WO2019049825A1 - Automated analysis device and method for detecting abnormality of sample dispensing mechanism - Google Patents

Automated analysis device and method for detecting abnormality of sample dispensing mechanism Download PDF

Info

Publication number
WO2019049825A1
WO2019049825A1 PCT/JP2018/032608 JP2018032608W WO2019049825A1 WO 2019049825 A1 WO2019049825 A1 WO 2019049825A1 JP 2018032608 W JP2018032608 W JP 2018032608W WO 2019049825 A1 WO2019049825 A1 WO 2019049825A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sample dispensing
dispensing mechanism
nozzle
pressure
Prior art date
Application number
PCT/JP2018/032608
Other languages
French (fr)
Japanese (ja)
Inventor
誠 朝倉
Original Assignee
日本電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子株式会社 filed Critical 日本電子株式会社
Priority to JP2019540944A priority Critical patent/JP7167037B2/en
Publication of WO2019049825A1 publication Critical patent/WO2019049825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automatic analyzer including a sample dispensing mechanism for dispensing a sample such as blood or urine, and a method of detecting an abnormality in the sample dispensing mechanism.
  • a sample such as blood or urine is dispensed from a sample container to a reaction container, a reagent is dispensed from the reagent container to the reaction container, and analysis of the sample is performed by reacting the sample in the reaction container with the reagent. To be done.
  • Such an automatic analyzer is provided with a sample dispensing mechanism for dispensing a sample from a sample container to a reaction container.
  • the sample dispensing mechanism includes a sample dispensing nozzle for aspirating or discharging a sample, a sample dispensing pump for aspirating or discharging a sample to the sample dispensing nozzle, and a sample dispensing for connecting the sample dispensing nozzle and the sample dispensing pump It has a flow path.
  • the sample dispensing pump When the sample dispensing mechanism dispenses a sample, the sample dispensing pump applies negative pressure to the pressure in the sample dispensing nozzle, whereby the sample is aspirated by the sample dispensing nozzle, and the sample dispensing pump By making the pressure in the dispensing nozzle positive, the sample is discharged from the sample dispensing nozzle.
  • solid substances such as fibrin may be contained in the sample, and when the sample dispensing mechanism dispenses the sample, the solid substance is a sample dispensing nozzle. You may get stuck.
  • the sample dispensing mechanism dispenses a high-viscosity sample, the sample may clog the sample dispensing nozzle.
  • the sample dispensing mechanism can not aspirate or discharge the correct amount of sample. As a result, an accurate amount of sample may not be discharged into the reaction vessel, and an erroneous analysis result may be output.
  • Patent Document 1 the temporary pressure value (maximum change pressure) at which the pressure change in the sample dispensing channel becomes the largest per one operation of aspirating the sample
  • the sample dispensing mechanism is shown which measures the value and, at the stage when the maximum change pressure value is measured, determines whether the maximum change pressure value exceeds a predetermined threshold value. If the maximum change pressure value exceeds the threshold value, it is determined that the sample dispensing nozzle is clogged, and the operation of the sample dispensing pump is immediately stopped. As a result, the clogging of the sample dispensing nozzle is detected before the one-time operation in which the sample is aspirated, and the user can know the abnormality of the sample dispensing mechanism at an early stage.
  • the present invention has been made to solve the above-mentioned problems, and when dispensing a solid substance such as fibrin or a high-viscosity sample, clogging of the sample dispensing nozzle is detected at an early stage, and the sample is dispensed. It is an object of the present invention to provide an automatic analyzer equipped with a sample dispensing mechanism capable of reducing wasteful consumption of and a method of detecting an abnormality in the sample dispensing mechanism.
  • a sample dispensing nozzle for sucking or discharging a sample for sucking or discharging a sample
  • a sample dispensing pump for sucking or discharging a sample to the sample dispensing nozzle
  • the sample dispensing A sample dispensing mechanism having a sample dispensing channel connecting a nozzle and the sample dispensing pump, and a pressure measuring unit provided in the sample dispensing channel and measuring the pressure in the sample dispensing channel
  • the automatic analyzer according to the present invention including the controller for controlling the operation of the sample dispensing mechanism, wherein the sample dispensing mechanism dispenses the sample once.
  • the control unit causes the sample dispensing pump to aspirate the sample a plurality of times, and the pressure measurement unit measures the pressure in the sample dispensing channel for each sample aspirating operation by the sample dispensing pump. Output from the pressure measuring means And the pressure, and judging an abnormality of the sample dispensing mechanism by comparing the preset threshold.
  • FIG. 1 It is a schematic block diagram of an automatic analyzer concerning an embodiment of the present invention. It is a schematic block diagram of the sample dispensing mechanism regarding embodiment of this invention.
  • the figure which shows a mode in the sample dispensing nozzle at the time of a sample dispensing mechanism dispensing a sample from a sample container to a dilution container in the case where a sample is analyzed without being diluted regarding a 2nd embodiment of the present invention It is.
  • FIGS. 1 to 5 the same reference numerals are given to components that indicate substantially the same components and functions, and redundant description will be omitted.
  • FIG. 1 is a schematic view of an automatic analyzer 1 according to an embodiment of the present invention.
  • the automatic analyzer 1 automatically measures the amount of a specific component contained in a sample by reacting the sample collected from the subject with a reagent, and a measuring mechanism
  • the control mechanism 4 that controls the operation of each part of 3 is roughly divided.
  • the measurement mechanism 3 is a sample turntable 8 for transferring a sample container 7 containing a sample, centering on a reaction turntable 6 for transferring a reaction container 5 containing a reaction liquid containing a sample and a reagent, and diluted
  • a dilution turntable 10 for transferring a dilution container 9 containing a sample, a first reagent turntable 12 for transferring a first reagent container 11 containing a first reagent, and a second reagent container containing a second reagent Second reagent turntables 50 for transferring 13 are disposed around the reaction turntable 6 respectively.
  • the sample sucked into the container 9 and the diluted solution supplied by the sample dispensing mechanism 14 itself are discharged. In this way, in the dilution container 9, the sample is diluted to a predetermined multiple concentration, and a diluted sample is prepared.
  • the first reagent dispensing mechanism 15 disposed between the first reagent turntable 12 and the reaction turntable 6 rotates the first reagent turntable 12.
  • the first reagent is suctioned from the first reagent container 11 transferred, and the suctioned first reagent is discharged to the reaction container 5 on the reaction turntable 6.
  • the diluted sample dispensing mechanism 16 disposed between the dilution turntable 10 and the reaction turntable 6 sucks the diluted sample from the dilution container 9 transferred with the rotation of the dilution turntable 10, and the reaction turntable 6 is placed on the reaction turntable 6.
  • the diluted sample aspirated into the reaction container 5 into which the first reagent has already been dispensed is discharged.
  • the second reagent dispensing mechanism 17 disposed between the second reagent turntable 50 and the reaction turntable 6 after the reaction of the first reagent and the sample in the reaction container 5 is performed by the second reagent turntable 50 of the second reagent turntable 50.
  • the second reagent is aspirated from the second reagent container 13 transferred with the rotation, and the aspirated second reagent is discharged onto the reaction container 5 containing the reaction liquid of the first reagent and the specimen on the reaction turntable 6 .
  • the reaction container 5 in which the reaction solution of the sample and the reagent (the first reagent and the second reagent) is accommodated has a constant cycle of the photometry mechanism 18 disposed around the reaction turntable 6 by the rotation of the reaction turntable 6 Pass by.
  • the photometry mechanism 18 includes a light source lamp 19 for irradiating the reaction container 5 with light, and a multi-wavelength photometer 20 for measuring the absorbance of the inside of the reaction container 5 irradiated with the light.
  • the absorbance of the inside of the reaction container 5 which passes in a cycle is measured, and the absorbance is output to the control mechanism 4.
  • the control mechanism 4 calculates the amount of the specific component contained in the sample from the absorbance of the reaction solution of the sample and the reagent input from the photometry mechanism 18.
  • a nozzle cleaning tank 21 for cleaning the nozzles provided in each dispensing mechanism. It is arranged.
  • the nozzle cleaning tank 21 is cleaned with the cleaning liquid on the outer wall of the nozzle.
  • the cleaning solution supply unit 21a for discharging and the discharge port 21b for discarding the cleaning solution discharged by the cleaning solution supply unit 21a are provided.
  • Each dispensing mechanism which has dispensed the sample 2 or the reagent moves the nozzle to the upper side of the nozzle cleaning tank 21, and the nozzle cleaning tank 21 cleans the outer wall of the nozzle of each dispensing mechanism. At that time, each dispensing mechanism cleans the inside of the nozzle by discharging the cleaning liquid supplied by each dispensing mechanism itself from the nozzle to the nozzle cleaning tank 21.
  • control mechanism 4 is connected to the control unit 22 and the control unit 22 connected to the measurement mechanism 3 respectively, the input unit 23, the analysis unit 24, the clogging determination unit 25, the storage unit 26, And an output unit 27.
  • the control unit 22 is configured by a computer such as a microcomputer, and controls the entire automatic analyzer 1 including the measurement mechanism 3 and each part of the control mechanism 4.
  • the computer includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the control performed by the control unit 22 is performed based on a program stored in the ROM or a program loaded from the external device into the RAM and stored.
  • These programs are automatic analysis programs executed by a computer (that is, the control unit 22) for controlling the automatic analyzer 1.
  • the input unit 23 receives information necessary for analysis of the sample and instruction information of the analysis operation, and outputs the information to the control unit 22.
  • a mouse, a keyboard, a touch panel or the like is used for the input unit 23.
  • the analysis unit 24 calculates the amount of the specific component in the sample based on the information of the absorbance of the reaction solution of the sample and the reagent input from the photometry mechanism 18 via the control unit 22.
  • the clogging determination unit 25 is clogged by the sample dispensing mechanism 14 based on the pressure information in the sample dispensing mechanism 14 input from the sample dispensing mechanism 14 via the control unit 22. Determine if it has occurred.
  • the storage unit 26 is configured of a large-capacity recording device such as a hard disk, and the analysis result of the sample calculated by the analysis unit 24, the information input by the input unit 23, and the clogging determination unit 25 are sample dispensing mechanisms.
  • the threshold value etc. which are used in order to determine whether clogging has occurred in 14 are stored.
  • the output unit 27 outputs the analysis result of the sample calculated by the analysis unit 24.
  • the clogging determination unit 25 determines that the sample dispensing mechanism 14 is clogged, an alarm is output to notify the sample dispensing mechanism 14 that an abnormality has occurred.
  • a display, a printer, a speaker or the like is used for the output unit 27.
  • FIG. 2 is a schematic block diagram of the sample dispensing mechanism 14 according to an embodiment of the present invention. Next, the configuration of the sample dispensing mechanism 14 will be described based on FIG. 2 and with reference to FIGS. 1 and 3 described above.
  • the sample dispensing nozzle 28 is a nozzle provided to the sample dispensing mechanism 14 and is formed in a rod-like shape by stainless steel or the like, and the upper end thereof is held by the sample dispensing arm 29.
  • the sample dispensing arm 29 is connected to the sample dispensing arm drive unit 31 via the sample dispensing connecting shaft 30.
  • the sample dispensing arm drive unit 31 rotates the sample dispensing arm 29 horizontally around the sample dispensing connecting shaft 30 or moves the sample dispensing arm 29 in the vertical direction.
  • the sample dispensing nozzle 28 is connected to the sample dispensing pump 33 via the sample dispensing channel 32.
  • the sample dispensing pump 33 is configured of a syringe pump, and includes a plunger 34 and a plunger driving unit 35.
  • the control unit 22 controls the amount of movement of the plunger 34 to move the plunger 34 back and forth.
  • a pressure transfer medium 36 such as pure water or saline is filled. Therefore, the pressure change in the sample dispensing pump 33 accompanying the reciprocating movement of the plunger 34 is transmitted to the sample dispensing nozzle 28 via the pressure transfer medium 36, and the sample 2 is aspirated by the sample dispensing nozzle 28, or the sample dispensing The sample 2 is discharged from the nozzle 28.
  • the pressure transfer medium 36 not only plays the role of transmitting the pressure change in the sample dispensing pump 33 to the sample dispensing nozzle 28, but also the cleaning liquid for cleaning the inner wall of the sample dispensing nozzle 28, It is also used as a dilution liquid of the sample 2 which is discharged together with 2 when the 2 is discharged into the dilution container 9.
  • a pressure sensor 37 (an example of a pressure measurement unit) is provided in the sample dispensing flow path 32 connecting the sample dispensing nozzle 28 and the sample dispensing pump 33.
