WO2019049272A1 - Ion source and ion analysis device - Google Patents

Ion source and ion analysis device Download PDF

Info

Publication number
WO2019049272A1
WO2019049272A1 PCT/JP2017/032300 JP2017032300W WO2019049272A1 WO 2019049272 A1 WO2019049272 A1 WO 2019049272A1 JP 2017032300 W JP2017032300 W JP 2017032300W WO 2019049272 A1 WO2019049272 A1 WO 2019049272A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ionization
probe
ion source
arm
Prior art date
Application number
PCT/JP2017/032300
Other languages
French (fr)
Japanese (ja)
Inventor
智仁 中野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019540209A priority Critical patent/JP6747602B2/en
Priority to PCT/JP2017/032300 priority patent/WO2019049272A1/en
Publication of WO2019049272A1 publication Critical patent/WO2019049272A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Definitions

  • the present invention relates to an ion source for ionizing components in a liquid sample, and an ion analyzer such as a mass spectrometer or an ion mobility analyzer equipped with the ion source, more specifically, an electrospray ionization (ESI) method, An ion source having an ionization probe for spraying a liquid sample to perform ionization by an atmospheric pressure chemical ionization (APCI) method or an ionization method such as an atmospheric pressure photoionization (APPI) method, and an ion analysis equipped with the ion source It relates to the device.
  • an ion analyzer such as a mass spectrometer or an ion mobility analyzer equipped with the ion source
  • ESI electrospray ionization
  • LC-MS liquid chromatograph mass spectrometer
  • a liquid chromatograph and a mass spectrometer are combined
  • an eluate containing various components separated in the time direction with the liquid chromatograph column is used.
  • ions from the sample component are separated and detected according to the mass-to-charge ratio m / z by a mass separator such as a quadrupole mass filter.
  • a mass separator such as a quadrupole mass filter.
  • atmospheric pressure ionization methods such as ESI method, APCI method, and APPI method are used to ionize the components in the liquid sample.
  • liquid chromatographs employ a method of reducing the flow rate of the mobile phase supplied to the column while using a small diameter column.
  • a method called nano-ESI or micro-ESI which efficiently ionizes the components in the eluate while suppressing the flow rate of the eluate introduced into the ionization probe. It is done.
  • ions derived from sample components generated from a spray flow from an ionization probe are subjected to gas pressure from an ionization chamber which is a substantially atmospheric pressure atmosphere through a narrow diameter desolvation tube. It is sent to the next lower intermediate vacuum chamber. Therefore, in order to improve the analysis sensitivity, it is necessary to efficiently feed the ions generated in the ionization chamber into the desolvation tube.
  • the ionization probe is moved in its axial direction, the distance between the capillary end of the ionization probe and the ion inlet of the desolvation tube and the angle between the two axes change, and transport of ions through the desolvation tube Efficiency changes. Therefore, there is conventionally known an ion source capable of adjusting the axial position of the ionization probe so as to adjust the analysis sensitivity.
  • FIG. 4 is a schematic cross-sectional view of an example of a conventional atmospheric pressure ion source capable of axial position adjustment of the ionization probe.
  • the ionization probe 22 includes a probe main body 220 having a nebulize gas flow path inside, and a capillary 221 with a small diameter through which a liquid sample supplied from the outside flows.
  • the probe body 220 has a substantially cylindrical shape and has a substantially conical nozzle 220a at its tip, and the end 221a of the capillary 221 slightly protrudes from the tip of the nozzle 220a.
  • the probe main body 220 is held by a substantially annular probe holder 23 mounted on the wall surface 21 a of the ionization chamber 21 in a substantially atmospheric pressure atmosphere.
  • the inner circumferential surface of the probe holding portion 23 has appropriate slipperiness, and by pushing the probe main body 220 from the outside of the ionization chamber 21 to the inner side of the ionization chamber 21 or pulling it out in reverse, The axial position can be adjusted.
  • An arm 43 projecting in a direction perpendicular to the axial direction of the capillary 221 is fixed to the probe main body 220 in order to push in and pull out the probe main body 220, and an adjustment screw 42 is axially mounted on an end of the arm 43. It is supported.
  • a screw receiving portion 41 having a screw hole formed on the inner peripheral side is attached to the outside of the wall surface 21 a of the ionization chamber 21, and a screw thread portion of the adjusting screw 42 is screwed into the screw hole of the screw receiving portion 41. .
  • the screwing direction of the adjusting screw 42 coincides with the axial direction of the probe main body 220.
  • the probe main body 220 does not move straight along the axial direction, but moves in the axial direction as a whole while swinging about the axis. As a result, not only does it interfere with the accurate position adjustment of the ionization probe 22 but also a large load is applied to the probe holder 23 to cause deterioration due to wear and the like.
  • the axial length of the probe holding portion 23 is restricted by the axial length of the probe body 220.
  • the ionization probe for low flow rate ESI called nano ESI or micro ESI described above
  • the reduction in sensitivity due to the diffusion of the sample component derived from the length of the pipe becomes a problem in particular. Therefore, in such a low flow rate ESI, the extension of the capillary 221 accompanied by the lengthening of the length of the probe main body 220 in the axial direction is not particularly preferable in view of the decrease in sensitivity.
  • the length of the arm 43 is shortened.
  • the screw receiver 41 may be provided at a position close to the probe main body 220.
  • replacement of the capillary 221, the inlet end of the capillary 221 and the outlet end of the column of the liquid chromatograph (or the end of the pipe connected thereto) It becomes difficult to do work such as connection with).
  • the pipe length from the column outlet end to the ionization probe is as short as possible, and since it is common to arrange the column and the capillary of the ionization probe coaxially, The space between the column (and the column oven in which the column is placed) and the ionization probe body is very small.
  • the adjusting screw 42 is disposed in such a narrow space, the operator needs to operate the adjusting screw 42 in the narrow space, and the workability becomes extremely poor. Therefore, the adjustment screw 42 and the screw receiving portion 41 must be disposed at a position apart from the probe main body 220 to some extent, and the force other than the axial direction acting on the arm 45 and the probe main body 220 is also reduced at that point. It is difficult.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to adjust the axial position of the ionization probe by operating at a certain distance from the installation position of the ionization probe. It is an object of the present invention to provide an ion source capable of performing the process smoothly and accurately and an ion analyzer using the ion source.
  • the present invention which was made to solve the above problems, has an ionization chamber and a nozzle for spraying a liquid sample into the ionization chamber, and has an opening formed in the wall surface of the ionization chamber movably in the axial direction.
  • An ion source comprising: an ionization probe held in a inserted state; and ionizing a component contained in a liquid sample sprayed into the ionization chamber by the ionization probe, a) an adjusting operation unit which is disposed outside the ionization chamber and at a position away from the ionization probe and is movable in the same direction as the axial direction of the ionization probe according to an operation from the outside; b) An arm support portion disposed outside the ionization chamber at a position opposite to the adjustment operation portion with the ionization probe interposed therebetween; c) a rod-like portion whose one end is pivotally supported by the arm shaft supporting portion, and the other end is attached rotatably and movably in a predetermined range in the extending direction of the rod-like portion in the adjustment operation portion; An arm portion attached to the ionization probe so as to be movable and rotatable in a predetermined range in the extending direction at an intermediate position of the
  • the ion source according to the present invention typically performs ionization by the ESI method, the APCI method, or the APPI method.
  • an appropriate component corresponding to the type of the ionization method may be provided, such as providing an electric field forming unit for charging the liquid sample immediately before being sprayed from the ionization probe. It is natural.
  • the operator when performing axial position adjustment of the ionization probe, for example, the operator manually operates the adjusting operation unit to move the adjusting operation unit by an appropriate amount.
  • One end of the rod portion of the arm portion is attached to the adjustment operation portion, and the other end is pivotally supported by the arm support portion. Therefore, when the adjustment operation portion moves linearly, the rod portion is supported Rotate around the position where it is Since the adjusting operation unit moves linearly, the distance between the attachment position of the rod portion (force point to which force is applied) in the adjusting operation unit and the fulcrum changes with the rotation of the arm unit. Since the position is movable in a predetermined range in the extension direction of the rod-like portion, the change in the distance is absorbed thereby.
  • the ionization probe can be smoothly moved in the axial direction. Further, in the ion source according to the present invention, the amount of movement of the ionization probe is smaller than the amount of movement (adjustment amount) of the adjustment operation unit, so it is easy to adjust the fine position of the ionization probe.
  • the action direction of the force on the ionization probe is not the axial direction.
  • the direction of the force acting on the ionization probe can be made close to the axial direction by setting the fulcrum supporting the rod-like portion as far as possible from the point of action of the ionization probe. Thereby, the oscillation of the ionization probe can be effectively suppressed.
  • the adjusting operation unit includes a screw receiving portion whose position is fixed to a wall surface of the ionization chamber, and an adjusting screw having a screw portion screwed into the screw receiving portion. It can be configured to include.
  • the position of the ionization probe in the axial direction is adjusted by, for example, manually turning the head of the adjustment screw by manual operation and adjusting the screwing depth of the screw portion into the screw receiving portion. That is, the axial position of the ionization probe can be finely adjusted by the number of times the head of the adjustment screw is turned and the angle thereof.
  • the axial position of the ionization probe can be easily adjusted so as to obtain high analysis sensitivity.
  • the arm portion is a U-shaped top view member including two linear rod portions arranged in parallel with the ionization probe interposed therebetween.
  • the ionization probe when the arm portion rotates, the ionization probe receives a force in the substantially axial direction from the rod-shaped portions on both sides thereof via the action points. Therefore, even if the probe holding portion that holds the ionization probe in the opening formed on the wall surface of the ionization chamber is relatively short in the axial direction, the ionization probe smoothly moves in the axial direction, and the accurate position can be obtained. It can be adjusted.
  • An ion analyzer according to the present invention is characterized by including the ion source according to the present invention.
  • the ion analysis apparatus is usually a mass spectrometer that separates and detects ions generated by the ion source or ions derived from the ions according to the mass-to-charge ratio, or ions generated by the ion source
  • the present invention is any of the ion mobility analyzer which separates and detects ions derived from the ions according to the ion mobility.
  • an eluate containing the component separated by the liquid chromatograph column is introduced into the ion source of the ion analyzer, and the outlet end of the column
  • the sample flow path in the ionization probe is directly connected to the inlet end of the capillary.
  • the two are connected via a very short relay pipe. Includes substantially directly connected configurations.
  • very short is a state in which the column and the capillary are connected such that the column oven in which the column is accommodated and the ionization probe are disposed completely or almost completely.
  • the column oven in which the column is housed is placed in the vicinity of the ionization probe.
  • the axial position of the ionization probe can be adjusted by the operation of the adjustment operation part provided at a position distant from the ionization probe. It is not necessary to arrange the adjustment operating unit in the space between the ionization probe and the column oven. This allows the column oven to be placed in close proximity to the ionization probe.
  • the ion analyzer according to the present invention, diffusion of the components separated in the column is suppressed by substantially directly connecting the outlet end of the column and the inlet end of the capillary in this manner, and high sensitivity is achieved. Analysis of the As such, the ion source according to the present invention is particularly suitable for low flow ESI called nano ESI or micro ESI.
