WO2019049250A1 - Spectrometry device - Google Patents

Spectrometry device Download PDF

Info

Publication number
WO2019049250A1
WO2019049250A1 PCT/JP2017/032204 JP2017032204W WO2019049250A1 WO 2019049250 A1 WO2019049250 A1 WO 2019049250A1 JP 2017032204 W JP2017032204 W JP 2017032204W WO 2019049250 A1 WO2019049250 A1 WO 2019049250A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
probe light
beam diameter
measurement
detection
Prior art date
Application number
PCT/JP2017/032204
Other languages
French (fr)
Japanese (ja)
Inventor
茉佑子 高井
啓太 山口
Original Assignee
株式会社日立ハイテクノロジーズ
茉佑子 高井
啓太 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ, 茉佑子 高井, 啓太 山口 filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2019540191A priority Critical patent/JP6782849B2/en
Priority to PCT/JP2017/032204 priority patent/WO2019049250A1/en
Publication of WO2019049250A1 publication Critical patent/WO2019049250A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the present invention relates to a spectrometer which reduces or eliminates the influence of scattering of an object to be measured.
  • Patent Document 1 states that "a sample inspection apparatus capable of suppressing a decrease in detection accuracy due to scattering of terahertz waves is provided” as a problem, and a solution means "a sample inspection apparatus according to the present invention is a terahertz wave
  • a transport unit configured to transport the sample in the in-plane direction of the transport surface, the transport unit configured to transport the specimen in the in-plane direction of the transport surface;
  • An irradiation direction changing unit that changes the irradiation direction of the terahertz wave that is emitted from the generation unit and is irradiated to the sample placed on the transport surface, and the sample placed on the transport surface is irradiated or transmitted
  • a terahertz wave detection unit that detects the reflected terahertz wave, and the irradiation direction changing unit changes the irradiation direction by changing the position of the terahertz wave generation unit.
  • An object of the present invention is to provide a technique for reducing or eliminating the influence of scattering by particles constituting an object to be measured in spectrometry.
  • the above problems include, for example, an electromagnetic wave irradiation unit that emits an electromagnetic wave, a light reception unit that receives an electromagnetic wave, a probe light irradiation unit that emits a probe light, and a probe light detection unit that detects the probe light and outputs a detection signal.
  • the arithmetic unit for calculating the detection intensity of the electromagnetic wave from the detection signal, and the beam diameter control unit for adjusting the beam diameter of the probe light the electromagnetic wave irradiation unit irradiates the electromagnetic wave to the object to be measured, and the light reception
  • the unit receives the electromagnetic wave emitted to the object to be measured
  • the probe light irradiating unit irradiates the probe light to the light receiving unit
  • the probe light detecting unit irradiates the probe light irradiated to the light receiving unit.
  • the detection unit outputs a detection signal
  • the calculation unit calculates the detection intensity based on the detection signal and the beam diameter of the probe light, and the beam is calculated based on the calculated detection intensity. Adjusting portion is solved by the spectral measurement device and controls the beam diameter of the probe light.
  • FIG. 2 is a schematic view showing an example of a beam diameter adjustment unit 20.
  • A First adjustment flow of probe light beam diameter in the first embodiment.
  • B Detailed flow of the first adjustment flow S2 of the probe light beam diameter in the first embodiment.
  • FIG. 6 is a diagram showing the relationship between a probe light beam diameter and a calculated value in Embodiment 1. List of known parameters used to adjust probe light beam diameter
  • A Second adjustment flow of probe light beam diameter in the first embodiment.
  • FIG. 14 is a configuration diagram showing a case where the position of the detection nonlinear optical crystal 102 is controlled in the second embodiment of the spectrometry device.
  • FIG. 14 is a block diagram of an image sensor in a fourth embodiment.
  • FIG. 1 is a block diagram schematically showing a first embodiment of the terahertz spectrometer of the present invention.
  • the terahertz spectrometry apparatus according to the present embodiment is configured as an apparatus for irradiating the terahertz wave T1 to the measurement object 101 and measuring the amplitude of the transmitted terahertz wave T2 absorbed or scattered by the substance constituting the measurement object 101.
  • the terahertz wave T ⁇ b> 1 emitted from the terahertz wave generation unit 1 is focused on the measurement target object 101 by the focusing element 111.
  • the transmitted terahertz wave T2 absorbed or scattered by the substance constituting the measurement object 101 is incident on the non-linear optical crystal 102 for detection.
  • the probe light source 2 of FIG. 1 emits a probe light L1 for detecting a terahertz wave.
  • the probe light L1 enters the beam diameter adjustment unit 20, and the beam diameter is expanded or reduced to become probe light L2 having a beam diameter B. Thereafter, the probe light L2 is polarized by the polarizer 301, is reflected by the beam splitter 311, and is incident on the non-linear optical crystal 102 for detection.
  • a wavelength selection mirror may be inserted between the measurement object 101 and the detection nonlinear optical crystal 102, and the probe light L2 may be incident from the surface of the detection nonlinear optical crystal 102.
  • the wavelength selection mirror is an optical element that transmits the terahertz wave T2 and reflects the probe light L2, and includes, for example, a pellicle or a silicon plate.
  • the detecting nonlinear optical crystal 102 When the terahertz wave T2 is incident on the detecting nonlinear optical crystal 102, an electro-optical effect is generated, and the birefringence of the detecting nonlinear optical crystal 102 changes according to the amplitude of the incident terahertz wave T2.
  • the probe light transmitted or reflected by the detection nonlinear optical crystal 102 changes its polarization state in accordance with the change in birefringence.
  • the probe light L2 transmitted from the beam splitter 311 among the probe light L2 reflected from the detection nonlinear optical crystal 102 and whose polarization state has changed is analyzed by the compensator 302 and the polarizer 303 to detect the change in polarization state, and the detector 304
  • the intensity of the probe light L2 is detected by
  • the component of the probe light incident on the detector 304 is converted into, for example, a voltage, and is input to the measurement unit 321 of the processing unit 3.
  • the signal input to the measurement unit 321 is proportional to the electric field or the intensity of the terahertz wave T2 incident on the detection nonlinear optical crystal 102.
  • the transmission axes of the polarizer 301 and the polarizer 303 orthogonal and making the fast axis or the slow axis of the compensator 302 coincide with the transmission axis of the polarizer 303.
  • the transmission axes of the polarizers 301 and 303 can be orthogonal to each other, and the fast or slow axis of the compensator 302 can be obtained by making the transmission axis of the polarizer 303 an angle larger than 0 degrees.
  • a Wollaston prism is disposed instead of the polarizer 303, the probe light is divided into two paths, the detector 304 is a balance detector, and the detection efficiency is improved by detecting the intensity difference of the probe light of each optical path. Also good.
  • FIG. 2 shows a schematic view of a beam spot L3 of probe light distributed on the detection nonlinear optical crystal 102 and a spatial distribution T3 of the terahertz wave T2 spread by the scattering on the measurement object.
  • FIG. 3 shows a schematic view of the probe light beam diameter adjusting unit 20 in the present embodiment.
  • the case where the probe light beam diameter adjustment unit 20 includes the concave lens 201 and the convex lenses 202 and 203 forming the focus variable optical system is shown.
  • any combination of lenses and optical elements may be used as long as the ratio of the beam diameters A and B is variable.
  • These lenses are disposed on the rails 211, are driven by the controller 212, and are movable in parallel on the optical axis of the probe lights L1 and L2.
  • the refractive index of the lens 202 is f 1
  • the refractive index of the lens 203 is f 2
  • the distance between the lenses is d 2
  • the lenses 202 and 203 are combined, it can be regarded as a convex lens of the focal distance f.
  • the focal length f can be expressed as equation 1.
  • f f 1 f 2 / (f 1 + f 2 -d 2 )
  • the focal length F is the distance from the principal point P of the compound lenses 202 and 203 to the focal point.
  • the principal point P is at a distance h 1 from the lens 202 and a distance h 2 from the lens 203.
  • the ratio of h 1 to h 2 is expressed by Equation 2.
  • the controller 212 holds the position information of the complex lenses 202 and 203 and the concave lens 201, and has a function of calculating the probe beam diameter B from the position information and the value of the probe beam diameter A determined by the probe light source 2.
  • the method of calculating the probe beam diameter B is not limited to the above.
  • the controller 212 holds only the position information of the compound lenses 202 and 203 and the concave lens 201, and the calculation of the probe light beam diameter B is performed by the calculation unit 322 of FIG. You may
  • the method of changing the beam diameter ratio A / B of the probe lights L1 and L2 by changing the position of the lens whose focal length is fixed has been described as a method of changing the beam diameter B by the beam diameter adjusting unit 20 as described above.
  • a method of changing the beam diameter B by the beam diameter adjusting unit 20 as described above.
  • convex lenses of different focal lengths are set in an exchangeable holder to make the focal length and the lens position variable, and the distance of the concave lens 201 corresponds to the focal length of the convex lens.
  • FIG. 4A shows a flowchart of probe light adjustment in the present embodiment.
  • the detection intensity proportional to the electric field or intensity of the terahertz wave T2 is calculated from the signal inputted to the measurement unit 321, and the probe light beam diameter B is adjusted to the beam diameter adjustment unit so that the terahertz wave detection intensity becomes large. Adjust by 20.
  • the correspondence between the probe light beam diameter B and the detected intensity (calculated value) of the tera-hertz wave is determined.
  • step S22 the probe light beam diameter 603 in FIG. 5 is determined from the correspondence relationship determined in step S21 so that the calculated value calculated by the calculation unit 322 is maximum and the beam diameter is reduced.
  • the calculated value may have a width such as ⁇ 20% variation with respect to the maximum value.
  • step S23 a control signal is output from the control unit 323 to the probe light beam shape adjustment unit 20 so as to be close to the probe light beam diameter 603 obtained in step S22, and the probe light beam system is changed.
  • the probe light beam diameter B may be adjusted continuously without performing adjustment.
  • the correspondence between the probe light beam diameter B and the calculation value calculated by the calculation unit 322 is once acquired under the same measurement conditions and stored in the storage unit 324 of FIG. You may omit it.
  • the value of the beam diameter 603 in FIG. 5 may be directly input from the input unit 325 to the calculation unit 322, and the process may proceed to S24 without performing S22 and S23.
  • FIG. 4B shows the details of step S22.
  • the number of times of measurement is set in S201.
  • the measurement unit 321 determines the intensity of the probe light incident on the detector 304 as a measurement value, and in S203 the measurement value of the probe light obtained by the calculation unit 322 and the beam diameter B of the probe light obtained from the beam diameter adjustment unit 20 Calculate the product of Here, this operation is not limited to a product, but may be division.
  • a curve 601 in FIG. 5 is a curve showing the correspondence between the probe light beam diameter B and the calculation value calculated by the calculation unit 322.
  • the probe light beam diameter B starts to change from the small beam diameter 602 or the large beam diameter 604, and measurement is performed, and the result is stored in the storage unit 324.
  • the flowchart of the probe light adjustment in this case is as follows. First, as parameters to be input to the input unit 325 of FIG. 1 in S21, for example, there are the average particle diameter and the refractive index of the particles that constitute the object to be measured.
  • the input parameter is acquired by the calculation unit 322 and stored in the storage unit 324.
  • the wavelength or frequency of the terahertz wave T1 emitted from the terahertz wave irradiation unit 1 is acquired by the calculation unit 322, and is similarly recorded in the storage unit 324.
  • the scattering angle range of the terahertz wave T2 is estimated according to the theoretical formula of Mie scattering, and the determined scattering angle range and measurement From the distance between the object 101 and the detection nonlinear optical crystal 102, the magnitude of the spread angle T3 of the spatial distribution of the terahertz wave on the detection nonlinear optical crystal 102 may be determined using a trigonometric function.
  • the target probe beam diameter is determined so that the spatial distribution T3 of the terahertz wave can be widely acquired.
  • control unit 323 outputs a control signal so as to approach the probe beam diameter 603, and the probe light beam diameter adjustment unit 20 changes the probe light beam diameter B.
  • known parameters used to adjust the probe light beam diameter may be stored in the storage unit 324 as a list, and may be called by the control unit 323 as needed.
  • FIG. 6 shows a schematic view of the list. The parameters shown in this schematic diagram are not limited to this.
  • the optimum probe light beam diameter may be automatically learned from the measurement result and the name of the measurement object input to the input unit 325, and a list may be generated and stored.
  • Known parameters used to adjust the probe light beam diameter include, for example, the probe light beam diameter and the position of the optical element included in the beam diameter adjustment unit 20.
  • measurement conditions for example, measurement object name, probe light beam diameter, etc.
  • the calculation unit searches past measurement results based on the list, and measurement conditions (past measurement conditions)
  • measurement conditions past measurement conditions
  • the lens position or the like included in the beam diameter adjustment unit 20 may be applied to this measurement.
