WO2019049905A1 - Method of manufacturing metal oxide-porous body composite, and composite of porous carbon material and metal oxide - Google Patents

Method of manufacturing metal oxide-porous body composite, and composite of porous carbon material and metal oxide Download PDF

Info

Publication number
WO2019049905A1
WO2019049905A1 PCT/JP2018/032934 JP2018032934W WO2019049905A1 WO 2019049905 A1 WO2019049905 A1 WO 2019049905A1 JP 2018032934 W JP2018032934 W JP 2018032934W WO 2019049905 A1 WO2019049905 A1 WO 2019049905A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
composite
porous
precursor
porous body
Prior art date
Application number
PCT/JP2018/032934
Other languages
French (fr)
Japanese (ja)
Inventor
紳 向井
振一郎 岩村
翔大 本橋
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2019540984A priority Critical patent/JP7296123B2/en
Publication of WO2019049905A1 publication Critical patent/WO2019049905A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the present invention relates to a method for producing a metal oxide-porous composite and a composite of a porous carbon material and a metal oxide.
  • Titanium dioxide (TiO 2 ) is expected to be used as a negative electrode active material of next-generation lithium ion capacitors because the electrolyte can be charged and discharged at a stable potential.
  • titanium dioxide is poor in conductivity, complexation with a conductive substance such as carbon and the like at the nano level has been studied for use as an electrode (patent documents 1 to 3, non-patent document 1).
  • Patent Document 1 Japanese Patent Application Publication No. 2008-147612
  • Patent Document 2 Japanese Patent Application Publication No. 2016-538709
  • Patent Document 3 Japanese Patent Application Publication No. 2016-518023
  • Non-patent document 1 H.P. Sohn et al., RSC Adv. 2016, 6, 39484-39491
  • the entire disclosures of Patent Documents 1 to 3 and Non-Patent Document 1 are specifically incorporated herein by reference.
  • Patent Document 1 and Non-patent Document 1 a precursor of lithium titanate or titanium oxide is complexed with a carbon material by a wet method to complex titanium oxide and the carbon material.
  • a wet method it is difficult to composite titanium oxide uniformly to the inside of the nano-structure of the pores of the carbon material.
  • the problem to be solved in the present invention is to relatively easily prepare a composite of porous carbon and metal oxide in which metal oxide such as titanium dioxide is uniformly deposited to the inside of the complex carbon material nanostructure. It is an object of the present invention to provide a method which can be done and to solve this problem. Furthermore, another object of the present invention is to provide a composite of porous carbon and metal oxide in which metal oxide such as titanium dioxide is uniformly deposited to the inside of complicated carbon nanostructure.
  • the present inventors can provide a low-cost, mass-producible method if metal oxides such as titanium oxide can be complexed by a vapor phase method to an inexpensive carbon material having a nano structure such as porous carbon. I thought.
  • metal oxides such as titanium oxide
  • a vapor phase method to an inexpensive carbon material having a nano structure such as porous carbon.
  • it is necessary to use a metal-containing compound such as a gasifiable titanium compound.
  • the gasified titanium compound is often highly reactive and has a low vapor pressure. Therefore, it has been difficult to deposit metal oxides such as titanium oxide uniformly to the inside of complicated carbon nanostructures in the existing gas phase process.
  • the reaction tube provided with porous carbon is heated under reduced pressure, and the liquid of the titanium compound is instantaneously evaporated by introducing it in the form of a pulse, and can not be obtained by a general flow type source gas introduction method
  • a high concentration of titanium compound vapor is generated near the porous carbon.
  • the pressure difference inside and outside the pore becomes a driving force, and this vapor diffuses smoothly into the deaerated pore, thermally decomposing due to heat conduction from the pore wall, and the decomposition product of the titanium compound precipitates in the pore . Since the excess gas is degassed (exhausted) from the reaction tube, precipitation of decomposition products of the titanium compound out of the pores is relatively small.
  • the porous carbon on which the decomposition product of the titanium compound is precipitated is heated at a higher temperature in an inert atmosphere to release the organic group remaining in the decomposition product of the titanium compound, and the crystallinity By raising it, for example, it becomes anatase type titanium dioxide. It was confirmed that the resulting composite was a uniform dispersion of nanolevel titanium dioxide in carbon pores. Furthermore, using the same method, it was confirmed that a composite in which oxides of metals other than titanium were uniformly dispersed at the nano level in carbon pores was obtained, and the method of the present invention was completed.
  • the composite obtained by the method of the present invention is one in which metal oxides such as titanium dioxide at nano level are uniformly dispersed in carbon pores. Therefore, in the case of a composite with a metal oxide used as an electrode active material such as titanium dioxide and tin oxide, it is found that there is a sufficient conductive path to the metal oxide, which is a material capable of providing high electrode characteristics.
  • the metal oxide is uniformly dispersed at the nano level in carbon pores, and high activity as a catalyst is expected. It found and completed the complex of the present invention.
  • a method for producing a metal oxide-porous composite by supporting a metal oxide in pores of a porous body comprising the steps of: Placing the porous body under reduced pressure and heating to the decomposition temperature of the metal oxide precursor (1), Step (2) of intermittently and repeatedly supplying a liquid metal oxide precursor to a porous body under reduced pressure and under heating, and depositing a decomposition product of the precursor in pores of the porous body, and a step After intermittent repetitive supply in (2), the porous body in which the precursor and / or the decomposition product thereof is precipitated in the pores is heated at a temperature higher than in steps (1) and (2) under reduced pressure or an inert atmosphere.
  • the porous carbon material has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 , an average pore diameter in the range of 1 to 500 nm, and a metal oxide based on the complex
  • the present invention it is relatively easy to prepare a composite of porous carbon and metal oxide in which metal oxide such as titanium dioxide is uniformly deposited to the inside of the complex carbon material nanostructure. it can. Furthermore, according to the present invention, it is possible to provide a composite of porous carbon and metal oxide in which metal oxide is uniformly deposited to the inside of a complex carbon nanostructure.
  • the metal oxide is titanium dioxide, tin dioxide or the like, this complex has high electrode properties, and when the metal oxide is vanadium oxide, titanium dioxide or the like, this complex has excellent catalytic activity.
  • the measurement result of the rate cycle characteristic of Cnovel MJ (4) 150 / TiO 2 nanocomposite is shown. It shows a TEM image of different TiO 2 / C nanocomposite of CVD conditions in Reference Examples 1 and 2. Showing the electrode characteristics of different TiO 2 / C nanocomposite of CVD conditions in Reference Examples 1 and 2.
  • the measurement results of the electron micrographs and SnO 2 precipitation amount shows the appearance of each complex.
  • the measurement results of the electron micrographs and V 2 O 5 deposition amount shows the appearance of the complex.
  • a first aspect of the present invention is a method of producing a metal oxide-porous composite by supporting a metal oxide in the pores of a porous body.
  • This method is Placing the porous body under reduced pressure and heating to the decomposition temperature of the metal oxide precursor (1), Step (2) of intermittently and repeatedly supplying a liquid metal oxide precursor to a porous body under reduced pressure and under heating, and depositing a decomposition product of the precursor in pores of the porous body, and a step After intermittent repetitive supply in (2), the porous body in which the decomposition product of the precursor has been deposited in the pores is heated at a temperature higher than steps (1) and (2) under reduced pressure or an inert atmosphere, Preparing a metal oxide-porous composite (3), including.
  • the porous body used for producing the composite is not particularly limited as long as it is a porous substance.
  • the porous body has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 and an average pore diameter of, for example, 1 It can be in the range of ⁇ 500 nm. However, it is not limited to this range.
  • the porous body can be, for example, a porous carbon material.
  • the porous carbon material is not particularly limited, and examples thereof include microporous carbon, mesoporous carbon, macroporous carbon and the like.
  • pores of 2 nm or less are defined as micropores, pores of 2 to 50 nm as mesopores, and pores of 50 nm or more as macropores.
  • mesoporous carbon for example, CNovel MH, CNovel MJ (4) 030 (manufactured by Toyo Carbon Co., Ltd.) can be mentioned
  • macroporous carbon for example, C Novel MJ (4) 150 can be mentioned .
  • microporous carbon examples include A-BAC PW15 (manufactured by Kureha Co., Ltd.) which is spherical activated carbon.
  • meso-macroporous carbon examples include carbon gel.
  • the carbon gel examples include meso-macroporous carbon obtained by heating (for example, 1000 ° C.) resorcinol-formaldehyde resin (for example, see JP-A-2013-159515).
  • carbon nanofibers (CNF) can also carry metal oxides on the surface by the method of the present invention.
  • Examples of carbon nanofibers (CNF) include nanofibers produced by a liquid pulse injection method (Japanese Patent Laid-Open No. 2012-246590). It is not the intention limited to these.
  • the precursor of the metal oxide is a substance that can be liquid at normal pressure (for example, liquid at normal temperature, or solid at normal temperature but liquid when heated) under reduced pressure in step (2)
  • the metal contained in the precursor may be, for example, at least one of Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
  • the precursor of the metal oxide can be, for example, a metal alkoxide or a metal chloride.
  • Metal alkoxides and metal chlorides can be alkoxides or chlorides of these metals.
  • the metal oxide of the complex can be, for example, at least one of oxides of Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
  • step (1) the porous body is placed under reduced pressure and heated to the decomposition temperature of the metal oxide precursor.
  • the reduced pressure in the step (1) can be appropriately determined in consideration of the type of porous material, the type of precursor of metal oxide, decomposition temperature, etc.
  • 0.1 hPa (10 Pa) to 1 kPa (1000 Pa) It can be a range.
  • the heating temperature may be a temperature above the decomposition temperature of the precursor, and can be a temperature above the decomposition temperature of the metal alkoxide or metal chloride. Therefore, the temperature of heating can be suitably determined according to the type of precursor. For example, it may be in the range of 100 to 200 ° C., but it is not intended to be limited to this range.
  • the precursor of the metal oxide is intermittently and repeatedly supplied to the porous body under reduced pressure and under heating to precipitate the precursor and / or the decomposition product thereof in the pores of the porous body.
  • the precipitate may be the case of the precursor alone, the case of both the precursor and the decomposition product thereof, and the case of the decomposition product alone depending on the kind of the precursor and the heating conditions.
  • the reduced pressure in the step (2) can be, for example, in the range of 0.1 hPa (10 Pa) to 1 kPa (1000 Pa) as in the step (1).
  • the pressure reduction in the system proceeds, but when the precursor is supplied, the precursor is vaporized, and this vaporization temporarily causes a pressure fluctuation.
  • the precursor supplied to the porous body under reduced pressure and heat is vaporized and / or decomposed to increase the pressure of the atmosphere surrounding the porous body, and the increase in pressure causes the vaporized and / or decomposed precursor to become It is presumed that it is easy to be taken into the pores of the porous body. Furthermore, the reduced pressure in the pores due to the reduced pressure at the precursor supply stop time is also presumed to be one of the factors that make it easy for the vaporized and / or decomposed precursor to be taken into the pores of the porous body.
  • the number of times of intermittent repetitive supply in the step (2) is arbitrary and may be appropriately determined so as to prepare a desired complex, but can be, for example, in the range of 10 to 1000 times. However, it is not limited to this range. It is appropriately determined in consideration of the type and amount of porous material, the type and amount of precursor once supplied, the desired complex (the amount of metal oxide deposited), and the like.
  • the intermittent repetitive supply in step (2) consists of repeating the precursor supply time and the precursor supply stop time. For example, it can be carried out by introducing the precursor in a liquid state little by little at regular intervals, in the form of so-called pulses.
  • the supply time of the precursor can be appropriately determined in consideration of the type of precursor, the supply amount of one time, etc., and can be, for example, in the range of 0.01 to 2 seconds, preferably 0.05 It can be in the range of 1 second.
  • the supply stop time of the precursor may be appropriately determined in consideration of the degree of pressure reduction, heating temperature, type of precursor, etc., and the deposition rate of the metal oxide in the pores of the porous body, etc.
  • the liquid raw material is intermittently supplied under reduced pressure to precipitate oxides, so the method of the present invention is called vacuum liquid pulse CVD (VLP-CVD) method. be able to.
  • VLP-CVD vacuum liquid pulse CVD
  • the heating temperature can be appropriately determined according to the type of precursor and the type of metal oxide formed from the precursor, and the organic group in the decomposition product of the precursor precipitated in the pores of the porous body is The temperature can be selected from the temperature which promotes desorption and / or the crystallization of the oxide.
  • the reduced pressure in the step (3) can be, for example, in the range of 0.1 hPa (10 Pa) to 1 kPa (1000 Pa) as in the step (2).
  • the inert containing atmosphere can be, for example, nitrogen, helium, argon.
  • the temperature of the heat treatment is, for example, in the range of 600 to 800 ° C., preferably in the range of 650 to 750 ° C., without degrading the carbon material and containing crystallized titanium oxide. It is preferable from the viewpoint that an oxide-porous composite is obtained.
  • titanium oxide there are anatase type, rutile type and the like, but it is preferable to set heating conditions appropriately so as to obtain a desired crystal structure.
  • the heating atmosphere and temperature are selected in consideration of this point.
  • the heating time can be, for example, about 1 minute to 2 hours. However, it is not the intention limited to this range.
  • the experimental apparatus includes a reaction tube for installing a carbon material, a syringe for storing and supplying a precursor which is a raw material liquid on the upstream side of the reaction tube, and intermittent and repetitive supply. And a vacuum pump on the downstream side. An electric furnace for heating is disposed around the reaction tube.
  • the operation is performed by placing a porous carbon material in a reaction tube, reducing the pressure in the reaction tube with a vacuum pump, and raising the temperature to the thermal decomposition temperature of the precursor to be used using a heating device.
  • liquid precursor is intermittently and repeatedly supplied into the reaction tube while the vacuum pump is continuously operated.
  • the precursor and / or the decomposition product thereof is precipitated in the pores of the porous body.
  • the precursor and / or the decomposition product thereof enters the pore as a driving force due to the pressure difference (inner ⁇ outer) inside and outside the pore and precipitates on the inner surface of the pore.
  • FIG. 2 schematically shows a state in which fine particles of TiO 2 are precipitated on the inner surface of the pore.
  • the supported amount of the metal oxide based on the metal oxide-porous composite is not particularly limited and can be appropriately determined according to the desired composite, and is, for example, in the range of 1 to 90% by mass. be able to. However, it is not limited to this range.
  • a second aspect of the present invention is a composite of a porous carbon material and a metal oxide.
  • the metal oxide is present in the pores of the porous carbon material.
  • the porous carbon material is the same as that described in the above-mentioned production method.
  • the supported amount of the metal oxide is not particularly limited and can be appropriately determined depending on the desired complex, and can be, for example, in the range of 1 to 90% by mass.
  • the metal of the metal oxide can be, for example, at least one of Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
  • the complex of the present invention can be anatase type titanium oxide when the metal oxide is titanium oxide.
  • the composite of the porous carbon material and the metal oxide has pores even after the metal oxide is supported, for example, when used as an electrode material, etc.
  • the composite after supporting the metal oxide The body can have a pore volume, for example, in the range of 0.1 to 10 cm 3 (g-carbon) ⁇ 1 and an average pore size in the range of 1 to 500 nm.
  • the porous carbon material has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 , an average pore diameter in the range of 1 to 500 nm, and a metal oxide based on the complex
  • the loading amount of can be in the range of 1 to 90% by mass.
  • the porous carbon material preferably has a pore volume in the range of 1 to 5 cm 3 (g-carbon) -1 , an average pore diameter in the range of 2 to 300 nm, and metal oxide based on the complex.
  • the loading amount of the substance is in the range of 10 to 60% by mass.
  • the porous carbon material has a pore volume in the range of 2 to 4 cm 3 (g-carbon) -1 , an average pore diameter in the range of 10 to 200 nm, and a metal based on the complex.
  • the amount of oxide supported is in the range of 20 to 50% by mass.
  • the composite of the present invention in which the metal oxide is anatase type titanium oxide can be used as an electrode material, for example, as a negative electrode material. More specifically, the composite of the present invention is used as a material for a lithium ion capacitor negative electrode.
  • the conductivity can be improved by nano level compounding with a carbon material.
  • SnO 2 is expected to be a high capacity negative electrode material for lithium ion batteries because it has about 3 times the theoretical capacity of a general graphite negative electrode.
  • V 2 O 5 is known as an organic substance or an oxidation catalyst such as sulfur dioxide.
  • metal oxide catalysts such as V 2 O 5 are expected to increase the surface area of the catalyst and improve the handling.
  • Example 1 Preparation of TiO 2 -Carbon Complex 1.1 Experimental Device A schematic diagram of the experimental device is shown in FIG. A quartz tube was used as a reaction tube, which was inserted vertically into an electric furnace to perform temperature control. A syringe was inserted from the top of the reaction tube via a solenoid valve, and a vacuum pump was attached to the bottom of the reaction tube. In this device, when the reaction tube is in a degassed state, the pressure difference becomes a driving force by opening the solenoid valve, and the raw material in the syringe is introduced into the reaction tube.
  • the sample was dispersed in ethanol by ultrasonication, and several drops were dropped on a microgrid (Nisshin EM Co., Ltd., 200 mesh Cu), and then dried.
  • the sample grid was inserted into a TEM and observed at an applied voltage of 200 kV.
  • TiO 2 content of the measurement TiO 2 composite sample of 2.2 TiO 2 content thermogravimetric analysis (TGA, Shimadzu; TGA-50H); was measured by the (DTA-50 DTG, Shimadzu). Place the sample in a platinum cell (3 mm in height, 6 mm in diameter) at approximately 10 mg, heat to 800 ° C. at a heating rate of 5 ° C. min -1 in an air stream of 20 mL min -1 and then 800 ° C. The mixture was kept for 1 h, and after cooling it was recovered and the remaining weight was defined as TiO 2 weight.
  • TGA Shimadzu
  • TGA-50H thermogravimetric analysis
  • the analysis of the pore structure of the sample was performed using an adsorption measurement apparatus (Microtrack Bell; BELSORP mini II). As pretreatment of the sample before adsorption measurement, the sample was held at 250 ° C. for 4 h under nitrogen flow to remove moisture and the like contained in the sample. The measurement was carried out with an adsorption measurement temperature of -196 ° C. and an adsorbate of N 2 .
  • Table 2 shows the change in the amount of precipitated TiO 2 due to the difference in pore volume.
  • CNF did not have a pore and was mentioned as a reference example.
  • the content of the metal oxide such as titanium oxide can be determined from the weight change when carbon is burned by heating the composite in an oxygen atmosphere.
  • the amount of precipitation of the metal oxide changes depending on the pore structure of the porous carbon used, and the amount of precipitation tends to be larger when the pore diameter and the pore volume are larger (see Table 2).
  • FIG. 4 shows XRD and transmission electron micrographs before and after heat treatment.
  • the pore size distribution calculated from the nitrogen adsorption measurement result is shown in FIG. From FIG. 3, scanning electron microscope observation of the obtained composite shows that almost no precipitates are observed on the outer surface of the porous carbon, and FIG. 4 shows that titanium oxide is precipitated in the pores. It was done. This is also confirmed from the pore size distribution shown in FIG. 5 from the fact that the mesopore volume decreases after precipitation, and it is also confirmed that the TiO 2 deposition amount changes according to the pore volume. According to the transmission electron microscope observation and X-ray diffraction measurement of FIG.
  • TiO 2 precipitated in an amorphous form becomes a fine anatase crystal having a particle size of 5 nm or less by the heat treatment (improvement of crystallinity), and in porous carbon pores It was observed that they were uniformly supported.
  • Example 2 Preparation of electrode 1)
  • Carbon black (Denki Kagaku Kogyo Co., Ltd. Denka Black): Polyvinylidene fluoride (Kureha Co., Ltd., KF polymer L # 1120) was weighed so as to be 8: 1: 1. .
  • 2) Add a few drops of 1-methyl-2-pyrrolidone (Wako Pure Chemical Industries, Wako special grade, 99.0%) to the mixture, and use Awatori Neritaro (Sinky, AR-100) for 3 min. Planetary mixing was performed to prepare a slurry.
  • Counter electrode and reference electrode Lithium metal (Honjo Metal Co., Ltd., 0.2 mm thick) Separator: CELGARD 2400, Polypore Co., Ltd., Cut into a diameter of 24 mm and use electrolyte: LiPF 6 1 mol / L EC: DEC (1: 1 v / v%), Kishida Chemical Co., Ltd. Measurement cell: Tripolar cell, Toyo System Co., Ltd.
  • the assembled three-pole cell is connected to a battery charge / discharge device (Hokuto Denko Co., Ltd., HJ-1010mSM8 (s)), and 1.0 to 2.5 V (vs. Li / Li) in an incubator maintained at 25 ° C.
  • the constant current charge / discharge measurement was performed in the potential range of ( + ).
  • FIGS. The results of the electrochemical evaluation are shown in FIGS. As shown in FIG. 6, it can be seen that the heat treatment in the nitrogen atmosphere performed in Example 1 improves the discharge capacity. From the electrode characterization of composites using various porous carbons, composites prepared from mesoporous carbon and macroporous carbon fully utilize the discharge capacity of TiO 2 and are around 200 mAh / g per TiO 2 weight. capacity is obtained (Fig. 7), also found to be excellent high-speed charge-discharge characteristics, it was confirmed TiO 2 in the complex that has sufficient conductivity path. The sample with larger pore size showed higher rate characteristics.
  • the composite using macroporous carbon retains a capacity of about 80% even after 10000 cycles, and it is about at a current density as high as 15000 mA / g. From the fact that half the capacity was available (FIG. 8), it was found to have long life and excellent high-speed charge and discharge performance.
  • the volume calculation method per TiO 2 weight in FIG. 7 is as follows.
  • Reference Example 1 (continuous flow CVD) A carbon sample C Novel MJ (4) 150 (about 200 mg) was placed on a quartz filter of a reaction tube similar to the experimental apparatus used in Example 1, and the temperature in the reaction tube was raised to a set temperature (180 ° C.) After that, nitrogen was continuously circulated at 100 mL / min from above the reaction tube, and titanium tetraisopropoxide as a raw material liquid was introduced into the reaction tube high temperature part at 50 ⁇ L / min for 100 minutes with a microfeeder. Thereafter, heat treatment was performed at 700 ° C. for 1 hour under nitrogen flow of 100 mL / min to recover the product on the quartz filter.
  • FIG. 9 (A) shows the TiO 2 -carbon material composite of the present invention prepared by the VLP-CVD of FIG. 4 (a).
  • the TEM photograph shows that the particle size of TiO 2 is large (10 to 20 nm) and agglomerated.
  • Reference Example 2 (Decompression Continuous Introduction CVD) A carbon sample C Novel MJ (4) 150 (about 200 mg) was placed on a quartz filter of a reaction tube similar to the experimental apparatus used in Example 1, and the temperature in the reaction tube was raised to a set temperature (180 ° C.) Thereafter, the reaction tube was degassed with a vacuum pump from below, and titanium tetraisopropoxide as a raw material solution was introduced into the reaction tube high temperature part at 50 ⁇ L / min for 100 minutes with a microfeeder. Thereafter, heat treatment was performed at 700 ° C. for 1 hour under continuous nitrogen flow of 100 mL / min to recover the product on the quartz filter. The observation of the product and the measurement of the TiO 2 content were carried out in the same manner as in 2.
  • FIG. 9 (B) shows the TiO 2 -carbon material composite of the present invention prepared by the VLP-CVD of FIG. 4 (a).
  • the TEM photograph shows that the particle size of TiO 2 is large (10 to 20 nm) and agglomerated.
  • FIG. 4 (a) A comparison of TEM photographs of reference examples 1 and 2 and example 1 shows that the general CVD method shown in reference examples 1 and 2 supports minute TiO 2 nanoparticles in pores. Although it is difficult, it is understood that TiO 2 nanoparticles with a particle diameter of several nm can be supported in the pores of the carbon material by using the method of the present invention.
  • Reference Example 3 charge / discharge measurement
  • An electrode was produced in the same manner as in Example 2 using the TiO 2 -carbon material composite prepared in Reference Examples 1 and 2, and constant current charge / discharge measurement was performed under the same conditions as in Example 2.
  • FIG. 10A shows a charge / discharge curve
  • FIG. 10B shows a rate characteristic evaluation result.
  • Example 3 3.1 Experimental operation (1) Precipitation of SnO 2 1) Place a carbon sample C Novel MJ (4) 030 or C Novel MJ (4) 150 (about 200 mg) on a quartz filter of a reaction tube. 2) The reaction tube was evacuated by a vacuum pump to a pressure of 500 Pa, and the temperature of the reaction tube was raised at a temperature rising rate of 10 ° C. min -1 .
  • FIG. 12 shows the result of the electrochemical evaluation.
  • (A) is the charge-discharge characteristics of the composite obtained from different porous carbons (reaction temperature: 100 ° C., raw material introduction amount: 5 mL), and
  • (B) is the charge-discharge of the composite obtained at different reaction temperature It is a characteristic (porous carbon: CNovel 150, raw material introduction amount: 2.5 mL).
  • the result of (A) shows that, when using CNovel 150 having a large pore diameter, which can utilize the capacity of SnO 2 in any of the complexes, as the carrier, high capacity and high rate characteristics are obtained despite the small amount of SnO 2 supported. Indicates that there is.
  • the result of (B) indicates that the reaction temperature is higher at 80 ° C. than at 100 ° C., and a high capacity can be obtained.
  • (A) ((N) it can be seen that the heat treatment in a nitrogen atmosphere performed in Example 1 improves the discharge capacity.
  • the SnO 2 nanoparticles are also supported It is possible that the SnO 2 nanoparticle-supported carbon material composite can be expected to be used as a high capacity negative electrode material of a lithium ion battery.
  • Example 4 4.1 Experimental operation (1) Precipitation of V 2 O 5 1) Place the carbon sample C Novel MJ (4) 150 (about 200 mg) on the quartz filter of the reaction tube. 2) The reaction tube was evacuated by a vacuum pump to a pressure of 500 Pa, and the temperature of the reaction tube was raised at a temperature rising rate of 10 ° C. min -1 . 3) After confirming that the temperature has been raised to the set temperature (100 ° C), start the solenoid valve open / close program (60 s closed, 0.1 s open) to start vanadium (V) oxytriisopropoxide as the raw material liquid Introduced. The amount introduced under this condition is 50 ⁇ L at a time, for a total of 1 mL 20 times. 4) After stopping the vacuum pump, the temperature controller was turned off and the reaction tube was cooled. 5) After confirming cooling to about 100 ° C., the reaction tube was taken out, and the product on the quartz filter in the center of the reaction tube was recovered.
  • the present invention is useful in the field of porous-metal precursor composites and in the field of electrode materials of lithium ion capacitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for manufacturing a metal oxide-porous body composite by causing a metal oxide to be carried in fine pores of a porous body. The method comprises: a step (1) of placing a porous body under reduced pressure and heating the porous body to a decomposition temperature of a metal oxide precursor; a step (2) of intermittently repeatedly supplying the metal oxide precursor to the porous body under reduced pressure and being heated to cause a decomposed material of the precursor to become precipitated in the fine pores of the porous body; and, after step (2), a step (3) of preparing a metal oxide-porous body composite by heating the porous body, with the precursor and/or the decomposed material thereof having been precipitated in the fine pores, under inert atmosphere and at a temperature higher than in step (1) and (2). With the method, it becomes possible to relatively easily prepare a composite of a porous carbon and a metal oxide in which the metal oxide is uniformly precipitated in the interior of a nanostructure. The present invention relates to a composite of a porous carbon material and a metal oxide in which the metal oxide is partly or entirely present in the fine pores of the porous carbon material. The composite is a composite of a porous carbon and a metal oxide in which the metal oxide is precipitated uniformly in the interior of a carbon nanostructure.

