WO2019049189A1 - Vehicle travel determination method and vehicle travel determination device - Google Patents

Vehicle travel determination method and vehicle travel determination device Download PDF

Info

Publication number
WO2019049189A1
WO2019049189A1 PCT/JP2017/031888 JP2017031888W WO2019049189A1 WO 2019049189 A1 WO2019049189 A1 WO 2019049189A1 JP 2017031888 W JP2017031888 W JP 2017031888W WO 2019049189 A1 WO2019049189 A1 WO 2019049189A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
vehicle
lane
toll
body angle
Prior art date
Application number
PCT/JP2017/031888
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 野尻
達弥 志野
勝彦 出川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/031888 priority Critical patent/WO2019049189A1/en
Publication of WO2019049189A1 publication Critical patent/WO2019049189A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present invention relates to a vehicle travel determination method and a vehicle travel determination device.
  • the above-mentioned prior art specifies the target gate without considering the traveling lane in which the vehicle travels. Therefore, when traveling on the toll plaza between the traveling lane and the target gate, the vehicle may not be able to travel smoothly depending on the positional relationship between the traveling lane and the target gate.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a vehicle travel judging method and a vehicle travel judgment device which enable smooth travel of a vehicle in a toll plaza.
  • the vehicle travels on a toll plaza provided in front of a toll booth connected to an end point of a road including a plurality of lanes and including a plurality of toll gate
  • a vehicle body angle which is an angle formed by a line connecting the end point of the lane and the toll gate gate and an extension extending in the traveling direction of the lane from the end point of the lane is determined.
  • a lane having a smaller vehicle body angle than a lane having a large vehicle body angle is selected.
  • the toll gate with a smaller body angle than the toll gate with a large body angle is selected.
  • smooth traveling of a vehicle at a toll plaza can be enabled.
  • FIG. 1A is a functional block diagram showing a part of a vehicle equipped with a vehicle travel judging device according to a first embodiment of the present invention.
  • FIG. 1B is a detailed functional block diagram of a travel route plan generation circuit.
  • FIG. 2 is a flowchart showing an example of the vehicle travel determination method in the first embodiment.
  • FIG. 3 is an explanatory diagram for explaining the processes of steps S5 and S7 in the flowchart of FIG.
  • FIG. 4 shows another example of the position of the gate, as well as the slope of the curve at the toll plaza.
  • FIG. 5 is a functional block diagram showing a part of a vehicle equipped with a vehicle travel determination device according to a second embodiment of the present invention.
  • FIG. 1A is a functional block diagram showing a part of a vehicle equipped with a vehicle travel judging device according to a first embodiment of the present invention.
  • FIG. 1B is a detailed functional block diagram of a travel route plan generation circuit.
  • FIG. 2 is a flow
  • FIG. 6 is a flowchart showing an example of the vehicle travel determination method in the second embodiment.
  • FIG. 7 is an explanatory diagram for explaining the processes of steps S7 and S9 in the flowchart of FIG.
  • FIG. 8 is an explanatory diagram for explaining the process of steps S11 and S13 in the flowchart of FIG.
  • Example 1 In the embodiment, Example 1 and Example 2 will be described.
  • Example 1 In the first embodiment, a vehicle travels at a toll plaza provided at the end of a road including a plurality of lanes and provided in front of a toll gate including a plurality of toll gates and enters one of the toll gates Before you do, select the lane on which the vehicle should travel (called the target lane). Below, the toll booth gate is simply called a gate.
  • the vehicle includes an ECU (Electronic Control Unit) 1, an external sensor unit 2, an internal sensor unit 3, a GPS (Global Positioning System) radio wave receiving unit 4, a map database 5, a navigation system 6 and an HMI (human).
  • ECU Electronic Control Unit
  • GPS Global Positioning System
  • HMI Human
  • a machine interface section 7 is provided. This vehicle is called “the vehicle” so as not to be confused with other vehicles.
  • the ECU 1 corresponds to a vehicle travel determination device, and can be realized using a microcomputer including a CPU (central processing unit), a memory, and an input / output unit.
  • a computer program for causing the microcomputer to function as the ECU 1 is installed in the microcomputer and executed.
  • the microcomputer functions as the ECU 1.
  • the example which realizes ECU1 by software is shown, of course, it is also possible to prepare ECU1 for exclusive use for performing each information processing shown below, and to constitute ECU1.
  • the external sensor unit 2 includes a radar device or a camera (both not shown), and outputs, to the ECU 1, an image of the surroundings of the vehicle obtained from the radar device or the camera and position information of an object.
  • the internal sensor unit 3 detects the operation amount of the accelerator pedal and the brake pedal of the host vehicle and the steering angle of the steering wheel, and outputs the detected amount to the ECU 1 and the navigation system 6.
  • the GPS radio wave receiver 4 obtains the position of the vehicle by receiving radio waves from three or more GPS satellites, and outputs the position to the ECU 1 and the navigation system 6.
  • the map database 5 includes map information of a region where the host vehicle travels, and the ECU 1 and the navigation system 6 refer to the map information.
  • the map information includes the information of the toll booth installed on the toll road.
  • the information on the toll booth includes the type of each gate provided in the toll booth, and information on the toll plaza in front of and before the toll booth.
  • the type of gate can be an "automatic fee gate” that can be used to send and receive fares and tickets via wireless communication between vehicles without stopping the vehicle, or the vehicle can be stopped once the vehicle is stopped and fares and tickets can be delivered. Indicate the difference between “manual gate” or “automatic fee gate” and “manual gate”.
  • the type of gate will be described as indicating the function of such a gate.
  • the toll booth information includes the latest information on whether each gate is available or not, that is, the gate open / close state. The open / close state of the gate can be obtained from a notice antenna installed on the road in front of the toll gate. Information on the toll plaza will be described later.
  • the navigation system 6 provides guidance to a destination set by an occupant such as a driver of the host vehicle.
  • the navigation system 6 estimates the position of the vehicle based on the information output from the external sensor unit 2, the internal sensor unit 3, and the GPS radio wave receiving unit 4, calculates a planned travel route to the destination, and calculates the destination I will guide you to. Further, information on the planned travel route is output to the ECU 1.
  • the ECU 1 includes a vehicle position estimation circuit 11, a travel route plan generation circuit 12, and a display circuit 13 as functional components realized by execution of a computer program.
  • the own vehicle position estimation circuit 11 is based on, for example, odometry or dead based on each information output from the external sensor unit 2, the internal sensor unit 3, and the GPS radio wave receiving unit 4 and the map information obtained by referring to the map database 5. Reckoning and Kalman filter are combined to estimate the position of the vehicle.
  • the travel route plan generation circuit 12 uses the position of the host vehicle estimated by the host vehicle position estimation circuit 11, the map information obtained by referring to the map database 5, and the information of the planned travel route calculated by the navigation system 6. Then, select a lane (referred to as a target lane) to be traveled before the vehicle enters the toll gate gate. Then, a travel route plan for changing the lane to the target lane is generated and output to the display circuit 13.
  • the display circuit 13 performs display control of lane change on the HMI unit 7 based on the travel route plan input from the travel route plan generation circuit 12.
  • the HMI unit 7 inputs and outputs information between the occupant of the host vehicle and the ECU 1, and displays lane change on the screen of the navigation system 6 by display control from the display circuit 13.
  • the travel route plan generation circuit 12 is a functional component realized by execution of a computer program, such as a vehicle body angle calculation unit (vehicle body angle calculation circuit) 121, a target selection unit (target selection circuit) 122 and a travel route plan generation unit 123.
  • vehicle body angle calculation unit vehicle body angle calculation circuit
  • target selection circuit target selection circuit
  • the vehicle body angle calculation unit 121 obtains, for each lane of the road, a vehicle body angle with respect to a lane when the host vehicle travels on the toll gate open space after traveling on the road to the toll gate open space.
  • the information on the toll plaza includes the positional relationship between each lane, the toll plaza and the gates, the extending direction of each lane at the end of the road, and the approach angle of each gate.
  • the vehicle body angle in the first embodiment is an angle formed by the longitudinal direction of the vehicle with respect to the extending direction of each lane.
  • the target selecting unit 122 selects a lane having a smaller vehicle body angle than a lane having a large vehicle body angle calculated by the vehicle body angle calculating unit 121 as a target lane.
  • the travel route plan generation unit 123 generates a travel route plan for changing the lane from the currently traveled lane to the target lane, and outputs the generated travel route plan to the display circuit 13.
  • Step S1 The travel route plan generation circuit 12 detects the position of the host vehicle estimated by the host vehicle position estimation circuit 11, map information obtained by referring to the map database 5, and information on the planned travel route calculated by the navigation system 6. It is determined whether there is a toll booth in a predetermined range (for example, 200 m or more and less than 1 km in front) ahead of the host vehicle. If there is no tollgate (S1: NO), the process is ended, and if there is tollgate (S1: YES), the process proceeds to step S3.
  • a predetermined range for example, 200 m or more and less than 1 km in front
  • Step S3 The travel route plan generation circuit 12 sets one gate at the toll gate that is the target of the determination at Step S1 as a target gate k. For example, based on the type of each gate included in the information of the toll booth, the traveling route plan generation circuit 12 targets from the gates of the toll booth a gate whose type matches the type of gate previously set as a policy. Choose as gate k. Step S3 may be performed before step S1.
  • Step S5 Next, based on the information of the toll plaza in front of the toll plaza, the vehicle body angle calculation unit 121 of the travel route plan generation circuit 12 determines the end point of the lane i for each lane i on the road in front of the toll plaza A distance Xi in the traveling direction of the vehicle between (the connection point to the toll plaza) and the target gate k, and a distance Yi in a direction perpendicular to the traveling direction of the vehicle between the end of the lane i and the target gate k are determined.
  • ) of the value ti Yi / Xi for each lane i.
  • the toll booth 20 includes gates 21 to 25 and a toll plaza 30 is provided in front of the toll booth 20.
  • the toll plaza 30 is connected to the end of the road 40 including the lanes 41-43.
  • Each gate is separated by an island 26 which is a base of a building for receiving and receiving a charge or a ticket or a person receiving a charge.
  • the traveling direction of the vehicle on the road 40 (the traveling direction of the lane) is indicated by reference numeral 45.
  • Each end point 411, 421, 431 is a connection point of the lanes 41, 42, 43 to the toll plaza 30 and is, for example, the end point of the lane center line.
  • the gate 22 is the target gate k.
  • the side position of the end of the toll plaza 30 on the side of the island 26 in the gate 22 (k) is referred to as a gate position 221.
  • the gate position 221 is on the center line of the gate 22 (k).
  • the gate position 221 is not limited to the side of the end of the island 26 on the side of the toll plaza 30. This example will be described later.
  • step S5 distances X1 and Y1 between the end point 411 of the lane 41 and the gate position 221, distances X2 and Y2 between the end point 421 of the lane 42 and the gate position 221, and an end point 431 of the lane 43 and the gate position
  • the distances X3 and Y3 between H.221 and H.221 are determined.
  • X1 to X3 are obtained as the distance between the intersection point and the end point of the perpendicular and the extension when the perpendicular is drawn from the gate position 221 with respect to the extension extending in the traveling direction of the lane from the end points 411 to 431 of the lanes 41 to 43 .
  • the distances Y1 to Y3 are obtained as the distance between the intersection and the gate position 221.
  • X1, X2, and X3 are the same distance.
  • Distance Y (Y1, Y2, Y3) sets end point 411, 421, 431 as the reference (0 m) of distance, respectively, and the distance Y when the gate position is on the right in the traveling direction of the lane at the end point is a positive value
  • , t2
  • , and t3
  • the extended line of the lane 41 as a reference (angle 0 degree)
  • the angle in the clockwise direction formed by the end point 411 and the line 31 connecting the gate position 221 is taken as ⁇ 1.
  • the angle in the clockwise direction formed by the end point 421 and the line 32 connecting the gate position 221 is set as ⁇ 2 with the extension line of the lane 42 as a reference (angle 0 degree).
  • each angle is a positive value.
  • the tangent of the absolute value of each angle ⁇ 1, ⁇ 2, ⁇ 3 is determined.
  • the absolute values (the vehicle body angles in the first embodiment) of the respective angles ⁇ 1, ⁇ 2, and ⁇ 3 are determined indirectly.
  • each line 31, 32, 33 is the course of the vehicle when traveling on the toll plaza 30 after traveling on the lanes 41, 42, 43, respectively, and in step S7, traveling on the toll plaza 30
  • the body angle of the body of the host vehicle with respect to the gate 22 (k) is obtained.
  • the body angle is also the angle for each lane.
  • the information on the toll plaza includes information such as distances X and Y for obtaining such a vehicle body angle.
  • the vehicle body angle calculated in this way may be stored in advance in the information of the toll plaza and the vehicle body angle may be obtained by simply reading out the vehicle body angle from the information of the toll plaza. The same applies to a vehicle body angle and a second vehicle body angle in Example 2 described later.
  • the straight section 35 is a section where the vehicle travels in a straight line facing the gate, and the distance of the straight section 35 is set to, for example, about 30 m.
  • the distance X1 between the gate position 221 and the end point 411, the distance X2 between the gate position 221 and the end point 421, and the distance X3 between the gate position 221 and the end point 431 As compared with the case of the above, it may be shorter by the distance of the straight section 35 respectively. Moreover, not only the gate 22 but any gate is the same.
  • Step S9 the target selecting unit 122 determines whether the value ti (referred to as tL) obtained in step S7 is larger than a predetermined threshold T for the lane (referred to as the lane L) in which the host vehicle is currently traveling. . If the value tL is less than the threshold T (tL ⁇ T) (S9: NO), the process ends, and if the value tL is larger than the threshold T (tL> T) (S9: YES), the process proceeds to step S11.
  • step S11 if the value tL is larger than the threshold T (tL> T) (S9: YES), the vehicle angle with respect to the target gate k when traveling in the toll booth square after traveling in the lane L is large. Smooth running of the vehicle is difficult. That is, it is preferable to change lanes, and therefore, the process proceeds to step S11.
  • the vehicle body angle represents the ease of entering the gate from the lane on which the vehicle is currently traveling.
  • the vehicle body angle can also be said to be the approach angle from the current lane.
  • Step S11 The target selection unit 122 selects a set S of lanes i whose value ti is equal to or less than the threshold T (ti ⁇ T).
  • the set S is a set of lanes i that can be entered at a vehicle body angle tan ⁇ 1 T or less with respect to the target gate k.
  • Step S15 Among the lanes included in the set S, the target selection unit 122 selects one lane that can be reached by the least number of lane changes from the currently traveling lane L, and proceeds to step S19.
  • the selected lane is called a target lane M.
  • step S15 there is no lane that can enter at a vehicle body angle tan -1 T or less with respect to the target gate k (S13: YES), so the target lane M with the smallest value ti is selected.
  • Step S19 The travel route plan generation unit 123 generates a travel route plan for changing the lane from the lane L to the target lane M, outputs it to the display circuit 13, and ends the processing.
  • the display circuit 13 performs display control of lane change on the HMI unit 7 based on the travel route plan input from the travel route plan generation circuit 12.
  • the HMI unit 7 displays lane change on the screen of the navigation system 6.
