WO2019049116A2 - Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters - Google Patents

Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters Download PDF

Info

Publication number
WO2019049116A2
WO2019049116A2 PCT/IB2018/058718 IB2018058718W WO2019049116A2 WO 2019049116 A2 WO2019049116 A2 WO 2019049116A2 IB 2018058718 W IB2018058718 W IB 2018058718W WO 2019049116 A2 WO2019049116 A2 WO 2019049116A2
Authority
WO
WIPO (PCT)
Prior art keywords
data
signals
information
health
led
Prior art date
Application number
PCT/IB2018/058718
Other languages
French (fr)
Other versions
WO2019049116A3 (en
Inventor
Muralidharan GOPALAKRISHNAN
Original Assignee
Gopalakrishnan Muralidharan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gopalakrishnan Muralidharan filed Critical Gopalakrishnan Muralidharan
Priority to US16/645,811 priority Critical patent/US11763665B2/en
Priority to CA3075474A priority patent/CA3075474C/en
Publication of WO2019049116A2 publication Critical patent/WO2019049116A2/en
Publication of WO2019049116A3 publication Critical patent/WO2019049116A3/en
Priority to US17/966,785 priority patent/US20230078549A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • G01J2003/104Monochromatic plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3181Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature

Definitions

  • the present invention relates to a telemetry multi-functional medical instrumentation, real-time system and software device for precisely monitoring vital bio-signals.
  • the vital bio -signals include cardiac rate, pulse rate variability, blood volume fluctuations, continuous blood sugar levels, continuous blood pressure levels, respiratory rate, neural activity, stress levels, oxygen saturation, body temperature, sleep patterns, etc. It also illustrates an integrated automated life-support system which forecasts the risk of congestive heart failure (CHF), hypertension, hypothermia, hypoglycemia, hyperglycemia, hyperthermia, sleep apnea (OSA), CO poising, nervous breakdown and other chronic medical conditions. It describes technologies that can work efficiently even in ambulatory and motion artefact prone situations.
  • CHF congestive heart failure
  • OSA sleep apnea
  • the processing system and hardware architecture of the device can be broadly classified into clinical system, live clinical diagnostic instrumentation, mobile medical device and telemetry wellness management technology.
  • the overall disclosure presents an invention related to an advanced integrated solution of telemetry multi-functional medical device and general wellness instrument, more specifically a technology involving non-invasive bio-sensing technology.
  • the object of the invention is to present a precise state-of-art multifunctional telemetry medical device with an integrated well-being management solution for recording and monitoring multitude of vital bio-signals.
  • the device can also be utilized to monitor realtime physiological parameters and other important clinical information even in a portable or remote setting.
  • the invention addresses wireless mobile apparatus, hardware configurations, real-time system and embodiment forms for telemetry clinical monitoring and daily health management.
  • the goal of invention is to present a compact portable solution for remote and live clinical monitoring, and for well-being management.
  • a low-powered and compact hardware architecture of the telemetry apparatus is provided.
  • the hardware architecture enables the measurement of clinical signals and general wellness parameters with more precision and efficiency.
  • the hardware comprises of electrical spectrometer and optical spectrometer.
  • the optical spectrometer contains signal probe set of Green LED, Red LED, Infrared(IR) LED and Near-Infrared (Near-IR), which are operated by a single gain programmable LED frontend.
  • the intensity and trigger of the input signals are adjusted through the circuit line of LED frontend and central microprocessor.
  • a multiple pole switch set (or) a set of switches enables the operation of the multiple LED signal probes by a single frontend, which makes it low powered and more compact.
  • the LED frontend contains an op-amp based bio-safety circuit that ensures the optical signal probes emit low powered optical signal.
  • the low powered optical response is amplified and focused by an optical amplifier on the photodetector set.
  • the photodetector set records the output optical response and the response is processed by a circuit line of stage 1 amplifier, buffer, power notch filter, stage 2 amplifier and ambient noise cancellation IC.
  • the circuit line of the photodetector amplifies, filters and refines the output signal, and sends the processed output signal to the microprocessor.
  • the microprocessor is attached to a non-contact MEMs/NEMs temperature biosensor, which logs the body temperature response and thermal feedback.
  • a 9/6 axis MEMs/NEMs accelerometer of the hardware is utilized as a real-time feedback to remove motion noise from bio-signal response.
  • a set of wireless antennae of WLAN, BLE, GSM and GPS are either externally attached to the microprocessor or integrated inside the microprocessor.
  • the set of wireless antennae communicates the data between the telemetry apparatus, and the set of external storage and computing devices like accessorial mobile devices, server, etc.
  • the set of wireless antennae along with the accelerometer is used for tracking the realtime location and movement signals like phase, speed, steps taken, etc.
  • the wireless microprocessor with inbuilt memory, is used for communicating commands and feedbacks with the internal electronic components of LED frontend, photodetector frontend, Impedance analyser IC, Accelerometer, temperature biosensors, other sensors, wireless antennas, USB module and other electronics modules.
  • the function of microprocessor also includes computing and storing the required information.
  • a touch display is attached to the hardware for viewing and accessing the real-time medical information, health data and on- device applications. The touch display is also used to operate the instrumentation and embodiment forms of the telemetry apparatus.
  • the hardware of the telemetry apparatus is powered by a power supply unit, which comprises of a power management IC, supercapacitor-battery set, supercapacitor- renewable energy harvester, USB module and negative voltage converter.
  • the power management IC of power supply unit attached to the hardware and microprocessor, regulates the current flow and power supply.
  • the USB module and supercapacitor-battery are utilized for powering the electronic circuit.
  • the USB module is also used for communicating the data with the external devices and charging the battery of the internal circuit.
  • a negative voltage converter attached to the power management unit generates the negative voltage reference.
  • the power supply unit includes an alternative and supplementary power supply unit containing renewable energy harvester and supercapacitor.
  • the hardware of the telemetry device is internally or externally attached to an additional user interaction system of mic, video camera and speaker.
  • the set of user interaction hardware components is utilized by user for interacting with the professional medical and health practitioners for clinical and health analysis. The professionals can send and receive the information, as well supervise the user through the user interaction system.
  • the user interaction unit is also used as the means to perceive the recorded and computed information, and to operate the telemetry device and its in-built applications.
  • the second aspect of the invention explains an electrical spectrometer apparatus of the telemetry hardware, which is utilized as the means for measuring electrical and electrodermal bio-signals.
  • a set of four electrodes of the electrical spectrometer are placed at equidistant positions in a straight line.
  • An input electrical sensor injects the low power signal, and an electrical sensor drains the signal through the ground.
  • a biosafety circuit containing operational amplifier with a feedback impedance having lesser value compared to the input impedance, is attached to the input electrical sensor. The biosafety circuit improves operational safety of the electrical spectrometer apparatus.
  • a set of two response electrical sensors are placed between the signal input electrical sensor and drain electrode.
  • the signal between response electrical sensors are processed, amplified and filtered through a response circuit line of Instrumental amplifier, Gain amplifier circuit, power notch filter, and V-I converter IC.
  • the processed output response passes to the Impedance Analyzer chip.
  • the Impedance Analyzer chip assess and resolves the output electrical response, and communicates the analyzed results to the microprocessor.
  • a reflective optical spectrometer technology with adjacent LED-photodiode arrangement is exhibited in the third aspect of the invention.
  • the signal probes of Near-Infrared LED, Infrared LED, Red LED and Green LED are embedded between their corresponding wavelength response photodetectors and are aligned in blood flow direction.
  • An optical lens or a micro-prism is placed on the Near-IR LED probe to tune the Near-Infrared signal.
  • the reflected responses are recorded by the set of corresponding adjacent photodetector probes, which are assembled at a noise-free recording distance.
  • This adjacent configuration of LED-photodetectors enables simultaneous operation of different signals probes with more accuracy and speed.
  • a non- contact MEMs/NEMs temperature biosensor is positioned at the edge of the sensor board with a minimum distance from heat dissipating surface, that is utilized for record the error- free body temperature and thermal noise feedback.
  • a disposable foam/sponge is placed on the contact surface surrounding the sensors, signal probe and receiver area for reducing the motion errors and increasing the reusability.
  • a compact and efficient spectrometer apparatus packaging method is proposed in the fourth aspect of the invention disclosure.
  • the packaging design of the spectrometer comprises biosensors of electrical sensors, optical signal and detector probes, and non- contact MEMs/NEMs temperature sensor placed on the top surface (or) contact surface.
  • the 9/6-axis accelerometer is arranged in a fixed reference direction to the biosensor direction, which is utilized as an efficient assembly technique to record the feedback signals and the movement signals.
  • the Analog and Digital frontend plane is placed in a successive vertical plane to the biosensor plane.
  • the third sequential plane is an electronic plane containing microprocessor, power supply unit, computing unit, wireless antennas and other ICs embedded plane.
  • the last layer accommodates the set of battery, energy generation unit and other power unit components such that it does not obstruct the wireless antennas, which is used to reduce noise interruption.
  • the aforementioned packaging technology and sequential packing method is utilized to reduce tracing efforts, curtail electrical noise and increase packaging efficiency.
  • the apparatus packaging around the electronics is perforated with ventilation pores for regulating device heating.
  • a disposable foam/sponge base is placed on the contact surface without obstructing the biosensors, which is used for reducing the motion errors and increasing the multi-use utility.
  • a ring form for remote and telemetry monitoring is provided.
  • the LED signal probes of Near-Infrared LED, Infrared LED, Red LED and Green LED of the device are placed in an inverted transmission configuration, where LED probes faces the underside of the contact surface.
  • the photodetector set of visible/IR and Near-IR photodetectors are aligned with the corresponding signal probes and are placed on the top response receiving surface.
  • the inverted configuration of LED signal probes and photodetector set minimizes the background optical noise in the response recording.
  • An optical lens is placed before the photodetector set for efficiently capturing and focusing low powered optical response on photodetector set.
  • the NEMs/MEMs non-contact temperature biosensor is assembled at edge of the ring frame and away from the heat dissipating surface, which is utilized to measure body temperature values and thermal feedback.
  • a set of four electrical biosensors are assembled in a straight line, on the perpendicular contact surface to the optical probes, for extracting electrical and electrodermal bio-signals.
  • a 9/6-axis NEMs/MEMs accelerometer is positioned in a specific direction with reference to the optical and electrical sensing probes, which is used as a sensor assembly method to record the movement feedback more accurately.
  • the device is fabricated in a spiral ring structure with a heating dissipating and expandable casing material.
  • the main ring frame contains sensors, wireless antennae, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other electronic components.
  • a clipper-hinge element protrudes from the main ring frame to form a spiral ring structure, which holds the instrument securely on the sensing spot.
  • the expandable casing with adjustable clipper- hinge element is utilized as the mechanical method for fastening the instrument in a size- adaptable manner. A reasonable number of pores are vented on the device frame to regulate electronics heating.
  • a disposable foam base is placed on the contact surface surrounding the biosensors, which is utilized to enhance the mechanical gripping, clinical hygiene and reusability efficiency.
  • the ring apparatus has an open ring structure for comfortably holding the device on the sensing spot in a size adjustable manner.
  • the ring comprises of sensing components of optical apparatus, electrical spectrometer apparatus and other biosensor components, which are placed at an optical sensing spot.
  • a vibrator is implanted on the contact of the ring to guide the user during mental stress, and to prompt the scheduled alarms calls.
  • the device has an in-built persona-oriented stress management application, which automatically activates and guides the user during the instances of stress or anxiety. Once state of stress or anxiety is recognized, the vibrator module on the contact surface oscillates in a definite remedial pattern according to the real- time physiological condition of the user.
  • the vibrator oscillates with 7.5%— 25% higher ON time to indicate breath-out demonstration and 7.5%— 25% lower OFF time to indicate breath-in demonstration.
  • the ring apparatus has a button on the outer top surface and a button on the lower bottom edge surface.
  • the button on lower surface is used to operate the functional modes of meeting mode, work mode, fitness mode, sleep mode and others.
  • the button on the top is utilized for operating the telephonic calls, wireless synchronization facilities and other functionalities.
  • a gesture sensor is embedded on the user facing front surface, which is used as an interactive gestural means for accessing and navigating through the presentations and the applications. Additionally, the button inputs are used to access presentations and applications.
  • the seventh aspect of the invention puts forward a multifunctional medical instrument for limb attachment or forehead telemetry.
  • the electronics components and sensors of the hardware are packaged in a heat regulating case, according to the fourth aspect.
  • the biosensors are arranged on the contact surface of the case of the telemetry apparatus.
  • a soft stretchable cloth attached to the main packaging case contains adhesive surface and stickable surface end tail pads. The adhesion action between the adhesive pad and stickable pad, and the stretchable cloth belt are utilized to fasten the apparatus steadily on the sensing spot.
  • the foam base situated on the contact surface and surrounding the biosensors, is utilized as a mechanical means to reduce movement noise in the bio-signal recording.
  • the other utility of the disposable foam includes improvement of the clinical hygiene and reusability efficiency.
  • the eighth aspect of the invention illustrates an auxiliary wellness management and clinical monitoring device, that can be attached to an exercising machine.
  • the essential sensors and electronics components of the apparatus are packaged in a heat regulating case, as per the fourth aspect.
  • the biosensors are assembled on the contact surface of the case of the telemetry apparatus.
  • the heat regulating case is attached to an expandable machine gripping holder, and this expandable holder is used to attach the device to wellness instrument (like exercise cycle, treadmill, bike etc).
  • the expandable holder grips the exercise machine and the keep the apparatus steady on the sensing spot.
  • a foam base on the contact surface around the biosensors is utilized to reduce movement noise in the bio- signal recording.
  • a bracelet or smart band embodiment for telemetry and general wellness management is presented in the ninth aspect of the invention.
  • the optical apparatus, electrical spectrometer and non-contact temperature sensor are placed on the contact surface of the device.
  • the casing of the device contains the accelerometer, sensors, wireless antennas, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other necessary electronic components.
  • the device has an integrated low-pressure mini-cuff, which automatically inflates to the detect the resonant compression point for blood pressure calibration.
  • a mini-touch display is placed on the top surface of the apparatus, which is used for operating the apparatus, accessing in-built application, and viewing the essential information (such as medical information, health data, bio-signals, general wellness data, etc).
  • a set of Red and Green indicator LEDs are embedded on the top surface near the display.
  • the indicator LEDs automatically blinks to guide the user during the instances of psychological stress or anxiety.
  • the red indicator light flashes at the detected neural activity
  • the green indicator light flashes at a definite assisting pattern.
  • the green indicator light blinks with a 7.5% - 25% higher ON time to indicate breath-out demonstration, and 7.5% - 25% lower OFF time to indicate breath-in demonstration.
  • a mode indicator light denotes different operating modes and other functional status of the apparatus.
  • a trigger button placed on the top surface is used for operating the device, accessing in-built application and utilizing other functionalities.
  • the device has a wireless synchronization button for synchronizing the data and device with accessorial devices.
  • a live multi-functional telemetry instrumentation is elucidated.
  • the live wireless clinical monitor comprises of a cuff packaged with biosensors and a base station packaged with other essential electronic components.
  • the biosensors of electrical spectrometer, optical spectrometer, accelerometer and non-contact MEMs/NEMs temperature sensor are arranged and packaged inside an inflatable mini-cuff
  • the cuff automatically inflates to detect the resonant point for blood pressure calibration.
  • the electrical cord of the instrument is used as the wired method to the attach the base station and the cuff.
  • a slate sized touch display is assembled on the wireless base station for accessing and viewing live medical signals, patient history, patient's physical activities, other clinical information and health data.
  • the touch screen is as well utilized to operate the device and access the in-built application.
  • a wireless synchronization button and a power button is embedded on the wireless base station.
  • the wireless synchronization button is used for synchronizing the clinical recording, patient history, medical information and other important information between the telemetry apparatus and computer server/accessorial mobile apparatus.
  • the power button on the base station is utilized as the means to reset the medical analysis, power on/off the device and access other in-built functionalities.
  • a smart wearable instrument for medical monitoring and daily wellness management comprises of a round case or rounded rectangular case, that holds the electronic components and sensors of the telemetry device.
  • the biosensors, aligned in the blood flow direction, are placed on the contact surface, and a mini touch display is embedded on the top surface.
  • the device is operated through the mini-touch display.
  • the clinical information, health data, psychological stress, sleep data, daily diet pattern, fluid intake information, amount of expended energy, active step/stride taken, and other lifestyle management data are displayed on the mini touchscreen.
  • the mini display is also used to view and access realtime medical diagnostic signals, recorded information, therapy techniques, automated cardiac activity guide, wake-up alarm, in-built applications and other important information.
  • Push buttons and potentiometer integrated crown are embedded on the parallel to side surface and perpendicular to the electronic board.
  • the push buttons and crown are utilized to access different device applications, to calibrate the apparatus and to switch between the different functional modes.
  • the crown integrated with potentiometer is used as the electronic embedded method to navigate through the application in row and columns, and to operate other apparatus functionalities.
  • the rounded corners or round contact surface is used to evade the cuts, that may otherwise occur due to sharp edges.
  • the home screen of the smart wearable displays daily health management information and a motivational quote.
  • the background motivational quote application is intended to psychologically improve the spirit of the user.
  • the smart wearable apparatus comprises of applications for real-time clinical monitoring, cardiac training, tracking Emotional Index, persona oriented phycological stress management, sleep management and other lifestyle/wellness management information.
  • the cardiac training application automatically tracks training intensity, rest period, training period, cardiac rate, training phase and other important health data.
  • the automated cardiac application also has essential information to guide the user with health improvement and recovery.
  • the push buttons are utilized to trigger begin, pause, un-pause and reset in the cardiac activity training application.
  • the touch display, push buttons and the crown are used to access other functional command in the cardiac activity training application.
  • the real-time stress information is displayed in the emotional index (EI) meter and in a persona-oriented stress management application.
  • the psychological stress management application displays EI meter, stress threshold information, stress management information and work schedule management features with priority stickies.
  • the EI meter displays persona-oriented stress information, which has been extracted from the previously marked stress data points.
  • the touch display and push buttons are used to mark unwanted stress levels.
  • the sleep application automatically tracks sleep and displays sleep period, sleep health, motivational wake-up quote and other sleep related information.
  • the sleep application also includes a user configured wake-up alarm.
  • the medical application shows real-time information and recorded data on pulse rate, oxygen saturation, respiratory rate, body temperature, average pulse rate variability, neural activity balance, blood pressure data and blood glucose levels.
  • a parallel computational network is provided.
  • the parallel computational network enables the computation with much higher speed and efficiency, while keeping the complexity low.
  • the network of parallel computation network comprises of internal microprocessor, external server computers, accessorial mobiles devices, external computers and other connected local devices.
  • the external servers are used for executing computational process, and as well as for remotely storing the information.
  • the accessorial mobile devices and other synchronized devices are also used to compute and store the information.
  • the network of parallel computing devices are accessed through wireless methods of 'WLAN, BLE, GSM' and through other possible modes of communication. Whenever necessary, stored information and computed results are communicated between the telemetry apparatus and network of devices.
  • the thirteenth aspect of the invention presents a real-time medical monitoring and wellness data processing system.
  • the recorded bio-signals passes through an accelerometer-based noise filtering process.
  • the real-time feedback of the angle calibrated accelerometer signals are sampled in a normalized form, and the bio-signals are processed through 50/60 Hz digital filter to remove the power line noise disruption.
  • the processed bio-signal and accelerometer signals passes through repetitive adaptive filter and other computational steps. This process removes motion noise from the bio-signal.
  • the first order noise free signal further passes through a series of banked filters, low pass filter and correlation computational step for removing the rest of the noise.
  • the filtered signal is further analyzed through time domain and frequency domain peak processing methods to precisely compute real-time avg. pulse rate, instantaneous heart rate, hr tachogram and neural Activity balance coefficients of ⁇ , ⁇ 2, ⁇ 3, ⁇ 3/ ⁇ , ⁇ 3/ ⁇ 2, ⁇ 2 ⁇ ⁇ .
  • the set of computed data and raw signals are sampled at a rate of 7.5Hz, 15 Hz, 30Hz, 100Hz, 125Hz, 240Hz, or lKHz.
  • the sampled data is processed using a fast response analysis method, and the processed sampled is condensed utilizing a matrix compression method.
  • the sampling and compressed data selection method significantly decreases computational effort needed to analyze the entire waveform.
  • the compression is followed by an analysis to calculate continuous heart rate and average pulse rate.
  • the signal ratio between the oscillating peak and stationary peak of red and Infrared biosensor, in the form of signal derivate is taken, to determine the oxygen saturation ratio.
  • the signal is passed through digital filters of High-Frequency(HF), Low- Frequency(LF), Very Low Frequency(VLF), Meyer pass filter and Ultra-low Frequency(ULF) signals. Then, the relative power under each frequency spectrum is calculated to assess neural activity. The derived coefficient of Pi, P2, P3 and P4 are evaluated through a set of computational steps to determine the overall health of Autonomous Neural System and cardiac system.
  • the noise-free signals are further analysed in different spectrums to compute respiratory rate, avg. breathing rate and meyer wave signal.
  • the pulse signal is processed to decouple the noise artefact free signals into different wave signals.
  • the pulse wave is iteratively decoupled to obtain breathing signal, and the derived signal is processed for peaks to determine the respiratory rate.
  • the analysed signal is mathematically operated for computing average breathing rate, continuous respiratory rate and breathing rate. A similar analysis is utilized to decompose the meyer wave signal and its related parameters.
  • the user calibration input, extremum of optical data with respect to time and recorded data are analyzed for extracting the continuous blood pressure and diastolic pressure values.
  • the dual sensor configuration is utilized to estimate momentum loss in the blood vessel, mean pressure and the systolic pressure.
  • the recorded heart to device reference length is used in the cuff-based apparatus to accurately measure the mean arterial pressure.