  • the axial position of the ionization probe can be adjusted smoothly and accurately by the operation at a certain distance from the installation position of the ionization probe.
  • it is difficult to cause oscillation of the ionization probe at the time of axial position adjustment of the ionization probe it is difficult for an excessive force to be applied to the probe holder holding the ionization probe on the wall surface of the ionization chamber. Damage can be reduced.
  • the high accuracy of the position adjustment of the ionization probe enables the ion analyzer equipped with the ion source according to the present invention to realize high analysis sensitivity.
  • the top view of the principal part of the ionization probe which is one example of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The schematic sectional drawing of the conventional general ionization probe.
  • FIG. 1 is a plan view of the main part of the ion source according to the present embodiment
  • FIG. 2 is a schematic cross-sectional view of the ion source according to the present embodiment
  • FIG. 3 is a schematic configuration view of one embodiment of LC-MS using the ion source of this embodiment.
  • X-axis, Y-axis, and Z-axis orthogonal to each other are defined as illustrated.
  • the Z-axis direction is the lateral direction
  • the X-axis direction is the height direction
  • the Y-axis is the depth direction.
  • the liquid chromatograph 1 includes a mobile phase container 10, a liquid feed pump 11, an injector 12, a column 14, and a column oven 13.
  • the column oven 13 includes an oven chamber (not shown) in which a heater and a cooler are disposed and the periphery is covered with a heat insulating material, and the column 14 is accommodated in the oven chamber.
  • the column oven 13 is disposed such that the outlet end 14a of the column 14 disposed therein is aligned with a relay pipe 223 of the ionization probe 22 described later.
  • the mass spectrometer 2 includes an ion source 20 and an analysis unit 200.
  • the ion source 20 and the analysis unit 200 are housed in a horizontally long casing (not shown) together with a vacuum pump (not shown) and the like. As shown in FIG. 3, this mass spectrometer 2 is a triple quadrupole mass spectrometer.
  • the ion source 20 is an ESI ion source, and includes an ionization probe 22 that sprays charged droplets into the ionization chamber 21 maintained at a substantially atmospheric pressure atmosphere.
  • the ionization probe 22 has a capillary 221 through which a low flow rate liquid sample flows, and the inlet end of the capillary 221 is connected to the relay pipe 223 by the joint 222, and the inlet end of the relay pipe 223 is substantially Horizontally taken out of the case.
  • the inlet end of the relay pipe 223 is inserted into the column oven 13 of the liquid chromatograph 1 and connected to the outlet end 14 a of the column 14.
  • the relay pipe 223 is made of resin such as PEEK (polyether ether ketone) resin, for example, and since the metal capillary 221 is not exposed to the outside of the ionization probe 22, high safety can be ensured.
  • the analysis unit 200 is entirely housed in the vacuum chamber 201.
  • the inside of the vacuum chamber 201 is divided into a first intermediate vacuum chamber 202, a second intermediate vacuum chamber 203, and a high vacuum chamber 204 from the side close to the ionization chamber 21.
  • Each of the chambers 202 to 204 is evacuated by a vacuum pump to form a differential exhaust system in which the degree of vacuum gradually increases from the ionization chamber 21 toward the high vacuum chamber 204.
  • the ionization chamber 21 and the first intermediate vacuum chamber 202 communicate with each other through a narrow diameter solvent removal pipe 24, and a plurality of electrode plates disposed in the first intermediate vacuum chamber 202 so as to surround the ion optical axis C.
  • An ion guide 205 is provided.
  • the first intermediate vacuum chamber 202 and the second intermediate vacuum chamber 203 communicate with each other through the small hole at the top of the skimmer 206, and the second intermediate vacuum chamber 203 is composed of a plurality of rod electrodes surrounding the ion light axis C.
  • An ion guide 207 is installed.
  • the front quadrupole mass filter 208 and the rear quadrupole mass filter 211 are disposed with the collision cell 209 in which the ion guide 210 is disposed, and the ion detector 212 is further disposed. It is provided.
  • the liquid feed pump 11 sucks and feeds the mobile phase stored in the mobile phase container 10.
  • the sample liquid is introduced into the column 14 following the flow of the mobile phase.
  • various components contained in the sample solution are separated in the time direction and reach the outlet end 14 a of the column 14.
  • the eluate containing the components separated in the column 14 is introduced into the capillary 221 through the relay pipe 223 of the ionization probe 22, charged droplets derived from the eluate are sprayed from the end of the capillary 221 into the ionization chamber 21. Be done.
  • the charged droplets collide with the atmosphere to be miniaturized, and the sample component becomes gas ions in the process of evaporation of the solvent.
  • the generated ions are absorbed into the desolvation pipe 24 on the gas flow formed by the differential pressure at both ends of the desolvation pipe 24 and introduced into the first intermediate vacuum chamber 202.
  • the ions derived from the sample component introduced into the first intermediate vacuum chamber 202 are converged by the ion guide 205, and are sent to the second intermediate vacuum chamber 203 through the small holes of the skimmer 206.
  • the ions are focused by the ion guide 207, sent to the high vacuum chamber 204, and introduced into the front quadrupole mass filter 208.
  • only ions having a specific mass-to-charge ratio corresponding to the voltage applied to the front quadrupole mass filter 208 pass through the front quadrupole mass filter 208 and the precursor ion
  • the collision cell 209 is entered.
  • a CID (collision induced dissociation) gas is continuously or intermittently introduced, and the precursor ions are dissociated in contact with the CID gas to generate various product ions.
  • This product ion is introduced into the second-stage quadrupole mass filter 211, and only the product ion having a specific mass-to-charge ratio corresponding to the voltage applied to the second-stage quadrupole mass filter 211 is the second-stage quadrupole mass filter 211. It passes through to reach the ion detector 212.
  • the ion detector 212 generates a detection signal according to the amount of ions reached.
  • the axial direction (Z-axis direction) of the ionization probe 22 according to the flow rate of the mobile phase (liquid transfer rate) in the liquid chromatograph 1, the type of mobile phase, etc. It is desirable to adjust the position of In order to perform such position adjustment, the ion source 20 of the present embodiment is provided with a position adjusting mechanism 40 having the following characteristic configuration.
  • the position adjusting mechanism 40 will be described in detail with reference to FIGS. 1 and 2.
  • FIG. 1 is a plan view of the state in which the ionization probe 22 mounted in the ionization chamber 21 is viewed from the left side.
  • FIG. 2 is a partially sectioned schematic configuration diagram showing only some of the components in a cross section (but not in the same plane) for easy understanding.
  • FIGS. 1 and 2 the same components as the components in the conventional ion source shown in FIG. 4 are given the same reference numerals to clarify the correspondence.
  • the probe main body 220 of the ionization probe 22 has a substantially cylindrical shape as in the prior art, and is held in a state of being inserted into the central opening of the substantially annular probe holder 23.
  • a screw receiving portion 41 having a screw hole formed on the inner peripheral side thereof is fixed to a position outside the wall surface 21 a of the ionization chamber 21 and separated by a predetermined distance from the ionization probe 22.
  • a shaft 46 is fixed to the outside of the wall surface 21 a of the ionization chamber 21 on the opposite side of the screw receiving portion 41 on both sides of the ionization probe 22 with the ionization probe 22 on the X axis.
  • a shaft 46 a extending in the Y-axis direction is attached to the shaft base 46.
  • the shaft 46a rotatably supports the ends of the pair of flat rod portions of the substantially U-shaped arm 45 including a pair of flat rod portions extending in parallel and linearly.
  • the distance between the pair of flat rod portions of the arm 45 is larger than the outer diameter of the probe main body 220 of the ionization probe 22, and the length of the flat rod portion is about the same as the distance between the screw receiving portion 41 and the shaft base 46 It is slightly longer than that.
  • a connecting portion 48 having a substantially cylindrical protrusion 48 a is attached to both sides of the adjusting screw 42 screwed into the screw hole of the screw receiving portion 41.
  • the connecting portion 48 is attached to the adjusting screw 42 so as not to interlock with the rotation of the adjusting screw 42 but interlocked to advancing and retracting in the Y-axis direction.
  • An elongated hole 45a elongated in the extending direction of the flat rod portion is formed at the end of the pair of flat rod portions of the arm 45 on the opposite side to the support position by the shaft 46a.
  • the projection 48a is loosely fitted in the long hole 45a.
  • the probe main body 220 is also provided with a pair of substantially cylindrical protrusions 47 extending in the Y-axis direction, and the pair of protrusions 47 extend in the extending direction between the flat portions of the pair of flat bar portions of the arm 45. It is loosely fitted in the formed long hole 45a. That is, the arm 45 is rotatably supported by the shaft 46a, is connected to the adjustment screw 42 at a position opposite to the rotation axis, and is moved in the Y-axis direction at the middle of the pair of flat bar portions. Is coupled to the probe body 220.
  • the position adjustment mechanism 40 centering on the arm 45 utilizes the principle of lever, and the support position by the shaft 46a is a fulcrum, the connection position by the protrusion 48a is a force point to which external force is applied, and the protrusion It can be understood that the connection position by the part 47 is the action point.
  • the connecting portion 48 moves in the Z-axis direction accordingly. Then, a force that causes the arm 45 to rotate in the direction indicated by the arrow a in FIG. 2 is applied via the projection 48 a, that is, from the point of force.
  • the projection 48a moves in the longitudinal direction in the long hole 45a.
  • the arm 45 can be smoothly rotated while linearly moving the adjusting screw 42 in the Z-axis direction.
  • the axial position of the ionization probe 22 can be easily adjusted by the operation of the adjustment screw 42 by the operator.
  • this position adjustment mechanism 40 since the shaft base 46, the adjustment screw 42 and the screw receiving portion 41 are disposed on both sides of the ionization probe 22, ionization is performed compared to the amount of movement of the adjustment screw 42 in the Z axis direction.
  • the amount of movement of the probe 22 in the Z-axis direction is small. Therefore, fine axial position adjustment of the ionization probe 22 can be easily performed.
  • the distance between the fulcrum and the point of application is reduced, the direction of the force applied to the point of application is inclined with respect to the Z axis direction. Therefore, it is desirable that the distance between the fulcrum and the point of action be greater, and it is better to separate the spindle 46 from the probe main body 220 as much as possible. Further, if the distance between the adjustment screw 42 and the screw receiver 41 and the ionization probe 22 is long enough that the adjustment screw 42 and the screw receiver 41 do not hinder the maintenance of the ionization probe 22 and the installation of the column oven 13. Good.
  • the ion source in the above embodiment performs ionization by the ESI method, it may perform ionization by the APCI method or the APPI method.
  • a needle electrode for generating a corona discharge is disposed in front of the spray flow of the sample droplet, and a buffer gas introduced into the ionization chamber by the corona discharge generated by a high voltage applied to the needle electrode. Or ionize the solvent gas vaporized from the liquid sample. Then, the gas component and the vaporized sample component may be chemically reacted to ionize the sample component.
  • the spray flow of the sample droplet may be irradiated with light (ultraviolet light) of a predetermined wavelength, and the vaporized sample component may be ionized by the light energy.
  • FIG. 3 is an example in which the ion source according to the present invention is applied to LC-MS, ions derived from sample components generated by the ESI method or the like are separated and detected according to ion mobility.
  • the ion source according to the present invention is applied to an ion mobility analyzer and an ion mobility-mass spectrometer which further separates generated ions derived from sample components according to ion mobility according to mass-to-charge ratio. It is also clear that it is applicable.
  • second stage quadrupole mass Filter 212 Ion detector 21: Ionization chamber 21a: Wall surface 22: Ionization probe 220: Probe main body 220a: Nozzle 221: Capillary 222: Joint 222: Relay pipe 23: Probe holder 24: Desolvation pipe 40: Position adjustment mechanism 45 ... arm 45a, 45b ... elongated hole 46 ... shaft base 46a ... shaft body 47, 8a ... protrusions 48 ... connecting part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