  • the driver of the host vehicle can change lanes from the lane L to the target lane M.
  • the target lane M may be displayed on the screen of the navigation system 6 without generating a travel route plan. Alternatively, the target lane M may be notified by voice. In addition, as in the second embodiment described later, steering or acceleration / deceleration of the vehicle may be automatically performed based on the travel route plan.
  • the vehicle is connected to the end point of the road (40) including the plurality of lanes (41 to 43) and in front of the toll booth (20) including the plurality of toll gate gates (21 to 25).
  • the vehicle travels on the provided toll plaza (30), and before entering any of the toll gate gates, the lane on which the vehicle should travel is selected.
  • one tollgate gate (22 (k)) is set out of a plurality of tollgate gates (S3), a plurality of lanes (41 to 43), and toll gate gates (22 (k)) ),
  • the body angle which is the angle between the end of the lane (411 to 431) and the line connecting the tollgate gate (gate position 221) (31 to 33) and the extension extending from the end of the lane to the traveling direction of the lane
  • ( ⁇ 1 to ⁇ 3) are obtained (S7).
  • a lane to be traveled target lane M
  • a lane having a smaller vehicle body angle than a lane having a large vehicle body angle is selected (S11).
  • the target gate k can be selected depending on the type of gate and whether or not toll payment device. Even in the case of selecting the same, it is possible to enable smooth traveling on the toll plaza in the same way. In addition, by changing the lane, the option of the gate that can be approached increases, so it is possible to guide the traveling route more smoothly.
  • Example 2 Next, Example 2 will be described.
  • the host vehicle travels on the toll plaza, and before entering any gate, a gate (referred to as a target gate) to which the host vehicle should enter is selected.
  • a gate referred to as a target gate
  • the same or similar elements as or to those of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted or simplified.
  • the host vehicle includes an actuator unit 9 in addition to the components of the host vehicle of the first embodiment.
  • the actuator unit 9 is an actuator that changes the operation amount of the accelerator pedal 8A that is a control device for controlling the operation of the vehicle, an actuator that changes the operation amount of the brake pedal 8B that is a similar control device, and the same control device. It includes an actuator that changes the steering angle of a certain steering wheel 8C.
  • the ECU 1 also includes a vehicle travel control circuit.
  • the vehicle body angle calculation unit 121 obtains the vehicle body angle (the approach angle from the currently traveled lane to the gate) when traveling on the toll plaza in front of the toll booth. Furthermore, in the second embodiment, the vehicle body angle (exit angle from the gate) when traveling on the second toll plaza provided at the end of the toll plaza is obtained.
  • Each vehicle body angle is an angle formed by the longitudinal direction of the vehicle with respect to the traveling direction at each gate.
  • the target selection unit 122 selects a gate whose vehicle body angle is smaller than a gate whose vehicle body angle calculated by the vehicle body angle calculation unit 121 is larger as a target gate.
  • the target selection unit 122 is an absolute value of the vehicle body angle (vehicle body angle) when traveling on the toll booth square in front of the toll booth and a vehicle body angle when traveling on the second toll plaza ahead of the toll booth square.
  • the gate whose absolute value of difference is smaller than the gate whose absolute value of difference with the absolute value of (second vehicle body angle) is large is selected.
  • the travel route plan generation unit 123 generates a travel route plan for entering the target gate selected by the target selection unit 122, and outputs the generated travel route plan to the vehicle travel control circuit 14.
  • the vehicle travel control circuit 14 performs travel control of the vehicle based on the travel route plan input from the travel route plan generation circuit 12, and transmits a vehicle control signal to the actuator unit 9.
  • the actuator unit 9 changes the operation amount of the accelerator pedal 8A and the brake pedal 8B and the steering angle of the steering wheel 8C based on the vehicle control signal, and causes the host vehicle to travel along the route planning.
  • Step S1 The travel route plan generation circuit 12 acquires toll booth information from the map information as in the first embodiment, and the toll booth gate is open or closed from communication equipment installed near the host vehicle. Get passability information that indicates whether there are any.
  • Step S3 Next, the traveling route plan generation circuit 12 sets the type of gate i in advance as a policy from each gate i of the toll gate based on the type of gate and passability information included in the information of the toll gate A set G (set of gate candidates) that matches the type of gate and can pass through is selected.
  • a gate G having a function of an automatic toll gate and a set G of passable gates i are selected.
  • it may be acquired from the communication facility instead of map information.
  • step S3 that is, based on the gate open / close state and the type of the gate, the gate candidates included in the set G are narrowed down.
  • Step S5 Next, the traveling route plan generation circuit 12 determines whether the number of elements of the set G (the number of gates) is 0, that is, whether the set G includes at least one gate, and the number of elements is In the case of 0 (S5: YES), the process ends. In this case, selection of a target gate has failed. If the number of elements is one or more (S5: NO), the process proceeds to step S7.
  • the gates 22, 23, 24, 25 of the toll booth 20 are elements of the set G, and the vehicle is traveling on the lane 43 (L) of the road 40 connected to the toll plaza 30 in front. .
  • the traveling direction of the vehicle on the road 40 (the traveling direction of the lane) is indicated by reference numeral 45.
  • the end point 431 is the end point of the lane 43 (L), and the gate positions 221, 231, 241, and 251 are determined as the positions of the gates 22, 23, 24, 25, respectively.
  • the setting method of the end point and the gate position is the same as that of the first embodiment.
  • the gate position may move toward the road 40 by the distance of the straight section 35 as shown in FIG.
  • step S7 the distances X1 and Y1 between the end point 431 and the gate position 221, the distances X2 and Y2 between the end point 431 and the gate position 231, and the distances X3 and Y3 between the end point 431 and the gate position 241 And distances X 4 and Y 4 between the end point 431 and the gate position 251.
  • X1, X2, X3 and X4 are the same distance.
  • the distance Y (Y1, Y2, Y3, Y4) has the end point 431 as the reference (0 m) for the distance, and at the end point the distance Y when the gate position is on the right in the traveling direction of the lane is a positive value.
  • the distance Y of the case is taken as a negative value. In the example of FIG. 7, each distance Y is also a positive value.
  • the angle in the clockwise direction formed by the end point 431 and the line 31 connecting the gate position 221 is ⁇ 1.
  • the angle in the clockwise direction formed by the end point 431 and the line 32 connecting the gate position 231 is ⁇ 2.
  • each angle is a positive value.
  • the tangent of each of the angles ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 is determined. In other words, the angles ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 are indirectly determined.
  • Each of the lines 31, 32, 33, 34 is the route of the vehicle when traveling on the toll plaza 30 after traveling on the lane 43, and in step S9, each gate on traveling the toll plaza 30
  • the vehicle body angle of the vehicle body of the own vehicle with respect to (the traveling direction of the vehicle at the gate) is obtained.
  • the vehicle body angle is also an angle with respect to the lane 43.
  • gates 22, 23, 24, 25 of toll booth 20 are elements of set G, and the vehicle is in lanes 61, 62 of road 60 connected to toll plaza 50 after passing the toll plaza, You are about to enter lane 61 (N). That is, the target route 601 of the vehicle is set to the lane 61.
  • the traveling direction of the vehicle on the road 60 is indicated by reference numeral 45.
  • the start point 611 is the start point of the lane 61 (N), and the gate positions 222, 232, 242, 252 are respectively determined as the positions of the gates 22, 23, 24, 25 of the set G.
  • the setting method of the start point is the same as the setting method of the lane end point.
  • the gate positions 222, 232, 242, 252 may be, for example, the side positions of the toll plaza 50 side end of the island 26 in each of the gates 22, 23, 24, 25.
  • the gate position is on the center line of the gate. The gate position may be moved to the side of the road 60 by the distance of the straight section 35 when the straight section 35 as shown in FIG.
  • step S11 distances U1 and V1 between the start point 611 and the gate position 222, distances U2 and V2 between the start point 611 and the gate position 232, and distances U3 and V3 between the start point 611 and the gate position 242 And distances U 4 and V 4 between the starting point 611 and the gate position 252.
  • U1, U2, U3, and U4 are the same distance.
  • the distance V (V1, V2, V3, V4) uses the gate positions 222, 232, 242, 252 as the reference (0 m) for the distance, and at the gate position, the starting point 611 is on the right in the traveling direction of the vehicle at the gate
  • the distance V in the case is a positive value
  • the distance V in the case of a left is a negative value.
  • V1 and V2 are negative values
  • V3 and V4 are positive values.
  • a line extending from the gate position 222 in the traveling direction of the vehicle at the gate is taken as a reference (0 degrees), and a clockwise angle formed by the starting point 611 and the line 51 connecting the gate position 222 is ⁇ 11.
  • a line extending from the gate position 232 in the traveling direction of the vehicle at the gate is taken as a reference (0 degree), and a clockwise angle formed by the start point 611 and the line 52 connecting the gate position 232 is ⁇ 12.
  • a line extending from the gate position 242 in the traveling direction of the vehicle at the gate is taken as a reference (0 degree), and an angle formed by the starting point 611 and the line 53 connecting the gate position 242 is ⁇ 13.
  • a line extending from the gate position 252 in the traveling direction of the vehicle at the gate is taken as a reference (0 degree), and a clockwise angle formed by the starting point 611 and the line 54 connecting the gate position 252 is ⁇ 14.
  • the angles ⁇ 11 and ⁇ 12 are negative values, and the angles ⁇ 13 and ⁇ 14 are positive values.
  • step S13 tangents of the respective angles ⁇ 11, ⁇ 12, ⁇ 13, and ⁇ 14 are obtained.
  • the angles ⁇ 11, ⁇ 12, ⁇ 13, and ⁇ 14 are indirectly determined.
  • Each of the lines 51, 52, 53, 54 is the course of the vehicle from leaving the toll booth 20 to entering the lane 61, and in step S15, leaving the toll booth 20, the lane 61
  • the body angle of the host vehicle with respect to each gate (the traveling direction of the vehicle at the gate) until entering is obtained.
  • the vehicle body angle is also an angle with respect to the lane 61.
  • this vehicle body angle can also be called the exit angle from the gate.
  • the exit angle can be said to indicate the ease of return to the target travel route after passing the gate.
  • Step S15 Next, the target selection unit 122 determines from the set G that the absolute value of the value ti is less than the threshold T (
  • the threshold T can be determined by the same method as in the first embodiment.
  • the threshold for the absolute value of the value ti may be different from the threshold for the absolute value of the value si.
  • Step S17 The target selection unit 122 determines whether the number of elements of the set H (the number of gates) is 0, that is, whether H includes at least one gate, and if the number of elements is 0 (S17 : YES), proceed to step S19, and if the number of elements is 1 or more (S17: NO), proceed to step S21.
  • Step S19 The target selection unit 122 selects, from the set G, a gate i having the smallest absolute value (
  • Step S21 The target selection unit 122 selects, from the set H, the gate i with the smallest absolute value (
  • step S19 and step S21 although the set to be selected is different, a gate with the smallest
  • the travel route plan generation unit 123 generates a travel route plan for entering the selected target gate, and outputs the generated travel route plan to the vehicle travel control circuit 14.
  • the vehicle travel control circuit 14 transmits a vehicle control signal to the actuator unit 9 based on the travel route plan input from the travel route plan generation unit 123.
  • the actuator unit 9 changes the operation amount of the accelerator pedal 8A and the brake pedal 8B and the steering angle of the steering wheel 8C based on the vehicle control signal, and causes the host vehicle to approach the target gate.
  • the target gate may be displayed on the screen of the navigation system 6 without generating a travel route plan. Alternatively, the target gate may be notified by voice.
  • the vehicle travel control circuit 14 and the actuator unit 9 may not be provided in the host vehicle. Conversely, in the first embodiment, the vehicle travel control circuit 14 and the actuator unit 9 may be provided to automatically change lanes. Further, in the second embodiment, after step S9, the gate with the smallest absolute value of the value ti may be selected as the target gate. In this case, the process after step S11 is unnecessary.
  • the vehicle is connected to the end point of the road (40) including the plurality of lanes (41 to 43) and in front of the toll booth (20) including the plurality of toll gate gates (21 to 25).
  • the vehicle travels on the provided toll plaza (30), and before entering any toll gate, the gate to which the vehicle should enter is selected.
  • the lane end point (431) and the toll gate gate (gate positions 221 to 251) are connected for the lane (43 (L)) on which the vehicle is currently traveling and the plurality of toll gate gates (22 to 25).
  • )) which is an angle formed by the line (31 to 34) and an extension extending in the traveling direction of the vehicle from the end point of the lane is obtained (S9).
  • the tollgate gate to which the host vehicle traveling in the lane (43 (L)) should enter the tollgate gate having a smaller body angle than the toll gate with a large body angle is selected (S15).
  • the second lane (61 (N)) which is the lane in which the vehicle travels after passing the toll gate, and the second lane for the plurality of toll gate (22 to 25).
  • the second body which is the angle between the starting point (611) and the line (51-54) connecting the tollgate gates (gate positions 222-252) and the line from the tollgate gate to the direction of travel of the vehicle at the tollgate gate.
  • the angle (si ( ⁇ 11 to ⁇ 14)) is obtained (S13).
  • the difference is greater than the tollgate gate where the absolute value (
  • the toll gate whose absolute value is small is selected (S19, S21).
  • the change of the steering angle before and behind a toll gate gate can be made small, and the smooth driving
  • a large steering operation is not required (the steering angle is small) when entering the toll booth square (50) from the toll booth gate or leaving the toll booth square (50).
  • the crossing point with the traveling track of the other vehicle is small, and the inconvenience in the autonomous driving vehicle can be reduced, so that the own vehicle can smoothly travel in the toll plaza (50).
  • the vehicle travel determination device is mounted on the target vehicle traveling on the toll plaza.
  • the vehicle travel determination device is mounted on a server device that can communicate with the target vehicle or other vehicle that is not the target vehicle, and necessary information and instructions are transmitted and received by communication between the server device or the other vehicle and the target vehicle
  • the vehicle travel judgment method of may be performed remotely.
  • Communication between the server device and the target vehicle can be performed by wireless communication or road-vehicle communication.
  • Communication between the other vehicle and the target vehicle can be performed by so-called inter-vehicle communication.
  • ECU Electronic Control Unit
  • Reference Signs List 2 external sensor unit
  • internal sensor unit 4
  • GPS Global Positioning System
  • radio wave receiving unit 5
  • map database 6
  • navigation system 7
  • HMI human machine interface
  • actuator unit 11
  • vehicle position estimation circuit 12
  • travel route plan generation circuit 13
  • display circuit 14
  • Vehicle Driving Control Circuit 121
  • Vehicle Body Angle Calculator Car Body Angle Calculator
  • Target Selection Unit 123 travel route plan generation unit 20 toll booth 21 to 25 gate 30 toll booth 50 second toll plaza 41 to 43, 61, 62 lane 45 traveling direction of vehicle (traveling direction of lane) 221, 231, 241, 251, 222, 232, 242, 252
  • Gate position 411, 421, 431 End point of lane 611 Start point of lane X1, X2, X3, X4, Y1, Y2, Y3, Y4, U1, U2, U3 , U4, V1, V2, V3, V4 distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle body angle calculation unit (121) obtains, for each lane, a vehicle body angle, which is the angle formed by the line connecting the end point of the lane and a toll gate relative to an extension line extending from the end point of the lane in the direction of travel for the lane. A target selection unit (122) selects, as a lane to be traveled by a vehicle, a lane for which the vehicle body angle is smaller in preference to a lane for which the vehicle body angle is larger.