  • a distance measurement unit that acquires the distance between the detection nonlinear optical crystal 102 and the measurement object 101 and a distance adjustment unit that adjusts the distance are added, and control signals are transmitted from the control unit 323 to the distance adjustment unit.
  • the distance between the detection nonlinear optical crystal 102 and the measurement object 101 may be reduced, and the spread angle of the scattered light by the measurement object may be suppressed.
  • an example of performing measurement for probe light beam diameter adjustment will be shown below. According to this configuration, it is possible to perform the spectroscopic measurement after confirming the reduction of the influence of the scattering.
  • a measurement target (reference sample) to be a reference which is a component similar to the original measurement target (target sample) and has less scattering, is separately prepared as the measurement target object 101.
  • the same tablet as the target sample is ground in a mortar, sieved to a sufficiently small particle size, and compressed again.
  • FIG. 7A shows a flowchart of the probe light adjustment in this case.
  • step S21 the terahertz wave detection intensity (calculation value) of the reference sample is measured and stored in the storage unit 324.
  • step S22 the calculated value of the target sample is repeatedly measured while changing the size of the probe light beam diameter B. Details will be described later.
  • the result is stored in the storage unit 324.
  • the measurement may be performed not at a plurality of frequencies but at a single frequency.
  • the control unit 323 outputs a control signal so as to approach the probe beam diameter 803 obtained in S23, and the probe light beam diameter adjustment unit 20 changes the probe light beam diameter B.
  • FIG. 7B shows the details of step S22.
  • the number of times of measurement is set in S201.
  • the measurement unit 321 acquires the intensity of the probe light incident on the detector 304 as a measurement value
  • the calculation unit 322 obtains terahertz wave detection intensities (calculation values) at a plurality of or single frequencies. Further, a difference value is calculated by subtracting the calculated value of the reference sample stored in S21 from the calculated value of the target sample.
  • the difference value obtained in S213 is stored.
  • a curve 801 in FIG. 8 is a curve showing the correspondence between the probe light beam diameter B and the difference value calculated by the calculation unit 322.
  • the probe light beam diameter B starts to change from the small beam diameter 602 or the large beam diameter 604, the measurement is performed, and the result is stored in the storage unit 324 as described above.
  • S205 it is determined whether or not the number set in S201 has been reached, and the beam diameter B is changed by the beam diameter adjusting unit 20 in S206 to repeat the procedure of S202 to S204 until the set number is reached.
  • the process proceeds to S207 and the curve 801 is obtained. Thereafter, the beam diameter 803 in which the difference value of the difference values stored in S23 is the smallest is calculated and acquired in S21.
  • the influence of scattering generated in the substance constituting the object to be measured 101 can be reduced or eliminated more accurately. Spectral measurement is possible.
  • FIG. 9 is a block diagram schematically showing a second embodiment of the terahertz spectrometer of the present invention.
  • the present embodiment differs from the first embodiment in that the imaging result of the spatial distribution of the terahertz wave is used to adjust the probe light beam diameter B.
  • the beam diameter of the probe light can be controlled while observing the actual spatial distribution of the terahertz wave, it is not necessary to perform a plurality of measurements and accurate adjustment becomes possible.
  • the difference from the first embodiment will be described.
  • An imaging lens 312 is disposed behind the non-linear optical crystal 102 for detection, a beam is divided by a half mirror 313, one is incident on an image sensor 305, and the other is incident on a detector 304.
  • both imaging and intensity measurement of the spatial distribution T3 of the terahertz wave on the detection crystal may be performed by the image sensor 305.
  • FIG. 10 shows a flowchart of probe light adjustment in the present embodiment.
  • the probe light beam diameter B is set to the maximum value 604 in S11.
  • the probe light beam diameter B is changed to a diameter at which imaging is possible.
  • the size of the terahertz wave irradiation portion T3 on the detection crystal becomes larger than the probe light beam diameter B, the distance between the measurement object and the detection nonlinear optical crystal 102 is adjusted using the method described in the seventh embodiment. And the size of T3 may be reduced.
  • the detecting nonlinear optical crystal 102 When the terahertz wave T2 is incident on the detecting nonlinear optical crystal 102, an electro-optical effect is generated, and the birefringence of the detecting nonlinear optical crystal 102 changes according to the amplitude of the incident terahertz wave T2.
  • the probe light transmitted or reflected by the detection nonlinear optical crystal 102 changes its polarization state in accordance with the change in birefringence.
  • the probe light incident on the image sensor 305 is imaged by the measurement unit 321 of the processing unit 3 and is output as a detection image. Similar to the method described in the first embodiment, the calculation unit 322 calculates the spatial distribution T3 on the nonlinear optical crystal 102 for detection of the electric field or intensity of the terahertz wave from the detection image.
  • the difference between the size of the spatial distribution of the terahertz wave irradiated to the light receiving unit and the beam diameter of the probe light obtained from the beam diameter adjusting unit is calculated by the calculation unit 322 from the detected image, and the difference becomes smaller
  • the probe light beam diameter B is determined as follows.
  • the control unit 323 outputs a control signal so as to approach the probe beam diameter obtained in S13, and changes the probe light beam diameter B. According to the above-described procedure, after the adjustment of the probe light beam diameter B is performed, by starting the measurement, it is possible to perform the spectral measurement in which the influence of the scattering generated in the substance constituting the measurement object 101 is reduced or eliminated.
  • S13 of FIG. 1 For example, in S13 of FIG.
  • FIG. 10 schematically shows the terahertz spectrometer in this example.
  • FIG. A different point from FIG. 9 is that the position of the detection nonlinear optical crystal 102 is controlled in addition to the beam diameter adjustment unit 20 by the control signal from the control unit 323.
  • the non-linear optical crystal 102 for detection is driven by a motor 1021, and the position information is held by the motor 1021.
  • the thickness of the measurement object 101 is input to the input unit 325 of FIG.
  • FIG. 12 is a block diagram schematically showing a third embodiment of the terahertz spectrometer of the present invention.
  • the present embodiment differs from the first embodiment in that an interference optical system is combined as a detector. According to this configuration, when the amplitude of the terahertz wave T2 to be detected is weak, the signal can be amplified and measured, and the sensitivity of the measurement can be improved. In this embodiment, the difference from the first embodiment will be described.
  • Interferometric optics 306 of FIG. 12 includes a detector.
  • the interference optical system 306 receives the probe light transmitted or reflected by the detection nonlinear optical crystal 102 and the reference light L4 for causing the probe light to interfere.
  • the detector included in the interference optical system 306 detects interference light in which the probe light and the reference light L4 interfere with each other.
  • An independent laser may be used as the reference light source 4, or light may be branched from a laser included in a probe light source or a terahertz wave light source using a beam splitter or the like to be the reference light L4.
  • the frequency of the reference light L4 for example, there is a heterodyne method not matched with the frequency of the probe light or a homodyne method matched with the frequency of the probe light.
  • the homodyne method there is a method of separating and measuring the phase and amplitude of the interference light by, for example, a four-phase simultaneous detection method or a phase shift method. According to the above-described method, it is possible to perform the spectral measurement and the sensitivity improvement in which the influence of the scattering generated in the substance constituting the measuring object 101 is reduced or eliminated.
  • FIG. 13 is a configuration diagram schematically showing a fourth example of the terahertz spectrometry apparatus of the present invention.
  • the present embodiment differs from the first embodiment in that the detector is replaced by an image sensor. Moreover, what is to be measured is an electric field of terahertz wave (terahertz electric field).
  • terahertz electric field When measuring the terahertz electric field, when the phase is not uniform in the beam spot T3, the spatial distribution of the terahertz electric field is integrated in the measurement of the single detector, so that the positive and negative electric fields cancel each other and the measurement is performed.
  • the signal proportional to the terahertz electric field may be small. According to this configuration, the influence can be eliminated from the result of the spectroscopic measurement. In this embodiment, the difference from the first embodiment will be described.
  • FIG. 3 A schematic view of the image sensor 305 is shown in FIG.
  • the probe light beam spot L3 on the detection crystal is imaged on the image sensor 305, and a signal proportional to the terahertz wave electric field spatial distribution T3 is measured at each pixel.
  • the result of each pixel is converted to an intensity and then the average value of the intensity at the required pixel is obtained.
  • phase measurement that is, measuring the time waveform of the electric field, such as terahertz time domain spectroscopy
  • Each is subjected to time-wise Fourier transformation to obtain an intensity for each wavelength and then integration is performed.
  • FIG. 15 is a block diagram schematically showing a fifth embodiment of the terahertz spectrometer of the present invention.
  • the present embodiment is different from the first embodiment in that a condensing element 112 is inserted between the measuring object 101 and the non-linear optical crystal 102 for detection. According to this configuration, it is possible to separate and measure the distance between the light collecting element 112 and the object to be measured 101. In this embodiment, the difference from the first embodiment will be described.
  • the numerical aperture (NA) of the focusing element 112 is designed as large as possible so as to sufficiently collect the scattered light of the object to be measured.
  • NA numerical aperture
  • the beam diameter B of the probe light has a difference with the size of the terahertz wave spatial distribution T3 including the scattering component focused on the detection nonlinear optical crystal 102 by the focusing element 112 according to the first and second embodiments. It is controlled to be smaller.
  • the measurement object 101 is obtained in order to obtain the terahertz wave spatial distribution T3 including the scattered component collected on the detection nonlinear optical crystal 102.
  • the effect of light collection by the light collection element 112 may be determined by ray tracing.
  • the size of the spatial distribution T3 may be calculated as follows.
  • the approximate size 2D SAMPLE tan ⁇ of the spatial distribution T3 of the terahertz wave formed on the detection nonlinear optical crystal 102 by the element 112 is determined.
  • the distance between the object to be measured 101 and the light collecting element 112 can be separated, it is possible to cope with the case where the thickness of the object to be measured 101 is thick. Spectroscopic measurement with reduced or eliminated influence is possible.
  • an optical axis adjustment unit for adjusting the optical axis of the probe light and an intensity distribution adjustment unit are provided in the probe light beam diameter adjustment unit 20 and adjustment is performed.
  • This configuration can increase the detection efficiency of the signal detected by the detector 304.
  • the difference from the first embodiment will be described.
  • FIG. 16 shows a flowchart of probe light adjustment in the present embodiment.
  • the probe light diameter B is set to the minimum value 302, and at S31, the central portion of the spatial distribution T3 of the electric field or intensity of the terahertz wave, that is, the detection intensity of the terahertz wave detected by the detector 304 is maximized Control the adjustment unit.
  • the probe light beam diameter B is adjusted by the control of the beam diameter adjusting unit 20 according to the first to third embodiments.
  • the intensity distribution adjustment unit makes the intensity distribution of the probe light uniform in the plane.
  • a method of adjusting the intensity distribution for example, there is a method of cutting out only the center portion of the probe light beam with an iris.
  • the adjustment result of the optical axis or the intensity distribution of the probe light may be confirmed by imaging the beam spot T2 of the probe light on the crystal 102 using the image sensor 305 in the same configuration as that of the second embodiment or the fourth embodiment. .
  • the compensator 302 or the polarizer 301 or 303 is Or manually rotate it so that the entire probe light beam spot L3 is captured and then imaged.
  • the detection efficiency of the signal detected by the detector 304 can be increased. Furthermore, it is possible to perform spectroscopic measurement with reduced or eliminated the influence of scattering generated by the substance constituting the measurement object 101.
  • the present invention can be applied to measurements other than spectrometry. Applications include, for example, measurements that are affected by scattered light, such as terahertz CT scanning and imaging with absorptivity and reflectivity.
  • the wavelength of incident light used for measurement is not limited to terahertz waves, and may be infrared rays or electromagnetic waves having a wavelength shorter than infrared rays, for example, or wavelengths longer than millimeter waves or millimeter waves Even electromagnetic waves of In this case, if the terahertz wave is replaced with an electromagnetic wave in the above description, the above description is applied as it is. Therefore, the description of electromagnetic waves other than terahertz waves is omitted here.
  • 101 measurement object
  • 102 nonlinear optical crystal for detection
  • 111 focusing element
  • 20 probe light beam diameter control unit
  • 3 beam control signal generation unit
  • Polarizer 302 Compensator 303
  • Polarizer 304 Detector T1 Incident terahertz wave
  • T2 Emitted terahertz wave