  • the Near-Infrared biosensor signals and other optical signals of Green, Infrared and Red signals are processed to compute Blood Sugar Level. Initially, the input on the blood sugar level is taken for sensor calibration. The Green LED, Infrared LED and Red LED response signals are processed to remove the losses in the Near-Infrared signals, due to the blood flow fluctuations, tissue absorption and other coherent errors. The Processed Near- Infrared data is correlated and fitted over various patient's/user's/physician's inputs to calibrate the Near-Infrared biosensor. The continuous blood glucose levels, blood sugar levels, hyperglycemia and hypoglycemia are computed from the calibrated data. In case of chronic medical condition, the system automatically reminds the patient for medication, or alerts the user, user network and the physician network about the diagnosed health condition.
  • the real-time system further comprises of an automated method to record various stages of the sleep cycle, and to recognize obstructive sleep apnoea.
  • the accelerometer values are initially evaluated for state of sleeping or dormancy, and the real time physiological signals are compared to wake or activity physiological data.
  • the real time physiological signals of avg. breathing rate, systolic blood pressure, diastolic blood pressure and instantaneous Heart Rate signals are processed for tracking the time periods of non-rapid eye movement and rapid eye movement sleep cycles.
  • a series of computational steps is applied on the instantaneous pulse rate data, analyzing for beats per minute difference in definite time intervals, for recognizing the sleep apnea condition.
  • the respiratory signal pattern validation step is utilized for verifying the state of sleep apnea and sleep cycle.
  • the sleep apnea condition and its time-period are recorded in the system.
  • the fourteenth aspect of the invention provides a life-support system, which automatically recognizes daily activity, pre-clinical emergencies and records one's state of well-being.
  • the recorded biosensor data, motion sensor data and wireless antennae are processed to evaluate the various postures, user training information, rest period, activity period and state of fatigue.
  • the system further learns and records the various postures, movement data and activities of the user (such as (of sitting, standing, number of steps, number of strides, lap count, speed, training phase, resistance training, cycling, driving and more).
  • the life-support system records subjective psychological stress points and identifies the stress state of the individual based on the computed vital bio-signal and electrical spectrometer signals.
  • the system automatically guides the user to a breathing stress management technique or other stress management methods.
  • the system consists of automated clinical emergency life support method to detect the risk of CHF attacks, hypoxia, hypothermia, hypoxemia, blood poising, blood loss, hyperthermia, unusual ventricular activity, heat stroke, nervous breakdown and other chronic conditions. If a life threating or chronic condition is recognized, the apparatus alerts the user's network and life support network.
  • the invention also provides an automated power saving method.
  • the real-time system comprises of a low powered method to recognize the presence of the user based on the estimation of the realistic bio-response data and movement data. The recognized user presence is utilized to automatically power on, power off or restart the device.
  • the fifteenth aspect of the invention presents the accessorial software application and accessorial mobile apparatus, that is attached to the telemetry apparatus.
  • the accessorial software application of the accessorial mobile apparatus comprises of components for daily health management, clinical condition management and device application management.
  • the personal fitness management component of the software application is utilized to log and track personal information, routine health check-up data (like weight, height, basal metabolic index, basal metabolic rate, workout target), physical exercise activities and nutrition intake.
  • the application displays real-time and recorded health data of base heart rate, commuted distance and calories expenditure.
  • a cloud synchronization button on the application is utilized to synchronize the data with the cloud services and share the data with professional practitioners.
  • the stress management component of the software application comprises of emotional index meter, stress management information, stress management progress meter and guided meditation components.
  • the Emotional Index meter shows persona-oriented stress levels and it oscillates according to the neural balance.
  • the stress management meter reports the progress on the stress management.
  • the device directs the user to guided breathing/meditation method or to a social communication interface.
  • a daily work management feature on this interface is used to schedule professional work activity with priority.
  • the work management functionality is included as procrastination is an indirect counterpart cause of mental stress.
  • the sleep management component of the accessorial software application tracks sleep cycles, sleep period, NREM-REM cycle length and other sleep trends.
  • the user can view and access the computed data and recorded log. On recognizing sleep disorders, a warning message regarding the disorder symptom appears on the user screen.
  • the user can connect with physicians and health professionals through the sleep management interface.
  • the accessorial mobile device further comprises of an interface to monitor real-time information on pulse rate, oxygen saturation, pulse rate variability, neutral activity, breathing rate, body temperature, blood pressure levels and blood glucose levels.
  • the computed real-time and recorded results are displayed on the screen along with access to the individual physiological signal wave form.
  • the user can connect with medical and health professional through this interface.
  • the medication tracker and reminder feature records the medication pattern and medication reminder.
  • the device automatically alerts the user at the correct time for medication.
  • the data on this interface can be shared on online platforms and with medical and health professionals through the data synchronization button.
  • Health network interface of the software application enables professional medical practitioners, dieticians, fitness instructors and other health professionals to interact with the patient/user.
  • the health network is used by the professionals to guide the user with health and therapy practices.
  • the health blogs, articles and classes can be accessed by the user through this component of the software application.
  • a daily health management component displays information on the number of active steps taken, sleep health, heart rate with oxygen saturation ratio and emotional index matrix.
  • the background information on daily well-being can be accessed through the daily health management component.
  • the progress and history of the user can be accessed by clicking on the history trend button of this interface.
  • the work schedule can also be organized through this interface.
  • the ease of lifestyle organization interface of the accessorial software application has the functionalities to synchronize, install and manage 3 rd party and native applications on the telemetry mobile apparatus.
  • FIG. 1 is the block diagram and hardware architecture of the telemetry apparatus
  • FIG. 2 shows the design of a reflective optical spectrometer with adjacent LED- photodiode configuration
  • FIG. 3 is the isometric view of the hardware packaging of the reflective sensing
  • FIG. 4 is the transmittive optical configuration based spiral ring embodiment form of the telemetry apparatus
  • FIG. 5 A and FIG. 5B show isometric view of a ring based wearable embodiment form for remote clinical monitoring and daily wellness management
  • FIG. 6 illustrates the 3-D view of the clinical embodiment form for forehead and limb telemetry monitoring
  • FIG. 7 is the auxiliary embodiment form utilized for monitoring health and clinical information during exercise on training machines
  • FIG. 8 is the 3D-view of the live clinical and telemetry monitoring instrumentation;
  • FIG. 9 A and FIG. 9B show isometric view of wearable tracker embodiment form for real-time medical monitoring and general wellness management;
  • FIG. 10A and FIG. 10B show the smart wearable embodiment form of the telemetry apparatus with rounded corners
  • FIG. 11 A and FIG. 1 IB show the round face smart wearable embodiment form of the telemetry apparatus
  • FIG. 12A illustrates an automated cardiac training software application of the
  • FIG. 12B is a persona oriented psychological stress management application of the wearable embodiment form
  • FIG. 12C is the sleep management software application of the smart wearable
  • FIG. 12D shows the application design to view live and stored medical information
  • FIG. 13 illustrates the network of devices technology to compute and extract
  • FIG. 14 illustrates the application of this telemetry device for remote clinical
  • FIG. 15 shows the application of this telemetry device for live clinical monitoring in a crowded hospital scenario
  • FIG. 16A address the processing method and flow chart to remove the motion
  • FIG. 16B describes accelerometer signal computation method to record the movement data set
  • FIG. 17 is the flow diagram of a low powered computational method to process the first order motion artefact free bio-signal for further removing noise and for calculating Avg. Heart Rate, Instantaneous Heart Rate and Neural Activity balance;
  • FIG. 18 describes the flow-chart of a low powered real-time bio-sensor processing method to compute the Continuous Heart Rate and Oxygen Saturation Ratio;
  • FIG. 19 shows signal analysis methods to extract the parameters related to Neural Activity, respiratory activity and Meyer wave activity;
  • FIG. 20 shows the real-time computational method to compute breathing signals and meyer wave signals
  • FIG. 21 shows the computational flowchart to measure blood pressure signals from optical signals and calibrated data
  • FIG. 22 illustrates the automated method to calibrate anatomical measurements
  • FIG. 23 describes the Near-infrared optical biosensor-based method to extract blood glucose levels, and blood glucose thresholds
  • FIG. 24 is the flow diagram of the computational method to recognize sleep cycles and the risk of Obstructive Sleep Apnea Disorder
  • FIG. 25 shows a basic flow diagram of multi-functional medical device that computes medical information using the previously described computational methods
  • FIG. 26A, FIG. 26B and FIG. 26C describe an automated life-support system that automatically recognizes postures, user activity, acute clinical conditions and the state of well-being, and automatically alerts the user eco-system on detecting health risks;
  • FIG. 27A shows the accessorial software application that displays important logged and computed information on user's or patient's heath
  • FIG. 27B shows the accessorial software interface for stress and work management
  • FIG. 27C shows the accessorial software to monitor sleep patterns and sleep health
  • FIG. 27D shows the accessorial software application to monitor vital bio-signals, and it also includes other functionalities to manage medical conditions
  • FIG. 27E shows the accessorial health platform software interface for connecting with health network and professional practitioners
  • FIG. 27F shows the user application interface for tracking daily health
  • FIG. 27G shows the application interface to install and manage applications on the mobile apparatus.
  • the disclosure can be utilized and perceived in various applications that include clinical instrumentation, portable medical device, general wellness management technology and other forms of smart health tracking auxiliary devices.
  • the principle of the described invention is not intended to limit to the specific device or instrumentation application.
  • the disclosure can be chiefly classified into live clinical diagnostic instruments, telemetry medical apparatuses, mobile wellness management devices, software medical device and other forms of health management devices.
  • FIG. 1 is the hardware architecture of the telemetry apparatus. It comprises of optical elements, optical spectrometer, electrical spectrometer, biosensors, analogue circuitry, digital ICs, power supply unit, wireless antennae, computational device and other electronic components.
  • the hardware of the optical spectrometer has reduced input signal sent to LED signal probes, of Near-Infrared LED 1, Infrared LED 2, Red LED 3 and Green LED 4, through a biosafety frontend 6.
  • a multiple switch set 5 is attached to the biosafety circuit and a gain programmable Bio-LED frontend 7, which is utilized as the means to reduce the power requirement and number of active components.
  • the gain programmable LED frontend 7 triggers the input signal, where the gain can be adjusted based on the user input or programmed input.
  • the set of multiple switches 5 automatically shifts the input signal to generate the multi-spectral signal as per the control commands.
  • An optical component 8 focuses and concentrates the optical response on the photodetector set 9.
  • the photodetector set 9 records the optical response and the photo- response excitation passes through a series of logic circuit of Stage 1 amplifier 10, Buffer 11, power notch 12, Stage 2 amplifier 13, ADC 14 and Ambient noise cancellation IC 15.
  • the series of logic circuit comprising of 10, 11, 12, 13, 14 and 15 filters noise, amplifies and processes the output response.
  • the response is communicated to the microprocessor 45.
  • the electrical spectrometer comprises of set of electrical sensors 16-17-18-19, biosafety circuit 20, a series response processing circuit, and Impedance Analyzer IC 27.
  • the input signal is generated by the impedance Analyzer chip 27 and passes through a biosafety circuit 20.
  • the biosafety circuit is made of an input impedance 21 greater than the feedback impedance 22, which is used as the means to improve the operational safety.
  • the regulated input signal is injected through an input electrical sensor El 16 and drains through the electrical sensor 19.
  • the electrical sensor E2 17 and electrical sensor E3 18, are placed between the input electrical sensor El 16 and draining electrode E4 19, for extracting the response signals.
  • the response is analysed, amplified and filtered through a response circuit line of Instrumental amplifier 23, Gain amplifier circuit 24, power notch filter 25 and V to I converter IC 26.
  • the analysed and processed response passes through the Impedance Analyzer chip 27, which assess and resolves the output electrical response, and communicates the analyzed response to the microprocessor.
  • the sensor set of MEMs/NEMs non-contact temperature biosensor 28 and MEMs/NEMs 9/6-axis accelerometer 29 are attached to the microprocessor 45, which are utilized to record real-time feedback, body temperature and motion signals.
  • a set of wireless antennae of the WLAN 30, BLE 31, GSM 32 and GPS 33 are either externally attached to the microprocessor or integrated inside the microprocessor 45.
  • the set of wireless antennae 30-31-32-33 communicates the data between the telemetry apparatus, and the set of external storage and computing devices like accessorial mobile devices, server, etc.
  • the set of wireless antennae 30-31-32-33, along with the accelerometer 29, is used for tracking the real-time location and movement signals like phase, speed, steps taken, etc.
  • the wireless microprocessor 45 with inbuilt memory, is used for communicating commands and feedbacks with the internal electronic components of LED frontend, photodetector frontend, Impedance analyser IC 27, Accelerometer 29, temperature biosensor 28, other sensors, wireless antennas 30-31-32-33, USB module 39 and other electronics modules.
  • the microprocessor 45 also computes and stores the required information.
  • the hardware of the telemetry apparatus is powered by a power supply unit, containing power management IC 34, supercapacitor 35-battery set 36, supercapacitor 37-renewable energy harvester 38, USB module 39 and negative voltage converter 40.
  • the power management unit 34 is attached to the power supply unit, and microprocessor 45.
  • the power management IC 34 regulates the current flow and power supply.
  • the USB module 39 and supercapacitor 35-battery set 36 powers the electronic circuit.
  • the micro-USB module 39 is also used to communicate the data with the external devices and charging the battery 36 of the internal circuit.
  • the negative signal reference is generated by the negative voltage converter 40.
  • the power supply unit has an alternative powering unit containing renewable energy harvester 37 and supercapacitor 38.
  • a touch display 41 is attached to the hardware for viewing and accessing the real-time medical information, health data and on-device applications.
  • the touch display 41 is used to operate the instrumentation and embodiment forms of the telemetry apparatus.
  • the hardware of the telemetry device is internally or externally attached to an additional user interaction system of mic 42, video camera 43 and speaker 44.
  • the set of user interaction hardware components is utilized for interacting with the professional medical and health practitioners for clinical and health analysis. The professionals can send and receive the information, as well supervise the user.
  • the user interaction unit 42-43-44 is also used as the means to perceive the recorded and computed information, and to operate the telemetry device and its in-built applications.
  • FIG. 2 is the reflective optical spectrometer with adjacent LED-photodiode arrangement, where each signal probe and respective response detectors are placed next to each other.
  • the signal probes of Green LED 46, Red LED 47, IR LED 48 and Near-Infrared LED 49 are assembled at optimal distance between their corresponding photodetector set of visible, IR photodetector and Near-Infrared photodetector of 51-52-53-54-55.
  • the Infrared LED's 49 radiation is tuned and focused through an optical system/micro-prism 50.
  • the set of LED signal probes 46-47-48-49 inject the optical signals and the reflected the signal response is recorded by the set of adjacent Photodetector probes 51-52-53-54-55.
  • the Non-contact NEMs/MEMs temperature bio-sensor 56 is placed at an optimal distance and away from the heat dissipation surface, and with its thermopile probes facing the contact surface.
  • the temperature bio-sensor 56 is utilized for recording the error-free body temperature and thermal noise feedback.
  • a disposable foam base 57 is placed on the contact surface of the optical spectrometer 58, around the sensors, signal probes and receiver area, which is used as a mechanical means for reducing the motion errors.
  • the adjacent LED- photodetector configuration is utilized to quickly and simultaneously extract the optical response.
  • FIG. 3 is the isometric view of the spectrometer packing.
  • the biosensors set of optical spectrometer apparatus 58, non-contact MEMs/NEMs temperature sensor 63 and the set of electrical sensors 59-60-61-62 are assembled on the contact surface 64, for extracting the bio-signal response.
  • the optical apparatus 58 is aligned in the blood flow direction for extracting optical response.
  • the 9/6-axis MEMs/ EMs accelerometer 65 is arranged in a corresponding reference direction to the biosensor set, which is utilized as an efficient method to extract the feedback signals and motion signals.
  • the electrical sensor of 59, 60, 61 and 62 are arranged in a straight line, and in a specific direction with reference to the accelerometer sensor 65.
  • the electrical sensor 60 and electrical sensor 61 are placed in between the input electrical sensor 59 and drain electrical sensor 62, which is used for extracting the electrical response.
  • the Analog and Digital frontend plane 66 containing the sensor's digital and analog frontend, is placed in a successive vertical plane to the biosensor plane.
  • the third sequential electronic plane 67 containing microprocessor, power supply unit, computing unit, wireless antennas and other ICs embedded plane.
  • the last layer 68 of the packaging accommodates the set of battery, energy generation unit and other power unit components.
  • the last power plane 68 is packaged such that the battery and metal components does not obstruct the wireless antennas, which is used as method to curtail noise interruption.
  • the casing of the package is perforated with ventilation pores 70 for regulating the heat of the device.
  • the described packaging method is used as the means to reduce tracing efforts, curtail electrical noise and increase packaging efficiency.
  • the foam base/disposable sponge 69 is placed on the contact surface 64 around the biosensors, which is utilized for reducing the motion errors and increasing the multi-use utility.
  • FIG. 4 is the isometric view of the transmittive optical configuration based ring embodiment preferred in the clinical monitoring and general wellness management.
  • the ring embodiment form is fabricated in a spiral ring structure with a main heat dissipating expandable ring body 71 and a spirally extending element 89.
  • the ring 71-89 is made up of heat dissipating and expandable material.
  • the main ring frame 71 contains sensors, wireless antennas, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other essential electronic components.
  • the optical signal probes of Near-Infrared LED 72, Infrared LED 73, Red LED 74 and Green LED 75 are placed in an inverted configuration with LED probes facing the underside of the contact surface 78.
  • the NEMs/MEMs non-contact temperature biosensor 76 is assembled at edge of the ring frame and away from the heat dissipation surface, which is utilized for measuring body temperature values and thermal feedback.
  • a 9/6-axis NEMs/MEMs accelerometer 77 is positioned in a specific reference direction to the biosensors for precisely recording the movement feedback and movement signals.
  • the photodetector set of visible/IR 80 and Near-IR photodetectors 81 are aligned with the corresponding signal probes and placed on the top response receiving surface 82.
  • An optical lens 79 is placed before the photodetector set 80-81 for efficiently capturing and focusing low powered optical response on photodetector set 80-81.
  • the inverted configuration of LED signal probes 72-73-74-75 and photodetector set 80-81 minimizes the background optical noise in the recorded response.
  • the set of electrical biosensors 83-84-85-86 are assembled in a straight line on the perpendicular contact surface 87, or in an aligned straight line on the contact surface, which is utilized for extracting electrical bio-signals.
  • the regulated input signal is injected through the input electrical sensor 83 and drains through the electrical sensor 86.
  • the electrical sensor 84 and electrical sensor 85 placed between the input electrical sensor 83 and draining electrode 86, are used for extracting the response signals.
  • the spirally protruding structure 89 contains an adjustable clipper 90 and hinge 91, that holds the instrument on the sensing spot in a size adaptable manner.
  • the expandable material is additionally utilized to hold the device securely on the sensing spot.
  • the ventilation pores 88 are embedded on the device casing.
  • the heat dissipating casing material along with the ventilation pores 88 are used as the means to regulate the device heating.
  • FIG. 5 A and FIG. 5B show the telemetry embodiment form for general wellness management and telemetry monitoring.
  • the sensors, detectors and signal probes are assembled at an optimal sensing point 93 and an optimal response spot 94 of the contact surface 96.
  • a micro vibrator 95 is assembled on the contact surface 96 of the ring, which is utilized to guide the user during mental stress/anxiety and to prompt the scheduled alarms calls.
  • the device has a vibrator 95 based persona-oriented stress management application, which automatically activates and guides the user during the instances of stress or anxiety. Once the state of stress or anxiety is recognized, the micro-vibrator module 95 on the contact surface oscillates in a definite remedial pattern to calm the user.
  • the vibrator 95 oscillates with 7.5%— 25% higher ON time to indicate breath-out demonstration and 7.5%— 25% lower OFF time to indicate breath-in demonstration.
  • the button 101 on lower edge surface 102 is used to switch the device mode to meeting mode, work mode, fitness mode and sleep mode.
  • the button 97 on the top surface 98 is used for accessing the telephonic calls, wireless synchronization facilities and other functionalities.
  • a gesture sensor 99 is embedded on the front surface 100 (user facing surface). The gesture sensor 99 is used for accessing and navigating through the presentations and applications.
  • the button inputs 97-101 are also used to access presentations and applications.
  • the open ring structure 103 of the ring apparatus holds the device on the sensing spot in a size adjustable manner.
  • FIG. 6 is the 3D view of the embodiment form for clinical forehead monitoring or ambulatory limb telemetry monitoring.
  • the Reflective bio-sensing apparatus with foam base 104 is embedded on the contact surface of the main casing 105, which is used for sensing the bio-signals.
  • the main casing 105 is made of heat regulating material.
  • the digital IC, analog chips, microprocessor, wireless antennae, sensors, power supply unit and rest of electronics items are packaged inside the heat regulating casing 105.
  • a soft stretchable cloth 106 is attached to the main packaging case 105, which contains adhesive surface 107 and stickable surface 108 end tail pads.
  • the adhesion action between the adhesive pad 107 and stickable pad 108 is used to fasten the device, and as well hold the sensing apparatus on the sensing spot. Additionally, the stretchable cloth belt 106 holds the apparatus steadily on the sensing spot.
  • the foam base on the contact surface and surrounding the biosensors is utilized as a mechanical means to reduce movement noise in the bio-signal recording.
  • the other use of the disposable foam includes improvement of the clinical hygiene and reusability efficiency.
  • FIG. 7 shows the embodiment form utilized as an auxiliary attachment to the wellness instrument.
  • the auxiliary device 109 is utilized while training on exercise machines like cycle, treadmill or bike to record and monitor clinical/health signals.
  • the instrument 109 with the heat regulating casing 110 is attached to the wellness exercising instrument through an expandable machine gripping holder 112.
  • the expandable machine gripping holder 112 is used for fastening the instrument 109 on the auxiliary machine handles.
  • the reflective sensing hardware and the set of biosensors with foam base 111 is placed on the contact surface of the main packaging frame 110, which is used for recording the relevant real-time clinical and health information.
  • the digital chips, analog ICs, microprocessor, wireless antennae, sensors, microprocessor and essential electronics components of the apparatus 109 are packaged in the heat regulating case 110.
  • the foam base on the contact surface around the biosensors, is utilized to reduce movement noise in the bio-signal recording, and as well to improve the clinical hygiene and reusability efficiency.
  • FIG. 8 is the live and telemetry clinical monitor, that can display real-time medical signals as well as personalized results.
  • the live clinical monitor has a central wireless base station 116 and an inflatable mini-cuff 113 packaged with set of biosensors 114 (electrical spectrometer, optical spectrometer, non-contact MEMs/NEMs temperature sensor, accelerometer, etc).
  • biosensors 114 electrical spectrometer, optical spectrometer, non-contact MEMs/NEMs temperature sensor, accelerometer, etc.
  • the digital ICs, analog chips, power supply unit, sensors, microprocessor, wireless antennae and other electronics are packaged inside the wireless base station 116.
  • the mini-cuff 113 automatically inflates to detect the resonant point for blood pressure calibration.
  • the bio-signals are extracted through the set of biosensors 114.
  • a slate sized touch display 117 is assembled on the wireless base station 116, which is utilized for accessing and viewing important clinical information, patient history, patient's physical activities, health data and live medical signals (like breathing rate, heart rate, oxygen saturation, bio-temperature, blood pressure, blood sugar levels, neural activity balance, etc).
  • the slate sized touch display 117 is also used at the means to operate the medical instrument and to access the in-built applications.
  • the base station 116 along with the slate sized monitor 117 and buttons 118-119, is attached to the mini-cuff 113 both wirelessly or through an electrical cord 115.
  • the button 118 on the base station 116 resets the medical analysis, powers on/off the device and executes other important functionalities.
  • the patient history, medical information and other important information are synchronized, between mobile telemetry apparatus and computer server/accessorial mobile apparatus, through the button 119 on the base station 116.
  • FIG. 9 is the preferred wearable embodiment form for remote clinical monitoring and daily well-being management.
  • FIG. 9A shows the isometric front view of the smart band embodiment form.
  • FIG. 9B shows the isometric back view of the smart band embodiment form with reflective hardware apparatus.
  • the device comprises of mini touch display 120, trigger button 121, mode-indicator 122, wireless synchronization button 123, micro/mini- inflatable strap 126 and Stress Management blinking LED set 124-125.
  • the mini-touch display 120 placed on the top surface of the apparatus, is utilized for operating the apparatus, accessing in-built application and viewing the essential information (such as medical information, health data, bio-signals, general wellness data, etc).
  • a set of Red indicator LED 124 and Green indicator LED 125, attached on the top surface, are used as an apparatus guided method for stress management.
  • the indicator LEDs of 124-125 automatically blinks to guide the user during the instances of psychological stress or anxiety.
  • the red indicator light 124 automatically flashes at the detected neural activity and the green indicator light 125 automatically flashes in a definite assisting pattern.
  • the green indicator light 125 blinks with a 7.5%— 25% higher ON time to indicate breath-out demonstration, and 7.5%— 25% lower OFF time to indicate breath-in demonstration.
  • the strap-based micro/mini-inflatable cuff 126 automatically inflates to detect the resonant compression point for blood pressure calibration.
  • the mode indicator light 122 shows different operating modes and other functional status of the apparatus.
  • the trigger button 121 is utilized for operating the device, accessing in-built applications and utilizing other functionalities.
  • the apparatus has a wireless button 123 for synchronizing the data and telemetry device with the accessorial devices.
  • the biosensor set and reflective sensing apparatus 128 (of optical apparatus, electrical, non-contact temperature sensor and accelerometer) is assembled on the contact surface of the device.
  • the digital ICs, analog chips, power supply unit, sensors, microprocessor, wireless antennae and other electronics are packaged in the casing 127.
  • FIG. 10A shows the start-up application and rounded corner smart mobile apparatus design for general wellness management and telemetry medical monitoring.
  • the mobile apparatus 132 has a potentiometer integrated crown 133 and push buttons 134-135, which are utilized as the means to operate the apparatus 132 and access in-built applications.
  • the real-time diagnostic signals, health management data, medical data and other important information are viewed on the mini-touch screen 136.
  • the mini touch display 136 is also used as the means to operate the device 132, and device applications.
  • a background application containing motivational quote 137 is displayed on the top of the apparatus 132, which is intended to improve the spirit of the user.
  • the diagram also shows a start-up application comprising information on Time & Date 138, Step Count 139, Calorie burnt 140, Calorie consumed 141, weekly health history 142, battery strength 143, climate information 144, wireless connectivity 145 and other trends.
  • FIG. 10B shows the placement of the reflective sensing apparatus on the mobile apparatus with rounded corner design.
  • the reflective sensing apparatus 146 is assembled in an optimal sensing spot 147 on the contact surface 148 of the apparatus 132.
  • the rounded corners 149-150-151-152 of the apparatus 132 are chosen as a means to evade cuts and injuries, that may occur due to the otherwise sharp corners.
  • FIG. 11A shows the start-up application and round face smart mobile apparatus design for general wellness management and telemetry medical monitoring.
  • the mobile apparatus 153 has a potentiometer integrated crown 133 and push buttons 134-135, which are utilized as the means to operate the apparatus 153 and access in-built applications.
  • the real-time diagnostic signals, health management data, medical data and other important information are viewed on the mini-touch screen 136.
  • the mini touch display 136 is also used as the means to operate the device 153, and device applications.
  • a background application containing motivational quote 137 is displayed on the top of the apparatus 153, which is intended to improve the spirit of the user.
  • the diagram also shows a start-up application comprising information on Time & Date 138, Step Count 139, Calorie burnt 140, Calorie consumed 141, weekly health history 142, battery strength 143, climate information 144, wireless connectivity 145 and other trends.
  • FIG. 11B shows the placement of the reflective sensing apparatus on the mobile apparatus with round face design.
  • the reflective sensing apparatus 146 is assembled in an optimal sensing spot 154 on the contact surface 155 of the apparatus 153.
  • a round face and bezel 156 of the apparatus is chosen as a means to evade cuts and injuries, that may occur due to the otherwise sharp corners.
  • FIG. 12A is the cardiac training software application of the smart wearable apparatus.
  • the cardiac training application automatically tracks both quantitative and qualitative data such as training intensity 157, training period 158, rest period 159, cardiac rate 160, training phase 161 (such as distance travelled, average speed count), sets and reps counts 162 and other important health data.
  • the training session begins on the long hold of the trigger push buttons 134-135, and the real-time training data is recorded.
  • the tracked data is displayed on the mini screen 136.
  • the apparatus either ends the activity tracking on a successive small hold of the push button 134-135 or resumes the tracking on a successive long hold of the push button 134-135.
  • the mini-touch display 136 is used as an alternative means to operate the commands of the application.
  • FIG. 12B shows a persona oriented psychological stress management application.
  • the mobile apparatus's mini screen 136 displays queued work schedule with priority rating 163, real-time stress levels (Emotional Index meter) 164, and information on stress levels and stress management 165.
  • the user initially marks several reference data points to train the smart apparatus for learning the persona-oriented stress levels.
  • the real-time stress levels are generated through previously marked subjective data points.
  • the reference data points are generated based on the analysis of biosensor and other vital information.
  • the apparatus Based on the reference points and real-time signals, the apparatus generates subjective psychological stress data 164.
  • the application automatically guides the user to a stress management method.
  • the push buttons 134-135, crown 133 and mini-touch display 136 are utilized as the means to mark the stress data points, to navigate through the work schedule and to operate the functionalities of the application.
  • FIG. 12C shows the sleep management application of the smart wearable apparatus.
  • the real-time sleep information 166 is automatically recorded and displayed on the screen 136, along with an accessorial user configured alarm control 167.
  • a morning motivational quote 168 is displayed on the screen 136 to keep the user inspired.
  • the push buttons 134- 135, crown 133 and mini-touch display 136 are used as the means to set the alarm, access the logged data, view the recorded data and as well to operate the functionalities of the sleep management application.
  • FIG. 12D shows the mobile application of the smart wearable apparatus to view live medical information and access logged data.
  • the recorded and real-time vital information 169 of pulse rate, oxygen saturation ratio, breathing rate, body temperature, heart rate variably, blood sugar data, blood pressure data and Neural Activity are displayed on the mini-screen 136.
  • the push buttons 134-135, crown 133 and mini-touch display 136 are utilized as the means to access the logged data and operate the functionalities of the live monitoring application. (Network of Computational and Storage Devices)
  • FIG. 13 shows wireless devices network based parallel computation method to compute and extract information more quickly.
  • the Telemetry device 170 sends and receives data to/from the server computer 172 and the other accessorial devices 171 via BLE/WLAN, GPS and other techniques.
  • the accessorial mobile apparatus 172, server computer 171 and other network of devices are utilized for computing and storing the information.
  • the network of devices based computational and storage method is used as a faster and efficient means to compute and store information.
  • 172 is established via central server 171 or directly through the wireless pathways.
  • FIG. 14 shows the application of the telemetry device for remote clinical monitoring purposes.
  • the recorded real-time information, clinical information, health-data and user input information are wirelessly sent to the hospitals 175 from the wireless medical device
  • the clinical advice, medical instruction and other information are sent wirelessly from the Medical Centre/Hospitals 175 to the Telemetry device 173 located in Remote Location 174.
  • FIG. 15 shows the application of the telemetry devices in a crowded hospital scenario.
  • the medical practitioners 177 can attach medical devices to the patients in the rooms Rl,
  • R2, R3, R4 178, 179, 180, 181 in the patient's clinical compartment 176 The recorded real-time information, clinical information, health-data and user input information are wirelessly sent from the wireless medical devices of 173 in rooms of 178, 179,
  • the real-time medical information, patient's history, patient's information, diagnosed clinical condition and recorded medical analysis are viewed on the wireless telemetry monitor of the base station 175.
  • the clinical advice, medical instruction, drug dosage recommendation and other important information are sent wirelessly from the Physician's compartment 176 or personally conveyed to the patient.
  • the information can be communicated wirelessly between the medical practitioners 177, patients ( 178, 179,
  • FIG. 16A is the signal processing flow diagram which describes the utilization of accelerometer signals as a real time feedback to remove the motion errors from the bio- signal. Accelerometer signals are recorded along with other bio-sensor data with their respective sampling rate. The sampled bio-signal is initially passed through a 50/60 Hz Notch filter to remove the power line noise disruption. The bio-sensor data and angle calibrated accelerometer data is processed with a normalized parameter based repetitive adaptive filter and other computational method to remove low frequency motion noise from the bio -signal.
  • FIG. 16B is the flow diagram to process accelerometer values to compute the movement activity of the user or patient. Normalized magnitude for amplitude of the recorded accelerometer signals is computed and then the base line errors are removed. Then, a data based computational method and peak detection algorithm is applied to the processed data to calculate the active movement data.
  • FIG. 17 is the flow diagram to process the first order motion artefact free bio-signal to precisely compute avg. pulse rate, instantaneous heart rate, pulse rate variability and neural activity coefficients.
  • the first order signal is passed through a series of banked and low pass filter to remove the rest of the noise in the bio-signals.
  • a data correlation method is applied between the processed bio-sensor data and accelerometer data to further remove the motion artefact noise from the original signal.
  • a peak detection algorithm is applied to the 3 rd Order processed motion artefact free signal to compute average, pulse rate and instantaneous heart rate.
  • the recorded heart rate time intervals are plotted to display the pulse rate variability and HR Tachogram.
  • a variance-based data method is applied to the derived pulse rate and variability data for computing the autonomous neural activity coefficients of ⁇ , ⁇ 2, ⁇ 3, ⁇ 3/ ⁇ , ⁇ 3/ ⁇ 2, ⁇ 2 ⁇ ⁇ .
  • FIG. 18 shows the low powered computational method to extract continuous heart Rate, avg. pulse rate and oxygen saturation levels.
  • the 3 rd Order signal is sampled at chosen sampling rate and recorded in 32/64/128.... data points.
  • a discrete wave transformation is applied to the processed signal and a selection matrix is operated on the resulting frequency domain signal.
  • the operation of selection matrix significantly decreases computational effort needed to analyse the entire waveform, and an iterative peak detection algorithm is applied to the processed signal to determine maxima's frequency and thereof continuous heart rate and average heart rate are extracted.
  • the signal ratio between the oscillating peak and stationary peak of red and Infrared biosensor is taken to determine the oxygen saturation ratio.
  • FIG. 19 shows band-pass digital filters and power spectrum analysis methods to process Inverted tachogram data (i.e. frequency domain signal of Instantaneous heart rate).
  • the reconstructed frequency domain signal is divided into High-Frequency, Low-Frequency, Very Low Frequency, Meyer band and Ultra-low frequency signals using the high pass, bandpass and low pass digital filters of corresponding bandwidths.
  • the relative power under each frequency spectrum is calculated to assess neural activity.
  • the derived coefficient of Pi, P2, P3, P4, etc are evaluated through a set of computational steps to determine the overall health of Autonomous Neural System and cardiac system.
  • FIG. 20 shows the flow diagram and analysis method to compute and display respiratory signal, continuous respiratory rate, meyer wave signal and average breathing rate.
  • the noise-free pulse bio-signals are analyzed for extremum to decouple the noise artefact free signals into different wave signals.
  • An iterative wave decoupling algorithm is applied to the pulse signal to obtain the low frequency breathing signal.
  • the derived signal is processed for peaks and experimental parameter to determine the respiratory rate.
  • the analysed signal is mathematically operated for computing average breathing rate, continuous respiratory rate and breathing rate.
  • a similar analysis is applied to decompose the meyer wave signal and its related neural parameters. This method of computational wave decoupling is low powered, and the accessorial mobile/server computational devices are utilized to improve the response time of the medical apparatus.
  • FIG. 21 is the flow diagram and computational technique to measure blood pressure data from previously calibrated user data.
  • the user calibration input, optical data and extremum of the samples with respect to time are recorded.
  • the user input and recorded optical data are employed to calibrate the biosensor reading.
  • the method of optical intensity ratio between the extremum is utilized to calibrate the blood pressure values of continuous blood pressure and diastolic pressure.
  • the dual sensor configuration is utilized to estimate momentum loss in the blood vessel, mean pressure and the systolic pressure.
  • the recorded heart to device reference length is used in the cuff-based apparatus to accurately measure the mean arterial pressure.
  • FIG. 22 shows the flow diagram to automatically calibrate the heart to device reference length, that is employed to compute blood pressure.
  • the value of 9-axis accelerometer sensor signals are recorded at different arm positions of bent arm position, fully stretched arm position, lifted arm position and straight down arm position. Using the recorded sensor data, the forearm and arm length are calculated, through which average heart to device reference length is generated.
  • FIG. 23 shows the flow diagram and method to process the near-infrared bio-sensor signals and other optical signals to compute blood sugar levels.
  • the Green LED, IR LED and Red LED response signals are used to compensate the intensity losses due to the blood flow fluctuations, tissue absorption and other coherent errors.
  • the Processed Near-Infrared data is correlated and fitted over various patient's/user's/physician's inputs to calibrate the biosensors for approximate real time Blood Sugar values.
  • Physiological threshold values of hyperglycemia and hypoglycemia are analyzed from the calibrated data. The system automatically reminds the patient for medication and alerts the user/user network or the physician about the diagnosed health condition.
  • FIG. 24 shows the flowchart and computational process to record various stages of the sleep cycle and to recognize obstructive sleep apnea Conditions.
  • the accelerometer values are initially verified to make sure that user is in sleeping or dormant position.
  • the real time physiological signals of oxygen saturation ratio, body temperature, blood glucose levels, blood pressure, etc
  • the real time physiological signals of avg. breathing rate, avg. systolic blood pressure and instantaneous heart rate signals are processed to track the time periods of non-rapid eye movement and rapid eye movement sleep cycles.
  • FIG. 1 A series of methodical computational steps are applied on the instantaneous heart rate, sleep cycle and respiratory rate data to recognize sleep apnea conditions and to calculate the time-period of sleep apnea.
  • the pulse rate data in a time interval of 30-60s and for 5-7BPM difference is analyzed to recognize sleep apnea conditions.
  • the respiratory signals are validated for sleep apnea conditions after pulse rate and instantaneous pulse rate data analysis.
  • the recognized sleep health conditions and time period are recorded. Once the mild to severe symptoms of OSA are recognized by the apparatus, a warning message is sent to the patient and her/his physician network.
  • the values of the vital signals like pulse rate, continuous heart rate, pulse rate, avg. heart rate, oxygen saturation ratio, neural activity, breathing rate, blood pressure data and blood sugar levels are extracted using the previously described computational methods.
  • the realistic value of biological signals are verified to check if the worn by the user.
  • the device automatically restarts on recognizing realistic value, else it remains in or goes to the sleep and shut-down mode.
  • the device also automatically alerts user's life-support network and social on detecting clinical emergency risks.
  • FIG. 26A, FIG. 26B and FIG. 26C shows an automated life-support method for recognizing user activity, pre-clinical emergency conditions and for recording one's state of well-being.
  • the sensor values are processed and calibrated.
  • the sensor data, accelerometer values, GPS antenna, wireless antenna and bio-signals are evaluated for recognizing various postures and movement data (of sitting, standing, number of steps, number of strides, lap count, speed, training phase, resistance training, cycling, driving, etc).
  • the recorded physiological information and motion sensor data are further processed and learnt by the device for precisely evaluating the postures, fatigue condition, rest period and activity period of the user.
  • the postures, activity state, training data and other computed information are learnt and recorded.
  • the circadian errors are removed from the derived data and the health of circadian cycle is evaluated using a learning method.
  • the electrical signals and optical signals are correlated and corrected to rectify the errors in the bio-signal data.
  • the system computes BMR data and calorie expenditure from the computed vital signals and physical activity.
  • a learning method of the system automatically derives the low-powered bio-signal processing methods and life-support process.
  • the system detects the state of mental stress or anxiety utilizing the EEG patterns, recognized Cortisol level, respiratory patterns and HRV patterns. If the user triggers for new stress threshold, the device records new stress mark-ups. Based on the bio-signal data and stress mark-ups, the system derives subjective stress levels.
  • a guided breathing stress management technique is presented to the user that functions on the individual's real time vital signals or the user is diverted to a stress management support network and social media.
  • the clinical life-support component of the system automatically recognizes the risk of CHF attacks, hypoxia, hypothermia, hypoxemia, blood poising, blood loss, hyperthermia, unusual ventricular activity, heat stroke, nervous breakdown and other chronic conditions from oxygen saturation data, pulse rate, breathing data, neural parameters and HRV data pattern. If a life threating or chronic clinical condition is recognized, the apparatus automatically alerts the user's network and life support network.
  • Series of FIG. 27 are the software applications of the accessorial mobile apparatus attached to the telemetry apparatus.
  • FIG. 27 A shows the accessorial software, which displays important logged and processed information on user's or patient' s heath.
  • the user can log and track their personal information 182, routine health check-up data 183 (like weight, height, Basal Metabolic Index, Basal Metabolic Rate, workout target), physical exercise activities 184, and nutrition intake 185.
  • the mobile apparatus shows real time and recorded health data 186 of the user or patient that includes base heart rate, distance commuted and calories expenditure. This information can help the user, patient or health advisor to measure the intensity of the physical exercise and progress of the therapy or fitness program.
  • the cloud synchronization button 187 is utilized to synchronize the data with the cloud services and to share the data with professionals.
  • FIG. 27B shows the software application interface for the stress management in professional environment. It can be also employed by patients suffering from hypertension.
  • the emotional index meter 189 is shown on the left, which shows persona-oriented measurement.
  • the emotional index meter 189 oscillates according to the neural balance and other calibrated bio-signal.
  • the device directs the user to real time bio-signal based guided breathing/meditation method 188 or to a social communication interface.
  • the progress on the stress management program is reported in tracking meter 190 shown at the center bottom of the diagram.
  • the daily work management feature 191 is displayed on the right half, which shows the scheduled activity and their priority recorded by the user.
  • the work management functionality is included, since procrastination is considered as an indirect counterpart cause of mental stress.
  • FIG. 27C shows the accessorial software to track and monitor sleep.
  • the sleep cycle and other related data are computed using the biosensor signals.
  • the recorded sleep cycle trend 192 and NREM-REM cycle length 193 are displayed, with access to sleep data log 194.
  • a warning message regarding the disorder symptom appears on the user screen.
  • the user can connect with physicians and health professionals by clicking on the 195.
  • FIG. 27D shows the accessorial mobile device interface to monitor vital signals 196 of pulse rate, oxygen saturation, pulse rate variability, neutral activity, breathing rate, body temperature, blood glucose levels and blood pressure levels.
  • the biosensor data is either processed by the mobile apparatus, central server or other accessorial wireless computational device.
  • the computed real-time and recorded results 196 are displayed on the screen along with navigation access to view the individual physiological signal wave form.
  • the medication tracker/remainder 197 on centre bottom of the screen
  • physician's network 198 right bottom of the screen
  • the user can connect with medical and health professional by clicking on the button 198.
  • the medication tracker and reminder 197 records the medication pattern and medication reminder.
  • the device automatically alerts the user at the correct time to take medication.
  • the data can be shared on online platforms and with medical and health professionals by clicking on 199.
  • FIG. 27E shows the accessorial software interface to connect with health advisor network.
  • This application interface enables professional medical practitioners 200, dieticians 201, fitness instructors 202 and other health advisors to interact with the user, and to guide them with health practices/therapies.
  • the health blogs, articles and classes can be accessed by the user through clicking on the icon 203.
  • FIG. 27F shows the user application interface for daily health management. It displays information on the number of active steps taken 204, sleep health 205, heart rate with oxygen saturation ratio 206, and emotional index matrix 207.
  • the EI matrix 207 is the realtime information and recorded patterns of the emotional status and stress condition of the user.
  • the background information on daily well-being can be accessed by the user by clicking on the left bottom button 208 (which can be evaluated to improve one's state of general health).
  • the progress and history of the user can be accessed by clicking on the history trend button 210.
  • the work schedule is organized by clicking on the center bottom work schedule button 209.
  • FIG. 27G shows the ease of lifestyle organization application interface, which displays the functionalities to synchronize, install and manage 3 rd party and native applications on the telemetry mobile apparatus.
  • the described technological invention can be utilized as telemetry clinical instrumentations, general wellness management devices, real-time diagnostic technology, portable medical apparatuses, well-being management gadgets, smart wearable devices, server based real-time clinical diagnosis and health tracking system, life-support devices, health tracking software device and software medical device.

Abstract

Multifunctional wireless apparatus, spectrometry instruments, real-time computational system and device ergonomic forms for live and telemetry monitoring of clinical parameters, health data and other vital medical information. Clinical parameters and medical information include pulse rate, respiratory rate, continuous blood glucose levels, continuous blood pressure levels, pulse rate variability, oxygen saturation ratio, body temperature, bio-electrical activity, sleep patterns, sleep health and other vital bio -signal data. The telemetry apparatus encompasses electrical and optical spectrometer instruments. The spectrometer designs and its accompanying circuit design ensure that device is bio-safe, lightweight, low-powered and portable. The biosensor configuration, comprehensive hardware design, computational process and ergonomic design enables the measurement with more accuracy and efficiency, even in movement artefact prone conditions. The system design also assures that the computational process is real-time, faster and low powered. The wireless apparatus keeps track of the user information on daily diet pattern, fluid and water intake, exercise intensity, other essential health data, and provides necessary alerts. The apparatus yields persona-oriented stress levels and helps the user manage stress through guided practices. The health management system functions based on the user inputs and previously computed parameters. An automated life-support functionality is integrated in the system, that can forecast chronic clinical conditions and health risks like sleep apnea, hypertension, hypoglycemia, hyperglycemia, hypothermia, hyperthermia, CO poisoning, fatigue conditions and more.

Description

Description
Title of the Invention: Non-Invasive Multifunctional Telemetry Apparatus and Real-Time System for Monitoring Clinical Signals and Health Parameters
Technical Field
[0001] The present invention relates to a telemetry multi-functional medical instrumentation, real-time system and software device for precisely monitoring vital bio-signals. The vital bio -signals include cardiac rate, pulse rate variability, blood volume fluctuations, continuous blood sugar levels, continuous blood pressure levels, respiratory rate, neural activity, stress levels, oxygen saturation, body temperature, sleep patterns, etc. It also illustrates an integrated automated life-support system which forecasts the risk of congestive heart failure (CHF), hypertension, hypothermia, hypoglycemia, hyperglycemia, hyperthermia, sleep apnea (OSA), CO poising, nervous breakdown and other chronic medical conditions. It describes technologies that can work efficiently even in ambulatory and motion artefact prone situations. The processing system and hardware architecture of the device can be broadly classified into clinical system, live clinical diagnostic instrumentation, mobile medical device and telemetry wellness management technology. The overall disclosure presents an invention related to an advanced integrated solution of telemetry multi-functional medical device and general wellness instrument, more specifically a technology involving non-invasive bio-sensing technology.
Background of the Invention
[0002] With the evolution of information technology and advanced medical diagnostic tools, it has become easier for medical professionals to diagnose and treat a disorder or life threatening medical condition. Despite this progress and advancement, the clinical centres and hospitals have become overly crowded places. The congested scenario of the clinical centres can be accounted to modern human lifestyle and use of stationary medical instruments. Clinical staff spend significant amount of time on attaching the several complex instrumentations and bulky devices to the patients. [0003] Pulse oximeter devices have been utilized to improve the portability and reduce the complexity of the diagnosis, but these devices suffer limitations in terms of accuracy and deficient of information. Further attempts have been made by scientists and inventors to propose an instrument that could monitor multiple clinical parameters. But, these proposals as well lack proper implementation system and a corrugate technology architecture for noninvasive monitoring of multiple clinical parameters.
[0004]
What is needed is an integrated solution of:
compact and less complex medical instrumentation with maximized clinical information; accurate telemetry device which can offer complete medical diagnostic solution; and an advanced wellness management technology.
Summary of the Invention
[0005] The object of the invention is to present a precise state-of-art multifunctional telemetry medical device with an integrated well-being management solution for recording and monitoring multitude of vital bio-signals. The device can also be utilized to monitor realtime physiological parameters and other important clinical information even in a portable or remote setting. The invention addresses wireless mobile apparatus, hardware configurations, real-time system and embodiment forms for telemetry clinical monitoring and daily health management. The goal of invention is to present a compact portable solution for remote and live clinical monitoring, and for well-being management.
FIRST ASPECT
[0006] In the first aspect of the invention, a low-powered and compact hardware architecture of the telemetry apparatus is provided. The hardware architecture enables the measurement of clinical signals and general wellness parameters with more precision and efficiency.
[0007] The hardware comprises of electrical spectrometer and optical spectrometer. The optical spectrometer contains signal probe set of Green LED, Red LED, Infrared(IR) LED and Near-Infrared (Near-IR), which are operated by a single gain programmable LED frontend. The intensity and trigger of the input signals are adjusted through the circuit line of LED frontend and central microprocessor. A multiple pole switch set (or) a set of switches enables the operation of the multiple LED signal probes by a single frontend, which makes it low powered and more compact. The LED frontend contains an op-amp based bio-safety circuit that ensures the optical signal probes emit low powered optical signal. The low powered optical response is amplified and focused by an optical amplifier on the photodetector set. The photodetector set records the output optical response and the response is processed by a circuit line of stage 1 amplifier, buffer, power notch filter, stage 2 amplifier and ambient noise cancellation IC. The circuit line of the photodetector amplifies, filters and refines the output signal, and sends the processed output signal to the microprocessor.
[0008] The microprocessor is attached to a non-contact MEMs/NEMs temperature biosensor, which logs the body temperature response and thermal feedback. A 9/6 axis MEMs/NEMs accelerometer of the hardware is utilized as a real-time feedback to remove motion noise from bio-signal response. A set of wireless antennae of WLAN, BLE, GSM and GPS are either externally attached to the microprocessor or integrated inside the microprocessor. The set of wireless antennae communicates the data between the telemetry apparatus, and the set of external storage and computing devices like accessorial mobile devices, server, etc. The set of wireless antennae along with the accelerometer is used for tracking the realtime location and movement signals like phase, speed, steps taken, etc. The wireless microprocessor with inbuilt memory, is used for communicating commands and feedbacks with the internal electronic components of LED frontend, photodetector frontend, Impedance analyser IC, Accelerometer, temperature biosensors, other sensors, wireless antennas, USB module and other electronics modules. The function of microprocessor also includes computing and storing the required information. A touch display is attached to the hardware for viewing and accessing the real-time medical information, health data and on- device applications. The touch display is also used to operate the instrumentation and embodiment forms of the telemetry apparatus.
[0009] The hardware of the telemetry apparatus is powered by a power supply unit, which comprises of a power management IC, supercapacitor-battery set, supercapacitor- renewable energy harvester, USB module and negative voltage converter. The power management IC of power supply unit, attached to the hardware and microprocessor, regulates the current flow and power supply. The USB module and supercapacitor-battery are utilized for powering the electronic circuit. The USB module is also used for communicating the data with the external devices and charging the battery of the internal circuit. A negative voltage converter attached to the power management unit generates the negative voltage reference. The power supply unit includes an alternative and supplementary power supply unit containing renewable energy harvester and supercapacitor.
[0010] Apart from the display unit, the hardware of the telemetry device is internally or externally attached to an additional user interaction system of mic, video camera and speaker. The set of user interaction hardware components is utilized by user for interacting with the professional medical and health practitioners for clinical and health analysis. The professionals can send and receive the information, as well supervise the user through the user interaction system. The user interaction unit is also used as the means to perceive the recorded and computed information, and to operate the telemetry device and its in-built applications.
SECOND ASPECT
[001 1] The second aspect of the invention explains an electrical spectrometer apparatus of the telemetry hardware, which is utilized as the means for measuring electrical and electrodermal bio-signals. Preferably, a set of four electrodes of the electrical spectrometer are placed at equidistant positions in a straight line. An input electrical sensor injects the low power signal, and an electrical sensor drains the signal through the ground. A biosafety circuit, containing operational amplifier with a feedback impedance having lesser value compared to the input impedance, is attached to the input electrical sensor. The biosafety circuit improves operational safety of the electrical spectrometer apparatus.
[0012] A set of two response electrical sensors are placed between the signal input electrical sensor and drain electrode. The signal between response electrical sensors are processed, amplified and filtered through a response circuit line of Instrumental amplifier, Gain amplifier circuit, power notch filter, and V-I converter IC. The processed output response passes to the Impedance Analyzer chip. The Impedance Analyzer chip assess and resolves the output electrical response, and communicates the analyzed results to the microprocessor.
THIRD ASPECT
[0013] A reflective optical spectrometer technology with adjacent LED-photodiode arrangement is exhibited in the third aspect of the invention. In the optical apparatus, the signal probes of Near-Infrared LED, Infrared LED, Red LED and Green LED, are embedded between their corresponding wavelength response photodetectors and are aligned in blood flow direction. An optical lens or a micro-prism is placed on the Near-IR LED probe to tune the Near-Infrared signal. The reflected responses are recorded by the set of corresponding adjacent photodetector probes, which are assembled at a noise-free recording distance. This adjacent configuration of LED-photodetectors enables simultaneous operation of different signals probes with more accuracy and speed. A non- contact MEMs/NEMs temperature biosensor is positioned at the edge of the sensor board with a minimum distance from heat dissipating surface, that is utilized for record the error- free body temperature and thermal noise feedback. A disposable foam/sponge is placed on the contact surface surrounding the sensors, signal probe and receiver area for reducing the motion errors and increasing the reusability.
FOURTH ASPECT
[0014] A compact and efficient spectrometer apparatus packaging method is proposed in the fourth aspect of the invention disclosure. The packaging design of the spectrometer comprises biosensors of electrical sensors, optical signal and detector probes, and non- contact MEMs/NEMs temperature sensor placed on the top surface (or) contact surface. The 9/6-axis accelerometer is arranged in a fixed reference direction to the biosensor direction, which is utilized as an efficient assembly technique to record the feedback signals and the movement signals. The Analog and Digital frontend plane is placed in a successive vertical plane to the biosensor plane. The third sequential plane is an electronic plane containing microprocessor, power supply unit, computing unit, wireless antennas and other ICs embedded plane. The last layer accommodates the set of battery, energy generation unit and other power unit components such that it does not obstruct the wireless antennas, which is used to reduce noise interruption. The aforementioned packaging technology and sequential packing method is utilized to reduce tracing efforts, curtail electrical noise and increase packaging efficiency. The apparatus packaging around the electronics is perforated with ventilation pores for regulating device heating. A disposable foam/sponge base is placed on the contact surface without obstructing the biosensors, which is used for reducing the motion errors and increasing the multi-use utility.
FIFTH ASPECT
[0015] In the fifth aspect, a ring form for remote and telemetry monitoring is provided. The LED signal probes of Near-Infrared LED, Infrared LED, Red LED and Green LED of the device are placed in an inverted transmission configuration, where LED probes faces the underside of the contact surface. The photodetector set of visible/IR and Near-IR photodetectors are aligned with the corresponding signal probes and are placed on the top response receiving surface. The inverted configuration of LED signal probes and photodetector set minimizes the background optical noise in the response recording. An optical lens is placed before the photodetector set for efficiently capturing and focusing low powered optical response on photodetector set. The NEMs/MEMs non-contact temperature biosensor is assembled at edge of the ring frame and away from the heat dissipating surface, which is utilized to measure body temperature values and thermal feedback. A set of four electrical biosensors are assembled in a straight line, on the perpendicular contact surface to the optical probes, for extracting electrical and electrodermal bio-signals. A 9/6-axis NEMs/MEMs accelerometer is positioned in a specific direction with reference to the optical and electrical sensing probes, which is used as a sensor assembly method to record the movement feedback more accurately. The device is fabricated in a spiral ring structure with a heating dissipating and expandable casing material. The main ring frame contains sensors, wireless antennae, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other electronic components. A clipper-hinge element protrudes from the main ring frame to form a spiral ring structure, which holds the instrument securely on the sensing spot. The expandable casing with adjustable clipper- hinge element, is utilized as the mechanical method for fastening the instrument in a size- adaptable manner. A reasonable number of pores are vented on the device frame to regulate electronics heating. A disposable foam base is placed on the contact surface surrounding the biosensors, which is utilized to enhance the mechanical gripping, clinical hygiene and reusability efficiency.
SIXTH ASPECT
16] A ring embodiment form for telemetry monitoring and daily wellness management is explained in the sixth aspect of the invention. The ring apparatus has an open ring structure for comfortably holding the device on the sensing spot in a size adjustable manner. The ring comprises of sensing components of optical apparatus, electrical spectrometer apparatus and other biosensor components, which are placed at an optical sensing spot. A vibrator is implanted on the contact of the ring to guide the user during mental stress, and to prompt the scheduled alarms calls. The device has an in-built persona-oriented stress management application, which automatically activates and guides the user during the instances of stress or anxiety. Once state of stress or anxiety is recognized, the vibrator module on the contact surface oscillates in a definite remedial pattern according to the real- time physiological condition of the user. During the real-time guided stress management application, the vibrator oscillates with 7.5%— 25% higher ON time to indicate breath-out demonstration and 7.5%— 25% lower OFF time to indicate breath-in demonstration. The ring apparatus has a button on the outer top surface and a button on the lower bottom edge surface. The button on lower surface is used to operate the functional modes of meeting mode, work mode, fitness mode, sleep mode and others. The button on the top is utilized for operating the telephonic calls, wireless synchronization facilities and other functionalities. A gesture sensor is embedded on the user facing front surface, which is used as an interactive gestural means for accessing and navigating through the presentations and the applications. Additionally, the button inputs are used to access presentations and applications.
SEVENTH ASPECT
[0017] The seventh aspect of the invention puts forward a multifunctional medical instrument for limb attachment or forehead telemetry. The electronics components and sensors of the hardware are packaged in a heat regulating case, according to the fourth aspect. The biosensors are arranged on the contact surface of the case of the telemetry apparatus. A soft stretchable cloth attached to the main packaging case, contains adhesive surface and stickable surface end tail pads. The adhesion action between the adhesive pad and stickable pad, and the stretchable cloth belt are utilized to fasten the apparatus steadily on the sensing spot. The foam base situated on the contact surface and surrounding the biosensors, is utilized as a mechanical means to reduce movement noise in the bio-signal recording. The other utility of the disposable foam includes improvement of the clinical hygiene and reusability efficiency.
EIGHTH ASPECT
[0018] The eighth aspect of the invention illustrates an auxiliary wellness management and clinical monitoring device, that can be attached to an exercising machine. The essential sensors and electronics components of the apparatus are packaged in a heat regulating case, as per the fourth aspect. The biosensors are assembled on the contact surface of the case of the telemetry apparatus. The heat regulating case is attached to an expandable machine gripping holder, and this expandable holder is used to attach the device to wellness instrument (like exercise cycle, treadmill, bike etc). The expandable holder grips the exercise machine and the keep the apparatus steady on the sensing spot. A foam base on the contact surface around the biosensors, is utilized to reduce movement noise in the bio- signal recording.
NINTH ASPECT
[0019] A bracelet or smart band embodiment for telemetry and general wellness management is presented in the ninth aspect of the invention. The optical apparatus, electrical spectrometer and non-contact temperature sensor are placed on the contact surface of the device. The casing of the device contains the accelerometer, sensors, wireless antennas, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other necessary electronic components. The device has an integrated low-pressure mini-cuff, which automatically inflates to the detect the resonant compression point for blood pressure calibration. A mini-touch display is placed on the top surface of the apparatus, which is used for operating the apparatus, accessing in-built application, and viewing the essential information (such as medical information, health data, bio-signals, general wellness data, etc). A set of Red and Green indicator LEDs are embedded on the top surface near the display. The indicator LEDs automatically blinks to guide the user during the instances of psychological stress or anxiety. During the recognized state of mental stress, the red indicator light flashes at the detected neural activity, and the green indicator light flashes at a definite assisting pattern. The green indicator light blinks with a 7.5% - 25% higher ON time to indicate breath-out demonstration, and 7.5% - 25% lower OFF time to indicate breath-in demonstration. A mode indicator light denotes different operating modes and other functional status of the apparatus. A trigger button placed on the top surface is used for operating the device, accessing in-built application and utilizing other functionalities. The device has a wireless synchronization button for synchronizing the data and device with accessorial devices.
TENTH ASPECT
[0020] In the tenth aspect, a live multi-functional telemetry instrumentation is elucidated. The live wireless clinical monitor comprises of a cuff packaged with biosensors and a base station packaged with other essential electronic components. The biosensors of electrical spectrometer, optical spectrometer, accelerometer and non-contact MEMs/NEMs temperature sensor are arranged and packaged inside an inflatable mini-cuff In the presence of user, the cuff automatically inflates to detect the resonant point for blood pressure calibration. The electrical cord of the instrument is used as the wired method to the attach the base station and the cuff. A slate sized touch display is assembled on the wireless base station for accessing and viewing live medical signals, patient history, patient's physical activities, other clinical information and health data. The touch screen is as well utilized to operate the device and access the in-built application. A wireless synchronization button and a power button is embedded on the wireless base station. The wireless synchronization button is used for synchronizing the clinical recording, patient history, medical information and other important information between the telemetry apparatus and computer server/accessorial mobile apparatus. The power button on the base station is utilized as the means to reset the medical analysis, power on/off the device and access other in-built functionalities.
ELEVENTH ASPECT
[0021] According to the eleventh aspect, a smart wearable instrument for medical monitoring and daily wellness management is presented. The smart wearable comprises of a round case or rounded rectangular case, that holds the electronic components and sensors of the telemetry device. The biosensors, aligned in the blood flow direction, are placed on the contact surface, and a mini touch display is embedded on the top surface. The device is operated through the mini-touch display. The clinical information, health data, psychological stress, sleep data, daily diet pattern, fluid intake information, amount of expended energy, active step/stride taken, and other lifestyle management data are displayed on the mini touchscreen. The mini display is also used to view and access realtime medical diagnostic signals, recorded information, therapy techniques, automated cardiac activity guide, wake-up alarm, in-built applications and other important information. Push buttons and potentiometer integrated crown, are embedded on the parallel to side surface and perpendicular to the electronic board. The push buttons and crown are utilized to access different device applications, to calibrate the apparatus and to switch between the different functional modes. The crown integrated with potentiometer is used as the electronic embedded method to navigate through the application in row and columns, and to operate other apparatus functionalities. The rounded corners or round contact surface is used to evade the cuts, that may otherwise occur due to sharp edges.
[0022] The home screen of the smart wearable displays daily health management information and a motivational quote. The background motivational quote application is intended to psychologically improve the spirit of the user. The smart wearable apparatus comprises of applications for real-time clinical monitoring, cardiac training, tracking Emotional Index, persona oriented phycological stress management, sleep management and other lifestyle/wellness management information.
[0023] During physical training, the cardiac training application automatically tracks training intensity, rest period, training period, cardiac rate, training phase and other important health data. The automated cardiac application also has essential information to guide the user with health improvement and recovery. The push buttons are utilized to trigger begin, pause, un-pause and reset in the cardiac activity training application. The touch display, push buttons and the crown are used to access other functional command in the cardiac activity training application.
[0024] The real-time stress information is displayed in the emotional index (EI) meter and in a persona-oriented stress management application. The psychological stress management application displays EI meter, stress threshold information, stress management information and work schedule management features with priority stickies. The EI meter displays persona-oriented stress information, which has been extracted from the previously marked stress data points. The touch display and push buttons are used to mark unwanted stress levels.
[0025] The sleep application automatically tracks sleep and displays sleep period, sleep health, motivational wake-up quote and other sleep related information. The sleep application also includes a user configured wake-up alarm.
[0026] The medical application shows real-time information and recorded data on pulse rate, oxygen saturation, respiratory rate, body temperature, average pulse rate variability, neural activity balance, blood pressure data and blood glucose levels.
TWELFTH ASPECT
[0027] In the twelfth aspect, a parallel computational network is provided. The parallel computational network enables the computation with much higher speed and efficiency, while keeping the complexity low. The network of parallel computation network comprises of internal microprocessor, external server computers, accessorial mobiles devices, external computers and other connected local devices. The external servers are used for executing computational process, and as well as for remotely storing the information. The accessorial mobile devices and other synchronized devices are also used to compute and store the information. The network of parallel computing devices are accessed through wireless methods of 'WLAN, BLE, GSM' and through other possible modes of communication. Whenever necessary, stored information and computed results are communicated between the telemetry apparatus and network of devices.
THIRTEENTH ASPECT
[0028] The thirteenth aspect of the invention presents a real-time medical monitoring and wellness data processing system.
[0029] Initially, the recorded bio-signals passes through an accelerometer-based noise filtering process. The real-time feedback of the angle calibrated accelerometer signals are sampled in a normalized form, and the bio-signals are processed through 50/60 Hz digital filter to remove the power line noise disruption. The processed bio-signal and accelerometer signals passes through repetitive adaptive filter and other computational steps. This process removes motion noise from the bio-signal. Then the first order noise free signal further passes through a series of banked filters, low pass filter and correlation computational step for removing the rest of the noise.
[0030] The filtered signal is further analyzed through time domain and frequency domain peak processing methods to precisely compute real-time avg. pulse rate, instantaneous heart rate, hr tachogram and neural Activity balance coefficients of σΐ, σ2, σ3, σ3/ σΐ, σ3/ σ2, σ2Ι σ\ . The set of computed data and raw signals are sampled at a rate of 7.5Hz, 15 Hz, 30Hz, 100Hz, 125Hz, 240Hz, or lKHz. The sampled data is processed using a fast response analysis method, and the processed sampled is condensed utilizing a matrix compression method. The sampling and compressed data selection method significantly decreases computational effort needed to analyze the entire waveform. The compression is followed by an analysis to calculate continuous heart rate and average pulse rate. The signal ratio between the oscillating peak and stationary peak of red and Infrared biosensor, in the form of signal derivate is taken, to determine the oxygen saturation ratio.
[0031] The signal is passed through digital filters of High-Frequency(HF), Low- Frequency(LF), Very Low Frequency(VLF), Meyer pass filter and Ultra-low Frequency(ULF) signals. Then, the relative power under each frequency spectrum is calculated to assess neural activity. The derived coefficient of Pi, P2, P3 and P4 are evaluated through a set of computational steps to determine the overall health of Autonomous Neural System and cardiac system.
[0032] The noise-free signals are further analysed in different spectrums to compute respiratory rate, avg. breathing rate and meyer wave signal. The pulse signal is processed to decouple the noise artefact free signals into different wave signals. The pulse wave is iteratively decoupled to obtain breathing signal, and the derived signal is processed for peaks to determine the respiratory rate. The analysed signal is mathematically operated for computing average breathing rate, continuous respiratory rate and breathing rate. A similar analysis is utilized to decompose the meyer wave signal and its related parameters.
[0033] The user calibration input, extremum of optical data with respect to time and recorded data are analyzed for extracting the continuous blood pressure and diastolic pressure values. The dual sensor configuration is utilized to estimate momentum loss in the blood vessel, mean pressure and the systolic pressure. The recorded heart to device reference length is used in the cuff-based apparatus to accurately measure the mean arterial pressure.
[0034] An automated method to calibrate the heart to device reference length is as well provided. The value of 9-axis accelero meter sensor signals are recorded at different instructed arm positions of bent arm, fully stretched arm, lifted arm and straightened down stretched arm. Using the recorded sensor data, the forearm and Arm length are calculated, through which average heart to device reference length is generated.
[0035] The Near-Infrared biosensor signals and other optical signals of Green, Infrared and Red signals are processed to compute Blood Sugar Level. Initially, the input on the blood sugar level is taken for sensor calibration. The Green LED, Infrared LED and Red LED response signals are processed to remove the losses in the Near-Infrared signals, due to the blood flow fluctuations, tissue absorption and other coherent errors. The Processed Near- Infrared data is correlated and fitted over various patient's/user's/physician's inputs to calibrate the Near-Infrared biosensor. The continuous blood glucose levels, blood sugar levels, hyperglycemia and hypoglycemia are computed from the calibrated data. In case of chronic medical condition, the system automatically reminds the patient for medication, or alerts the user, user network and the physician network about the diagnosed health condition.
[0036] The real-time system further comprises of an automated method to record various stages of the sleep cycle, and to recognize obstructive sleep apnoea. The accelerometer values are initially evaluated for state of sleeping or dormancy, and the real time physiological signals are compared to wake or activity physiological data. After the verification process, the real time physiological signals of avg. breathing rate, systolic blood pressure, diastolic blood pressure and instantaneous Heart Rate signals are processed for tracking the time periods of non-rapid eye movement and rapid eye movement sleep cycles. Then a series of computational steps is applied on the instantaneous pulse rate data, analyzing for beats per minute difference in definite time intervals, for recognizing the sleep apnea condition. Then, the respiratory signal pattern validation step is utilized for verifying the state of sleep apnea and sleep cycle. The sleep apnea condition and its time-period are recorded in the system.
FOURTEENTH ASPECT
[0037] The fourteenth aspect of the invention provides a life-support system, which automatically recognizes daily activity, pre-clinical emergencies and records one's state of well-being. The recorded biosensor data, motion sensor data and wireless antennae are processed to evaluate the various postures, user training information, rest period, activity period and state of fatigue. The system further learns and records the various postures, movement data and activities of the user (such as (of sitting, standing, number of steps, number of strides, lap count, speed, training phase, resistance training, cycling, driving and more). The life-support system records subjective psychological stress points and identifies the stress state of the individual based on the computed vital bio-signal and electrical spectrometer signals. If the state of psychological stress is detected, the system automatically guides the user to a breathing stress management technique or other stress management methods. The system consists of automated clinical emergency life support method to detect the risk of CHF attacks, hypoxia, hypothermia, hypoxemia, blood poising, blood loss, hyperthermia, unusual ventricular activity, heat stroke, nervous breakdown and other chronic conditions. If a life threating or chronic condition is recognized, the apparatus alerts the user's network and life support network. The invention also provides an automated power saving method. The real-time system comprises of a low powered method to recognize the presence of the user based on the estimation of the realistic bio-response data and movement data. The recognized user presence is utilized to automatically power on, power off or restart the device.
FIFTEENTH ASPECT
[0038] The fifteenth aspect of the invention presents the accessorial software application and accessorial mobile apparatus, that is attached to the telemetry apparatus. The accessorial software application of the accessorial mobile apparatus comprises of components for daily health management, clinical condition management and device application management. [0039] The personal fitness management component of the software application is utilized to log and track personal information, routine health check-up data (like weight, height, basal metabolic index, basal metabolic rate, workout target), physical exercise activities and nutrition intake. The application displays real-time and recorded health data of base heart rate, commuted distance and calories expenditure. A cloud synchronization button on the application is utilized to synchronize the data with the cloud services and share the data with professional practitioners.
[0040] The stress management component of the software application comprises of emotional index meter, stress management information, stress management progress meter and guided meditation components. The Emotional Index meter shows persona-oriented stress levels and it oscillates according to the neural balance. The stress management meter reports the progress on the stress management. As the stress meter reaches the threshold, the device directs the user to guided breathing/meditation method or to a social communication interface. A daily work management feature on this interface is used to schedule professional work activity with priority. The work management functionality is included as procrastination is an indirect counterpart cause of mental stress.
[0041] The sleep management component of the accessorial software application tracks sleep cycles, sleep period, NREM-REM cycle length and other sleep trends. The user can view and access the computed data and recorded log. On recognizing sleep disorders, a warning message regarding the disorder symptom appears on the user screen. The user can connect with physicians and health professionals through the sleep management interface.
[0042] The accessorial mobile device further comprises of an interface to monitor real-time information on pulse rate, oxygen saturation, pulse rate variability, neutral activity, breathing rate, body temperature, blood pressure levels and blood glucose levels. The computed real-time and recorded results are displayed on the screen along with access to the individual physiological signal wave form. The user can connect with medical and health professional through this interface. The medication tracker and reminder feature records the medication pattern and medication reminder. The device automatically alerts the user at the correct time for medication. The data on this interface can be shared on online platforms and with medical and health professionals through the data synchronization button. [0043] Health network interface of the software application enables professional medical practitioners, dieticians, fitness instructors and other health professionals to interact with the patient/user. The health network is used by the professionals to guide the user with health and therapy practices. The health blogs, articles and classes can be accessed by the user through this component of the software application.
[0044] A daily health management component displays information on the number of active steps taken, sleep health, heart rate with oxygen saturation ratio and emotional index matrix. The background information on daily well-being can be accessed through the daily health management component. The progress and history of the user can be accessed by clicking on the history trend button of this interface. The work schedule can also be organized through this interface.
[0045] The ease of lifestyle organization interface of the accessorial software application has the functionalities to synchronize, install and manage 3rd party and native applications on the telemetry mobile apparatus.
Brief Description of the Artwork
[0046] FIG. 1 is the block diagram and hardware architecture of the telemetry apparatus;
[0047] FIG. 2 shows the design of a reflective optical spectrometer with adjacent LED- photodiode configuration;
[0048] FIG. 3 is the isometric view of the hardware packaging of the reflective sensing
apparatus;
[0049] FIG. 4 is the transmittive optical configuration based spiral ring embodiment form of the telemetry apparatus;
[0050] FIG. 5 A and FIG. 5B show isometric view of a ring based wearable embodiment form for remote clinical monitoring and daily wellness management;
[0051] FIG. 6 illustrates the 3-D view of the clinical embodiment form for forehead and limb telemetry monitoring;
[0052] FIG. 7 is the auxiliary embodiment form utilized for monitoring health and clinical information during exercise on training machines;
[0053] FIG. 8 is the 3D-view of the live clinical and telemetry monitoring instrumentation; [0054] FIG. 9 A and FIG. 9B show isometric view of wearable tracker embodiment form for real-time medical monitoring and general wellness management;
[0055] FIG. 10A and FIG. 10B show the smart wearable embodiment form of the telemetry apparatus with rounded corners;
[0056] FIG. 11 A and FIG. 1 IB show the round face smart wearable embodiment form of the telemetry apparatus;
[0057] FIG. 12A illustrates an automated cardiac training software application of the
wearable embodiment form;
[0058] FIG. 12B is a persona oriented psychological stress management application of the wearable embodiment form;
[0059] FIG. 12C is the sleep management software application of the smart wearable
embodiment form;
[0060] FIG. 12D shows the application design to view live and stored medical information;
[0061] FIG. 13 illustrates the network of devices technology to compute and extract
information more speedily and efficiently;
[0062] FIG. 14 illustrates the application of this telemetry device for remote clinical
monitoring purposes;
[0063] FIG. 15 shows the application of this telemetry device for live clinical monitoring in a crowded hospital scenario;
[0064] FIG. 16A address the processing method and flow chart to remove the motion
disruptions from Input bio-signal using accelerometer signals as real-time feedback;
[0065] FIG. 16B describes accelerometer signal computation method to record the movement data set;
[0066] FIG. 17 is the flow diagram of a low powered computational method to process the first order motion artefact free bio-signal for further removing noise and for calculating Avg. Heart Rate, Instantaneous Heart Rate and Neural Activity balance;
[0067] FIG. 18 describes the flow-chart of a low powered real-time bio-sensor processing method to compute the Continuous Heart Rate and Oxygen Saturation Ratio; [0068] FIG. 19 shows signal analysis methods to extract the parameters related to Neural Activity, respiratory activity and Meyer wave activity;
[0069] FIG. 20 shows the real-time computational method to compute breathing signals and meyer wave signals;
[0070] FIG. 21 shows the computational flowchart to measure blood pressure signals from optical signals and calibrated data;
[0071] FIG. 22 illustrates the automated method to calibrate anatomical measurements
necessary for micro cuff-based blood pressure measurement;
[0072] FIG. 23 describes the Near-infrared optical biosensor-based method to extract blood glucose levels, and blood glucose thresholds;
[0073] FIG. 24 is the flow diagram of the computational method to recognize sleep cycles and the risk of Obstructive Sleep Apnea Disorder;
[0074] FIG. 25 shows a basic flow diagram of multi-functional medical device that computes medical information using the previously described computational methods;
[0075] FIG. 26A, FIG. 26B and FIG. 26C describe an automated life-support system that automatically recognizes postures, user activity, acute clinical conditions and the state of well-being, and automatically alerts the user eco-system on detecting health risks;
[0076] FIG. 27A shows the accessorial software application that displays important logged and computed information on user's or patient's heath;
[0077] FIG. 27B shows the accessorial software interface for stress and work management;
[0078] FIG. 27C shows the accessorial software to monitor sleep patterns and sleep health;
[0079] FIG. 27D shows the accessorial software application to monitor vital bio-signals, and it also includes other functionalities to manage medical conditions;
[0080] FIG. 27E shows the accessorial health platform software interface for connecting with health network and professional practitioners;
[0081] FIG. 27F shows the user application interface for tracking daily health
and for well-being management; and
[0082] FIG. 27G shows the application interface to install and manage applications on the mobile apparatus. Detailed Description of the invention
[0083] Comprehensively, the disclosure can be utilized and perceived in various applications that include clinical instrumentation, portable medical device, general wellness management technology and other forms of smart health tracking auxiliary devices. The principle of the described invention is not intended to limit to the specific device or instrumentation application. The disclosure can be chiefly classified into live clinical diagnostic instruments, telemetry medical apparatuses, mobile wellness management devices, software medical device and other forms of health management devices.
(Hardware Architecture)
[0084] FIG. 1 is the hardware architecture of the telemetry apparatus. It comprises of optical elements, optical spectrometer, electrical spectrometer, biosensors, analogue circuitry, digital ICs, power supply unit, wireless antennae, computational device and other electronic components.
[0085] The hardware of the optical spectrometer has reduced input signal sent to LED signal probes, of Near-Infrared LED 1, Infrared LED 2, Red LED 3 and Green LED 4, through a biosafety frontend 6. A multiple switch set 5 is attached to the biosafety circuit and a gain programmable Bio-LED frontend 7, which is utilized as the means to reduce the power requirement and number of active components. The gain programmable LED frontend 7 triggers the input signal, where the gain can be adjusted based on the user input or programmed input. The set of multiple switches 5 automatically shifts the input signal to generate the multi-spectral signal as per the control commands.
[0086] An optical component 8 focuses and concentrates the optical response on the photodetector set 9. The photodetector set 9 records the optical response and the photo- response excitation passes through a series of logic circuit of Stage 1 amplifier 10, Buffer 11, power notch 12, Stage 2 amplifier 13, ADC 14 and Ambient noise cancellation IC 15. The series of logic circuit comprising of 10, 11, 12, 13, 14 and 15 filters noise, amplifies and processes the output response. The response, in turn, is communicated to the microprocessor 45.
[0087] The electrical spectrometer comprises of set of electrical sensors 16-17-18-19, biosafety circuit 20, a series response processing circuit, and Impedance Analyzer IC 27. The input signal is generated by the impedance Analyzer chip 27 and passes through a biosafety circuit 20. The biosafety circuit is made of an input impedance 21 greater than the feedback impedance 22, which is used as the means to improve the operational safety. The regulated input signal is injected through an input electrical sensor El 16 and drains through the electrical sensor 19.
[0088] The electrical sensor E2 17 and electrical sensor E3 18, are placed between the input electrical sensor El 16 and draining electrode E4 19, for extracting the response signals. The response is analysed, amplified and filtered through a response circuit line of Instrumental amplifier 23, Gain amplifier circuit 24, power notch filter 25 and V to I converter IC 26. The analysed and processed response passes through the Impedance Analyzer chip 27, which assess and resolves the output electrical response, and communicates the analyzed response to the microprocessor.
[0089] The sensor set of MEMs/NEMs non-contact temperature biosensor 28 and MEMs/NEMs 9/6-axis accelerometer 29 are attached to the microprocessor 45, which are utilized to record real-time feedback, body temperature and motion signals. A set of wireless antennae of the WLAN 30, BLE 31, GSM 32 and GPS 33 are either externally attached to the microprocessor or integrated inside the microprocessor 45. The set of wireless antennae 30-31-32-33 communicates the data between the telemetry apparatus, and the set of external storage and computing devices like accessorial mobile devices, server, etc. The set of wireless antennae 30-31-32-33, along with the accelerometer 29, is used for tracking the real-time location and movement signals like phase, speed, steps taken, etc. The wireless microprocessor 45 with inbuilt memory, is used for communicating commands and feedbacks with the internal electronic components of LED frontend, photodetector frontend, Impedance analyser IC 27, Accelerometer 29, temperature biosensor 28, other sensors, wireless antennas 30-31-32-33, USB module 39 and other electronics modules. The microprocessor 45 also computes and stores the required information.
[0090] The hardware of the telemetry apparatus is powered by a power supply unit, containing power management IC 34, supercapacitor 35-battery set 36, supercapacitor 37-renewable energy harvester 38, USB module 39 and negative voltage converter 40. The power management unit 34 is attached to the power supply unit, and microprocessor 45. The power management IC 34 regulates the current flow and power supply. The USB module 39 and supercapacitor 35-battery set 36 powers the electronic circuit. The micro-USB module 39 is also used to communicate the data with the external devices and charging the battery 36 of the internal circuit. The negative signal reference is generated by the negative voltage converter 40. The power supply unit has an alternative powering unit containing renewable energy harvester 37 and supercapacitor 38.
[0091] A touch display 41 is attached to the hardware for viewing and accessing the real-time medical information, health data and on-device applications. The touch display 41 is used to operate the instrumentation and embodiment forms of the telemetry apparatus. Apart from the display unit 41, the hardware of the telemetry device is internally or externally attached to an additional user interaction system of mic 42, video camera 43 and speaker 44. The set of user interaction hardware components is utilized for interacting with the professional medical and health practitioners for clinical and health analysis. The professionals can send and receive the information, as well supervise the user. The user interaction unit 42-43-44 is also used as the means to perceive the recorded and computed information, and to operate the telemetry device and its in-built applications.
(Reflective Optical Spectrometer)
[0092] FIG. 2 is the reflective optical spectrometer with adjacent LED-photodiode arrangement, where each signal probe and respective response detectors are placed next to each other. The signal probes of Green LED 46, Red LED 47, IR LED 48 and Near-Infrared LED 49 are assembled at optimal distance between their corresponding photodetector set of visible, IR photodetector and Near-Infrared photodetector of 51-52-53-54-55. The Infrared LED's 49 radiation is tuned and focused through an optical system/micro-prism 50. The set of LED signal probes 46-47-48-49 inject the optical signals and the reflected the signal response is recorded by the set of adjacent Photodetector probes 51-52-53-54-55. The Non-contact NEMs/MEMs temperature bio-sensor 56 is placed at an optimal distance and away from the heat dissipation surface, and with its thermopile probes facing the contact surface. The temperature bio-sensor 56 is utilized for recording the error-free body temperature and thermal noise feedback. A disposable foam base 57 is placed on the contact surface of the optical spectrometer 58, around the sensors, signal probes and receiver area, which is used as a mechanical means for reducing the motion errors. The adjacent LED- photodetector configuration is utilized to quickly and simultaneously extract the optical response.
(Hardware packaging of the telemetry apparatus with reflective spectrometer)
[0093] FIG. 3 is the isometric view of the spectrometer packing. The biosensors set of optical spectrometer apparatus 58, non-contact MEMs/NEMs temperature sensor 63 and the set of electrical sensors 59-60-61-62 are assembled on the contact surface 64, for extracting the bio-signal response. The optical apparatus 58 is aligned in the blood flow direction for extracting optical response. The 9/6-axis MEMs/ EMs accelerometer 65 is arranged in a corresponding reference direction to the biosensor set, which is utilized as an efficient method to extract the feedback signals and motion signals. The electrical sensor of 59, 60, 61 and 62 are arranged in a straight line, and in a specific direction with reference to the accelerometer sensor 65. The electrical sensor 60 and electrical sensor 61 are placed in between the input electrical sensor 59 and drain electrical sensor 62, which is used for extracting the electrical response. The Analog and Digital frontend plane 66, containing the sensor's digital and analog frontend, is placed in a successive vertical plane to the biosensor plane. The third sequential electronic plane 67 containing microprocessor, power supply unit, computing unit, wireless antennas and other ICs embedded plane. The last layer 68 of the packaging accommodates the set of battery, energy generation unit and other power unit components. The last power plane 68 is packaged such that the battery and metal components does not obstruct the wireless antennas, which is used as method to curtail noise interruption. The casing of the package is perforated with ventilation pores 70 for regulating the heat of the device. The described packaging method is used as the means to reduce tracing efforts, curtail electrical noise and increase packaging efficiency. The foam base/disposable sponge 69 is placed on the contact surface 64 around the biosensors, which is utilized for reducing the motion errors and increasing the multi-use utility.
(Spiral Ring Embodiment form with transmittive optical configuration)
94] FIG. 4 is the isometric view of the transmittive optical configuration based ring embodiment preferred in the clinical monitoring and general wellness management. The ring embodiment form is fabricated in a spiral ring structure with a main heat dissipating expandable ring body 71 and a spirally extending element 89. The ring 71-89 is made up of heat dissipating and expandable material. The main ring frame 71 contains sensors, wireless antennas, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other essential electronic components. The optical signal probes of Near-Infrared LED 72, Infrared LED 73, Red LED 74 and Green LED 75 are placed in an inverted configuration with LED probes facing the underside of the contact surface 78. The NEMs/MEMs non-contact temperature biosensor 76 is assembled at edge of the ring frame and away from the heat dissipation surface, which is utilized for measuring body temperature values and thermal feedback. A 9/6-axis NEMs/MEMs accelerometer 77 is positioned in a specific reference direction to the biosensors for precisely recording the movement feedback and movement signals. The photodetector set of visible/IR 80 and Near-IR photodetectors 81 are aligned with the corresponding signal probes and placed on the top response receiving surface 82. An optical lens 79 is placed before the photodetector set 80-81 for efficiently capturing and focusing low powered optical response on photodetector set 80-81. The inverted configuration of LED signal probes 72-73-74-75 and photodetector set 80-81, minimizes the background optical noise in the recorded response. The set of electrical biosensors 83-84-85-86 are assembled in a straight line on the perpendicular contact surface 87, or in an aligned straight line on the contact surface, which is utilized for extracting electrical bio-signals. The regulated input signal is injected through the input electrical sensor 83 and drains through the electrical sensor 86. The electrical sensor 84 and electrical sensor 85, placed between the input electrical sensor 83 and draining electrode 86, are used for extracting the response signals.
[0095] The spirally protruding structure 89 contains an adjustable clipper 90 and hinge 91, that holds the instrument on the sensing spot in a size adaptable manner. The expandable material is additionally utilized to hold the device securely on the sensing spot. The ventilation pores 88 are embedded on the device casing. The heat dissipating casing material along with the ventilation pores 88 are used as the means to regulate the device heating. A foam base 92, implanted on the contact surface surrounding the biosensors, enhances the mechanical gripping of the device.
(Open Ring Embodiment form of the telemetry apparatus)
[0096] FIG. 5 A and FIG. 5B show the telemetry embodiment form for general wellness management and telemetry monitoring. The sensors, detectors and signal probes are assembled at an optimal sensing point 93 and an optimal response spot 94 of the contact surface 96. A micro vibrator 95 is assembled on the contact surface 96 of the ring, which is utilized to guide the user during mental stress/anxiety and to prompt the scheduled alarms calls. The device has a vibrator 95 based persona-oriented stress management application, which automatically activates and guides the user during the instances of stress or anxiety. Once the state of stress or anxiety is recognized, the micro-vibrator module 95 on the contact surface oscillates in a definite remedial pattern to calm the user. During the realtime guided stress management application, the vibrator 95 oscillates with 7.5%— 25% higher ON time to indicate breath-out demonstration and 7.5%— 25% lower OFF time to indicate breath-in demonstration. The button 101 on lower edge surface 102 is used to switch the device mode to meeting mode, work mode, fitness mode and sleep mode. The button 97 on the top surface 98 is used for accessing the telephonic calls, wireless synchronization facilities and other functionalities. A gesture sensor 99 is embedded on the front surface 100 (user facing surface). The gesture sensor 99 is used for accessing and navigating through the presentations and applications. The button inputs 97-101 are also used to access presentations and applications. The open ring structure 103 of the ring apparatus holds the device on the sensing spot in a size adjustable manner.
(Telemetry embodiment form for forehead or limb monitoring)
[0097] FIG. 6 is the 3D view of the embodiment form for clinical forehead monitoring or ambulatory limb telemetry monitoring. The Reflective bio-sensing apparatus with foam base 104 is embedded on the contact surface of the main casing 105, which is used for sensing the bio-signals. The main casing 105 is made of heat regulating material. The digital IC, analog chips, microprocessor, wireless antennae, sensors, power supply unit and rest of electronics items are packaged inside the heat regulating casing 105. A soft stretchable cloth 106 is attached to the main packaging case 105, which contains adhesive surface 107 and stickable surface 108 end tail pads. The adhesion action between the adhesive pad 107 and stickable pad 108 is used to fasten the device, and as well hold the sensing apparatus on the sensing spot. Additionally, the stretchable cloth belt 106 holds the apparatus steadily on the sensing spot. The foam base on the contact surface and surrounding the biosensors is utilized as a mechanical means to reduce movement noise in the bio-signal recording. The other use of the disposable foam includes improvement of the clinical hygiene and reusability efficiency.
(Auxiliary training machine attachment embodiment form)
[0098] FIG. 7 shows the embodiment form utilized as an auxiliary attachment to the wellness instrument. The auxiliary device 109 is utilized while training on exercise machines like cycle, treadmill or bike to record and monitor clinical/health signals. The instrument 109 with the heat regulating casing 110 is attached to the wellness exercising instrument through an expandable machine gripping holder 112. During the health management activity and medical monitoring, the expandable machine gripping holder 112 is used for fastening the instrument 109 on the auxiliary machine handles. The reflective sensing hardware and the set of biosensors with foam base 111 is placed on the contact surface of the main packaging frame 110, which is used for recording the relevant real-time clinical and health information. The digital chips, analog ICs, microprocessor, wireless antennae, sensors, microprocessor and essential electronics components of the apparatus 109 are packaged in the heat regulating case 110. The foam base on the contact surface around the biosensors, is utilized to reduce movement noise in the bio-signal recording, and as well to improve the clinical hygiene and reusability efficiency.
(Multifunctional clinical instrument for live and telemetry monitoring)
[0099] FIG. 8 is the live and telemetry clinical monitor, that can display real-time medical signals as well as personalized results. The live clinical monitor has a central wireless base station 116 and an inflatable mini-cuff 113 packaged with set of biosensors 114 (electrical spectrometer, optical spectrometer, non-contact MEMs/NEMs temperature sensor, accelerometer, etc). The digital ICs, analog chips, power supply unit, sensors, microprocessor, wireless antennae and other electronics are packaged inside the wireless base station 116. At the contact of the user, the mini-cuff 113 automatically inflates to detect the resonant point for blood pressure calibration. The bio-signals are extracted through the set of biosensors 114. A slate sized touch display 117 is assembled on the wireless base station 116, which is utilized for accessing and viewing important clinical information, patient history, patient's physical activities, health data and live medical signals (like breathing rate, heart rate, oxygen saturation, bio-temperature, blood pressure, blood sugar levels, neural activity balance, etc). The slate sized touch display 117 is also used at the means to operate the medical instrument and to access the in-built applications. The base station 116 along with the slate sized monitor 117 and buttons 118-119, is attached to the mini-cuff 113 both wirelessly or through an electrical cord 115. The button 118 on the base station 116 resets the medical analysis, powers on/off the device and executes other important functionalities. The patient history, medical information and other important information are synchronized, between mobile telemetry apparatus and computer server/accessorial mobile apparatus, through the button 119 on the base station 116.
(Smart band embodiment form of the telemetry apparatus)
[0100] FIG. 9 is the preferred wearable embodiment form for remote clinical monitoring and daily well-being management. FIG. 9A shows the isometric front view of the smart band embodiment form. FIG. 9B shows the isometric back view of the smart band embodiment form with reflective hardware apparatus. The device comprises of mini touch display 120, trigger button 121, mode-indicator 122, wireless synchronization button 123, micro/mini- inflatable strap 126 and Stress Management blinking LED set 124-125. The mini-touch display 120, placed on the top surface of the apparatus, is utilized for operating the apparatus, accessing in-built application and viewing the essential information (such as medical information, health data, bio-signals, general wellness data, etc). A set of Red indicator LED 124 and Green indicator LED 125, attached on the top surface, are used as an apparatus guided method for stress management. The indicator LEDs of 124-125 automatically blinks to guide the user during the instances of psychological stress or anxiety. During the state of mental stress, the red indicator light 124 automatically flashes at the detected neural activity and the green indicator light 125 automatically flashes in a definite assisting pattern. For guiding the user through stress management, the green indicator light 125 blinks with a 7.5%— 25% higher ON time to indicate breath-out demonstration, and 7.5%— 25% lower OFF time to indicate breath-in demonstration. The strap-based micro/mini-inflatable cuff 126 automatically inflates to detect the resonant compression point for blood pressure calibration. The mode indicator light 122 shows different operating modes and other functional status of the apparatus. The trigger button 121 is utilized for operating the device, accessing in-built applications and utilizing other functionalities. The apparatus has a wireless button 123 for synchronizing the data and telemetry device with the accessorial devices. The biosensor set and reflective sensing apparatus 128 (of optical apparatus, electrical, non-contact temperature sensor and accelerometer) is assembled on the contact surface of the device. The digital ICs, analog chips, power supply unit, sensors, microprocessor, wireless antennae and other electronics are packaged in the casing 127.
(Smart wearable embodiment form of the telemetry apparatus)
01] FIG. 10A shows the start-up application and rounded corner smart mobile apparatus design for general wellness management and telemetry medical monitoring. The mobile apparatus 132 has a potentiometer integrated crown 133 and push buttons 134-135, which are utilized as the means to operate the apparatus 132 and access in-built applications. The real-time diagnostic signals, health management data, medical data and other important information are viewed on the mini-touch screen 136. The mini touch display 136 is also used as the means to operate the device 132, and device applications. A background application containing motivational quote 137 is displayed on the top of the apparatus 132, which is intended to improve the spirit of the user. The diagram also shows a start-up application comprising information on Time & Date 138, Step Count 139, Calorie burnt 140, Calorie consumed 141, weekly health history 142, battery strength 143, climate information 144, wireless connectivity 145 and other trends.
[0102] FIG. 10B shows the placement of the reflective sensing apparatus on the mobile apparatus with rounded corner design. The reflective sensing apparatus 146 is assembled in an optimal sensing spot 147 on the contact surface 148 of the apparatus 132. The rounded corners 149-150-151-152 of the apparatus 132 are chosen as a means to evade cuts and injuries, that may occur due to the otherwise sharp corners.
[0103] FIG. 11A shows the start-up application and round face smart mobile apparatus design for general wellness management and telemetry medical monitoring. The mobile apparatus 153 has a potentiometer integrated crown 133 and push buttons 134-135, which are utilized as the means to operate the apparatus 153 and access in-built applications. The real-time diagnostic signals, health management data, medical data and other important information are viewed on the mini-touch screen 136. The mini touch display 136 is also used as the means to operate the device 153, and device applications. A background application containing motivational quote 137 is displayed on the top of the apparatus 153, which is intended to improve the spirit of the user. The diagram also shows a start-up application comprising information on Time & Date 138, Step Count 139, Calorie burnt 140, Calorie consumed 141, weekly health history 142, battery strength 143, climate information 144, wireless connectivity 145 and other trends.
[0104] FIG. 11B shows the placement of the reflective sensing apparatus on the mobile apparatus with round face design. The reflective sensing apparatus 146 is assembled in an optimal sensing spot 154 on the contact surface 155 of the apparatus 153. A round face and bezel 156 of the apparatus is chosen as a means to evade cuts and injuries, that may occur due to the otherwise sharp corners.
[0105] Series of Figure 12 shows the embedded health management and clinical monitoring applications of the smart wearable embodiment.
[0106] FIG. 12A is the cardiac training software application of the smart wearable apparatus.
During physical training, the cardiac training application automatically tracks both quantitative and qualitative data such as training intensity 157, training period 158, rest period 159, cardiac rate 160, training phase 161 (such as distance travelled, average speed count), sets and reps counts 162 and other important health data. [0107] The training session begins on the long hold of the trigger push buttons 134-135, and the real-time training data is recorded. The tracked data is displayed on the mini screen 136. On a subsequent short press of 134-135, the tracking switches between rest and intensity period, and a long hold of the push button 134-135, the tracking period halts. The apparatus either ends the activity tracking on a successive small hold of the push button 134-135 or resumes the tracking on a successive long hold of the push button 134-135. The mini-touch display 136 is used as an alternative means to operate the commands of the application.
[0108] FIG. 12B shows a persona oriented psychological stress management application. The mobile apparatus's mini screen 136 displays queued work schedule with priority rating 163, real-time stress levels (Emotional Index meter) 164, and information on stress levels and stress management 165. The user initially marks several reference data points to train the smart apparatus for learning the persona-oriented stress levels. The real-time stress levels are generated through previously marked subjective data points. The reference data points are generated based on the analysis of biosensor and other vital information. Based on the reference points and real-time signals, the apparatus generates subjective psychological stress data 164. On recognizing the state of stress or anxiety, the application automatically guides the user to a stress management method. The push buttons 134-135, crown 133 and mini-touch display 136 are utilized as the means to mark the stress data points, to navigate through the work schedule and to operate the functionalities of the application.
[0109] FIG. 12C shows the sleep management application of the smart wearable apparatus.
The real-time sleep information 166 is automatically recorded and displayed on the screen 136, along with an accessorial user configured alarm control 167. A morning motivational quote 168 is displayed on the screen 136 to keep the user inspired. The push buttons 134- 135, crown 133 and mini-touch display 136 are used as the means to set the alarm, access the logged data, view the recorded data and as well to operate the functionalities of the sleep management application.
[0110] FIG. 12D shows the mobile application of the smart wearable apparatus to view live medical information and access logged data. The recorded and real-time vital information 169 of pulse rate, oxygen saturation ratio, breathing rate, body temperature, heart rate variably, blood sugar data, blood pressure data and Neural Activity are displayed on the mini-screen 136. The push buttons 134-135, crown 133 and mini-touch display 136 are utilized as the means to access the logged data and operate the functionalities of the live monitoring application. (Network of Computational and Storage Devices)
[011 1] FIG. 13 shows wireless devices network based parallel computation method to compute and extract information more quickly. The Telemetry device 170 sends and receives data to/from the server computer 172 and the other accessorial devices 171 via BLE/WLAN, GPS and other techniques. The accessorial mobile apparatus 172, server computer 171 and other network of devices are utilized for computing and storing the information. The network of devices based computational and storage method is used as a faster and efficient means to compute and store information. The communication channel between the 170 and
172 is established via central server 171 or directly through the wireless pathways.
(Application of the telemetry apparatus)
[0112] FIG. 14 shows the application of the telemetry device for remote clinical monitoring purposes. The recorded real-time information, clinical information, health-data and user input information are wirelessly sent to the hospitals 175 from the wireless medical device
173 in a remote location 174. The clinical advice, medical instruction and other information are sent wirelessly from the Medical Centre/Hospitals 175 to the Telemetry device 173 located in Remote Location 174.
[0113] FIG. 15 shows the application of the telemetry devices in a crowded hospital scenario.
The medical practitioners 177 can attach medical devices to the patients in the rooms Rl,
R2, R3, R4 178, 179, 180, 181 in the patient's clinical compartment 176. The recorded real-time information, clinical information, health-data and user input information are wirelessly sent from the wireless medical devices of 173 in rooms of 178, 179,
180, 181 to the physician's room 176 with telemetry monitor and base station 175.
The real-time medical information, patient's history, patient's information, diagnosed clinical condition and recorded medical analysis are viewed on the wireless telemetry monitor of the base station 175. The clinical advice, medical instruction, drug dosage recommendation and other important information are sent wirelessly from the Physician's compartment 176 or personally conveyed to the patient. The information can be communicated wirelessly between the medical practitioners 177, patients ( 178, 179,
180, 181 ) and 176 in lesser time and more efficiently compared to the typical clinical and hospital set-up. This scenario shows that clinical analysis of multiple rooms 178, 179,
180, 181 in the patient's compartment 176 can be conducted and analyzed in lesser time with lesser efforts and with more efficacy. (Real-time System)
[0114] FIG. 16A is the signal processing flow diagram which describes the utilization of accelerometer signals as a real time feedback to remove the motion errors from the bio- signal. Accelerometer signals are recorded along with other bio-sensor data with their respective sampling rate. The sampled bio-signal is initially passed through a 50/60 Hz Notch filter to remove the power line noise disruption. The bio-sensor data and angle calibrated accelerometer data is processed with a normalized parameter based repetitive adaptive filter and other computational method to remove low frequency motion noise from the bio -signal.
[0115] FIG. 16B is the flow diagram to process accelerometer values to compute the movement activity of the user or patient. Normalized magnitude for amplitude of the recorded accelerometer signals is computed and then the base line errors are removed. Then, a data based computational method and peak detection algorithm is applied to the processed data to calculate the active movement data.
[0116] FIG. 17 is the flow diagram to process the first order motion artefact free bio-signal to precisely compute avg. pulse rate, instantaneous heart rate, pulse rate variability and neural activity coefficients. The first order signal is passed through a series of banked and low pass filter to remove the rest of the noise in the bio-signals. Then, a data correlation method is applied between the processed bio-sensor data and accelerometer data to further remove the motion artefact noise from the original signal. A peak detection algorithm is applied to the 3rd Order processed motion artefact free signal to compute average, pulse rate and instantaneous heart rate. The recorded heart rate time intervals are plotted to display the pulse rate variability and HR Tachogram. A variance-based data method is applied to the derived pulse rate and variability data for computing the autonomous neural activity coefficients of σ\, σ2, σ3, σ3/ σΐ, σ3/ σ2, σ2Ι σ\ .
[0117] FIG. 18 shows the low powered computational method to extract continuous heart Rate, avg. pulse rate and oxygen saturation levels. The 3rd Order signal is sampled at chosen sampling rate and recorded in 32/64/128.... data points. A discrete wave transformation is applied to the processed signal and a selection matrix is operated on the resulting frequency domain signal. The operation of selection matrix significantly decreases computational effort needed to analyse the entire waveform, and an iterative peak detection algorithm is applied to the processed signal to determine maxima's frequency and thereof continuous heart rate and average heart rate are extracted. The signal ratio between the oscillating peak and stationary peak of red and Infrared biosensor is taken to determine the oxygen saturation ratio.
[0118] FIG. 19 shows band-pass digital filters and power spectrum analysis methods to process Inverted tachogram data (i.e. frequency domain signal of Instantaneous heart rate). The reconstructed frequency domain signal is divided into High-Frequency, Low-Frequency, Very Low Frequency, Meyer band and Ultra-low frequency signals using the high pass, bandpass and low pass digital filters of corresponding bandwidths. Then, the relative power under each frequency spectrum is calculated to assess neural activity. The derived coefficient of Pi, P2, P3, P4, etc are evaluated through a set of computational steps to determine the overall health of Autonomous Neural System and cardiac system.
[0119] FIG. 20 shows the flow diagram and analysis method to compute and display respiratory signal, continuous respiratory rate, meyer wave signal and average breathing rate. The noise-free pulse bio-signals are analyzed for extremum to decouple the noise artefact free signals into different wave signals. An iterative wave decoupling algorithm is applied to the pulse signal to obtain the low frequency breathing signal. The derived signal is processed for peaks and experimental parameter to determine the respiratory rate. The analysed signal is mathematically operated for computing average breathing rate, continuous respiratory rate and breathing rate. A similar analysis is applied to decompose the meyer wave signal and its related neural parameters. This method of computational wave decoupling is low powered, and the accessorial mobile/server computational devices are utilized to improve the response time of the medical apparatus.
[0120] FIG. 21 is the flow diagram and computational technique to measure blood pressure data from previously calibrated user data. The user calibration input, optical data and extremum of the samples with respect to time are recorded. The user input and recorded optical data are employed to calibrate the biosensor reading. In all device configurations, the method of optical intensity ratio between the extremum is utilized to calibrate the blood pressure values of continuous blood pressure and diastolic pressure. The dual sensor configuration is utilized to estimate momentum loss in the blood vessel, mean pressure and the systolic pressure. The recorded heart to device reference length is used in the cuff-based apparatus to accurately measure the mean arterial pressure. [0121] FIG. 22 shows the flow diagram to automatically calibrate the heart to device reference length, that is employed to compute blood pressure. The value of 9-axis accelerometer sensor signals are recorded at different arm positions of bent arm position, fully stretched arm position, lifted arm position and straight down arm position. Using the recorded sensor data, the forearm and arm length are calculated, through which average heart to device reference length is generated.
[0122] FIG. 23 shows the flow diagram and method to process the near-infrared bio-sensor signals and other optical signals to compute blood sugar levels. Initially the input on the present blood sugar level is taken for sensor calibration. The Green LED, IR LED and Red LED response signals are used to compensate the intensity losses due to the blood flow fluctuations, tissue absorption and other coherent errors. The Processed Near-Infrared data is correlated and fitted over various patient's/user's/physician's inputs to calibrate the biosensors for approximate real time Blood Sugar values. Physiological threshold values of hyperglycemia and hypoglycemia are analyzed from the calibrated data. The system automatically reminds the patient for medication and alerts the user/user network or the physician about the diagnosed health condition.
[0123] FIG. 24 shows the flowchart and computational process to record various stages of the sleep cycle and to recognize obstructive sleep apnea Conditions. The accelerometer values are initially verified to make sure that user is in sleeping or dormant position. Then the real time physiological signals of (oxygen saturation ratio, body temperature, blood glucose levels, blood pressure, etc) are compared to state of wake, sleep and activity data to verify the state of sleep and rest. After the verification process, the real time physiological signals of avg. breathing rate, avg. systolic blood pressure and instantaneous heart rate signals are processed to track the time periods of non-rapid eye movement and rapid eye movement sleep cycles. Then a series of methodical computational steps are applied on the instantaneous heart rate, sleep cycle and respiratory rate data to recognize sleep apnea conditions and to calculate the time-period of sleep apnea. The pulse rate data in a time interval of 30-60s and for 5-7BPM difference is analyzed to recognize sleep apnea conditions. The respiratory signals are validated for sleep apnea conditions after pulse rate and instantaneous pulse rate data analysis. The recognized sleep health conditions and time period are recorded. Once the mild to severe symptoms of OSA are recognized by the apparatus, a warning message is sent to the patient and her/his physician network. [0124] FIG. 25 illustrates the basic low powered flow diagram that is utilized in multifunctional medical device, telemetry apparatus and general wellness management applications. Initially, the values of the vital signals like pulse rate, continuous heart rate, pulse rate, avg. heart rate, oxygen saturation ratio, neural activity, breathing rate, blood pressure data and blood sugar levels are extracted using the previously described computational methods. The realistic value of biological signals are verified to check if the worn by the user. The device automatically restarts on recognizing realistic value, else it remains in or goes to the sleep and shut-down mode. The device also automatically alerts user's life-support network and social on detecting clinical emergency risks.
[0125] FIG. 26A, FIG. 26B and FIG. 26C shows an automated life-support method for recognizing user activity, pre-clinical emergency conditions and for recording one's state of well-being. Initially, the sensor values are processed and calibrated. The sensor data, accelerometer values, GPS antenna, wireless antenna and bio-signals are evaluated for recognizing various postures and movement data (of sitting, standing, number of steps, number of strides, lap count, speed, training phase, resistance training, cycling, driving, etc). The recorded physiological information and motion sensor data are further processed and learnt by the device for precisely evaluating the postures, fatigue condition, rest period and activity period of the user. The postures, activity state, training data and other computed information are learnt and recorded. The circadian errors are removed from the derived data and the health of circadian cycle is evaluated using a learning method. The electrical signals and optical signals are correlated and corrected to rectify the errors in the bio-signal data. Then, the system computes BMR data and calorie expenditure from the computed vital signals and physical activity. A learning method of the system automatically derives the low-powered bio-signal processing methods and life-support process. The system detects the state of mental stress or anxiety utilizing the EEG patterns, recognized Cortisol level, respiratory patterns and HRV patterns. If the user triggers for new stress threshold, the device records new stress mark-ups. Based on the bio-signal data and stress mark-ups, the system derives subjective stress levels. On recognizing the state of mental stress, a guided breathing stress management technique is presented to the user that functions on the individual's real time vital signals or the user is diverted to a stress management support network and social media. The clinical life-support component of the system automatically recognizes the risk of CHF attacks, hypoxia, hypothermia, hypoxemia, blood poising, blood loss, hyperthermia, unusual ventricular activity, heat stroke, nervous breakdown and other chronic conditions from oxygen saturation data, pulse rate, breathing data, neural parameters and HRV data pattern. If a life threating or chronic clinical condition is recognized, the apparatus automatically alerts the user's network and life support network.
(Accessorial Mobile Device and Software Application)
[0126] Series of FIG. 27 are the software applications of the accessorial mobile apparatus attached to the telemetry apparatus.
[0127] FIG. 27 A shows the accessorial software, which displays important logged and processed information on user's or patient' s heath. The user can log and track their personal information 182, routine health check-up data 183 (like weight, height, Basal Metabolic Index, Basal Metabolic Rate, workout target), physical exercise activities 184, and nutrition intake 185. The mobile apparatus shows real time and recorded health data 186 of the user or patient that includes base heart rate, distance commuted and calories expenditure. This information can help the user, patient or health advisor to measure the intensity of the physical exercise and progress of the therapy or fitness program. The cloud synchronization button 187 is utilized to synchronize the data with the cloud services and to share the data with professionals.
[0128] FIG. 27B shows the software application interface for the stress management in professional environment. It can be also employed by patients suffering from hypertension. The emotional index meter 189 is shown on the left, which shows persona-oriented measurement. The emotional index meter 189 oscillates according to the neural balance and other calibrated bio-signal. As the stress meter 189 reaches the threshold, the device directs the user to real time bio-signal based guided breathing/meditation method 188 or to a social communication interface. The progress on the stress management program is reported in tracking meter 190 shown at the center bottom of the diagram. The daily work management feature 191 is displayed on the right half, which shows the scheduled activity and their priority recorded by the user. The work management functionality is included, since procrastination is considered as an indirect counterpart cause of mental stress.
[0129] FIG. 27C shows the accessorial software to track and monitor sleep. As described earlier in the computational flow diagram section, the sleep cycle and other related data are computed using the biosensor signals. The recorded sleep cycle trend 192 and NREM-REM cycle length 193 are displayed, with access to sleep data log 194. In case of sleep disorder related clinical conditions, a warning message regarding the disorder symptom appears on the user screen. The user can connect with physicians and health professionals by clicking on the 195.
[0130] FIG. 27D shows the accessorial mobile device interface to monitor vital signals 196 of pulse rate, oxygen saturation, pulse rate variability, neutral activity, breathing rate, body temperature, blood glucose levels and blood pressure levels. The biosensor data is either processed by the mobile apparatus, central server or other accessorial wireless computational device. The computed real-time and recorded results 196 are displayed on the screen along with navigation access to view the individual physiological signal wave form. The medication tracker/remainder 197 (on centre bottom of the screen) and physician's network 198 (right bottom of the screen) are included to enhance the clinical management experience of the patient. The user can connect with medical and health professional by clicking on the button 198. The medication tracker and reminder 197 records the medication pattern and medication reminder. The device automatically alerts the user at the correct time to take medication. The data can be shared on online platforms and with medical and health professionals by clicking on 199.
[0131] FIG. 27E shows the accessorial software interface to connect with health advisor network. This application interface enables professional medical practitioners 200, dieticians 201, fitness instructors 202 and other health advisors to interact with the user, and to guide them with health practices/therapies. The health blogs, articles and classes can be accessed by the user through clicking on the icon 203.
[0132] FIG. 27F shows the user application interface for daily health management. It displays information on the number of active steps taken 204, sleep health 205, heart rate with oxygen saturation ratio 206, and emotional index matrix 207. The EI matrix 207 is the realtime information and recorded patterns of the emotional status and stress condition of the user. The background information on daily well-being can be accessed by the user by clicking on the left bottom button 208 (which can be evaluated to improve one's state of general health). The progress and history of the user can be accessed by clicking on the history trend button 210. The work schedule is organized by clicking on the center bottom work schedule button 209.
[0133] FIG. 27G shows the ease of lifestyle organization application interface, which displays the functionalities to synchronize, install and manage 3rd party and native applications on the telemetry mobile apparatus. [0134] The above described invention disclosure is intended for illustration purposes, and for those skilled in the art may instantly perceive numerous modifications, variations and equivalents. Therefore, the disclosure is not exhaustive in broader aspects and the invention is not intended to limit to specific details, illustrated hardware designs, described computational methods and embodiment forms. All equivalents and modifications are intended to be included within the scope of disclosure and attached claims. Accordingly, additional changes and modifications may be made without departing from the scope or spirit of the invention disclosure appended in the document, claims and their equivalents.
Industrial Applicability
[0135] The described technological invention can be utilized as telemetry clinical instrumentations, general wellness management devices, real-time diagnostic technology, portable medical apparatuses, well-being management gadgets, smart wearable devices, server based real-time clinical diagnosis and health tracking system, life-support devices, health tracking software device and software medical device.
Prior Art and Citation List
[0136] CN 204467155 U (Kiwi Field (Hong Kong) Co. Ltd) 19-01-2011
[0137] US 006122536 A (Animas Corporation) 19-09-2000
[0138] US 006819950 B2 (Alexander K. Mills) 16-11-2004
[0139] US 20120041276 Al (Delcina Doreus and Evon Doreus) 16-02-2012
[0140] WO 2015167251 Al (HUINO CORPORATION) 05-11-2015
[0141] Shubhangi Shripati Kadam and Sameer S. Nagtilak. "Non-Invasive Blood Glucose, Blood Pressure, Heart Rate and Body Temperature Monitoring Device", INDIA, IJRITCC, Apr 2017, Vol 5, Issue 4, ISSN 2321-8169, Pg. 69-72

Claims

Claims
Hereto the following are claimed:
1. The real-time system of the multi-functional telemetry apparatus, comprising of:
a computational method to remove the motion errors from the recorded bio-signals using the angle calibrated normalized accelerometer signal feedback, and utilizing the process of repetitive modification of the normalized bio-signals through adaptive and banked filter series;
a low-powered computational method to measure pulse rate from the filtered signals through the application of sparse matrix compression, and by utilizing fast response analysis technique at a sampling rate of 7.5Hz, 15 Hz, 30Hz, 100Hz, 125Hz, 240Hz, or lKHz on the compressed matrix data set;
a time-frequency signal processing method for extracting and displaying the heart rate tachogram, pulse rate signal, heart rate variability and continuous heart rate from the processed data points;
a functional signal analysis method to precisely extract oxygen saturation ratio;
a set of statistical time analysis methods to derive neural activity coefficients of σΐ, σ2, σ3, σ3/ σΐ, σ3/ σ2, σ2Ι σ\ and neural health from the noise-free pulse signals;
a computational method to derive neural activity related coefficients of PI, P2, P3, and P4 and meyer waves by using a series of active digital filters of HF High Pass Filter, LF
Band Pass Filter, Meyer Band Pass Filter, VLF Band Pass Filter and ULF Low Pass Filter on the Instantaneous noise-free bio-signal;
a method to compute meyer waves and respiratory signals from the decoupled pulse wave modes by using the extrema analysis on the pulse signals;
a method to assess the autonomous neural health, cardiac health, psychological stress, HRV and other important information from the derived neural activity parameters, pulse rate, respiratory rate, meyer waves and other bio-signal parameters;
a method to measure continuous blood pressure through taking the ratio between intensity extremums of the optical signal, and correlating them with the previously calibrated blood pressure values;
a method to estimate the continuous diastolic and systolic blood pressure utilizing the longitudinal blood velocity and pressure wave velocity computed from the proximity same-wavelength optical biosensors;
a method to estimate systolic blood pressure from the momentum loss and phase change of the optical signal, and other derived values;
a method to estimate the blood pressure variability, hypertension conditions and hypotension chronic conditions from the computed blood pressure data;
the illustrated automated method to calculate the "heart to device" distance by employing the accelerometer signals at instructed arm positions (of bent forearm, straight arm, straight down arm, lifted arm and shoulder level arm raise);
an automated method to compute mean arterial pressure utilizing the recorded heart to device distance and the wave peaking resonant points recognized by the mini/micro-cuff; a signal processing method to remove tissue absorption and blood flow fluctuation effects from the near-infrared response by correlating it with the green and red/infrared response; a non-invasive method to monitor continuous blood glucose levels utilizing the correlation models between the processed near-infrared response and previously calibrated blood glucose values (of post insulin, pre-insulin, hyperglycemic,
hypoglycemic, fasting glucose, post-exercise, pre-meal and post-meal);
the method of utilizing calibrated and processed Near-Infrared intensity to determine blood glucose fluctuations, hyperglycemic and hypoglycemic clinical conditions;
a method to determine body temperature levels, hypothermia and hyperthermia condition from the recorded bio-temperature sensor readings;
an automated method of utilizing the computed vital signals of respiratory rate, pulse rate, instantaneous heart rate, blood pressure data and blood glucose levels, and the accelerometer signals to recognize sleeping state and the various stages of sleep cycle; the initial process of the sleep analysis method comprising of steps to analyze the accelerometer data, pulse rate data, blood pressure data, breathing rate data, body temperature data and blood glucose data to verify the state of sleep and wake;
the sequential process of the sleep analysis method comprising of steps to analyze fluctuations in the instantaneous pulse rate signals, respiratory rate, blood pressure and optical signal intensity to verify the state of sleep and wake;
an automated sleep cycle recognition method for detecting and calculating REM and NREM cycle period that consists of process steps to correlate the pattern changes and pattern of instantaneous pulse signals, respiratory signals and optical signal intensity; an automated method of utilizing the computed vital signals of respiratory rate, pulse rate, instantaneous heart rate, blood pressure data and blood glucose levels, and the accelerometer signals to recognize sleep apnea conditions and time period of sleep apnea; an automated sleep apnea disorder recognition method, which consists of computational steps to evaluate the set of instantaneous pulse rate data and pulse signals in a time interval of 30-60s and for 5-7BPM to validate the sleep apnea condition and to record the time period of sleep apnea;
the automated sleep apnea disorder recognition method consisting of a validation steps to verify the respiratory signal pattern for state of sleep apnea;
an electrical signals and optical signals based feedback method to rectify the errors in the bio -signals;
an emergency life-support method to recognize the conditions of hypoxia, hypoxemia, and carbon-monoxide poisoning from the recorded oxygen saturation data, pulse rate, breathing data, neural parameters and HRV data pattern;
the illustrated clinical life-support method to determine congestive heart failure condition, unusual ventricular activity and psychological health conditions from the computed neural activity parameters, HRV data, meyer wave, cardiac signal and breathing data; the clinical life-support method comprising of an automated user's eco-system alerting process on identification of the chronic and acute medical conditions;
a method to record user enabled mark-up data points of psychological stress and anxiety; an automated method to recognize the state of psychological stress and anxiety of the user from the electrical spectrometer signals, computed vital bio-signals and mark-up data; an automated method to recognize the state of fatigue and rise in Cortisol levels of the user from the electrical spectrometer signals and computed vital bio-signals;
an automated wellness management method to assist the user in the instances of stress and anxiety through apparatus based breathing guided stress management system;
an automated well-being management method to assist the user in instances of stress and anxiety through meditation video or social chat/call;
an automated method to recognize and record the posture and activity of the user from the 9/6-axis accelerometer signals and the computed vital information;
an automatic method to detect the movement data of the user using peaks computed within the variance of the baseline of the normalized intensity magnitude of the accelerometer signals;
an automated method to recognize and learn the user's physical activity of sitting, standing, moving, running, resistance training, sprinting, biking and driving from the accelerometer signals, wireless antennae data and recorded bio-signal data;
an automated method to compute and learn the lap count and running speed of the user from the accelerometer signals and wireless antennae data; an automated method to compute BMR data and calorie expenditure from the computed vital signals and physical activity of the user;
an automated method to remove to circadian errors from the derived data and to compute the health of circadian cycle;
a learning method to automatically derive the low-powered bio-signal and life-support processing methods;
a method to recognize the presence of the user based on the estimation of the realistic bio- signal data and movement data; and
an automated power saving method to power on/off the device and to operate sleep mode based on the recognized user presence.
The real-time system of Claim 1, further comprising of a network of accessorial wireless mobile devices, server computers, internal microprocessor and external computers, which is used an efficient and faster means to execute the processes of Claim 1 and to store the computed results.
The hardware of the telemetry apparatus, comprising of:
an electrical spectrometer and an optical spectrometer;
the optical spectrometer containing a Bio-LED set of Near-Infrared LED, Infrared LED, Red LED and Green LED for injecting input optical signal;
the optical spectrometer containing a multiple switch set attached to the Bio-LED set of
Near-Infrared LED, Infrared LED, Red LED and Green LED, which is utilized as the means to reduce the power consumption and frontend electronic components;
the LED switch set attached to an op-amp based bio-safety circuit;
the multiple switch set and Bio-LED set with bio-safety circuit attached to a Gain programmable LED frontend of Pulse Width Modulator, Gain Programmable LED Driver and clock controller;
the Gain programmable LED frontend as the means for variably triggering the input signal;
an optical lens amplifier of the optical spectrometer placed before photodetector set for amplifying and focusing low-powered optical signals on the photodetector set;
a photodetector set of the optical spectrometer attached to a photodetector frontend of Stage 1 Amplifier, Buffer circuit, Power Notch Filter, Stage 2 Amplifier, ADC and Ambient Noise Filter; the photodetector frontend as means for filtering and processing the optical response; the electrical spectrometer containing an input electrical sensor for injecting the signals; the electrical spectrometer containing an op-amp based biosafety circuit attached to the input electrical biosensor;
the biosafety circuit containing operational amplifier with a feedback impedance having lesser value compared to the input impedance, which is used as the means to improve operational safety;
the electrical spectrometer containing a drain electrical sensor placed at the other end, which connected to the ground for draining signal;
the electrical spectrometer containing a set of two response electrical sensors placed between the input electrode and signal draining electrode, which is used for extracting the impedance;
the set of two response electrodes of the electrical spectrometer attached to circuit line of Instrumental amplifier, Gain amplifier circuit and power notch IC, which is utilized for filtering and processing the electrical response;
the processing circuit line of the electrical spectrometer attached to the V to I converter and Impedance Analyzer IC for analysing the real-time response signal of imaginary impedance and real impedance;
the Impedance Analyzer IC attached to the microprocessor of the telemetry apparatus for communicating and evaluating the impedance bio-signal response;
a NEMs/MEMs temperature bio-sensor attached to the microprocessor that is used as the means to both measure bio-temperature and real-time thermal feedback;
a 9/6-axis accelerometer sensor attached to the microprocessor that is utilized as a realtime motion feedback;
the accelerometer as the means to extract movement related signals of steps, speed, phase, type of movement, training information, posture, and state of dormancy and activity; the wireless microprocessor with inbuilt memory that is used as the means for communicating with the LED frontend, photodetector frontend, Impedance analyzer IC, accelerometer, temperature biosensors, other sensors, wireless antenna and other electronics modules;
the microprocessor also used as the means for internally computing and storing the information;
a set of wireless antennae of WLAN, BLE and GPS externally attached to the microprocessor or integrated inside the microprocessor, that are utilized as the wireless means to communicate the data with accessorial devices and server;
the wireless antennae set attached to the microprocessor as the means for computing location, speed and distance;
a touch display for viewing and accessing the real-time medical information, health data, and on-device applications;
the touch display also as the means to operate the instrument;
a power supply unit containing power management IC attached super-capacitor and battery;
a supplementary power supply unit containing renewable energy harvester and super capacitor attached to the power management IC;
the supplementary power supply unit as a means to power the device and recharge the battery; and
the automated real-time system of Claim 1.
4. The telemetry apparatus of Claim 3 further attached to a GSM module, which is used as the means to:
communicate the data with accessorial devices and server; and
compute location, speed and distance.
5. The telemetry apparatus of Claim 3 further comprising of USB module attached to the power management unit and microprocessor, which is utilized:
to power the telemetry apparatus;
for recharging the battery; and
as the wired means to communicate data with external accessorial devices and server.
6. The power supply unit of the Claim 3, further comprising of a negative voltage converter attached to the power management unit, which generates negative signal reference.
7. A reflective sensing apparatus form of the telemetry hardware of Claim 3, which
comprises of:
a reflective optical sensing apparatus for recording optical signals;
the reflective optical apparatus arranged in an adjacent LED-photodiode configuration; the adjacent LED-photodiode configuration containing signal probes of Near-Infrared LED, Infrared LED, Red LED and Green LED aligned in the blood flow direction; the set of LED signal probes of the reflective optical apparatus placed between their corresponding wavelength response photodetectors;
a Near-Infrared optical lens or micro-prism of the optical apparatus located above the Near-Infrared LED probe to tune and amplify the Near-Infrared light;
the reflective optical apparatus containing a set of adjacent photodetector probes of Near- Infrared photodetectors, Infrared photodetectors, Red photodetectors and Green photodetectors;
the set of adjacent photodetector probes placed next to their corresponding signal probes at a noise free distance, which is used for recording the reflected response more precisely; the adjacent LED-photodiode configuration of the reflective optical sensing apparatus as means to speedily and simultaneously extract the optical response;
a set of 4 electrical biosensors preferably aligned in the straight line along the blood flow direction, which is utilized for monitoring bio-electrical and electrodermal signals;
the set of two response electrical sensors placed between the signal input electrical sensor and drain electrical sensor;
a non-contact MEMs/NEMs temperature biosensor installed at a minimum distance from heat dissipation surface, which is utilized to record the radiation error-free body temperature and the thermal noise feedback;
the plurality of biosensors assembled on the contact surface of the apparatus;
a 9/6-axis accelerometer positioned in a fixed reference direction to the biosensors, which is utilized as an efficient means to record the movement signals and feedback signals; Analog and Digital frontend plane packaged in a successive vertical plane to the sensor plane, which is used as the method to reduce tracing efforts and packaging size;
microprocessor, power supply unit, computing unit, wireless antennas and other ICs embedded plane packaged in the plane next to the Analog and Digital plane, which is utilized as the method to reduce tracing efforts and packaging size;
battery, energy generation unit and other power unit components packaged without impeding the wireless antennas, that is used as the means to reduce noise interruption; ventilation pores surrounding the electronics packaging that is used as a thermoregulation method to regulate device heating; and
a foam base located on the contact surface surrounding the sensors, signal probes and receiver area, which is utilized as the mechanical means to reduce the motion errors and as a means to increase the multi-use efficiency.
8. The multifunctional telemetry medical instrument for limb attachment or forehead monitoring, which comprises of:
a reflective sensing apparatus according to Claim 7, with the plurality of biosensing probes embedded on the contact surface;
a heat regulating case containing the sensors, electronic and other hardware components; a stretchable soft wearable cloth belt attached to the casing;
the end tail of the wearable cloth belt containing adhesive surface pad and stickable surface pad; and
the stretchable belt with the adhesion action between adhesive pad and stickable pad, as the means to fasten the apparatus steadily on the sensing spot in a size adaptable manner.
9. An auxiliary wellness management and clinical monitoring device, which comprises of: a reflective sensing apparatus according to Claim 7, with the plurality of biosensing probes embedded on the contact surface;
a heat regulating packaging case containing the sensors, electronics and other essential hardware components;
a contact surface of the case embedded with plurality of biosensor probes, such that the sensing spot remains in contact with the user during the exercise on training machines; an expandable gripping holder attached to the case, that is used as the physical means to attach the device to wellness instrument (like exercise cycle, treadmill, bike, etc); and the expandable holder as the mechanical method to steadily hold the instrument during the motion noise prone situations.
10. The spiral ring embodiment form of the telemetry apparatus of Claim 3, comprising of: an optical instrument set-up in transmittive configuration;
a set of LED signal probes of Near-Infrared LED, Infrared LED, Green LED and Red LED facing the underside of the contact surface;
a photodetection system containing a photodetector set and an optical lens;
the photodetector set containing visible/Infrared and Near-Infrared photodetectors placed in-tandem spot next to each;
the optical lens, which is placed at the response distance to focus and concentrate the transmitted response on the photodetectors;
the photodetection system positioned on the top response receiving surface and in alignment with the corresponding LED signal probes; photodetection system and LED signal probes assembled in an inverted configuration, which is utilized as a means to reduce background noise in the recording;
a NEMs/MEMs non-contact temperature biosensor placed at a minimum distance from the heat dissipating surface, which is utilized to measure body temperature values and thermal feedback;
a set of four electrical biosensors of the electrical spectrometer, preferably placed in a straight line along the blood flow direction, which is used as a means to extract electrical and electrodermal bio-signals;
the set of two response electrical sensors placed between the signal input electrical sensor and drain electrical sensor;
a 9/6-axis NEMs/MEMs accelerometer assembled in a specific direction with reference to the optical and electrical sensing probes, that is used as the means to record movement feedback and other useful motion signals;
the spiral ring structure containing a main ring frame and spirally protruding clipper- hinge structure;
the spiral ring structure as the means to hold the apparatus securely on the sensing spot; the main ring frame for accommodating sensors, wireless antennas, power supply unit, battery, digital chips, Analog ICs, microprocessor, integrated circuits and other electronic components;
the adjustable clipper element with the hinge, as the mechanical method to fasten the device to the body in a size-adaptable manner;
an expandable casing material and a foam base, which are utilized as the mechanical method to grip the apparatus on the sensing spot without affecting the blood flow in the measurement area;
ventilation pores on the device frame; and
the ventilation pores and the heat dissipating casing material, as the thermoregulation means to regulate the device heating.
11. The open ring embodiment form of the telemetry apparatus of Claim 3, which comprises of:
a vibrator module on the contact surface,
the automatic oscillation of vibrator module, during the instances of psychological stress/anxiety, in a pattern of 7.5%— 25% higher ON time to indicate breath-out demonstration and 7.5%— 25% lower OFF time to indicate breath-in demonstration; the automatic stress therapeutic oscillation of the vibrator module as the automated means for guided stress management;
the vibrator based alarm that is used as the means for prompting the scheduled alarms; a gesture sensor on the main ring frame, that uses gesture expression to access and operate the presentations and in-built applications;
a button on the top frame surface of the apparatus, for operating the telephonic calls, wireless synchronization facilities and other functionalities;
a button on the lower edge outer surface near the open ring structure, that is utilized to operate the functional modes like meeting mode, work mode, fitness and sleep mode; the button inputs, which is used as the other means to access external presentations and in-built applications;
an optimal sensing spot on the contact surface to accommodate the plurality of biosensors;
an optimal response spot on the contact surface to accommodate the remaining plurality biosensors and record the response signals; and
an open ring structure to comfortably hold the device on the sensing spot in a size- adjustable manner.
12. The bracelet embodiment form of the telemetry apparatus of Claim 3, comprising of: a casing to hold the sensors, electronics, and other essential hardware components;
a reflective sensing hardware with plurality of biosensor probes embedded on the contact surface;
a low-pressure cuff based strap, that automatically inflates to the detect the resonant compression point for blood pressure calibration;
a mini-touch display, that is utilized as a means to operate the apparatus;
the mini-touch display, as the means to view medical information, health data, bio- signals, general wellness data and other information;
a set of Red and Green indicator LEDs embedded on the top surface;
the set of Red and Green indicator LEDs utilized as an automated visual means to guide the user during the instances of psychological stress and anxiety;
the red light indicator LED, which flashes at the detected neural activity during the period of mental stress;
the green light indicator LED, which blinks with 7.5%— 25% higher ON time to indicate breath-out demonstration; the green light indicator LED, which blinks with 7.5%— 25% lower OFF time to indicate breath-in demonstration;
the blinking pattern of the green indicator LED as the means to guide the user during the instances of psychological stress and anxiety;
a mode indicator light, which is utilized to perceive different operating modes and other functionalities of the apparatus;
a trigger button on the surface to operate the device and access functionalities; and a wireless synchronization button, that is used as the means to synchronize the data and information with other accessorial devices.
13. The multi-functional clinical monitoring embodiment form of the telemetry apparatus of Claim 3, comprising of:
a mini-cuff packaged with the plurality of biosensors;
the mini -cuff that automatically inflates and deflates to detect the resonant point during the blood pressure calibration;
a wireless base station embedded with slate sized touch display, as the means to view the medical diagnostic signals, patients physical activity, patient history, health data and other clinical information;
the slate sized touch screen as the means to operate the device and the in-built applications;
an electrical cord, which is utilized as the wired means to attach the mini-cuff to the wireless base station;
the base station as a means to hold essential electronics and hardware components;
a wireless synchronization button on the base station, which is used for synchronizing the clinical recording, patient history, medical information and other information between the telemetry apparatus and the computer server/accessorial mobile apparatus; and a power button on the base station as the means to reset the medical analysis, power on/off the device and access other functionalities.
14. The smart wearable embodiment form of the telemetry apparatus of Claim 3, which comprises of:
a mini touch display as the means to monitor real-time medical diagnostic signals, health data, psychological stress, sleep data, daily diet pattern, fluid intake information, amount of expended energy and active step/stride count, and other lifestyle management data; the mini-touch display as the means to view and access recorded information, therapy techniques, automated cardiac activity guide, wake-up alarm, in-built applications and other important information;
the mini-touch display also as the means to operate the instrument;
push buttons and potentiometer integrated crown attached perpendicular to the electronic hardware board plane;
the push buttons as the means to access and operate different device applications;
the potentiometer integrated crown as the means to access and operate different device applications;
the push buttons and crown as the means to switch between the different device modes; the push buttons and crown as the means to manually record calibration and other health data;
the push buttons that is also utilized as a means to interact with cardiac training applications, to trigger emergency life support system, mark unwanted psychological stress levels and use other functionalities;
the potentiometer integrated crown, as the electronic embedded method to navigate through the application in row and columns and operate other apparatus functionalities; an automated cardiac training application to track information on training intensity, rest period, training period, cardiac rate, sets and reps count, and training phase;
the cardiac training application with other essential information to guide the user with cardiac health recovery data;
the push buttons as the means to trigger begin, pause, un-pause and reset in the cardiac activity training application;
mini-touch display and the crown as the means to access other functional command in the cardiac activity training application;
a sleep tracking application that displays sleep period, sleep health, motivational wake-up quote and other sleep related information;
the sleep tracking application that also displays an user configured wake-up alarm;
an emotional Index meter, which derives persona-oriented stress level from multiple mark-ups;
a psychological stress management application that displays Emotional Index (EI) meter, stress threshold information, stress management information and work schedule management features (like stickies with priority);
the push buttons and mini-touch display as the means to mark the unwanted stress levels; an accessorial background application that displays motivational quotes to
psychologically improve the spirit of the user;
a start-up application that displays information on time and date, movement data, calorie expenditure, calories consumed, fluid intake, diet patterns, weekly health history, battery strength, climate information, wireless connectivity and other health trends;
a medical application that displays real-time information on pulse rate, oxygen saturation, respiratory rate, bio-temperature, average HRV, neural activity balance, blood pressure data and blood glucose levels;
a reflective apparatus embedded on the contact surface; and
a casing that holds electronics and other essential hardware components.
15. The apparatus of Claim 14, further comprising of rounded edges at the contact surface of the casing, which is used as the means to evade the cuts.
16. The apparatus of Claim 14, further comprising of round casing at the contact surface, which is used as the means to evade the cuts.
17. The accessorial mobile apparatus and software application that is wirelessly synchronized with the telemetry apparatus and system of Claim 3, which is used as the means:
to operate the telemetry apparatus of Claim 3 and their corresponding embodiments; to execute the computational processes of the telemetry apparatus of Claim 3;
to view computed information;
to record the user input on the medical information for calibration of the biosensors; to record and view user information and health data;
to view and store the real-time medical diagnostic signals of pulse rate, respiratory rate, blood pressure, blood glucose levels, instantaneous heart rate, heart rate variability, HR tachogram, temperature, oxygen saturation, body temperature, neural activity and other vital clinical information;
to record and view the information related to sleep pattern and sleep disorder;
to mark subjective psychological stress data points;
to view the information on stress levels;
to view the personal progress on stress management;
to record and view detailed information on diet pattern and fluid intake;
to record and view detailed information on the physical activities; to view and record the information on amount of calories burnt, basal metabolic rate, movement data and other important well-being data;
to display real-time bio-signals, clinical data, health management information and other relevant information;
to set reminders for medications and health check-ups;
to view clinical history and other recorded health data from the database;
to interact with the professional medical and health practitioners of the health network; to share clinical and health data with the professional medical and health practitioners; to view and record recommendations and health advice of the professionals;
to view and record the therapy recommendations and clinical advice of the clinical professionals; and also
to install, organize and manage both the native and 3rd party applications.
18. The computational unit of the telemetry apparatus of Claim 3, further comprising of: a parallel computational network containing internal microprocessor, server computers, accessorial wireless smart devices, external computers and other computational units; the network of computational devices as a faster, efficient and less complex means for executing computational process and processing the information;
the internal microprocessor as the means for computing and storing the results;
the external server computers accessed through wireless methods, which is used for computing and storing the information remotely; and
the accessorial mobile devices, external computers and other local wireless devices, which are utilized as the means to compute and store the information.
19. The telemetry apparatus of Claim 3, further comprising of user interaction unit of mic, video camera, display and speaker, which is used as the means by the user to:
operate the telemetry apparatus;
access the in-built applications of the telemetry apparatus;
interact with the professional medical practitioners and health advisors for clinical diagnosis and health analysis;
receive clinical and health advice from the professional medical practitioners and health advisors;
send the feedback to the professional medical practitioners and health advisors;
get guidance on the treatment, therapy, medication and training from the professionals; get supervision on the progress, programs and clinical treatments from the medical and health professionals; and also
as the means to perceive the recorded and computed information.
20. The real-time telemetry and remote monitoring set-up, wherein:
multiple telemetry medical instruments are installed in separate in-patient and remote monitoring spots;
the telemetry instruments are attached to the patients for diagnosis;
the multiple telemetry instruments wirelessly transfers patient's information, patient's history, recorded patient's clinical information and real-time medical information of the patient to the central base station installed in the physician's cabin;
the wireless monitor, of the base station in the physician's cabin, displays the patient's information, patient's history, real-time medical information of the patient, diagnosed patient's clinical condition and recorded patient's medical analysis; and
the base station, in the physicians cabinet, wirelessly sends the clinical advice, medical instruction, drug dosage recommendation and other information to the individual patient's location.
PCT/IB2018/058718 2017-09-11 2018-11-06 Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters WO2019049116A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/645,811 US11763665B2 (en) 2017-09-11 2018-11-06 Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
CA3075474A CA3075474C (en) 2017-09-11 2018-11-06 Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
US17/966,785 US20230078549A1 (en) 2017-09-11 2022-10-15 Multifunctional Telemetry Apparatus for real-time emergency support

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762557069P 2017-09-11 2017-09-11
US62/557,069 2017-09-11
US201862638315P 2018-03-05 2018-03-05
US62/638,315 2018-03-05
US201816127228A 2018-09-11 2018-09-11
US16/127,228 2018-09-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US201816127228A Continuation-In-Part 2017-09-11 2018-09-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/645,811 A-371-Of-International US11763665B2 (en) 2017-09-11 2018-11-06 Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
US17/966,785 Continuation-In-Part US20230078549A1 (en) 2017-09-11 2022-10-15 Multifunctional Telemetry Apparatus for real-time emergency support

Publications (2)

Publication Number Publication Date
WO2019049116A2 true WO2019049116A2 (en) 2019-03-14
WO2019049116A3 WO2019049116A3 (en) 2019-07-18

Family

ID=65633631

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2018/058718 WO2019049116A2 (en) 2017-09-11 2018-11-06 Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
PCT/IB2018/058758 WO2019049117A1 (en) 2017-09-11 2018-11-08 Multi-spectral optical apparatus for biosensing applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/058758 WO2019049117A1 (en) 2017-09-11 2018-11-08 Multi-spectral optical apparatus for biosensing applications

Country Status (2)

Country Link
CA (1) CA3075474C (en)
WO (2) WO2019049116A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189930A1 (en) * 2019-03-19 2020-09-24 Samsung Electronics Co., Ltd. Electronic device and method for notification of biometric information by electronic device
WO2021127193A1 (en) * 2019-12-20 2021-06-24 Xiant Technologies, Inc. Mobile real time location unit
CN114206213A (en) * 2019-06-11 2022-03-18 维亚埃尔医疗股份有限公司 Nasal and oral respiration sensor
WO2022265613A1 (en) * 2021-06-18 2022-12-22 Cankaya Universitesi Blood-free continuous blood glucose meter
US11600365B2 (en) 2017-12-12 2023-03-07 Vyaire Medical, Inc. Nasal and oral respiration sensor
TWI803151B (en) * 2021-05-19 2023-05-21 英屬開曼群島商大峽谷智慧照明系統股份有限公司 Constructing method of sharing platform for lighting environment
WO2023164225A1 (en) * 2022-02-28 2023-08-31 Hb Innovations, Inc. System and method for video detection of breathing rates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210022319A (en) 2019-08-20 2021-03-03 삼성전자주식회사 Apparatus and method for estimating bio-information
CN114675553B (en) * 2022-03-22 2023-03-24 慕思健康睡眠股份有限公司 Control method, device, equipment and medium for intelligent home system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703689A (en) * 1996-06-11 1997-12-30 Varian Associates, Inc. Optical spectrometer
US5823966A (en) * 1997-05-20 1998-10-20 Buchert; Janusz Michal Non-invasive continuous blood glucose monitoring
US9430938B2 (en) * 2013-03-04 2016-08-30 Hello Inc. Monitoring device with selectable wireless communication
US10361001B2 (en) * 2015-09-23 2019-07-23 Athena Gtx, Inc. Autonomous critical care systems and integrated combat casualty care systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600365B2 (en) 2017-12-12 2023-03-07 Vyaire Medical, Inc. Nasal and oral respiration sensor
WO2020189930A1 (en) * 2019-03-19 2020-09-24 Samsung Electronics Co., Ltd. Electronic device and method for notification of biometric information by electronic device
CN114206213A (en) * 2019-06-11 2022-03-18 维亚埃尔医疗股份有限公司 Nasal and oral respiration sensor
WO2021127193A1 (en) * 2019-12-20 2021-06-24 Xiant Technologies, Inc. Mobile real time location unit
TWI803151B (en) * 2021-05-19 2023-05-21 英屬開曼群島商大峽谷智慧照明系統股份有限公司 Constructing method of sharing platform for lighting environment
WO2022265613A1 (en) * 2021-06-18 2022-12-22 Cankaya Universitesi Blood-free continuous blood glucose meter
WO2023164225A1 (en) * 2022-02-28 2023-08-31 Hb Innovations, Inc. System and method for video detection of breathing rates

Also Published As

Publication number Publication date
WO2019049117A1 (en) 2019-03-14
CA3075474A1 (en) 2019-03-14
CA3075474C (en) 2023-12-19
WO2019049117A8 (en) 2019-06-06
WO2019049116A3 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US11763665B2 (en) Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
CA3075474C (en) Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
JP7009556B2 (en) Wearable devices for health care and methods for doing so
US11259707B2 (en) Methods, systems and devices for measuring heart rate
US10770182B2 (en) Systems and methods for assessing the health status of a patient
Mahmud et al. An integrated wearable sensor for unobtrusive continuous measurement of autonomic nervous system
Anliker et al. AMON: a wearable multiparameter medical monitoring and alert system
US10022053B2 (en) Simultaneous multi-parameter physiological monitoring device with local and remote analytical capability
US20160000379A1 (en) Method and apparatus for dynamic assessment and prognosis of the risks of developing pathological states
CN106999056B (en) Device and method for measuring physiological properties of a subject
Chacon et al. A wearable pulse oximeter with wireless communication and motion artifact tailoring for continuous use
WO2017215409A1 (en) Portable smart health monitoring device
US20220175309A1 (en) Methods and apparatus for synchronizing cardiovascular and respiratory systems with stress and exertion analysis
EP3197354A1 (en) Medical devices and related methods
KR20150077684A (en) Function Operating Method based on Biological Signals and Electronic Device supporting the same
US20200397315A1 (en) Wearable fluidic device and system with integrated electronics
Dieffenderfer et al. Wearable wireless sensors for chronic respiratory disease monitoring
US20210074421A1 (en) Fully non-invasive blood sugar level monitoring apparatus integrated with real-time health support system
KR20070075515A (en) Apparatus and method for noninvasive, continuous, and simultaneous measurement of blood pressure and arterial stiffness
US11622717B1 (en) Systems and methods for monitoring physiological parameters with capacitive sensing
Preejith et al. High altitude study on finger reflectance SpO 2
Gagnon-Turcotte et al. Photoplethysmography-based derivation of physiological information using the BioPoint
Srisuchinwong et al. Acquiring unobtrusive sleep-related signals through an ESP32-based data logger
US11678812B1 (en) Systems and methods for monitoring hydration
Pryor Feasibility of Physiological Monitoring Embedded in Smart Stuff

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3075474

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854836

Country of ref document: EP

Kind code of ref document: A2