Description

車両走行判断方法及び車両走行判断装置Vehicle travel judging method and vehicle travel judging device
 本発明は、車両走行判断方法及び車両走行判断装置に関する。 The present invention relates to a vehicle travel determination method and a vehicle travel determination device.
 従来より、料金所のゲートを通過する際、案内ルート上にある道路に至る車線に設置されたゲートを特定し、この特定したゲートを通過すべき旨をユーザに知らせるという技術がある(特許文献1参照)。 Conventionally, when passing through a gate at a toll booth, there is a technique of specifying a gate installed in a lane leading to a road on a guidance route and notifying a user that the specified gate should be passed (patent document) 1).
特開2006-220593号公報Japanese Patent Application Laid-Open No. 2006-220593
 上記の従来技術は、車両が走行する走行車線を考慮せずに目標ゲートを特定する。そのため、走行車線と目標ゲートの間の料金所広場を走行する際、走行車線と目標ゲートの位置関係によっては、車両がスムーズに走行できない可能性がある。 The above-mentioned prior art specifies the target gate without considering the traveling lane in which the vehicle travels. Therefore, when traveling on the toll plaza between the traveling lane and the target gate, the vehicle may not be able to travel smoothly depending on the positional relationship between the traveling lane and the target gate.
 本発明は、上記問題に鑑みて成されたものであり、その目的は、料金所広場における車両のスムーズな走行を可能とする車両走行判断方法及び車両走行判断装置を提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide a vehicle travel judging method and a vehicle travel judgment device which enable smooth travel of a vehicle in a toll plaza.
 本発明の一態様に係る車両走行判断方法は、複数の車線を含む道路の終点に接続され、且つ複数の料金所ゲートを含む料金所の手前の設けられた料金所広場を車両が走行し、いずれかの料金所ゲートに進入する前に、車両が走行すべき車線、又は車両が進入すべき料金所ゲートを選択する。まず、各車線、又は、各料金所ゲートについて、車線の終点と料金所ゲートを結ぶ線と車線の終点から車線の進行方向に延長した延長線とでなす角度である車体角度を求める。そして、車両が走行すべき車線として、車体角度が大きい車線より車体角度が小さい車線を選択する。又は、車両が進入すべき料金所ゲートとして、車体角度が大きい料金所ゲートより車体角度が小さい料金所ゲートを選択する。 In the vehicle travel judging method according to an aspect of the present invention, the vehicle travels on a toll plaza provided in front of a toll booth connected to an end point of a road including a plurality of lanes and including a plurality of toll gate Before entering any toll gate, select the lane in which the vehicle should travel or the toll gate to which the vehicle should enter. First, for each lane or each toll gate gate, a vehicle body angle which is an angle formed by a line connecting the end point of the lane and the toll gate gate and an extension extending in the traveling direction of the lane from the end point of the lane is determined. Then, as a lane on which the vehicle should travel, a lane having a smaller vehicle body angle than a lane having a large vehicle body angle is selected. Alternatively, as a toll gate to which the vehicle should enter, the toll gate with a smaller body angle than the toll gate with a large body angle is selected.
 本発明によれば、料金所広場における車両のスムーズな走行を可能にできる。 According to the present invention, smooth traveling of a vehicle at a toll plaza can be enabled.
図1Aは、本発明の実施例1に係る車両走行判断装置を搭載した車両の一部を示す機能ブロック図である。FIG. 1A is a functional block diagram showing a part of a vehicle equipped with a vehicle travel judging device according to a first embodiment of the present invention. 図1Bは、走行経路計画生成回路についての詳細な機能ブロック図である。FIG. 1B is a detailed functional block diagram of a travel route plan generation circuit. 図2は、実施例1における車両走行判断方法の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of the vehicle travel determination method in the first embodiment. 図3は、図2のフローチャートにおけるステップS5、S7の処理を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the processes of steps S5 and S7 in the flowchart of FIG. 図4は、ゲートの位置についての別な例、並びに料金所広場における曲線部の勾配を示す図である。FIG. 4 shows another example of the position of the gate, as well as the slope of the curve at the toll plaza. 図5は、本発明の実施例2に係る車両走行判断装置を搭載した車両の一部を示す機能ブロック図である。FIG. 5 is a functional block diagram showing a part of a vehicle equipped with a vehicle travel determination device according to a second embodiment of the present invention. 図6は、実施例2における車両走行判断方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the vehicle travel determination method in the second embodiment. 図7は、図6のフローチャートにおけるステップS7、S9の処理を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining the processes of steps S7 and S9 in the flowchart of FIG. 図8は、図6のフローチャートにおけるステップS11、S13の処理を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the process of steps S11 and S13 in the flowchart of FIG.
 次に、図面を参照して、本発明の実施の形態を詳細に説明する。説明において、同一のものには同一符号を付して重複説明を省略する。 Next, embodiments of the present invention will be described in detail with reference to the drawings. In the description, the same components are denoted by the same reference numerals and redundant description will be omitted.
 実施形態では、実施例1と実施例2を説明する。
(実施例1)
 実施例1では、複数の車線を含む道路の終点に接続され、且つ複数の料金所ゲートを含む料金所の手前の設けられた料金所広場を車両が走行し、いずれかの料金所ゲートに進入する前に、車両が走行すべき車線(目標車線という)を選択する。以下、料金所ゲートを単にゲートという。
In the embodiment, Example 1 and Example 2 will be described.
Example 1
In the first embodiment, a vehicle travels at a toll plaza provided at the end of a road including a plurality of lanes and provided in front of a toll gate including a plurality of toll gates and enters one of the toll gates Before you do, select the lane on which the vehicle should travel (called the target lane). Below, the toll booth gate is simply called a gate.
 図1Aに示すように、車両は、ECU(電子制御ユニット)1、外部センサ部2、内部センサ部3、GPS(Global Positioning System)電波受信部4、地図データベース5、ナビゲーションシステム6及びHMI(human machine interface)部7を備える。この車両を他車両と混同しないように「自車両」という。 As shown in FIG. 1A, the vehicle includes an ECU (Electronic Control Unit) 1, an external sensor unit 2, an internal sensor unit 3, a GPS (Global Positioning System) radio wave receiving unit 4, a map database 5, a navigation system 6 and an HMI (human). A machine interface section 7 is provided. This vehicle is called "the vehicle" so as not to be confused with other vehicles.
 ECU1は、車両走行判断装置に相当するもので、CPU(中央処理装置)、メモリ、及び入出力部を備えるマイクロコンピュータを用いて実現可能である。マイクロコンピュータをECU1として機能させるためのコンピュータプログラムを、マイクロコンピュータにインストールして実行する。これにより、マイクロコンピュータは、ECU1として機能する。なお、ここでは、ソフトウェアによってECU1を実現する例を示すが、もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して、ECU1を構成することも可能である。 The ECU 1 corresponds to a vehicle travel determination device, and can be realized using a microcomputer including a CPU (central processing unit), a memory, and an input / output unit. A computer program for causing the microcomputer to function as the ECU 1 is installed in the microcomputer and executed. Thus, the microcomputer functions as the ECU 1. Here, although the example which realizes ECU1 by software is shown, of course, it is also possible to prepare ECU1 for exclusive use for performing each information processing shown below, and to constitute ECU1.
 外部センサ部2は、レーダ装置又はカメラ(共に図示せず)を備え、レーダ装置又はカメラから得た自車両周囲の画像や物体の位置情報をECU1に出力する。内部センサ部3は、自車両のアクセルペダル、ブレーキペダルの操作量及びステアリングホイールの操舵角を検出し、ECU1とナビゲーションシステム6に出力する。 The external sensor unit 2 includes a radar device or a camera (both not shown), and outputs, to the ECU 1, an image of the surroundings of the vehicle obtained from the radar device or the camera and position information of an object. The internal sensor unit 3 detects the operation amount of the accelerator pedal and the brake pedal of the host vehicle and the steering angle of the steering wheel, and outputs the detected amount to the ECU 1 and the navigation system 6.
 GPS電波受信部4は、3個以上のGPS衛星から電波を受信することにより自車両の位置を得て、位置をECU1及びナビゲーションシステム6に出力する。 The GPS radio wave receiver 4 obtains the position of the vehicle by receiving radio waves from three or more GPS satellites, and outputs the position to the ECU 1 and the navigation system 6.
 地図データベース5は、自車両が走行する地域の地図情報を備え、ECU1及びナビゲーションシステム6は、地図情報を参照する。地図情報は、有料道路に設置された料金所の情報を含む。 The map database 5 includes map information of a region where the host vehicle travels, and the ECU 1 and the navigation system 6 refer to the map information. The map information includes the information of the toll booth installed on the toll road.
 料金所の情報は、料金所に設けられた各ゲートの種別、及び料金所の手前と先にある料金所広場の情報を含む。ゲートの種別は、車両が停止することなく車路間の無線通信によって料金やチケットの授受を行うことができる「自動料金ゲート」か、車両が一旦停止して車両の乗員が料金やチケットの授受を行う「マニュアルゲート」か、「自動料金ゲート」と「マニュアルゲート」の両機能を有するゲートかの違いを示すものを含む。以下、ゲートの種別はこのようなゲートの機能を示すものとして説明する。また、料金所の情報は、各ゲートが利用可能であるか否か、即ちゲートの開閉状態の最新の情報を含む。ゲートの開閉状態は、料金所手前の道路上に設置された予告アンテナから取得することができる。料金所広場の情報については後述する。 The information on the toll booth includes the type of each gate provided in the toll booth, and information on the toll plaza in front of and before the toll booth. The type of gate can be an "automatic fee gate" that can be used to send and receive fares and tickets via wireless communication between vehicles without stopping the vehicle, or the vehicle can be stopped once the vehicle is stopped and fares and tickets can be delivered. Indicate the difference between “manual gate” or “automatic fee gate” and “manual gate”. Hereinafter, the type of gate will be described as indicating the function of such a gate. Also, the toll booth information includes the latest information on whether each gate is available or not, that is, the gate open / close state. The open / close state of the gate can be obtained from a notice antenna installed on the road in front of the toll gate. Information on the toll plaza will be described later.
 ナビゲーションシステム6は、自車両の運転者などの乗員によって設定された目的地まで案内を行うものである。ナビゲーションシステム6は、外部センサ部2、内部センサ部3、GPS電波受信部4が出力した各情報を基に、自車両の位置を推定し、目的地までの走行予定路を算出し、目的地までの案内を行う。また、走行予定路の情報をECU1へ出力する。 The navigation system 6 provides guidance to a destination set by an occupant such as a driver of the host vehicle. The navigation system 6 estimates the position of the vehicle based on the information output from the external sensor unit 2, the internal sensor unit 3, and the GPS radio wave receiving unit 4, calculates a planned travel route to the destination, and calculates the destination I will guide you to. Further, information on the planned travel route is output to the ECU 1.
 ECU1は、コンピュータプログラムの実行により実現される機能的な構成要素として、自車両位置推定回路11、走行経路計画生成回路12及び表示回路13を備える。 The ECU 1 includes a vehicle position estimation circuit 11, a travel route plan generation circuit 12, and a display circuit 13 as functional components realized by execution of a computer program.
 自車両位置推定回路11は、外部センサ部2、内部センサ部3、GPS電波受信部4が出力した各情報、及び地図データベース5を参照して得られる地図情報を基に、例えば、オドメトリやデッドレコニングとカルマンフィルタを組み合わせて、自車両の位置を推定する。 The own vehicle position estimation circuit 11 is based on, for example, odometry or dead based on each information output from the external sensor unit 2, the internal sensor unit 3, and the GPS radio wave receiving unit 4 and the map information obtained by referring to the map database 5. Reckoning and Kalman filter are combined to estimate the position of the vehicle.
 走行経路計画生成回路12は、自車両位置推定回路11により推定された自車両の位置、地図データベース5を参照して得られる地図情報、及びナビゲーションシステム6が算出した走行予定路の情報を用いて、自車両が料金所のゲートに進入する前に走行すべき車線(目標車線という)を選択する。そして、目標車線へ車線変更するための走行経路計画を生成し、表示回路13に出力する。 The travel route plan generation circuit 12 uses the position of the host vehicle estimated by the host vehicle position estimation circuit 11, the map information obtained by referring to the map database 5, and the information of the planned travel route calculated by the navigation system 6. Then, select a lane (referred to as a target lane) to be traveled before the vehicle enters the toll gate gate. Then, a travel route plan for changing the lane to the target lane is generated and output to the display circuit 13.
 表示回路13は、走行経路計画生成回路12から入力された走行経路計画を基に、HMI部7に対し、車線変更の表示制御を行う。 The display circuit 13 performs display control of lane change on the HMI unit 7 based on the travel route plan input from the travel route plan generation circuit 12.
 HMI部7は、自車両の乗員とECU1との間で情報の入出力を行うとともに、表示回路13からの表示制御により、ナビゲーションシステム6の画面に車線変更の表示を行う。 The HMI unit 7 inputs and outputs information between the occupant of the host vehicle and the ECU 1, and displays lane change on the screen of the navigation system 6 by display control from the display circuit 13.
 図1Bに示すように、走行経路計画生成回路12は、コンピュータプログラムの実行により実現される機能的な構成要素として、車体角度算出部(車体角度算出回路)121、目標選択部(目標選択回路)122及び走行経路計画生成部123を備える。 As shown in FIG. 1B, the travel route plan generation circuit 12 is a functional component realized by execution of a computer program, such as a vehicle body angle calculation unit (vehicle body angle calculation circuit) 121, a target selection unit (target selection circuit) 122 and a travel route plan generation unit 123.
 車体角度算出部121は、料金所広場の情報を基に、自車両が料金所広場までの道路を走行後に料金所広場を走行するときの車線に対する車体角度を道路の各車線について求める。料金所広場の情報は、各車線、料金所広場及び各ゲートの位置関係、及び道路の終点における各車線の延伸方向、各ゲートの進入角度を含む。実施例1における車体角度とは、各車線の延伸方向に対して自車両の前後方向が成す角度である。 The vehicle body angle calculation unit 121 obtains, for each lane of the road, a vehicle body angle with respect to a lane when the host vehicle travels on the toll gate open space after traveling on the road to the toll gate open space. The information on the toll plaza includes the positional relationship between each lane, the toll plaza and the gates, the extending direction of each lane at the end of the road, and the approach angle of each gate. The vehicle body angle in the first embodiment is an angle formed by the longitudinal direction of the vehicle with respect to the extending direction of each lane.
 目標選択部122は、車体角度算出部121が求めた車体角度が大きい車線より車体角度が小さい車線を目標車線として選択する。 The target selecting unit 122 selects a lane having a smaller vehicle body angle than a lane having a large vehicle body angle calculated by the vehicle body angle calculating unit 121 as a target lane.
 走行経路計画生成部123は、現在走行する車線から目標車線へ車線変更するための走行経路計画を生成し、表示回路13に出力する。 The travel route plan generation unit 123 generates a travel route plan for changing the lane from the currently traveled lane to the target lane, and outputs the generated travel route plan to the display circuit 13.
 次に、図2のフローチャートを参照して、実施例1において目標車線を選択する車両走行判断方法について説明する。 Next, with reference to a flowchart of FIG. 2, a vehicle travel determination method for selecting a target lane in the first embodiment will be described.
 ステップS1:走行経路計画生成回路12は、自車両位置推定回路11により推定された自車両の位置、地図データベース5を参照して得られる地図情報、及びナビゲーションシステム6が算出した走行予定路の情報を用いて、自車両の前方の所定の範囲(例えば、前方200m以上、1km未満)に料金所があるか否かを判定する。料金所がない場合は(S1:NO)、処理を終え、料金所がある場合は(S1:YES)、ステップS3に進む。 Step S1: The travel route plan generation circuit 12 detects the position of the host vehicle estimated by the host vehicle position estimation circuit 11, map information obtained by referring to the map database 5, and information on the planned travel route calculated by the navigation system 6. It is determined whether there is a toll booth in a predetermined range (for example, 200 m or more and less than 1 km in front) ahead of the host vehicle. If there is no tollgate (S1: NO), the process is ended, and if there is tollgate (S1: YES), the process proceeds to step S3.
 ステップS3:走行経路計画生成回路12は、ステップS1で判断対象となった料金所における1つのゲートを目標ゲートkとして設定する。走行経路計画生成回路12は、例えば、料金所の情報に含まれる各ゲートの種別を基に、料金所の各ゲートから、ゲートの種別が予めポリシーとして設定したゲートの種別に一致するゲートを目標ゲートkとして選択する。なお、ステップS3は、ステップS1の前に行っておいてもよい。 Step S3: The travel route plan generation circuit 12 sets one gate at the toll gate that is the target of the determination at Step S1 as a target gate k. For example, based on the type of each gate included in the information of the toll booth, the traveling route plan generation circuit 12 targets from the gates of the toll booth a gate whose type matches the type of gate previously set as a policy. Choose as gate k. Step S3 may be performed before step S1.
 ステップS5:次に、走行経路計画生成回路12の車体角度算出部121は、料金所手前の料金所広場の情報を基に、料金所広場の手前の道路における各車線iについて、車線iの終点(料金所広場への接続点)と目標ゲートkの間の車両進行方向の距離Xi、及び車線iの終点と目標ゲートkの間の車両進行方向に垂直な方向の距離Yiを求める。
