1)で表される化合物(以後、「特定化合物」ともいう)を使用している点が挙げられる。
 本発明者らは、特定化合物が、高いε(吸光係数)を有しており、光電変換膜を薄膜にした場合でも充分に光を吸収できる性質が、優れた薄膜時の光電変換効率に寄与していると考えている。
 以下に、本発明の光電変換素子の好適実施形態について図面を参照して説明する。図1に、本発明の光電変換素子の一実施形態の断面模式図を示す。
 図1Aに示す光電変換素子10aは、下部電極として機能する導電性膜(以下、下部電極とも記す)11と、電子ブロッキング膜16Aと、後述する特定化合物を含む光電変換膜12と、上部電極として機能する透明導電性膜(以下、上部電極とも記す)15とがこの順に積層された構成を有する。
 図1Bに別の光電変換素子の構成例を示す。図1Bに示す光電変換素子10bは、下部電極11上に、電子ブロッキング膜16Aと、光電変換膜12と、正孔ブロッキング膜16Bと、上部電極15とがこの順に積層された構成を有する。なお、図1Aおよび図1B中の電子ブロッキング膜16A、光電変換膜12、および、正孔ブロッキング膜16Bの積層順は、用途および特性に応じて、適宜変更してもよい。
 光電変換素子10a(または10b)では、上部電極15を介して光電変換膜12に光が入射されることが好ましい。
 また、光電変換素子10a(または10b)を使用する場合には、電圧を印加できる。この場合、下部電極11と上部電極15とが一対の電極をなし、この一対の電極間に、1×10-5~1×10V/cmの電圧を印加することが好ましい。性能および消費電力の点から、印加される電圧としては、1×10-4~1×10V/cmがより好ましく、1×10-3~5×10V/cmがさらに好ましい。
 なお、電圧印加方法については、図1Aおよび図1Bにおいて、電子ブロッキング膜16A側が陰極となり、光電変換膜12側が陽極となるように印加することが好ましい。光電変換素子10a(または10b)を光センサとして使用した場合、また、撮像素子に組み込んだ場合も、同様の方法により電圧を印加できる。
 後段で、詳述するように、光電変換素子10a(または10b)は光センサ用途および撮像素子用途に好適に適用できる。
 また、図2に、本発明の光電変換素子の別の実施形態の断面模式図を示す。
 図2に示される光電変換素子200は、有機光電変換膜209と無機光電変換膜201とを備えるハイブリッド型の光電変換素子である。なお、有機光電変換膜209は、後述する特定化合物を含む。
 無機光電変換膜201は、p型シリコン基板205上に、n型ウェル202、p型ウェル203、および、n型ウェル204を有する。
 p型ウェル203とn型ウェル204との間に形成されるpn接合にて青色光が光電変換され(B画素)、p型ウェル203とn型ウェル202との間に形成されるpn接合にて赤色光が光電変換される(R画素)。なお、n型ウェル202、p型ウェル203、および、n型ウェル204の導電型は、これらに限るものではない。
 さらに、無機光電変換膜201の上には透明な絶縁層207が配置されている。
 絶縁層207の上には、画素毎に区分けした透明な画素電極208が配置され、その上に、緑色光を吸収して光電変換する有機光電変換膜209が各画素共通に一枚構成で配置され、その上に、電子ブロッキング膜212が各画素共通に一枚構成で配置され、その上に、一枚構成の透明な共通電極210が配置され、最上層に、透明な保護膜211が配置されている。電子ブロッキング膜212と有機光電変換膜209との積層順は図2とは逆であってもよく、共通電極210は、画素毎に区分けして配置されてもよい。
 有機光電変換膜209は、緑色光を検出するG画素を構成する。
 画素電極208は、図1Aに示した光電変換素子10aの下部電極11と同じである。共通電極210は、図1Aに示した光電変換素子10aの上部電極15と同じである。
 この光電変換素子200に被写体からの光が入射すると、入射光の内の緑色光が有機光電変換膜209に吸収されて光電荷が発生し、この光電荷は、画素電極208から図示しない緑色信号電荷蓄積領域に流れ蓄積される。
 有機光電変換膜209を透過した青色光と赤色光との混合光が無機光電変換膜201内に侵入する。波長の短い青色光は主として半導体基板(無機光電変換膜)201の浅部(p型ウェル203とn型ウェル204との間に形成されるpn接合付近)にて光電変換されて光電荷が発生し、信号が外部に出力される。波長の長い赤色光は主として半導体基板(無機光電変換膜)201の深部(p型ウェル203とn型ウェル202との間に形成されるpn接合付近)で光電変換されて光電荷が発生し、信号が外部に出力される。
 なお、光電変換素子200を撮像素子に使用する場合、p型シリコン基板205の表面部には、信号読出回路(CCD:Charge Coupled Device)型であれば電荷転送路、CMOS(Complementary Metal Oxide Semiconductor)型であればMOS(Metal-Oxide-Semiconductor)トランジスタ回路、または、緑色信号電荷蓄積領域が形成される。また、画素電極208は、縦配線により対応の緑色信号電荷蓄積領域に接続される。
 以下に、本発明の光電変換素子を構成する各層の形態について詳述する。
[光電変換膜]
<特定化合物>
 光電変換膜12(または有機光電変換膜209)は、光電変換材料として特定化合物を含む膜である。この化合物を使用することにより、優れた薄膜時の光電変換効率を示す、光電変換素子が得られる。
 以下、特定化合物について詳述する。
 なお、式(1)中、Rが結合する炭素原子とそれに隣接する炭素原子とで構成されるC=C二重結合に基づいて区別され得る幾何異性体について、式(1)はそのいずれをも含む。つまり、上記C=C二重結合に基づいて区別されるシス体とトランス体とは、いずれも式(1)に含まれる。
 また、特筆無き限り、特定化合物が有し得る置換基の例としては、それぞれ独立に、後述する置換基Wが挙げられる。
Figure JPOXMLDOC01-appb-C000007