  • the pressure sensor 37 measures the pressure in the sample dispensing channel 32, and outputs the measured pressure value via the control unit 22 to the clogging determination unit 25.
  • the clogging determination unit 25 compares the input pressure value in the sample dispensing channel 32 with the threshold value stored in advance in the storage unit 26. If the pressure value in the sample dispensing channel 32 is out of the range of the threshold, the clogging determination unit 25 determines that the sample dispensing nozzle 28 is clogged. In that case, the control unit 22 stops the operation of the plunger driving unit 35.
  • the sample dispensing pump 33 is connected via a pressure transfer medium channel 38 to a pressure transfer medium tank 39 containing the pressure transfer medium 36.
  • the pressure transfer medium flow channel 38 is provided with two solenoid valves 40 and a pressure transfer medium pump 41, and the pressure transfer medium pump 41 is disposed so as to be sandwiched between the two solenoid valves 40.
  • the dispensing operation of the sample dispensing mechanism 14 in the case where the sample 2 is diluted and analyzed will be described.
  • the control unit 22 causes the specimen dispensing mechanism 14 to
  • the suction amount of the sample 2 is controlled so as not to be aspirated 24 ⁇ L (2a) at one time, but to be aspirated in two steps of 4 ⁇ L (2a1) and 20 ⁇ L (2a2).
  • FIG. 3 is a view showing the inside of the sample dispensing nozzle 28 when the sample dispensing mechanism 14 dispenses the sample 2 from the sample container 7 to the dilution container 9 when the sample 2 is diluted and analyzed. It is.
  • the dispensing operation of the sample dispensing mechanism 14 in the case where the sample 2 is diluted and analyzed will be described with reference to FIG. 1 and FIG. 2 in the order shown in FIG.
  • the dispensing operation of the sample dispensing mechanism 14 described below is performed by the control of each unit by the control unit 22.
  • the sample dispensing arm drive unit 31 rotates the sample dispensing arm 29 to move the sample dispensing nozzle 28 above the sample container 7 in which the sample 2 is accommodated. . At this time, the pressure transfer medium 36 is filled in the sample dispensing nozzle 28.
  • suction for forming the air layer 42 is performed. That is, as shown in FIG. 3B, the plunger driving unit 35 sucks air by pulling the plunger 34 for 2 ⁇ L, for example, to form the air layer 42 in the sample dispensing nozzle 28.
  • the pressure transfer medium 36 diffuses from the opening of the sample dispensing nozzle 28 to the sample 2 in the sample container 7. And prevent the concentration of the sample 2 in the sample container 7 from being reduced.
  • this operation may not be performed if the influence of the diffusion of the pressure transfer medium 36 on the sample 2 in the sample container 7 is small, for example, the time for which the sample 2 is aspirated is very short.
  • aspiration of the sample 2 is divided into two steps of 4 ⁇ L (2a1) and 20 ⁇ L (2a2). That is, as shown in FIG. 3C, after the sample dispensing arm driving unit 31 lowers the sample dispensing arm 29 until the tip of the sample dispensing nozzle 28 is immersed in the sample 2 in the sample container 7
  • the plunger driving unit 35 temporarily suspends operation after pulling the plunger 34 by 4 ⁇ L (2a1). Then, as shown in FIG. 3D, the plunger driving unit 35 sucks the suction amount 24 ⁇ L (2a) of the sample 2 into the sample dispensing nozzle 28 by pulling the plunger 34 by 20 ⁇ L (2a2).
  • the suction amount 24 ⁇ L (2a) of the aspirated sample 2 is discharged to the dilution container 9. That is, as shown in FIG. 3E, the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, moves the sample dispensing nozzle 28 above the dilution container 9, and then dispenses the sample.
  • the mechanism 14 discharges a suction amount 24 ⁇ L (2 a) of the sample 2 in the sample dispensing nozzle 28 and a predetermined amount of pressure transfer medium 36 into the dilution container 9.
  • the pressure transfer medium 36 discharged here is used as a dilution liquid for diluting the sample 2 used for analysis to a predetermined multiple concentration.
  • 24 ⁇ L of the sample 2 is aspirated in two steps, and at this time, it is determined whether or not the sample dispensing nozzle 28 is clogged each time the sample 2 is aspirated.
  • the above-described operation is an operation when it is determined that the sample dispensing nozzle 28 is not clogged every time the sample 2 is aspirated.
  • the pressure sensor 37 dispenses the sample
  • the pressure in the flow path 32 is measured, and the pressure value measured via the control unit 22 is output to the clogging determination unit 25.
  • the clogging determination unit 25 stores the pressure value in the sample dispensing channel 32 and the storage unit 26 in advance while 4 ⁇ L (2a1) of sample 2 and 20 ⁇ L (2a2) of sample 2 are respectively aspirated. Compare with the threshold.
  • FIG. 4 is a view showing the time change of the pressure value in the sample dispensing channel 32 when the sample 2 is aspirated by the sample dispensing nozzle 28, and FIG. 4 (a) is a threshold value of the measured pressure value.
  • FIG. 4B is a diagram showing the case where the measured pressure value is out of the range of the threshold value.
  • both the upper threshold and the lower threshold are set as the threshold, only one of them, for example, only the lower threshold may be set.
  • the pressure value in the sample dispensing channel 32 is within the threshold range. If there is, the clogging determination unit 25 determines that no clogging occurs in the sample dispensing nozzle 28, and as described above, aspiration of the sample 2 for 20 ⁇ L (2a2) (FIG. 3 (d)), the sample 2 The suction amount of 24 ⁇ L (2a) is discharged to the dilution container 9 (FIG. 3 (e)).
  • the pressure value in the sample dispensing channel 32 is within the threshold value while the sample 2 for 4 ⁇ L (2a1) and the sample 2 for 20 ⁇ L (2a2) are respectively aspirated. If it is outside, the clogging determination unit 25 determines that the clogging occurs in the sample dispensing nozzle 28, and the control unit 22 stops the subsequent dispensing operation by the sample dispensing mechanism 14 for the sample 2 At the same time, stop the analysis.
  • the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, and moves the sample dispensing nozzle 28 above the nozzle cleaning tank 21. Thereafter, the sample dispensing mechanism 14 discharges the sample 2 and the pressure transfer medium 36 in the sample dispensing nozzle 28 into the nozzle cleaning tank 21.
  • the pressure transfer medium 36 discharged here is used as a cleaning liquid for removing the clogging in the sample dispensing nozzle 28 and cleaning the inner wall of the sample dispensing nozzle 28.
  • the control unit 22 causes the output unit 27 to output an alarm notifying the user that an abnormality has occurred in the sample dispensing mechanism 14.
  • the pressure value in the sample dispensing channel 32 while the sample 2 for 4 ⁇ L (2a1) is aspirated for the threshold used to determine whether or not the sample dispensing nozzle 28 is clogged
  • the threshold value to be compared with the threshold value and the threshold value to be compared with the pressure value in the sample dispensing channel 32 while the sample 2 for 20 ⁇ L (2a2) is aspirated need not necessarily be the same.
  • the sample 2 to be analyzed is the sample 2 that clogs the sample dispensing nozzle 28
  • the clogging is detected before all the aspiration amount of the sample 2 is aspirated.
  • the user can know that an abnormality has occurred in the sample dispensing mechanism 14.
  • the aspiration amount of the sample 2 is large, even if the sample dispensing nozzle 28 is clogged, useless consumption of the sample 2 is reduced as compared with the conventional case.
  • the control unit 22 causes the sample dispensing mechanism 14 to In contrast, instead of aspirating only 24 ⁇ L (2a) of the aspiration amount of the sample 2, as an aspiration amount of the sample 2 not used for analysis, for example, 3 ⁇ L (2b) and 24 ⁇ L (2a) of the aspiration amount of the sample 2 Control to aspirate in two separate steps.
  • the sample 2 when the sample 2 is analyzed without dilution, the sample 2 is thinned by the diffusion of the pressure transfer medium 36 inside the sample dispensing nozzle 28 after the aspiration amount of the sample 2 is aspirated. In order to prevent this, an air layer 42 and a layer of the excess sample 2 are formed between the pressure transfer medium 36 and the sample 2.
  • the sample dispensing mechanism 14 sequentially sucks air, a suction amount of 3 ⁇ L (2b) of the excess sample 2, air, and a suction amount of 24 ⁇ L (2a) of the sample 2 in this order.
  • FIG. 5 shows the inside of the sample dispensing nozzle 28 when the sample dispensing mechanism 14 dispenses the sample 2 from the sample container 7 to the dilution container 9 when the sample 2 is analyzed without being diluted.
  • the sample dispensing mechanism 14 is a sample 2
  • the second embodiment up to the operation of forming the air layer 42 in the sample dispensing nozzle 28 before suctioning (FIG. 3 (a), (b)). Therefore, the description of the operation (FIGS. 5A and 5B) common to the first embodiment of the second embodiment will be omitted.
  • suction for forming the air layer 42 is performed. That is, as shown in FIG. 5D, after the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, the plunger drive unit 35 sucks air by pulling the plunger 34 for 2 ⁇ L. The air layer 42 is formed in the sample dispensing nozzle 28.
  • suction of 24 ⁇ L (2a) of the suction amount of the sample 2 is performed. That is, as shown in FIG. 5E, after the sample dispensing arm driving unit 31 lowers the sample dispensing arm 29 until the tip of the sample dispensing nozzle 28 is immersed in the sample 2 in the sample container 7
  • the plunger driving unit 35 causes the sample dispensing nozzle 28 to aspirate a suction amount of 24 ⁇ L (2a) of the sample 2 by pulling the plunger 34 by 24 ⁇ L (2a).
  • the suction amount 24 ⁇ L (2a) of the aspirated sample 2 is discharged to the dilution container 9. That is, as shown in FIG. 5F, the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, moves the sample dispensing nozzle 28 above the dilution container 9, and then dispenses the sample. The mechanism 14 discharges a suction amount 24 ⁇ L (2 a) of the sample 2 in the sample dispensing nozzle 28 into the dilution container 9.
  • a total of 27 ⁇ L of the sample 2 is aspirated in two steps, and at this time, it is determined whether or not the sample dispensing nozzle 28 is clogged each time the sample 2 is aspirated.
  • the above-described operation is an operation when it is determined that the sample dispensing nozzle 28 is not clogged every time the sample 2 is aspirated.
  • the pressure sensor 37 The pressure in the sample dispensing channel 32 is measured, and the pressure value measured via the control unit 22 is output to the clogging determination unit 25.
  • the clogging determination unit 25 pre-stores the pressure value in the sample dispensing channel 32 while the aspiration amount 3 ⁇ L (2 b) of the surplus sample 2 and the aspiration amount 24 ⁇ L (2 a) of the sample 2 are aspirated respectively.
  • the threshold value stored in 26 is compared.
  • the pressure value in the sample dispensing channel 32 is aspiration while the aspiration amount 3 ⁇ L (2 b) of the excess sample 2 and the aspiration amount 24 ⁇ L (2 a) of the sample 2 are respectively aspirated as shown in FIG.
  • the clogging determination unit 25 determines that no clogging occurs in the sample dispensing nozzle 28, and as described above, suction of 2 ⁇ L of air (FIG. 5 (d)), the sample Discharge of the suction amount 24 ⁇ L (2a) of 2 into the dilution container 9 (FIG. 3E) is performed respectively.
  • the pressure in the sample dispensing channel 32 while the aspiration amount 3 ⁇ L (2 b) of the excess sample 2 and the aspiration amount 24 ⁇ L (2 a) of the sample 2 are respectively aspirated If the value is out of the threshold range, the clogging determination unit 25 determines that a clogging occurs in the sample dispensing nozzle 28, and the control unit 22 causes the sample dispensing mechanism 14 to perform subsequent dispensing on the sample 2 Note Stop the analysis and stop the operation.
  • the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, and moves the sample dispensing nozzle 28 above the nozzle cleaning tank 21. Thereafter, the sample dispensing mechanism 14 discharges the sample 2 and the pressure transfer medium 36 in the sample dispensing nozzle 28 into the nozzle cleaning tank 21.
  • the pressure transfer medium 36 discharged here is used as a cleaning liquid for removing the clogging in the sample dispensing nozzle 28 and cleaning the inner wall of the sample dispensing nozzle 28.
  • the control unit 22 causes the output unit 27 to output an alarm notifying the user that an abnormality has occurred in the sample dispensing mechanism 14.
  • the threshold to be compared with the internal pressure value and the threshold to be compared with the pressure in the sample dispensing channel 32 while the aspiration volume of the sample 2 is 24 ⁇ L (2a) need not necessarily be the same. .
  • the sample 2 to be analyzed is a sample 2 that clogs the sample dispensing nozzle 28
  • a clog is detected before the aspiration amount of the sample 2 is aspirated.
  • the user can know that an abnormality has occurred in the sample dispensing mechanism 14.
  • the aspiration amount of the sample 2 is large, even if the sample dispensing nozzle 28 is clogged, the amount of waste sample 2 is reduced as compared with the conventional case.
  • the sample dispensing mechanism 14 dispenses the sample 2 into the dilution container 9
  • the sample dispensing mechanism 14 dispenses the sample 2
  • the destination is not limited to the dilution container 9.
  • the present invention can be applied to the case where the sample dispensing mechanism 14 dispenses the sample 2 into the reaction container 5.
  • the control unit 22 uses the result as a trigger, the control unit 22 further controls the first reagent dispensing mechanism 15 whether or not to dispense the first reagent into the reaction container 5.
  • the measurement mechanism 3 is provided with an electrolyte measurement mechanism for analyzing the concentration of electrolyte (Na ion, K ion, Cl ion, etc.) in the sample 2, and the sample dispensing mechanism 14
  • electrolyte measurement mechanism for analyzing the concentration of electrolyte (Na ion, K ion, Cl ion, etc.) in the sample 2, and the sample dispensing mechanism 14
  • the present invention is also applicable to the case of dispensing 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