 ステップS7:次に、車体角度算出部121は、各車線iについて、値ti=Yi/Xiの絶対値(|Yi/Xi|)を求める。
Step S5: Next, based on the information of the toll plaza in front of the toll plaza, the vehicle body angle calculation unit 121 of the travel route plan generation circuit 12 determines the end point of the lane i for each lane i on the road in front of the toll plaza A distance Xi in the traveling direction of the vehicle between (the connection point to the toll plaza) and the target gate k, and a distance Yi in a direction perpendicular to the traveling direction of the vehicle between the end of the lane i and the target gate k are determined.
Step S7: Next, the vehicle body angle calculation unit 121 obtains an absolute value (| Yi / Xi |) of the value ti = Yi / Xi for each lane i.
 図3を参照し、具体的に説明する。
 図3において、料金所20はゲート21~25を含み、料金所20の手前には料金所広場30が設けられている。料金所広場30は、車線41~43を含む道路40の終点に接続される。各ゲートは、料金やチケットの授受を行う装置や人が料金受け取りなどを行う建物の土台であるアイランド26により区切られる。道路40での車両の進行方向(車線の進行方向)を符号45で示す。各終点411、421、431は、それぞれ車線41、42、43の料金所広場30への接続点であり、例えば、車線の中心線の終点である。
This will be specifically described with reference to FIG.
In FIG. 3, the toll booth 20 includes gates 21 to 25 and a toll plaza 30 is provided in front of the toll booth 20. The toll plaza 30 is connected to the end of the road 40 including the lanes 41-43. Each gate is separated by an island 26 which is a base of a building for receiving and receiving a charge or a ticket or a person receiving a charge. The traveling direction of the vehicle on the road 40 (the traveling direction of the lane) is indicated by reference numeral 45. Each end point 411, 421, 431 is a connection point of the lanes 41, 42, 43 to the toll plaza 30 and is, for example, the end point of the lane center line.
 ここでは、ゲート22が目標ゲートkとする。また、ゲート22(k)におけるアイランド26の料金所広場30側端の側方位置をゲート位置221という。例えばゲート位置221は、ゲート22(k)の中心線上にあるものとする。なお、ゲート位置221は、アイランド26の料金所広場30側端の側方に限らない。この例については後述する。 Here, the gate 22 is the target gate k. Further, the side position of the end of the toll plaza 30 on the side of the island 26 in the gate 22 (k) is referred to as a gate position 221. For example, it is assumed that the gate position 221 is on the center line of the gate 22 (k). The gate position 221 is not limited to the side of the end of the island 26 on the side of the toll plaza 30. This example will be described later.
 ステップS5では、車線41の終点411とゲート位置221との間の距離X1、Y1と、車線42の終点421とゲート位置221との間の距離X2、Y2と、車線43の終点431とゲート位置221との間の距離X3、Y3とを求める。X1~X3は、車線41~43の終点411~431から車線の進行方向に延長した延長線に対し、ゲート位置221から垂線を引いたとき、垂線と延長線の交点と終点との距離として求める。距離Y1~Y3は、その交点とゲート位置221との距離として求める。図3では、X1、X2、X3は同一距離である。距離Y(Y1、Y2、Y3)は、それぞれ終点411、421、431を距離の基準(0m)とし、終点において車線の進行方向に向かってゲート位置が右にある場合の距離Yを正値、左にある場合の距離Yを負値とする。 In step S5, distances X1 and Y1 between the end point 411 of the lane 41 and the gate position 221, distances X2 and Y2 between the end point 421 of the lane 42 and the gate position 221, and an end point 431 of the lane 43 and the gate position The distances X3 and Y3 between H.221 and H.221 are determined. X1 to X3 are obtained as the distance between the intersection point and the end point of the perpendicular and the extension when the perpendicular is drawn from the gate position 221 with respect to the extension extending in the traveling direction of the lane from the end points 411 to 431 of the lanes 41 to 43 . The distances Y1 to Y3 are obtained as the distance between the intersection and the gate position 221. In FIG. 3, X1, X2, and X3 are the same distance. Distance Y (Y1, Y2, Y3) sets end point 411, 421, 431 as the reference (0 m) of distance, respectively, and the distance Y when the gate position is on the right in the traveling direction of the lane at the end point is a positive value Let the distance Y in the case of the left be a negative value.
 ステップS7では、t1=|Y1/X1|、t2=|Y2/X2|、及びt3=|Y3/X3|を求める。ここで、車線41の延長線を基準(角度0度)として、終点411とゲート位置221を結ぶ線31とでなす時計回り方向の角度をθ1とする。車線42の延長線を基準(角度0度)として、終点421とゲート位置221を結ぶ線32とでなす時計回り方向の角度をθ2とする。車線43の延長線を基準(角度0度)とし、終点431とゲート位置221を結ぶ線33とでなす時計回り方向の角度をθ3とする。図3の例では、各角度は正値である。ステップS7では、各角度θ1、θ2、θ3について、その絶対値の正接を求めていることになる。換言すれば、各角度θ1、θ2、θ3の絶対値(実施例1での車体角度)を間接的に求めていることになる。 In step S7, t1 = | Y1 / X1 |, t2 = | Y2 / X2 |, and t3 = | Y3 / X3 | are obtained. Here, with the extended line of the lane 41 as a reference (angle 0 degree), the angle in the clockwise direction formed by the end point 411 and the line 31 connecting the gate position 221 is taken as θ1. The angle in the clockwise direction formed by the end point 421 and the line 32 connecting the gate position 221 is set as θ2 with the extension line of the lane 42 as a reference (angle 0 degree). With the extension of the lane 43 as a reference (angle 0 degree), the angle in the clockwise direction formed by the end point 431 and the line 33 connecting the gate position 221 is θ3. In the example of FIG. 3, each angle is a positive value. In step S7, the tangent of the absolute value of each angle θ1, θ2, θ3 is determined. In other words, the absolute values (the vehicle body angles in the first embodiment) of the respective angles θ1, θ2, and θ3 are determined indirectly.
 また、各線31、32、33は、それぞれ車線41、42、43を走行後、料金所広場30を走行するときの自車両の進路であり、ステップS7では、料金所広場30を走行するときのゲート22(k)(ゲート22(k)における車両の進行方向)に対する自車両の車体の車体角度を求めていることになる。車体角度は、各車線に対する角度でもある。料金所広場の情報は、このような車体角度を求めるための距離X、Yなどの情報を含んでいる。
 なお、このように算出した車体角度を予め料金所広場の情報に記憶させておき、単に料金所広場の情報から車体角度を読み出すことで車体角度を求めてもよい。後述の実施例2における車体角度及び第2の車体角度についても同様である。
In addition, each line 31, 32, 33 is the course of the vehicle when traveling on the toll plaza 30 after traveling on the lanes 41, 42, 43, respectively, and in step S7, traveling on the toll plaza 30 The body angle of the body of the host vehicle with respect to the gate 22 (k) (the traveling direction of the vehicle at the gate 22 (k)) is obtained. The body angle is also the angle for each lane. The information on the toll plaza includes information such as distances X and Y for obtaining such a vehicle body angle.
The vehicle body angle calculated in this way may be stored in advance in the information of the toll plaza and the vehicle body angle may be obtained by simply reading out the vehicle body angle from the information of the toll plaza. The same applies to a vehicle body angle and a second vehicle body angle in Example 2 described later.
 図4に示すように、ゲート22をゲートkとしたときのゲート位置221については、ゲートの手前に直線区間35が設置されている場合は、直線区間35の距離だけ道路40側に移動してもよい。直線区間35は、車両がゲートに正対して直線状に走行する区間であり、直線区間35の距離は、例えば、30m程度に設定される。 As shown in FIG. 4, for the gate position 221 when the gate 22 is the gate k, if the straight section 35 is installed in front of the gate, move to the road 40 side by the distance of the straight section 35 It is also good. The straight section 35 is a section where the vehicle travels in a straight line facing the gate, and the distance of the straight section 35 is set to, for example, about 30 m.
 つまり、ゲート位置221と終点411の距離X1、ゲート位置221と終点421の距離X2、ゲート位置221と終点431の距離X3は、アイランド26の料金所広場30側端の側方をゲート位置221とする場合に比べ、それぞれ直線区間35の距離だけ短いこととしてもよい。また、ゲート22に限らず、どのゲートでも同様である。 That is, the distance X1 between the gate position 221 and the end point 411, the distance X2 between the gate position 221 and the end point 421, and the distance X3 between the gate position 221 and the end point 431 As compared with the case of the above, it may be shorter by the distance of the straight section 35 respectively. Moreover, not only the gate 22 but any gate is the same.
 図2に戻り、説明を続ける。
 ステップS9:次に、目標選択部122は、自車両が現在走行する車線(車線Lという)についてステップS7で求めた値ti(tLという)が予め定めた閾値Tより大きいか否かを判定する。値tLが閾値T未満(tL≦T)の場合は(S9:NO)、処理を終え、値tLが閾値Tより大きい(tL>T)場合は(S9:YES)、ステップS11に進む。
Return to FIG. 2 and continue the description.
Step S9: Next, the target selecting unit 122 determines whether the value ti (referred to as tL) obtained in step S7 is larger than a predetermined threshold T for the lane (referred to as the lane L) in which the host vehicle is currently traveling. . If the value tL is less than the threshold T (tL ≦ T) (S9: NO), the process ends, and if the value tL is larger than the threshold T (tL> T) (S9: YES), the process proceeds to step S11.
 値tLが閾値T未満(tL≦T)の場合は(S9:NO)、車線Lを走行後、料金所広場を走行するときの目標ゲートkに対する車体角度は小さく、料金所広場における自車両のスムーズな走行が容易である。すなわち車線変更は不要であり、よって、処理を終える。 If the value tL is less than the threshold T (tL ≦ T) (S9: NO), after traveling on the lane L, the vehicle body angle with respect to the target gate k when traveling on the tollgate square is small. Smooth running is easy. In other words, no lane change is necessary, thus ending the process.
 一方、値tLが閾値Tより大きい(tL>T)場合は(S9:YES)、車線Lを走行後、料金所広場を走行するときの目標ゲートkに対する車体角度は大きく、料金所広場における自車両のスムーズな走行が困難である。すなわち、車線変更を行うことが好ましく、よって、ステップS11に進む。 On the other hand, if the value tL is larger than the threshold T (tL> T) (S9: YES), the vehicle angle with respect to the target gate k when traveling in the toll booth square after traveling in the lane L is large. Smooth running of the vehicle is difficult. That is, it is preferable to change lanes, and therefore, the process proceeds to step S11.
 図3において、車線43が現在走行する車線Lであり、tL>Tであるとする。この場合、目標ゲート22(k)に到達するまでに大きなステアリング操作を行う必要があり、つまり必要な操舵角が大きく、安定した走行が困難である。また、他の車線41、42から料金所広場30に進入する他車両の走行軌道との交錯点が多くなるため、スムーズな走行が困難となる。 In FIG. 3, it is assumed that the lane 43 is the currently running lane L, and tL> T. In this case, it is necessary to perform a large steering operation before reaching the target gate 22 (k), that is, the required steering angle is large, and stable traveling is difficult. In addition, since the crossing points with the traveling tracks of the other vehicles entering the toll plaza 30 from the other lanes 41 and 42 increase, smooth traveling becomes difficult.
 特に、自動運転車両に関しては、次のような課題がある。現在走行する車線から目標ゲートに向かう際の操舵角が大きいと、目標ゲートに対する車体角度が大きくなってしまい、目標ゲートがカメラなどの前方認識センサで認識できる範囲に入らなかったり、目標ゲートを進入直前で認識することになってしまう。そのため、ゲートの情報(例えば、レーン幅や進入禁止バーの有無)の認識が遅れてしまい、自動走行に支障が出る可能性がある。 In particular, in the case of an autonomous driving vehicle, there are the following problems. When the steering angle when going from the current lane to the target gate is large, the vehicle body angle with respect to the target gate becomes large, and the target gate can not enter into the range that can be recognized by the front recognition sensor such as a camera. It will be recognized immediately before. Therefore, recognition of gate information (for example, lane width and presence or absence of an entry bar) may be delayed, which may cause problems in automatic travel.
 しかし、操舵角を一定以下に抑えることができれば、このような可能性は低減でき、スムーズな走行経路案内をすることができる。 However, if the steering angle can be suppressed to a certain level or less, such possibility can be reduced and smooth travel route guidance can be performed.
 一方、値tLが閾値T未満(tL≦T)の場合は(S9:NO)、大きなステアリング操作が必要なく(操舵角が小さく)、他車両の走行軌道との交錯点が少なく、スムーズな走行が容易であり、自動運転車両における不都合が少ないので、処理を終えるのである。すなわち、車体角度は、現在走行する車線からゲートへの進入のしやすさを表している。車体角度は、現車線からの進入角とも言える。 On the other hand, when the value tL is less than the threshold T (tL ≦ T) (S9: NO), a large steering operation is not required (the steering angle is small), and there are few crossing points with the traveling tracks of other vehicles and smooth traveling The process is finished because it is easy and there are few inconveniences in the autonomous driving vehicle. That is, the vehicle body angle represents the ease of entering the gate from the lane on which the vehicle is currently traveling. The vehicle body angle can also be said to be the approach angle from the current lane.
 なお、閾値Tは、料金所の構造から実験的に決定できる。例えば、国、その他の団体が定める料金所広場のテーパー部のテーパー率を基準として閾値Tを決定できる。具体的には、テーパー率が1/7以下という基準がある場合、図4に示す曲線部36の勾配をθとしたときには、tanθ=1/(7×2)=0.071となるので、閾値Tを0.1(0.071の近似値)とすることができる。 The threshold value T can be determined experimentally from the structure of the toll booth. For example, the threshold value T can be determined based on the taper rate of the toll plaza set by the country or another group. Specifically, when there is a criterion that the taper rate is 1/7 or less, tan θ = 1 / (7 × 2) = 0.071, where θ is the slope of the curved portion 36 shown in FIG. Can be made 0.1 (approximate value of 0.071).
 図2に戻り、説明を続ける。
 ステップS11:目標選択部122は、値tiが閾値T以下(ti≦T)である車線iの集合Sを選択する。集合Sは、目標ゲートkに対し車体角度tan-1T以下で進入できる車線iの集合である。
 ステップS13:目標選択部122は、次に、集合Sの要素数(車線数)が0か否か、つまり集合Sに少なくとも1つの車線が含まれるか否かを判定し、要素数が1以上の場合は(S13:NO)、ステップS15に進み、要素数が0の場合は(S13:YES)、ステップS17に進む。
Return to FIG. 2 and continue the description.
Step S11: The target selection unit 122 selects a set S of lanes i whose value ti is equal to or less than the threshold T (ti ≦ T). The set S is a set of lanes i that can be entered at a vehicle body angle tan −1 T or less with respect to the target gate k.
Step S13: The target selection unit 122 next determines whether the number of elements in the set S (the number of lanes) is 0, that is, whether the set S includes at least one lane, and the number of elements is 1 or more. In the case of (S13: NO), the process proceeds to step S15, and when the number of elements is 0 (S13: YES), the process proceeds to step S17.
 ステップS15:目標選択部122は、集合Sに含まれる車線のうち、現在走行する車線Lから最も少ない回数の車線変更で到達できる車線を1つ選択し、ステップS19に進む。選択した車線を目標車線Mという。
 ステップS17:目標選択部122は、値tiが最小の車線i(目標車線Mという)を選択し、ステップS19に進む。ステップS15では、目標ゲートkに対し車体角度tan-1T以下で進入できる車線が存在しない(S13:YES)ので、値tiが最小の目標車線Mを選択する。
Step S15: Among the lanes included in the set S, the target selection unit 122 selects one lane that can be reached by the least number of lane changes from the currently traveling lane L, and proceeds to step S19. The selected lane is called a target lane M.
Step S17: The target selection unit 122 selects a lane i (referred to as a target lane M) having the smallest value ti, and proceeds to step S19. In step S15, there is no lane that can enter at a vehicle body angle tan -1 T or less with respect to the target gate k (S13: YES), so the target lane M with the smallest value ti is selected.
 ステップS19:走行経路計画生成部123は、車線Lから目標車線Mへ車線変更するための走行経路計画を生成し、表示回路13に出力し、処理を終える。 Step S19: The travel route plan generation unit 123 generates a travel route plan for changing the lane from the lane L to the target lane M, outputs it to the display circuit 13, and ends the processing.
 表示回路13は、走行経路計画生成回路12から入力された走行経路計画を基に、HMI部7に対し、車線変更の表示制御を行う。HMI部7は、ナビゲーションシステム6の画面に車線変更の表示を行う。これにより、自車両の運転者は、車線Lから目標車線Mへ車線変更を行うことができる。 The display circuit 13 performs display control of lane change on the HMI unit 7 based on the travel route plan input from the travel route plan generation circuit 12. The HMI unit 7 displays lane change on the screen of the navigation system 6. Thus, the driver of the host vehicle can change lanes from the lane L to the target lane M.
 なお、走行経路計画を生成せず、目標車線Mをナビゲーションシステム6の画面に表示してもよい。又は、目標車線Mを音声で報知してもよい。また、後述の実施例2のように、走行経路計画に基づき、自車両の操舵や加減速を自動的に行ってもよい。 The target lane M may be displayed on the screen of the navigation system 6 without generating a travel route plan. Alternatively, the target lane M may be notified by voice. In addition, as in the second embodiment described later, steering or acceleration / deceleration of the vehicle may be automatically performed based on the travel route plan.
 このように、実施例1では、複数の車線(41~43)を含む道路(40)の終点に接続され、且つ複数の料金所ゲート(21~25)を含む料金所(20)の手前の設けられた料金所広場(30)を自車両が走行し、いずれかの料金所ゲートに進入する前に、自車両が走行すべき車線を選択する。 Thus, in the first embodiment, it is connected to the end point of the road (40) including the plurality of lanes (41 to 43) and in front of the toll booth (20) including the plurality of toll gate gates (21 to 25). The vehicle travels on the provided toll plaza (30), and before entering any of the toll gate gates, the lane on which the vehicle should travel is selected.