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The objective of the present invention is to reduce or eliminate the influence on spectrometry of scattering by particles composing an object of measurement. This objective is achieved by a spectrometry device comprising an electromagnetic wave irradiation unit for irradiating electromagnetic waves, a light reception unit for receiving electromagnetic waves, a probe light irradiation unit for irradiating probe light, a probe light detection unit for detecting probe light and outputting a detection signal, a calculation unit for calculating the detected intensity of the electromagnetic waves from the detection signal, and a beam diameter control unit for controlling the beam diameter of the probe light, said spectrometry device being characterized in that the electromagnetic wave irradiation unit irradiates electromagnetic waves onto an object of measurement, the light reception unit receives the electromagnetic waves irradiated onto the object of measurement, the probe light irradiation unit irradiates the probe light onto the light reception unit, the probe light detection unit detects the probe light irradiated onto the light reception unit and outputs a detection signal, the calculation unit calculates the detected intensity on the basis of the detection signal and the beam diameter of the probe light, and the beam diameter control unit controls the beam diameter of the probe light on the basis of the calculated detected intensity.

Description

分光測定装置Spectrometer
 本発明は、測定対象物の散乱の影響を低減または除去した分光測定装置に関する。 The present invention relates to a spectrometer which reduces or eliminates the influence of scattering of an object to be measured.
 近年、テラヘルツ波をはじめとした電磁波による医薬品分光が注目されている。たとえば周波数が100GHz以上30THz以下であるテラヘルツ周波数帯には分子間振動及び分子内振動に起因する多数の吸収ピークが存在し、これらピークの解析により物質の種類だけでなく結合状態の違いを見分けること、それぞれの分子の医薬品中の含有濃度の定量的な測定も可能である。
  本技術分野の背景技術として、たとえば特開2014-173967がある。特許文献1には課題として「テラヘルツ波の散乱による検出精度の低下を抑制することができる標本検査装置を提供する」と記載があり、解決手段として「本発明に係る標本検査装置は、テラヘルツ波を発生するテラヘルツ波発生部と、被検査物としての標本が載置される搬送面を有し、前記搬送面の面内方向に前記標本を搬送可能に構成された搬送部と、前記テラヘルツ波発生部から射出され、前記搬送面に載置された前記標本に照射されるテラヘルツ波の照射方向を変更する照射方向変更部と、前記搬送面に載置された前記標本に照射されて透過または反射したテラヘルツ波を検出するテラヘルツ波検出部と、を備え、前記照射方向変更部は、前記テラヘルツ波発生部の位置を変更することによって、前記照射方向を変更する。」と記載されている。
  特許文献1の方法では測定対象物の形状や配置状態による電磁波の散乱のみを扱っており、測定対象物を構成する粒子による散乱の除去は考慮されていない。さらに、測定点数が多くなる上、ランダムな散乱成分は除去できるが、周波数に比例した散乱成分は除去できない可能性もある。
In recent years, medical product spectroscopy by electromagnetic waves such as terahertz waves has attracted attention. For example, there are many absorption peaks due to intermolecular vibration and intramolecular vibration in the terahertz frequency band where the frequency is 100 GHz or more and 30 THz or less, and it is necessary to identify not only the type of substance but also the difference in binding state by analysis of these peaks. It is also possible to quantitatively measure the concentration of each molecule in the drug.
As background art of this technical field, there exists Unexamined-Japanese-Patent No. 2014-173967, for example. Patent Document 1 states that "a sample inspection apparatus capable of suppressing a decrease in detection accuracy due to scattering of terahertz waves is provided" as a problem, and a solution means "a sample inspection apparatus according to the present invention is a terahertz wave A transport unit configured to transport the sample in the in-plane direction of the transport surface, the transport unit configured to transport the specimen in the in-plane direction of the transport surface; An irradiation direction changing unit that changes the irradiation direction of the terahertz wave that is emitted from the generation unit and is irradiated to the sample placed on the transport surface, and the sample placed on the transport surface is irradiated or transmitted A terahertz wave detection unit that detects the reflected terahertz wave, and the irradiation direction changing unit changes the irradiation direction by changing the position of the terahertz wave generation unit. It has been.
In the method of Patent Document 1, only the scattering of the electromagnetic wave due to the shape and arrangement of the measurement object is dealt with, and the removal of the scattering by the particles constituting the measurement object is not considered. Furthermore, the number of measurement points is increased, and although random scattered components can be removed, scattered components proportional to the frequency may not be removed.
特開2014-173967号Japanese Patent Application Laid-Open No. 2014-173967
 本発明では、分光測定における、測定対象物を構成する粒子による散乱の影響を低減または除去する技術を提供することを目的とする。 An object of the present invention is to provide a technique for reducing or eliminating the influence of scattering by particles constituting an object to be measured in spectrometry.
上記課題は、例えば電磁波を照射する電磁波照射部と、電磁波を受光する受光部と、プローブ光を照射するプローブ光照射部と、前記プローブ光を検出し検出信号を出力するプローブ光検出部と、前記検出信号から電磁波の検出強度を算出する演算部と、前記プローブ光のビーム径を調整するビーム径制御部と、を備え、前記電磁波照射部は前記電磁波を測定対象物に照射し、前記受光部は前記測定対象物に照射された前記電磁波を受光し、前記プローブ光照射部は前記プローブ光を前記受光部に照射し、前記プローブ光検出部は前記受光部に照射された前記プローブ光を検出し、検出信号を出力し、前記演算部は前記検出信号と前記プローブ光のビーム径に基づき、前記検出強度を算出しし、算出された前記検出強度に基づき、前記ビーム径調整部はプローブ光のビーム径を制御することを特徴とする分光測定装置により解決される。 The above problems include, for example, an electromagnetic wave irradiation unit that emits an electromagnetic wave, a light reception unit that receives an electromagnetic wave, a probe light irradiation unit that emits a probe light, and a probe light detection unit that detects the probe light and outputs a detection signal. The arithmetic unit for calculating the detection intensity of the electromagnetic wave from the detection signal, and the beam diameter control unit for adjusting the beam diameter of the probe light, the electromagnetic wave irradiation unit irradiates the electromagnetic wave to the object to be measured, and the light reception The unit receives the electromagnetic wave emitted to the object to be measured, the probe light irradiating unit irradiates the probe light to the light receiving unit, and the probe light detecting unit irradiates the probe light irradiated to the light receiving unit. The detection unit outputs a detection signal, and the calculation unit calculates the detection intensity based on the detection signal and the beam diameter of the probe light, and the beam is calculated based on the calculated detection intensity. Adjusting portion is solved by the spectral measurement device and controls the beam diameter of the probe light.
本発明によれば、測定対象物の散乱の影響を低減または除去した分光測定が可能になる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to perform spectroscopic measurement in which the influence of scattering of the measurement object is reduced or eliminated.
Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
分光測定装置の第一の実施例を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows the 1st Example of a spectrometry apparatus. 検出結晶上のテラヘルツ波の電場または強度の空間分布とプローブ光のビームスポットの模式図。A schematic view of the spatial distribution of the electric field or intensity of the terahertz wave on the detection crystal and the beam spot of the probe light. ビーム径調整部20の一例を示す模式図。FIG. 2 is a schematic view showing an example of a beam diameter adjustment unit 20. (a)実施例1におけるプローブ光ビーム径の第一の調整フロー。    (b)実施例1におけるプローブ光ビーム径の第一の調整フローS2の詳細なフロー。(A) First adjustment flow of probe light beam diameter in the first embodiment. (B) Detailed flow of the first adjustment flow S2 of the probe light beam diameter in the first embodiment. 実施例1におけるプローブ光ビーム径と演算値の関係を表す図。FIG. 6 is a diagram showing the relationship between a probe light beam diameter and a calculated value in Embodiment 1. プローブ光ビーム径の調整に用いる既知のパラメーターのリストList of known parameters used to adjust probe light beam diameter (a)実施例1におけるプローブ光ビーム径の第二の調整フロー。    (b)実施例1におけるプローブ光ビーム径の第二の調整フローS22の詳細なフロー。(A) Second adjustment flow of probe light beam diameter in the first embodiment. (B) Detailed flow of the second adjustment flow S22 of the probe light beam diameter in the first embodiment. プローブ光ビーム径と差分値の対応関係を表す図Diagram showing the correspondence between probe light beam diameter and difference value 分光測定装置の第2の実施例を示す構成図。The block diagram which shows the 2nd Example of a spectrometry apparatus. 実施例2におけるプローブ光ビーム径の調整フロー。Adjustment flow of probe light beam diameter in the second embodiment. 分光測定装置の第2の実施例において、検出用非線形光学結晶102の位置を制御する場合を示す構成図。FIG. 14 is a configuration diagram showing a case where the position of the detection nonlinear optical crystal 102 is controlled in the second embodiment of the spectrometry device. 分光測定装置の第3の実施例を示す構成図。The block diagram which shows the 3rd Example of a spectrometry apparatus. 分光測定装置の第4の実施例を示す構成図。The block diagram which shows the 4th Example of a spectrometry apparatus. 実施例4におけるイメージセンサの構成図。FIG. 14 is a block diagram of an image sensor in a fourth embodiment. 分光測定装置の第5の実施例を示す構成図。The block diagram which shows the 5th Example of a spectrometry apparatus. 実施例6におけるプローブ光の調整フロー。Adjustment flow of probe light in the sixth embodiment.
 以降は電磁波としてテラヘルツ波を例に挙げて説明を行なう。 The following description will be given taking a terahertz wave as an example of the electromagnetic wave.
 図1は、本発明のテラヘルツ分光測定装置の第一の実施例を模式的に示す構成図である。本実施例によるテラヘルツ分光測定装置は、測定対象物101にテラヘルツ波T1を照射し、測定対象物101を構成する物質に吸収または散乱された透過テラヘルツ波T2の振幅を測定する装置として構成されている。
  テラヘルツ波発生部1から出射したテラヘルツ波T1は集光素子111により測定対象物101に集光される。測定対象物101を構成する物質に吸収または散乱された透過テラヘルツ波T2は検出用非線形光学結晶102に入射する。
FIG. 1 is a block diagram schematically showing a first embodiment of the terahertz spectrometer of the present invention. The terahertz spectrometry apparatus according to the present embodiment is configured as an apparatus for irradiating the terahertz wave T1 to the measurement object 101 and measuring the amplitude of the transmitted terahertz wave T2 absorbed or scattered by the substance constituting the measurement object 101. There is.
The terahertz wave T <b> 1 emitted from the terahertz wave generation unit 1 is focused on the measurement target object 101 by the focusing element 111. The transmitted terahertz wave T2 absorbed or scattered by the substance constituting the measurement object 101 is incident on the non-linear optical crystal 102 for detection.
 図1のプローブ光源2はテラヘルツ波を検出するためのプローブ光L1を出射する。プローブ光L1はビーム径調整部20に入射し、ビーム径を拡大または縮小され、ビーム径がBであるプローブ光L2となる。その後プローブ光L2は偏光子301にて偏光され、ビームスプリッター311により反射され検出用非線形光学結晶102に入射する。測定対象物101と検出用非線形光学結晶102の間に波長選択ミラーを挿入し、検出用非線形光学結晶102の表面からプローブ光L2を入射してもよい。ここで、波長選択ミラーとはテラヘルツ波T2を透過しプローブ光L2を反射する光学素子であり、例えばペリクルや、シリコン板がある。 The probe light source 2 of FIG. 1 emits a probe light L1 for detecting a terahertz wave. The probe light L1 enters the beam diameter adjustment unit 20, and the beam diameter is expanded or reduced to become probe light L2 having a beam diameter B. Thereafter, the probe light L2 is polarized by the polarizer 301, is reflected by the beam splitter 311, and is incident on the non-linear optical crystal 102 for detection. A wavelength selection mirror may be inserted between the measurement object 101 and the detection nonlinear optical crystal 102, and the probe light L2 may be incident from the surface of the detection nonlinear optical crystal 102. Here, the wavelength selection mirror is an optical element that transmits the terahertz wave T2 and reflects the probe light L2, and includes, for example, a pellicle or a silicon plate.
 テラヘルツ波T2が検出用非線形光学結晶102に入射すると電気光学効果が生じ、検出用非線形光学結晶102の複屈折率が入射テラヘルツ波T2の振幅に応じて変化する。検出用非線形光学結晶102を透過または反射したプローブ光は複屈折率変化に対応して偏光状態が変化する。検出用非線形光学結晶102から反射され、偏光状態が変化したプローブ光L2のうちビームスプリッター311を透過したプローブ光L2は補償子302、偏光子303によって偏光状態の変化を検光し、検出器304によってプローブ光L2の強度が検出される。検出器304に入射したプローブ光の成分は例えば電圧に変換され、処理部3の計測部321へと入力される。計測部321に入力された信号は検出用非線形光学結晶102に入射するテラヘルツ波T2の電場または強度に比例する。ここで、強度を測定する際はたとえば偏光子301と偏光子303の透過軸を直交させ、補償子302の速軸または遅軸を偏光子303の透過軸と一致させる方法を用いることが出来る。電場を測定する際はたとえば、偏光子301と303の透過軸を直交させ、補償子302の速軸または遅軸を偏光子303の透過軸と0度より大きい角度にすることによって得ることが出来る。偏光子303の代わりにウォラストンプリズムを配置して、プローブ光を二光路に分け、検出器304をバランスディテクターとし、それぞれの光路のプローブ光の強度差を検出することで検出効率を向上しても良い。 When the terahertz wave T2 is incident on the detecting nonlinear optical crystal 102, an electro-optical effect is generated, and the birefringence of the detecting nonlinear optical crystal 102 changes according to the amplitude of the incident terahertz wave T2. The probe light transmitted or reflected by the detection nonlinear optical crystal 102 changes its polarization state in accordance with the change in birefringence. The probe light L2 transmitted from the beam splitter 311 among the probe light L2 reflected from the detection nonlinear optical crystal 102 and whose polarization state has changed is analyzed by the compensator 302 and the polarizer 303 to detect the change in polarization state, and the detector 304 The intensity of the probe light L2 is detected by The component of the probe light incident on the detector 304 is converted into, for example, a voltage, and is input to the measurement unit 321 of the processing unit 3. The signal input to the measurement unit 321 is proportional to the electric field or the intensity of the terahertz wave T2 incident on the detection nonlinear optical crystal 102. Here, when measuring the intensity, it is possible to use, for example, a method of making the transmission axes of the polarizer 301 and the polarizer 303 orthogonal and making the fast axis or the slow axis of the compensator 302 coincide with the transmission axis of the polarizer 303. When the electric field is measured, for example, the transmission axes of the polarizers 301 and 303 can be orthogonal to each other, and the fast or slow axis of the compensator 302 can be obtained by making the transmission axis of the polarizer 303 an angle larger than 0 degrees. . A Wollaston prism is disposed instead of the polarizer 303, the probe light is divided into two paths, the detector 304 is a balance detector, and the detection efficiency is improved by detecting the intensity difference of the probe light of each optical path. Also good.