This automated analysis device is characterized in that, during an operation by a sample dispensing mechanism to dispense a sample once, a control unit causes a sample dispensing pump to perform a sample sucking operation a plurality of times, causes a pressure measuring means to measure the pressure inside a sample dispensing flow passage each time the sample dispensing pump performs the sample sucking operation, and determines an abnormality of the sample dispensing mechanism by comparing the pressure output by the pressure measuring means with a preset threshold.

Description

自動分析装置および検体分注機構の異常検出方法Automatic analyzer and method for detecting abnormality in sample dispensing mechanism
 本発明は、血液や尿等の検体を分注する検体分注機構を備える自動分析装置および検体分注機構の異常検出方法に関する。 The present invention relates to an automatic analyzer including a sample dispensing mechanism for dispensing a sample such as blood or urine, and a method of detecting an abnormality in the sample dispensing mechanism.
 自動分析装置では、血液や尿等の検体を検体容器から反応容器に分注し、試薬を試薬容器から反応容器に分注し、反応容器内の検体と試薬を反応させることで検体の分析が行われる。 In an automatic analyzer, a sample such as blood or urine is dispensed from a sample container to a reaction container, a reagent is dispensed from the reagent container to the reaction container, and analysis of the sample is performed by reacting the sample in the reaction container with the reagent. To be done.
 このような自動分析装置には、検体を検体容器から反応容器に分注する検体分注機構が備えられている。検体分注機構は、検体が吸引または吐出される検体分注ノズル、検体分注ノズルに検体を吸引または吐出させる検体分注ポンプ、および検体分注ノズルと検体分注ポンプを接続する検体分注流路を備える。検体分注機構が検体を分注する際には、検体分注ポンプが検体分注ノズル内の圧力を陰圧にすることで、検体は検体分注ノズルに吸引され、検体分注ポンプが検体分注ノズル内の圧力を陽圧にすることで、検体は検体分注ノズルから吐出される。 Such an automatic analyzer is provided with a sample dispensing mechanism for dispensing a sample from a sample container to a reaction container. The sample dispensing mechanism includes a sample dispensing nozzle for aspirating or discharging a sample, a sample dispensing pump for aspirating or discharging a sample to the sample dispensing nozzle, and a sample dispensing for connecting the sample dispensing nozzle and the sample dispensing pump It has a flow path. When the sample dispensing mechanism dispenses a sample, the sample dispensing pump applies negative pressure to the pressure in the sample dispensing nozzle, whereby the sample is aspirated by the sample dispensing nozzle, and the sample dispensing pump By making the pressure in the dispensing nozzle positive, the sample is discharged from the sample dispensing nozzle.
 ところで、上記のような自動分析装置においては、検体の中にフィブリン等の固形物が含まれていることがあり、検体分注機構が検体を分注する際に、固形物が検体分注ノズルに詰まる場合がある。また、検体分注機構が粘度の高い検体を分注する際にも、検体が検体分注ノズルに詰まる場合がある。このように、検体分注ノズルに詰まりが生じると、検体分注機構は正確な量の検体を吸引または吐出することができない。その結果、正確な量の検体が反応容器に吐出されず、誤った分析結果が出力される恐れがある。このような事態を避けるために、検体分注ノズルに詰まりが生じた場合には、速やかにユーザーに検体分注機構の異常が知らされる必要がある。 By the way, in the above-mentioned automatic analyzer, solid substances such as fibrin may be contained in the sample, and when the sample dispensing mechanism dispenses the sample, the solid substance is a sample dispensing nozzle. You may get stuck. In addition, even when the sample dispensing mechanism dispenses a high-viscosity sample, the sample may clog the sample dispensing nozzle. Thus, if the sample dispensing nozzle is clogged, the sample dispensing mechanism can not aspirate or discharge the correct amount of sample. As a result, an accurate amount of sample may not be discharged into the reaction vessel, and an erroneous analysis result may be output. In order to avoid such a situation, when the sample dispensing nozzle is clogged, it is necessary to promptly notify the user of an abnormality in the sample dispensing mechanism.
 検体分注ノズルに詰まりが生じると、検体が吸引される際の検体分注ノズル内および検体分注流路内の圧力変化が、正常時よりも大きくなる。このような現象を利用して、近年では、検体分注流路内の圧力を測定する圧力測定手段が検体分注流路に設けられた検体分注機構が用いられている。 When the sample dispensing nozzle is clogged, the pressure change in the sample dispensing nozzle and in the sample dispensing channel when the sample is aspirated becomes larger than that in the normal state. In recent years, a sample dispensing mechanism in which a pressure measuring means for measuring the pressure in the sample dispensing channel is provided in the sample dispensing channel using such a phenomenon has been used.
 特開昭63-75565号公報(特許文献1)では、検体が吸引される1回の動作につき、検体分注流路内の圧力変化が最も大きくなる時の一時的な圧力値(最大変化圧力値)を測定し、前記最大変化圧力値が測定された段階で、前記最大変化圧力値が予め設けられた閾値を超えていないかを判定する検体分注機構が示されている。前記最大変化圧力値が閾値を超えていた場合は、検体分注ノズルに詰まりが生じていると判定され、検体分注ポンプの動作が即座に停止される。その結果、検体が吸引される1回の動作が終了する前に、検体分注ノズルの詰まりが検出され、早い段階でユーザーは検体分注機構の異常を知ることができる。 In Japanese Patent Application Laid-Open No. 63-75565 (Patent Document 1), the temporary pressure value (maximum change pressure) at which the pressure change in the sample dispensing channel becomes the largest per one operation of aspirating the sample The sample dispensing mechanism is shown which measures the value and, at the stage when the maximum change pressure value is measured, determines whether the maximum change pressure value exceeds a predetermined threshold value. If the maximum change pressure value exceeds the threshold value, it is determined that the sample dispensing nozzle is clogged, and the operation of the sample dispensing pump is immediately stopped. As a result, the clogging of the sample dispensing nozzle is detected before the one-time operation in which the sample is aspirated, and the user can know the abnormality of the sample dispensing mechanism at an early stage.
特開昭63-75565号公報Japanese Patent Application Laid-Open No. 63-75565
 しかしながら、特許文献1に記載の検体分注機構では、検体分注ノズルに詰まりが生じていると判定された場合、検体分注流路内の圧力が前記最大変化圧力値に達するまでに吸引された検体は、廃棄されるため無駄となる。一般的に、検体分注機構において、検体が吸引される動作は、吸引される検体の量に関わらず一定の時間で行われる。そのため、吸引される検体の量が多いほど、検体分注流路内の圧力が最大圧力値に達するまでに吸引される検体の量は多くなり、検体分注ノズルに詰まりが生じた場合に無駄となる検体の量は多くなる。 However, in the sample dispensing mechanism described in Patent Document 1, when it is determined that the sample dispensing nozzle is clogged, suction is performed until the pressure in the sample dispensing channel reaches the maximum change pressure value. Samples are wasted because they are discarded. Generally, in the sample dispensing mechanism, the operation of aspirating the sample is performed at a constant time regardless of the amount of the aspirated sample. Therefore, the greater the volume of sample to be aspirated, the greater the volume of sample to be aspirated before the pressure in the sample dispensing channel reaches the maximum pressure value, which is a waste when the sample dispensing nozzle is clogged. The amount of samples to be
 本発明は、上記問題点を解決するためになされたものであり、フィブリン等の固形物や高粘度の検体を分注する際に、検体分注ノズルの詰まりを早い段階で検出し、かつ検体の無駄な消費を低減することができる検体分注機構を備えた自動分析装置および検体分注機構の異常検出方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and when dispensing a solid substance such as fibrin or a high-viscosity sample, clogging of the sample dispensing nozzle is detected at an early stage, and the sample is dispensed. It is an object of the present invention to provide an automatic analyzer equipped with a sample dispensing mechanism capable of reducing wasteful consumption of and a method of detecting an abnormality in the sample dispensing mechanism.
 上記課題を解決し、本発明の目的を達成するため、検体が吸引または吐出される検体分注ノズルと、前記検体分注ノズルに検体を吸引または吐出させる検体分注ポンプと、前記検体分注ノズルと前記検体分注ポンプを接続する検体分注流路と、前記検体分注流路に設けられ、前記検体分注流路内の圧力を測定する圧力測定手段と、を有する検体分注機構と、前記検体分注機構の動作を制御する制御部と、を備える自動分析装置において、本発明の自動分析装置は、前記検体分注機構が前記検体を1回分注する動作の中で、前記制御部は、前記検体分注ポンプに前記検体の吸引動作を複数回行わせ、前記圧力測定手段に前記検体分注流路内の圧力を前記検体分注ポンプによる前記検体の吸引動作毎に測定させ、前記圧力測定手段から出力された前記圧力と、予め設定された閾値とを比較することで前記検体分注機構の異常を判定することを特徴とする。 In order to solve the above problems and achieve the object of the present invention, a sample dispensing nozzle for sucking or discharging a sample, a sample dispensing pump for sucking or discharging a sample to the sample dispensing nozzle, and the sample dispensing A sample dispensing mechanism having a sample dispensing channel connecting a nozzle and the sample dispensing pump, and a pressure measuring unit provided in the sample dispensing channel and measuring the pressure in the sample dispensing channel The automatic analyzer according to the present invention, in the automatic analyzer including the controller for controlling the operation of the sample dispensing mechanism, wherein the sample dispensing mechanism dispenses the sample once. The control unit causes the sample dispensing pump to aspirate the sample a plurality of times, and the pressure measurement unit measures the pressure in the sample dispensing channel for each sample aspirating operation by the sample dispensing pump. Output from the pressure measuring means And the pressure, and judging an abnormality of the sample dispensing mechanism by comparing the preset threshold.
本発明の実施形態に関する自動分析装置の概略構成図である。It is a schematic block diagram of an automatic analyzer concerning an embodiment of the present invention. 本発明の実施形態に関する検体分注機構の概略構成図である。It is a schematic block diagram of the sample dispensing mechanism regarding embodiment of this invention. 本発明の第1実施形態に関する、検体が希釈されて分析される場合における、検体分注機構が検体を検体容器から希釈容器に分注する際の、検体分注ノズル内の様子を示す図である。The figure which shows a mode in the sample dispensing nozzle at the time of a sample dispensing mechanism dispensing a sample from a sample container to a dilution container in the case where a sample is diluted and analyzed regarding 1st Embodiment of this invention. is there. 検体が検体分注ノズルに吸引される際の検体分注流路内の圧力値の時間変化を示す図である。It is a figure which shows the time change of the pressure value in the sample dispensing channel when a sample is aspirated by a sample dispensing nozzle. 本発明の第2実施形態に関する、検体が希釈されずに分析される場合における、検体分注機構が検体を検体容器から希釈容器に分注する際の、検体分注ノズル内の様子を示す図である。The figure which shows a mode in the sample dispensing nozzle at the time of a sample dispensing mechanism dispensing a sample from a sample container to a dilution container in the case where a sample is analyzed without being diluted regarding a 2nd embodiment of the present invention It is.
 以下、図1~図5に基づいて、本発明の実施の形態について説明する。本明細書および各図面において、実質的に同一の構成要素、機能を示すものについては共通の符号を付し、重複する説明は省略する。 Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 5. In the present specification and the drawings, the same reference numerals are given to components that indicate substantially the same components and functions, and redundant description will be omitted.
 (自動分析装置の構成)
図1は、本発明の実施形態に関する自動分析装置1の概略構成図である。図1に示すように、自動分析装置1は、被検査者から採取された検体と試薬とを反応させることで検体中に含まれる特定成分の量を自動で測定する測定機構3と、測定機構3の各部の動作を制御する制御機構4に大きく分けられる。
(Configuration of automatic analyzer)
FIG. 1 is a schematic view of an automatic analyzer 1 according to an embodiment of the present invention. As shown in FIG. 1, the automatic analyzer 1 automatically measures the amount of a specific component contained in a sample by reacting the sample collected from the subject with a reagent, and a measuring mechanism The control mechanism 4 that controls the operation of each part of 3 is roughly divided.
 測定機構3は、検体と試薬からなる反応液が収容された反応容器5を移送する反応ターンテーブル6を中心にして、検体が収容された検体容器7を移送する検体ターンテーブル8、希釈された検体が収容された希釈容器9を移送する希釈ターンテーブル10、第1試薬が収容された第1試薬容器11を移送する第1試薬ターンテーブル12、および第2試薬が収容された第2試薬容器13を移送する第2試薬ターンテーブル50が反応ターンテーブル6の周囲にそれぞれ配置されて構成される。 The measurement mechanism 3 is a sample turntable 8 for transferring a sample container 7 containing a sample, centering on a reaction turntable 6 for transferring a reaction container 5 containing a reaction liquid containing a sample and a reagent, and diluted A dilution turntable 10 for transferring a dilution container 9 containing a sample, a first reagent turntable 12 for transferring a first reagent container 11 containing a first reagent, and a second reagent container containing a second reagent Second reagent turntables 50 for transferring 13 are disposed around the reaction turntable 6 respectively.
 検体ターンテーブル8と希釈ターンテーブル10の間に配置されている検体分注機構14は、検体ターンテーブル8の回転と共に移送されてくる検体容器7から検体を吸引し、希釈ターンテーブル10上の希釈容器9内に吸引した検体と検体分注機構14自体が供給する希釈液を吐出する。このようにして、希釈容器9内では、検体が所定倍数の濃度に希釈され、希釈検体が調製される。 The sample dispensing mechanism 14 disposed between the sample turntable 8 and the dilution turntable 10 aspirates the sample from the sample container 7 transferred with the rotation of the sample turntable 8 and dilutes it on the dilution turntable 10. The sample sucked into the container 9 and the diluted solution supplied by the sample dispensing mechanism 14 itself are discharged. In this way, in the dilution container 9, the sample is diluted to a predetermined multiple concentration, and a diluted sample is prepared.
 検体分注機構14によって希釈検体が調製される間に、第1試薬ターンテーブル12と反応ターンテーブル6の間に配置されている第1試薬分注機構15は、第1試薬ターンテーブル12の回転と共に移送されてくる第1試薬容器11から第1試薬を吸引し、反応ターンテーブル6上の反応容器5に吸引した第1試薬を吐出する。 While the diluted sample is prepared by the sample dispensing mechanism 14, the first reagent dispensing mechanism 15 disposed between the first reagent turntable 12 and the reaction turntable 6 rotates the first reagent turntable 12. At the same time, the first reagent is suctioned from the first reagent container 11 transferred, and the suctioned first reagent is discharged to the reaction container 5 on the reaction turntable 6.