 具体的には、まず、複数の料金所ゲートの中から1つの料金所ゲート(22(k))を設定し(S3)、複数の車線(41~43)と料金所ゲート(22(k))について、車線の終点(411~431)と料金所ゲート(ゲート位置221)を結ぶ線(31~33)と車線の終点から車線の進行方向に延長した延長線とでなす角度である車体角度(θ1~θ3)を求める(S7)。そして、走行すべき車線(目標車線M)として、車体角度が大きい車線よりも車体角度が小さい車線を選択する(S11)。 Specifically, first, one tollgate gate (22 (k)) is set out of a plurality of tollgate gates (S3), a plurality of lanes (41 to 43), and toll gate gates (22 (k)) ), The body angle which is the angle between the end of the lane (411 to 431) and the line connecting the tollgate gate (gate position 221) (31 to 33) and the extension extending from the end of the lane to the traveling direction of the lane Then, (θ1 to θ3) are obtained (S7). Then, as a lane to be traveled (target lane M), a lane having a smaller vehicle body angle than a lane having a large vehicle body angle is selected (S11).
 これにより、大きなステアリング操作が必要なく(操舵角が小さく)、他車両の走行軌道との交錯点が少なく、スムーズな走行が容易であり、自動運転車両における不都合が少ない。よって、料金所広場における自車両のスムーズな走行を可能にできる。 As a result, there is no need for a large steering operation (small steering angle), there are few crossing points with the traveling tracks of other vehicles, smooth traveling is easy, and inconveniences in an autonomous driving vehicle are small. Therefore, smooth traveling of the vehicle can be enabled in the toll plaza.
 特に、特定のゲート(目標ゲートk)について求めた車体角度に基づいて、複数の車線から目標車線(M)を選択することで、ゲートの種別と料金支払装置を有するか否かによって目標ゲートkを選択するような場合においても、同様の作用により、料金所広場でのスムーズな走行を可能にできる。
 また、車線変更することで、進入可能なゲートの選択肢が増えるので、よりスムーズな走行経路を案内できる。
In particular, by selecting the target lane (M) from a plurality of lanes based on the vehicle body angle obtained for a specific gate (target gate k), the target gate k can be selected depending on the type of gate and whether or not toll payment device. Even in the case of selecting the same, it is possible to enable smooth traveling on the toll plaza in the same way.
In addition, by changing the lane, the option of the gate that can be approached increases, so it is possible to guide the traveling route more smoothly.
(実施例2)
 次に、実施例2について説明する。
 実施例2では、料金所広場を自車両が走行し、いずれかのゲートに進入する前に、自車両が進入すべきゲート(目標ゲートという)を選択する。なお、実施例1と同一又は同様の要素については同一符号を付して重複説明を省略又は簡略する。
(Example 2)
Next, Example 2 will be described.
In the second embodiment, the host vehicle travels on the toll plaza, and before entering any gate, a gate (referred to as a target gate) to which the host vehicle should enter is selected. The same or similar elements as or to those of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted or simplified.
 図5に示すように、自車両は実施例1の自車両の構成要素に加え、アクチュエータ部9を備える。アクチュエータ部9は、車両の動作を制御するための制御装置であるアクセルペダル8Aの操作量を変化させるアクチュエータ、同様の制御装置であるブレーキペダル8Bの操作量を変化させるアクチュエータ、同様の制御装置であるステアリングホイール8Cの操舵角を変化させるアクチュエータを含む。
 また、ECU1は、実施例1のECU1の構成要素(11~13)に加え、車両走行制御回路14を備える。
As shown in FIG. 5, the host vehicle includes an actuator unit 9 in addition to the components of the host vehicle of the first embodiment. The actuator unit 9 is an actuator that changes the operation amount of the accelerator pedal 8A that is a control device for controlling the operation of the vehicle, an actuator that changes the operation amount of the brake pedal 8B that is a similar control device, and the same control device. It includes an actuator that changes the steering angle of a certain steering wheel 8C.
In addition to the components (11 to 13) of the ECU 1 of the first embodiment, the ECU 1 also includes a vehicle travel control circuit.
 実施例2において、車体角度算出部121は、実施例1と同様に、料金所の手前の料金所広場を走行するときの車体角度(現在走行する車線からゲートへの進入角)を求める。さらに、実施例2では、料金所の先に設けられた第2の料金所広場を走行するときの車体角度(ゲートからの退出角)を求める。各車体角度は、各ゲートでの進行方向に対して自車両の前後方向が成す角度である。 In the second embodiment, as in the first embodiment, the vehicle body angle calculation unit 121 obtains the vehicle body angle (the approach angle from the currently traveled lane to the gate) when traveling on the toll plaza in front of the toll booth. Furthermore, in the second embodiment, the vehicle body angle (exit angle from the gate) when traveling on the second toll plaza provided at the end of the toll plaza is obtained. Each vehicle body angle is an angle formed by the longitudinal direction of the vehicle with respect to the traveling direction at each gate.
 目標選択部122は、車体角度算出部121が求めた車体角度が大きいゲートより車体角度が小さいゲートを目標ゲートとして選択する。また、目標選択部122は、料金所の手前の料金所広場を走行するときの車体角度(車体角度)の絶対値と料金所広場の先の第2の料金所広場を走行するときの車体角度(第2の車体角度)の絶対値との差の絶対値が大きいゲートより差の絶対値が小さいゲートを選択する。
 走行経路計画生成部123は、目標選択部122が選択した目標ゲートに進入するための走行経路計画を生成し、車両走行制御回路14に出力する。
The target selection unit 122 selects a gate whose vehicle body angle is smaller than a gate whose vehicle body angle calculated by the vehicle body angle calculation unit 121 is larger as a target gate. In addition, the target selection unit 122 is an absolute value of the vehicle body angle (vehicle body angle) when traveling on the toll booth square in front of the toll booth and a vehicle body angle when traveling on the second toll plaza ahead of the toll booth square. The gate whose absolute value of difference is smaller than the gate whose absolute value of difference with the absolute value of (second vehicle body angle) is large is selected.
The travel route plan generation unit 123 generates a travel route plan for entering the target gate selected by the target selection unit 122, and outputs the generated travel route plan to the vehicle travel control circuit 14.
 車両走行制御回路14は、走行経路計画生成回路12から入力された走行経路計画に基づき車両の走行制御を行い、アクチュエータ部9に車両制御信号を送信する。
 アクチュエータ部9は、車両制御信号に基づいて、アクセルペダル8A、ブレーキペダル8Bの操作量、及びステアリングホイール8Cの操舵角を変化させ、自車両を走行経路計画の経路に沿って走行させる。
The vehicle travel control circuit 14 performs travel control of the vehicle based on the travel route plan input from the travel route plan generation circuit 12, and transmits a vehicle control signal to the actuator unit 9.
The actuator unit 9 changes the operation amount of the accelerator pedal 8A and the brake pedal 8B and the steering angle of the steering wheel 8C based on the vehicle control signal, and causes the host vehicle to travel along the route planning.
 次に、図6のフローチャートを参照して、実施例2において目標ゲートを選択する車両走行判断方法について説明する。 Next, with reference to a flowchart of FIG. 6, a vehicle travel determination method for selecting a target gate in the second embodiment will be described.
 ステップS1:走行経路計画生成回路12は、実施例1のように地図情報から料金所の情報を取得し、自車両の近傍に設置された通信設備から、料金所のゲートが開いているか閉じているかを示す通過可否情報を取得する。 Step S1: The travel route plan generation circuit 12 acquires toll booth information from the map information as in the first embodiment, and the toll booth gate is open or closed from communication equipment installed near the host vehicle. Get passability information that indicates whether there are any.
 ステップS3:次に、走行経路計画生成回路12は、料金所の情報に含まれるゲートの種別と通過可否情報を基に、料金所の各ゲートiから、ゲートiの種別が予めポリシーとして設定したゲートの種別に一致し、且つ、通過可能なゲートiの集合G(ゲート候補の集合)を選択する。ここでは、例えば、自車両が料金支払装置を有する場合は、自動料金ゲートの機能を有するゲートで且つ通過可能なゲートiの集合Gを選択する。なお、ゲートの開閉状態とゲートの種別を近傍の通信設備(例えば、料金所手前の道路上に設置された予告アンテナ)から取得できる場合は、地図情報からでなく通信設備から取得してもよい。
 ステップS3では、すなわち、ゲートの開閉状態とゲートの種別を基に、集合Gに含まれるゲート候補を絞りこむ。
Step S3: Next, the traveling route plan generation circuit 12 sets the type of gate i in advance as a policy from each gate i of the toll gate based on the type of gate and passability information included in the information of the toll gate A set G (set of gate candidates) that matches the type of gate and can pass through is selected. Here, for example, when the own vehicle has a toll payment apparatus, a gate G having a function of an automatic toll gate and a set G of passable gates i are selected. In addition, when it is possible to acquire the open / close state of the gate and the type of the gate from a nearby communication facility (for example, a notice antenna installed on a road in front of a toll gate), it may be acquired from the communication facility instead of map information. .
In step S3, that is, based on the gate open / close state and the type of the gate, the gate candidates included in the set G are narrowed down.
 ステップS5:次に、走行経路計画生成回路12は、集合Gの要素数(ゲート数)が0か否か、つまり集合Gに少なくとも1つのゲートが含まれるか否かを判定し、要素数が0の場合は(S5:YES)、処理を終える。この場合、目標ゲートの選択に失敗したこととなる。要素数が1以上の場合は(S5:NO)、ステップS7に進む。 Step S5: Next, the traveling route plan generation circuit 12 determines whether the number of elements of the set G (the number of gates) is 0, that is, whether the set G includes at least one gate, and the number of elements is In the case of 0 (S5: YES), the process ends. In this case, selection of a target gate has failed. If the number of elements is one or more (S5: NO), the process proceeds to step S7.
 ステップS7:車体角度算出部121は、料金所手前の料金所広場の情報を基に、集合Gの各ゲートiについて、現在走行する車線Lの終点(料金所広場への接続点)とゲートiの間の車両進行方向の距離Xiと、車線Lの終点とゲートiの間の車両進行方向に垂直な方向の距離Yiを求める。
 ステップS9:次に、車体角度算出部121は、各ゲートiについて、値ti=Yi/Xiを求める。
Step S7: Based on the information on the toll plaza in front of the toll plaza, the vehicle body angle calculation unit 121 determines the end point (connection point to the toll plaza) and the gate i for each gate i of the set G. A distance Xi in the vehicle traveling direction between the above and the distance Yi in a direction perpendicular to the vehicle traveling direction between the end point of the lane L and the gate i is obtained.
Step S9: Next, the vehicle body angle calculation unit 121 obtains the value ti = Yi / Xi for each gate i.
 図7を参照し、具体的に説明する。
 図7において、料金所20のゲート22、23、24、25が集合Gの要素であり、自車両は、手前の料金所広場30に接続する道路40の車線43(L)を走行している。道路40での車両の進行方向(車線の進行方向)を符号45で示す。
This will be specifically described with reference to FIG.
7, the gates 22, 23, 24, 25 of the toll booth 20 are elements of the set G, and the vehicle is traveling on the lane 43 (L) of the road 40 connected to the toll plaza 30 in front. . The traveling direction of the vehicle on the road 40 (the traveling direction of the lane) is indicated by reference numeral 45.
 終点431は、車線43(L)の終点であり、ゲート位置221、231、241、251はそれぞれ、ゲート22、23、24、25の位置として定めたものである。終点、ゲート位置の設定方法は、実施例1と同様である。ゲート位置は、図4に示すように、直線区間35の距離だけ道路40側に移動してもよい。 The end point 431 is the end point of the lane 43 (L), and the gate positions 221, 231, 241, and 251 are determined as the positions of the gates 22, 23, 24, 25, respectively. The setting method of the end point and the gate position is the same as that of the first embodiment. The gate position may move toward the road 40 by the distance of the straight section 35 as shown in FIG.
 ステップS7では、終点431とゲート位置221との間の距離X1、Y1と、終点431とゲート位置231との間の距離X2、Y2と、終点431とゲート位置241との間の距離X3、Y3と、終点431とゲート位置251との間の距離X4、Y4とを求める。図7では、X1、X2、X3、X4は同一距離である。距離Y(Y1、Y2、Y3、Y4)は、終点431を距離の基準(0m)とし、終点において車線の進行方向に向かってゲート位置が右にある場合の距離Yを正値、左にある場合の距離Yを負値とする。図7の例では、各距離Yとも正値である。 In step S7, the distances X1 and Y1 between the end point 431 and the gate position 221, the distances X2 and Y2 between the end point 431 and the gate position 231, and the distances X3 and Y3 between the end point 431 and the gate position 241 And distances X 4 and Y 4 between the end point 431 and the gate position 251. In FIG. 7, X1, X2, X3 and X4 are the same distance. The distance Y (Y1, Y2, Y3, Y4) has the end point 431 as the reference (0 m) for the distance, and at the end point the distance Y when the gate position is on the right in the traveling direction of the lane is a positive value. The distance Y of the case is taken as a negative value. In the example of FIG. 7, each distance Y is also a positive value.
 ステップS9では、t1=Y1/X1、t2=Y2/X2、t3=Y3/X3、及びt4=Y4/X4を求める。ここで、車線43の延長線を基準(角度0度)とし、終点431とゲート位置221を結ぶ線31とでなす時計回り方向の角度をθ1とする。車線43の延長線を基準(角度0度)とし、終点431とゲート位置231を結ぶ線32とでなす時計回り方向の角度をθ2とする。車線43の延長線を基準(角度0度)とし、終点431とゲート位置241を結ぶ線33とでなす時計回り方向の角度をθ3とする。車線43の延長線を基準(角度0度)とし、終点431とゲート位置251を結ぶ線34とでなす時計回り方向の角度をθ4とする。図6の例では、各角度は正値である。ステップS9では、各角度θ1、θ2、θ3、θ4のぞれぞれの正接を求めていることになる。換言すれば、各角度θ1、θ2、θ3、θ4を間接的に求めていることになる。 In step S9, t1 = Y1 / X1, t2 = Y2 / X2, t3 = Y3 / X3, and t4 = Y4 / X4 are obtained. Here, with the extension of the lane 43 as a reference (angle 0 degree), the angle in the clockwise direction formed by the end point 431 and the line 31 connecting the gate position 221 is θ1. With the extension of the lane 43 as a reference (angle 0 degree), the angle in the clockwise direction formed by the end point 431 and the line 32 connecting the gate position 231 is θ2. With the extension of the lane 43 as a reference (angle 0 degree), the angle in the clockwise direction formed by the end point 431 and the line 33 connecting the gate position 241 is θ3. With the extension of the lane 43 as a reference (angle 0 degree), the angle in the clockwise direction formed by the end point 431 and the line 34 connecting the gate position 251 is θ4. In the example of FIG. 6, each angle is a positive value. In step S9, the tangent of each of the angles θ1, θ2, θ3 and θ4 is determined. In other words, the angles θ1, θ2, θ3 and θ4 are indirectly determined.
 また、各線31、32、33、34は、それぞれ車線43を走行後、料金所広場30を走行するときの自車両の進路であり、ステップS9では、料金所広場30を走行するときの各ゲート(ゲートにおける車両の進行方向)に対する自車両の車体の車体角度を求めていることになる。また、車体角度は、車線43に対する角度でもある。 Each of the lines 31, 32, 33, 34 is the route of the vehicle when traveling on the toll plaza 30 after traveling on the lane 43, and in step S9, each gate on traveling the toll plaza 30 The vehicle body angle of the vehicle body of the own vehicle with respect to (the traveling direction of the vehicle at the gate) is obtained. The vehicle body angle is also an angle with respect to the lane 43.
 図6に戻り、説明を続ける。
 ステップS11:次に、車体角度算出部121は、料金所通過後の料金所広場の情報を基に、集合Gの各ゲートiについて、料金所通過後に進入しようとする車線(車線Nという)の始点(料金所広場への接続点)とゲートiとの間の車両進行方向の距離Uiと、車線Nの始点とゲートiとの間の車両進行方向に垂直な方向の距離Viを求める。
 ステップS13:次に、車体角度算出部121は、集合Gの各ゲートiについて、値si=Vi/Uiを求める。
Returning to FIG. 6, the description will be continued.
Step S11: Next, based on the information on the toll plaza after passing the toll plaza, the vehicle body angle calculation unit 121 for each gate i of the set G tries to enter lanes after passing the toll plaza (referred to as lane N). A distance Ui in the vehicle traveling direction between the start point (a connection point to the toll plaza) and the gate i, and a distance Vi in a direction perpendicular to the vehicle traveling direction between the start point of the lane N and the gate i are determined.
Step S13: Next, the vehicle body angle calculation unit 121 obtains the value si = Vi / Ui for each gate i of the set G.
 図8を参照し、具体的に説明する。
 図8において、料金所20のゲート22、23、24、25が集合Gの要素であり、自車両は、料金所通過後の料金所広場50に接続する道路60の車線61、62の内、車線61(N)に進入しようとしている。つまり、自車両の目標経路601は、車線61に設定される。道路60での車両の進行方向を符号45で示す。
This will be specifically described with reference to FIG.
In FIG. 8, gates 22, 23, 24, 25 of toll booth 20 are elements of set G, and the vehicle is in lanes 61, 62 of road 60 connected to toll plaza 50 after passing the toll plaza, You are about to enter lane 61 (N). That is, the target route 601 of the vehicle is set to the lane 61. The traveling direction of the vehicle on the road 60 is indicated by reference numeral 45.