 以上の手順により、プローブ光L2の照射された検出用非線形光学結晶102上の部分のテラヘルツ波の強度または振幅に比例した信号が得られる。本発明では、測定対象物101による散乱により検出結晶上に広く分布するテラヘルツ波T2を測定できるよう、プローブ光L2のビーム径Bの調整制御をビーム径調整部20で行なう。図2に検出用非線形光学結晶102上に分布するプローブ光のビームスポットL3と、測定対象物での散乱で広がったテラヘルツ波T2の空間分布T3の模式図を示す。 By the above procedure, a signal proportional to the intensity or the amplitude of the terahertz wave of the portion on the detection nonlinear optical crystal 102 irradiated with the probe light L2 is obtained. In the present invention, adjustment control of the beam diameter B of the probe light L2 is performed by the beam diameter adjustment unit 20 so that the terahertz wave T2 widely distributed on the detection crystal can be measured by the scattering by the measurement object 101. FIG. 2 shows a schematic view of a beam spot L3 of probe light distributed on the detection nonlinear optical crystal 102 and a spatial distribution T3 of the terahertz wave T2 spread by the scattering on the measurement object.
 ビーム径調整部20で調整可能なプローブ光L2のビーム径Bは最小値602から最大値604までの範囲を変更可能であるとする。
ここで、ビーム径調整部20でプローブ光ビーム径Bを変更する方法の具体例の一つを示す。図3に本実施例におけるプローブ光ビーム径調整部20の模式図を示す。本実施例ではプローブ光ビーム径調整部20に凹レンズ201と、焦点可変光学系をなす凸レンズ202、203が含まれる場合を示す。このほか、ビーム径A,Bの比が可変ならばどのようなレンズ、光学素子の組み合わせでも良い。これらのレンズはレール211上に配置され、コントローラー212により駆動され、プローブ光L1、L2の光軸上を平行に移動可能である。本実施例では、レンズ202の屈折率をf、レンズ203の屈折率をf、レンズ間の距離をdとした場合、レンズ202と203を組み合わせたとき、焦点距離fの凸レンズとみなせる。焦点距離fは式1のように書き表せる。
It is assumed that the beam diameter B of the probe light L2 adjustable by the beam diameter adjusting unit 20 can change the range from the minimum value 602 to the maximum value 604.
Here, one of the specific examples of the method of changing the probe light beam diameter B by the beam diameter adjustment unit 20 will be described. FIG. 3 shows a schematic view of the probe light beam diameter adjusting unit 20 in the present embodiment. In this embodiment, the case where the probe light beam diameter adjustment unit 20 includes the concave lens 201 and the convex lenses 202 and 203 forming the focus variable optical system is shown. Besides, any combination of lenses and optical elements may be used as long as the ratio of the beam diameters A and B is variable. These lenses are disposed on the rails 211, are driven by the controller 212, and are movable in parallel on the optical axis of the probe lights L1 and L2. In this embodiment, when the refractive index of the lens 202 is f 1 , the refractive index of the lens 203 is f 2 , and the distance between the lenses is d 2 , when the lenses 202 and 203 are combined, it can be regarded as a convex lens of the focal distance f. . The focal length f can be expressed as equation 1.
 (式1)f=f/(f+f-d
 ここで、焦点距離Fは複合レンズ202、203の主点Pから焦点までの距離である。主点Pはレンズ202から距離h、レンズ203から距離hの位置にある。hとhの比は式2で表される。
(Formula 1) f = f 1 f 2 / (f 1 + f 2 -d 2 )
Here, the focal length F is the distance from the principal point P of the compound lenses 202 and 203 to the focal point. The principal point P is at a distance h 1 from the lens 202 and a distance h 2 from the lens 203. The ratio of h 1 to h 2 is expressed by Equation 2.
 (式2)h/h=f/f
 さらに凹レンズ201の焦点距離をfとして、複合レンズ202、203の主点pから凹レンズ201までの距離dは式3で表される位置とする。
(Expression 2) h 1 / h 2 = f 1 / f 2
Further, assuming that the focal length of the concave lens 201 is f 3 , the distance d 1 from the principal point p of the compound lenses 202 and 203 to the concave lens 201 is a position represented by Formula 3.
 (式3)d=f-f
 結果、プローブ光L1とL2のビーム径の比A/Bは、式3のように書き表せる。
(Expression 3) d 1 = f−f 3
As a result, the ratio A / B of the beam diameters of the probe lights L1 and L2 can be expressed as Expression 3.
 (式4)A/B=f/f
 まとめると、プローブ光L1とL2のビーム径の比A/Bが所望の値となるようfの値を決め、そのFの値を得られるようコントローラー212に制御信号が送られ、レール211上のレンズ201~203の位置を調整してDを変更し、さらに式3を満たすようDを変更する。
(Expression 4) A / B = f 3 / f
In summary, the value of f is determined so that the ratio A / B of the beam diameters of the probe lights L1 and L2 becomes a desired value, and a control signal is sent to the controller 212 so that the value of F can be obtained. The positions of the lenses 201 to 203 are adjusted to change D 2, and D 1 is further changed to satisfy Formula 3.
 また、コントローラー212は複合レンズ202、203および凹レンズ201の位置情報を保持し、この位置情報とプローブ光源2で決まるプローブビーム径Aの値とからプローブビーム径Bを算出する機能を持つ。なお、プローブビーム径Bを算出する方法は上記に限らず、例えばコントローラー212は複合レンズ202、203および凹レンズ201の位置情報のみを保持し、プローブ光ビーム径Bの算出は図1の演算部322で行なってもよい。 Further, the controller 212 holds the position information of the complex lenses 202 and 203 and the concave lens 201, and has a function of calculating the probe beam diameter B from the position information and the value of the probe beam diameter A determined by the probe light source 2. The method of calculating the probe beam diameter B is not limited to the above. For example, the controller 212 holds only the position information of the compound lenses 202 and 203 and the concave lens 201, and the calculation of the probe light beam diameter B is performed by the calculation unit 322 of FIG. You may
 以上、ビーム径調整部20でビーム径Bを変更する方法として焦点距離が固定であるレンズの位置変更によりプローブ光L1とL2のビーム径の比A/Bを変更する方法を記述したが、これは例であり、これに限定されるものではない。このほか、例えば複合レンズ202、203の代わりに、異なる複数の焦点距離の凸レンズを交換可能なホルダーにセットして焦点距離およびレンズ位置を可変とし、凹レンズ201の距離を前記凸レンズの焦点距離に応じて変更し、ビーム径を変更する方法がある。 The method of changing the beam diameter ratio A / B of the probe lights L1 and L2 by changing the position of the lens whose focal length is fixed has been described as a method of changing the beam diameter B by the beam diameter adjusting unit 20 as described above. Is an example and is not limited thereto. Besides, for example, instead of the compound lenses 202 and 203, convex lenses of different focal lengths are set in an exchangeable holder to make the focal length and the lens position variable, and the distance of the concave lens 201 corresponds to the focal length of the convex lens. To change the beam diameter.
 ここからは本実施例におけるプローブ光を調整するフローを示す。この調整は、例えば装置を立ち上げた時などに行う。まず、図4(a)に本実施例におけるプローブ光調整のフローチャートを示す。
  本実施例では、計測部321に入力された信号からテラヘルツ波T2の電場または強度に比例した検出強度を計算し、このテラヘルツ波検出強度が大きくなるようにプローブ光ビーム径Bをビーム径調整部20により調整する。S21ではプローブ光ビーム径Bとテラへルツ波検出強度(演算値)の対応関係を求める。図5の曲線601はプローブ光ビーム径Bとテラへルツ波検出強度(演算値)の対応関係を示す曲線である。手順S22については詳細を後に示す。
  S22ではS21で求めた対応関係から、演算部322で計算された演算値が最大かつビーム径が小さくなるような図5のプローブ光ビーム径603を求める。ここで、例えば、プローブ光ビーム径Bを制御するビーム径調整部20の制御精度を加味して、演算値が最大値に対して±20%のばらつきを許容するなど幅を持っても良い。
  S23ではS22で求めたプローブ光ビーム径603に近づけるように制御部323からプローブ光ビーム形調整部20に制御信号を出力し、プローブ光ビーム系を変更する。以上の手順により、プローブ光ビーム径の調整を行なった後に測定を行うことで、測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定が可能になる。
The following shows the flow of adjusting the probe light in the present embodiment. This adjustment is performed, for example, when the apparatus is started. First, FIG. 4A shows a flowchart of probe light adjustment in the present embodiment.
In this embodiment, the detection intensity proportional to the electric field or intensity of the terahertz wave T2 is calculated from the signal inputted to the measurement unit 321, and the probe light beam diameter B is adjusted to the beam diameter adjustment unit so that the terahertz wave detection intensity becomes large. Adjust by 20. In S21, the correspondence between the probe light beam diameter B and the detected intensity (calculated value) of the tera-hertz wave is determined. A curve 601 in FIG. 5 is a curve showing the correspondence between the probe light beam diameter B and the tera-hertz wave detection intensity (calculated value). The details of the procedure S22 will be described later.
In step S22, the probe light beam diameter 603 in FIG. 5 is determined from the correspondence relationship determined in step S21 so that the calculated value calculated by the calculation unit 322 is maximum and the beam diameter is reduced. Here, for example, in consideration of the control accuracy of the beam diameter adjusting unit 20 that controls the probe light beam diameter B, the calculated value may have a width such as ± 20% variation with respect to the maximum value.
In step S23, a control signal is output from the control unit 323 to the probe light beam shape adjustment unit 20 so as to be close to the probe light beam diameter 603 obtained in step S22, and the probe light beam system is changed. By performing the measurement after adjusting the probe light beam diameter according to the above-described procedure, it is possible to perform the spectral measurement in which the influence of the scattering generated by the substance constituting the object to be measured 101 is reduced or eliminated.
 一度プローブ光ビーム径Bを調整した後は、調整を行わず連続で測定を行なってもよい。また、一度同じ測定条件下においてプローブ光ビーム径Bと演算部322で計算した演算値との対応関係を取得して図1の記憶部324に記憶している場合、以降の測定では手順S22を省略しても良い。また、図5のビーム径603が既知である場合、入力部325から直接図5ビーム径603の値を演算部322に入力し、S22とS23を行なうことなく、S24に進んでも良い。 Once the probe light beam diameter B is adjusted, measurement may be performed continuously without performing adjustment. In the case where the correspondence between the probe light beam diameter B and the calculation value calculated by the calculation unit 322 is once acquired under the same measurement conditions and stored in the storage unit 324 of FIG. You may omit it. If the beam diameter 603 in FIG. 5 is known, the value of the beam diameter 603 in FIG. 5 may be directly input from the input unit 325 to the calculation unit 322, and the process may proceed to S24 without performing S22 and S23.
 図4(b)に手順S22の詳細を示す。S201で測定を行なう回数を設定する。S202では計測部321で検出器304に入射するプローブ光の強度を測定値とし、S203では演算部322により、求めたプローブ光の測定値とビーム径調整部20から得られるプローブ光のビーム径Bとの積を演算する。ここで、この演算は積に限定されるものではなく、除算でも良い。図5の曲線601はプローブ光ビーム径Bと演算部322で計算された演算値の対応関係を示す曲線である。プローブ光ビーム径Bを小さいビーム径602あるいは大きいビーム径604から変化を開始し、測定を行なって結果は記憶部324に記憶する。S205において、S201で設定した回数に達したかどうか判断し、設定した回数になるまで、S206でビーム径調整部20によりビーム径Bを変更して、S202~S204の手順を繰り返し、測定回数がS201で設定した回数に達したらS207に進み曲線601を求める。 FIG. 4B shows the details of step S22. The number of times of measurement is set in S201. In S202, the measurement unit 321 determines the intensity of the probe light incident on the detector 304 as a measurement value, and in S203 the measurement value of the probe light obtained by the calculation unit 322 and the beam diameter B of the probe light obtained from the beam diameter adjustment unit 20 Calculate the product of Here, this operation is not limited to a product, but may be division. A curve 601 in FIG. 5 is a curve showing the correspondence between the probe light beam diameter B and the calculation value calculated by the calculation unit 322. The probe light beam diameter B starts to change from the small beam diameter 602 or the large beam diameter 604, and measurement is performed, and the result is stored in the storage unit 324. In S205, it is determined whether or not the number set in S201 has been reached, and the beam diameter B is changed by the beam diameter adjustment unit 20 in S206 until the set number is reached, the procedure of S202 to S204 is repeated, and the number of measurements is If the number of times set in S201 is reached, the process proceeds to S207 and the curve 601 is obtained.
 また、プローブ光ビーム径の調整に既知のパラメーターを用いて計算した結果を用いることも可能である。例えば、測定対象物に含まれる粒子の平均粒径及び屈折率や、測定対象物の構成物質が既知であるとき、プローブ光ビーム径調整のために複数回の測定を行なう必要が無く、S21を短縮でき、高速なプローブ光ビーム径調整が可能となる。この場合の、プローブ光調整のフローチャートは次のとおりである。まずS21で図1の入力部325に入力するパラメーターとして、例えば測定対象物を構成する粒子の平均粒径及び屈折率がある。入力されたパラメーターを演算部322で取得し、記憶部324に記憶する。また、テラヘルツ波照射部1から出射するテラヘルツ波T1の波長または周波数を、演算部322で取得し、同様に記憶部324に記録する。 It is also possible to use the result calculated using known parameters for adjusting the probe light beam diameter. For example, when the average particle diameter and refractive index of particles contained in the measurement object and the constituent substance of the measurement object are known, it is not necessary to perform multiple measurements for adjusting the probe light beam diameter, and S21 This can be shortened, and high-speed probe light beam diameter adjustment becomes possible. The flowchart of the probe light adjustment in this case is as follows. First, as parameters to be input to the input unit 325 of FIG. 1 in S21, for example, there are the average particle diameter and the refractive index of the particles that constitute the object to be measured. The input parameter is acquired by the calculation unit 322 and stored in the storage unit 324. In addition, the wavelength or frequency of the terahertz wave T1 emitted from the terahertz wave irradiation unit 1 is acquired by the calculation unit 322, and is similarly recorded in the storage unit 324.
 S22ではS21で記憶部324に記憶したパラメーターと、測定対象物101と検出用非線形光学結晶102までの距離に基づき、検出用非線形光学結晶102表面におけるテラヘルツ波の散乱の大きさを計算する。例えば測定対象物の平均粒径と平均屈折率及び入射テラヘルツ波T1の波長が既知である場合、ミー散乱の理論式に従い、テラヘルツ波T2の散乱角範囲を見積もり、求められた散乱角範囲と測定対象物101と検出用非線形光学結晶102の距離から、三角関数を利用して検出用非線形光学結晶102上のテラヘルツ波の空間分布の広がり角T3の大きさを求めても良い。目標プローブビーム径はテラヘルツ波の空間分布T3を広く取得できるように定める。最後に、プローブビーム径603に近づくように制御部323は制御信号を出し、プローブ光ビーム径調整部20によりプローブ光ビーム径Bを変更する。以上の手順により、プローブ光ビーム径Bの調整を行なった後、測定を開始することで、測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定が可能になる。 In S22, based on the parameters stored in the storage unit 324 in S21 and the distance between the object to be measured 101 and the nonlinear optical crystal for detection 102, the magnitude of scattering of terahertz waves on the surface of the nonlinear optical crystal for detection 102 is calculated. For example, when the average particle diameter and average refractive index of the object to be measured and the wavelength of the incident terahertz wave T1 are known, the scattering angle range of the terahertz wave T2 is estimated according to the theoretical formula of Mie scattering, and the determined scattering angle range and measurement From the distance between the object 101 and the detection nonlinear optical crystal 102, the magnitude of the spread angle T3 of the spatial distribution of the terahertz wave on the detection nonlinear optical crystal 102 may be determined using a trigonometric function. The target probe beam diameter is determined so that the spatial distribution T3 of the terahertz wave can be widely acquired. Finally, the control unit 323 outputs a control signal so as to approach the probe beam diameter 603, and the probe light beam diameter adjustment unit 20 changes the probe light beam diameter B. According to the above-described procedure, after the adjustment of the probe light beam diameter B is performed, by starting the measurement, it is possible to perform the spectral measurement in which the influence of the scattering generated in the substance constituting the measurement object 101 is reduced or eliminated.
 また、プローブ光ビーム径の調整に用いる既知のパラメーターはリストとして記憶部324に保存され、必要に応じて制御部323に呼び出されても良い。図6にリストの模式図を示す。この模式図に示したパラメーターはこれに限られるものではない。加えて、測定結果及び入力部325に入力された測定対象物名から322で自動的に最適なプローブ光ビーム径を学習し、リストを生成して保存しても良い。プローブ光ビーム径の調整に用いる既知のパラメーターとして、例えばプローブ光ビーム径、ビーム径調整部20に含まれる光学素子の位置などがある。
  さらに、入力部325で測定条件(例えば測定対象物名、プローブ光ビーム径など)を演算部322に入力し、演算部は前記リストを基に過去の測定結果を検索し、過去の測定条件(例えばビーム径調整部20に含まれるレンズ位置等)を今回の測定に適用してもよい。
Also, known parameters used to adjust the probe light beam diameter may be stored in the storage unit 324 as a list, and may be called by the control unit 323 as needed. FIG. 6 shows a schematic view of the list. The parameters shown in this schematic diagram are not limited to this. In addition, the optimum probe light beam diameter may be automatically learned from the measurement result and the name of the measurement object input to the input unit 325, and a list may be generated and stored. Known parameters used to adjust the probe light beam diameter include, for example, the probe light beam diameter and the position of the optical element included in the beam diameter adjustment unit 20.
Furthermore, measurement conditions (for example, measurement object name, probe light beam diameter, etc.) are input to the calculation unit 322 by the input unit 325, and the calculation unit searches past measurement results based on the list, and measurement conditions (past measurement conditions) For example, the lens position or the like included in the beam diameter adjustment unit 20 may be applied to this measurement.
 また、検出用非線形光学結晶102と測定対象物101の距離を取得する距離測定部と、その距離を調整する距離調整部を追加し、距離調整部に制御部323から制御信号を送信して制御することで、検出用非線形光学結晶102と測定対象物101の距離を近づけ、測定対象物による散乱光の広がり角を押さえても良い。
  さらに、プローブ光ビーム径調整用の測定を行なう例を次に示す。本構成によれば、散乱の影響の低減を確認したうえで分光測定が可能である。
  本実施例では測定対象物101として、本来の測定対象物(対象サンプル)と同様の成分で散乱の少ない、参照となる測定対象物(参照サンプル)を別途用意する。これは例えば、対象サンプルと同じ錠剤を乳鉢ですりつぶし、ふるいにかけて粒径を十分小さくし、再び打錠したものである。
In addition, a distance measurement unit that acquires the distance between the detection nonlinear optical crystal 102 and the measurement object 101 and a distance adjustment unit that adjusts the distance are added, and control signals are transmitted from the control unit 323 to the distance adjustment unit. By doing this, the distance between the detection nonlinear optical crystal 102 and the measurement object 101 may be reduced, and the spread angle of the scattered light by the measurement object may be suppressed.
Furthermore, an example of performing measurement for probe light beam diameter adjustment will be shown below. According to this configuration, it is possible to perform the spectroscopic measurement after confirming the reduction of the influence of the scattering.
In the present embodiment, a measurement target (reference sample) to be a reference, which is a component similar to the original measurement target (target sample) and has less scattering, is separately prepared as the measurement target object 101. For example, the same tablet as the target sample is ground in a mortar, sieved to a sufficiently small particle size, and compressed again.
 図7(a)にこの場合のプローブ光調整のフローチャートを示す。まずS21で参照サンプルについてテラヘルツ波検出強度(演算値)を測定し、記憶部324で記憶する。その後、S22で対象サンプルの演算値をプローブ光ビーム径Bの大きさを変更しながら、繰り返し測定する。詳細は後に記す。結果は記憶部324に記憶する。参照測定S21と調整用測定S22では、複数の周波数ではなく単一の周波数で測定を行なってもよい。S23ではS22で記憶した調整用測定の結果(後に述べる差分値)から、図1の演算部322において差分値が小さくなるプローブ光ビーム径803を求める。S24ではS23で求めたプローブビーム径803に近づくように制御部323は制御信号を出し、プローブ光ビーム径調整部20により、プローブ光ビーム径Bを変更する。 FIG. 7A shows a flowchart of the probe light adjustment in this case. First, in step S21, the terahertz wave detection intensity (calculation value) of the reference sample is measured and stored in the storage unit 324. Thereafter, in S22, the calculated value of the target sample is repeatedly measured while changing the size of the probe light beam diameter B. Details will be described later. The result is stored in the storage unit 324. In the reference measurement S21 and the adjustment measurement S22, the measurement may be performed not at a plurality of frequencies but at a single frequency. In S23, from the result of the adjustment measurement stored in S22 (a difference value to be described later), the operation unit 322 in FIG. In S24, the control unit 323 outputs a control signal so as to approach the probe beam diameter 803 obtained in S23, and the probe light beam diameter adjustment unit 20 changes the probe light beam diameter B.
 図7(b)に手順S22の詳細を示す。S201で測定を行なう回数を設定する。S202では計測部321で検出器304に入射するプローブ光の強度を測定値として取得し、S203では演算部322により、複数、または単一の周波数におけるテラヘルツ波検出強度(演算値)を求める。さらに、この求めた対象サンプルの演算値からS21で記憶した参照サンプルの演算値を減算した差分値を算出する。S204ではS213で求めた差分値を記憶する。図8の曲線801はプローブ光ビーム径Bと演算部322で計算された差分値の対応関係を示す曲線である。プローブ光ビーム径Bを小さいビーム径602あるいは大きいビーム径604から変化を開始し、測定を行なって結果は上記のとおり記憶部324に記憶する。S205において、S201で設定した回数に達したかどうか判断し、設定した回数になるまで、S206でビーム径調整部20によりビーム径Bを変更して、S202~S204の手順を繰り返す。測定回数がS201で設定した回数に達したらS207に進み曲線801を求める。その後S23にて記憶した差分値の最も差分値が小さくなるビーム径803をS21算出・取得する。 FIG. 7B shows the details of step S22. The number of times of measurement is set in S201. In S202, the measurement unit 321 acquires the intensity of the probe light incident on the detector 304 as a measurement value, and in S203, the calculation unit 322 obtains terahertz wave detection intensities (calculation values) at a plurality of or single frequencies. Further, a difference value is calculated by subtracting the calculated value of the reference sample stored in S21 from the calculated value of the target sample. In S204, the difference value obtained in S213 is stored. A curve 801 in FIG. 8 is a curve showing the correspondence between the probe light beam diameter B and the difference value calculated by the calculation unit 322. The probe light beam diameter B starts to change from the small beam diameter 602 or the large beam diameter 604, the measurement is performed, and the result is stored in the storage unit 324 as described above. In S205, it is determined whether or not the number set in S201 has been reached, and the beam diameter B is changed by the beam diameter adjusting unit 20 in S206 to repeat the procedure of S202 to S204 until the set number is reached. When the number of times of measurement reaches the number of times set in S201, the process proceeds to S207 and the curve 801 is obtained. Thereafter, the beam diameter 803 in which the difference value of the difference values stored in S23 is the smallest is calculated and acquired in S21.
 以上の手順により、調整用測定と参照測定の結果の差が少なくなるプローブ光ビーム径803を求め適用することにより、測定対象物101を構成する物質で生じる散乱の影響をより精度よく低減または除去した分光測定が可能になる。 By determining and applying the probe light beam diameter 803 by which the difference between the result of adjustment measurement and the result of reference measurement is reduced by the above-described procedure, the influence of scattering generated in the substance constituting the object to be measured 101 can be reduced or eliminated more accurately. Spectral measurement is possible.
 図9は、本発明のテラヘルツ分光測定装置の第2の実施例を模式的に示す構成図である。本実施例が実施例1と異なるのはプローブ光ビーム径Bの調整にテラヘルツ波の空間分布のイメージング結果を用いる点である。本構成により、実際のテラヘルツ波の空間分布を観測しながらプローブ光のビーム径を制御できるため、複数回の測定を行なう必要が無く、正確な調整が可能となる。
本実施例では、実施例1との差分について説明を行う。
FIG. 9 is a block diagram schematically showing a second embodiment of the terahertz spectrometer of the present invention. The present embodiment differs from the first embodiment in that the imaging result of the spatial distribution of the terahertz wave is used to adjust the probe light beam diameter B. According to this configuration, since the beam diameter of the probe light can be controlled while observing the actual spatial distribution of the terahertz wave, it is not necessary to perform a plurality of measurements and accurate adjustment becomes possible.
In this embodiment, the difference from the first embodiment will be described.
 結像レンズ312を検出用非線形光学結晶102の後ろに配置し、ハーフミラー313でビームを分け、一方をイメージセンサ305に入射し、もう一方は検出器304に入射する。図2に示すような検出用非線形光学結晶102上のテラヘルツ波の空間分布T3の情報を含んだプローブ光L3をイメージセンサ305に結像する。ここで、例えば、ハーフミラー313と検出器304を配置しないで、イメージセンサ305で検出結晶上のテラヘルツ波の空間分布T3の撮像および強度測定の両方を行なってもよい。 An imaging lens 312 is disposed behind the non-linear optical crystal 102 for detection, a beam is divided by a half mirror 313, one is incident on an image sensor 305, and the other is incident on a detector 304. The probe light L3 including the information of the spatial distribution T3 of the terahertz wave on the detection nonlinear optical crystal 102 as shown in FIG. Here, for example, without arranging the half mirror 313 and the detector 304, both imaging and intensity measurement of the spatial distribution T3 of the terahertz wave on the detection crystal may be performed by the image sensor 305.
 図10に本実施例におけるプローブ光調整のフローチャートを示す。S11でプローブ光ビーム径Bを最大値604とする。最大値604でプローブ光強度不足等により次に示すテラヘルツ波イメージングが出来ない場合は、イメージングが可能な径までプローブ光ビーム径Bを変更する。このとき、検出結晶上のテラヘルツ波照射部T3の大きさがプローブ光ビーム径Bより大きくなる場合、実施例7に記載の方法を用いて測定対象物と検出用非線形光学結晶102の距離を調整し、T3の大きさが小さくなるようにしても良い。
  テラヘルツ波T2が検出用非線形光学結晶102に入射すると電気光学効果が生じ、検出用非線形光学結晶102の複屈折率が入射テラヘルツ波T2の振幅に応じて変化する。検出用非線形光学結晶102を透過または反射したプローブ光は複屈折率変化に対応して偏光状態が変化する。 
 S12ではイメージセンサ305に入射したプローブ光を処理部3の計測部321で撮像し、検出イメージとして出力する。実施例1に記載の方法と同様に、演算部322で前記検出イメージからテラヘルツ波の電場または強度の検出用非線形光学結晶102上の空間分布T3を算出する。
FIG. 10 shows a flowchart of probe light adjustment in the present embodiment. The probe light beam diameter B is set to the maximum value 604 in S11. When the terahertz wave imaging to be described next can not be performed due to insufficient probe light intensity or the like at the maximum value 604, the probe light beam diameter B is changed to a diameter at which imaging is possible. At this time, when the size of the terahertz wave irradiation portion T3 on the detection crystal becomes larger than the probe light beam diameter B, the distance between the measurement object and the detection nonlinear optical crystal 102 is adjusted using the method described in the seventh embodiment. And the size of T3 may be reduced.
When the terahertz wave T2 is incident on the detecting nonlinear optical crystal 102, an electro-optical effect is generated, and the birefringence of the detecting nonlinear optical crystal 102 changes according to the amplitude of the incident terahertz wave T2. The probe light transmitted or reflected by the detection nonlinear optical crystal 102 changes its polarization state in accordance with the change in birefringence.
In S12, the probe light incident on the image sensor 305 is imaged by the measurement unit 321 of the processing unit 3 and is output as a detection image. Similar to the method described in the first embodiment, the calculation unit 322 calculates the spatial distribution T3 on the nonlinear optical crystal 102 for detection of the electric field or intensity of the terahertz wave from the detection image.
 S13では演算部322で前記検出イメージから前記受光部に照射されるテラヘルツ波の空間分布の大きさと、前記ビーム径調整部から得られるプローブ光のビーム径との差を計算し、差が小さくなるようなプローブ光ビーム径Bを求める。 In S13, the difference between the size of the spatial distribution of the terahertz wave irradiated to the light receiving unit and the beam diameter of the probe light obtained from the beam diameter adjusting unit is calculated by the calculation unit 322 from the detected image, and the difference becomes smaller The probe light beam diameter B is determined as follows.
 S14ではS13で求めたプローブビーム径に近づくように制御部323は制御信号を出し、プローブ光ビーム径Bを変更する。以上の手順により、プローブ光ビーム径Bの調整を行なった後、測定を開始することで、測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定が可能になる。
  ここで、例えば図10のS13において、テラヘルツ波の空間分布T3を撮影し、その結果、テラヘルツ波の空間分布T3の大きさがプローブ光のビーム径Bの最大値604より大きいことが推測された場合に、検出用非線形光学結晶102を測定対象物101に近づけるよう調整を行ない、テラヘルツ波の空間分布T3の大きさを小さくする例を示す
 図11は、この例におけるテラヘルツ分光測定装置を模式的に示す構成図である。図9と異なる点は、制御部323からの制御信号により、ビーム径調整部20のほかに、検出用非線形光学結晶102の位置を制御している点である。検出用非線形光学結晶102はモーター1021により駆動され、その位置情報はモーター1021に保持される。
In S14, the control unit 323 outputs a control signal so as to approach the probe beam diameter obtained in S13, and changes the probe light beam diameter B. According to the above-described procedure, after the adjustment of the probe light beam diameter B is performed, by starting the measurement, it is possible to perform the spectral measurement in which the influence of the scattering generated in the substance constituting the measurement object 101 is reduced or eliminated.
Here, for example, in S13 of FIG. 10, the spatial distribution T3 of the terahertz wave is photographed, and as a result, it is estimated that the size of the spatial distribution T3 of the terahertz wave is larger than the maximum value 604 of the beam diameter B of the probe light In this case, adjustment is made to bring the non-linear optical crystal for detection 102 closer to the measurement object 101 to reduce the size of the spatial distribution T3 of the terahertz wave. FIG. 11 schematically shows the terahertz spectrometer in this example. FIG. A different point from FIG. 9 is that the position of the detection nonlinear optical crystal 102 is controlled in addition to the beam diameter adjustment unit 20 by the control signal from the control unit 323. The non-linear optical crystal 102 for detection is driven by a motor 1021, and the position information is held by the motor 1021.
 検出用非線形光学結晶102と測定対象物101の距離を小さくする方法として例えば、プローブ光調整を行なう前に測定対象物101の厚みを図1の入力部325に入力しておき、検出用非線形光学結晶102と測定対象物101の距離が測定対象物101の厚みより大きく、元の位置より近くなるよう制御部323の制御信号によりモーター1021を制御する方法がある。以上の方法により、テラヘルツ波の空間分布T3の大きさを小さくすることが出来る。 As a method of reducing the distance between the non-linear optical crystal for detection 102 and the measurement object 101, for example, the thickness of the measurement object 101 is input to the input unit 325 of FIG. There is a method of controlling the motor 1021 by a control signal of the control unit 323 so that the distance between the crystal 102 and the measurement object 101 is larger than the thickness of the measurement object 101 and closer to the original position. By the above method, the size of the spatial distribution T3 of the terahertz wave can be reduced.