 希釈ターンテーブル10と反応ターンテーブル6の間に配置されている希釈検体分注機構16は、希釈ターンテーブル10の回転と共に移送されてくる希釈容器9から希釈検体を吸引し、反応ターンテーブル6上の既に第1試薬が分注された反応容器5に吸引した希釈検体を吐出する。 The diluted sample dispensing mechanism 16 disposed between the dilution turntable 10 and the reaction turntable 6 sucks the diluted sample from the dilution container 9 transferred with the rotation of the dilution turntable 10, and the reaction turntable 6 is placed on the reaction turntable 6. The diluted sample aspirated into the reaction container 5 into which the first reagent has already been dispensed is discharged.
 反応容器5内で第1試薬と検体とが反応した後、第2試薬ターンテーブル50と反応ターンテーブル6の間に配置されている第2試薬分注機構17は、第2試薬ターンテーブル50の回転と共に移送されてくる第2試薬容器13から第2試薬を吸引し、反応ターンテーブル6上の第1試薬と検体との反応液が収容された反応容器5に吸引した第2試薬を吐出する。 The second reagent dispensing mechanism 17 disposed between the second reagent turntable 50 and the reaction turntable 6 after the reaction of the first reagent and the sample in the reaction container 5 is performed by the second reagent turntable 50 of the second reagent turntable 50. The second reagent is aspirated from the second reagent container 13 transferred with the rotation, and the aspirated second reagent is discharged onto the reaction container 5 containing the reaction liquid of the first reagent and the specimen on the reaction turntable 6 .
 検体と試薬(第1試薬および第2試薬)との反応液が収容された反応容器5は、反応ターンテーブル6の回転によって、反応ターンテーブル6の周囲に配置された測光機構18を一定の周期で通過する。測光機構18は、反応容器5に光を照射する光源ランプ19と、光が照射された反応容器5の内部の吸光度を測定する多波長光度計20を備え、多波長光度計20は、一定の周期で通過する反応容器5の内部の吸光度を測定し、その吸光度を制御機構4に出力する。制御機構4は、測光機構18から入力された、検体と試薬との反応液の吸光度から、検体中に含まれる特定成分の量を算出する。 The reaction container 5 in which the reaction solution of the sample and the reagent (the first reagent and the second reagent) is accommodated has a constant cycle of the photometry mechanism 18 disposed around the reaction turntable 6 by the rotation of the reaction turntable 6 Pass by. The photometry mechanism 18 includes a light source lamp 19 for irradiating the reaction container 5 with light, and a multi-wavelength photometer 20 for measuring the absorbance of the inside of the reaction container 5 irradiated with the light. The absorbance of the inside of the reaction container 5 which passes in a cycle is measured, and the absorbance is output to the control mechanism 4. The control mechanism 4 calculates the amount of the specific component contained in the sample from the absorbance of the reaction solution of the sample and the reagent input from the photometry mechanism 18.
 検体分注機構14、希釈検体分注機構16、第1試薬分注機構15、および第2試薬分注機構17の近傍には、各分注機構に備えられるノズルを洗浄するノズル洗浄槽21が配置されている。ここで、図3の検体分注ノズル内の様子を示す図中の図3(f)および図3(g)に、一例として示されるように、ノズル洗浄槽21は、ノズルの外壁に洗浄液を吐出する洗浄液供給部21aと、洗浄液供給部21aによって吐出された洗浄液を廃棄する排出口21bを備える。検体2または試薬を分注し終えた各分注機構はノズル洗浄槽21の上方にノズルを移動し、ノズル洗浄槽21は各分注機構のノズルの外壁を洗浄する。その際、各分注機構は、各分注機構自体が供給する洗浄液をノズルからノズル洗浄槽21に吐出することでノズルの内部を洗浄する。 In the vicinity of the sample dispensing mechanism 14, the diluted sample dispensing mechanism 16, the first reagent dispensing mechanism 15, and the second reagent dispensing mechanism 17, there is a nozzle cleaning tank 21 for cleaning the nozzles provided in each dispensing mechanism. It is arranged. Here, as shown in FIG. 3 (f) and FIG. 3 (g) in the drawing showing the inside of the sample dispensing nozzle in FIG. 3 as an example, the nozzle cleaning tank 21 is cleaned with the cleaning liquid on the outer wall of the nozzle. The cleaning solution supply unit 21a for discharging and the discharge port 21b for discarding the cleaning solution discharged by the cleaning solution supply unit 21a are provided. Each dispensing mechanism which has dispensed the sample 2 or the reagent moves the nozzle to the upper side of the nozzle cleaning tank 21, and the nozzle cleaning tank 21 cleans the outer wall of the nozzle of each dispensing mechanism. At that time, each dispensing mechanism cleans the inside of the nozzle by discharging the cleaning liquid supplied by each dispensing mechanism itself from the nozzle to the nozzle cleaning tank 21.
 再び図1に戻り、制御機構4は、測定機構3に接続されている制御部22、制御部22にそれぞれ接続されている、入力部23、分析部24、詰まり判定部25、記憶部26、および出力部27を備える。 Referring back to FIG. 1 again, the control mechanism 4 is connected to the control unit 22 and the control unit 22 connected to the measurement mechanism 3 respectively, the input unit 23, the analysis unit 24, the clogging determination unit 25, the storage unit 26, And an output unit 27.
 制御部22は、マイクロコンピューターなどの計算機によって構成されており、測定機構3および制御機構4の各部を含む自動分析装置1全体の制御を行う。計算機は、CPU(Central Processing Unit:中央処理装置)、ROM(Read Only Memory)、RAM(Random Access Memory)を備える。このような制御部22が実施する制御は、ROMに保存されたプログラム、または外部装置からRAMにロードされて保存されたプログラムに基づいて実施される。これらのプログラムは、自動分析装置1を制御するためのコンピューター(すなわち制御部22)によって実行される自動分析プログラムである。 The control unit 22 is configured by a computer such as a microcomputer, and controls the entire automatic analyzer 1 including the measurement mechanism 3 and each part of the control mechanism 4. The computer includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). The control performed by the control unit 22 is performed based on a program stored in the ROM or a program loaded from the external device into the RAM and stored. These programs are automatic analysis programs executed by a computer (that is, the control unit 22) for controlling the automatic analyzer 1.
 入力部23は、検体の分析に必要な情報や、分析動作の指示情報を受け付け、それらの情報を制御部22に出力する。入力部23には、マウス、キーボード、タッチパネル等が用いられる。 The input unit 23 receives information necessary for analysis of the sample and instruction information of the analysis operation, and outputs the information to the control unit 22. For the input unit 23, a mouse, a keyboard, a touch panel or the like is used.
 分析部24は、測光機構18から制御部22を経由して入力された、検体と試薬との反応液の吸光度の情報を基にして、検体中の特定成分の量を算出する。 The analysis unit 24 calculates the amount of the specific component in the sample based on the information of the absorbance of the reaction solution of the sample and the reagent input from the photometry mechanism 18 via the control unit 22.
 詰まり判定部25は、後述するように、検体分注機構14から制御部22を経由して入力された、検体分注機構14内の圧力情報を基にして、検体分注機構14で詰まりが生じているか否かを判定する。 As described later, the clogging determination unit 25 is clogged by the sample dispensing mechanism 14 based on the pressure information in the sample dispensing mechanism 14 input from the sample dispensing mechanism 14 via the control unit 22. Determine if it has occurred.
 記憶部26は、ハードディスク等の大容量の記録装置によって構成されており、分析部24で算出された検体の分析結果、入力部23にて入力された情報、詰まり判定部25が検体分注機構14で詰まりが生じているか否かを判定するために使用する閾値等を記憶する。 The storage unit 26 is configured of a large-capacity recording device such as a hard disk, and the analysis result of the sample calculated by the analysis unit 24, the information input by the input unit 23, and the clogging determination unit 25 are sample dispensing mechanisms. The threshold value etc. which are used in order to determine whether clogging has occurred in 14 are stored.
 出力部27は、分析部24で算出された検体の分析結果を出力する。また、詰まり判定部25が検体分注機構14で詰まりが生じていると判定した場合、検体分注機構14に異常が生じたことを知らせるアラームを出力する。出力部27には、ディスプレイ、プリンタ、スピーカー等が用いられる。 The output unit 27 outputs the analysis result of the sample calculated by the analysis unit 24. When the clogging determination unit 25 determines that the sample dispensing mechanism 14 is clogged, an alarm is output to notify the sample dispensing mechanism 14 that an abnormality has occurred. For the output unit 27, a display, a printer, a speaker or the like is used.
 (検体分注機構の構成)
図2は、本発明の実施形態に関する検体分注機構14の概略構成図である。次に、図2に基づき、先の図1および図3を参照しつつ、検体分注機構14の構成を説明する。
(Configuration of sample dispensing mechanism)
FIG. 2 is a schematic block diagram of the sample dispensing mechanism 14 according to an embodiment of the present invention. Next, the configuration of the sample dispensing mechanism 14 will be described based on FIG. 2 and with reference to FIGS. 1 and 3 described above.
 検体分注ノズル28は、検体分注機構14に備えられたノズルであって、ステンレス等によって棒管状に形成されており、その上端は検体分注アーム29に保持されている。検体分注アーム29は、検体分注連結軸30を介して検体分注アーム駆動部31と接続されている。検体分注アーム駆動部31は、検体分注アーム29を、検体分注連結軸30を中心にして水平方向に回転移動、または上下方向に移動させる。 The sample dispensing nozzle 28 is a nozzle provided to the sample dispensing mechanism 14 and is formed in a rod-like shape by stainless steel or the like, and the upper end thereof is held by the sample dispensing arm 29. The sample dispensing arm 29 is connected to the sample dispensing arm drive unit 31 via the sample dispensing connecting shaft 30. The sample dispensing arm drive unit 31 rotates the sample dispensing arm 29 horizontally around the sample dispensing connecting shaft 30 or moves the sample dispensing arm 29 in the vertical direction.
 検体分注ノズル28は、検体分注流路32を介して検体分注ポンプ33と接続されている。検体分注ポンプ33は、シリンジポンプで構成されており、プランジャ34とプランジャ駆動部35を備える。制御部22は、プランジャ34の移動量を制御し、プランジャ34を往復移動させる。 The sample dispensing nozzle 28 is connected to the sample dispensing pump 33 via the sample dispensing channel 32. The sample dispensing pump 33 is configured of a syringe pump, and includes a plunger 34 and a plunger driving unit 35. The control unit 22 controls the amount of movement of the plunger 34 to move the plunger 34 back and forth.
 検体分注ノズル28および検体分注流路32内には、純水や生理食塩水等の圧力伝達媒体36が充填されている。そのため、プランジャ34の往復移動に伴う検体分注ポンプ33内の圧力変化が、圧力伝達媒体36を介して検体分注ノズル28に伝わり、検体分注ノズル28に検体2が吸引、または検体分注ノズル28から検体2が吐出される。圧力伝達媒体36は、検体分注ポンプ33内の圧力変化を検体分注ノズル28に伝達させる役割を果たすだけでなく、後述するように、検体分注ノズル28の内壁を洗浄する洗浄液、または検体2が希釈容器9に吐出される際に共に吐出される検体2の希釈液としても使用される。 In the sample dispensing nozzle 28 and the sample dispensing channel 32, a pressure transfer medium 36 such as pure water or saline is filled. Therefore, the pressure change in the sample dispensing pump 33 accompanying the reciprocating movement of the plunger 34 is transmitted to the sample dispensing nozzle 28 via the pressure transfer medium 36, and the sample 2 is aspirated by the sample dispensing nozzle 28, or the sample dispensing The sample 2 is discharged from the nozzle 28. The pressure transfer medium 36 not only plays the role of transmitting the pressure change in the sample dispensing pump 33 to the sample dispensing nozzle 28, but also the cleaning liquid for cleaning the inner wall of the sample dispensing nozzle 28, It is also used as a dilution liquid of the sample 2 which is discharged together with 2 when the 2 is discharged into the dilution container 9.
 検体分注ノズル28と検体分注ポンプ33を接続する検体分注流路32には、圧力センサ37(圧力測定手段の一例)が設けられている。圧力センサ37は、検体分注流路32内の圧力を測定し、制御部22を経由させて測定した圧力値を詰まり判定部25に出力する。詰まり判定部25は、入力された検体分注流路32内の圧力値と予め記憶部26に記憶された閾値とを比較する。検体分注流路32内の圧力値が閾値の範囲外であった場合、詰まり判定部25は検体分注ノズル28内に詰まりが生じていると判定する。その場合には、制御部22はプランジャ駆動部35の動作を停止させる。 A pressure sensor 37 (an example of a pressure measurement unit) is provided in the sample dispensing flow path 32 connecting the sample dispensing nozzle 28 and the sample dispensing pump 33. The pressure sensor 37 measures the pressure in the sample dispensing channel 32, and outputs the measured pressure value via the control unit 22 to the clogging determination unit 25. The clogging determination unit 25 compares the input pressure value in the sample dispensing channel 32 with the threshold value stored in advance in the storage unit 26. If the pressure value in the sample dispensing channel 32 is out of the range of the threshold, the clogging determination unit 25 determines that the sample dispensing nozzle 28 is clogged. In that case, the control unit 22 stops the operation of the plunger driving unit 35.
 検体分注ポンプ33は、圧力伝達媒体流路38を介して圧力伝達媒体36が収容された圧力伝達媒体タンク39に接続されている。圧力伝達媒体流路38には2つの電磁弁40と圧力伝達媒体ポンプ41が設けられており、圧力伝達媒体ポンプ41は2つの電磁弁40に挟まれるように配置されている。 The sample dispensing pump 33 is connected via a pressure transfer medium channel 38 to a pressure transfer medium tank 39 containing the pressure transfer medium 36. The pressure transfer medium flow channel 38 is provided with two solenoid valves 40 and a pressure transfer medium pump 41, and the pressure transfer medium pump 41 is disposed so as to be sandwiched between the two solenoid valves 40.
 (第1実施形態)
本発明の第1実施形態として、検体2が希釈されて分析される場合の検体分注機構14の分注動作について説明する。本第1実施形態では、分析に使用される検体2の吸引量として、例えば24μL(2a)が入力部23から制御部22に入力された際に、制御部22は、検体分注機構14に対して、検体2の吸引量24μL(2a)を一度に吸引させるのではなく、4μL(2a1)と20μL(2a2)の2回に分けて吸引させるように制御する。
First Embodiment
As a first embodiment of the present invention, the dispensing operation of the sample dispensing mechanism 14 in the case where the sample 2 is diluted and analyzed will be described. In the first embodiment, when, for example, 24 μL (2a) is input from the input unit 23 to the control unit 22 as the aspiration amount of the sample 2 used for analysis, the control unit 22 causes the specimen dispensing mechanism 14 to On the other hand, the suction amount of the sample 2 is controlled so as not to be aspirated 24 μL (2a) at one time, but to be aspirated in two steps of 4 μL (2a1) and 20 μL (2a2).