 始点611は、車線61(N)の始点であり、ゲート位置222、232、242、252はそれぞれ、集合Gのゲート22、23、24、25の位置として定めたものである。始点の設定方法は、車線の終点の設定方法と同様である。ゲート位置222、232、242、252は、例えば各ゲート22、23、24、25におけるアイランド26の料金所広場50側端の側方位置とすることができる。例えばゲート位置は、ゲートの中心線上にあるものとする。また、ゲート位置は、図4に示すような直線区間35が料金所広場50にある場合は、直線区間35の距離だけ道路60側に移動してもよい。 The start point 611 is the start point of the lane 61 (N), and the gate positions 222, 232, 242, 252 are respectively determined as the positions of the gates 22, 23, 24, 25 of the set G. The setting method of the start point is the same as the setting method of the lane end point. The gate positions 222, 232, 242, 252 may be, for example, the side positions of the toll plaza 50 side end of the island 26 in each of the gates 22, 23, 24, 25. For example, the gate position is on the center line of the gate. The gate position may be moved to the side of the road 60 by the distance of the straight section 35 when the straight section 35 as shown in FIG.
 ステップS11では、始点611とゲート位置222との間の距離U1、V1と、始点611とゲート位置232との間の距離U2、V2と、始点611とゲート位置242との間の距離U3、V3と、始点611とゲート位置252との間の距離U4、V4とを求める。図8では、U1、U2、U3、U4は同一距離である。距離V(V1、V2、V3、V4)は、それぞれゲート位置222,232、242、252を距離の基準(0m)とし、ゲート位置においてゲートにおける車両の進行方向に向かって始点611が右にある場合の距離Vを正値、左にある場合の距離Vを負値とする。図7の例では、V1、V2が負値、V3、V4が正値である。 In step S11, distances U1 and V1 between the start point 611 and the gate position 222, distances U2 and V2 between the start point 611 and the gate position 232, and distances U3 and V3 between the start point 611 and the gate position 242 And distances U 4 and V 4 between the starting point 611 and the gate position 252. In FIG. 8, U1, U2, U3, and U4 are the same distance. The distance V (V1, V2, V3, V4) uses the gate positions 222, 232, 242, 252 as the reference (0 m) for the distance, and at the gate position, the starting point 611 is on the right in the traveling direction of the vehicle at the gate The distance V in the case is a positive value, and the distance V in the case of a left is a negative value. In the example of FIG. 7, V1 and V2 are negative values, and V3 and V4 are positive values.
 ステップS13では、s1=V1/U1、s2=V2/U2、s3=V3/U3、及びs4=V4/U4を求める。ここで、ゲート位置222からゲートにおける車両の進行方向に延びる線を基準(角度0度)とし、始点611とゲート位置222を結ぶ線51とでなす時計回り方向の角度をθ11とする。ゲート位置232からゲートにおける車両の進行方向に延びる線を基準(角度0度)とし、始点611とゲート位置232を結ぶ線52とでなす時計回り方向の角度をθ12とする。ゲート位置242からゲートにおける車両の進行方向に延びる線を基準(角度0度)とし、始点611とゲート位置242を結ぶ線53とでなす角度をθ13とする。ゲート位置252からゲートにおける車両の進行方向に延びる線を基準(角度0度)とし、始点611とゲート位置252を結ぶ線54とでなす時計回り方向の角度をθ14とする。図8の例では、各角度θ11、θ12は負値であり、角度θ13、θ14は正値である。 In step S13, s1 = V1 / U1, s2 = V2 / U2, s3 = V3 / U3, and s4 = V4 / U4 are determined. Here, a line extending from the gate position 222 in the traveling direction of the vehicle at the gate is taken as a reference (0 degrees), and a clockwise angle formed by the starting point 611 and the line 51 connecting the gate position 222 is θ11. A line extending from the gate position 232 in the traveling direction of the vehicle at the gate is taken as a reference (0 degree), and a clockwise angle formed by the start point 611 and the line 52 connecting the gate position 232 is θ12. A line extending from the gate position 242 in the traveling direction of the vehicle at the gate is taken as a reference (0 degree), and an angle formed by the starting point 611 and the line 53 connecting the gate position 242 is θ13. A line extending from the gate position 252 in the traveling direction of the vehicle at the gate is taken as a reference (0 degree), and a clockwise angle formed by the starting point 611 and the line 54 connecting the gate position 252 is θ14. In the example of FIG. 8, the angles θ11 and θ12 are negative values, and the angles θ13 and θ14 are positive values.
 ステップS13では、各角度θ11、θ12、θ13、θ14のぞれぞれの正接を求めていることになる。換言すれば、各角度θ11、θ12、θ13、θ14を間接的に求めていることになる。 In step S13, tangents of the respective angles θ11, θ12, θ13, and θ14 are obtained. In other words, the angles θ11, θ12, θ13, and θ14 are indirectly determined.
 また、各線51、52、53、54は、それぞれ料金所20を退出してから車線61に進入するまでの自車両の進路であり、ステップS15では、料金所20を退出してから車線61に進入するまでの各ゲート(ゲートでの車両の進行方向)に対する自車両の車体角度を求めていることになる。また、車体角度は、車線61に対する角度でもある。また、この車体角度は、ゲートからの退出角ということもできる。退出角は、ゲート通過後に目的の走行経路への復帰のしやすさを表すものと言うことができる。 Each of the lines 51, 52, 53, 54 is the course of the vehicle from leaving the toll booth 20 to entering the lane 61, and in step S15, leaving the toll booth 20, the lane 61 The body angle of the host vehicle with respect to each gate (the traveling direction of the vehicle at the gate) until entering is obtained. The vehicle body angle is also an angle with respect to the lane 61. Moreover, this vehicle body angle can also be called the exit angle from the gate. The exit angle can be said to indicate the ease of return to the target travel route after passing the gate.
 図6に戻り、説明を続ける。
 ステップS15:次に、目標選択部122は、集合Gから、値tiの絶対値が閾値T未満(|ti|<T)、且つ、値siの絶対値が閾値T未満(|si|<T)である車線iの集合Hを選択する。閾値Tは、実施例1と同様の方法により定めることができる。なお、値tiの絶対値に対する閾値と値siの絶対値に対する閾値を相違させてもよい。
Returning to FIG. 6, the description will be continued.
Step S15: Next, the target selection unit 122 determines from the set G that the absolute value of the value ti is less than the threshold T (| ti | <T) and the absolute value of the value si is less than the threshold T (| si | <T). And select a set H of lanes i. The threshold T can be determined by the same method as in the first embodiment. The threshold for the absolute value of the value ti may be different from the threshold for the absolute value of the value si.
 ステップS17:目標選択部122は、集合Hの要素数(ゲート数)が0か否か、つまりHに少なくとも1つのゲートが含まれるか否かを判定し、要素数が0の場合は(S17:YES)、ステップS19に進み、要素数が1以上の場合は(S17:NO)、ステップS21に進む。 Step S17: The target selection unit 122 determines whether the number of elements of the set H (the number of gates) is 0, that is, whether H includes at least one gate, and if the number of elements is 0 (S17 : YES), proceed to step S19, and if the number of elements is 1 or more (S17: NO), proceed to step S21.
 ステップS19:目標選択部122は、集合Gから、tiの絶対値とsiの絶対値との差の絶対値(||ti|-|si||)が最小となるゲートiを目標ゲートとして選択し、処理を終える。 Step S19: The target selection unit 122 selects, from the set G, a gate i having the smallest absolute value (|| ti |-| si ||) of the difference between the absolute value of ti and the absolute value of si as a target gate. And finish the process.
 ステップS21:目標選択部122は、集合Hから、tiの絶対値とsiの絶対値との差の絶対値(||ti|-|si||)が最小となるゲートiを目標ゲートとして選択し、処理を終える。 Step S21: The target selection unit 122 selects, from the set H, the gate i with the smallest absolute value (|| ti |-| si ||) of the difference between the absolute value of ti and the absolute value of si as a target gate. And finish the process.
 ステップS19とステップS21では、選択対象の集合は違うが、共に||ti|-|si||が最小となるゲートを選択する。つまり、料金所に進入する前の車体角度と料金所から退出した後の車体角度の差が最小のゲートを目標ゲートとして選択する。よって、料金所の前後で車体角度が異なることによる運転のしにくさと不快感を最小限にすることができる。 In step S19 and step S21, although the set to be selected is different, a gate with the smallest || ti |-| si || is selected. That is, the gate with the smallest difference between the vehicle body angle before entering the toll booth and the vehicle body angle after leaving the toll booth is selected as the target gate. Therefore, it is possible to minimize the difficulty and discomfort of driving due to the difference of the vehicle body angle before and after the toll booth.
 走行経路計画生成部123は、選択した目標ゲートに進入するための走行経路計画を生成し、車両走行制御回路14に出力する。 The travel route plan generation unit 123 generates a travel route plan for entering the selected target gate, and outputs the generated travel route plan to the vehicle travel control circuit 14.
 車両走行制御回路14は、走行経路計画生成部123から入力された走行経路計画に基づき、アクチュエータ部9に車両制御信号を送信する。
 アクチュエータ部9は、車両制御信号に基づいて、アクセルペダル8A、ブレーキペダル8Bの操作量、及びステアリングホイール8Cの操舵角を変化させ、自車両を目標ゲートに進入させる。
The vehicle travel control circuit 14 transmits a vehicle control signal to the actuator unit 9 based on the travel route plan input from the travel route plan generation unit 123.
The actuator unit 9 changes the operation amount of the accelerator pedal 8A and the brake pedal 8B and the steering angle of the steering wheel 8C based on the vehicle control signal, and causes the host vehicle to approach the target gate.
 なお、走行経路計画を生成せず、目標ゲートをナビゲーションシステム6の画面に表示してもよい。又は、目標ゲートを音声で報知してもよい。 The target gate may be displayed on the screen of the navigation system 6 without generating a travel route plan. Alternatively, the target gate may be notified by voice.
 その場合は、車両走行制御回路14とアクチュエータ部9は自車両に設けなくてもよい。逆に、実施例1において車両走行制御回路14とアクチュエータ部9を設け、自動的に車線変更を行ってもよい。
 また、実施例2では、ステップS9の後、値tiの絶対値が最小となるゲートを目標ゲートとして選択してもよい。この場合、ステップS11以降の処理は不要である。
In that case, the vehicle travel control circuit 14 and the actuator unit 9 may not be provided in the host vehicle. Conversely, in the first embodiment, the vehicle travel control circuit 14 and the actuator unit 9 may be provided to automatically change lanes.
Further, in the second embodiment, after step S9, the gate with the smallest absolute value of the value ti may be selected as the target gate. In this case, the process after step S11 is unnecessary.
 このように、実施例2では、複数の車線(41~43)を含む道路(40)の終点に接続され、且つ複数の料金所ゲート(21~25)を含む料金所(20)の手前の設けられた料金所広場(30)を車両が走行し、いずれかの料金所ゲートに進入する前に、車両が進入すべきゲートを選択する。 Thus, in the second embodiment, it is connected to the end point of the road (40) including the plurality of lanes (41 to 43) and in front of the toll booth (20) including the plurality of toll gate gates (21 to 25). The vehicle travels on the provided toll plaza (30), and before entering any toll gate, the gate to which the vehicle should enter is selected.
 具体的には、自車両が現在走行する車線(43(L))と複数の料金所ゲート(22~25)について、車線の終点(431)と料金所ゲート(ゲート位置221~251)を結ぶ線(31~34)と車線の終点から車両の進行方向に延長した延長線とでなす角度である車体角度(|ti|(|θ1|~|θ4|))を求める(S9)。そして、車線(43(L))を走行する自車両が進入すべき料金所ゲートとして、車体角度が大きい料金所ゲートより車体角度が小さい料金所ゲートを選択する(S15)。 Specifically, the lane end point (431) and the toll gate gate (gate positions 221 to 251) are connected for the lane (43 (L)) on which the vehicle is currently traveling and the plurality of toll gate gates (22 to 25). A body angle (| ti | (| θ1 | to | θ4 |)) which is an angle formed by the line (31 to 34) and an extension extending in the traveling direction of the vehicle from the end point of the lane is obtained (S9). Then, as the tollgate gate to which the host vehicle traveling in the lane (43 (L)) should enter, the tollgate gate having a smaller body angle than the toll gate with a large body angle is selected (S15).
 これにより、車線から料金所広場(30)に進入する時や、料金所広場(30)から料金所ゲートに進入する際に大きなステアリング操作が不要となる。すなわち、操舵角が小さくなる。また、他車両の走行軌道との交錯点が少なく、自動運転車両における不都合を少なくでき、よって、料金所広場(30)における自車両のスムーズな走行を可能にできる。また、現在走行する車線を維持しつつ、適切なゲートに向かってスムーズに走行できる。 This eliminates the need for a large steering operation when entering from the lane to the toll plaza (30) or entering from the toll plaza (30) to the toll gate. That is, the steering angle is reduced. In addition, the crossing point with the traveling track of the other vehicle is small, and the inconvenience in the autonomous driving vehicle can be reduced, so that the own vehicle can smoothly travel in the toll plaza (30). In addition, while maintaining the lane currently traveled, it can travel smoothly toward an appropriate gate.
 また、実施例2では、さらに、車両が料金所ゲートを通過後に走行する車線である第2の車線(61(N))と、複数の料金所ゲート(22~25)について、第2の車線の始点(611)と料金所ゲート(ゲート位置222~252)を結ぶ線(51~54)と料金所ゲートから料金所ゲートにおける車両の進行方向に延びる線とでなす角度である第2の車体角度(si(θ11~θ14))を求める(S13)。そして、車両が進入すべき料金所ゲートとして、車体角度の絶対値と第2の車体角度の絶対値との差の絶対値(||ti|-|si||)が大きい料金所ゲートより差の絶対値が小さい料金所ゲートを選択する(S19,S21)。 Furthermore, in the second embodiment, the second lane (61 (N)), which is the lane in which the vehicle travels after passing the toll gate, and the second lane for the plurality of toll gate (22 to 25). The second body, which is the angle between the starting point (611) and the line (51-54) connecting the tollgate gates (gate positions 222-252) and the line from the tollgate gate to the direction of travel of the vehicle at the tollgate gate. The angle (si (θ11 to θ14)) is obtained (S13). Then, as a tollgate gate to which the vehicle should enter, the difference is greater than the tollgate gate where the absolute value (|| ti |-| si ||) of the difference between the absolute value of the vehicle body angle and the absolute value of the second vehicle body angle is large. The toll gate whose absolute value is small is selected (S19, S21).
 これにより、料金所ゲートの前後での操舵角の変化を小さくでき、料金所広場(30)だけでなく料金所広場(50)における自車両のスムーズな走行を可能にできる。つまり、料金所ゲートから料金所広場(50)に進入する時や、料金所広場(50)を退出する際に大きなステアリング操作が必要ない(操舵角が小さい)。また、他車両の走行軌道との交錯点が少なく、自動運転車両における不都合が少なくでき、よって、料金所広場(50)における自車両のスムーズな走行を可能にできる。 Thereby, the change of the steering angle before and behind a toll gate gate can be made small, and the smooth driving | running | working of the own vehicle in not only a toll gate open space (30) but a toll gate open space (50) can be enabled. In other words, a large steering operation is not required (the steering angle is small) when entering the toll booth square (50) from the toll booth gate or leaving the toll booth square (50). In addition, the crossing point with the traveling track of the other vehicle is small, and the inconvenience in the autonomous driving vehicle can be reduced, so that the own vehicle can smoothly travel in the toll plaza (50).
 なお、本実施の形態では、料金所広場を走行する対象車両に車両走行判断装置を搭載した。しかし、対象車両に通信可能なサーバ装置又は対象車両でない他車両に車両走行判断装置を搭載し、必要な情報と指示はサーバ装置又は他車両と対象車両の間の通信により送受信することで、同様の車両走行判断方法を遠隔的に行ってもよい。サーバ装置と対象車両の間の通信は無線通信又は路車間通信により実行可能である。他車両と対象車両の間の通信は所謂車車間通信により実行可能である。 In the present embodiment, the vehicle travel determination device is mounted on the target vehicle traveling on the toll plaza. However, the vehicle travel determination device is mounted on a server device that can communicate with the target vehicle or other vehicle that is not the target vehicle, and necessary information and instructions are transmitted and received by communication between the server device or the other vehicle and the target vehicle The vehicle travel judgment method of may be performed remotely. Communication between the server device and the target vehicle can be performed by wireless communication or road-vehicle communication. Communication between the other vehicle and the target vehicle can be performed by so-called inter-vehicle communication.
 以上、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 While the embodiments of the present invention have been described above, it should not be understood that the descriptions and the drawings, which form a part of this disclosure, limit the present invention. Various alternative embodiments, examples and operation techniques will be apparent to those skilled in the art from this disclosure.
1 ECU(電子制御ユニット)
2 外部センサ部
3 内部センサ部
4 GPS(Global Positioning System)電波受信部
5 地図データベース
6 ナビゲーションシステム
7 HMI(human machine interface)部
9 アクチュエータ部
11 自車両位置推定回路
12 走行経路計画生成回路
13 表示回路
14 車両走行制御回路
121 車体角度算出部(車体角度算出回路)
122 目標選択部(目標選択回路)
123 走行経路計画生成部
20 料金所
21~25 ゲート
30 料金所広場
50 第2の料金所広場
41~43、61、62 車線
45 車両の進行方向(車線の進行方向)
221、231、241、251、222、232、242、252 ゲート位置
411、421、431 車線の終点
611 車線の始点
X1、X2、X3、X4、Y1、Y2、Y3、Y4、U1、U2、U3、U4、V1、V2、V3、V4 距離
1 ECU (Electronic Control Unit)
Reference Signs List 2 external sensor unit 3 internal sensor unit 4 GPS (Global Positioning System) radio wave receiving unit 5 map database 6 navigation system 7 HMI (human machine interface) unit 9 actuator unit 11 vehicle position estimation circuit 12 travel route plan generation circuit 13 display circuit 14 Vehicle Driving Control Circuit 121 Vehicle Body Angle Calculator (Car Body Angle Calculator)
122 Target Selection Unit (Target Selection Circuit)
123 travel route plan generation unit 20 toll booth 21 to 25 gate 30 toll booth 50 second toll plaza 41 to 43, 61, 62 lane 45 traveling direction of vehicle (traveling direction of lane)
221, 231, 241, 251, 222, 232, 242, 252 Gate position 411, 421, 431 End point of lane 611 Start point of lane X1, X2, X3, X4, Y1, Y2, Y3, Y4, U1, U2, U3 , U4, V1, V2, V3, V4 distance