In the present invention, a screw receiving part (41) that an adjustment screw (42) is screwed into and a shaft support (46) are provided on the outside of an ionization chamber (21) wall surface (21a) at positions having an ionization probe (22) therebetween. One end of an arm (45) that includes a flat bar part is pivotally supported by the shaft support (46), and the other end of the arm (45) is connected to a connection part (48) that is attached to the adjustment screw (42). Additionally, a central part of the arm (45) is connected to a protruding part (47) provided in a probe body (220). At the locations of the connections, protruding parts (48a, 47) are capable of moving within elongated holes (45a, 45b). If the arm (45) rotates around a shaft body (46a) as a result of the operation of the adjustment screw (42), the probe body (220) is moved smoothly in the axial direction via the protruding part (47) and long hole (45b). As a result, it is possible to accurately adjust the position of the ionization probe (22) in the axial direction.

Description

イオン源及びイオン分析装置Ion source and ion analyzer
 本発明は、液体試料中の成分をイオン化するイオン源、及び該イオン源を備えた質量分析装置やイオン移動度分析装置などのイオン分析装置に関し、さらに詳しくは、エレクトロスプレーイオン化(ESI)法、大気圧化学イオン化(APCI)法、或いは大気圧光イオン化(APPI)法などのイオン化法によるイオン化を行うために液体試料を噴霧するイオン化プローブを有するイオン源、及び、該イオン源を備えたイオン分析装置に関する。 The present invention relates to an ion source for ionizing components in a liquid sample, and an ion analyzer such as a mass spectrometer or an ion mobility analyzer equipped with the ion source, more specifically, an electrospray ionization (ESI) method, An ion source having an ionization probe for spraying a liquid sample to perform ionization by an atmospheric pressure chemical ionization (APCI) method or an ionization method such as an atmospheric pressure photoionization (APPI) method, and an ion analysis equipped with the ion source It relates to the device.
 液体クロマトグラフと質量分析装置とを組み合わせた液体クロマトグラフ質量分析装置(以下、適宜「LC-MS」と略す)では、液体クロマトグラフのカラムで時間方向に分離された各種成分を含む溶出液を質量分析装置に導入し、質量分析装置のイオン源でイオン化したあと四重極マスフィルタ等の質量分離器で試料成分由来のイオンを質量電荷比m/zに応じて分離して検出する。LC-MSに用いられる質量分析装置では、液体試料中の成分をイオン化するために、ESI法、APCI法、APPI法等の大気圧イオン化法が用いられる。 In a liquid chromatograph mass spectrometer (hereinafter appropriately referred to as “LC-MS” as appropriate) in which a liquid chromatograph and a mass spectrometer are combined, an eluate containing various components separated in the time direction with the liquid chromatograph column is used. After being introduced into a mass spectrometer and ionized by the ion source of the mass spectrometer, ions from the sample component are separated and detected according to the mass-to-charge ratio m / z by a mass separator such as a quadrupole mass filter. In the mass spectrometer used for LC-MS, atmospheric pressure ionization methods such as ESI method, APCI method, and APPI method are used to ionize the components in the liquid sample.
 近年、特に生化学、医療、医薬品開発等の分野では、分析対象の試料が微量である場合や試料が貴重或いは高価である場合がしばしばあり、試料が微量であっても高い感度、精度で以て分析が行えることが求められている。こうした要望に応えるために、液体クロマトグラフでは、細径のカラムを使用するとともにカラムに供給する移動相の流量を抑える低流量化の手法が採られている。これに対応して質量分析装置のイオン源では、例えばナノESIやマイクロESIと呼ばれる、イオン化プローブに導入される溶出液の流量を抑えながら該溶出液中の成分を効率良くイオン化する手法、が採られている。 In recent years, particularly in the fields of biochemistry, medicine, drug development, etc., there are cases where the amount of sample to be analyzed is very small or the value of the sample is often valuable or expensive. Analysis is required. In order to meet such demands, liquid chromatographs employ a method of reducing the flow rate of the mobile phase supplied to the column while using a small diameter column. Corresponding to this, in the ion source of the mass spectrometer, there is adopted, for example, a method called nano-ESI or micro-ESI which efficiently ionizes the components in the eluate while suppressing the flow rate of the eluate introduced into the ionization probe. It is done.
 特許文献1に開示されているように、LC-MSでは、イオン化プローブからの噴霧流から発生した試料成分由来のイオンは細径の脱溶媒管を通して略大気圧雰囲気であるイオン化室からガス圧が相対的に低い次段の中間真空室へと送られる。そのため、分析感度を高めるには、イオン化室内で生成されたイオンを効率良く脱溶媒管中に送り込むことが必要である。イオン化プローブをその軸方向に移動させると、該イオン化プローブのキャピラリ末端と脱溶媒管のイオン導入口との間の距離や両者の軸のなす角度が変化し、脱溶媒管を通したイオンの輸送効率が変化する。そこで、分析感度を調整できるように、イオン化プローブの軸方向の位置を調整可能としたイオン源が従来知られている。 As disclosed in Patent Document 1, in LC-MS, ions derived from sample components generated from a spray flow from an ionization probe are subjected to gas pressure from an ionization chamber which is a substantially atmospheric pressure atmosphere through a narrow diameter desolvation tube. It is sent to the next lower intermediate vacuum chamber. Therefore, in order to improve the analysis sensitivity, it is necessary to efficiently feed the ions generated in the ionization chamber into the desolvation tube. When the ionization probe is moved in its axial direction, the distance between the capillary end of the ionization probe and the ion inlet of the desolvation tube and the angle between the two axes change, and transport of ions through the desolvation tube Efficiency changes. Therefore, there is conventionally known an ion source capable of adjusting the axial position of the ionization probe so as to adjust the analysis sensitivity.
 図4は、イオン化プローブの軸方向の位置調整が可能である従来の大気圧イオン源の一例の概略断面図である。
 イオン化プローブ22は、内部にネブライズガス流路を有するプローブ本体220と、外部から供給される液体試料が流通する細径のキャピラリ221と、を含む。プローブ本体220は略円柱形状であって先端に略円錐形状のノズル220aを有し、キャピラリ221の末端221aはこのノズル220aの先端から僅かに突出している。プローブ本体220は、略大気圧雰囲気であるイオン化室21の壁面21aに装着された略円環状であるプローブ保持部23により保持される。プローブ保持部23の内周面は適度な滑り性を有しており、イオン化室21の外側からプローブ本体220をイオン化室21内方側へ押し込んだり逆に引き出したりすることで、イオン化プローブ22の軸方向の位置を調整可能である。
FIG. 4 is a schematic cross-sectional view of an example of a conventional atmospheric pressure ion source capable of axial position adjustment of the ionization probe.
The ionization probe 22 includes a probe main body 220 having a nebulize gas flow path inside, and a capillary 221 with a small diameter through which a liquid sample supplied from the outside flows. The probe body 220 has a substantially cylindrical shape and has a substantially conical nozzle 220a at its tip, and the end 221a of the capillary 221 slightly protrudes from the tip of the nozzle 220a. The probe main body 220 is held by a substantially annular probe holder 23 mounted on the wall surface 21 a of the ionization chamber 21 in a substantially atmospheric pressure atmosphere. The inner circumferential surface of the probe holding portion 23 has appropriate slipperiness, and by pushing the probe main body 220 from the outside of the ionization chamber 21 to the inner side of the ionization chamber 21 or pulling it out in reverse, The axial position can be adjusted.
 プローブ本体220を押し込んだり引き出したりするために、プローブ本体220にはキャピラリ221の軸方向に直交する方向に張り出すアーム43が固定されており、該アーム43の端部には調整ねじ42が軸支されている。イオン化室21の壁面21a外側には、その内周側にねじ孔が形成されたねじ受け部41が取り付けられ、調整ねじ42のねじ山部はねじ受け部41のねじ孔に螺入されている。この調整ねじ42の螺入方向はプローブ本体220の軸方向と一致している。調整ねじ42の頭部を回転させてねじ山部をねじ受け部41のねじ孔に螺入してゆくと、それに伴い、調整ねじ42に一端が固定されたアーム43は略軸方向に移動する。それによって、アーム43の他端に固定されたプローブ本体220は図4中に矢印Bで示すように、イオン化室21内に押し込まれる。 An arm 43 projecting in a direction perpendicular to the axial direction of the capillary 221 is fixed to the probe main body 220 in order to push in and pull out the probe main body 220, and an adjustment screw 42 is axially mounted on an end of the arm 43. It is supported. A screw receiving portion 41 having a screw hole formed on the inner peripheral side is attached to the outside of the wall surface 21 a of the ionization chamber 21, and a screw thread portion of the adjusting screw 42 is screwed into the screw hole of the screw receiving portion 41. . The screwing direction of the adjusting screw 42 coincides with the axial direction of the probe main body 220. When the head portion of the adjusting screw 42 is rotated and the screw thread portion is screwed into the screw hole of the screw receiving portion 41, the arm 43 fixed at one end to the adjusting screw 42 moves in a substantially axial direction accordingly . Thereby, the probe main body 220 fixed to the other end of the arm 43 is pushed into the ionization chamber 21 as shown by the arrow B in FIG.
米国特許第9254497号明細書U.S. Pat. No. 9,254,497
 しかしながら、上記構成のイオン源では、調整ねじ42を螺入する際に、図4中に矢印Aで示すようにアーム43及びプローブ本体220を回転させる方向の力が作用する。そのため、プローブ本体220は軸方向に沿って真っ直ぐに移動せず、その軸を中心として揺動しながら全体として軸方向に移動することになる。そのため、イオン化プローブ22の正確な位置調整に支障をきたすだけでなく、プローブ保持部23に大きな負荷が掛かり摩耗等による劣化の要因となる。プローブ本体220が軸方向以外の方向に動くのを規制しつつプローブ本体220を軸方向に円滑に移動させるには、プローブ保持部23の軸方向の長さを長くすることが望ましい。しかしながら、プローブ保持部23の軸方向の長さは、プローブ本体220の軸方向の長さの制約を受ける。上述したナノESIやマイクロESIと呼ばれる低流速ESI用のイオン化プローブでは、配管の長さに由来した試料成分の拡散を原因とする感度低下が特に問題となる。そのため、このような低流速ESIでは、プローブ本体220の長さを軸方向に長くすることに伴うキャピラリ221の延長は感度低下の点から、特に好ましくない。 However, in the ion source configured as described above, when the adjustment screw 42 is screwed in, a force in the direction of rotating the arm 43 and the probe main body 220 acts as shown by arrow A in FIG. 4. Therefore, the probe main body 220 does not move straight along the axial direction, but moves in the axial direction as a whole while swinging about the axis. As a result, not only does it interfere with the accurate position adjustment of the ionization probe 22 but also a large load is applied to the probe holder 23 to cause deterioration due to wear and the like. In order to smoothly move the probe main body 220 in the axial direction while restricting the movement of the probe main body 220 in a direction other than the axial direction, it is desirable to increase the axial length of the probe holding portion 23. However, the axial length of the probe holder 23 is restricted by the axial length of the probe body 220. In the ionization probe for low flow rate ESI called nano ESI or micro ESI described above, the reduction in sensitivity due to the diffusion of the sample component derived from the length of the pipe becomes a problem in particular. Therefore, in such a low flow rate ESI, the extension of the capillary 221 accompanied by the lengthening of the length of the probe main body 220 in the axial direction is not particularly preferable in view of the decrease in sensitivity.
 また、上記構成のイオン源において、調整ねじ42の螺入時にアーム45及びプローブ本体220に作用する軸方向以外の力を小さくするには、アーム43の長さを短くする、即ち、調整ねじ42及びねじ受け部41をプローブ本体220に近い位置に設けるとよい。しかしながら、調整ねじ42及びねじ受け部41がプローブ本体220に近いと、キャピラリ221の交換やキャピラリ221の入口側端部と液体クロマトグラフのカラムの出口側端部(又はそれに接続される配管の末端)との接続などの作業がしにくくなる。 Further, in the ion source configured as described above, in order to reduce the force other than the axial direction acting on the arm 45 and the probe main body 220 when the adjusting screw 42 is screwed, the length of the arm 43 is shortened. The screw receiver 41 may be provided at a position close to the probe main body 220. However, when the adjusting screw 42 and the screw receiving portion 41 are close to the probe main body 220, replacement of the capillary 221, the inlet end of the capillary 221 and the outlet end of the column of the liquid chromatograph (or the end of the pipe connected thereto) It becomes difficult to do work such as connection with).
 特に上記低流速ESIにおいては、カラム出口端からイオン化プローブに至るまでの配管長を可能な限り短くし、またそのカラムとイオン化プローブのキャピラリとを同軸上に配置するのが一般的であるため、カラム(及びそのカラムが配置されるカラムオーブン)とイオン化プローブ本体との間の空間は非常に小さくなる。このような狭い空間に調整ねじ42が配置された場合、作業者がその狭い空間で調整ねじ42を操作する必要があり、作業性が極めて悪いものとなってしまう。そのため、調整ねじ42及びねじ受け部41はプローブ本体220から或る程度離した位置に配置せざるをえず、その点でもアーム45及びプローブ本体220に作用する軸方向以外の力を小さくすることは困難である。 In particular, in the low flow rate ESI, the pipe length from the column outlet end to the ionization probe is as short as possible, and since it is common to arrange the column and the capillary of the ionization probe coaxially, The space between the column (and the column oven in which the column is placed) and the ionization probe body is very small. When the adjusting screw 42 is disposed in such a narrow space, the operator needs to operate the adjusting screw 42 in the narrow space, and the workability becomes extremely poor. Therefore, the adjustment screw 42 and the screw receiving portion 41 must be disposed at a position apart from the probe main body 220 to some extent, and the force other than the axial direction acting on the arm 45 and the probe main body 220 is also reduced at that point. It is difficult.
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、イオン化プローブの設置位置から或る程度離れた位置での操作によって、イオン化プローブの軸方向の位置の調整を円滑に且つ精度良く行うことができるイオン源、及び該イオン源を用いたイオン分析装置を提供することである。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to adjust the axial position of the ionization probe by operating at a certain distance from the installation position of the ionization probe. It is an object of the present invention to provide an ion source capable of performing the process smoothly and accurately and an ion analyzer using the ion source.
 上記課題を解決するために成された本発明は、イオン化室と、液体試料を前記イオン化室内に噴霧するノズルを有し、その軸方向に移動自在に該イオン化室の壁面に形成された開口に挿通された状態で保持されるイオン化プローブと、を具備し、前記イオン化プローブにより前記イオン化室内に噴霧された液体試料に含まれる成分をイオン化するイオン源において、
 a)前記イオン化室の外側で前記イオン化プローブから離れた位置に配置され、外部からの操作に応じて、該イオン化プローブの軸方向と同方向に移動可能である調整用操作部と、
 b)前記イオン化室の外側で、前記イオン化プローブを挟んで前記調整用操作部と反対側の位置に配置されたアーム軸支部と、
 c)前記アーム軸支部に一端が軸支された棒状部を有し、他端が前記調整用操作部において該棒状部の延伸方向に所定の範囲で移動可能且つ回動可能に取着され、該棒状部の中間の位置でその延伸方向に所定の範囲で移動可能且つ回動可能に前記イオン化プローブに取着されてなるアーム部と、
 を備えることを特徴としている。
The present invention, which was made to solve the above problems, has an ionization chamber and a nozzle for spraying a liquid sample into the ionization chamber, and has an opening formed in the wall surface of the ionization chamber movably in the axial direction. An ion source comprising: an ionization probe held in a inserted state; and ionizing a component contained in a liquid sample sprayed into the ionization chamber by the ionization probe,
a) an adjusting operation unit which is disposed outside the ionization chamber and at a position away from the ionization probe and is movable in the same direction as the axial direction of the ionization probe according to an operation from the outside;
b) An arm support portion disposed outside the ionization chamber at a position opposite to the adjustment operation portion with the ionization probe interposed therebetween;
c) a rod-like portion whose one end is pivotally supported by the arm shaft supporting portion, and the other end is attached rotatably and movably in a predetermined range in the extending direction of the rod-like portion in the adjustment operation portion; An arm portion attached to the ionization probe so as to be movable and rotatable in a predetermined range in the extending direction at an intermediate position of the rod-like portion;
It is characterized by having.
 本発明に係るイオン源は典型的には、ESI法、APCI法、又は、APPI法によるイオン化を行うものである。なお、例えばESI法によるイオン源の場合に、イオン化プローブから噴霧される直前の液体試料を帯電させるための電場形成部を備える等、そのイオン化法の種類に応じた適宜の構成要素を備えることは当然である。 The ion source according to the present invention typically performs ionization by the ESI method, the APCI method, or the APPI method. For example, in the case of an ion source based on the ESI method, an appropriate component corresponding to the type of the ionization method may be provided, such as providing an electric field forming unit for charging the liquid sample immediately before being sprayed from the ionization probe. It is natural.
 本発明に係るイオン源では、イオン化プローブの軸方向の位置調整を行う際に、例えば作業者は手動操作により調整用操作部を操作し、該調整用操作部を適宜の量だけ移動させる。アーム部の棒状部の一端はこの調整用操作部に取着されており、他端はアーム軸支部により軸支されているので、調整用操作部が直線的に移動すると、棒状部は軸支されている位置を支点として回転する。調整用操作部は直線運動するため、該調整用操作部における棒状部の取着位置(力が加わる力点)と支点との間の距離はアーム部の回転に伴って変化するが、その取着位置は棒状部の延伸方向に所定の範囲で移動可能であるため、これによって上記距離の変化は吸収される。一方、アーム部が支点を中心に回転するのに伴い、棒状部とイオン化プローブとの取着位置(作用点)を介して該イオン化プローブを回転させる力が作用する。ただし、棒状部とイオン化プローブとの取着位置も棒状部の延伸方向に所定の範囲で移動可能であるため、アーム部の回転に伴ってその取着位置も移動し、それによってイオン化プローブはその軸方向に直線的に移動することになる。 In the ion source according to the present invention, when performing axial position adjustment of the ionization probe, for example, the operator manually operates the adjusting operation unit to move the adjusting operation unit by an appropriate amount. One end of the rod portion of the arm portion is attached to the adjustment operation portion, and the other end is pivotally supported by the arm support portion. Therefore, when the adjustment operation portion moves linearly, the rod portion is supported Rotate around the position where it is Since the adjusting operation unit moves linearly, the distance between the attachment position of the rod portion (force point to which force is applied) in the adjusting operation unit and the fulcrum changes with the rotation of the arm unit. Since the position is movable in a predetermined range in the extension direction of the rod-like portion, the change in the distance is absorbed thereby. On the other hand, as the arm portion rotates about the fulcrum, a force acts to rotate the ionization probe via the attachment position (working point) between the rod portion and the ionization probe. However, since the attachment position of the rod portion and the ionization probe is also movable in a predetermined range in the extension direction of the rod portion, the attachment position also moves with the rotation of the arm portion, whereby the ionization probe It moves linearly in the axial direction.
 このようにして本発明に係るイオン源では、イオン化プローブをその軸方向に円滑に移動させることができる。また、本発明に係るイオン源では、調整用操作部の移動量(調整量)に比べてイオン化プローブの移動量が小さいので、イオン化プローブの細かい位置の調整が容易である。 Thus, in the ion source according to the present invention, the ionization probe can be smoothly moved in the axial direction. Further, in the ion source according to the present invention, the amount of movement of the ionization probe is smaller than the amount of movement (adjustment amount) of the adjustment operation unit, so it is easy to adjust the fine position of the ionization probe.
 なお、上述したようにアーム部が回転運動する際に棒状部とイオン化プローブとの取着位置は棒状部の延伸方向に移動するものの、それでもイオン化プローブへの力の作用方向は軸方向ではない。しかしながら、棒状部を軸支している支点をイオン化プローブにおける作用点からできるだけ離れた位置とすることによって、イオン化プローブに作用する力の方向を軸方向に近づけることができる。これにより、イオン化プローブの揺動を効果的に抑えることができる。 As described above, although the attachment position of the rod portion and the ionization probe moves in the extension direction of the rod portion when the arm portion rotates, the action direction of the force on the ionization probe is not the axial direction. However, the direction of the force acting on the ionization probe can be made close to the axial direction by setting the fulcrum supporting the rod-like portion as far as possible from the point of action of the ionization probe. Thereby, the oscillation of the ionization probe can be effectively suppressed.
 本発明に係るイオン源において、前記調整用操作部は、前記イオン化室の壁面に対し位置が固定されたねじ受け部と、該ねじ受け部に螺入されるねじ部を有する調整ねじと、を含む構成とすることができる。 In the ion source according to the present invention, the adjusting operation unit includes a screw receiving portion whose position is fixed to a wall surface of the ionization chamber, and an adjusting screw having a screw portion screwed into the screw receiving portion. It can be configured to include.
 この構成では、例えば作業者が手動操作により調整ねじの頭部を回し、ねじ受け部へのねじ部の螺入深さを調整することで、イオン化プローブの軸方向の位置が調整される。即ち、調整ねじの頭部を回す回数やその角度によって、イオン化プローブの軸方向の位置を微妙に調整することができる。それによって、例えば本発明に係るイオン源を備えた質量分析装置では、高い分析感度が得られるようにイオン化プローブの軸方向の位置を簡便に調整することができる。 In this configuration, the position of the ionization probe in the axial direction is adjusted by, for example, manually turning the head of the adjustment screw by manual operation and adjusting the screwing depth of the screw portion into the screw receiving portion. That is, the axial position of the ionization probe can be finely adjusted by the number of times the head of the adjustment screw is turned and the angle thereof. Thus, for example, in a mass spectrometer equipped with the ion source according to the present invention, the axial position of the ionization probe can be easily adjusted so as to obtain high analysis sensitivity.
 また本発明に係るイオン源において好ましくは、前記アーム部は、前記イオン化プローブを挟んで平行に配置された2本の直線状の棒状部を含む上面視コ字状の部材である構成とするとよい。 Further, in the ion source according to the present invention, preferably, the arm portion is a U-shaped top view member including two linear rod portions arranged in parallel with the ionization probe interposed therebetween. .
 この構成によれば、アーム部が回転する際に、イオン化プローブはその両側の棒状部からそれぞれ作用点を介してほぼ軸方向に力を受ける。そのため、イオン化室の壁面に形成された開口にあってイオン化プローブを保持するプローブ保持部が軸方向に比較的短い場合であっても、イオン化プローブは軸方向に円滑に移動し、正確な位置の調整が行える。 According to this configuration, when the arm portion rotates, the ionization probe receives a force in the substantially axial direction from the rod-shaped portions on both sides thereof via the action points. Therefore, even if the probe holding portion that holds the ionization probe in the opening formed on the wall surface of the ionization chamber is relatively short in the axial direction, the ionization probe smoothly moves in the axial direction, and the accurate position can be obtained. It can be adjusted.
 また、本発明に係るイオン分析装置は、上記本発明に係るイオン源を備えたことを特徴としている。 An ion analyzer according to the present invention is characterized by including the ion source according to the present invention.
 本発明に係るイオン分析装置は、通常、イオン源で生成されたイオン又は該イオンに由来するイオンを質量電荷比に応じて分離して検出する質量分析装置、又は、イオン源で生成されたイオン又は該イオンに由来するイオンをイオン移動度に応じて分離して検出するイオン移動度分析装置のいずれかである。もちろん、イオンをイオン移動度に応じて分離したあとに質量電荷比に応じて分離するイオン移動度-質量分析装置とすることもできる。 The ion analysis apparatus according to the present invention is usually a mass spectrometer that separates and detects ions generated by the ion source or ions derived from the ions according to the mass-to-charge ratio, or ions generated by the ion source Alternatively, the present invention is any of the ion mobility analyzer which separates and detects ions derived from the ions according to the ion mobility. Of course, it is also possible to use an ion mobility-mass spectrometer which separates ions according to ion mobility and then according to mass-to-charge ratio.
 こうした本発明に係るイオン分析装置において、好ましくは、当該イオン分析装置のイオン源に液体クロマトグラフのカラムで分離された成分を含む溶出液を導入するものであり、該カラムの出口側端部と前記イオン化プローブにおける試料流路であるキャピラリの入口側端部とを直結する構成とするとよい。
 ここで、「カラムの出口側端部と前記イオン化プローブにおける試料流路であるキャピラリの入口側端部とを直結」した構成とは、両者の間をごく短い中継配管を介して接続することで実質的に直結した構成を含む。また、「ごく短い」とは、カラムがその内部に収容されたカラムオーブンとイオン化プローブとが全く又は殆ど隙間なく配置される状態となるようにカラムとキャピラリとを接続している状態である。
In the ion analyzer according to the present invention, preferably, an eluate containing the component separated by the liquid chromatograph column is introduced into the ion source of the ion analyzer, and the outlet end of the column Preferably, the sample flow path in the ionization probe is directly connected to the inlet end of the capillary.
Here, with the configuration in which “the outlet end of the column and the inlet end of the capillary that is the sample flow channel in the ionization probe are directly connected”, the two are connected via a very short relay pipe. Includes substantially directly connected configurations. Further, "very short" is a state in which the column and the capillary are connected such that the column oven in which the column is accommodated and the ionization probe are disposed completely or almost completely.
 液体クロマトグラフのカラムの出口側端部とキャピラリの入口側端部とを実質的に直結する場合、カラムが収納されたカラムオーブンがイオン化プローブの至近に配置されることになる。これに対し本発明に係るイオン源では、イオン化プローブから離れた位置に設けた調整用操作部の操作によりイオン化プローブの軸方向の位置調整が可能であるため、本発明に係るイオン分析装置では、イオン化プローブとカラムオーブンとの間の空間に調整用操作部を配置せずに済む。これによって、カラムオーブンをイオン化プローブの至近に配置することができる。また本発明に係るイオン分析装置では、このようにカラムの出口側端部とキャピラリの入口側端部とを実質的に直結することによって、カラムで分離された成分の拡散が抑えられ、高感度の分析を行うことができる。こうしたことから、本発明に係るイオン源は、特にナノESIやマイクロESIと呼ばれる低流速ESI用に好適である。 When the outlet end of the liquid chromatograph column and the inlet end of the capillary are substantially directly connected, the column oven in which the column is housed is placed in the vicinity of the ionization probe. On the other hand, in the ion source according to the present invention, the axial position of the ionization probe can be adjusted by the operation of the adjustment operation part provided at a position distant from the ionization probe. It is not necessary to arrange the adjustment operating unit in the space between the ionization probe and the column oven. This allows the column oven to be placed in close proximity to the ionization probe. Further, in the ion analyzer according to the present invention, diffusion of the components separated in the column is suppressed by substantially directly connecting the outlet end of the column and the inlet end of the capillary in this manner, and high sensitivity is achieved. Analysis of the As such, the ion source according to the present invention is particularly suitable for low flow ESI called nano ESI or micro ESI.
 本発明に係るイオン源によれば、イオン化プローブの設置位置から或る程度離れた位置での操作によって、イオン化プローブの軸方向の位置の調整を円滑に且つ精度良く行うことができる。また、イオン化プローブの軸方向の位置調整の際に該イオン化プローブの揺動が生じにくいので、イオン化室壁面にイオン化プローブを保持しているプローブ保持部への無理な力が加わりにくく、その劣化や損傷を抑えることができる。また、イオン化プローブの位置調整の精度が高いことで、本発明に係るイオン源を備えたイオン分析装置では、高い分析感度を実現することができる。 According to the ion source according to the present invention, the axial position of the ionization probe can be adjusted smoothly and accurately by the operation at a certain distance from the installation position of the ionization probe. In addition, since it is difficult to cause oscillation of the ionization probe at the time of axial position adjustment of the ionization probe, it is difficult for an excessive force to be applied to the probe holder holding the ionization probe on the wall surface of the ionization chamber. Damage can be reduced. In addition, the high accuracy of the position adjustment of the ionization probe enables the ion analyzer equipped with the ion source according to the present invention to realize high analysis sensitivity.
本発明の一実施例であるイオン化プローブの要部の平面図。The top view of the principal part of the ionization probe which is one example of the present invention. 本実施例のイオン化プローブの要部の一部断面概略構成図。The partial cross section schematic block diagram of the principal part of the ionization probe of a present Example. 本実施例のイオン化プローブを用いたLC-MSの概略構成図。The schematic block diagram of LC-MS using the ionization probe of a present Example. 従来の一般的なイオン化プローブの概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic sectional drawing of the conventional general ionization probe.
 以下、本発明の一実施例であるイオン源とこれを用いたLC-MSについて、添付図面を参照して説明する。
 図1は本実施例によるイオン源の要部の平面図、図2は本実施例のイオン源の一部断面概略構成図である。また図3は本実施例のイオン源を用いたLC-MSの一実施例の概略構成図である。説明の都合上、図3において、互いに直交するX軸、Y軸、Z軸を図示するように定める。このLC-MSにおいて、Z軸方向は横方向、X軸方向は高さ方向、Y軸は奥行方向である。
Hereinafter, an ion source according to an embodiment of the present invention and LC-MS using the same will be described with reference to the attached drawings.
FIG. 1 is a plan view of the main part of the ion source according to the present embodiment, and FIG. 2 is a schematic cross-sectional view of the ion source according to the present embodiment. FIG. 3 is a schematic configuration view of one embodiment of LC-MS using the ion source of this embodiment. For convenience of explanation, in FIG. 3, X-axis, Y-axis, and Z-axis orthogonal to each other are defined as illustrated. In this LC-MS, the Z-axis direction is the lateral direction, the X-axis direction is the height direction, and the Y-axis is the depth direction.
 まず、図3を参照して、本実施例のLC-MSの構成と概略的な分析動作を説明する。
このLC-MSは大別して、液体クロマトグラフ1と、質量分析装置2と、から成る。液体クロマトグラフ1は、移動相容器10、送液ポンプ11、インジェクタ12、カラム14、カラムオーブン13、を含む。
 カラムオーブン13は、ヒータやクーラが配設され、その周囲が断熱材で覆われた図示しないオーブン室を備え、そのオーブン室にカラム14が収容されている。このカラムオーブン13は、その内部に配置されたカラム14の出口側端部14aが後述するイオン化プローブ22の中継配管223と一直線上に位置するように配置されている。
First, the configuration and schematic analysis operation of the LC-MS of the present embodiment will be described with reference to FIG.
This LC-MS is roughly divided into a liquid chromatograph 1 and a mass spectrometer 2. The liquid chromatograph 1 includes a mobile phase container 10, a liquid feed pump 11, an injector 12, a column 14, and a column oven 13.
The column oven 13 includes an oven chamber (not shown) in which a heater and a cooler are disposed and the periphery is covered with a heat insulating material, and the column 14 is accommodated in the oven chamber. The column oven 13 is disposed such that the outlet end 14a of the column 14 disposed therein is aligned with a relay pipe 223 of the ionization probe 22 described later.
 質量分析装置2はイオン源20と分析部200とを備える。イオン源20及び分析部200は、図示しない真空ポンプなどとともに水平方向に長い筐体(図示せず)の内部に収納されている。図3に示すように、この質量分析装置2はトリプル四重極型の質量分析装置である。イオン源20はESIイオン源であり、略大気圧雰囲気に維持されるイオン化室21内に帯電液滴を噴霧するイオン化プローブ22を含む。イオン化プローブ22は低流量の液体状の試料が流通するキャピラリ221を有し、そのキャピラリ221の入口側端部はジョイント222により中継配管223に接続され、その中継配管223の入口側端部が略水平に筐体の外部に取り出されている。そして、その中継配管223の入口側端部は液体クロマトグラフ1のカラムオーブン13内に挿入され、カラム14の出口側端部14aに接続されている。中継配管223は例えばPEEK(ポリエーテルエーテルケトン)樹脂等の樹脂製であり、金属製であるキャピラリ221がイオン化プローブ22の外側に露出しないので高い安全性が確保できる。 The mass spectrometer 2 includes an ion source 20 and an analysis unit 200. The ion source 20 and the analysis unit 200 are housed in a horizontally long casing (not shown) together with a vacuum pump (not shown) and the like. As shown in FIG. 3, this mass spectrometer 2 is a triple quadrupole mass spectrometer. The ion source 20 is an ESI ion source, and includes an ionization probe 22 that sprays charged droplets into the ionization chamber 21 maintained at a substantially atmospheric pressure atmosphere. The ionization probe 22 has a capillary 221 through which a low flow rate liquid sample flows, and the inlet end of the capillary 221 is connected to the relay pipe 223 by the joint 222, and the inlet end of the relay pipe 223 is substantially Horizontally taken out of the case. The inlet end of the relay pipe 223 is inserted into the column oven 13 of the liquid chromatograph 1 and connected to the outlet end 14 a of the column 14. The relay pipe 223 is made of resin such as PEEK (polyether ether ketone) resin, for example, and since the metal capillary 221 is not exposed to the outside of the ionization probe 22, high safety can be ensured.
 分析部200はその全体が真空チャンバ201内に収容されている。真空チャンバ201の内部は、イオン化室21に近い側から、第1中間真空室202、第2中間真空室203、及び高真空室204に仕切られている。その各室202~204はそれぞれ真空ポンプで真空排気され、イオン化室21から高真空室204に向かって段階的に真空度が高くなる差動排気系の構成となっている。 The analysis unit 200 is entirely housed in the vacuum chamber 201. The inside of the vacuum chamber 201 is divided into a first intermediate vacuum chamber 202, a second intermediate vacuum chamber 203, and a high vacuum chamber 204 from the side close to the ionization chamber 21. Each of the chambers 202 to 204 is evacuated by a vacuum pump to form a differential exhaust system in which the degree of vacuum gradually increases from the ionization chamber 21 toward the high vacuum chamber 204.
 イオン化室21と第1中間真空室202とは細径の脱溶媒管24を通して連通しており、第1中間真空室202内にはイオン光軸Cを取り囲むように配置された複数の電極板から成るイオンガイド205が設置されている。第1中間真空室202と第2中間真空室203とはスキマー206の頂部の小孔を通して連通しており、第2中間真空室203内にはイオン光軸Cを取り囲む複数本のロッド電極からなるイオンガイド207が設置されている。高真空室204内には、内部にイオンガイド210が配置されたコリジョンセル209を挟んで、前段四重極マスフィルタ208と後段四重極マスフィルタ211とが配置され、さらにイオン検出器212が設けられている。 The ionization chamber 21 and the first intermediate vacuum chamber 202 communicate with each other through a narrow diameter solvent removal pipe 24, and a plurality of electrode plates disposed in the first intermediate vacuum chamber 202 so as to surround the ion optical axis C. An ion guide 205 is provided. The first intermediate vacuum chamber 202 and the second intermediate vacuum chamber 203 communicate with each other through the small hole at the top of the skimmer 206, and the second intermediate vacuum chamber 203 is composed of a plurality of rod electrodes surrounding the ion light axis C. An ion guide 207 is installed. In the high vacuum chamber 204, the front quadrupole mass filter 208 and the rear quadrupole mass filter 211 are disposed with the collision cell 209 in which the ion guide 210 is disposed, and the ion detector 212 is further disposed. It is provided.
 液体クロマトグラフ1において、送液ポンプ11は移動相容器10に貯留されている移動相を吸引して送給する。インジェクタ12から一定量の試料液が移動相中に注入されると、試料液は移動相の流れに乗ってカラム14に導入される。そして、カラムオーブン13により温調されているカラム14中を試料液が通過する間に、該試料液に含まれる各種成分が時間方向に分離されてカラム14の出口側端部14aに達する。カラム14において分離された成分を含む溶出液がイオン化プローブ22の中継配管223を経てキャピラリ221に導入されると、キャピラリ221の末端から該溶出液に由来する帯電液滴がイオン化室21内に噴霧される。帯電液滴は大気に衝突して微細化され、さらに溶媒が蒸発する過程で試料成分が気体イオンとなる。生成されたイオンは脱溶媒管24の両端の差圧により形成されるガス流に乗って脱溶媒管24に吸い込まれ、第1中間真空室202に導入される。 In the liquid chromatograph 1, the liquid feed pump 11 sucks and feeds the mobile phase stored in the mobile phase container 10. When a certain amount of sample liquid is injected from the injector 12 into the mobile phase, the sample liquid is introduced into the column 14 following the flow of the mobile phase. Then, while the sample solution passes through the column 14 temperature-controlled by the column oven 13, various components contained in the sample solution are separated in the time direction and reach the outlet end 14 a of the column 14. When the eluate containing the components separated in the column 14 is introduced into the capillary 221 through the relay pipe 223 of the ionization probe 22, charged droplets derived from the eluate are sprayed from the end of the capillary 221 into the ionization chamber 21. Be done. The charged droplets collide with the atmosphere to be miniaturized, and the sample component becomes gas ions in the process of evaporation of the solvent. The generated ions are absorbed into the desolvation pipe 24 on the gas flow formed by the differential pressure at both ends of the desolvation pipe 24 and introduced into the first intermediate vacuum chamber 202.
 上述したように、第1中間真空室202に導入された試料成分由来のイオンはイオンガイド205で収束され、スキマー206の小孔を経て第2中間真空室203に送られる。それらイオンはイオンガイド207で収束されて高真空室204に送られ、前段四重極マスフィルタ208に導入される。導入された試料成分由来のイオンの中で、前段四重極マスフィルタ208に印加されている電圧に対応する特定の質量電荷比を有するイオンのみが前段四重極マスフィルタ208を通り抜け、プリカーサイオンとしてコリジョンセル209に入る。コリジョンセル209内にはCID(衝突誘起解離)ガスが連続的に又は間欠的に導入されており、プリカーサイオンはCIDガスに接触して解離し、各種のプロダクトイオンが生成される。このプロダクトイオンが後段四重極マスフィルタ211に導入され、後段四重極マスフィルタ211に印加されている電圧に対応する特定の質量電荷比を有するプロダクトイオンのみが後段四重極マスフィルタ211を通り抜けてイオン検出器212に到達する。イオン検出器212は到達したイオンの量に応じた検出信号を生成する。 As described above, the ions derived from the sample component introduced into the first intermediate vacuum chamber 202 are converged by the ion guide 205, and are sent to the second intermediate vacuum chamber 203 through the small holes of the skimmer 206. The ions are focused by the ion guide 207, sent to the high vacuum chamber 204, and introduced into the front quadrupole mass filter 208. Among the ions derived from the sample components introduced, only ions having a specific mass-to-charge ratio corresponding to the voltage applied to the front quadrupole mass filter 208 pass through the front quadrupole mass filter 208 and the precursor ion The collision cell 209 is entered. In the collision cell 209, a CID (collision induced dissociation) gas is continuously or intermittently introduced, and the precursor ions are dissociated in contact with the CID gas to generate various product ions. This product ion is introduced into the second-stage quadrupole mass filter 211, and only the product ion having a specific mass-to-charge ratio corresponding to the voltage applied to the second-stage quadrupole mass filter 211 is the second-stage quadrupole mass filter 211. It passes through to reach the ion detector 212. The ion detector 212 generates a detection signal according to the amount of ions reached.
 上記LC-MSにおいて高い分析感度を達成するには、液体クロマトグラフ1における移動相の送流量(送液速度)や移動相の種類などに応じて、イオン化プローブ22の軸方向(Z軸方向)の位置を調整することが望ましい。そうした位置の調整を行うために、本実施例のイオン源20は次のような特徴的な構成の位置調整機構40を備えている。この位置調整機構40について、図1、図2を参照して詳述する。 In order to achieve high analytical sensitivity in the above LC-MS, the axial direction (Z-axis direction) of the ionization probe 22 according to the flow rate of the mobile phase (liquid transfer rate) in the liquid chromatograph 1, the type of mobile phase, etc. It is desirable to adjust the position of In order to perform such position adjustment, the ion source 20 of the present embodiment is provided with a position adjusting mechanism 40 having the following characteristic configuration. The position adjusting mechanism 40 will be described in detail with reference to FIGS. 1 and 2.
 なお、図1はイオン化室21に装着されているイオン化プローブ22を左側方から見た状態の平面図である。また、図2は、理解を容易にするために、一部の構成要素のみを断面(ただし、同一平面における断面ではない)で示した一部断面概略構成図である。図1、図2において、図4に示した従来のイオン源における構成要素と同じ構成要素には、同じ符号を付して対応関係を明確にしている。 FIG. 1 is a plan view of the state in which the ionization probe 22 mounted in the ionization chamber 21 is viewed from the left side. Moreover, FIG. 2 is a partially sectioned schematic configuration diagram showing only some of the components in a cross section (but not in the same plane) for easy understanding. In FIGS. 1 and 2, the same components as the components in the conventional ion source shown in FIG. 4 are given the same reference numerals to clarify the correspondence.
 本実施例のイオン源20において、イオン化プローブ22のプローブ本体220は従来と同様に略円筒形状であり、略円環状であるプローブ保持部23の中央開口に挿通された状態で保持されている。イオン化室21の壁面21a外側にあって、イオン化プローブ22から所定距離離れた位置には、その内周側にねじ孔が形成されたねじ受け部41が固定されている。そして、イオン化プローブ22を挟んで、より正確には、X軸上でイオン化プローブ22の軸を挟んでねじ受け部41と反対側のイオン化室21の壁面21a外側には軸台46が固定されている。軸台46にはY軸方向に延伸する軸体46aが取り付けられている。 In the ion source 20 of this embodiment, the probe main body 220 of the ionization probe 22 has a substantially cylindrical shape as in the prior art, and is held in a state of being inserted into the central opening of the substantially annular probe holder 23. A screw receiving portion 41 having a screw hole formed on the inner peripheral side thereof is fixed to a position outside the wall surface 21 a of the ionization chamber 21 and separated by a predetermined distance from the ionization probe 22. Then, a shaft 46 is fixed to the outside of the wall surface 21 a of the ionization chamber 21 on the opposite side of the screw receiving portion 41 on both sides of the ionization probe 22 with the ionization probe 22 on the X axis. There is. A shaft 46 a extending in the Y-axis direction is attached to the shaft base 46.
 軸体46aは、互いに平行で直線状に延伸する一対の平板棒状部を含む略コ字形状であるアーム45の、その一対の平板棒状部の端部を回転自在に支持している。このアーム45の一対の平板棒状部の間隔はイオン化プローブ22のプローブ本体220の外径よりも大きく、また平板棒状部の長さはねじ受け部41と軸台46との間隔と同程度又はそれよりも若干長くなっている。ねじ受け部41のねじ孔に螺入されている調整ねじ42には、その両側に略円柱状の突起部48aを有する連結部48が取り付けられている。この連結部48は調整ねじ42の回転には連動しないが、そのY軸方向の進退には連動するように、調整ねじ42に取り付けられている。アーム45の一対の平板棒状部の、軸体46aによる支持位置とは反対側の端部には、その平板棒状部の延伸方向に細長い長孔45aが形成されており、連結部48の一対の突起部48aはこの長孔45aに遊嵌されている。 The shaft 46a rotatably supports the ends of the pair of flat rod portions of the substantially U-shaped arm 45 including a pair of flat rod portions extending in parallel and linearly. The distance between the pair of flat rod portions of the arm 45 is larger than the outer diameter of the probe main body 220 of the ionization probe 22, and the length of the flat rod portion is about the same as the distance between the screw receiving portion 41 and the shaft base 46 It is slightly longer than that. A connecting portion 48 having a substantially cylindrical protrusion 48 a is attached to both sides of the adjusting screw 42 screwed into the screw hole of the screw receiving portion 41. The connecting portion 48 is attached to the adjusting screw 42 so as not to interlock with the rotation of the adjusting screw 42 but interlocked to advancing and retracting in the Y-axis direction. An elongated hole 45a elongated in the extending direction of the flat rod portion is formed at the end of the pair of flat rod portions of the arm 45 on the opposite side to the support position by the shaft 46a. The projection 48a is loosely fitted in the long hole 45a.
 また、プローブ本体220にもY軸方向に延伸する略円柱状の一対の突起部47が設けられ、この一対の突起部47は、アーム45の一対の平板棒状部の中間部にその延伸方向に形成された長孔45aに遊嵌されている。即ち、アーム45は軸体46aにおいて回転自在に軸支され、その回転軸とは反対側の位置で調整ねじ42と連結され、さらに一対の平板棒状部の中間部でY軸方向への移動対象であるプローブ本体220に連結されている。このアーム45を中心とする位置調整機構40はてこの原理を利用したものであり、軸体46aによる軸支位置が支点、突起部48aによる連結位置が外部からの力が加わる力点、そして、突起部47による連結位置が作用点であると捉えることができる。 Further, the probe main body 220 is also provided with a pair of substantially cylindrical protrusions 47 extending in the Y-axis direction, and the pair of protrusions 47 extend in the extending direction between the flat portions of the pair of flat bar portions of the arm 45. It is loosely fitted in the formed long hole 45a. That is, the arm 45 is rotatably supported by the shaft 46a, is connected to the adjustment screw 42 at a position opposite to the rotation axis, and is moved in the Y-axis direction at the middle of the pair of flat bar portions. Is coupled to the probe body 220. The position adjustment mechanism 40 centering on the arm 45 utilizes the principle of lever, and the support position by the shaft 46a is a fulcrum, the connection position by the protrusion 48a is a force point to which external force is applied, and the protrusion It can be understood that the connection position by the part 47 is the action point.
 作業者が調整ねじ42の頭部を回動させることで調整ねじ42をねじ受け部41に螺入すると、それに伴い連結部48はZ軸方向に移動する。すると、突起部48aを介して、つまりは力点から、アーム45を図2中で矢印aで示す方向に回転させる力が加わる。このようにアーム45が回転してX軸方向に近づくに従い、突起部48aは長孔45a中をその長手方向に移動する。これによって、調整ねじ42をZ軸方向に直線的に移動させながら、アーム45を円滑に回動させることができる。 When the operator turns the head of the adjusting screw 42 and screws the adjusting screw 42 into the screw receiving portion 41, the connecting portion 48 moves in the Z-axis direction accordingly. Then, a force that causes the arm 45 to rotate in the direction indicated by the arrow a in FIG. 2 is applied via the projection 48 a, that is, from the point of force. Thus, as the arm 45 rotates and approaches the X-axis direction, the projection 48a moves in the longitudinal direction in the long hole 45a. Thus, the arm 45 can be smoothly rotated while linearly moving the adjusting screw 42 in the Z-axis direction.
 アーム45がこのように回転運動するとき、長孔45b及び突起部47を介して、プローブ本体220に力が加わる。仮に、突起部47が遊びがない丸孔を介してアーム45に連結されていたとすると、アーム45の回転がそのままプローブ本体220に伝わるため、プローブ本体220に掛かる力の方向は軸方向とならない。それに対し、この位置調整機構40では、突起部47が長孔45bを介してアーム45に連結されているため、アーム45が回動するに伴い、突起部47は長孔45b中をその長手方向に移動する。これによって、突起部47つまりは作用点からプローブ本体220にほぼ軸方向に沿った(Z軸方向の)力が加わり、イオン化プローブ22はZ軸方向に円滑に移動する。 When the arm 45 rotates in this manner, a force is applied to the probe main body 220 through the long hole 45 b and the projection 47. Assuming that the projection 47 is connected to the arm 45 through a round hole without play, the rotation of the arm 45 is transmitted to the probe main body 220 as it is, so the direction of the force applied to the probe main body 220 does not become axial. On the other hand, in the position adjusting mechanism 40, since the projection 47 is connected to the arm 45 via the long hole 45b, as the arm 45 rotates, the projection 47 is in the long hole 45b in the longitudinal direction Move to As a result, a force (in the Z-axis direction) is applied substantially in the axial direction (in the Z-axis direction) to the probe main body 220 from the projection 47, that is, the point of action.
 以上のようにして、作業者による調整ねじ42の操作によって、イオン化プローブ22の軸方向の位置を簡便に調整することができる。この位置調整機構40では、イオン化プローブ22を挟んでその両側に軸台46と調整ねじ42及びねじ受け部41とを配置しているので、調整ねじ42のZ軸方向の移動量に比べてイオン化プローブ22のZ軸方向の移動量は小さい。そのため、イオン化プローブ22の軸方向の微細な位置調整を容易に行うことができる。 As described above, the axial position of the ionization probe 22 can be easily adjusted by the operation of the adjustment screw 42 by the operator. In this position adjustment mechanism 40, since the shaft base 46, the adjustment screw 42 and the screw receiving portion 41 are disposed on both sides of the ionization probe 22, ionization is performed compared to the amount of movement of the adjustment screw 42 in the Z axis direction. The amount of movement of the probe 22 in the Z-axis direction is small. Therefore, fine axial position adjustment of the ionization probe 22 can be easily performed.
 なお、支点と作用点との距離を近くするほど、作用点に掛かる力の方向はZ軸方向に対して傾くことになる。したがって、支点と作用点との距離は遠いほうが望ましく、軸台46をプローブ本体220からできるだけ離すほうがよい。また、調整ねじ42及びねじ受け部41とイオン化プローブ22との距離は、調整ねじ42及びねじ受け部41が、イオン化プローブ22のメンテナンスやカラムオーブン13の設置の障害にならない程度にまで長くすればよい。 As the distance between the fulcrum and the point of application is reduced, the direction of the force applied to the point of application is inclined with respect to the Z axis direction. Therefore, it is desirable that the distance between the fulcrum and the point of action be greater, and it is better to separate the spindle 46 from the probe main body 220 as much as possible. Further, if the distance between the adjustment screw 42 and the screw receiver 41 and the ionization probe 22 is long enough that the adjustment screw 42 and the screw receiver 41 do not hinder the maintenance of the ionization probe 22 and the installation of the column oven 13. Good.
 また、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲内で適宜に変更や修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 Further, the above-described embodiment is only an example of the present invention, and it is natural that the present invention is included in the claims of the present invention even if appropriately changed, modified or added within the scope of the present invention.
 例えば、上記実施例のイオン源はESI法によるイオン化を行うものであるが、APCI法やAPPI法によるイオン化を行うものであってもよい。APCI法によるイオン源では、試料液滴の噴霧流の前方にコロナ放電を生起させる針電極を配置し、この針電極に印加する高電圧によって生起させたコロナ放電により、イオン化室内に導入したバッファガス又は液体試料から気化した溶媒ガスをイオン化する。そして、このガスイオンと気化した試料成分とを化学反応させることで、該試料成分をイオン化すればよい。また、APPI法によるイオン源では、試料液滴の噴霧流に所定波長の光(紫外光)を照射し、その光エネルギにより気化した試料成分をイオン化すればよい。 For example, although the ion source in the above embodiment performs ionization by the ESI method, it may perform ionization by the APCI method or the APPI method. In the ion source by the APCI method, a needle electrode for generating a corona discharge is disposed in front of the spray flow of the sample droplet, and a buffer gas introduced into the ionization chamber by the corona discharge generated by a high voltage applied to the needle electrode. Or ionize the solvent gas vaporized from the liquid sample. Then, the gas component and the vaporized sample component may be chemically reacted to ionize the sample component. Further, in the ion source according to the APPI method, the spray flow of the sample droplet may be irradiated with light (ultraviolet light) of a predetermined wavelength, and the vaporized sample component may be ionized by the light energy.
 また、図3に示した実施例は本発明に係るイオン源をLC-MSに適用した例であるが、ESI法等により生成した試料成分由来のイオンをイオン移動度に応じて分離して検出するイオン移動度分析装置や、生成した試料成分由来のイオンをイオン移動度に応じて分離したあとにさらに質量電荷比に応じて分離するイオン移動度-質量分析装置に本発明に係るイオン源を適用できることも明らかである。 Further, although the embodiment shown in FIG. 3 is an example in which the ion source according to the present invention is applied to LC-MS, ions derived from sample components generated by the ESI method or the like are separated and detected according to ion mobility. The ion source according to the present invention is applied to an ion mobility analyzer and an ion mobility-mass spectrometer which further separates generated ions derived from sample components according to ion mobility according to mass-to-charge ratio. It is also clear that it is applicable.
 1…液体クロマトグラフ
10…移動相容器
11…送液ポンプ
12…インジェクタ
13…カラムオーブン
14…カラム
14a…出口側端部
15…ジョイント
2…質量分析装置
20…イオン源
200…分析部
201…真空チャンバ
202…第1中間真空室
203…第2中間真空室
204…高真空室
205、207、210…イオンガイド
206…スキマー
208…前段四重極マスフィルタ
209…コリジョンセル
211…後段四重極マスフィルタ
212…イオン検出器
21…イオン化室
21a…壁面
22…イオン化プローブ
220…プローブ本体
220a…ノズル
221…キャピラリ
222…ジョイント
223…中継配管
23…プローブ保持部
24…脱溶媒管
40…位置調整機構
45…アーム
45a、45b…長孔
46…軸台
46a…軸体
47、48a…突起部
48…連結部
DESCRIPTION OF SYMBOLS 1 ... Liquid chromatograph 10 ... Mobile phase container 11 ... Liquid feeding pump 12 ... Injector 13 ... Column oven 14 ... Column 14a ... Exit side end part 15 ... Joint 2 ... Mass spectrometer 20 ... Ion source 200 ... Analysis part 201 ... Vacuum Chamber 202 ... first intermediate vacuum chamber 203 ... second intermediate vacuum chamber 204 ... high vacuum chamber 205, 207, 210 ... ion guide 206 ... skimmer 208 ... first stage quadrupole mass filter 209 ... collision cell 211 ... second stage quadrupole mass Filter 212: Ion detector 21: Ionization chamber 21a: Wall surface 22: Ionization probe 220: Probe main body 220a: Nozzle 221: Capillary 222: Joint 222: Relay pipe 23: Probe holder 24: Desolvation pipe 40: Position adjustment mechanism 45 ... arm 45a, 45b ... elongated hole 46 ... shaft base 46a ... shaft body 47, 8a ... protrusions 48 ... connecting part

Claims (7)

  1.  イオン化室と、液体試料を前記イオン化室内に噴霧するノズルを有し、その軸方向に移動自在に該イオン化室の壁面に形成された開口に挿通された状態で保持されるイオン化プローブと、を具備し、前記イオン化プローブにより前記イオン化室内に噴霧された液体試料に含まれる成分をイオン化するイオン源において、
     a)前記イオン化室の外側で前記イオン化プローブから離れた位置に配置され、外部からの操作に応じて、該イオン化プローブの軸方向と同方向に移動可能である調整用操作部と、
     b)前記イオン化室の外側で、前記イオン化プローブを挟んで前記調整用操作部と反対側の位置に配置されたアーム軸支部と、
     c)前記アーム軸支部に一端が軸支された棒状部を有し、他端が前記調整用操作部において該棒状部の延伸方向に所定の範囲で移動可能且つ回動可能に取着され、該棒状部の中間の位置でその延伸方向に所定の範囲で移動可能且つ回動可能に前記イオン化プローブに取着されてなるアーム部と、
     を備えることを特徴とするイオン源。
    And an ionization probe having a ionization chamber, and a nozzle for spraying a liquid sample into the ionization chamber, and held in a state of being inserted into an opening formed in a wall surface of the ionization chamber so as to be movable in the axial direction. An ion source for ionizing components contained in a liquid sample sprayed into the ionization chamber by the ionization probe;
    a) an adjusting operation unit which is disposed outside the ionization chamber and at a position away from the ionization probe and is movable in the same direction as the axial direction of the ionization probe according to an operation from the outside;
    b) An arm support portion disposed outside the ionization chamber at a position opposite to the adjustment operation portion with the ionization probe interposed therebetween;
    c) a rod-like portion whose one end is pivotally supported by the arm shaft supporting portion, and the other end is attached rotatably and movably in a predetermined range in the extending direction of the rod-like portion in the adjustment operation portion; An arm portion attached to the ionization probe so as to be movable and rotatable in a predetermined range in the extending direction at an intermediate position of the rod-like portion;
    An ion source comprising:
  2.  請求項1に記載のイオン源であって、
     前記調整用操作部は、前記イオン化室の壁面に対し位置が固定されたねじ受け部と、該ねじ受け部に螺入されるねじ部を有する調整ねじと、を含むことを特徴とするイオン源。
    The ion source according to claim 1, wherein
    The ion source characterized in that the adjusting operation part includes a screw receiving part whose position is fixed to a wall surface of the ionization chamber, and an adjusting screw having a screw part screwed into the screw receiving part. .
  3.  請求項1に記載のイオン源であって、
     前記アーム部は、前記イオン化プローブを挟んで平行に配置された2本の直線状の棒状部を含む上面視コ字状の部材であることを特徴とするイオン源。
    The ion source according to claim 1, wherein
    3. The ion source according to claim 1, wherein the arm unit is a U-shaped member in top view including two straight rod-like portions arranged in parallel with the ionization probe interposed therebetween.
  4.  請求項1に記載のイオン源を備えたことを特徴とするイオン分析装置。 An ion analyzer comprising the ion source according to claim 1.
  5.  請求項4に記載のイオン分析装置であって、
     当該イオン分析装置のイオン源に液体クロマトグラフのカラムで分離された成分を含む溶出液を導入するものであり、該カラムの出口側端部と前記イオン化プローブにおける試料流路であるキャピラリの入口側端部とを直結することを特徴とするイオン分析装置。
    The ion analyzer according to claim 4, wherein
    An eluate containing components separated by a liquid chromatograph column is introduced into an ion source of the ion analyzer, and an outlet end of the column and an inlet side of a capillary which is a sample flow path of the ionization probe. An ion analyzer characterized in that it is directly connected to an end.
  6.  請求項5に記載のイオン分析装置であって、
     前記イオン源で生成されたイオン又は該イオンに由来するイオンを質量電荷比に応じて分離して検出することを特徴とするイオン分析装置。
    The ion analyzer according to claim 5, wherein
    An ion analyzer characterized in that ions generated by the ion source or ions derived from the ions are separated and detected according to mass-to-charge ratio.
  7.  請求項5に記載のイオン分析装置であって、
     前記イオン源で生成されたイオン又は該イオンに由来するイオンをイオン移動度に応じて分離して検出することを特徴とするイオン分析装置。
    The ion analyzer according to claim 5, wherein
    An ion analyzer characterized by separating and detecting an ion generated by the ion source or an ion derived from the ion according to ion mobility.
PCT/JP2017/032300 2017-09-07 2017-09-07 Ion source and ion analysis device WO2019049272A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019540209A JP6747602B2 (en) 2017-09-07 2017-09-07 Ion source and ion analyzer
PCT/JP2017/032300 WO2019049272A1 (en) 2017-09-07 2017-09-07 Ion source and ion analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032300 WO2019049272A1 (en) 2017-09-07 2017-09-07 Ion source and ion analysis device

Publications (1)

Publication Number Publication Date
WO2019049272A1 true WO2019049272A1 (en) 2019-03-14

Family

ID=65633827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032300 WO2019049272A1 (en) 2017-09-07 2017-09-07 Ion source and ion analysis device

Country Status (2)

Country Link
JP (1) JP6747602B2 (en)
WO (1) WO2019049272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085889A (en) * 2020-11-27 2022-06-08 エフ ホフマン-ラ ロッシュ アクチェン ゲゼルシャフト Positioning of needle-like component in mass spectrometry system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343363A (en) * 2000-06-05 2001-12-14 Shimadzu Corp Mass spectroscope
JP2005135781A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Mass spectrometer
JP2008071510A (en) * 2006-09-12 2008-03-27 Mems Core Co Ltd Mass spectrometer
JP2015049077A (en) * 2013-08-30 2015-03-16 株式会社島津製作所 Ionization probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343363A (en) * 2000-06-05 2001-12-14 Shimadzu Corp Mass spectroscope
JP2005135781A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Mass spectrometer
JP2008071510A (en) * 2006-09-12 2008-03-27 Mems Core Co Ltd Mass spectrometer
JP2015049077A (en) * 2013-08-30 2015-03-16 株式会社島津製作所 Ionization probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022085889A (en) * 2020-11-27 2022-06-08 エフ ホフマン-ラ ロッシュ アクチェン ゲゼルシャフト Positioning of needle-like component in mass spectrometry system
JP7372298B2 (en) 2020-11-27 2023-10-31 エフ ホフマン-ラ ロッシュ アクチェン ゲゼルシャフト Placement of needle-like components in mass spectrometry systems

Also Published As

Publication number Publication date
JP6747602B2 (en) 2020-08-26
JPWO2019049272A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US11133162B2 (en) IRMS sample introduction system and method
JP5985688B2 (en) Simple and multi-operation mode ion sources used for atmospheric pressure chemical ionization
US8637812B2 (en) Sample excitation apparatus and method for spectroscopic analysis
EP1933134A1 (en) Mass analyzer
US6646255B2 (en) Liquid chromatograph/mass spectrometer and its ionization interface
JP6620896B2 (en) Ionizer and mass spectrometer
JP6747602B2 (en) Ion source and ion analyzer
JP6747601B2 (en) Ionization probe and ion analyzer
US11049711B2 (en) Ion source for mass spectrometer
US10466214B2 (en) Ionization device
WO2018100621A1 (en) Ionizer and mass spectrometer
JP7294535B2 (en) ion analyzer
JP6780784B2 (en) Liquid chromatograph mass spectrometer
JPH10125275A (en) Atmospheric pressure ionizing mass spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924415

Country of ref document: EP

Kind code of ref document: A1