Description

金属酸化物-多孔体複合体の製造方法及び多孔質炭素材料と金属酸化物との複合体Method of producing metal oxide-porous composite and composite of porous carbon material and metal oxide
 本発明は、金属酸化物-多孔体複合体の製造方法及び多孔質炭素材料と金属酸化物との複合体に関する。
関連出願の相互参照
 本出願は、2017年9月5日出願の日本特願2017-170669号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a method for producing a metal oxide-porous composite and a composite of a porous carbon material and a metal oxide.
This application claims the priority of Japanese Patent Application No. 2017-170669 filed on September 5, 2017, the entire description of which is incorporated herein by reference in particular.
 二酸化チタン(TiO2)は電解液が安定な電位で充放電可能なため次世代型リチウムイオンキャパシタの負極活物質としての利用が期待されている。しかし、二酸化チタンは導電性に乏しいことから電極として用いるためには炭素などの導電物質とナノレベルでの複合化が検討されている(特許文献1~3、非特許文献1)。 Titanium dioxide (TiO 2 ) is expected to be used as a negative electrode active material of next-generation lithium ion capacitors because the electrolyte can be charged and discharged at a stable potential. However, since titanium dioxide is poor in conductivity, complexation with a conductive substance such as carbon and the like at the nano level has been studied for use as an electrode (patent documents 1 to 3, non-patent document 1).
特許文献1:特開2008-147612号公報
特許文献2:特表2016-538709号公報
特許文献3:特表2016-518023号公報
Patent Document 1: Japanese Patent Application Publication No. 2008-147612 Patent Document 2: Japanese Patent Application Publication No. 2016-538709 Patent Document 3: Japanese Patent Application Publication No. 2016-518023
非特許文献1:H.Sohnら,RSC Adv. 2016,6,39484-39491
特許文献1~3及び非特許文献1の全記載は、ここに特に開示として援用される。
Non-patent document 1: H.P. Sohn et al., RSC Adv. 2016, 6, 39484-39491
The entire disclosures of Patent Documents 1 to 3 and Non-Patent Document 1 are specifically incorporated herein by reference.
 特許文献1及び非特許文献1においては、チタン酸リチウム又は酸化チタンの前駆体を湿式法により炭素材料と複合化して、酸化チタンと炭素材料の複合化をしている。しかし、湿式法では、炭素材料の細孔のナノ構造内部まで均一に酸化チタンを複合化することは困難である。 In Patent Document 1 and Non-patent Document 1, a precursor of lithium titanate or titanium oxide is complexed with a carbon material by a wet method to complex titanium oxide and the carbon material. However, in the wet method, it is difficult to composite titanium oxide uniformly to the inside of the nano-structure of the pores of the carbon material.
 本発明において解決すべき課題は、複雑な炭素材料のナノ構造内部にまで均一に二酸化チタンなどの金属酸化物を析出させた多孔質炭素と金属酸化物との複合体を、比較的容易に調製できる方法を提供することであり、この課題を解決することが本発明の目的である。さらに本発明は、複雑な炭素ナノ構造内部まで均一に二酸化チタンなどの金属酸化物を析出させた多孔質炭素と金属酸化物との複合体を提供することも目的とする。 The problem to be solved in the present invention is to relatively easily prepare a composite of porous carbon and metal oxide in which metal oxide such as titanium dioxide is uniformly deposited to the inside of the complex carbon material nanostructure. It is an object of the present invention to provide a method which can be done and to solve this problem. Furthermore, another object of the present invention is to provide a composite of porous carbon and metal oxide in which metal oxide such as titanium dioxide is uniformly deposited to the inside of complicated carbon nanostructure.
 本発明者らは、多孔質炭素などナノ構造を持つ安価な炭素材料に、気相法により酸化チタンなどの金属酸化物を複合化することができれば、低コストかつ量産化可能な方法が提供できると考えた。しかし、そのためにはガス化可能なチタン化合物などの金属含有化合物を用いる必要である。例えば、チタン化合物の場合、ガス化したチタン化合物は反応性が高く、かつ蒸気圧が低いことが多い。そのため、既存の気相プロセスでは複雑な炭素ナノ構造内部まで均一に酸化チタンなどの金属酸化物を析出させることは困難であった。 The present inventors can provide a low-cost, mass-producible method if metal oxides such as titanium oxide can be complexed by a vapor phase method to an inexpensive carbon material having a nano structure such as porous carbon. I thought. However, for that purpose, it is necessary to use a metal-containing compound such as a gasifiable titanium compound. For example, in the case of a titanium compound, the gasified titanium compound is often highly reactive and has a low vapor pressure. Therefore, it has been difficult to deposit metal oxides such as titanium oxide uniformly to the inside of complicated carbon nanostructures in the existing gas phase process.
 本発明者らは、新たな方法を開発した。この方法では、多孔質炭素を設置した反応管を減圧下で加熱し、チタン化合物の液体をパルス状で導入することにより瞬時に蒸発させ、一般的な流通式の原料ガス導入手法では得られない高濃度のチタン化合物の蒸気を多孔質炭素付近で発生させる。この蒸気は細孔内外の圧力差が駆動力となり脱気状態の細孔内へ円滑に拡散し、細孔壁からの熱伝導により熱分解し、細孔内にチタン化合物の分解物が析出する。余剰ガスは反応管内から脱気(排気)されるため、細孔外へのチタン化合物の分解物の析出は比較的少ない。この操作を任意の回数繰り返すことでチタン化合物の分解物の析出量を制御できる。その後に、チタン化合物の分解物が析出した多孔質炭素を不活性雰囲気中でより高い温度で加熱して、チタン化合物の分解物中に残存している有機基を脱離させ、かつ結晶性を上げることで、例えば、アナターゼ型二酸化チタンにする。得られる複合体は炭素細孔内にナノレベルの二酸化チタンが均一に分散したものであることを確認した。さらに同様の方法を用いてチタン以外の金属の酸化物が炭素細孔内にナノレベルで均一に分散した複合体が得られることを確認して、本発明の方法を完成させた。 We have developed a new method. In this method, the reaction tube provided with porous carbon is heated under reduced pressure, and the liquid of the titanium compound is instantaneously evaporated by introducing it in the form of a pulse, and can not be obtained by a general flow type source gas introduction method A high concentration of titanium compound vapor is generated near the porous carbon. The pressure difference inside and outside the pore becomes a driving force, and this vapor diffuses smoothly into the deaerated pore, thermally decomposing due to heat conduction from the pore wall, and the decomposition product of the titanium compound precipitates in the pore . Since the excess gas is degassed (exhausted) from the reaction tube, precipitation of decomposition products of the titanium compound out of the pores is relatively small. By repeating this operation any number of times, it is possible to control the deposition amount of the decomposition product of the titanium compound. Thereafter, the porous carbon on which the decomposition product of the titanium compound is precipitated is heated at a higher temperature in an inert atmosphere to release the organic group remaining in the decomposition product of the titanium compound, and the crystallinity By raising it, for example, it becomes anatase type titanium dioxide. It was confirmed that the resulting composite was a uniform dispersion of nanolevel titanium dioxide in carbon pores. Furthermore, using the same method, it was confirmed that a composite in which oxides of metals other than titanium were uniformly dispersed at the nano level in carbon pores was obtained, and the method of the present invention was completed.
 さらに本発明の方法で得られる複合体は、炭素細孔内にナノレベルの二酸化チタンなどの金属酸化物が均一に分散したものである。そのため、二酸化チタン及び酸化スズなどの電極活物質として用いられる金属酸化物との複合体の場合、金属酸化物への十分な導電パスが存在し、高い電極特性を提供できる材料であることを見出した。さらに、触媒として用いられる酸化バナジウムなどの金属酸化物との複合体の場合、炭素細孔内にナノレベルで金属酸化物が均一に分散したものであり、触媒として高い活性が期待されることを見出して、本発明の複合体を完成させた。 Furthermore, the composite obtained by the method of the present invention is one in which metal oxides such as titanium dioxide at nano level are uniformly dispersed in carbon pores. Therefore, in the case of a composite with a metal oxide used as an electrode active material such as titanium dioxide and tin oxide, it is found that there is a sufficient conductive path to the metal oxide, which is a material capable of providing high electrode characteristics. The Furthermore, in the case of a complex with a metal oxide such as vanadium oxide used as a catalyst, the metal oxide is uniformly dispersed at the nano level in carbon pores, and high activity as a catalyst is expected. It found and completed the complex of the present invention.
 本発明は、以下のとおりである。
[1]
多孔体の細孔内に金属酸化物を担持させて、金属酸化物-多孔体複合体を製造する方法であって、
多孔体を減圧下に置き、かつ金属酸化物の前駆体の分解温度まで加熱する工程(1)、
減圧下、かつ加熱下の多孔体に、液体状の金属酸化物の前駆体を断続的に繰り返し供給し、多孔体の細孔内に前駆体の分解物を析出させる工程(2)、及び
工程(2)における断続的繰り返し供給後に、細孔内に前駆体及び/又はその分解物が析出した多孔体を、減圧下又は不活性雰囲気下、工程(1)及び(2)より高い温度で加熱して、金属酸化物-多孔体複合体を調製する工程(3)、
を含む、前記方法。
[2]
工程(2)における断続的繰り返し供給の回数は10~1000回の範囲である、[1]に記載の製造方法。
[3]
工程(2)における断続的繰り返し供給は、前駆体の供給時間と前駆体の供給停止時間との繰り返しからなり、前駆体の供給時間は0.01~2秒の範囲、前駆体の供給停止時間は、1~600秒の範囲である、[1]又は[2]に記載の製造方法。
[4]
工程(1)、(2)及び(3)における減圧は、0.1hPa(10Pa)~1kPa(1000Pa)の範囲である、[1]~[3]のいずれかに記載の製造方法。
[5]
前駆体は、金属アルコキシド又は金属塩化物である、[1]~[4]のいずれかに記載の製造方法。
[6]
金属酸化物-多孔体複合体を基準とした金属酸化物の担持量は、1~90質量%の範囲である、[1]~[5]のいずれかに記載の製造方法。
[7]
金属酸化物の金属は、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeからなる少なくとも1種である、[1]~[6]のいずれかに記載の製造方法。
[8]
多孔体は、細孔容積が0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が1~500nmの範囲である、[1]~[7]のいずれかに記載の製造方法。
[9]
多孔体は、多孔質炭素材料である、[1]~[8]のいずれかに記載の製造方法。
[10]
多孔質炭素材料と金属酸化物との複合体であって、
金属酸化物の一部又は全部は、多孔質炭素材料の細孔内に存在する、前記複合体。
[11]
多孔質炭素材料は、細孔容積が0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が1~500nmの範囲であり、かつ複合体を基準とした金属酸化物の担持量は、1~90質量%の範囲である、[10]に記載の複合体。
[12]
金属酸化物の金属は、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeからなる少なくとも1種である、[10]又は[11]に記載の複合体。
[13]
金属酸化物がアナターゼ型二酸化チタンである[10]又は[11]に記載の複合体。
[14]
負極材料として用いられる[10]~[13]のいずれかに記載の複合体。
[15]
リチウムイオンキャパシタ負極用の材料として用いられる[14]に記載の複合体。
[16]
触媒として用いられる[10]~[13]のいずれかに記載の複合体。
The present invention is as follows.
[1]
A method for producing a metal oxide-porous composite by supporting a metal oxide in pores of a porous body, comprising the steps of:
Placing the porous body under reduced pressure and heating to the decomposition temperature of the metal oxide precursor (1),
Step (2) of intermittently and repeatedly supplying a liquid metal oxide precursor to a porous body under reduced pressure and under heating, and depositing a decomposition product of the precursor in pores of the porous body, and a step After intermittent repetitive supply in (2), the porous body in which the precursor and / or the decomposition product thereof is precipitated in the pores is heated at a temperature higher than in steps (1) and (2) under reduced pressure or an inert atmosphere. And preparing a metal oxide-porous composite (3),
Said method.
[2]
The manufacturing method according to [1], wherein the number of intermittent repetitive supply in the step (2) is in the range of 10 to 1000 times.
[3]
The intermittent repetitive supply in step (2) consists of repetition of precursor supply time and precursor supply stop time, and the precursor supply time is in the range of 0.01 to 2 seconds, precursor supply stop time Is a range of 1 to 600 seconds, [1] or [2].
[4]
The manufacturing method according to any one of [1] to [3], wherein the reduced pressure in the steps (1), (2) and (3) is in the range of 0.1 hPa (10 Pa) to 1 kPa (1000 Pa).
[5]
The production method according to any one of [1] to [4], wherein the precursor is a metal alkoxide or a metal chloride.
[6]
The production method according to any one of [1] to [5], wherein the amount of the metal oxide supported based on the metal oxide-porous composite is in the range of 1 to 90% by mass.
[7]
The manufacturing method according to any one of [1] to [6], wherein the metal of the metal oxide is at least one selected from Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
[8]
The porous body according to any one of [1] to [7], wherein the pore volume is in the range of 0.1 to 10 cm 3 (g-carbon) -1 and the average pore diameter is in the range of 1 to 500 nm Manufacturing method.
[9]
The method according to any one of [1] to [8], wherein the porous body is a porous carbon material.
[10]
A composite of a porous carbon material and a metal oxide,
The above complex, wherein a part or all of the metal oxide is present in the pores of the porous carbon material.
[11]
The porous carbon material has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 , an average pore diameter in the range of 1 to 500 nm, and a metal oxide based on the complex The complex according to [10], wherein the loading amount of is in the range of 1 to 90% by mass.
[12]
The complex according to [10] or [11], wherein the metal of the metal oxide is at least one selected from Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
[13]
The complex according to [10] or [11], wherein the metal oxide is anatase type titanium dioxide.
[14]
The composite according to any one of [10] to [13], which is used as a negative electrode material.
[15]
The composite according to [14], which is used as a material for a lithium ion capacitor negative electrode.
[16]
The complex according to any one of [10] to [13], which is used as a catalyst.
 本発明によれば、複雑な炭素材料のナノ構造内部にまで均一に二酸化チタンなどの金属酸化物を析出させた多孔質炭素と金属酸化物との複合体を、比較的容易に調製することができる。さらに本発明によれば、複雑な炭素ナノ構造内部まで均一に金属酸化物を析出させた多孔質炭素と金属酸化物との複合体を提供することができる。金属酸化物が二酸化チタン、二酸化スズ等の場合、この複合体は高い電極特性を有し、金属酸化物が、酸化バナジウム、二酸化チタン等の場合、この複合体は優れた触媒活性を有する。 According to the present invention, it is relatively easy to prepare a composite of porous carbon and metal oxide in which metal oxide such as titanium dioxide is uniformly deposited to the inside of the complex carbon material nanostructure. it can. Furthermore, according to the present invention, it is possible to provide a composite of porous carbon and metal oxide in which metal oxide is uniformly deposited to the inside of a complex carbon nanostructure. When the metal oxide is titanium dioxide, tin dioxide or the like, this complex has high electrode properties, and when the metal oxide is vanadium oxide, titanium dioxide or the like, this complex has excellent catalytic activity.
実施例で用いたVLP-CVD実験装置の概略図を示す。BRIEF DESCRIPTION OF THE DRAWINGS The schematic of the VLP-CVD experiment apparatus used in the Example is shown. 本発明の方法(減圧液パルスCVD(VLP-CVD)法)の概略説明図を示す。BRIEF DESCRIPTION OF THE DRAWINGS The schematic explanatory drawing of the method (depressurized liquid pulse CVD (VLP-CVD) method) of this invention is shown. 各複合体の外観を示す電子顕微鏡写真及びTiO2析出量の測定結果を示す。The measurement results of the electron micrographs and TiO 2 deposition amount shows the appearance of each complex. 複合体(CNovel MJ(4)150)の熱処理結果を示す。The heat processing result of a composite body (CNovel MJ (4) 150) is shown. 細孔の違いによる生成物の変化を示す。The change of the product by the difference in pore is shown. 熱処理の影響の測定結果を示す。The measurement result of the influence of heat processing is shown. 応用評価:LIC負極特性(TiO2重量当たり) 測定結果を示す。Application evaluation: LIC negative electrode characteristics (per TiO 2 weight) Measurement results are shown. Cnovel MJ(4)150/TiO2ナノ複合体のレート・サイクル特性の測定結果を示す。The measurement result of the rate cycle characteristic of Cnovel MJ (4) 150 / TiO 2 nanocomposite is shown. 参考例1及び2におけるCVD条件の異なるTiO2/Cナノ複合体のTEM像を示す。It shows a TEM image of different TiO 2 / C nanocomposite of CVD conditions in Reference Examples 1 and 2. 参考例1及び2におけるCVD条件の異なるTiO2/Cナノ複合体の電極特性を示す。Showing the electrode characteristics of different TiO 2 / C nanocomposite of CVD conditions in Reference Examples 1 and 2. 各複合体の外観を示す電子顕微鏡写真及びSnO2析出量の測定結果を示す。The measurement results of the electron micrographs and SnO 2 precipitation amount shows the appearance of each complex. TiO2ナノ複合体のレート・サイクル特性の測定結果を示す。The measurement results of the rate cycle characteristics of TiO 2 nanocomposite. 複合体の外観を示す電子顕微鏡写真及びV2O5析出量の測定結果を示す。The measurement results of the electron micrographs and V 2 O 5 deposition amount shows the appearance of the complex.
<金属酸化物-多孔体複合体の製造方法>
 本発明の第一の態様は、多孔体の細孔内に金属酸化物を担持させて、金属酸化物-多孔体複合体を製造する方法である。この方法は、
多孔体を減圧下に置き、かつ金属酸化物の前駆体の分解温度まで加熱する工程(1)、
減圧下、かつ加熱下の多孔体に、液体状の金属酸化物の前駆体を断続的に繰り返し供給し、多孔体の細孔内に前駆体の分解物を析出させる工程(2)、及び
工程(2)における断続的繰り返し供給後に、細孔内に前駆体の分解物が析出した多孔体を、減圧下又は不活性雰囲気下、工程(1)及び(2)より高い温度で加熱して、金属酸化物-多孔体複合体を調製する工程(3)、
を含む。
<Method for producing metal oxide-porous composite>
A first aspect of the present invention is a method of producing a metal oxide-porous composite by supporting a metal oxide in the pores of a porous body. This method is
Placing the porous body under reduced pressure and heating to the decomposition temperature of the metal oxide precursor (1),
Step (2) of intermittently and repeatedly supplying a liquid metal oxide precursor to a porous body under reduced pressure and under heating, and depositing a decomposition product of the precursor in pores of the porous body, and a step After intermittent repetitive supply in (2), the porous body in which the decomposition product of the precursor has been deposited in the pores is heated at a temperature higher than steps (1) and (2) under reduced pressure or an inert atmosphere, Preparing a metal oxide-porous composite (3),
including.
 本発明において、複合体作製に用いる多孔体は、多孔質な物質であれば特に限定はない。多孔体の細孔内に金属酸化物を担持させるという観点から、多孔体は、細孔容積が0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が例えば、1~500nmの範囲であることができる。但し、この範囲に限定されるものではない。多孔体は、例えば、多孔質炭素材料であることができる。 In the present invention, the porous body used for producing the composite is not particularly limited as long as it is a porous substance. From the viewpoint of supporting the metal oxide in the pores of the porous body, the porous body has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 and an average pore diameter of, for example, 1 It can be in the range of ̃500 nm. However, it is not limited to this range. The porous body can be, for example, a porous carbon material.
 多孔質炭素材料には特に制限はないが、例えば、ミクロ孔性炭素、メソ孔性炭素、マクロ孔性炭素などを挙げることができる。尚、IUPACでは2nm以下の細孔をミクロ孔、2~50nmの細孔をメソ孔、50nm以上の細孔をマクロ孔と定義する。メソ孔性炭素としては、例えば、CNovel MH、CNovel MJ(4)030(東洋炭素株式会社製)を挙げることができ、マクロ孔性炭素としては、例えば、CNovel MJ(4)150挙げることができる。ミクロ孔性炭素としては、球状活性炭であるA-BAC PW15(株式会社クレハ製)を挙げることができる。本発明では、50nm前後の細孔を有する炭素をメソ・マクロ孔性炭素と呼ぶが、メソ・マクロ孔性炭素としてカーボンゲルを挙げることができる。カーボンゲルとしては、レゾルシノール-ホルムアルデヒド樹脂を加熱(例えば、1000℃)して炭素化したメソ・マクロ孔性炭素(例えば、特開2013-159515号公報参照)を挙げることができる。多孔質炭素材料ではないが、カーボンナノファイバー(CNF)も、本発明の方法により、表面に金属酸化物を担持させることができる。カーボンナノファイバー(CNF)としては、液パルスインジェクション法により作製したナノファイバー(特開2012-246590公報)を挙げることができる。これらに限定される意図ではない。 The porous carbon material is not particularly limited, and examples thereof include microporous carbon, mesoporous carbon, macroporous carbon and the like. In IUPAC, pores of 2 nm or less are defined as micropores, pores of 2 to 50 nm as mesopores, and pores of 50 nm or more as macropores. As mesoporous carbon, for example, CNovel MH, CNovel MJ (4) 030 (manufactured by Toyo Carbon Co., Ltd.) can be mentioned, and as macroporous carbon, for example, C Novel MJ (4) 150 can be mentioned . Examples of microporous carbon include A-BAC PW15 (manufactured by Kureha Co., Ltd.) which is spherical activated carbon. In the present invention, carbon having pores of about 50 nm is referred to as meso-macroporous carbon, and examples of meso-macroporous carbon include carbon gel. Examples of the carbon gel include meso-macroporous carbon obtained by heating (for example, 1000 ° C.) resorcinol-formaldehyde resin (for example, see JP-A-2013-159515). Although not a porous carbon material, carbon nanofibers (CNF) can also carry metal oxides on the surface by the method of the present invention. Examples of carbon nanofibers (CNF) include nanofibers produced by a liquid pulse injection method (Japanese Patent Laid-Open No. 2012-246590). It is not the intention limited to these.
 金属酸化物の前駆体は、常圧で液体状となり得る(例えば、常温で液体である、または常温で固体であるが、加熱すると液体になる)物質であって、工程(2)における減圧下において気化することで気相として存在できる、金属を含有する化合物であれば、特に制限はない。前駆体が含有する金属としては、例えば、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeからなる少なくとも1種であることができる。金属酸化物の前駆体は、例えば、金属アルコキシド又は金属塩化物であることができる。金属アルコキシド及び金属塩化物は、これらの金属のアルコキシド又は塩化物であることができる。複合体が有する金属酸化物は、例えば、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeの酸化物からなる少なくとも1種であることができる。 The precursor of the metal oxide is a substance that can be liquid at normal pressure (for example, liquid at normal temperature, or solid at normal temperature but liquid when heated) under reduced pressure in step (2) There is no particular limitation as long as it is a metal-containing compound that can be present as a gas phase by vaporization at. The metal contained in the precursor may be, for example, at least one of Ti, Si, Ni, V, Sn, Zr, Ta, and Ge. The precursor of the metal oxide can be, for example, a metal alkoxide or a metal chloride. Metal alkoxides and metal chlorides can be alkoxides or chlorides of these metals. The metal oxide of the complex can be, for example, at least one of oxides of Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
 工程(1)では、多孔体を減圧下に置き、かつ金属酸化物の前駆体の分解温度まで加熱する。工程(1)における減圧は、多孔体の種類、金属酸化物の前駆体の種類及び分解温度など考慮して、適宜決定することができ、例えば、0.1hPa(10Pa)~1kPa(1000Pa)の範囲であることができる。加熱の温度は、前駆体の分解温度以上の温度であればよく、金属アルコキシド又は金属塩化物の分解温度以上の温度であることができる。したがって、加熱の温度は、前駆体の種類に応じて適宜決定できる。例えば、100~200℃の範囲であることができるが、この範囲に限定される意図ではない。 In step (1), the porous body is placed under reduced pressure and heated to the decomposition temperature of the metal oxide precursor. The reduced pressure in the step (1) can be appropriately determined in consideration of the type of porous material, the type of precursor of metal oxide, decomposition temperature, etc. For example, 0.1 hPa (10 Pa) to 1 kPa (1000 Pa) It can be a range. The heating temperature may be a temperature above the decomposition temperature of the precursor, and can be a temperature above the decomposition temperature of the metal alkoxide or metal chloride. Therefore, the temperature of heating can be suitably determined according to the type of precursor. For example, it may be in the range of 100 to 200 ° C., but it is not intended to be limited to this range.
 工程(2)では、減圧下、かつ加熱下の多孔体に、金属酸化物の前駆体を断続的に繰り返し供給し、多孔体の細孔内に前駆体及び/又はその分解物を析出させる。析出物は前駆体の種類及び加熱条件などにより、前駆体のみの場合、前駆体及びその分解物の両方の場合、並びに分解物のみの場合が有り得る。工程(2)における減圧は、工程(1)と同様の例えば、0.1hPa(10Pa)~1kPa(1000Pa)の範囲であることができる。前駆体の供給停止時間には、系内の減圧が進むが、前駆体を供給すると前駆体は気化し、この気化により一時的に圧力の変動が生じる。減圧下かつ加熱下の多孔体に供給された前駆体は、気化及び/又は分解することで多孔体を取り囲む雰囲気の圧力は増加し、この圧力の増加により、気化及び/又は分解した前駆体が多孔体の細孔内に取り込まれやすくなると推察される。さらに、前駆体供給停止時間における減圧により細孔内が減圧になっていることも、気化及び/又は分解した前駆体が多孔体の細孔内に取り込まれやすくなる要因の1つと推察される。工程(2)においける断続的繰り返し供給の回数は、任意であり、所望の複合体を調製できるように適宜決定すればよいが、例えば、10~1000回の範囲であることができる。但し、この範囲に制限されるものではない。多孔体の種類及び量、前駆体の種類及び1回の供給量、所望の複合体(金属酸化物の析出量)などを考慮して適宜決定される。 In the step (2), the precursor of the metal oxide is intermittently and repeatedly supplied to the porous body under reduced pressure and under heating to precipitate the precursor and / or the decomposition product thereof in the pores of the porous body. The precipitate may be the case of the precursor alone, the case of both the precursor and the decomposition product thereof, and the case of the decomposition product alone depending on the kind of the precursor and the heating conditions. The reduced pressure in the step (2) can be, for example, in the range of 0.1 hPa (10 Pa) to 1 kPa (1000 Pa) as in the step (1). During the supply stop time of the precursor, the pressure reduction in the system proceeds, but when the precursor is supplied, the precursor is vaporized, and this vaporization temporarily causes a pressure fluctuation. The precursor supplied to the porous body under reduced pressure and heat is vaporized and / or decomposed to increase the pressure of the atmosphere surrounding the porous body, and the increase in pressure causes the vaporized and / or decomposed precursor to become It is presumed that it is easy to be taken into the pores of the porous body. Furthermore, the reduced pressure in the pores due to the reduced pressure at the precursor supply stop time is also presumed to be one of the factors that make it easy for the vaporized and / or decomposed precursor to be taken into the pores of the porous body. The number of times of intermittent repetitive supply in the step (2) is arbitrary and may be appropriately determined so as to prepare a desired complex, but can be, for example, in the range of 10 to 1000 times. However, it is not limited to this range. It is appropriately determined in consideration of the type and amount of porous material, the type and amount of precursor once supplied, the desired complex (the amount of metal oxide deposited), and the like.
 工程(2)における断続的繰り返し供給は、前駆体の供給時間と前駆体の供給停止時間との繰り返しからなる。例えば、液体状態の前駆体を少量ずつ一定間隔で、所謂パルス状で導入することで実施できる。前駆体の供給時間は、前駆体の種類や1回の供給量等を考慮して適宜決定することができ、例えば、0.01~2秒の範囲であることができ、好ましくは0.05~1秒の範囲とすることができる。また、前駆体の供給停止時間は、減圧度、加熱温度、前駆体の種類などを考慮し、かつ多孔体の細孔内への金属酸化物の析出速度などを考慮して適宜決定することができ、例えば、1~600秒の範囲であることができ、好ましくは10~120秒の範囲である。前駆体の1回あたりの供給量は、多孔体の種類及び量、前駆体の種類などを考慮して適宜決定できるが、例えば、多孔体1g当たり、0.01~0.1mgを目安とすることができる。この範囲はあくまでも目安であり、多孔体の種類及び量、前駆体の種類、さらには、運転条件(減圧度や加熱温度など)も考慮して適宜決定できる。本発明の方法では、減圧下で、液体原料を断続的に供給して酸化物を析出させることから、本発明の方法は、減圧液パルス(Vacuum Liquid Pulse) CVD(VLP-CVD)法と呼ぶことができる。 The intermittent repetitive supply in step (2) consists of repeating the precursor supply time and the precursor supply stop time. For example, it can be carried out by introducing the precursor in a liquid state little by little at regular intervals, in the form of so-called pulses. The supply time of the precursor can be appropriately determined in consideration of the type of precursor, the supply amount of one time, etc., and can be, for example, in the range of 0.01 to 2 seconds, preferably 0.05 It can be in the range of 1 second. In addition, the supply stop time of the precursor may be appropriately determined in consideration of the degree of pressure reduction, heating temperature, type of precursor, etc., and the deposition rate of the metal oxide in the pores of the porous body, etc. For example, it can be in the range of 1 to 600 seconds, preferably in the range of 10 to 120 seconds. The amount of precursor supplied per time can be appropriately determined in consideration of the type and amount of porous material, the type of precursor, etc. For example, 0.01 to 0.1 mg per 1 g of porous material is a standard. be able to. This range is a guide only, and can be appropriately determined in consideration of the type and amount of porous material, the type of precursor, and the operating conditions (degree of pressure reduction, heating temperature, etc.). In the method of the present invention, the liquid raw material is intermittently supplied under reduced pressure to precipitate oxides, so the method of the present invention is called vacuum liquid pulse CVD (VLP-CVD) method. be able to.