 図3は、検体2が希釈されて分析される場合における、検体分注機構14が検体2を検体容器7から希釈容器9に分注する際の、検体分注ノズル28内の様子を示す図である。以下においては、図3に示す順に、先の図1および図2を参照しつつ、検体2が希釈されて分析される場合の検体分注機構14の分注動作を説明する。なお、以下に説明する検体分注機構14の分注動作は、制御部22による各部の制御によって実施される。 FIG. 3 is a view showing the inside of the sample dispensing nozzle 28 when the sample dispensing mechanism 14 dispenses the sample 2 from the sample container 7 to the dilution container 9 when the sample 2 is diluted and analyzed. It is. In the following, the dispensing operation of the sample dispensing mechanism 14 in the case where the sample 2 is diluted and analyzed will be described with reference to FIG. 1 and FIG. 2 in the order shown in FIG. The dispensing operation of the sample dispensing mechanism 14 described below is performed by the control of each unit by the control unit 22.
 まず、図3(a)に示すように、検体分注アーム駆動部31が、検体分注アーム29を回転させ、検体分注ノズル28を検体2が収容された検体容器7の上方に移動させる。この時、検体分注ノズル28内には、圧力伝達媒体36が満たされている。 First, as shown in FIG. 3A, the sample dispensing arm drive unit 31 rotates the sample dispensing arm 29 to move the sample dispensing nozzle 28 above the sample container 7 in which the sample 2 is accommodated. . At this time, the pressure transfer medium 36 is filled in the sample dispensing nozzle 28.
 次に、空気層42を形成するための吸引が行われる。すなわち、図3(b)に示すように、プランジャ駆動部35が、プランジャ34を例えば2μL分引くことで空気を吸引し、検体分注ノズル28内に空気層42を形成させる。このようにすることで、後に検体分注機構14が検体容器7から検体2を吸引する際に、検体分注ノズル28の開口部から圧力伝達媒体36が検体容器7内の検体2に拡散し、検体容器7内の検体2の濃度が薄まることを防ぐ。ただし、検体2が吸引される時間が非常に短い等、検体容器7内の検体2への圧力伝達媒体36の拡散の影響が小さい場合には、本動作は行われなくてもよい。 Next, suction for forming the air layer 42 is performed. That is, as shown in FIG. 3B, the plunger driving unit 35 sucks air by pulling the plunger 34 for 2 μL, for example, to form the air layer 42 in the sample dispensing nozzle 28. By doing so, when the sample dispensing mechanism 14 aspirates the sample 2 from the sample container 7 later, the pressure transfer medium 36 diffuses from the opening of the sample dispensing nozzle 28 to the sample 2 in the sample container 7. And prevent the concentration of the sample 2 in the sample container 7 from being reduced. However, this operation may not be performed if the influence of the diffusion of the pressure transfer medium 36 on the sample 2 in the sample container 7 is small, for example, the time for which the sample 2 is aspirated is very short.
 次に、検体2の吸引が4μL(2a1)と20μL(2a2)の2回に分けて行われる。すなわち、図3(c)に示すように、検体分注アーム駆動部31は、検体分注ノズル28の先端が検体容器7内の検体2に浸漬するまで検体分注アーム29を下降させた後、プランジャ駆動部35は、プランジャ34を4μL(2a1)分引いたところで一旦動作を休止する。そして、図3(d)に示すように、プランジャ駆動部35は、プランジャ34を20μL(2a2)分引くことで、検体分注ノズル28内に検体2の吸引量24μL(2a)を吸引させる。 Next, aspiration of the sample 2 is divided into two steps of 4 μL (2a1) and 20 μL (2a2). That is, as shown in FIG. 3C, after the sample dispensing arm driving unit 31 lowers the sample dispensing arm 29 until the tip of the sample dispensing nozzle 28 is immersed in the sample 2 in the sample container 7 The plunger driving unit 35 temporarily suspends operation after pulling the plunger 34 by 4 μL (2a1). Then, as shown in FIG. 3D, the plunger driving unit 35 sucks the suction amount 24 μL (2a) of the sample 2 into the sample dispensing nozzle 28 by pulling the plunger 34 by 20 μL (2a2).
 最後に、吸引された検体2の吸引量24μL(2a)の希釈容器9への吐出が行われる。すなわち、図3(e)に示すように、検体分注アーム駆動部31は、検体分注アーム29を上昇させ、検体分注ノズル28を希釈容器9の上方に移動させた後、検体分注機構14は検体分注ノズル28内の検体2の吸引量24μL(2a)および所定量の圧力伝達媒体36を希釈容器9に吐出する。ここで吐出される圧力伝達媒体36は、分析に使用される検体2を所定倍数の濃度に希釈する希釈液として使用される。 Finally, the suction amount 24 μL (2a) of the aspirated sample 2 is discharged to the dilution container 9. That is, as shown in FIG. 3E, the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, moves the sample dispensing nozzle 28 above the dilution container 9, and then dispenses the sample. The mechanism 14 discharges a suction amount 24 μL (2 a) of the sample 2 in the sample dispensing nozzle 28 and a predetermined amount of pressure transfer medium 36 into the dilution container 9. The pressure transfer medium 36 discharged here is used as a dilution liquid for diluting the sample 2 used for analysis to a predetermined multiple concentration.
 以上のように、24μLの検体2が2回に分けて吸引されるが、その際、検体2が吸引される毎に、検体分注ノズル28に詰まりが生じているか否かが判定される。上述した動作は、検体2が吸引される毎に検体分注ノズル28に詰まりは生じていないと判定された場合の動作である。 As described above, 24 μL of the sample 2 is aspirated in two steps, and at this time, it is determined whether or not the sample dispensing nozzle 28 is clogged each time the sample 2 is aspirated. The above-described operation is an operation when it is determined that the sample dispensing nozzle 28 is not clogged every time the sample 2 is aspirated.
 すなわち、図3(c)、図3(d)に示すように、4μL(2a1)分の検体2および20μL(2a2)分の検体2がそれぞれ吸引される間、圧力センサ37は、検体分注流路32内の圧力を測定し、制御部22を経由させて測定した圧力値を詰まり判定部25に出力する。詰まり判定部25は、4μL(2a1)分の検体2および20μL(2a2)分の検体2がそれぞれ吸引される間の検体分注流路32内の圧力値と、予め記憶部26に記憶された閾値とを比較する。 That is, as shown in FIGS. 3C and 3D, while the sample 2 for 4 μL (2a1) and the sample 2 for 20 μL (2a2) are respectively aspirated, the pressure sensor 37 dispenses the sample The pressure in the flow path 32 is measured, and the pressure value measured via the control unit 22 is output to the clogging determination unit 25. The clogging determination unit 25 stores the pressure value in the sample dispensing channel 32 and the storage unit 26 in advance while 4 μL (2a1) of sample 2 and 20 μL (2a2) of sample 2 are respectively aspirated. Compare with the threshold.
 図4は、検体2が検体分注ノズル28に吸引される際の検体分注流路32内の圧力値の時間変化を示す図であり、図4(a)は測定された圧力値が閾値の範囲内であった場合を示す図、図4(b)は測定された圧力値が閾値の範囲外であった場合を示す図である。なお、図面においては、閾値として上限閾値および下限閾値の両方を設定したが、設定される閾値は、何れか一方のみ、たとえば下限閾値のみでもよい。 FIG. 4 is a view showing the time change of the pressure value in the sample dispensing channel 32 when the sample 2 is aspirated by the sample dispensing nozzle 28, and FIG. 4 (a) is a threshold value of the measured pressure value. FIG. 4B is a diagram showing the case where the measured pressure value is out of the range of the threshold value. In the drawing, although both the upper threshold and the lower threshold are set as the threshold, only one of them, for example, only the lower threshold may be set.
 図4(a)に示すように、4μL(2a1)分の検体2、20μL(2a2)分の検体2がそれぞれ吸引される間の検体分注流路32内の圧力値が閾値の範囲内であった場合、詰まり判定部25は検体分注ノズル28内に詰まりは生じていないと判定し、先述したように、20μL(2a2)分の検体2の吸引(図3(d))、検体2の吸引量24μL(2a)の希釈容器9への吐出(図3(e))がそれぞれ行われる。 As shown in FIG. 4A, while the sample 2 for 4 μL (2a1) and the sample 2 for 20 μL (2a2) are respectively aspirated, the pressure value in the sample dispensing channel 32 is within the threshold range. If there is, the clogging determination unit 25 determines that no clogging occurs in the sample dispensing nozzle 28, and as described above, aspiration of the sample 2 for 20 μL (2a2) (FIG. 3 (d)), the sample 2 The suction amount of 24 μL (2a) is discharged to the dilution container 9 (FIG. 3 (e)).
 一方、図4(b)に示すように、4μL(2a1)分の検体2、20μL(2a2)分の検体2がそれぞれ吸引される間の検体分注流路32内の圧力値が閾値の範囲外であった場合、詰まり判定部25は検体分注ノズル28内に詰まりが生じていると判定し、制御部22はその検体2に対する、検体分注機構14による以降の分注動作を中止させると共に、分析を中止する。 On the other hand, as shown in FIG. 4B, the pressure value in the sample dispensing channel 32 is within the threshold value while the sample 2 for 4 μL (2a1) and the sample 2 for 20 μL (2a2) are respectively aspirated. If it is outside, the clogging determination unit 25 determines that the clogging occurs in the sample dispensing nozzle 28, and the control unit 22 stops the subsequent dispensing operation by the sample dispensing mechanism 14 for the sample 2 At the same time, stop the analysis.
 したがって、4μL(2a1)分の検体2が吸引される間(図3(c))に、検体分注ノズル28に詰まりが生じていると判定された場合は、図3(d)に示す20μL(2a2)分の検体2の吸引、およびその検体2の分析に使用される第1試薬と第2試薬の反応容器5への分注が中止され、検体2および試薬の無駄な消費が抑えられる。 Therefore, if it is determined that the sample dispensing nozzle 28 is clogged while the sample 2 for 4 μL (2a1) is aspirated (FIG. 3 (c)), 20 μL shown in FIG. 3 (d) (2a2) Aspiration of the sample 2 for a minute and dispensation of the first reagent and the second reagent used for analysis of the sample 2 into the reaction container 5 are discontinued, and wasteful consumption of the sample 2 and the reagent is suppressed .
 20μL(2a2)分の検体2が吸引される間(図3(d))に、検体分注ノズル28に詰まりが生じていると判定された場合は、図3(e)に示す検体2の吸引量24μL(2a)と所定量の圧力伝達媒体36の希釈容器9への吐出、およびその検体2の分析に使用される第1試薬と第2試薬の反応容器5への分注が中止され、試薬の無駄な消費が抑えられる。 When it is determined that the sample dispensing nozzle 28 is clogged while the sample 2 for 20 μL (2a2) is aspirated (FIG. 3D), the sample 2 shown in FIG. Discharge of pressure transfer medium 36 with suction amount of 24 μL (2a) and predetermined amount into dilution container 9 and dispensing of first reagent and second reagent used for analysis of the sample 2 into reaction container 5 is stopped And wasteful consumption of reagents can be suppressed.
 そして、検体分注ノズル28に詰まりが生じていると判定された場合は、吸引された検体2の破棄および検体分注ノズル28内の詰まりを解させるための洗浄が行われる。すなわち、図3(f)、図3(g)に示すように、検体分注アーム駆動部31は、検体分注アーム29を上昇させ、検体分注ノズル28をノズル洗浄槽21の上方に移動させた後、検体分注機構14は検体分注ノズル28内の検体2および圧力伝達媒体36をノズル洗浄槽21に吐出する。 Then, if it is determined that the sample dispensing nozzle 28 is clogged, discarding of the aspirated sample 2 and cleaning for unclogging the sample dispensing nozzle 28 are performed. That is, as shown in FIGS. 3 (f) and 3 (g), the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, and moves the sample dispensing nozzle 28 above the nozzle cleaning tank 21. Thereafter, the sample dispensing mechanism 14 discharges the sample 2 and the pressure transfer medium 36 in the sample dispensing nozzle 28 into the nozzle cleaning tank 21.
 ここで吐出される圧力伝達媒体36は、検体分注ノズル28内の詰まりを解消させ、検体分注ノズル28の内壁を洗浄する洗浄液として使用される。この時、制御部22は、ユーザーに検体分注機構14に異常が生じたことを知らせるアラームを出力部27に出力させる。 The pressure transfer medium 36 discharged here is used as a cleaning liquid for removing the clogging in the sample dispensing nozzle 28 and cleaning the inner wall of the sample dispensing nozzle 28. At this time, the control unit 22 causes the output unit 27 to output an alarm notifying the user that an abnormality has occurred in the sample dispensing mechanism 14.
 なお、検体分注ノズル28に詰まりが生じているか否かが判定される際に用いられる閾値について、4μL(2a1)分の検体2が吸引される間の検体分注流路32内の圧力値と比較される閾値と、20μL(2a2)分の検体2が吸引される間の検体分注流路32内の圧力値と比較される閾値は、必ずしも同じである必要はない。 In addition, the pressure value in the sample dispensing channel 32 while the sample 2 for 4 μL (2a1) is aspirated for the threshold used to determine whether or not the sample dispensing nozzle 28 is clogged The threshold value to be compared with the threshold value and the threshold value to be compared with the pressure value in the sample dispensing channel 32 while the sample 2 for 20 μL (2a2) is aspirated need not necessarily be the same.
 以上の本第1実施形態によれば、分析対象の検体2が検体分注ノズル28を詰らせるような検体2であっても、検体2の吸引量が全て吸引される前に詰まりが検出され、早い段階でユーザーは検体分注機構14に異常が生じたことを知ることができる。さらに、検体2の吸引量が多い場合に、検体分注ノズル28に詰まりが生じても、従来に比べて、検体2の無駄な消費が低減される。 According to the first embodiment described above, even if the sample 2 to be analyzed is the sample 2 that clogs the sample dispensing nozzle 28, the clogging is detected before all the aspiration amount of the sample 2 is aspirated. At an early stage, the user can know that an abnormality has occurred in the sample dispensing mechanism 14. Furthermore, when the aspiration amount of the sample 2 is large, even if the sample dispensing nozzle 28 is clogged, useless consumption of the sample 2 is reduced as compared with the conventional case.
 (第2実施形態)
次に、本発明の第2実施形態として、検体2が希釈されずに分析される場合の検体分注機構14の分注動作について説明する。本第2実施形態では、分析に使用される検体2の吸引量として、例えば24μL(2a)が入力部23から制御部22に入力された際に、制御部22は、検体分注機構14に対して、検体2の吸引量24μL(2a)のみを吸引させるのではなく、分析には使用されない余剰分の検体2の吸引量として、例えば3μL(2b)と、検体2の吸引量24μL(2a)の2回に分けて吸引させるように制御する。
Second Embodiment
Next, as a second embodiment of the present invention, the dispensing operation of the sample dispensing mechanism 14 in the case where the sample 2 is analyzed without being diluted will be described. In the second embodiment, when, for example, 24 μL (2a) is input from the input unit 23 to the control unit 22 as the aspiration amount of the sample 2 used for analysis, the control unit 22 causes the sample dispensing mechanism 14 to In contrast, instead of aspirating only 24 μL (2a) of the aspiration amount of the sample 2, as an aspiration amount of the sample 2 not used for analysis, for example, 3 μL (2b) and 24 μL (2a) of the aspiration amount of the sample 2 Control to aspirate in two separate steps.
 一般的に、検体2が希釈されずに分析される場合は、検体2の吸引量が吸引された後に、検体分注ノズル28の内部において、圧力伝達媒体36の拡散によって検体2が薄まるのを防ぐために、圧力伝達媒体36と検体2との間に空気層42や余剰分の検体2の層が形成される。本第2実施形態においては、検体分注機構14が、空気、余剰分の検体2の吸引量3μL(2b)、空気、検体2の吸引量24μL(2a)を順に吸引する場合を説明する。 Generally, when the sample 2 is analyzed without dilution, the sample 2 is thinned by the diffusion of the pressure transfer medium 36 inside the sample dispensing nozzle 28 after the aspiration amount of the sample 2 is aspirated. In order to prevent this, an air layer 42 and a layer of the excess sample 2 are formed between the pressure transfer medium 36 and the sample 2. In the second embodiment, a case will be described in which the sample dispensing mechanism 14 sequentially sucks air, a suction amount of 3 μL (2b) of the excess sample 2, air, and a suction amount of 24 μL (2a) of the sample 2 in this order.