 
 式(1)中、RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。
 RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
 中でも、薄膜時の光電変換効率がより優れる点から、RおよびRは、いずれも、置換基を有していてもよいアリール基を表すのが好ましく、いずれも、無置換のアリール基を表すのが好ましい。
 なお、無置換のアリール基とは置換基を有さないアリール基を意図する。
 また、本明細書では、後述するRとRを連結するための連結基などのR~R(または、R~R)を連結するための連結基は、置換基には含まれない。
 RおよびRで表されるアリール基中の炭素数は特に制限されないが、6~30が好ましく、6~18がより好ましく、6がさらに好ましい。アリール基は、単環構造であっても、2つ以上の環が縮環した縮環構造(縮合環構造)であってもよい。
 アリール基としては、例えば、フェニル基、ナフチル基、または、アントリル基が好ましく、フェニル基がより好ましい。
 アリール基が有し得る置換基としては後述する置換基Wが挙げられ、アルキル基(好ましくは炭素数1~3)、ハロゲン原子(より好ましくはフッ素原子または塩素原子)、アルコシキ基(好ましくは炭素数1~4、より好ましくはメトキシ基)、シアノ基、アシル基、アルデヒド基、および、シリル基(好ましくはトリアルキルシリル基、より好ましくはトリメチルシリル基)が好ましい。
 RおよびRで表されるアリール基は、これらの置換基を複数種類有していてもよい。
 アリール基が置換基を有する場合、アリール基が有する置換基の数に特に制限はなく、薄膜時の光電変換効率がより優れる点から、1~3が好ましく、1がより好ましい。
 なお、上述したように、アリール基は、置換基を有さない態様が好ましい。
 RおよびRで表されるヘテロアリール基(1価の芳香族複素環基)中の炭素数は特に制限されないが、3~30が好ましく、3~18がより好ましい。
 ヘテロアリール基は、炭素原子および水素原子以外にヘテロ原子を有する。ヘテロ原子としては、例えば、硫黄原子、酸素原子、窒素原子、セレン原子、テルル原子、リン原子、ケイ素原子、および、ホウ素原子等が挙げられ、硫黄原子、酸素原子、または、窒素原子が好ましい。
 ヘテロアリール基が有するヘテロ原子の数は特に制限されず、1~10が好ましく、1~4がより好ましく、1~2がさらに好ましい。
 ヘテロアリール基の環員数は特に制限されないが、3~8が好ましく、5~7がより好ましく、5~6がさらに好ましい。なお、ヘテロアリール基は、単環構造であっても、2個以上の環が縮環した縮環構造であってもよい。縮環構造の場合、ヘテロ原子を有さない芳香族炭化水素環(例えば、ベンゼン環)が含まれていてもよい。
 ヘテロアリール基としては、例えば、フリル基、ピリジル基、キノリル基、イソキノリル基、アクリジニル基、フェナントリジニル基、プテリジニル基、ピラジニル基、キノキサリニル基、ピリミジニル基、キナゾリル基、ピリダジニル基、シンノリニル基、フタラジニル基、トリアジニル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、インダゾリル基、イソオキサゾリル基、ベンゾイソオキサゾリル基、イソチアゾリル基、ベンゾイソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピロリル基、インドリル基、イミダゾピリジニル基、および、カルバゾリル基等が挙げられる。
 中でも、フリル基、チエニル基、ピリジル基、キノリル基、イソキノリル基、または、カルバゾリル基が好ましく、フリル基がより好ましい。
 ヘテロアリール基が有し得る置換基としては、上述のアリール基が有し得る置換基が同様に挙げられる。
 ヘテロアリール基が置換基を有する場合、ヘテロアリール基が有する置換基の数に特に制限はなく、1~3が好ましく、1がより好ましい。
 RおよびRで表されるアルキル基の炭素数は特に制限されないが、1~10が好ましく、1~5がより好ましく、1がさらに好ましい。アルキル基としては、直鎖状、分岐鎖状、および、環状のいずれであってもよい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、シクロペンチル基、および、シクロへキシル基等が挙げられる。
 アルキル基が有し得る置換基としては、上述のアリール基が有し得る置換基が同様に挙げられる。
 R~Rは、それぞれ独立に、水素原子または置換基を表す。置換基としては、例えば、後述する置換基Wが挙げられ、中でもメチル基が好ましい。
 R~Rは、いずれも、水素原子を表すのが好ましい。
 Aは、少なくとも2つの炭素原子を含む環を表す。なお、2つの炭素原子とは、式(1)中のカルボニル基中の炭素原子と、カルボニル基の炭素原子に隣接する炭素原子とを意図し、いずれの炭素原子もAを構成する原子である。
 Aが形成する環の炭素数は、3~30が好ましく、3~20がより好ましく、3~15がさらに好ましい。なお上記炭素数は、式中に明示される2個の炭素原子を含む数である。
 Aは、ヘテロ原子を有していてもよく、例えば、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、および、ホウ素原子等が挙げられ、窒素原子、硫黄原子、または、酸素原子が好ましく、酸素原子がより好ましい。
 Aは置換基を有していてもよく、置換基としてはハロゲン原子(好ましくは塩素原子)が好ましい。
 A中のヘテロ原子の数は、0~10が好ましく、0~5がより好ましく、0~2がさらに好ましい。なお、上記ヘテロ原子の数は、式(1)中に明示されるAを構成するカルボニル基に含まれる酸素原子の数、および、Aの置換基が有するヘテロ原子の数を含まない数である。
 Aは、芳香族性を示してもよく、示さなくてもよい。
 Aは、単環構造でもよく、縮環構造でもよいが、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環であるのが好ましい。上記縮合環を形成する環の数は、1~4が好ましく、1~3がより好ましい。
 Aで表される環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば以下のものが挙げられる。
(a)1,3-ジカルボニル核:例えば、1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、および、1,3-ジオキサン-4,6-ジオン等。
(b)ピラゾリノン核:例えば、1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、および、1-(2-ベンゾチアゾリル)-3-メチル-2-ピラゾリン-5-オン等。
(c)イソオキサゾリノン核:例えば、3-フェニル-2-イソオキサゾリン-5-オン、および、3-メチル-2-イソオキサゾリン-5-オン等。
(d)オキシインドール核:例えば、1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
(e)2,4,6-トリオキソヘキサヒドロピリミジン核:例えば、バルビツール酸または2-チオバルビツール酸およびその誘導体等。誘導体としては、例えば、1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、および、1,3-ジ(2―ピリジル)等の1,3-ジヘテロアリール体等が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えば、ローダニンおよびその誘導体等。誘導体としては、例えば、3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、および、3-(2-ピリジル)ローダニン等の3-ヘテロアリールローダニン等が挙げられる。
(g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば、3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
(h)チアナフテノン核:例えば、3(2H)-チアナフテノン-1,1-ジオキサイド等。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば、3-エチル-2-チオ-2,5-チアゾリジンジオン等。
(j)2,4-チアゾリジンジオン核:例えば、2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、および、3-フェニル-2,4-チアゾリジンジオン等。
(k)チアゾリン-4-オン核:例えば、4-チアゾリノン、および、2-エチル-4-チアゾリノン等。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば、2,4-イミダゾリジンジオン、および、3-エチル-2,4-イミダゾリジンジオン等。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば、2-チオ-2,4-イミダゾリジンジオン、および、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
(n)イミダゾリン-5-オン核:例えば、2-プロピルメルカプト-2-イミダゾリン-5-オン等。
(o)3,5-ピラゾリジンジオン核:例えば、1,2-ジフェニル-3,5-ピラゾリジンジオン、および、1,2-ジメチル-3,5-ピラゾリジンジオン等。
(p)ベンゾチオフェン-3(2H)-オン核:例えば、ベンゾチオフェン-3(2H)-オン、オキソベンゾチオフェン-3(2H)-オン、および、ジオキソベンゾチオフェンー3(2H)-オン等。
(q)インダノン核:例えば、1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン、および、3,3-ジメチル-1-インダノン等。
(r)ベンゾフラン-3-(2H)-オン核:例えば、ベンゾフラン-3-(2H)-オン等。
(s)2,2-ジヒドロフェナレン-1,3-ジオン核等。
 R~Rは、それぞれ互いに直接または連結基を介して結合して環を形成していてもよい。例えば、RとR、RとR、RとR、RとR、RとR、RとR、および、RとRは、それぞれ直接または連結基を介して結合して環を形成していてもよい。
 中でも、薄膜時の光電変換効率がより優れる点から、RおよびRのうち少なくとも一方が、RおよびRのいずれかと、直接または連結基を介して結合して環を形成することが好ましい。
 直接結合するとは、いわゆる単結合を介して結合することを意図する。
 連結基(2価の連結基)としては、例えば、アルキレン基(直鎖状でも、分岐鎖状でも、環状でもよい。炭素数1~7が好ましい。例えば、メチレン基、ジメチルメチレン基、1,1-シクロアルキレン基等)、-Si(CH-、-O-、-CO-、-S-、および、-Ge(CH-が挙げられる。
 薄膜時の光電変換効率がより優れる点から、特定化合物は、式(2)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000008
 RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
 R~Rは、それぞれ独立に、水素原子または置換基を表す。
 式(2)中、R~Rは、それぞれ、式(1)におけるR~Rと同義であり、好ましい範囲も同様である。
 式(2)中、R~Rで表される置換基としては、例えば、後述する置換基Wが挙げられる。
 R~Rは、それぞれ独立に、水素原子、アルキル基、または、ハロゲン原子が好ましく、メチル基、フッ素原子、または、塩素原子がより好ましく、水素原子、または、塩素原子がさらに好ましい。
 Xは、カルボニル基、チオカルボニル基、ジシアノメチレン基、-S-、-O-、または、-CR1011-を表す。R10およびR11は、それぞれ独立に、水素原子または置換基を表す。
 R10およびR11は、それぞれ独立に、水素原子または置換基を表す。
 R10およびR11は、それぞれ独立に、水素原子またはアルキル基(より好ましくは炭素数1~2のアルキル基)が好ましい。
 RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、および、RとRは、それぞれ独立に、直接または連結基を介して結合して環を形成していてもよい。
 連結基の例示は、上述した通りである。
 中でも、薄膜時の光電変換効率がより優れる点から、RおよびRのうち少なくとも一方が、RおよびRのいずれかと、直接または連結基を介して結合して環を形成することが好ましい。
 また、RとR、RとR、および、RとRが、それぞれ互いに連結して形成する環はベンゼン環が好ましい。
 中でも、RとRとが互いに連結して環を形成しているのが好ましい。
 これらの形成される環に特に制限はないが、形成される環はベンゼン環であるのが好ましい。
 薄膜時の光電変換効率がより優れる点から、特定化合物は、式(3)で表される化合物であるのがより好ましい。
Figure JPOXMLDOC01-appb-C000009
 RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
 R~Rは、それぞれ独立に、水素原子または置換基を表す。
 式(3)中、R~Rは、それぞれ、式(2)におけるR~Rと同義であり、好ましい範囲も同様である。
 RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、RとR、および、RとRは、それぞれ独立に、直接または連結基を介して結合して環を形成していてもよい。
 中でも、薄膜時の光電変換効率がより優れる点から、RおよびRのうち少なくとも一方が、RおよびRのいずれかと、直接または連結基を介して結合して環を形成することが好ましい。
 薄膜時の光電変換効率がより優れる点から、特定化合物は、式(4)で表される化合物であるのがより好ましい。
Figure JPOXMLDOC01-appb-C000010
 R~Rは、それぞれ独立に、水素原子または置換基を表す。
 式(4)中、R~Rは、それぞれ、式(3)におけるR~Rと同義であり、好ましい範囲も同様である。
 Lは、それぞれ独立に、単結合または連結基(2価の連結基)を表す。連結基の例示は、上述した通りである。
 sおよびtは、それぞれ独立に、0または1を表し、sおよびtの少なくとも一方は1を表すのが好ましい。
 s(またはt)が0である場合、-(L)-(または-(L)-)は、2つの環同士を連結しない無連結であるのを意図する。例えば、sおよびtのいずれも0である場合、以下の化合物を表す。
Figure JPOXMLDOC01-appb-C000011
(置換基W)
 本明細書における置換基Wについて記載する。
 置換基Wとしては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(シクロアルキル基、ビシクロアルキル基、および、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、および、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい。ヘテロアリール基を含む)、シアノ基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、アルキルまたはアリールスルフィニル基、アルキルまたはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールまたはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、スルホン酸基、カルボキシ基、リン酸基、モノ硫酸エステル基、モノリン酸エステル基、ホスホン酸基、ホスフィン酸基、ホウ酸基、および、その他の公知の置換基が挙げられる。
 また、置換基Wは、さらに置換基Wで置換されていてもよい。例えば、アルキル基にハロゲン原子が置換していてもよい。
 なお、置換基Wの詳細については、特開2007-234651号公報の段落[0023]に記載される。
 ただし、蒸着適性の悪化を回避する点からは、特定化合物は、カルボキシ基、リン酸基、スルホン酸基、モノ硫酸エステル基、モノリン酸エステル基、ホスホン酸基、ホスフィン酸基、ホウ酸基、および、これらの基の塩のいずれも有さないのが好ましい。
 以下に、特定化合物を例示する。
 下記例示中、「Me」はメチル基を表し、「Ph」はフェニル基を表す。
 下記例示中、例示化合物を式(1)に当てはめた場合において、Rが結合する炭素原子とそれに隣接する炭素原子とで構成されるC=C二重結合に相当する基に基づいて区別され得る幾何異性体について、下記例示化合物はシス体とトランス体とのいずれをも含む。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 特定化合物の分子量は特に制限されないが、300~700が好ましい。分子量が700以下であれば、蒸着温度が高くならず、化合物の分解が起こりにくい。分子量が30以上であれば、蒸着膜のガラス転移点が低くならず、光電変換素子の耐熱性が向上する。
 特定化合物は、光センサ、撮像素子、または、光電池に用いる光電変換膜の材料として特に有用である。なお、通常、特定化合物は、光電変換膜内でp型有機半導体として機能する場合が多い。また、特定化合物は、着色材料、液晶材料、有機半導体材料、電荷輸送材料、医薬材料、および、蛍光診断薬材料としても使用できる。
 特定化合物は、p型有機半導体として使用する際の安定性とn型有機半導体とのエネルギー準位のマッチングの点で、単独膜でのイオン化ポテンシャルが-5.0~-6.0eVである化合物であるのが好ましい。
 上述した、緑色光を吸収して光電変換する有機光電変換膜209に適用可能とするため、特定化合物の極大吸収波長は、500~600nmの範囲にあるのが好ましく、530~600nmの範囲にあるのがより好ましい。
 なお、上記極大吸収波長は、特定化合物の吸収スペクトルを吸光度が0.5~1になる程度の濃度に調整して溶液状態(溶剤:クロロホルム)で測定した値である。
<n型有機半導体>
 光電変換膜は、上述した特定化合物以外の他の成分として、n型有機半導体を含むのが好ましい。
 n型有機半導体は、アクセプタ性有機半導体材料(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは、n型有機半導体は、2つの有機化合物を接触させて用いた場合に電子親和力の大きい方の有機化合物をいう。
 n型有機半導体としては、例えば、縮合芳香族炭素環化合物(例えば、フラーレン、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、および、フルオランテン誘導体);窒素原子、酸素原子、および、硫黄原子の少なくとも1つを有する5~7員環のヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、および、チアゾール等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物;ならびに、含窒素ヘテロ環化合物を配位子として有する金属錯体等が挙げられる。
 なお、n型有機半導体として、有機色素を用いてもよい。例えば、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、ロダシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、サブフタロシアニン色素および、金属錯体色素等が挙げられる。
 上記n型有機半導体の分子量としては、200~1200が好ましく、200~900がより好ましい。
 一方で、図2に示したような形態の場合には、n型有機半導体は無色、または、特定化合物に近い吸収極大波長、および/または、吸収波形を持つことが望ましく、具体的な数値としては、n型有機半導体の吸収極大波長が400nm以下、または、500~600nmが望ましい。
 光電変換膜は、上記特定化合物と、n型有機半導体とが混合された状態で形成されるバルクヘテロ構造を有するのが好ましい。バルクヘテロ構造は、光電変換膜内で、特定化合物とn型有機半導体とが混合、分散している層である。バルクヘテロ構造を有する光電変換膜は、湿式法および乾式法のいずれでも形成できる。なお、バルクへテロ構造については、特開2005-303266号公報の段落[0013]~[0014]等において詳細に説明されている。
 光電変換素子の応答性の点から、特定化合物とn型有機半導体との合計の含有量に対する特定化合物の含有量(=特定化合物の単層換算での膜厚/(特定化合物の単層換算での膜厚+n型有機半導体の単層換算での膜厚)×100)は、20~80体積%が好ましく、30~70体積%がより好ましく、40~60体積%がさらに好ましい。
 なお、光電変換膜は、実質的に、特定化合物とn型有機半導体から構成されるのが好ましい。実質的とは、光電変換膜全質量に対して、特定化合物およびn型有機半導体の合計含有量が95質量%以上であることを意図する。
 なお、光電変換膜中に含まれるn型有機半導体は、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、光電変換膜は、特定化合物およびn型有機半導体に加えて、さらにp型有機半導体を含んでいてもよい。p型有機半導体としては、例えば、下記に示すものが挙げられる。
 なお、特定化合物をp型有機半導体として使用する場合は、上記p型有機半導体は、特定化合物以外のp型有機半導体を意図する。
<p型有機半導体>
 p型有機半導体とは、ドナー性有機半導体材料(化合物)であり、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは、p型有機半導体とは、2つの有機化合物を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。
 p型有機半導体(特定化合物以外のp型有機半導体)としては、例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、シアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物、および、含窒素ヘテロ環化合物を配位子として有する金属錯体等が挙げられる。
 p型有機半導体としては、n型有機半導体よりもイオン化ポテンシャルが小さいものが挙げられ、この条件を満たせば、n型有機半導体として例示した有機色素を使用し得る。
 特定化合物を含む光電変換膜は非発光性膜であり、有機電界発光素子(OLED:Organic Light Emitting Diode)とは異なる特徴を有する。非発光性膜とは発光量子効率が1%以下の膜を意図し、発光量子効率は0.5%以下が好ましく、0.1%以下がより好ましい。
<成膜方法>
 光電変換膜は、主に、乾式成膜法により成膜できる。乾式成膜法の具体例としては、蒸着法(特に、真空蒸着法)、スパッタ法、イオンプレーティング法、および、MBE(Molecular Beam Epitaxy)法等の物理気相成長法、ならびに、プラズマ重合等のCVD(Chemical Vapor Deposition)法が挙げられる。中でも、真空蒸着法が好ましい。真空蒸着法により光電変換膜を成膜する場合、真空度および蒸着温度等の製造条件は常法に従って設定できる。
 光電変換膜の厚みは、10~1000nmが好ましく、50~800nmがより好ましく、50~500nmがさらに好ましく、50~300nmが特に好ましい。
[電極]
 電極(上部電極(透明導電性膜)15と下部電極(導電性膜)11)は、導電性材料から構成される。導電性材料としては、金属、合金、金属酸化物、電気伝導性化合物、および、これらの混合物等が挙げられる。