 図12は、本発明のテラヘルツ分光測定装置の第3の実施例を模式的に示す構成図である。本実施例が実施例1と異なるのは、検出器として干渉光学系を組み合わせている点である。本構成によれば、検出するテラヘルツ波T2の振幅が微弱である場合、信号を増幅して測定することが出来、測定の感度を向上できる。
本実施例では、実施例1との差分について説明を行う。
FIG. 12 is a block diagram schematically showing a third embodiment of the terahertz spectrometer of the present invention. The present embodiment differs from the first embodiment in that an interference optical system is combined as a detector. According to this configuration, when the amplitude of the terahertz wave T2 to be detected is weak, the signal can be amplified and measured, and the sensitivity of the measurement can be improved.
In this embodiment, the difference from the first embodiment will be described.
 図12の干渉光学系306は検出器を含む。干渉光学系306には検出用非線形光学結晶102を透過または反射したプローブ光と、それに干渉させるための参照光L4を入射する。干渉光学系306に含まれる検出器ではプローブ光と参照光L4を干渉させた干渉光を検出する。参照光源4として独立なレーザーを用いても良いし、プローブ光源やテラヘルツ波光源に含まれるレーザー等からビームスプリッター等を用いて光を分岐し、参照光L4としても良い。参照光L4の周波数の選び方として、例えばプローブ光の周波数と一致させないヘテロダイン方式やプローブ光の周波数と一致させたホモダイン方式がある。ホモダイン方式の場合、例えば四位相同時検出方式または位相シフト方式により干渉光の位相と振幅を分離して測定する方法がある。以上の方法により、測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定および感度向上が可能になる。 Interferometric optics 306 of FIG. 12 includes a detector. The interference optical system 306 receives the probe light transmitted or reflected by the detection nonlinear optical crystal 102 and the reference light L4 for causing the probe light to interfere. The detector included in the interference optical system 306 detects interference light in which the probe light and the reference light L4 interfere with each other. An independent laser may be used as the reference light source 4, or light may be branched from a laser included in a probe light source or a terahertz wave light source using a beam splitter or the like to be the reference light L4. As a method of selecting the frequency of the reference light L4, for example, there is a heterodyne method not matched with the frequency of the probe light or a homodyne method matched with the frequency of the probe light. In the case of the homodyne method, there is a method of separating and measuring the phase and amplitude of the interference light by, for example, a four-phase simultaneous detection method or a phase shift method. According to the above-described method, it is possible to perform the spectral measurement and the sensitivity improvement in which the influence of the scattering generated in the substance constituting the measuring object 101 is reduced or eliminated.
 図13は、本発明のテラヘルツ分光測定装置の第4の実施例を模式的に示す構成図である。本実施例が実施例1と異なるのは、検出器をイメージセンサに置き換えている点である。また、測定するものはテラヘルツ波の電場(テラヘルツ電場)である。テラヘルツ電場の測定を行なう際、ビームスポットT3内で位相が一様でないとき、単一検出器の測定ではテラヘルツ電場の空間分布が積算されることから、正負の電場が相殺して、測定されるテラヘルツ電場に比例した信号が小さくなる場合がある。本構成によれば、分光測定結果からその影響をなくすことが出来る。
本実施例では、実施例1との差分について説明を行う。
FIG. 13 is a configuration diagram schematically showing a fourth example of the terahertz spectrometry apparatus of the present invention. The present embodiment differs from the first embodiment in that the detector is replaced by an image sensor. Moreover, what is to be measured is an electric field of terahertz wave (terahertz electric field). When measuring the terahertz electric field, when the phase is not uniform in the beam spot T3, the spatial distribution of the terahertz electric field is integrated in the measurement of the single detector, so that the positive and negative electric fields cancel each other and the measurement is performed. The signal proportional to the terahertz electric field may be small. According to this configuration, the influence can be eliminated from the result of the spectroscopic measurement.
In this embodiment, the difference from the first embodiment will be described.
 図14にイメージセンサ305の模式図を示す。イメージセンサ305に検出結晶上のプローブ光ビームスポットL3を結像し、各ピクセルでテラヘルツ波電場空間分布T3に比例した信号を測定する。各ピクセルの結果を強度に変換してから必要なピクセルにおける強度の平均値を取得する。例えば、ピクセル321で検出したテラヘルツ電場をE、ピクセル322で検出したテラヘルツ電場をE・・・としたとき、検出強度IをI=(|E+|E+・・・)/(足し合わせたピクセル数)と計算しても良い。
テラヘルツ時間領域分光法など、位相測定つまり電場の時間波形の測定を行なう場合は、各ピクセルで電場の時間波形E(t)、E(t)・・・を測定してから各ピクセルでそれぞれ時間的フーリエ変換を行い、波長ごとの強度を得てから積算を行なう。
A schematic view of the image sensor 305 is shown in FIG. The probe light beam spot L3 on the detection crystal is imaged on the image sensor 305, and a signal proportional to the terahertz wave electric field spatial distribution T3 is measured at each pixel. The result of each pixel is converted to an intensity and then the average value of the intensity at the required pixel is obtained. For example, assuming that the terahertz electric field detected by the pixel 321 is E 1 and the terahertz electric field detected by the pixel 322 is E 2 ..., The detection intensity I is I = (| E 1 | 2 + | E 2 | 2 + ·· It may be calculated as: · · · / (number of pixels added).
When performing phase measurement, that is, measuring the time waveform of the electric field, such as terahertz time domain spectroscopy, measure the time waveform E 1 (t), E 2 (t) ... of the electric field at each pixel and then at each pixel. Each is subjected to time-wise Fourier transformation to obtain an intensity for each wavelength and then integration is performed.
 以上の方法により、測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定および感度向上が可能になる。 According to the above-described method, it is possible to perform the spectral measurement and the sensitivity improvement in which the influence of the scattering generated in the substance constituting the measuring object 101 is reduced or eliminated.
 図15は、本発明のテラヘルツ分光測定装置の第5の実施例を模式的に示す構成図である。本実施例が実施例1と異なるのは、測定対象101と検出用非線形光学結晶102の間に集光素子112が挿入されている点である。本構成によれば、集光素子112と測定対象物101の距離を離して測定することが可能である。
本実施例では、実施例1との差分について説明を行う。
FIG. 15 is a block diagram schematically showing a fifth embodiment of the terahertz spectrometer of the present invention. The present embodiment is different from the first embodiment in that a condensing element 112 is inserted between the measuring object 101 and the non-linear optical crystal 102 for detection. According to this configuration, it is possible to separate and measure the distance between the light collecting element 112 and the object to be measured 101.
In this embodiment, the difference from the first embodiment will be described.
 集光素子112の開口数(NA)は測定対象物の散乱光を十分に集められるようなるべく大きく設計される。集光素子112として例えば二つの平凸レンズまたは放物面鏡を組み合わせたものや、一枚の両凸レンズを測定対象物101と検出用非線形光学結晶102からの距離が焦点距離の二倍になるように配置したものがある。本実施例ではプローブ光のビーム径Bは、実施例1~2に従って集光素子112によって検出用非線形光学結晶102上に集光された散乱成分を含むテラヘルツ波空間分布T3の大きさとの差が小さくなるように制御される。実施例1に従って演算部322で計算により目標プローブ光ビーム径を取得する場合、検出用非線形光学結晶102上に集光された散乱成分を含むテラヘルツ波空間分布T3を求めるために、測定対象物101からの散乱に加え、集光素子112による集光の効果を光線追跡で求めても良い。または、前記空間分布T3の大きさを次のように計算しても良い。測定対象の厚みをDSAMPLEとすると、実施例1に記載のミー散乱の理論に従って測定対象物に含まれる粒子のパラメーターと入射テラヘルツ波長から求めた散乱角範囲±θと、DSAMPLEから、集光素子112によって検出用非線形光学結晶102上に結像するテラヘルツ波の空間分布T3のおおよその大きさ2DSAMPLE tanθを求める。 The numerical aperture (NA) of the focusing element 112 is designed as large as possible so as to sufficiently collect the scattered light of the object to be measured. For example, a combination of two plano-convex lenses or parabolic mirrors as the focusing element 112 or a single biconvex lens such that the distance between the object to be measured 101 and the nonlinear optical crystal 102 for detection is twice the focal length There is one placed in In the present embodiment, the beam diameter B of the probe light has a difference with the size of the terahertz wave spatial distribution T3 including the scattering component focused on the detection nonlinear optical crystal 102 by the focusing element 112 according to the first and second embodiments. It is controlled to be smaller. When the target probe light beam diameter is obtained by calculation in the calculation unit 322 according to the first embodiment, the measurement object 101 is obtained in order to obtain the terahertz wave spatial distribution T3 including the scattered component collected on the detection nonlinear optical crystal 102. In addition to the light scattering, the effect of light collection by the light collection element 112 may be determined by ray tracing. Alternatively, the size of the spatial distribution T3 may be calculated as follows. When the thickness of the measurement object and D SAMPLE, the scattering angle range ± theta obtained from the parameters and the incident terahertz wavelength of the particles contained in the measurement object in accordance with the theory of Mie scattering as described in Example 1, from D SAMPLE, condenser The approximate size 2D SAMPLE tanθ of the spatial distribution T3 of the terahertz wave formed on the detection nonlinear optical crystal 102 by the element 112 is determined.
 以上の方法により、測定対象物101と集光素子112の距離を離す事が出来るため、測定対象物101の厚みが厚い場合にも対応でき、さらに測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定が可能になる。 By the above method, since the distance between the object to be measured 101 and the light collecting element 112 can be separated, it is possible to cope with the case where the thickness of the object to be measured 101 is thick. Spectroscopic measurement with reduced or eliminated influence is possible.
 本実施例では、プローブ光ビーム径調整部20内にプローブ光の光軸を調整する光軸調整部および強度分布調整部を設置し、調整を行なう場合を示す。本構成により検出器304で検出される信号の検出効率を大きくできる。
本実施例では、実施例1との差分について説明を行う。
In this embodiment, an optical axis adjustment unit for adjusting the optical axis of the probe light and an intensity distribution adjustment unit are provided in the probe light beam diameter adjustment unit 20 and adjustment is performed. This configuration can increase the detection efficiency of the signal detected by the detector 304.
In this embodiment, the difference from the first embodiment will be described.
 図16に本実施例におけるプローブ光調整のフローチャートを示す。まず、F5でプローブ光径Bを最小値302にし、S31でテラヘルツ波の電場または強度の空間分布T3の中心部、つまり検出器304で検出されるテラヘルツ波の検出強度が最大となるよう光軸調整部を制御する。その後、S32で実施例1~3に従いビーム径調整部20の制御によりプローブ光ビーム径Bを調整する。最後にS33では、強度分布調整部でプローブ光の強度分布が面内で一様になるようにする。強度分布の調整方法としては、例えば、アイリスでプローブ光ビーム中心部のみを切り出す方法などがある。
  また、プローブ光の光軸または強度分布の調整結果を実施例2または4と同様の構成でイメージセンサ305を用いて結晶102上のプローブ光のビームスポットT2のイメージングを行い、確認しても良い。その際、例えば補償子302または偏光子301、303の向きによりプローブ光が減衰され、プローブ光ビームスポットL3全体がイメージセンサに映らない場合、補償子302もしくは偏光子301または303を制御部323からの信号または手動で回転させ、プローブ光ビームスポットL3全体が映るようにしてから撮像する。
FIG. 16 shows a flowchart of probe light adjustment in the present embodiment. First, at F5, the probe light diameter B is set to the minimum value 302, and at S31, the central portion of the spatial distribution T3 of the electric field or intensity of the terahertz wave, that is, the detection intensity of the terahertz wave detected by the detector 304 is maximized Control the adjustment unit. Thereafter, in step S32, the probe light beam diameter B is adjusted by the control of the beam diameter adjusting unit 20 according to the first to third embodiments. Finally, in S33, the intensity distribution adjustment unit makes the intensity distribution of the probe light uniform in the plane. As a method of adjusting the intensity distribution, for example, there is a method of cutting out only the center portion of the probe light beam with an iris.
The adjustment result of the optical axis or the intensity distribution of the probe light may be confirmed by imaging the beam spot T2 of the probe light on the crystal 102 using the image sensor 305 in the same configuration as that of the second embodiment or the fourth embodiment. . At that time, for example, when the probe light is attenuated by the direction of the compensator 302 or the polarizers 301 and 303 and the entire probe light beam spot L3 is not reflected on the image sensor, the compensator 302 or the polarizer 301 or 303 is Or manually rotate it so that the entire probe light beam spot L3 is captured and then imaged.
 以上の方法により、検出器304で検出される信号の検出効率を大きくできる。さらに測定対象物101を構成する物質で生じる散乱の影響を低減または除去した分光測定が可能になる。
  なお、本発明は分光測定以外の測定に応用されうる。応用先として、たとえばテラヘルツCTスキャンや吸収率、反射率によるイメージング等、散乱光の影響を受ける測定がある。また、はじめに述べたように、測定に使用する入射光の波長はテラヘルツ波に限らず、例えば赤外線や、赤外線より短い波長の電磁波であっても良いし、ミリ波や、ミリ波よりも長い波長の電磁波でも良い。この場合、以上の説明において、テラヘルツ波を電磁波と読み替えれば、以上の説明がそのまま適合する。したがって、ここでは、テラヘルツ波以外の電磁波については説明を省略する。
By the above method, the detection efficiency of the signal detected by the detector 304 can be increased. Furthermore, it is possible to perform spectroscopic measurement with reduced or eliminated the influence of scattering generated by the substance constituting the measurement object 101.
The present invention can be applied to measurements other than spectrometry. Applications include, for example, measurements that are affected by scattered light, such as terahertz CT scanning and imaging with absorptivity and reflectivity. Furthermore, as described earlier, the wavelength of incident light used for measurement is not limited to terahertz waves, and may be infrared rays or electromagnetic waves having a wavelength shorter than infrared rays, for example, or wavelengths longer than millimeter waves or millimeter waves Even electromagnetic waves of In this case, if the terahertz wave is replaced with an electromagnetic wave in the above description, the above description is applied as it is. Therefore, the description of electromagnetic waves other than terahertz waves is omitted here.
101・・・測定対象物、102・・・検出用非線形光学結晶、111・・・集光素子、20・・・プローブ光ビーム径制御部、3・・・ビーム制御信号生成部、301・・・偏光子、302・・・補償子、303・・・偏光子、304・・・検出器
T1・・・入射テラヘルツ波、T2・・・出射テラヘルツ波、L1・・・プローブ光、L2・・・調整済みプローブ光
101: measurement object, 102: nonlinear optical crystal for detection, 111: focusing element, 20: probe light beam diameter control unit, 3: beam control signal generation unit, 301. Polarizer 302 Compensator 303 Polarizer 304 Detector T1 Incident terahertz wave T2 Emitted terahertz wave L1 Probe light L2・ Adjusted probe light