 図5は、検体2が希釈されずに分析される場合における、検体分注機構14が検体2を検体容器7から希釈容器9に分注する際の、検体分注ノズル28内の様子を示す図である。第1実施形態の、検体2が吸引される際に、検体分注ノズル28内の圧力伝達媒体36が検体容器7内の検体2に拡散するのを防ぐために、検体分注機構14が検体2を吸引する前に検体分注ノズル28内に空気層42を形成させる動作(図3(a)、(b))までは第2実施形態も同様である。そのため、第2実施形態の第1実施形態と共通の動作(図5(a)、(b))に関する説明は省略する。 FIG. 5 shows the inside of the sample dispensing nozzle 28 when the sample dispensing mechanism 14 dispenses the sample 2 from the sample container 7 to the dilution container 9 when the sample 2 is analyzed without being diluted. FIG. In order to prevent the pressure transfer medium 36 in the sample dispensing nozzle 28 from diffusing to the sample 2 in the sample container 7 when the sample 2 is aspirated in the first embodiment, the sample dispensing mechanism 14 is a sample 2 The same applies to the second embodiment up to the operation of forming the air layer 42 in the sample dispensing nozzle 28 before suctioning (FIG. 3 (a), (b)). Therefore, the description of the operation (FIGS. 5A and 5B) common to the first embodiment of the second embodiment will be omitted.
 検体分注ノズル28内に空気層42が形成された後、余剰分の検体2の吸引量3μL(2b)の吸引が行われる。すなわち、図5(c)に示すように、検体分注アーム駆動部31は、検体分注ノズル28の先端が検体容器7内の検体2に浸漬するまで検体分注アーム29を下降させた後、プランジャ駆動部35は、プランジャ34を3μL(2b)分引いたところで一旦動作を休止する。 After the air layer 42 is formed in the sample dispensing nozzle 28, suction of a suction amount of 3 μL (2b) of the excess sample 2 is performed. That is, as shown in FIG. 5C, after the sample dispensing arm driving unit 31 lowers the sample dispensing arm 29 until the tip of the sample dispensing nozzle 28 is immersed in the sample 2 in the sample container 7 The plunger driving unit 35 pauses operation once the plunger 34 is pulled by 3 μL (2 b).
 次に、空気層42を形成するための吸引が行われる。すなわち、図5(d)に示すように、検体分注アーム駆動部31は、検体分注アーム29を上昇させた後、プランジャ駆動部35は、プランジャ34を2μL分引くことで空気を吸引し、検体分注ノズル28内に空気層42を形成させる。 Next, suction for forming the air layer 42 is performed. That is, as shown in FIG. 5D, after the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, the plunger drive unit 35 sucks air by pulling the plunger 34 for 2 μL. The air layer 42 is formed in the sample dispensing nozzle 28.
 次に、検体2の吸引量24μL(2a)の吸引が行われる。すなわち、図5(e)に示すように、検体分注アーム駆動部31は、検体分注ノズル28の先端が検体容器7内の検体2に浸漬するまで検体分注アーム29を下降させた後、プランジャ駆動部35は、プランジャ34を24μL(2a)分引くことで、検体分注ノズル28内に検体2の吸引量24μL(2a)を吸引させる。 Next, suction of 24 μL (2a) of the suction amount of the sample 2 is performed. That is, as shown in FIG. 5E, after the sample dispensing arm driving unit 31 lowers the sample dispensing arm 29 until the tip of the sample dispensing nozzle 28 is immersed in the sample 2 in the sample container 7 The plunger driving unit 35 causes the sample dispensing nozzle 28 to aspirate a suction amount of 24 μL (2a) of the sample 2 by pulling the plunger 34 by 24 μL (2a).
 最後に、吸引された検体2の吸引量24μL(2a)の希釈容器9への吐出が行われる。すなわち、図5(f)に示すように、検体分注アーム駆動部31は、検体分注アーム29を上昇させ、検体分注ノズル28を希釈容器9の上方に移動させた後、検体分注機構14は検体分注ノズル28内の検体2の吸引量24μL(2a)を希釈容器9に吐出する。 Finally, the suction amount 24 μL (2a) of the aspirated sample 2 is discharged to the dilution container 9. That is, as shown in FIG. 5F, the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, moves the sample dispensing nozzle 28 above the dilution container 9, and then dispenses the sample. The mechanism 14 discharges a suction amount 24 μL (2 a) of the sample 2 in the sample dispensing nozzle 28 into the dilution container 9.
 以上のように、合計27μLの検体2が2回に分けて吸引されるが、その際、検体2が吸引される毎に、検体分注ノズル28に詰まりが生じているか否かが判定される。上述した動作は、検体2が吸引される毎に検体分注ノズル28に詰まりは生じていないと判定された場合の動作である。 As described above, a total of 27 μL of the sample 2 is aspirated in two steps, and at this time, it is determined whether or not the sample dispensing nozzle 28 is clogged each time the sample 2 is aspirated. . The above-described operation is an operation when it is determined that the sample dispensing nozzle 28 is not clogged every time the sample 2 is aspirated.
 すなわち、図5(c)、図5(e)に示すように、余剰分の検体2の吸引量3μL(2b)および検体2の吸引量24μL(2a)がそれぞれ吸引される間、圧力センサ37は、検体分注流路32内の圧力を測定し、制御部22を経由させて測定した圧力値を詰まり判定部25に出力する。詰まり判定部25は、余剰分の検体2の吸引量3μL(2b)および検体2の吸引量24μL(2a)がそれぞれ吸引される間の検体分注流路32内の圧力値と、予め記憶部26に記憶された閾値とを比較する。 That is, as shown in FIGS. 5C and 5E, while the suction amount 3 μL (2 b) of the sample 2 for the surplus and the suction amount 24 μL (2 a) of the sample 2 are respectively suctioned, the pressure sensor 37 The pressure in the sample dispensing channel 32 is measured, and the pressure value measured via the control unit 22 is output to the clogging determination unit 25. The clogging determination unit 25 pre-stores the pressure value in the sample dispensing channel 32 while the aspiration amount 3 μL (2 b) of the surplus sample 2 and the aspiration amount 24 μL (2 a) of the sample 2 are aspirated respectively. The threshold value stored in 26 is compared.
 図4(a)に示すように、余剰分の検体2の吸引量3μL(2b)、検体2の吸引量24μL(2a)がそれぞれ吸引される間の検体分注流路32内の圧力値が閾値の範囲内であった場合、詰まり判定部25は検体分注ノズル28内に詰まりは生じていないと判定し、先述したように、2μL分の空気の吸引(図5(d))、検体2の吸引量24μL(2a)の希釈容器9への吐出(図3(e))がそれぞれ行われる。 As shown in FIG. 4A, the pressure value in the sample dispensing channel 32 is aspiration while the aspiration amount 3 μL (2 b) of the excess sample 2 and the aspiration amount 24 μL (2 a) of the sample 2 are respectively aspirated as shown in FIG. If it is within the threshold range, the clogging determination unit 25 determines that no clogging occurs in the sample dispensing nozzle 28, and as described above, suction of 2 μL of air (FIG. 5 (d)), the sample Discharge of the suction amount 24 μL (2a) of 2 into the dilution container 9 (FIG. 3E) is performed respectively.
 一方、図4(b)に示すように、余剰分の検体2の吸引量3μL(2b)、検体2の吸引量24μL(2a)がそれぞれ吸引される間の検体分注流路32内の圧力値が閾値の範囲外であった場合、詰まり判定部25は検体分注ノズル28内に詰まりが生じていると判定し、制御部22はその検体2に対する、検体分注機構14による以降の分注動作を中止させると共に、分析を中止する。 On the other hand, as shown in FIG. 4 (b), the pressure in the sample dispensing channel 32 while the aspiration amount 3 μL (2 b) of the excess sample 2 and the aspiration amount 24 μL (2 a) of the sample 2 are respectively aspirated If the value is out of the threshold range, the clogging determination unit 25 determines that a clogging occurs in the sample dispensing nozzle 28, and the control unit 22 causes the sample dispensing mechanism 14 to perform subsequent dispensing on the sample 2 Note Stop the analysis and stop the operation.
 したがって、余剰分の検体2の吸引量3μL(2b)が吸引される際(図5(c))に、検体分注ノズル28に詰まりが生じていると判定された場合は、図5(e)に示す検体2の吸引量24μL(2a)の吸引、およびその検体2の分析に使用される第1試薬と第2試薬の反応容器5への分注が中止され、検体2および試薬の無駄な消費が抑えられる。 Therefore, when it is determined that the sample dispensing nozzle 28 is clogged when the aspiration amount of 3 μL (2 b) of the excess sample 2 is aspirated (FIG. 5 (c)), as shown in FIG. Aspiration of 24 μL (2a) of the aspiration volume of the sample 2 shown in) and dispensing of the first and second reagents used for analysis of the sample 2 into the reaction container 5 is discontinued, and waste of the sample 2 and the reagent Consumption can be reduced.
 検体2の吸引量24μL(2a)が吸引される際(図5(e))に、検体分注ノズル28に詰まりが生じていると判定された場合は、図5(f)に示す検体2の吸引量24μL(2a)と所定量の圧力伝達媒体36の希釈容器9への吐出、およびその検体2の分析に使用される第1試薬と第2試薬の反応容器5への分注が中止され、試薬の無駄な消費が抑えられる。 When it is determined that the sample dispensing nozzle 28 is clogged when the suction amount 24 μL (2a) of the sample 2 is aspirated (FIG. 5 (e)), the sample 2 shown in FIG. 5 (f) Dispensing a predetermined amount of pressure transfer medium 36 into the dilution container 9 with a suction volume of 24 μL (2a) and dispensing the first and second reagents used for analysis of the sample 2 into the reaction container 5 And wasteful consumption of reagents is suppressed.
 そして、検体分注ノズル28に詰まりが生じていると判定された場合は、吸引された検体2の破棄および検体分注ノズル28内の詰まりを解させるための洗浄が行われる。すなわち、図5(g)、図5(h)に示すように、検体分注アーム駆動部31は、検体分注アーム29を上昇させ、検体分注ノズル28をノズル洗浄槽21の上方に移動させた後、検体分注機構14は検体分注ノズル28内の検体2および圧力伝達媒体36をノズル洗浄槽21に吐出する。 Then, if it is determined that the sample dispensing nozzle 28 is clogged, discarding of the aspirated sample 2 and cleaning for unclogging the sample dispensing nozzle 28 are performed. That is, as shown in FIGS. 5 (g) and 5 (h), the sample dispensing arm drive unit 31 raises the sample dispensing arm 29, and moves the sample dispensing nozzle 28 above the nozzle cleaning tank 21. Thereafter, the sample dispensing mechanism 14 discharges the sample 2 and the pressure transfer medium 36 in the sample dispensing nozzle 28 into the nozzle cleaning tank 21.
 ここで吐出される圧力伝達媒体36は、検体分注ノズル28内の詰まりを解消させ、検体分注ノズル28の内壁を洗浄する洗浄液として使用される。この時、制御部22は、ユーザーに検体分注機構14に異常が生じたことを知らせるアラームを出力部27に出力させる。 The pressure transfer medium 36 discharged here is used as a cleaning liquid for removing the clogging in the sample dispensing nozzle 28 and cleaning the inner wall of the sample dispensing nozzle 28. At this time, the control unit 22 causes the output unit 27 to output an alarm notifying the user that an abnormality has occurred in the sample dispensing mechanism 14.
 なお、検体分注ノズル28に詰まりが生じているか否かが判定される際に用いられる閾値について、余剰分の検体2の吸引量3μL(2b)が吸引される間の検体分注流路32内の圧力値と比較される閾値と、検体2の吸引量24μL(2a)が吸引される間の検体分注流路32内の圧力値と比較される閾値は、必ずしも同じである必要はない。 In addition, the sample dispensing channel 32 during the suction of the suction amount 3 μL (2 b) of the excess sample 2 with respect to the threshold value used when it is determined whether the sample dispensing nozzle 28 is clogged or not. The threshold to be compared with the internal pressure value and the threshold to be compared with the pressure in the sample dispensing channel 32 while the aspiration volume of the sample 2 is 24 μL (2a) need not necessarily be the same. .
 以上の本第2実施形態によれば、分析対象の検体2が検体分注ノズル28を詰らせるような検体2であっても、検体2の吸引量が吸引される前に詰まりが検出され、早い段階でユーザーは検体分注機構14に異常が生じたことを知ることができる。さらに、検体2の吸引量が多い場合に、検体分注ノズル28に詰まりが生じても、従来に比べて、無駄になる検体2の量が低減される。 According to the above second embodiment, even if the sample 2 to be analyzed is a sample 2 that clogs the sample dispensing nozzle 28, a clog is detected before the aspiration amount of the sample 2 is aspirated. At an early stage, the user can know that an abnormality has occurred in the sample dispensing mechanism 14. Furthermore, when the aspiration amount of the sample 2 is large, even if the sample dispensing nozzle 28 is clogged, the amount of waste sample 2 is reduced as compared with the conventional case.
 なお、本発明の第1実施形態および第2実施形態においては、検体分注機構14が検体2を希釈容器9に分注する場合について説明したが、検体分注機構14が検体2を分注する先として希釈容器9に限定されるものではない。 In the first and second embodiments of the present invention, although the case where the sample dispensing mechanism 14 dispenses the sample 2 into the dilution container 9 has been described, the sample dispensing mechanism 14 dispenses the sample 2 The destination is not limited to the dilution container 9.
 例えば、検体分注機構14が検体2を反応容器5に分注する場合にも本発明を適用できる。この場合は、第1実施形態における第1吸引検体2a1または第2実施形態における薄まり防止用検体2bが吸引される際に判定される、検体分注ノズル28に詰まりが生じているか否かの判定結果を引き金として、制御部22は、さらに第1試薬分注機構15に対して第1試薬を反応容器5に分注させるか否かを制御する。このようにすることで、第1吸引検体2a1または薄まり防止用検体2bが吸引される際に検体分注ノズル28に詰まりが生じても、反応容器5に第1試薬は分注されず、検体2および試薬の無駄な消費が抑えられる。 For example, the present invention can be applied to the case where the sample dispensing mechanism 14 dispenses the sample 2 into the reaction container 5. In this case, it is determined whether or not the sample dispensing nozzle 28 is clogged, which is determined when the first aspiration sample 2a1 in the first embodiment or the thinning prevention sample 2b in the second embodiment is aspirated. Using the result as a trigger, the control unit 22 further controls the first reagent dispensing mechanism 15 whether or not to dispense the first reagent into the reaction container 5. By doing this, even if the sample dispensing nozzle 28 is clogged when the first aspirated sample 2a1 or the thinness prevention sample 2b is aspirated, the first reagent is not dispensed to the reaction container 5, And wasteful consumption of reagents is suppressed.
 また、測定機構3に、検体2中の電解質(Naイオン、Kイオン、Clイオン等)の濃度を分析する電解質測定機構が備えられ、検体分注機構14が検体容器7から電解質測定機構に検体2を分注する場合にも、本発明を適用できる。 In addition, the measurement mechanism 3 is provided with an electrolyte measurement mechanism for analyzing the concentration of electrolyte (Na ion, K ion, Cl ion, etc.) in the sample 2, and the sample dispensing mechanism 14 The present invention is also applicable to the case of dispensing 2.
 1:自動分析装置、2:検体、3:測定機構、4:制御機構、6:反応ターンテーブル、7:検体容器、8:検体ターンテーブル、9:希釈容器、10:希釈ターンテーブル、12:第1試薬ターンテーブル、14:検体分注機構、21:ノズル洗浄槽、22:制御部、23:入力部、24:分析部、25:詰まり判定部、26:記憶部、27:出力部、28:検体分注ノズル、32:検体分注流路、33:検体分注ポンプ、36:圧力伝達媒体、37:圧力センサ、42:空気層、2a:分析に使用される検体、2a1:第1吸引検体、2a2:第2吸引検体、2b:薄まり防止用検体 1: Automatic analyzer, 2: Specimen, 3: Measurement mechanism, 4: Control mechanism, 6: Reaction turntable, 7: Specimen container, 8: Specimen turntable, 9: Dilution container, 10: Dilution turntable, 12: First reagent turntable 14: specimen dispensing mechanism 21: nozzle washing tank 22: control unit 23: input unit 24: analysis unit 25: clogging determination unit 26: storage unit 27: output unit 28: Sample dispensing nozzle, 32: Sample dispensing channel, 33: Sample dispensing pump, 36: pressure transfer medium, 37: pressure sensor, 42: air layer, 2a: sample used for analysis, 2a1: No. 1 aspiration sample, 2a2: second aspiration sample, 2b: dilution prevention sample

Claims (6)

  1.  検体が吸引または吐出される検体分注ノズルと、前記検体分注ノズルに検体を吸引または吐出させる検体分注ポンプと、前記検体分注ノズルと前記検体分注ポンプを接続する検体分注流路と、前記検体分注流路に設けられ、前記検体分注流路内の圧力を測定する圧力測定手段と、を有する検体分注機構と、
     前記検体分注機構の動作を制御する制御部と、
     を備える自動分析装置において、
     前記検体分注機構が前記検体を1回分注する動作の中で、
     前記制御部は、前記検体分注ポンプに前記検体の吸引動作を複数回行わせ、
     前記圧力測定手段に前記検体分注流路内の圧力を前記検体分注ポンプによる前記検体の吸引動作毎に測定させ、
     前記圧力測定手段から出力された前記圧力と、予め設定された閾値とを比較することで前記検体分注機構の異常を判定することを特徴とする自動分析装置。
    A sample dispensing nozzle for sucking or discharging a sample, a sample dispensing pump for sucking or discharging a sample to the sample dispensing nozzle, and a sample dispensing channel for connecting the sample dispensing nozzle and the sample dispensing pump And a sample dispensing mechanism provided in the sample dispensing channel and measuring pressure in the sample dispensing channel.
    A control unit that controls the operation of the sample dispensing mechanism;
    In an automatic analyzer comprising
    Among the operations in which the sample dispensing mechanism dispenses the sample once,
    The control unit causes the sample dispensing pump to aspirate the sample a plurality of times,
    Causing the pressure measurement means to measure the pressure in the sample dispensing channel for each sample aspirating operation by the sample dispensing pump;
    An automatic analyzer characterized in that an abnormality of the sample dispensing mechanism is determined by comparing the pressure output from the pressure measuring means with a preset threshold value.
  2.  請求項1記載の自動分析装置において、
     前記検体分注機構が前記検体を1回分注する動作の中で、
     前記制御部は、前記検体分注ポンプに、分析に使用される検体の量のうちの一部の量を吸引させる動作と、前記分析に使用される検体の量のうちの前記一部の量を除いた量を吸引させる動作を行わせることを特徴とする自動分析装置。
    In the automatic analyzer according to claim 1,
    Among the operations in which the sample dispensing mechanism dispenses the sample once,
    The control unit causes the sample dispensing pump to aspirate a part of the amount of the sample used for analysis, and the part of the amount of sample used for the analysis An automatic analyzer characterized by performing an operation of aspirating an amount other than.
  3.  請求項1記載の自動分析装置において、
     前記検体分注機構が前記検体を1回分注する動作の中で、
     前記制御部は、前記検体分注ポンプに、分析に使用されない余剰分の検体の量を吸引させる動作と、前記分析に使用される検体の量を吸引させる動作を行わせることを特徴とする自動分析装置。
    In the automatic analyzer according to claim 1,
    Among the operations in which the sample dispensing mechanism dispenses the sample once,
    The control unit is configured to cause the sample dispensing pump to perform an operation of aspirating an amount of an excess sample not used for analysis and an operation of aspirating an amount of sample used for the analysis. Analysis equipment.
  4.  請求項1~3のいずれかに記載の自動分析装置において、
     前記検体分注機構に異常があると判定された場合には、前記制御部は、予定されていた前記検体分注ポンプによる前記検体の残りの吸引動作を中止させることを特徴とする自動分析装置。
    The automatic analyzer according to any one of claims 1 to 3
    The automatic analyzer characterized in that, when it is determined that the sample dispensing mechanism has an abnormality, the control unit suspends the remaining aspirating operation of the sample by the sample dispensing pump scheduled. .
  5.  請求項1~4のいずれかに記載の自動分析装置において、
     前記自動分析装置は出力部を備え、前記検体分注機構に異常があると判定された場合には、前記制御部は、前記検体分注機構の異常を知らせるアラームを前記出力部に出力させることを特徴とする自動分析装置。
    The automatic analyzer according to any one of claims 1 to 4.
    The automatic analyzer includes an output unit, and when it is determined that the sample dispensing mechanism has an abnormality, the control unit causes an output unit to output an alarm notifying an abnormality of the sample dispensing mechanism. Automatic analyzer characterized by.
  6.  検体が吸引または吐出される検体分注ノズルと、前記検体分注ノズルに検体を吸引または吐出させる検体分注ポンプと、前記検体分注ノズルと前記検体分注ポンプを接続する検体分注流路と、前記検体分注流路に設けられ、前記検体分注流路内の圧力を測定する圧力測定手段と、を有する検体分注機構と、
     前記検体分注機構の動作を制御する制御部と、を備える自動分析装置における、前記検体分注機構の異常検出方法であって、
     前記検体分注機構が前記検体を1回分注する工程の中で、
     前記検体の吸引動作を複数回行う工程と、
     前記検体の吸引動作毎に、前記検体分注流路内の圧力を測定する工程と、
     測定された前記圧力と予め設けられた閾値とを比較することで前記検体分注機構の異常を判定する工程と、を含むことを特徴とする検体分注機構の異常検出方法。
    A sample dispensing nozzle for sucking or discharging a sample, a sample dispensing pump for sucking or discharging a sample to the sample dispensing nozzle, and a sample dispensing channel for connecting the sample dispensing nozzle and the sample dispensing pump And a sample dispensing mechanism provided in the sample dispensing channel and measuring pressure in the sample dispensing channel.
    A method for detecting an abnormality in the sample dispensing mechanism, in an automatic analyzer including a control unit that controls the operation of the sample dispensing mechanism.
    Among the steps in which the sample dispensing mechanism dispenses the sample once,
    Performing the aspiration operation of the sample a plurality of times;
    Measuring the pressure in the sample dispensing channel for each sample aspirating operation;
    Determining the abnormality of the sample dispensing mechanism by comparing the measured pressure with a previously provided threshold value, and detecting the abnormality of the sample dispensing mechanism.
PCT/JP2018/032608 2017-09-08 2018-09-03 Automated analysis device and method for detecting abnormality of sample dispensing mechanism WO2019049825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019540944A JP7167037B2 (en) 2017-09-08 2018-09-03 Abnormal detection method for automatic analyzer and specimen pipetting mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172571 2017-09-08
JP2017-172571 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049825A1 true WO2019049825A1 (en) 2019-03-14

Family

ID=65634102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032608 WO2019049825A1 (en) 2017-09-08 2018-09-03 Automated analysis device and method for detecting abnormality of sample dispensing mechanism

Country Status (2)

Country Link
JP (1) JP7167037B2 (en)
WO (1) WO2019049825A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271318A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Dispensing apparatus and analyzer using the dispensing apparatus as component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171883B2 (en) 2010-08-30 2015-10-27 Epistar Corporation Light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271318A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Dispensing apparatus and analyzer using the dispensing apparatus as component

Also Published As

Publication number Publication date
JPWO2019049825A1 (en) 2020-08-20
JP7167037B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP6647288B2 (en) Automatic analyzer and method
US8764912B2 (en) Method of cleaning nozzle and device for cleaning nozzle
WO2012105398A1 (en) Automatic analyzing device
WO2014017276A1 (en) Automated analyzer
JPH01141357A (en) Sample partial injection method for automatic analyzing device
JP2010210596A (en) Autoanalyzer and probe cleaning method
JP3868102B2 (en) Dispensing device and analyzer comprising this dispensing device as a component
JP6227441B2 (en) Analysis apparatus and method
JP5111328B2 (en) Automatic analyzer
JP3288067B2 (en) Automatic chemical analyzer
JP2011106828A (en) Dispensing device, automated analysis apparatus, and dispensing method
JP3120180U (en) Automatic analyzer
JP7167037B2 (en) Abnormal detection method for automatic analyzer and specimen pipetting mechanism
JP2014157073A (en) Automatic analyzer
JP7110222B2 (en) Automated analyzer and probe cleaning method
WO2019176296A1 (en) Automatic analysis device
JPH02243960A (en) System for operating dispenser of analysis apparatus
US20220034927A1 (en) Automated analyzer and cleaning method
US20190369130A1 (en) Automatic Analyzer
WO2021215068A1 (en) Dispensing device, automated analysis device, and dispensing method
JPS6224151A (en) Suction discharger for automatic chemical analyzer
JP4601811B2 (en) Automatic analyzer
JP6004398B2 (en) Automatic analyzer
US20220034926A1 (en) Automatic analyzer
JP2004177308A (en) Method for judging attraction state and automatic chemical analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853412

Country of ref document: EP

Kind code of ref document: A1