 工程(3)では、工程(2)における断続的繰り返し供給後に、細孔内に前駆体及び/又はその分解物が析出した多孔体を、減圧下又は不活性有雰囲気下、工程(1)及び(2)より高い温度で加熱して、金属酸化物-多孔体複合体を調製する。この加熱温度は、前駆体の種類及び前駆体から形成される金属酸化物の種類に応じて適宜決定することができ、多孔体の細孔内に析出した前駆体の分解物中の有機基が脱離し、及び/又は、酸化物の結晶化を促進する温度から選択できる。工程(3)における減圧は、工程(2)と同様の例えば、0.1hPa(10Pa)~1kPa(1000Pa)の範囲であることができる。不活性含有雰囲気は、例えば、窒素、ヘリウム、アルゴンであることができる。金属がチタンである場合、熱処理の温度は例えば、600~800℃の範囲、好ましくは650~750℃の範囲であることが、炭素材料を劣化させることなく、かつ結晶化した酸化チタンを含む金属酸化物-多孔体複合体が得られるという観点から好ましい。酸化チタンの場合は、アナターゼ型とルチル型等があるが、所望の結晶構造になるように加熱条件は適宜設定することが好ましい。但し、多孔体が炭素材料の場合には、温度及び雰囲気によっては炭素材料中の細孔の収縮が有り得るので、この点も考慮して加熱用の雰囲気及び温度は選択する。加熱時間は、例えば、1分間~2時間程度とすることができる。但し、この範囲に限定される意図ではない。 In the step (3), after intermittent repetitive supply in the step (2), the porous body in which the precursor and / or the decomposition product thereof is precipitated in the pores is treated under reduced pressure or under an inert atmosphere, the steps (1) and (2) Heating at a higher temperature to prepare a metal oxide-porous composite. The heating temperature can be appropriately determined according to the type of precursor and the type of metal oxide formed from the precursor, and the organic group in the decomposition product of the precursor precipitated in the pores of the porous body is The temperature can be selected from the temperature which promotes desorption and / or the crystallization of the oxide. The reduced pressure in the step (3) can be, for example, in the range of 0.1 hPa (10 Pa) to 1 kPa (1000 Pa) as in the step (2). The inert containing atmosphere can be, for example, nitrogen, helium, argon. When the metal is titanium, the temperature of the heat treatment is, for example, in the range of 600 to 800 ° C., preferably in the range of 650 to 750 ° C., without degrading the carbon material and containing crystallized titanium oxide. It is preferable from the viewpoint that an oxide-porous composite is obtained. In the case of titanium oxide, there are anatase type, rutile type and the like, but it is preferable to set heating conditions appropriately so as to obtain a desired crystal structure. However, when the porous body is a carbon material, depending on the temperature and the atmosphere, shrinkage of the pores in the carbon material may occur, so the heating atmosphere and temperature are selected in consideration of this point. The heating time can be, for example, about 1 minute to 2 hours. However, it is not the intention limited to this range.
 実験装置の概略図を図1に示し、操作の状況を図2に示す。図1に示すように、実験装置は、炭素材料を設置するための反応管、反応管の上流側に原料液である前駆体を収納し、かつ供給するためのシリンジ及び断続的繰り返し供給のための電磁弁を有し、下流側には真空ポンプを有する。反応管の周囲には、加熱用の電気炉を配置する。 A schematic of the experimental apparatus is shown in FIG. 1 and the operating situation is shown in FIG. As shown in FIG. 1, the experimental apparatus includes a reaction tube for installing a carbon material, a syringe for storing and supplying a precursor which is a raw material liquid on the upstream side of the reaction tube, and intermittent and repetitive supply. And a vacuum pump on the downstream side. An electric furnace for heating is disposed around the reaction tube.
 操作は、反応管内に多孔質炭素材料を設置し、反応管内を真空ポンプで減圧下にした後、使用する前駆体の熱分解温度まで加熱装置を用いて昇温する。次に、真空ポンプを連続的に運転しながら、液体状の前駆体を反応管内に断続的繰り返し供給する。断続的繰り返し供給により、多孔体の細孔内に前駆体及び/又はその分解物が析出する。前駆体及び/又はその分解物は、細孔の内外の圧力差(内<外)を推進力として細孔内に進入し、細孔内表面に析出する。断続的繰り返し供給後に、不活性雰囲気下で多孔質炭素材料を加熱して、細孔内表面に析出した前駆体及び/又は前駆体の分解物中の有機基の脱離及び/又は結晶化を促進する。図2では細孔内表面にTiO2の微粒子が析出した状態を模式的に示す。 The operation is performed by placing a porous carbon material in a reaction tube, reducing the pressure in the reaction tube with a vacuum pump, and raising the temperature to the thermal decomposition temperature of the precursor to be used using a heating device. Next, liquid precursor is intermittently and repeatedly supplied into the reaction tube while the vacuum pump is continuously operated. By intermittent and repetitive supply, the precursor and / or the decomposition product thereof is precipitated in the pores of the porous body. The precursor and / or the decomposition product thereof enters the pore as a driving force due to the pressure difference (inner <outer) inside and outside the pore and precipitates on the inner surface of the pore. After intermittent repetitive supply, the porous carbon material is heated under an inert atmosphere to release and / or crystallize the organic group in the precursor and / or the decomposition product of the precursor deposited on the inner surface of the pore. Facilitate. FIG. 2 schematically shows a state in which fine particles of TiO 2 are precipitated on the inner surface of the pore.
 金属酸化物-多孔体複合体を基準とした金属酸化物の担持量は、特に限定はなく、所望の複合体に応じて適宜決定することができ、例えば、1~90質量%の範囲であることができる。但し、この範囲に制限されるものではない。 The supported amount of the metal oxide based on the metal oxide-porous composite is not particularly limited and can be appropriately determined according to the desired composite, and is, for example, in the range of 1 to 90% by mass. be able to. However, it is not limited to this range.
<多孔質炭素材料と金属酸化物との複合体>
 本発明の第2の態様は、多孔質炭素材料と金属酸化物との複合体である。この複合体は、金属酸化物の少なくとも一部は、多孔質炭素材料の細孔内に存在する。多孔質炭素材料は、前記製造方法にて説明したものと同様である。金属酸化物の担持量は、特に限定はなく、所望の複合体に応じて適宜決定することができ、例えば、1~90質量%の範囲であることができる。金属酸化物の金属は、例えば、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeからなる少なくとも1種であることができる。本発明の複合体は、金属酸化物がチタン酸化物の場合、アナターゼ型チタン酸化物であることができる。
<Complex of porous carbon material and metal oxide>
A second aspect of the present invention is a composite of a porous carbon material and a metal oxide. In this composite, at least a part of the metal oxide is present in the pores of the porous carbon material. The porous carbon material is the same as that described in the above-mentioned production method. The supported amount of the metal oxide is not particularly limited and can be appropriately determined depending on the desired complex, and can be, for example, in the range of 1 to 90% by mass. The metal of the metal oxide can be, for example, at least one of Ti, Si, Ni, V, Sn, Zr, Ta, and Ge. The complex of the present invention can be anatase type titanium oxide when the metal oxide is titanium oxide.
 多孔質炭素材料と金属酸化物との複合体は、金属酸化物を担持した後も細孔を有することが、例えば、電極材料として用いる場合などには好ましく、金属酸化物を担持した後の複合体は、細孔容積が、例えば、0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が1~500nmの範囲であることができる。 It is preferable that the composite of the porous carbon material and the metal oxide has pores even after the metal oxide is supported, for example, when used as an electrode material, etc. The composite after supporting the metal oxide The body can have a pore volume, for example, in the range of 0.1 to 10 cm 3 (g-carbon) −1 and an average pore size in the range of 1 to 500 nm.
 多孔質炭素材料は、細孔容積が0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が1~500nmの範囲であり、かつ複合体を基準とした金属酸化物の担持量は、1~90質量%の範囲である、ことができる。多孔質炭素材料は、好ましくは、細孔容積が1~5cm3(g-carbon)-1の範囲であり、平均細孔径が2~300nmの範囲であり、かつ複合体を基準とした金属酸化物の担持量は、10~60質量%の範囲である。多孔質炭素材料は、さらに好ましくは、細孔容積が2~4cm3(g-carbon)-1の範囲であり、平均細孔径が10~200nmの範囲であり、かつ複合体を基準とした金属酸化物の担持量は、20~50質量%の範囲である。 The porous carbon material has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 , an average pore diameter in the range of 1 to 500 nm, and a metal oxide based on the complex The loading amount of can be in the range of 1 to 90% by mass. The porous carbon material preferably has a pore volume in the range of 1 to 5 cm 3 (g-carbon) -1 , an average pore diameter in the range of 2 to 300 nm, and metal oxide based on the complex. The loading amount of the substance is in the range of 10 to 60% by mass. More preferably, the porous carbon material has a pore volume in the range of 2 to 4 cm 3 (g-carbon) -1 , an average pore diameter in the range of 10 to 200 nm, and a metal based on the complex. The amount of oxide supported is in the range of 20 to 50% by mass.
 金属酸化物がアナターゼ型チタン酸化物である本発明の複合体は、電極材料として用いることができ、例えば、負極材料として用いることができる。より具体的には、本発明の複合体は、リチウムイオンキャパシタ負極用の材料として用いられる。 The composite of the present invention in which the metal oxide is anatase type titanium oxide can be used as an electrode material, for example, as a negative electrode material. More specifically, the composite of the present invention is used as a material for a lithium ion capacitor negative electrode.
金属酸化物が酸化スズSnO2の場合、炭素材料とのナノレベルの複合化により導電性を改善することができる。SnO2は一般的な黒鉛負極と比べて約3倍の理論容量を持つことからリチウムイオン電池の高容量負極材料として期待されている。 When the metal oxide is tin oxide SnO 2 , the conductivity can be improved by nano level compounding with a carbon material. SnO 2 is expected to be a high capacity negative electrode material for lithium ion batteries because it has about 3 times the theoretical capacity of a general graphite negative electrode.
金属酸化物が酸化バナジウムV2O5の場合、V2O5は有機物や二酸化硫黄などの酸化触媒として知られている。多孔質な炭素材料担体に担持することで V2O5など金属酸化物触媒は、触媒表面積の増加およびハンドリングの向上が期待される。 When the metal oxide is vanadium oxide V 2 O 5 , V 2 O 5 is known as an organic substance or an oxidation catalyst such as sulfur dioxide. By supporting on a porous carbon material support, metal oxide catalysts such as V 2 O 5 are expected to increase the surface area of the catalyst and improve the handling.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.
実施例1 TiO2-炭素複合体の作製
1.1  実験装置
 実験装置の概略図を図1に示す。反応管として石英製の管を使用し、これを垂直に電気炉内へ挿入して温度調節を行った。反応管上部から電磁弁を介したシリンジを差し込み、反応管下部には真空ポンプを取り付けた。この装置では反応管が脱気状態において電磁弁を開放することで圧力差が推進力となり、シリンジ内の原料が反応管内に導入される。
Example 1 Preparation of TiO 2 -Carbon Complex
1.1 Experimental Device A schematic diagram of the experimental device is shown in FIG. A quartz tube was used as a reaction tube, which was inserted vertically into an electric furnace to perform temperature control. A syringe was inserted from the top of the reaction tube via a solenoid valve, and a vacuum pump was attached to the bottom of the reaction tube. In this device, when the reaction tube is in a degassed state, the pressure difference becomes a driving force by opening the solenoid valve, and the raw material in the syringe is introduced into the reaction tube.
・反応管(石英管)
内径:13 mm
長さ:600 mm
石英フィルターを上から25cmの位置に固定、この石英フィルターが電気炉の中心位置になるように設置
・ Reaction tube (quartz tube)
Inner diameter: 13 mm
Length: 600 mm
Fix the quartz filter at 25 cm from the top, and place this quartz filter at the center of the electric furnace
1.2  原料
Ti源:チタンテトライソプロポキシド(和光純薬工業(株))
炭素担体:
メソ・マクロ孔性炭素 カーボンゲル(GC)
マクロ孔性炭素 CNovel MJ(4)150(東洋炭素(株))
メソ孔性炭素 CNovel MJ(4)030(東洋炭素(株))
メソ孔性炭素 CNovel MH(東洋炭素(株))
ミクロ孔性炭素 A-BAC PW15((株)クレハ)
無細孔性炭素 カーボンナノファイバー(CNF)(参考例)
1.2 Raw materials
Ti source: titanium tetraisopropoxide (Wako Pure Chemical Industries, Ltd.)
Carbon support:
Meso-macroporous carbon carbon gel (GC)
Macroporous carbon C Novel MJ (4) 150 (Toyo Carbon Co., Ltd.)
Mesoporous carbon C Novel MJ (4) 030 (Toyo Carbon Co., Ltd.)
Mesoporous carbon CNovel MH (Toyo Carbon Co., Ltd.)
Microporous carbon A-BAC PW15 (Kureha Corporation)
Nonporous carbon carbon nanofiber (CNF) (reference example)
CG作製方法(特開2013-159515号公報参照)
試薬
R:レソルシノール(和光純薬工業株式会社)
F:ホルムアルデヒド液(和光純薬工業株式会社, 濃度36-38%)
C:炭酸ナトリウム(和光純薬工業株式会社)
TBA:t-ブチルアルコール(和光純薬工業株式会社)
CG production method (refer to JP 2013-159515A)
reagent
R: Resorcinol (Wako Pure Chemical Industries, Ltd.)
F: Formaldehyde solution (Wako Pure Chemical Industries, Ltd., concentration 36-38%)
C: Sodium carbonate (Wako Pure Chemical Industries, Ltd.)
TBA: t-Butyl alcohol (Wako Pure Chemical Industries, Ltd.)