Claims (12)

  1. 電磁波を照射する電磁波照射部と、
    電磁波を受光する受光部と、
    プローブ光を照射するプローブ光照射部と、
    前記プローブ光を検出し検出信号を出力するプローブ光検出部と、
    前記検出信号から電磁波の検出強度を算出する演算部と、
    前記プローブ光のビーム径を調整するビーム径制御部と、を備え、
    前記電磁波照射部は前記電磁波を測定対象物に照射し、
    前記受光部は前記測定対象物に照射された前記電磁波を受光し、
    前記プローブ光照射部は前記プローブ光を前記受光部に照射し、
    前記プローブ光検出部は前記受光部に照射された前記プローブ光を検出し、検出信号を出力し、
    前記演算部は前記検出信号と前記プローブ光のビーム径に基づき、前記検出強度を算出し、
    算出された前記検出強度に基づき、前記ビーム径調整部はプローブ光のビーム径を制御することを特徴とする分光測定装置。
    An electromagnetic wave irradiation unit that irradiates an electromagnetic wave;
    A light receiving unit that receives an electromagnetic wave;
    A probe light irradiator for irradiating a probe light;
    A probe light detection unit that detects the probe light and outputs a detection signal;
    An arithmetic unit that calculates detection strength of an electromagnetic wave from the detection signal;
    A beam diameter control unit that adjusts a beam diameter of the probe light;
    The electromagnetic wave irradiation unit irradiates the object to be measured with the electromagnetic wave,
    The light receiving unit receives the electromagnetic wave emitted to the measurement object,
    The probe light irradiation unit irradiates the probe light to the light receiving unit,
    The probe light detection unit detects the probe light irradiated to the light receiving unit, and outputs a detection signal.
    The calculation unit calculates the detection intensity based on the detection signal and the beam diameter of the probe light.
    The beam diameter adjusting unit controls the beam diameter of the probe light based on the calculated detected intensity.
  2. 請求項1に記載の分光測定装置であって、
    前記プローブ光検出部は前記受光部に照射されたプローブ光の偏光状態または強度の変化に相当する検出信号を出力することを特徴とする分光測定装置。
    The spectrometer according to claim 1, wherein
    The said probe light detection part outputs the detection signal corresponded to the polarization state or intensity | strength change of the probe light irradiated to the said light-receiving part.
  3. 請求項2に記載の分光測定装置であって、
    測定に関わるデータを記憶する記憶部と、
    測定パラメーターを前記演算部に入力する入力部を備え、
    演算部に入力された前記前記記憶部に記憶された測定条件情報に基づき、前記演算部は前記測定パラメーターに対応した前記測定条件を選択し、
    選択された前記測定条件を今回の測定に適用することを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    A storage unit that stores data related to measurement;
    And an input unit for inputting measurement parameters to the arithmetic unit;
    The calculation unit selects the measurement condition corresponding to the measurement parameter based on the measurement condition information stored in the storage unit input to the calculation unit;
    A spectrometric apparatus characterized in that the selected measurement condition is applied to this measurement.
  4. 請求項2に記載の分光測定装置であって、
    前記プローブ光の偏光状態または強度の変化の空間分布の検出イメージを出力するイメージセンサを有し、
    前記演算部は前記検出イメージから前記受光部に照射される電磁波の空間分布の広がり幅と、前記ビーム径調整部から得られるプローブ光のビーム径との差を算出し、
    前記差に基づき、前記ビーム径調整部はプローブ光のビーム径を制御することを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    And an image sensor that outputs a detection image of a spatial distribution of changes in polarization state or intensity of the probe light,
    The calculation unit calculates the difference between the spread width of the spatial distribution of the electromagnetic wave irradiated to the light receiving unit from the detection image and the beam diameter of the probe light obtained from the beam diameter adjusting unit,
    The spectrometer according to claim 1, wherein the beam diameter adjusting unit controls a beam diameter of the probe light based on the difference.
  5. 請求項2に記載の分光測定装置であって、
    前記受光部は非線形光学結晶であることを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    The said light receiving part is a nonlinear optical crystal, The spectroscopy measuring apparatus characterized by the above-mentioned.
  6. 請求項2に記載の分光測定装置であって、
    前記プローブ光照射部は前記プローブ光のビーム面内強度分布を調整する強度分布調整部及び前記プローブ光の光軸を変更する光軸調整部を備え、
    前記強度分布調整部はプローブ光のビーム面内強度分布が一様になる方向に前記強度分布を制御し、
    前記光軸調整部は前記プローブ光検出部から出力される前記検出信号に基づき前記プローブ光の光軸を制御することを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    The probe light irradiation unit includes an intensity distribution adjustment unit that adjusts an in-plane intensity distribution of the probe light, and an optical axis adjustment unit that changes an optical axis of the probe light.
    The intensity distribution adjusting unit controls the intensity distribution in a direction in which the in-plane intensity distribution of the probe light becomes uniform,
    The optical axis adjustment unit controls the optical axis of the probe light based on the detection signal output from the probe light detection unit.
  7. 請求項3に記載の分光測定装置であって、
    前記測定パラメーターは前記測定対象物に含まれる粒子の粒径と屈折率とを含み、
    前記演算部は、前記受光部における前記電磁波の電場または強度の空間分布の広がり幅に基づいて、電磁波の検出強度を算出し、算出された前記検出強度に基づき前記測定条件を更新することを特徴とする分光測定装置。
    The spectrometer according to claim 3, wherein
    The measurement parameters include the particle size and the refractive index of the particles contained in the measurement object,
    The calculation unit is characterized in that the detection intensity of the electromagnetic wave is calculated based on the spread width of the spatial distribution of the electric field or intensity of the electromagnetic wave in the light receiving unit, and the measurement condition is updated based on the calculated detection intensity. Spectroscopic measuring device.
  8. 請求項2に記載の分光測定装置であって、
    第一の測定対象物で分光測定した第一の結果を記録する記憶部と、
    第二の測定対象物で分光測定した第二の結果と前記記憶部に記憶された第一の結果との差を前記演算部により算出し、前記演算部の算出結果に基づいて前記ビーム径調整部の制御を行なう制御部と、を備え
    前記算出結果の差分が小さくなるようにビーム径調整部が制御されることを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    A storage unit for recording the first result of spectral measurement of the first measurement object;
    The difference between the second result spectrally measured by the second measurement object and the first result stored in the storage unit is calculated by the calculation unit, and the beam diameter adjustment is performed based on the calculation result of the calculation unit A control unit for controlling a unit, wherein the beam diameter adjusting unit is controlled so that the difference between the calculation results becomes small.
  9. 請求項2に記載の分光測定装置であって、
    参照光を発生させる参照光発生部と、
    前記プローブ光と前記参照光を干渉させる干渉光学系と、を備え、
    参照光発生部から発生した参照光と、前記プローブ光検出部に入射するプローブ光とを干渉光学系で干渉させ、前記検出信号を増幅することを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    A reference light generation unit that generates reference light;
    An interference optical system that causes the probe light and the reference light to interfere with each other;
    A spectrometric measurement apparatus characterized in that an interference optical system causes interference between reference light generated from a reference light generation unit and probe light incident on the probe light detection unit to amplify the detection signal.
  10. 請求項2に記載の分光測定装置であって、
    前記測定対象物と前記受光部との距離を取得する距離測定部と、
    前記測定対象物と前記受光部との距離を調整する距離調整部と、
    を備え、
    前記受光部における前記電磁波の電場または強度の空間分布の広がり幅を小さくして、前記検出信号が上がるように、
    前記距離測定部からの出力に基づいて、前記距離調整部は前記測定対象物と前記受光部との距離を小さくするよう制御することを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    A distance measuring unit that acquires a distance between the measurement object and the light receiving unit;
    A distance adjustment unit that adjusts the distance between the measurement object and the light receiving unit;
    Equipped with
    The spread width of the spatial distribution of the electric field or intensity of the electromagnetic wave in the light receiving portion is reduced to increase the detection signal,
    A spectrometer according to claim 1, wherein the distance adjusting unit controls the distance between the object to be measured and the light receiving unit to be smaller based on an output from the distance measuring unit.
  11. 請求項2に記載の分光測定装置であって、
    前記測定対象物に照射され、前記測定対象物を透過または反射した電磁波を前記受光部に集光する集光素子を備え、
    散乱で広がった前記電磁波を集光して前記検出信号が大きくなるように前記集光素子が配置されていることを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    It includes a light-collecting element that irradiates the object to be measured and condenses an electromagnetic wave transmitted or reflected by the object to be measured on the light receiving unit,
    The said light collection element is arrange | positioned so that the said electromagnetic wave which spread by scattering may be condensed, and the said detection signal may become large.
  12. 請求項2に記載の分光測定装置であって、
    前記プローブ光検出部は、前記受光部を透過または透過および反射したプローブ光の偏光状態または強度の変化の空間分布の検出イメージを出力するイメージセンサを有し、
    前記演算部は前記イメージセンサの各ピクセルで前記電磁波の電場を算出し、各ピクセルで電場から強度を計算し、少なくとも電磁波電場の情報が存在しているピクセルでの前記強度を積算し、電磁波の検出強度が上がるように測定を行なうことを特徴とする分光測定装置。
    The spectrometer according to claim 2, wherein
    The probe light detection unit includes an image sensor that outputs a detection image of a spatial distribution of changes in polarization state or intensity of probe light transmitted through or transmitted and reflected by the light reception unit,
    The arithmetic unit calculates the electric field of the electromagnetic wave at each pixel of the image sensor, calculates the intensity from the electric field at each pixel, integrates the intensity at the pixel where information of the electromagnetic field at least exists, A spectrometry apparatus characterized by performing measurement so that detection intensity goes up.
PCT/JP2017/032204 2017-09-07 2017-09-07 Spectrometry device WO2019049250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019540191A JP6782849B2 (en) 2017-09-07 2017-09-07 Spectroscopy device
PCT/JP2017/032204 WO2019049250A1 (en) 2017-09-07 2017-09-07 Spectrometry device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032204 WO2019049250A1 (en) 2017-09-07 2017-09-07 Spectrometry device

Publications (1)

Publication Number Publication Date
WO2019049250A1 true WO2019049250A1 (en) 2019-03-14

Family

ID=65633919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032204 WO2019049250A1 (en) 2017-09-07 2017-09-07 Spectrometry device

Country Status (2)

Country Link
JP (1) JP6782849B2 (en)
WO (1) WO2019049250A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096210A (en) * 2006-10-10 2008-04-24 Hamamatsu Photonics Kk Device for measuring single terahertz wave time waveform
JP2011158432A (en) * 2010-02-03 2011-08-18 Hamamatsu Photonics Kk Apparatus for measuring single-shot terahertz wave time waveform
WO2011122095A1 (en) * 2010-03-31 2011-10-06 浜松ホトニクス株式会社 Electromagnetic wave detection device
JP2012058073A (en) * 2010-09-09 2012-03-22 Fujitsu Ltd Terahertz wave measuring apparatus and terahertz wave measuring method
JP2012098103A (en) * 2010-11-01 2012-05-24 Hitachi High-Technologies Corp Defect inspection method, weak light detection method and weak light detector
JP2013238438A (en) * 2012-05-14 2013-11-28 Fujitsu Ltd Imaging apparatus and imaging method
JP2014235407A (en) * 2013-06-05 2014-12-15 オリンパス株式会社 Non-linear optical microscope device
JP2015172570A (en) * 2014-02-22 2015-10-01 キヤノン株式会社 Measurement instrument and measurement method
JP2016028230A (en) * 2014-07-09 2016-02-25 キヤノン株式会社 Measuring device and measuring method
JP2016099310A (en) * 2014-11-26 2016-05-30 浜松ホトニクス株式会社 Electric field vector detection method and electric field vector detection device
JP2016114523A (en) * 2014-12-16 2016-06-23 アークレイ株式会社 Terahertz wave measuring apparatus, measuring method, and measuring tool
JP2017026358A (en) * 2015-07-16 2017-02-02 キヤノン株式会社 Measurement apparatus, imaging device, and program

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096210A (en) * 2006-10-10 2008-04-24 Hamamatsu Photonics Kk Device for measuring single terahertz wave time waveform
JP2011158432A (en) * 2010-02-03 2011-08-18 Hamamatsu Photonics Kk Apparatus for measuring single-shot terahertz wave time waveform
WO2011122095A1 (en) * 2010-03-31 2011-10-06 浜松ホトニクス株式会社 Electromagnetic wave detection device
JP2012058073A (en) * 2010-09-09 2012-03-22 Fujitsu Ltd Terahertz wave measuring apparatus and terahertz wave measuring method
JP2012098103A (en) * 2010-11-01 2012-05-24 Hitachi High-Technologies Corp Defect inspection method, weak light detection method and weak light detector
JP2013238438A (en) * 2012-05-14 2013-11-28 Fujitsu Ltd Imaging apparatus and imaging method
JP2014235407A (en) * 2013-06-05 2014-12-15 オリンパス株式会社 Non-linear optical microscope device
JP2015172570A (en) * 2014-02-22 2015-10-01 キヤノン株式会社 Measurement instrument and measurement method
JP2016028230A (en) * 2014-07-09 2016-02-25 キヤノン株式会社 Measuring device and measuring method
JP2016099310A (en) * 2014-11-26 2016-05-30 浜松ホトニクス株式会社 Electric field vector detection method and electric field vector detection device
JP2016114523A (en) * 2014-12-16 2016-06-23 アークレイ株式会社 Terahertz wave measuring apparatus, measuring method, and measuring tool
JP2017026358A (en) * 2015-07-16 2017-02-02 キヤノン株式会社 Measurement apparatus, imaging device, and program

Also Published As

Publication number Publication date
JPWO2019049250A1 (en) 2020-09-17
JP6782849B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP5721195B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
JP5918658B2 (en) Optical device
WO2015135415A1 (en) Method and apparatus for measuring light-splitting pupil laser differential motion confocal brillouin-raman spectrums
WO2015032278A1 (en) Method and device for testing spectral pupil laser differential confocal raman spectrum
JP5736325B2 (en) Optical device
JP5847821B2 (en) Method and apparatus for non-resonant background reduction in coherent anti-Stokes Raman scattering (CARS) spectroscopy
CN107192702B (en) Spectroscopic pupil laser confocal CARS (coherent anti-Raman scattering) microspectroscopy testing method and device
KR20130114242A (en) Device for detecting foreign matter and method for detecting foreign matter
JP6073484B2 (en) CARS microscope
CN108562547B (en) Laser crystal thermal stress birefringence coefficient measuring device and method thereof
KR20140134339A (en) Overlay metrology using the near infra-red spectral range
JP6381779B2 (en) Terahertz wave measuring device
KR101632269B1 (en) Frequency And Intensity Modulation Laser Absorption Spectroscopy Apparatus and The Measuring Method Of The Same
US11016023B1 (en) Far-infrared spectroscopic device and far-infrared spectroscopic method
JP6782849B2 (en) Spectroscopy device
US10082456B2 (en) Photothermal conversion spectroscopic analyzer
JP5642411B2 (en) Wavefront measuring method, wavefront measuring apparatus and microscope
CN113804646A (en) Near-infrared Fourier transform polarization spectrometer
JP2006300661A (en) Interferometer and fourier spectral device
JP2011033586A (en) Observation method, incident timing setting method, and observation device
JP6549448B2 (en) Auto correlation measurement device
JP6980108B2 (en) Spectral measuring device and spectroscopic measuring method
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
JP5325697B2 (en) Observation method and observation apparatus
WO2022223994A1 (en) Methods and apparatus for calculating and maintaining an optimal sample position in an interferometric microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924070

Country of ref document: EP

Kind code of ref document: A1