Claims (5)

  1.  複数の車線を含む道路の終点に接続され、且つ複数の料金所ゲートを含む料金所の手前の設けられた料金所広場を車両が走行し、いずれかの前記料金所ゲートに進入する前に、前記車両が走行すべき車線、又は前記車両が進入すべき料金所ゲートを選択する車両走行判断装置の車両走行判断方法であって、
     前記各車線、又は、前記各料金所ゲートについて、前記車線の終点と前記料金所ゲートを結ぶ線と前記車線の終点から前記車線の進行方向に延長した延長線とでなす角度である車体角度を求め、
     前記車両が走行すべき車線として、前記車体角度が大きい車線より前記車体角度が小さい車線を選択する、又は、前記車両が進入すべき料金所ゲートとして、前記車体角度が大きい料金所ゲートより前記車体角度が小さい料金所ゲートを選択することを特徴とする車両走行判断方法。
    Before a vehicle travels on a toll plaza provided at the end of a road including a plurality of lanes and provided in front of a toll booth including a plurality of toll plaza gates, before entering any of the toll plaza gates, A vehicle travel judgment method of a vehicle travel judgment device for selecting a lane on which the vehicle should travel or a toll gate to which the vehicle should approach,
    For each lane or each toll gate gate, a vehicle body angle which is an angle formed by a line connecting the end point of the lane and the toll gate gate and an extension extending in the traveling direction of the lane from the end point of the lane Ask for
    The lane where the vehicle body angle is smaller than the lane where the vehicle body angle is large is selected as the lane on which the vehicle should travel, or the vehicle body from the toll gate gate where the vehicle body angle is large as the tollgate gate where the vehicle should enter A vehicle travel judging method characterized by selecting a toll gate with a small angle.
  2.  前記複数の料金所ゲートの中から1つの料金所ゲートを設定し、
     複数の前記車線と前記1つの料金所ゲートについて前記車体角度を求め、
     前記1つの料金所ゲートに進入する場合に走行すべき車線として、前記車体角度が大きい車線より前記車体角度が小さい車線を選択することを特徴とする請求項1記載の車両走行判断方法。
    Set up one toll gate from among the toll gate gates,
    Determining the vehicle body angle for the plurality of lanes and the one toll gate gate;
    The method according to claim 1, wherein the lane to be traveled when entering the one toll gate is selected from the lane having a smaller vehicle body angle than the lane having a large vehicle body angle.
  3.  前記車両が現在走行する前記車線と複数の前記料金所ゲートについて前記車体角度を求め、
     前記車両が進入すべき料金所ゲートとして、前記車体角度が大きい料金所ゲートより前記車体角度が小さい料金所ゲートを選択することを特徴とする請求項1記載の車両走行判断方法。
    Determining the body angle for the lane where the vehicle is currently traveling and the plurality of toll gate gates;
    The vehicle travel judging method according to claim 1, wherein the tollgate gate having the smaller vehicle body angle is selected as the tollgate gate to which the vehicle should enter than the tollgate gate having the large vehicle body angle.
  4.  1つの前記車線と複数の前記料金所ゲートについて前記車体角度を求め、
     前記車両が料金所ゲートを通過後に走行する車線である第2の車線と、複数の前記料金所ゲートについて、前記第2の車線の始点と前記料金所ゲートを結ぶ線と前記料金所ゲートから前記料金所ゲートでの車両の進行方向に延びる線とでなす角度である第2の車体角度を求め、
     前記車両が進入すべき料金所ゲートとして、前記車体角度の絶対値と前記第2の車体角度の絶対値との差の絶対値が大きい料金所ゲートより前記差の絶対値が小さい料金所ゲートを選択することを特徴とする請求項1記載の車両走行判断方法。
    Determine the body angle for one lane and a plurality of toll gate gates;
    A second lane, which is a lane along which the vehicle travels after passing the toll gate, and a plurality of toll gate gates, from the line connecting the start point of the second lane to the toll gate and the toll gate Determine a second vehicle body angle which is an angle formed by a line extending in the traveling direction of the vehicle at the toll gate gate,
    As the tollgate gate to which the vehicle should enter, the tollgate gate whose absolute value of the difference is smaller than the tollgate gate of which the absolute value of the difference between the absolute value of the body angle and the absolute value of the second body angle is large. The method according to claim 1, wherein the method is selected.
  5.  複数の車線を含む道路の終点に接続され、且つ複数の料金所ゲートを含む料金所の手前の設けられた料金所広場を車両が走行し、いずれかの前記料金所ゲートに進入する前に、前記車両が走行すべき車線、又は前記車両が進入すべき料金所ゲートを選択する車両走行判断装置であって、
     前記各車線、又は、前記各料金所ゲートについて、前記車線の終点と前記料金所ゲートを結ぶ線と前記車線の終点から前記車線の進行方向に延長した延長線とでなす角度である車体角度を求める車体角度算出回路と、
     前記車両が走行すべき車線として、前記車体角度が大きい車線より前記車体角度が小さい車線を選択する、又は、前記車両が進入すべき料金所ゲートとして、前記車体角度が大きい料金所ゲートより前記車体角度が小さい料金所ゲートを選択する目標選択回路と
     を備えることを特徴とする車両走行判断装置。
    Before a vehicle travels on a toll plaza provided at the end of a road including a plurality of lanes and provided in front of a toll booth including a plurality of toll plaza gates, before entering any of the toll plaza gates, A vehicle travel judging device for selecting a lane on which the vehicle should travel or a toll gate to which the vehicle should approach,
    For each lane or each toll gate gate, a vehicle body angle which is an angle formed by a line connecting the end point of the lane and the toll gate gate and an extension extending in the traveling direction of the lane from the end point of the lane A required vehicle body angle calculation circuit,
    The lane where the vehicle body angle is smaller than the lane where the vehicle body angle is large is selected as the lane on which the vehicle should travel, or the vehicle body from the toll gate gate where the vehicle body angle is large as the tollgate gate where the vehicle should enter And a target selection circuit for selecting a toll gate with a small angle.
PCT/JP2017/031888 2017-09-05 2017-09-05 Vehicle travel determination method and vehicle travel determination device WO2019049189A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031888 WO2019049189A1 (en) 2017-09-05 2017-09-05 Vehicle travel determination method and vehicle travel determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031888 WO2019049189A1 (en) 2017-09-05 2017-09-05 Vehicle travel determination method and vehicle travel determination device