 上部電極15から光が入射されるため、上部電極15は検知したい光に対し透明であるのが好ましい。上部電極15を構成する材料としては、例えば、アンチモンまたはフッ素等をドープした酸化錫(ATO:Antimony Tin Oxide、FTO:Fluorine doped Tin Oxide)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO:Indium Tin Oxide)、および、酸化亜鉛インジウム(IZO:Indium zinc oxide)等の導電性金属酸化物;金、銀、クロム、および、ニッケル等の金属薄膜;これらの金属と導電性金属酸化物との混合物または積層物;ならびに、ポリアニリン、ポリチオフェン、および、ポリピロール等の有機導電性材料、等が挙げられる。中でも、高導電性、および、透明性等の点から、導電性金属酸化物が好ましい。
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態にかかる光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極(透明導電性膜)15は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換膜での光吸収を増大させ、光電変換能を増大させるため、好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、および、透過率の増加を考慮すると、上部電極15の膜厚は、5~100nmが好ましく、5~20nmがより好ましい。
 下部電極11は、用途に応じて、透明性を持たせる場合と、逆に透明性を持たせず光を反射させる場合とがある。下部電極11を構成する材料としては、例えば、アンチモンまたはフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、および、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル、チタン、タングステン、および、アルミ等の金属、これらの金属の酸化物または窒化物等の導電性化合物(一例として窒化チタン(TiN)を挙げる);これらの金属と導電性金属酸化物との混合物または積層物;ならびに、ポリアニリン、ポリチオフェン、および、ポリピロール、等の有機導電性材料等が挙げられる。
 電極を形成する方法は特に制限されず、電極材料に応じて適宜選択できる。具体的には、印刷方式、および、コーティング方式等の湿式方式;真空蒸着法、スパッタ法、および、イオンプレーティング法等の物理的方式;ならびに、CVD、および、プラズマCVD法等の化学的方式、等が挙げられる。
 電極の材料がITOの場合、電子ビーム法、スパッタ法、抵抗加熱蒸着法、化学反応法(ゾル-ゲル法等)、および、酸化インジウムスズの分散物の塗布等の方法が挙げられる。
[電荷ブロッキング膜:電子ブロッキング膜、正孔ブロッキング膜]
 本発明の光電変換素子は、導電性膜と透明導電性膜の間に、光電変換膜の他に1種以上の中間層を有しているのも好ましい。上記中間層としては、電荷ブロッキング膜が挙げられる。光電変換素子がこの膜を有することにより、得られる光電変換素子の特性(光電変換効率および応答性等)がより優れる。電荷ブロッキング膜としては、電子ブロッキング膜と正孔ブロッキング膜とが挙げられる。以下に、それぞれの膜について詳述する。
<電子ブロッキング膜>
 電子ブロッキング膜は、電子供与性化合物を含む。具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、および、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物;ポルフィリン、テトラフェニルポルフィリン銅、フタロシアニン、銅フタロシアニン、および、チタニウムフタロシアニンオキサイド等のポルフィリン化合物;ならびに、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4’’-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、および、シラザン誘導体等が挙げられる。高分子材料としては、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、および、ジアセチレン等の重合体、ならびに、その誘導体が挙げられる。また、特許第5597450号の段落[0049]~[0063]に記載の化合物、特開2011-225544号公報の段落[0119]~[0158]に記載の化合物、および、特開2012-94660号公報の段落[0086]~[0090]に記載の化合物等が挙げられる。
 なお、電子ブロッキング膜は、複数膜で構成してもよい。
 電子ブロッキング膜は、無機材料で構成されていてもよい。一般的に、無機材料は有機材料よりも誘電率が大きいため、無機材料を電子ブロッキング膜に用いた場合に、光電変換膜に電圧が多くかかるようになり、光電変換効率が高くなる。電子ブロッキング膜となりうる無機材料としては、例えば、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、および、酸化イリジウム等が挙げられる。
<正孔ブロッキング膜>
 正孔ブロッキング膜は、電子受容性化合物を含む。
 電子受容性化合物としては、1,3-ビス(4-tert-ブチルフェニル-1,3,4-オキサジアゾリル)フェニレン(OXD-7)等のオキサジアゾール誘導体;アントラキノジメタン誘導体;ジフェニルキノン誘導体;バソクプロイン、バソフェナントロリン、および、これらの誘導体;トリアゾール化合物;トリス(8-ヒドロキシキノリナート)アルミニウム錯体;ビス(4-メチル-8-キノリナート)アルミニウム錯体;ジスチリルアリーレン誘導体;ならびに、シロール化合物、等が挙げられる。また、特開2006-100767号公報の段落[0056]~[0057]に記載の化合物等が挙げられる。
 電荷ブロッキング膜の製造方法は特に制限されず、乾式成膜法および湿式成膜法が挙げられる。乾式成膜法としては、蒸着法およびスパッタ法が挙げられる。蒸着法は、物理蒸着(PVD:Physical Vapor Deposition)法および化学蒸着(CVD)法のいずれでもよく、真空蒸着法等の物理蒸着法が好ましい。湿式成膜法としては、インクジェット法、スプレー法、ノズルプリント法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、および、グラビアコート法等が挙げられ、高精度パターニングの点からは、インクジェット法が好ましい。
 電荷ブロッキング膜(電子ブロッキング膜および正孔ブロッキング膜)の厚みは、それぞれ、3~200nmが好ましく、5~100nmがより好ましく、5~30nmがさらに好ましい。
[基板]
 光電変換素子は、さらに基板を有していてもよい。使用される基板の種類は特に制限されず、半導体基板、ガラス基板、および、プラスチック基板が挙げられる。
 なお、基板の位置は特に制限されないが、通常、基板上に導電性膜、光電変換膜、および、透明導電性膜をこの順で積層する。
[封止層]
 光電変換素子は、さらに封止層を有していてもよい。光電変換材料は水分子等の劣化因子の存在で顕著にその性能が劣化してしまうことがある。そこで、水分子を浸透させない緻密な金属酸化物、金属窒化物、もしくは、金属窒化酸化物等のセラミクス、または、ダイヤモンド状炭素(DLC:Diamond-like Carbon)等の封止層で光電変換膜全体を被覆して封止することで、上記劣化を防止できる。
 なお、封止層としては、特開2011-082508号公報の段落[0210]~[0215]に記載に従って、材料の選択および製造を行ってもよい。
〔光センサ〕
 光電変換素子の用途として、例えば、光電池および光センサが挙げられるが、本発明の光電変換素子は光センサとして用いるのが好ましい。光センサとしては、上記光電変換素子単独で用いてもよいし、上記光電変換素子を直線状に配したラインセンサ、または、平面上に配した2次元センサとして用いてもよい。本発明の光電変換素子は、ラインセンサでは、スキャナー等の様に光学系および駆動部を用いて光画像情報を電気信号に変換し、2次元センサでは、撮像モジュールのように光画像情報を光学系でセンサ上に結像させ電気信号に変換することで撮像素子として機能する。
〔撮像素子〕
 次に、光電変換素子10aを備えた撮像素子の構成例を説明する。
 なお、以下に説明する構成例において、すでに説明した部材等と同等な構成、または、作用を有する部材等については、図中に同一符号または相当符号を付すことにより、説明を簡略化または省略する。
 撮像素子とは画像の光情報を電気信号に変換する素子であり、複数の光電変換素子が同一平面状でマトリクス上に配置されており、それぞれの光電変換素子(画素)において光信号を電気信号に変換し、その電気信号を画素ごとに逐次撮像素子外に出力できるものをいう。そのために、画素ひとつあたり、一つの光電変換素子、一つ以上のトランジスタから構成される。
 図3は、本発明の一実施形態を説明するための撮像素子の概略構成を示す断面模式図である。この撮像素子は、デジタルカメラおよびデジタルビデオカメラ等の撮像装置、電子内視鏡、ならびに、携帯電話機等の撮像モジュール等に搭載される。
 この撮像素子は、図1Aに示したような構成の複数の光電変換素子と、各光電変換素子の光電変換膜で発生した電荷に応じた信号を読み出す読み出し回路が形成された回路基板とを有し、回路基板上方の同一面上に、複数の光電変換素子が一次元状または二次元状に配列された構成となっている。
 図3に示す撮像素子100は、基板101と、絶縁層102と、接続電極103と、画素電極(下部電極)104と、接続部105と、接続部106と、光電変換膜107と、対向電極(上部電極)108と、緩衝層109と、封止層110と、カラーフィルタ(CF:Color Filter)111と、隔壁112と、遮光層113と、保護層114と、対向電極電圧供給部115と、読み出し回路116とを備える。
 画素電極104は、図1Aに示した光電変換素子10aの下部電極11と同じ機能を有する。対向電極108は、図1Aに示した光電変換素子10aの上部電極15と同じ機能を有する。光電変換膜107は、図1Aに示した光電変換素子10aの下部電極11、および、上部電極15間に設けられる層と同じ構成である。
 基板101は、ガラス基板またはSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102の表面には複数の画素電極104と複数の接続電極103が形成されている。
 光電変換膜107は、複数の画素電極104の上にこれらを覆って設けられた全ての光電変換素子で共通の層である。
 対向電極108は、光電変換膜107上に設けられた、全ての光電変換素子で共通の1つの電極である。対向電極108は、光電変換膜107よりも外側に配置された接続電極103の上にまで形成されており、接続電極103と電気的に接続されている。
 接続部106は、絶縁層102に埋設されており、接続電極103と対向電極電圧供給部115とを電気的に接続するためのプラグである。対向電極電圧供給部115は、基板101に形成され、接続部106および接続電極103を介して対向電極108に所定の電圧を印加する。対向電極108に印加すべき電圧が撮像素子の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給する。
 読み出し回路116は、複数の画素電極104のそれぞれに対応して基板101に設けられており、対応する画素電極104で捕集された電荷に応じた信号を読出すものである。読み出し回路116は、例えば、CCD、CMOS回路、または、TFT(Thin Film Transistor)回路等で構成されており、絶縁層102内に配置された図示しない遮光層によって遮光されている。読み出し回路116は、それに対応する画素電極104と接続部105を介して電気的に接続されている。
 緩衝層109は、対向電極108上に、対向電極108を覆って形成されている。封止層110は、緩衝層109上に、緩衝層109を覆って形成されている。カラーフィルタ111は、封止層110上の各画素電極104と対向する位置に形成されている。隔壁112は、カラーフィルタ111同士の間に設けられており、カラーフィルタ111の光透過率を向上させるためのものである。
 遮光層113は、封止層110上のカラーフィルタ111、および、隔壁112を設けた領域以外に形成されており、有効画素領域以外に形成された光電変換膜107に光が入射するのを防止する。保護層114は、カラーフィルタ111、隔壁112、および、遮光層113上に形成されており、撮像素子100全体を保護する。
 このように構成された撮像素子100では、光が入射すると、この光が光電変換膜107に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は、画素電極104で捕集され、その量に応じた電圧信号が読み出し回路116によって撮像素子100外部に出力される。
 撮像素子100の製造方法は、次の通りである。
 対向電極電圧供給部115と読み出し回路116が形成された回路基板上に、接続部105および106、複数の接続電極103、複数の画素電極104、ならびに、絶縁層102を形成する。複数の画素電極104は、絶縁層102の表面に例えば正方格子状に配置する。
 次に、複数の画素電極104上に、光電変換膜107を例えば真空蒸着法によって形成する。次に、光電変換膜107上に例えばスパッタ法により対向電極108を真空下で形成する。次に、対向電極108上に緩衝層109、封止層110を順次、例えば真空蒸着法によって形成する。次に、カラーフィルタ111、隔壁112、および、遮光層113を形成後、保護層114を形成して、撮像素子100を完成する。
 以下に実施例を示すが、本発明はこれらに制限されない。
[光電変換膜に用いられる化合物]
<化合物(D-1)の合成>
 化合物(D-1)は、以下のスキームに従って、合成した。
Figure JPOXMLDOC01-appb-C000015
 ジフェニルアミン(5.00g,29.5mmol)、5-ブロモ-2-フルアルデヒド(7.75g,44.3mmol)、トリス(ジベンジリデン)ジパラジウム(0)(331mg,1.48mmol、Pd(dba))、S-Phos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)(1.82g,4.43mmol)、ナトリウム-tert-ブトキシド(3.12g,32.5mmol、NaOtBu)、および、トルエン(71.3mL)を3つ口フラスコに入れて混合液として、系内の脱気および窒素置換を行った。
 混合液を110℃に加熱し、5時間撹拌した。混合液を室温に冷却後、セライトろ過して有機相を分離した。得られた有機相を酢酸エチルおよび食塩水で、抽出および洗浄し、さらに、減圧にて濃縮した。得られた濃縮残さをシリカゲルカラムクロマト精製(ヘキサン:酢酸エチル=3:1(体積比))して、淡黄色粘調液体として化合物1(2.30g,8.73mmol,収率:30%)を得た。
 化合物1(1.2g,4.56mmol)に、1H-シクロペンタ[b]ナフタレン-1,3(2H)-ジオン(984mg,5.01mmol)とブタノール(86ml)とを加えて得られた混合液を、窒素雰囲気下120℃で5時間撹拌した。混合液を室温に冷却後、混合液をろ過した。得られたろ物を、シリカゲルカラムクロマト精製(トルエン:酢酸エチル=20:1(体積比))、および、良溶媒と貧溶媒とを用いた再結晶精製(良溶媒:THF(テトラヒドロフラン)、貧溶媒:アセトニトリル)して、赤色粉末として化合物(D-1)(1.15g,2.60mmol,収率:57%)を得た。
 得られた化合物(D-1)をH-NMR(Nuclear Magnetic Resonance)を用いて同定した結果は以下の通りであった。
 H-NMR (CDCl、400MHz) δ:9.14(br,1H),8.31-8.29(m,2H),8.25-8.19(m,2H),7.73-7.67(m,2H),7.70-7.52(m,4H),7.48-7.46(m,4H),7.42(t,J=7.2Hz,2H),7.24(s,1H),6.04(m,1H)
 上記化合物(D-1)の合成方法を参照して、化合物(D-2)~(D-6)を合成した。
 以下に、得られた化合物(D-1)~(D-6)、および、比較化合物(R-1)~(R-4)の構造を示す。なお、得られた化合物(D-1)~(D-6)について下記で示す構造式は、化合物を式(1)に当てはめた場合において、Rが結合する炭素原子とそれに隣接する炭素原子とで構成されるC=C二重結合に相当する基に基づいて区別され得るシス体とトランス体とのいずれをも含むことを意図する。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
[評価]
<基準用光電変換素子の作製(素子(A))>
 得られた化合物を用いて図1Aの形態の光電変換素子を作製した。つまり、本実施例で評価する光電変換素子は、下部電極11、電子ブロッキング膜16A、光電変換膜12、および、上部電極15からなる。
 具体的には、ガラス基板上に、アモルファス性ITOをスパッタ法により成膜して、下部電極11(厚み:30nm)を形成し、さらに、下部電極11上に下記化合物(EB-1)を真空蒸着法により成膜して、電子ブロッキング膜16A(厚み:30nm)を形成した。
 さらに、基板の温度を25℃に制御した状態で、電子ブロッキング膜16A上にp型有機半導体として化合物(D-1)とn型有機半導体としてフラーレン(C60)とをそれぞれ単層換算で100nm、100nmとなるように真空蒸着法により共蒸着して成膜し、200nmのバルクヘテロ構造を有する光電変換膜12を形成した。
 さらに、光電変換膜12上に、アモルファス性ITOをスパッタ法により成膜して、上部電極15(透明導電性膜)(厚み:10nm)を形成した。上部電極15上に、真空蒸着法により封止層としてSiO膜を形成した後、その上にALCVD(Atomic Layer Chemical Vapor Deposition)法により酸化アルミニウム(Al)層を形成し、光電変換素子を作製した。
 得られた光電変換素子を、素子(A)とする。
Figure JPOXMLDOC01-appb-C000018
<評価用光電変換素子の作製(素子(B))>
(化合物(D-1)を用いた例)
 光電変換膜の膜厚以外は、素子(A)と同様の方法で光電変換素子を作製した。
 具体的には、電子ブロッキング膜16A上に化合物(D-1)とフラーレン(C60)とをそれぞれ単層換算で50nm、50nmとなるように真空蒸着法により共蒸着して成膜し、100nmのバルクヘテロ構造を有する光電変換膜12を形成した点以外は、素子(A)と同様の方法で光電変換素子を作製した。
 得られた光電変換素子を、素子(BD-1)とする。
(化合物(D-2)~(D-6)または(R-1)~(R-4)を用いた例)
 化合物(D-1)を、それぞれ、化合物(D-2)~(D-6)または(R-1)~(R-4)に変更した以外は、素子(BD-1)と同様の方法で光電変換素子の作製を試みた。
 化合物(D-2)~(D-6)、(R-1)~(R-2)、または、(R-4)を用いて得られた光電変換素子を、それぞれ、素子(BD-2)~(BD-6)、(BR-1)~(BR-2)、または、(BR-4)とする。
 一方で、化合物(R-3)を用いた場合は、電子ブロッキング膜16A上に化合物(R-3)を蒸着できなかった。
 また、化合物(R-1)については、さらに、化合物(D-1)を化合物(R-1)に変更した点以外は素子(A)と同様の方法で(つまり光電変換膜の膜厚を200nmとして)素子(BR-1´)も作製した
 評価用光電変換素子である素子(BD-1)~(BD-6)、(BR-1)~(BR-2)、(BR-4)、および、(BR-1´)を総括して素子(B)ともいう。
<光電変換効率(外部量子効率)の評価>
 作製した素子(A)および(B)について、それぞれ、1.0×10V/cmの電界強度になるように電圧を印加した。
 その後、上部電極(透明導電性膜)側から光を照射して580nmでの外部量子効率を測定した。外部量子効率は、定エネルギー量子効率測定装置(オプテル社製)を用いて測定した。照射した光量は50μW/cmであった。また、光電変換素子表面の反射光の影響を除くため、580nmでの外部量子効率の測定値を580nmの光吸収率で除算することで外部量子効率とした。
 素子(A)を基準として、それに対する各素子(B)の光電変換効率を相対値で評価した。各素子(B)の光電変換効率の相対値が1.10以上の場合を「AA」、1.00以上1.10未満の場合を「A」、0.90以上1.00未満の場合を「B」、0.80以上0.90未満の場合を「C」、0.80未満の場合を「D」とした。
 実用上、「B」~「AA」であるのが好ましく、「A」~「AA」であるのがより好ましく、「AA」であるのがさらに好ましい。
 結果を第1表に示す。
 以下の表1に、各化合物を使用して作製した素子の評価結果を示す。
 表1中、「Rと環形成」の欄は、化合物(D-1)~(D-6)を式(1)に当てはめた場合において、RまたはRで表される基が、Rで表される基と連結して環を形成しているか否かを表す。上記要件を満たす場合は「A」、満たさない場合は「B」とした。
 表1中、「R、Rが無置換アリール基」の欄は、化合物(D-1)~(D-6)を式(1)に当てはめた場合において、RおよびRで表される基が、いずれも、アリール基を表し、かつ、RおよびRで表されるアリール基が無置換であるか否かを表す。上記要件を満たす場合は「A」、満たさない場合は「B」とした。
Figure JPOXMLDOC01-appb-T000019
 上記表1に示すように、本発明の光電変換素子は、光電変換膜が薄膜である場合においても優れた光電変換効率を示すことが確認された。
 なお、基準用光電変換素子(素子(A))と比べて、光電変換膜の厚みが薄くなっている点でのみ異なる素子(BD-1)(実施例1)は、素子(A)と比較して同等以上の光電変換効率を示した。
 これは、特定化合物が高いε(吸光係数)を有しているため、膜が薄くとも十分に光を吸収できるためであると本発明者らは考えている。
 また、上記「Rと環形成」または上記「R、Rが無置換アリール基」の要件のいずれか一方以上を満たす場合、薄膜時の光電変換効率がより優れる傾向が確認された(実施例1、3、4、および、5と、実施例2および6との比較)。
 上記「Rと環形成」および上記「R、Rが無置換アリール基」の要件の両方を満たす場合、薄膜時の光電変換効率がさらに優れる傾向が確認された(実施例3および5の結果)。
<撮像素子の作製>
 化合物(D-1)~(D-6)、(R-1)~(R-2)、および、(R-4)を用いて、図3に示す形態と同様の撮像素子をそれぞれ作製した。
 つまり、CMOS基板上に、アモルファス性TiN 30nmをスパッタ法により成膜後、フォトリソグラフィーによりCMOS基板上のフォトダイオード(PD)の上にそれぞれ1つずつ画素が存在するようにパターニングして下部電極とし、電子ブロッキング材料の成膜以降は素子(A)または(B)と同様にして撮像素子を作製した。得られた撮像素子で、光電変換膜が薄膜である場合の光電変換効率の評価も同様に行い、表1と同様な結果を得た。このことから、本発明の光電変換素子は、撮像素子においても優れた性能を示すことが分かった。
 10a、10b  光電変換素子
 11  導電性膜(下部電極)
 12  光電変換膜
 15  透明導電性膜(上部電極)
 16A  電子ブロッキング膜
 16B  正孔ブロッキング膜
 100  画素分離型撮像素子
 101  基板
 102  絶縁層
 103  接続電極
 104  画素電極(下部電極)
 105  接続部
 106  接続部
 107  光電変換膜
 108  対向電極(上部電極)
 109  緩衝層
 110  封止層
 111  カラーフィルタ(CF)
 112  隔壁
 113  遮光層
 114  保護層
 115  対向電極電圧供給部
 116  読み出し回路
 200  光電変換素子(ハイブリッド型の光電変換素子)
 201  無機光電変換膜
 202  n型ウェル
 203  p型ウェル
 204  n型ウェル
 205  p型シリコン基板
 207  絶縁層
 208  画素電極
 209  有機光電変換膜
 210  共通電極
 211  保護膜
 212  電子ブロッキング膜

Claims (13)

  1.  導電性膜、光電変換膜、および、透明導電性膜をこの順で有する光電変換素子であって、
     前記光電変換膜が、式(1)で表される化合物を含む、光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、
     RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
     R~Rは、それぞれ独立に、水素原子または置換基を表す。
     Aは、少なくとも2つの炭素原子を含む環を表す。
  2.  前記式(1)で表される化合物が、式(2)で表される化合物である、請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002

     式(2)中、
     RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
     R~Rは、それぞれ独立に、水素原子または置換基を表す。
     Xは、カルボニル基、チオカルボニル基、ジシアノメチレン基、-S-、-O-、または、-CR1011-を表す。R10およびR11は、それぞれ独立に、水素原子または置換基を表す。
  3.  前記式(1)で表される化合物が、式(3)で表される化合物である、請求項1または2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003

     式(3)中、
     RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
     R~Rは、それぞれ独立に、水素原子または置換基を表す。
  4.  RおよびRのうち少なくとも一方が、RおよびRのいずれかと、直接または連結基を介して結合して環を形成する、請求項1~3のいずれか1項に記載の光電変換素子。
  5.  RおよびRが、いずれも、置換基を有していてもよいアリール基を表す、請求項1~4のいずれか1項に記載の光電変換素子。
  6.  RおよびRが、いずれも、無置換のアリール基を表す、請求項1~5のいずれか1項に記載の光電変換素子。
  7.  前記光電変換膜が、さらにn型有機半導体を含み、
     前記光電変換膜が、前記式(1)で表される化合物と前記n型有機半導体とが混合された状態で形成するバルクへテロ構造を有する、請求項1~6のいずれか1項に記載の光電変換素子。
  8.  前記導電性膜と前記透明導電性膜の間に、前記光電変換膜の他に1種以上の中間層を有する、請求項1~7のいずれか1項に記載の光電変換素子。
  9.  請求項1~8のいずれか1項に記載の光電変換素子を有する、光センサ。
  10.  請求項1~8のいずれか1項に記載の光電変換素子を有する、撮像素子。
  11.  式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004

     式(1)中、
     RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
     R~Rは、それぞれ独立に、水素原子または置換基を表す。
     Aは、少なくとも2つの炭素原子を含む環を表す。
  12.  式(2)で表される化合物である、請求項11に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005

     式(2)中、
     RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
     R~Rは、それぞれ独立に、水素原子または置換基を表す。
     Xは、カルボニル基、チオカルボニル基、ジシアノメチレン基、-S-、-O-、または、-CR1011-を表す。R10およびR11は、それぞれ独立に、水素原子または置換基を表す。
  13.  式(3)で表される化合物である、請求項11または12に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006

     式(3)中、
     RおよびRは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、または、置換基を有していてもよいアルキル基を表す。ただし、RおよびRのうち、少なくとも一方は、置換基を有していてもよいアリール基または置換基を有していてもよいヘテロアリール基を表す。
     R~Rは、それぞれ独立に、水素原子または置換基を表す。
PCT/JP2018/033091 2017-09-11 2018-09-06 光電変換素子、光センサ、撮像素子、化合物 WO2019049946A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18854574.3A EP3683211A4 (en) 2017-09-11 2018-09-06 PHOTOELECTRIC CONVERSION ELEMENT, PHOTOSENSOR, IMAGING ELEMENT AND CONNECTION
KR1020207004639A KR20200029564A (ko) 2017-09-11 2018-09-06 광전 변환 소자, 광센서, 촬상 소자, 화합물
JP2019541002A JP7077326B2 (ja) 2017-09-11 2018-09-06 光電変換素子、光センサ、撮像素子、化合物
US16/796,955 US11201294B2 (en) 2017-09-11 2020-02-21 Photoelectric conversion element, optical sensor, imaging element, and compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174118 2017-09-11
JP2017-174118 2017-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/796,955 Continuation US11201294B2 (en) 2017-09-11 2020-02-21 Photoelectric conversion element, optical sensor, imaging element, and compound

Publications (1)

Publication Number Publication Date
WO2019049946A1 true WO2019049946A1 (ja) 2019-03-14

Family

ID=65634647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033091 WO2019049946A1 (ja) 2017-09-11 2018-09-06 光電変換素子、光センサ、撮像素子、化合物

Country Status (5)

Country Link
US (1) US11201294B2 (ja)
EP (1) EP3683211A4 (ja)
JP (1) JP7077326B2 (ja)
KR (1) KR20200029564A (ja)
WO (1) WO2019049946A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230562A1 (ja) * 2018-05-31 2019-12-05 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
US20210024544A1 (en) * 2019-07-26 2021-01-28 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same
CN113105458A (zh) * 2020-01-13 2021-07-13 三星电子株式会社 化合物以及包括其的光电器件、图像传感器、和电子设备
WO2021141078A1 (ja) 2020-01-10 2021-07-15 富士フイルム株式会社 光電変換素子、撮像素子、光センサ
WO2021221108A1 (ja) 2020-04-30 2021-11-04 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
WO2022014721A1 (ja) 2020-07-17 2022-01-20 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、及び化合物
WO2022024799A1 (ja) * 2020-07-31 2022-02-03 ソニーグループ株式会社 光電変換素子および撮像装置
WO2022138833A1 (ja) 2020-12-24 2022-06-30 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053130A1 (en) * 2021-03-05 2022-09-07 Samsung Electronics Co., Ltd. Composition for photoelectric device, and photoelectric device, image sensor and electronic device including the same
WO2023247338A1 (de) * 2022-06-20 2023-12-28 Merck Patent Gmbh Organische heterocyclen für photoelektrische vorrichtungen
WO2023247345A1 (de) * 2022-06-20 2023-12-28 Merck Patent Gmbh Heterocyclen für photoelektrische vorrichtungen

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175286A (ja) * 1992-09-16 1994-06-24 Konica Corp ハロゲン化銀写真感光材料
JP2004207224A (ja) * 2002-12-12 2004-07-22 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池
JP2004362863A (ja) * 2003-06-03 2004-12-24 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池
JP2005303266A (ja) 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd 撮像素子、その電場印加方法および印加した素子
JP2006100767A (ja) 2004-08-30 2006-04-13 Fuji Photo Film Co Ltd 撮像素子
JP2007234651A (ja) 2006-02-27 2007-09-13 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2007273894A (ja) 2006-03-31 2007-10-18 Fujifilm Corp 光電変換素子、固体撮像素子、及び固体撮像素子の製造方法
JP2011077198A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光電変換素子、光電変換素子材料、光センサ、及び撮像素子
JP2011082508A (ja) 2009-09-11 2011-04-21 Fujifilm Corp 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法
JP2011199253A (ja) * 2010-02-25 2011-10-06 Fujifilm Corp 光電変換素子及び撮像素子並びにその製造方法
JP2011225544A (ja) 2010-03-31 2011-11-10 Fujifilm Corp 新規化合物、電子ブロッキング材料、膜
JP2012094660A (ja) 2010-10-26 2012-05-17 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2013214730A (ja) * 2012-03-05 2013-10-17 Fujifilm Corp 光電変換素子およびその使用方法、撮像素子、光センサ、化合物
WO2014051007A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 光電変換素子およびその使用方法、光センサ、撮像素子
JP5597450B2 (ja) 2009-06-03 2014-10-01 富士フイルム株式会社 光電変換素子及び撮像素子
US20160111651A1 (en) * 2014-10-21 2016-04-21 Samsung Electronics Co., Ltd. Organic photoelectric device, and image sensor and electronic device including the same
JP2016088938A (ja) * 2014-11-04 2016-05-23 三星電子株式会社Samsung Electronics Co.,Ltd. 有機光電素子用化合物及びこれを含む有機光電素子並びにイメージセンサー及び電子装置
US20170346016A1 (en) * 2016-05-31 2017-11-30 Samsung Electronics Co .. Ltd. Compound and organic photoelectric device, image sensor and electronic device including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340707A (en) * 1992-09-16 1994-08-23 Konica Corporation Silver halide photographic light-sensitive material
US11211422B2 (en) * 2016-03-28 2021-12-28 Sony Corporation Solid-state image sensor and electronic apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175286A (ja) * 1992-09-16 1994-06-24 Konica Corp ハロゲン化銀写真感光材料
JP2004207224A (ja) * 2002-12-12 2004-07-22 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池
JP2004362863A (ja) * 2003-06-03 2004-12-24 Konica Minolta Holdings Inc 光電変換材料用半導体、光電変換素子及び太陽電池
JP2005303266A (ja) 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd 撮像素子、その電場印加方法および印加した素子
JP2006100767A (ja) 2004-08-30 2006-04-13 Fuji Photo Film Co Ltd 撮像素子
JP2007234651A (ja) 2006-02-27 2007-09-13 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2007273894A (ja) 2006-03-31 2007-10-18 Fujifilm Corp 光電変換素子、固体撮像素子、及び固体撮像素子の製造方法
JP5597450B2 (ja) 2009-06-03 2014-10-01 富士フイルム株式会社 光電変換素子及び撮像素子
JP2011082508A (ja) 2009-09-11 2011-04-21 Fujifilm Corp 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法
JP2011077198A (ja) * 2009-09-29 2011-04-14 Fujifilm Corp 光電変換素子、光電変換素子材料、光センサ、及び撮像素子
JP2011199253A (ja) * 2010-02-25 2011-10-06 Fujifilm Corp 光電変換素子及び撮像素子並びにその製造方法
JP2011225544A (ja) 2010-03-31 2011-11-10 Fujifilm Corp 新規化合物、電子ブロッキング材料、膜
JP2012094660A (ja) 2010-10-26 2012-05-17 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2013214730A (ja) * 2012-03-05 2013-10-17 Fujifilm Corp 光電変換素子およびその使用方法、撮像素子、光センサ、化合物
WO2014051007A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 光電変換素子およびその使用方法、光センサ、撮像素子
US20160111651A1 (en) * 2014-10-21 2016-04-21 Samsung Electronics Co., Ltd. Organic photoelectric device, and image sensor and electronic device including the same
JP2016088938A (ja) * 2014-11-04 2016-05-23 三星電子株式会社Samsung Electronics Co.,Ltd. 有機光電素子用化合物及びこれを含む有機光電素子並びにイメージセンサー及び電子装置
US20170346016A1 (en) * 2016-05-31 2017-11-30 Samsung Electronics Co .. Ltd. Compound and organic photoelectric device, image sensor and electronic device including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683211A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230562A1 (ja) * 2018-05-31 2019-12-05 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
US20210024544A1 (en) * 2019-07-26 2021-01-28 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same
WO2021141078A1 (ja) 2020-01-10 2021-07-15 富士フイルム株式会社 光電変換素子、撮像素子、光センサ
CN113105458A (zh) * 2020-01-13 2021-07-13 三星电子株式会社 化合物以及包括其的光电器件、图像传感器、和电子设备
WO2021221108A1 (ja) 2020-04-30 2021-11-04 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
WO2022014721A1 (ja) 2020-07-17 2022-01-20 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、及び化合物
WO2022024799A1 (ja) * 2020-07-31 2022-02-03 ソニーグループ株式会社 光電変換素子および撮像装置
WO2022138833A1 (ja) 2020-12-24 2022-06-30 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物

Also Published As

Publication number Publication date
EP3683211A1 (en) 2020-07-22
US20200194679A1 (en) 2020-06-18
US11201294B2 (en) 2021-12-14
JPWO2019049946A1 (ja) 2020-12-17
JP7077326B2 (ja) 2022-05-30
EP3683211A4 (en) 2020-10-14
KR20200029564A (ko) 2020-03-18

Similar Documents

Publication Publication Date Title
JP7077326B2 (ja) 光電変換素子、光センサ、撮像素子、化合物
US11785843B2 (en) Photoelectric conversion element, optical sensor, and imaging element
KR102197798B1 (ko) 광전 변환 소자, 광센서, 촬상 소자, 및 화합물
KR102430366B1 (ko) 광전 변환 소자, 광센서, 촬상 소자, 화합물
KR20130009953A (ko) 광전 변환 소자, 촬상 소자 및 이들의 제조 방법
US11024813B2 (en) Photoelectric conversion element, optical sensor, and imaging element
WO2018186397A1 (ja) 光電変換素子、光センサ、撮像素子、および、化合物
JP6675005B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP6535093B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP6684908B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP6674547B2 (ja) 光電変換素子、撮像素子、光センサ、化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207004639

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019541002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018854574

Country of ref document: EP

Effective date: 20200414