 水、R、FおよびCを混合し、R/C=1000 mol mol-1、R/W=0.5 mol mol-1、R/F=0.5 mol mol-1の溶液を調製した。スターラーで2 h撹拌後、30℃に保ったインキュベーター内で2日間、その後60℃で3日間静置した。試料がゲル化していることを確認し、過剰量のTBAに3日間浸漬することで、ゲル内の水を除去した。予備凍結後に-10℃において真空ポンプで脱気することにより、2日間凍結乾燥を行った。乾燥した試料は窒素雰囲気下で5 ℃ min-1で1000℃まで昇温し、この温度で4 h炭素化し、CGを得た。 Water, R, F and C were mixed to prepare a solution of R / C = 1000 mol mol −1 , R / W = 0.5 mol mol −1 , R / F = 0.5 mol mol −1 . After stirring for 2 h with a stirrer, it was allowed to stand for 2 days in an incubator maintained at 30 ° C. and then for 3 days at 60 ° C. It was confirmed that the sample was gelled, and the water in the gel was removed by soaking in an excess amount of TBA for 3 days. After prefreezing, lyophilization was performed for 2 days by degassing with a vacuum pump at −10 ° C. The dried sample was heated to 1000 ° C. at 5 ° C. min −1 in a nitrogen atmosphere, and carbonized at this temperature for 4 h to obtain CG.
1.3  実験操作
(1)TiO2の析出
1)反応管の石英フィルター上に炭素試料(約200 mg)を設置。
2)反応管内を真空ポンプで脱気し、10℃ min-1の昇温速度で反応管を昇温した。
3)設定温度(180℃)まで昇温されているのを確認した後、電磁弁の開閉プログラム(60 s閉、0.1 s開)を開始し原料液の導入を行った。この条件での導入量は1回50μLずつ、100回(合計5 mL)である。これにより原料の断続的供給を行った。
4)真空ポンプを停止した後、温度調節器の電源を切り、反応管を冷却した。
5)100℃程度まで冷却したのを確認し、反応管を取り出し、反応管中心部にある石英フィルター上の生成物を回収した。
1.3 Experimental operation
(1) Precipitation of TiO 2
1) Place a carbon sample (about 200 mg) on the quartz filter of the reaction tube.
2) The reaction tube was evacuated by a vacuum pump, and the temperature was raised at a heating rate of 10 ° C. min -1 .
3) After confirming that the temperature had been raised to the set temperature (180 ° C.), the solenoid valve open / close program (60 s closed, 0.1 s open) was started to introduce the raw material liquid. The introduction amount under this condition is 100 times (50 ml in total) (50 ml in total) (total 5 ml). By this, the intermittent supply of the raw material was performed.
4) After stopping the vacuum pump, the temperature controller was turned off and the reaction tube was cooled.
5) After confirming cooling to about 100 ° C., the reaction tube was taken out and the product on the quartz filter in the center of the reaction tube was recovered.
(2)試料の熱処理
1)(1)の操作でTiO2を析出させた試料をセラミックスボートに載せ、横型管状炉(アサヒ理化製作所、ARF-30K)に設置した石英管(外径1インチ、長さ60 cm)内の中心部に導入した。
2)100 mL min-1で窒素を流通させながら、5℃min-1で700℃まで昇温し、この温度で1 h保持した。
3)室温まで冷却後、反応管から熱処理試料を回収した。
(2) Heat treatment of sample
1) The sample on which TiO 2 was precipitated by the operation of (1) was placed on a ceramic boat and placed in a quartz tube (outside diameter 1 inch, length 60 cm) installed in a horizontal tubular furnace (Asahi Rika Seisakusho, ARF-30K) Introduced in the center of the
2) While flowing nitrogen at 100 mL min -1 , the temperature was raised to 700 ° C. at 5 ° C. min -1 and maintained at this temperature for 1 h.
3) After cooling to room temperature, the heat-treated sample was recovered from the reaction tube.
2. 評価方法
2.1  生成物の観察
 得られた生成物は電界放出型走査電子顕微鏡(Field-Emission Scanning Electron Microscope: FE-SEM, JSM-6600F; JEOL)、透過型電子顕微鏡(Transmission Electron Microscope: TEM, JEM-2010; JEOL)により観察した。
FE-SEM観察に向け、試料台にカーボンテープを貼り、その上に薄く試料をのせた。この試料台をFE-SEMに挿入し、印加電圧15.0 kVで観察を行った。
2. Evaluation method
2.1 Observation of product The obtained product is a field emission scanning electron microscope (FE-SEM, JSM-6600F; JEOL), a transmission electron microscope (TEM, JEM-2010). Observed by JEOL).
For FE-SEM observation, a carbon tape was attached to a sample stand, and a thin sample was placed thereon. This sample stand was inserted into FE-SEM, and observation was performed at an applied voltage of 15.0 kV.
 TEM観察に向け、試料を超音波処理によりエタノール中に分散させ、マイクログリッド(日新EM(株), 200 mesh Cu)上に数滴滴下した後、乾燥させた。この試料グリッドをTEMに挿入し、印加電圧200 kVで観察した。 For TEM observation, the sample was dispersed in ethanol by ultrasonication, and several drops were dropped on a microgrid (Nisshin EM Co., Ltd., 200 mesh Cu), and then dried. The sample grid was inserted into a TEM and observed at an applied voltage of 200 kV.
2.2  TiO2含有量の測定
 TiO2複合試料のTiO2含有量は熱重量分析(TGA, 島津製作所; TGA-50H)と(DTG, 島津製作所; DTA-50)により測定した。試料を白金製のセル(高さ3 mm, 直径6 mm)に10 mg程度のせ、20 mL min-1の空気流通下において昇温速度5℃min-1で800℃まで昇温した後800℃で1 h保持し、冷却後回収し残留していた重量をTiO2重量とした。
TiO 2 content of the measurement TiO 2 composite sample of 2.2 TiO 2 content thermogravimetric analysis (TGA, Shimadzu; TGA-50H); was measured by the (DTA-50 DTG, Shimadzu). Place the sample in a platinum cell (3 mm in height, 6 mm in diameter) at approximately 10 mg, heat to 800 ° C. at a heating rate of 5 ° C. min -1 in an air stream of 20 mL min -1 and then 800 ° C. The mixture was kept for 1 h, and after cooling it was recovered and the remaining weight was defined as TiO 2 weight.
2.3  結晶構造解析
 結晶構造の解析を粉末X線回折測定装置(試料水平型多目的X線回折装置Ultima IV: Rigaku)により行った。なお、詳細な測定条件は表1に示した。
2.3 Crystal structure analysis The crystal structure was analyzed by a powder X-ray diffraction measurement apparatus (sample horizontal-type multipurpose X-ray diffractometer Ultima IV: Rigaku). The detailed measurement conditions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.4  細孔構造の解析
 試料の細孔構造の解析を吸着測定装置(マイクロトラック・ベル; BELSORP miniII)により行った。吸着測定前に試料の前処理として、窒素流通下、250℃で4 h保持し、試料中に含まれる水分等を除去した。なお、吸着測定温度は-196℃、吸着質はN2として測定を行った。
2.4 Analysis of Pore Structure The analysis of the pore structure of the sample was performed using an adsorption measurement apparatus (Microtrack Bell; BELSORP mini II). As pretreatment of the sample before adsorption measurement, the sample was held at 250 ° C. for 4 h under nitrogen flow to remove moisture and the like contained in the sample. The measurement was carried out with an adsorption measurement temperature of -196 ° C. and an adsorbate of N 2 .
 細孔容積の違いによるTiO2析出量の変化を表2に示す。尚、CNFは細孔を有さず、参考例として挙げた。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the change in the amount of precipitated TiO 2 due to the difference in pore volume. In addition, CNF did not have a pore and was mentioned as a reference example.
Figure JPOXMLDOC01-appb-T000002
 本発明の複合体において、酸化チタンなどの金属酸化物の含有量は、複合体を酸素雰囲気中で加熱することで、炭素を燃焼させたときの重量変化から求めることができる。金属酸化物の析出量は用いた多孔質炭素の細孔構造により変化し、細孔径と細孔容積が大きい場合の方が、析出量が大きくなる傾向を示す(表2参照)。 In the composite of the present invention, the content of the metal oxide such as titanium oxide can be determined from the weight change when carbon is burned by heating the composite in an oxygen atmosphere. The amount of precipitation of the metal oxide changes depending on the pore structure of the porous carbon used, and the amount of precipitation tends to be larger when the pore diameter and the pore volume are larger (see Table 2).
 複合体の外観を図3に示す。図4には、加熱処理前後のXRD及び透過型電子顕微鏡写真を示す。図5に窒素吸着測定結果から計算した細孔径分布を示す。図3から、得られた複合体の走査型電子顕微鏡観察から、多孔質炭素外表面への析出物はほとんど見られず、かつ図4から細孔内に酸化チタンが析出していることが示された。このことは、図5に示す細孔径分布から、析出後にメソ孔容積が減少していることからも確認され、細孔容積に応じてTiO2析出量が変化していることも確認した。図4の透過型電子顕微鏡観察およびX線回折測定より、アモルファス状に析出したTiO2は熱処理により粒径5 nm以下の微小なアナターゼ結晶になり(結晶性向上)、多孔質炭素細孔内に均一に担持されていることが観察された。 The appearance of the composite is shown in FIG. FIG. 4 shows XRD and transmission electron micrographs before and after heat treatment. The pore size distribution calculated from the nitrogen adsorption measurement result is shown in FIG. From FIG. 3, scanning electron microscope observation of the obtained composite shows that almost no precipitates are observed on the outer surface of the porous carbon, and FIG. 4 shows that titanium oxide is precipitated in the pores. It was done. This is also confirmed from the pore size distribution shown in FIG. 5 from the fact that the mesopore volume decreases after precipitation, and it is also confirmed that the TiO 2 deposition amount changes according to the pore volume. According to the transmission electron microscope observation and X-ray diffraction measurement of FIG. 4, TiO 2 precipitated in an amorphous form becomes a fine anatase crystal having a particle size of 5 nm or less by the heat treatment (improvement of crystallinity), and in porous carbon pores It was observed that they were uniformly supported.
実施例2  電極作製
1)実施例1で作製した試料:カーボンブラック(電気化学工業(株) デンカブラック):ポリフッ化ビニリデン(クレハ(株), KFポリマーL #1120)が8:1:1となるように秤量した。
2)混合物に1-メチル-2-ピロリドン(和光純薬工業(株), 和光特級, 99.0%)を数滴加え、あわとり練太郎(シンキー(株), AR-100)を用いて3 min遊星混合しスラリーを作製した。
3)銅箔の上にこのスラリーをのせ、ベーカー式アプリケーター(テスター(株), SA-201)を用いて厚さ5 milに伸ばした。
4)スラリーを塗布した銅箔をホットプレート(アズワン(株), NINOS ND-2)で80℃、1 h空気中で乾燥し、電極打ち抜き器(宝泉, 直径16 mm)で円形に切り抜いた。
5)作製した電極をグローブボックスのパスボックス内で、10 h、120℃で真空乾燥した後、Ar雰囲気のグローブボックス内へ入れた。
6)グローブボックス内で三極式セルを組み立てた。
Example 2 Preparation of electrode
1) The sample prepared in Example 1: Carbon black (Denki Kagaku Kogyo Co., Ltd. Denka Black): Polyvinylidene fluoride (Kureha Co., Ltd., KF polymer L # 1120) was weighed so as to be 8: 1: 1. .
2) Add a few drops of 1-methyl-2-pyrrolidone (Wako Pure Chemical Industries, Wako special grade, 99.0%) to the mixture, and use Awatori Neritaro (Sinky, AR-100) for 3 min. Planetary mixing was performed to prepare a slurry.
3) The slurry was placed on a copper foil and stretched to a thickness of 5 mil using a baker-type applicator (Tester Co., Ltd., SA-201).
4) The copper foil coated with the slurry was dried in air at 80 ° C for 1 h with a hot plate (As One Corp., NINOS ND-2), and cut into a circle with an electrode punching device (Hozumi, 16 mm in diameter) .
5) The manufactured electrode was vacuum-dried at 120 ° C. for 10 h in a glove box pass box, and then placed in an Ar atmosphere glove box.
6) Assembled the tripolar cell in the glove box.
使用試薬・部材
対極・参照極: 金属リチウム(本城金属(株), 厚さ0.2 mm)
セパレーター: CELGARD2400, ポリポア(株), 直径24 mmに切り抜いて使用
電解液: LiPF6 1 mol/L EC:DEC(1:1 v/v%), キシダ化学(株)
測定セル: 三極式セル, 東洋システム(株)
Used reagents and materials Counter electrode and reference electrode: Lithium metal (Honjo Metal Co., Ltd., 0.2 mm thick)
Separator: CELGARD 2400, Polypore Co., Ltd., Cut into a diameter of 24 mm and use electrolyte: LiPF 6 1 mol / L EC: DEC (1: 1 v / v%), Kishida Chemical Co., Ltd.
Measurement cell: Tripolar cell, Toyo System Co., Ltd.
充放電測定
 組み立てた三極式セルは電池充放電装置(北斗電工株式会社, HJ-1010mSM8(s))に接続し、25℃に保たれたインキュベーター内で1.0~2.5 V(vs. Li/Li+)の電位範囲で定電流充放電測定を行った。
Charge / discharge measurement The assembled three-pole cell is connected to a battery charge / discharge device (Hokuto Denko Co., Ltd., HJ-1010mSM8 (s)), and 1.0 to 2.5 V (vs. Li / Li) in an incubator maintained at 25 ° C. The constant current charge / discharge measurement was performed in the potential range of ( + ).
 図6~8に電気化学的評価結果を示す。図6に示すように、実施例1で行った窒素雰囲気での加熱処理により、放電容量が向上することが分かる。各種多孔質炭素を用いた複合体の電極特性評価から、メソ孔性炭素及びマクロ孔性炭素から作製した複合体はTiO2の放電容量を十分に活用し、TiO2重量当たり200 mAh/g付近の容量が得られ(図7)、高速充放電特性も優れていることが判明し、複合体中のTiO2は十分な導電パスを有していることが確認された。細孔径の大きい試料ほど高いレート特性を示した。特にマクロ孔性炭素を用いた複合体(Cnovel MJ(4)150/TiO2ナノ複合体)は、10000サイクル後にも約80%の容量を保っており、15000mA/gもの高電流密度においても約半分の容量を利用できた(図8)ことから、長寿命かつ優れた高速充放電性能を有していることが判明した。 The results of the electrochemical evaluation are shown in FIGS. As shown in FIG. 6, it can be seen that the heat treatment in the nitrogen atmosphere performed in Example 1 improves the discharge capacity. From the electrode characterization of composites using various porous carbons, composites prepared from mesoporous carbon and macroporous carbon fully utilize the discharge capacity of TiO 2 and are around 200 mAh / g per TiO 2 weight. capacity is obtained (Fig. 7), also found to be excellent high-speed charge-discharge characteristics, it was confirmed TiO 2 in the complex that has sufficient conductivity path. The sample with larger pore size showed higher rate characteristics. In particular, the composite using macroporous carbon (Cnovel MJ (4) 150 / TiO 2 nanocomposite) retains a capacity of about 80% even after 10000 cycles, and it is about at a current density as high as 15000 mA / g. From the fact that half the capacity was available (FIG. 8), it was found to have long life and excellent high-speed charge and discharge performance.
 図7におけるTiO2重量当たりの容量計算方法は以下のとおりである。
Figure JPOXMLDOC01-appb-M000003
The volume calculation method per TiO 2 weight in FIG. 7 is as follows.
Figure JPOXMLDOC01-appb-M000003
参考例1(連続流通式CVD)
実施例1で用いた実験装置と同様の反応管の石英フィルター上に炭素試料であるCNovel MJ(4)150(約200 mg)を設置し、反応管内を設定温度(180℃)まで昇温した後、反応管上方から窒素を連続的に100mL/minで流通させ、反応管高温部にマイクロフィーダーにて原料液チタンテトライソプロポキシドを50μL/minで100分間導入した。その後、窒素100mL/min流通下において700℃で1時間熱処理し、石英フィルター上の生成物を回収した。生成物の観察及びTiO2含有量の測定は、実施例1の2.評価方法と同様に実施した。TEM写真及びTiO2-の担持量(含有量)を図9(A)に示す。比較として図9(C)に図4(a)のVLP-CVDで調製した本発明のTiO2-炭素材料複合体を示す。TEM写真ではTiO2の粒径が大きく (10~20 nm) 凝集していることがわかる。
Reference Example 1 (continuous flow CVD)
A carbon sample C Novel MJ (4) 150 (about 200 mg) was placed on a quartz filter of a reaction tube similar to the experimental apparatus used in Example 1, and the temperature in the reaction tube was raised to a set temperature (180 ° C.) After that, nitrogen was continuously circulated at 100 mL / min from above the reaction tube, and titanium tetraisopropoxide as a raw material liquid was introduced into the reaction tube high temperature part at 50 μL / min for 100 minutes with a microfeeder. Thereafter, heat treatment was performed at 700 ° C. for 1 hour under nitrogen flow of 100 mL / min to recover the product on the quartz filter. The observation of the product and the measurement of the TiO 2 content were carried out in the same manner as in 2. Evaluation method of Example 1. The TEM photograph and the supported amount (content) of TiO 2- are shown in FIG. 9 (A). As a comparison, FIG. 9 (C) shows the TiO 2 -carbon material composite of the present invention prepared by the VLP-CVD of FIG. 4 (a). The TEM photograph shows that the particle size of TiO 2 is large (10 to 20 nm) and agglomerated.
参考例2(減圧連続導入CVD)
実施例1で用いた実験装置と同様の反応管の石英フィルター上に炭素試料であるCNovel MJ(4)150(約200 mg)を設置し、反応管内を設定温度(180℃)まで昇温した後、反応管下方から真空ボンプで脱気し、反応管高温部にマイクロフィーダーにて原料液チタンテトライソプロポキシドを50μL/minで100分間導入した。その後、連続的な窒素100mL/min流通下において700℃で1時間熱処理し、石英フィルター上の生成物を回収した。生成物の観察及びTiO2含有量の測定は、実施例1の2.評価方法と同様に実施した。TEM写真及びTiO2-の担持量(含有量)を図9(B)に示す。比較として図9(C)に図4(a)のVLP-CVDで調製した本発明のTiO2-炭素材料複合体を示す。TEM写真ではTiO2の粒径が大きく (10~20 nm) 凝集していることがわかる。
Reference Example 2 (Decompression Continuous Introduction CVD)
A carbon sample C Novel MJ (4) 150 (about 200 mg) was placed on a quartz filter of a reaction tube similar to the experimental apparatus used in Example 1, and the temperature in the reaction tube was raised to a set temperature (180 ° C.) Thereafter, the reaction tube was degassed with a vacuum pump from below, and titanium tetraisopropoxide as a raw material solution was introduced into the reaction tube high temperature part at 50 μL / min for 100 minutes with a microfeeder. Thereafter, heat treatment was performed at 700 ° C. for 1 hour under continuous nitrogen flow of 100 mL / min to recover the product on the quartz filter. The observation of the product and the measurement of the TiO 2 content were carried out in the same manner as in 2. Evaluation method of Example 1. The TEM photograph and the supported amount (content) of TiO 2- are shown in FIG. 9 (B). As a comparison, FIG. 9 (C) shows the TiO 2 -carbon material composite of the present invention prepared by the VLP-CVD of FIG. 4 (a). The TEM photograph shows that the particle size of TiO 2 is large (10 to 20 nm) and agglomerated.
参考例1及び2と実施例1のTEM写真(図4(a))を対比すると、参考例1及び2に示す一般的なCVD法では細孔内へ微小なTiO2ナノ粒子を担持することが困難であるが、本発明の手法を用いることで数nmの粒径のTiO2ナノ粒子を炭素材料の細孔内に担持することができることが分かる。 A comparison of TEM photographs of reference examples 1 and 2 and example 1 (FIG. 4 (a)) shows that the general CVD method shown in reference examples 1 and 2 supports minute TiO 2 nanoparticles in pores. Although it is difficult, it is understood that TiO 2 nanoparticles with a particle diameter of several nm can be supported in the pores of the carbon material by using the method of the present invention.
参考例3(充放電測定)
参考例1及び2において調製したTiO2-炭素材料複合体を用いて、実施例2と同様に電極を作製し、実施例2と同様の条件で定電流充放電測定を行った。図10(A)に充放電カーブを示し、(B)にレート特性評価結果を示す。これらの結果から、参考例1及び2に示す一般的な連続導入CVDで得られたTiO2/Cナノ複合体と比べて、VLP-CVD法で作製した本発明のTiO2/Cナノ複合体は高容量で高速充放電可能であることが分かる。
Reference Example 3 (charge / discharge measurement)
An electrode was produced in the same manner as in Example 2 using the TiO 2 -carbon material composite prepared in Reference Examples 1 and 2, and constant current charge / discharge measurement was performed under the same conditions as in Example 2. FIG. 10A shows a charge / discharge curve, and FIG. 10B shows a rate characteristic evaluation result. These results, compared to Reference Example 1 and TiO 2 / C nanocomposite obtained in typical continuous introduction CVD shown in 2, TiO 2 / C nanocomposite of the present invention prepared in VLP-CVD method It can be understood that high capacity and high speed charge and discharge are possible.
実施例3
3.1  実験操作
(1)SnO2の析出
1)反応管の石英フィルター上に炭素試料であるCNovel MJ(4)030またはCNovel MJ(4)150(約200 mg)を設置。
2)反応管内を真空ポンプで脱気して管内圧力を500 Paとし、10℃ min-1の昇温速度で反応管を昇温した。
3)設定温度(80℃または100℃)まで昇温されているのを確認した後、電磁弁の開閉プログラム(60 s閉、0.1 s開)を開始し原料液であるスズ(IV)イソプロポキシドの導入を行った。この条件での導入量は1回50μLずつ、50回または100回(合計2.5mLまたは5 mL)である。
4)真空ポンプを停止した後、温度調節器の電源を切り、反応管を冷却した。
5)100℃程度まで冷却したのを確認し、反応管を取り出し、反応管中心部にある石英フィルター上の生成物を回収した。
Example 3
3.1 Experimental operation
(1) Precipitation of SnO 2
1) Place a carbon sample C Novel MJ (4) 030 or C Novel MJ (4) 150 (about 200 mg) on a quartz filter of a reaction tube.
2) The reaction tube was evacuated by a vacuum pump to a pressure of 500 Pa, and the temperature of the reaction tube was raised at a temperature rising rate of 10 ° C. min -1 .
3) After confirming that the temperature has been raised to the set temperature (80 ° C or 100 ° C), start the solenoid valve open / close program (60s closed, 0.1s open) to start tin (IV) isopropoxy which is the raw material liquid Introduced the de The introduction amount under this condition is 50 μL, 50 times or 100 times (total 2.5 mL or 5 mL) at one time.
4) After stopping the vacuum pump, the temperature controller was turned off and the reaction tube was cooled.
5) After confirming cooling to about 100 ° C., the reaction tube was taken out and the product on the quartz filter in the center of the reaction tube was recovered.
(2)試料の熱処理
1)(1)の操作でSnO2を析出させた試料をセラミックスボートに載せ、横型管状炉(アサヒ理化製作所、ARF-30K)に設置した石英管(外径1インチ、長さ60 cm)内の中心部に導入した。
2)100 mL min-1で窒素を流通させながら、5℃min-1で700℃まで昇温し、この温度で1 h保持した。
3)室温まで冷却後、反応管から熱処理試料を回収した。
(2) Heat treatment of sample
1) The sample on which SnO 2 was deposited by the operation of (1) was placed on a ceramic boat and placed in a quartz tube (outside diameter 1 inch, length 60 cm) installed in a horizontal tubular furnace (Asahi Rika Seisakusho, ARF-30K) Introduced in the center of the
2) While flowing nitrogen at 100 mL min -1 , the temperature was raised to 700 ° C. at 5 ° C. min -1 and maintained at this temperature for 1 h.
3) After cooling to room temperature, the heat-treated sample was recovered from the reaction tube.
3.2  評価方法
生成物の観察及びSnO2含有量の測定は、実施例1の2.評価方法と同様に実施した。昇温設定温度を100℃とし、かつスズ(IV)イソプロポキシドの導入量を合計5 mLとして得られたSnO2-炭素材料複合体のTEM写真及びSnO2-の担持量(含有量)を図11に示す。(A)細孔径150 nmの多孔質炭素および(B)30 nmの多孔質炭素の細孔内にそれぞれ10 nm以下の微小なSnO2ナノ粒子が均一に担持された複合体が得られた。
3.2 Evaluation method The observation of the product and the measurement of the SnO 2 content were carried out in the same manner as in 2. Evaluation method of Example 1. The TEM photograph of the SnO 2 -carbon material composite and the supported amount (content) of SnO 2- obtained with the temperature rising set temperature set to 100 ° C. and the introduction amount of tin (IV) isopropoxide being a total of 5 mL. It is shown in FIG. A composite was obtained in which minute SnO 2 nanoparticles of 10 nm or less were uniformly supported in the pores of (A) porous carbon having a pore diameter of 150 nm and (B) porous carbon having a diameter of 30 nm.
3.3  充放電測定
3.1において調製したSnO2-炭素材料複合体を用いて、実施例2と同様に電極を作製し、実施例2と同様の条件で定電流充放電測定を行った。図12に電気化学的評価結果を示す。(A) は異なる多孔質炭素から得られた複合体の充放電特性(反応温度:100oC、原料導入量:5 mL)であり、(B) は異なる反応温度で得られた複合体の充放電特性(多孔質炭素:CNovel150、原料導入量:2.5 mL)である。(A)の結果は、いずれの複合体もSnO2の容量を活用できている細孔径の大きいCNovel150を担体に用いた場合、SnO2担持量は少ないにも関わらず高容量かつ高レート特性であることを示す。(B)の結果は、反応温度が100℃よりも80℃の方が担持量が多く、高容量が得られることを示す。(A)(に示すように、実施例1で行った窒素雰囲気での加熱処理により、放電容量が向上することが分かる。本発明のVLP-CVD法によれば、SnO2ナノ粒子の担持も可能であり、SnO2ナノ粒子担持炭素材料複合体は、リチウムイオン電池の高容量負極材料としての活用が期待できる。
3.3 charge and discharge measurement
An electrode was produced in the same manner as in Example 2 using the SnO 2 -carbon material composite prepared in 3.1, and constant current charge / discharge measurement was performed under the same conditions as in Example 2. FIG. 12 shows the result of the electrochemical evaluation. (A) is the charge-discharge characteristics of the composite obtained from different porous carbons (reaction temperature: 100 ° C., raw material introduction amount: 5 mL), and (B) is the charge-discharge of the composite obtained at different reaction temperature It is a characteristic (porous carbon: CNovel 150, raw material introduction amount: 2.5 mL). The result of (A) shows that, when using CNovel 150 having a large pore diameter, which can utilize the capacity of SnO 2 in any of the complexes, as the carrier, high capacity and high rate characteristics are obtained despite the small amount of SnO 2 supported. Indicates that there is. The result of (B) indicates that the reaction temperature is higher at 80 ° C. than at 100 ° C., and a high capacity can be obtained. As shown in (A) ((N), it can be seen that the heat treatment in a nitrogen atmosphere performed in Example 1 improves the discharge capacity. According to the VLP-CVD method of the present invention, the SnO 2 nanoparticles are also supported It is possible that the SnO 2 nanoparticle-supported carbon material composite can be expected to be used as a high capacity negative electrode material of a lithium ion battery.
実施例4
4.1  実験操作
(1)V2O5の析出
1)反応管の石英フィルター上に炭素試料であるCNovel MJ(4)150(約200 mg)を設置。
2)反応管内を真空ポンプで脱気して管内圧力を500 Paとし、10℃ min-1の昇温速度で反応管を昇温した。
3)設定温度(100℃)まで昇温されているのを確認した後、電磁弁の開閉プログラム(60 s閉、0.1 s開)を開始し原料液であるバナジウム(V) オキシトリイソプロポキシドの導入を行った。この条件での導入量は1回50μLずつ、20回合計1 mLである。
4)真空ポンプを停止した後、温度調節器の電源を切り、反応管を冷却した。
5)100℃程度まで冷却したのを確認し、反応管を取り出し、反応管中心部にある石英フィルター上の生成物を回収した。
Example 4
4.1 Experimental operation
(1) Precipitation of V 2 O 5
1) Place the carbon sample C Novel MJ (4) 150 (about 200 mg) on the quartz filter of the reaction tube.
2) The reaction tube was evacuated by a vacuum pump to a pressure of 500 Pa, and the temperature of the reaction tube was raised at a temperature rising rate of 10 ° C. min -1 .
3) After confirming that the temperature has been raised to the set temperature (100 ° C), start the solenoid valve open / close program (60 s closed, 0.1 s open) to start vanadium (V) oxytriisopropoxide as the raw material liquid Introduced. The amount introduced under this condition is 50 μL at a time, for a total of 1 mL 20 times.
4) After stopping the vacuum pump, the temperature controller was turned off and the reaction tube was cooled.
5) After confirming cooling to about 100 ° C., the reaction tube was taken out, and the product on the quartz filter in the center of the reaction tube was recovered.
(2)試料の熱処理
1)(1)の操作でV2O5を析出させた試料をセラミックスボートに載せ、横型管状炉(アサヒ理化製作所、ARF-30K)に設置した石英管(外径1インチ、長さ60 cm)内の中心部に導入した。
2)100 mL min-1で窒素を流通させながら、5℃min-1で700℃まで昇温し、この温度で1 h保持した。
3)室温まで冷却後、反応管から熱処理試料を回収した。
(2) Heat treatment of sample
1) A sample obtained by depositing V 2 O 5 by the operation of (1) is placed on a ceramic boat, and a quartz tube (outer diameter 1 inch, length 60 cm) installed in a horizontal tubular furnace (Asahi Rika Seisakusho, ARF-30K) Introduced in the center of the
2) While flowing nitrogen at 100 mL min -1 , the temperature was raised to 700 ° C. at 5 ° C. min -1 and maintained at this temperature for 1 h.
3) After cooling to room temperature, the heat-treated sample was recovered from the reaction tube.
4.2  評価方法
生成物の観察及びV2O5含有量の測定は、実施例1の2.評価方法と同様に実施した。得られたSnO2-炭素材料複合体のTEM写真及びV2O5-の担持量(含有量)を図13に示す。細孔径150 nmの多孔質炭素の細孔内にそれぞれ10 nm以下の微小なV2O5ナノ粒子が均一に担持された複合体が得られた。得られた複合体は、触媒としての利用が期待される。
4.2 Evaluation method The observation of the product and the measurement of the V 2 O 5 content were carried out in the same manner as in 2. Evaluation method of Example 1. The TEM photograph of the obtained SnO 2 -carbon material composite and the supported amount (content) of V 2 O 5- are shown in FIG. A composite was obtained in which minute V 2 O 5 nanoparticles of 10 nm or less were uniformly supported in the pores of porous carbon with a pore diameter of 150 nm. The resulting complex is expected to be used as a catalyst.
 本発明は、多孔体-金属前駆体の複合体に関する分野に有用であり、かつリチウムイオンキャパシタの電極材料に関する分野に有用である。 The present invention is useful in the field of porous-metal precursor composites and in the field of electrode materials of lithium ion capacitors.

Claims (16)

  1. 多孔体の細孔内に金属酸化物を担持させて、金属酸化物-多孔体複合体を製造する方法であって、
    多孔体を減圧下に置き、かつ金属酸化物の前駆体の分解温度まで加熱する工程(1)、
    減圧下、かつ加熱下の多孔体に、液体状の金属酸化物の前駆体を断続的に繰り返し供給し、多孔体の細孔内に前駆体の分解物を析出させる工程(2)、及び
    工程(2)における断続的繰り返し供給後に、細孔内に前駆体及び/又はその分解物が析出した多孔体を、減圧下又は不活性雰囲気下、工程(1)及び(2)より高い温度で加熱して、金属酸化物-多孔体複合体を調製する工程(3)、
    を含む、前記方法。
    A method for producing a metal oxide-porous composite by supporting a metal oxide in pores of a porous body, comprising the steps of:
    Placing the porous body under reduced pressure and heating to the decomposition temperature of the metal oxide precursor (1),
    Step (2) of intermittently and repeatedly supplying a liquid metal oxide precursor to a porous body under reduced pressure and under heating, and depositing a decomposition product of the precursor in pores of the porous body, and a step After intermittent repetitive supply in (2), the porous body in which the precursor and / or the decomposition product thereof is precipitated in the pores is heated at a temperature higher than in steps (1) and (2) under reduced pressure or an inert atmosphere. And preparing a metal oxide-porous composite (3),
    Said method.
  2. 工程(2)における断続的繰り返し供給の回数は10~1000回の範囲である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the number of intermittent repetitive feedings in step (2) is in the range of 10 to 1000 times.
  3. 工程(2)における断続的繰り返し供給は、前駆体の供給時間と前駆体の供給停止時間との繰り返しからなり、前駆体の供給時間は0.01~2秒の範囲、前駆体の供給停止時間は、1~600秒の範囲である、請求項1又は2に記載の製造方法。 The intermittent repetitive supply in step (2) consists of repetition of precursor supply time and precursor supply stop time, and the precursor supply time is in the range of 0.01 to 2 seconds, precursor supply stop time The method according to claim 1 or 2, wherein is in the range of 1 to 600 seconds.
  4. 工程(1)、(2)及び(3)における減圧は、0.1hPa(10Pa)~1kPa(1000Pa)の範囲である、請求項1~3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein the reduced pressure in the steps (1), (2) and (3) is in the range of 0.1 hPa (10 Pa) to 1 kPa (1000 Pa).
  5. 前駆体は、金属アルコキシド又は金属塩化物である、請求項1~4のいずれかに記載の製造方法。 The method according to any one of claims 1 to 4, wherein the precursor is a metal alkoxide or a metal chloride.
  6. 金属酸化物-多孔体複合体を基準とした金属酸化物の担持量は、1~90質量%の範囲である、請求項1~5のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the loading amount of the metal oxide based on the metal oxide-porous composite is in the range of 1 to 90% by mass.
  7. 金属酸化物の金属は、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeからなる少なくとも1種である、請求項1~6のいずれかに記載の製造方法。 The method according to any one of claims 1 to 6, wherein the metal of the metal oxide is at least one selected from Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
  8. 多孔体は、細孔容積が0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が1~500nmの範囲である、請求項1~7のいずれかに記載の製造方法。 The production according to any one of claims 1 to 7, wherein the porous body has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 and an average pore diameter in the range of 1 to 500 nm. Method.
  9. 多孔体は、多孔質炭素材料である、請求項1~8のいずれかに記載の製造方法。 The method according to any one of claims 1 to 8, wherein the porous body is a porous carbon material.
  10. 多孔質炭素材料と金属酸化物との複合体であって、
    金属酸化物の一部又は全部は、多孔質炭素材料の細孔内に存在する、前記複合体。
    A composite of a porous carbon material and a metal oxide,
    The above complex, wherein a part or all of the metal oxide is present in the pores of the porous carbon material.
  11. 多孔質炭素材料は、細孔容積が0.1~10cm3(g-carbon)-1の範囲であり、平均細孔径が1~500nmの範囲であり、かつ複合体を基準とした金属酸化物の担持量は、1~90質量%の範囲である、請求項10に記載の複合体。 The porous carbon material has a pore volume in the range of 0.1 to 10 cm 3 (g-carbon) -1 , an average pore diameter in the range of 1 to 500 nm, and a metal oxide based on the complex The complex according to claim 10, wherein the loading amount of is in the range of 1 to 90% by mass.
  12. 金属酸化物の金属は、Ti、Si、Ni、V、Sn、Zr、Ta、及びGeからなる少なくとも1種である、請求項10又は11に記載の複合体。 The composite according to claim 10, wherein the metal of the metal oxide is at least one selected from Ti, Si, Ni, V, Sn, Zr, Ta, and Ge.
  13. 金属酸化物がアナターゼ型二酸化チタンである請求項10又は11に記載の複合体。 The complex according to claim 10 or 11, wherein the metal oxide is anatase type titanium dioxide.
  14. 負極材料として用いられる請求項10~13のいずれかに記載の複合体。 The composite according to any one of claims 10 to 13, which is used as a negative electrode material.
  15. リチウムイオンキャパシタ負極用の材料として用いられる請求項14に記載の複合体。 The composite according to claim 14, which is used as a material for a lithium ion capacitor negative electrode.
  16. 触媒として用いられる請求項10~13のいずれかに記載の複合体。 The complex according to any one of claims 10 to 13, which is used as a catalyst.
PCT/JP2018/032934 2017-09-05 2018-09-05 Method of manufacturing metal oxide-porous body composite, and composite of porous carbon material and metal oxide WO2019049905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540984A JP7296123B2 (en) 2017-09-05 2018-09-05 Method for producing metal oxide-porous composite and composite of porous carbon material and metal oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170669 2017-09-05
JP2017-170669 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049905A1 true WO2019049905A1 (en) 2019-03-14

Family

ID=65634219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032934 WO2019049905A1 (en) 2017-09-05 2018-09-05 Method of manufacturing metal oxide-porous body composite, and composite of porous carbon material and metal oxide

Country Status (2)

Country Link
JP (1) JP7296123B2 (en)
WO (1) WO2019049905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117643766A (en) * 2024-01-29 2024-03-05 东莞市艾尔佳过滤器制造有限公司 Air conditioner filter element for efficiently degrading formaldehyde and production process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319808A (en) * 1992-05-20 1993-12-03 Kao Corp Metal oxide particulate and its production
JPH1079378A (en) * 1996-07-12 1998-03-24 Tokyo Electron Ltd Film forming method and device thereof
JP2000323362A (en) * 1999-05-07 2000-11-24 Toyota Central Res & Dev Lab Inc Electrical double layer capacitor and manufacture thereof
JP2006093037A (en) * 2004-09-27 2006-04-06 Nippon Oil Corp Lithium secondary battery
JP2006265005A (en) * 2005-03-22 2006-10-05 Kagawa Industry Support Foundation Method for manufacturing activated carbon carrying nano-sized metal or metal oxide with high efficiency
JP2009525575A (en) * 2006-02-03 2009-07-09 コミツサリア タ レネルジー アトミーク DLI-MOCVD method for forming electrodes for electrochemical reactors.
JP2015502033A (en) * 2011-11-10 2015-01-19 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Supercapacitor device having a composite electrode formed by depositing a metal oxide pseudocapacitor material on a carbon substrate
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091567A (en) 2005-09-30 2007-04-12 Jfe Steel Kk Porous carbon material and its production method
WO2016002668A1 (en) 2014-07-03 2016-01-07 東レ株式会社 Porous carbon material and method for manufacturing porous carbon material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319808A (en) * 1992-05-20 1993-12-03 Kao Corp Metal oxide particulate and its production
JPH1079378A (en) * 1996-07-12 1998-03-24 Tokyo Electron Ltd Film forming method and device thereof
JP2000323362A (en) * 1999-05-07 2000-11-24 Toyota Central Res & Dev Lab Inc Electrical double layer capacitor and manufacture thereof
JP2006093037A (en) * 2004-09-27 2006-04-06 Nippon Oil Corp Lithium secondary battery
JP2006265005A (en) * 2005-03-22 2006-10-05 Kagawa Industry Support Foundation Method for manufacturing activated carbon carrying nano-sized metal or metal oxide with high efficiency
JP2009525575A (en) * 2006-02-03 2009-07-09 コミツサリア タ レネルジー アトミーク DLI-MOCVD method for forming electrodes for electrochemical reactors.
JP2015502033A (en) * 2011-11-10 2015-01-19 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Supercapacitor device having a composite electrode formed by depositing a metal oxide pseudocapacitor material on a carbon substrate
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117643766A (en) * 2024-01-29 2024-03-05 东莞市艾尔佳过滤器制造有限公司 Air conditioner filter element for efficiently degrading formaldehyde and production process thereof
CN117643766B (en) * 2024-01-29 2024-05-03 东莞市艾尔佳过滤器制造有限公司 Air conditioner filter element for efficiently degrading formaldehyde and production process thereof

Also Published As

Publication number Publication date
JPWO2019049905A1 (en) 2020-10-15
JP7296123B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
Ji et al. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries
Liu et al. 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li–S batteries
Zeng et al. Core–shell CdS@ ZIF-8 structures for improved selectivity in photocatalytic H 2 generation from formic acid
Zhang et al. Three-dimensional graphene–Co 3 O 4 cathodes for rechargeable Li–O 2 batteries
Cai et al. Rational synthesis of metal–organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures
EP2876710B1 (en) Negative active material of lithium-ion secondary battery and preparation method therefor, negative plate of lithium-ion secondary battery, and lithium-ion secondary battery
Zhu et al. Hierarchical hollow spheres composed of ultrathin Fe 2 O 3 nanosheets for lithium storage and photocatalytic water oxidation
US7887772B2 (en) Ultrafine porous graphitic carbon fiber and preparation method thereof
Li et al. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application
WO2014129597A1 (en) Carbon material for use as catalyst carrier
WO2019113993A1 (en) Carbon nanotube and method for fabrication thereof
JP2020534241A (en) Porous carbon, positive electrode and lithium secondary battery containing it
US20180190980A1 (en) Methods for manufacturing graphene based material
KR102553835B1 (en) Anode Active Material for Non-Aqueous Lithium Secondary Battery and Manufacturing Method Thereof
Thirugunanam et al. Electrospun nanoporous TiO2 nanofibers wrapped with reduced graphene oxide for enhanced and rapid lithium-ion storage
Liang et al. Synthesis and characterisation of SnO2 nano-single crystals as anode materials for lithium-ion batteries
CN112919533A (en) Nitrogen-doped carbon-coated phosphorus-doped titanium dioxide material and preparation method and application thereof
JP2021517712A (en) Silicone encapsulation for high performance battery anode materials
Jeong et al. Function-regeneration of non-porous hydrolyzed-MOF-derived materials
Cendrowski et al. Graphene nanoflakes functionalized with cobalt/cobalt oxides formation during cobalt organic framework carbonization
Bui et al. Macroporous carbon nanofiber decorated with platinum nanorods as free-standing cathodes for high-performance Li–O2 batteries
Zhao et al. Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance
Li et al. Heterojunction of SnO2/Sn nanoparticles coated by graphene-like porous carbon as ultrahigh capacity anode of lithium-ion batteries
Zhao et al. Nanostructured anode materials for Li-ion batteries
Ji et al. Fabrication of complex, 3D, branched hollow carbonaceous structures and their applications for supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854651

Country of ref document: EP

Kind code of ref document: A1