Publications (1)

Publication Number Publication Date
WO2019049189A1 true WO2019049189A1 (en) 2019-03-14

Family

ID=65633660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031888 WO2019049189A1 (en) 2017-09-05 2017-09-05 Vehicle travel determination method and vehicle travel determination device

Country Status (1)

Country Link
WO (1) WO2019049189A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021365A (en) * 1999-07-08 2001-01-26 Mitsubishi Motors Corp Automobile navigation system
JP2008232821A (en) * 2007-03-20 2008-10-02 Denso Corp On-vehicle navigation system
JP2014119372A (en) * 2012-12-18 2014-06-30 Alpine Electronics Inc Navigation device and method for guiding travel route at tollhouse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021365A (en) * 1999-07-08 2001-01-26 Mitsubishi Motors Corp Automobile navigation system
JP2008232821A (en) * 2007-03-20 2008-10-02 Denso Corp On-vehicle navigation system
JP2014119372A (en) * 2012-12-18 2014-06-30 Alpine Electronics Inc Navigation device and method for guiding travel route at tollhouse

Similar Documents

Publication Publication Date Title
US10858012B2 (en) Autonomous driving assistance device and computer program
US10703362B2 (en) Autonomous driving autonomous system, automated driving assistance method, and computer program
US20200361462A1 (en) Vehicle control device, terminal device, parking lot management device, vehicle control method, and storage medium
US10399571B2 (en) Autonomous driving assistance system, autonomous driving assistance method, and computer program
CN111149140B (en) Driving assistance method and driving assistance device
EP3664062B1 (en) Travel assistance method and travel assistance device
JP4944551B2 (en) Travel control device, travel control method, and travel control program
US20190315350A1 (en) Vehicle control device
JP2018030495A (en) Vehicle control apparatus
JP6954468B2 (en) Driving support method and driving support device
JP7186241B2 (en) Vehicle driving support method, vehicle driving support device, and automatic driving system
JP5382356B2 (en) Driving assistance system
JP2017206182A (en) Automatic drive support device and computer program
WO2019138485A1 (en) Collision possibility determination device, collision possibility determination method, and computer program
JP7149790B2 (en) Parking assistance method and parking assistance device
JPWO2019021437A1 (en) Driving support method and driving support device
EP3912877B1 (en) Driving assistance method and driving assistance device
WO2020058741A1 (en) Automatic driving control method and automatic driving control system
JP4915501B2 (en) Vehicle support system, in-vehicle device, and roadside machine
US11370453B2 (en) Driving assistance method and driving assistance device
WO2019049189A1 (en) Vehicle travel determination method and vehicle travel determination device
EP3985641B1 (en) Travel assistance method and travel assistance device
JP2020021295A (en) Driving assistance method and driving assistance device
JP2023075667A (en) Operation support method and operation support apparatus
KR20230124815A (en) Apparatus for controlling autonomous, system having the same, and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP