WO2019047384A1 - 反射式液晶显示面板 - Google Patents

反射式液晶显示面板 Download PDF

Info

Publication number
WO2019047384A1
WO2019047384A1 PCT/CN2017/113016 CN2017113016W WO2019047384A1 WO 2019047384 A1 WO2019047384 A1 WO 2019047384A1 CN 2017113016 W CN2017113016 W CN 2017113016W WO 2019047384 A1 WO2019047384 A1 WO 2019047384A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel unit
sub
pixel
liquid crystal
green
Prior art date
Application number
PCT/CN2017/113016
Other languages
English (en)
French (fr)
Inventor
李祥
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/579,946 priority Critical patent/US10509282B2/en
Publication of WO2019047384A1 publication Critical patent/WO2019047384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • G02F1/134354Subdivided pixels, e.g. for grey scale or redundancy the sub-pixels being capacitively coupled
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a reflective liquid crystal display panel.
  • Liquid crystal display has many advantages such as thin body, power saving, no radiation, etc., and is widely used, such as mobile phones, personal digital assistants (PDAs), digital cameras, computer screens or laptops. Screen, etc.
  • liquid crystal display devices including a backlight module (Backlight Module), a liquid crystal display panel coupled to the backlight module, and a front frame for fixing the liquid crystal display panel and the backlight module.
  • Backlight Module backlight module
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates, and the liquid crystal molecules are controlled to change direction by energizing or not, and the light of the backlight module is changed. Refracted to produce a picture.
  • liquid crystal displays are generally classified into transmissive liquid crystal displays, reflective liquid crystal displays, and transflective liquid crystal displays depending on the type of light source.
  • reflective liquid crystal displays can be displayed with ambient light without the need for high-energy backlights, they have great potential in mobile devices and wearable display device applications.
  • the reflective liquid crystal display panel includes: an upper substrate 100 and a lower substrate 200 disposed opposite to each other, and a substrate disposed on the upper substrate a liquid crystal layer 400 between the substrate 100 and the lower substrate 200;
  • the upper substrate 100 includes a first substrate 110, a color filter layer 240 and a black matrix 250 disposed on the first substrate 110, and The color filter layer 240 and the common electrode 120 on the black matrix 250;
  • the lower substrate 200 includes a second substrate 210, a TFT device layer 220 disposed on the second substrate 210, and a pixel electrode 230 on the TFT device layer 220;
  • the color filter layer 240 includes a transmissive red sub-pixel unit 310 separated by a black matrix 250,
  • the pass-through green sub-pixel unit 320 and the transmissive blue sub-pixel unit 330 are the reflective electrodes.
  • the display principle of the reflective liquid crystal display panel is that the ambient light passes through the color filter layer 240 and the liquid crystal.
  • the layer 400 reaches the pixel electrode 230, and then the pixel electrode 230 reflects the light, and the reflected light passes through the liquid crystal layer 400 and the color filter layer 240 again and is emitted from the surface of the upper substrate 100 to realize screen display.
  • the reflective liquid crystal display panel since the ambient light passes through the color filter layer 240 and the liquid crystal layer 400 twice, the loss of ambient light is relatively large, and the utilization rate is low, thereby causing insufficient brightness of the display screen of the liquid crystal display panel. Big.
  • the reflective liquid crystal display panel includes: an upper substrate 100 disposed opposite to each other. And a lower substrate 200 and a liquid crystal layer 400 disposed between the upper substrate 100 and the lower substrate 200; the upper substrate 100 includes a first substrate 110 and a first substrate 110 a common electrode 120; the lower substrate 200 includes a second substrate 210, a TFT device layer 220 disposed on the second substrate 210, a pixel electrode 230 disposed on the TFT device layer 220, and a substrate a color filter layer 240 on the pixel electrode 230 and a black matrix 250; wherein the color filter layer 240 includes a reflective red sub-pixel unit 310' separated by a black matrix 250, and a reflective green sub-pixel unit 320' and the reflective blue sub-pixel unit 330', the pixel electrode 230 is a transparent electrode.
  • the reflective red sub-pixel unit 310' is capable of reflecting red light and absorbing green light and blue light.
  • Green sub-pixel unit 320' Enough to reflect green light and absorbs red and blue light
  • the blue reflective sub-pixel unit 330 is' capable of reflecting blue light and absorbs red and green light.
  • the display principle of the reflective liquid crystal display panel is that ambient light passes through the liquid crystal layer 400 to reach the color filter layer 240, and then the color filter layer 240 selectively absorbs and reflects the light, and the reflected light passes through the liquid crystal layer 400 again.
  • the surface of the upper substrate 100 is emitted to realize screen display.
  • ambient light passes through the color filter layer 240 only once, reducing the loss of ambient light in the color filter layer 240, but since the color filter layer 240 absorbs most of the spectrum, and The ambient light also needs to pass through the structural layers such as the liquid crystal layer 400, the upper and lower alignment films (not shown), and the first base substrate 110.
  • the loss of ambient light is still large, and the brightness of the display screen of the liquid crystal display panel still needs to be improved.
  • An object of the present invention is to provide a reflective liquid crystal display panel in which a white sub-pixel unit is added to a pixel unit, and the brightness of the pixel unit is improved by the cooperation of the white sub-pixel unit and the pixel electrode, thereby improving the light-emitting brightness of the reflective liquid crystal display panel. .
  • the present invention provides a reflective liquid crystal display panel comprising: an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the substrate includes a first substrate and a common electrode disposed on the first substrate;
  • the lower substrate includes a second substrate, and a TFT device layer disposed on the second substrate a pixel electrode disposed on the TFT device layer, and a color filter layer and a black matrix disposed on the pixel electrode;
  • the color filter layer includes a plurality of pixel units arranged in an array, each of the pixel units including a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel separated by a black matrix. a unit capable of reflecting red light and absorbing green light and blue light, the green sub-pixel unit capable of reflecting green light and absorbing red light and blue light, the blue sub-pixel unit capable of reflecting blue light and absorbing red light And green light;
  • the pixel electrode When the white sub-pixel unit is a transparent film layer, the pixel electrode is a reflective electrode; when the white sub-pixel unit is a reflective film layer, the pixel electrode is a transparent electrode or a non-transparent electrode;
  • the white sub-pixel unit When the white sub-pixel unit is a transparent film layer, red, green, and blue light can be transmitted therethrough; when the white sub-pixel unit is a reflective film layer, red, green, and blue light can be reflected by the white sub-pixel unit.
  • the arrangement of the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit in the pixel unit is any one of the following three arrangements:
  • the first arrangement is: a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit are arranged in a row from left to right;
  • the second arrangement is: a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit are arranged in a row from top to bottom;
  • the third arrangement is: the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit are arranged in two rows; the first row located above includes the red sub-orders arranged from left to right. a pixel unit and a green sub-pixel unit; the second row located below includes a blue sub-pixel unit and a white sub-pixel unit arranged in order from left to right; wherein the red sub-pixel unit and the blue sub-pixel unit are vertically corresponding to each other In one column, the green sub-pixel unit and the white sub-pixel unit are vertically aligned in a column.
  • the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit have the same thickness
  • the material of the pixel electrode is a metal
  • the material of the pixel electrode is a transparent conductive metal oxide
  • the material of the pixel electrode is a transparent conductive metal oxide
  • the material of the pixel electrode is metal
  • the reflective liquid crystal display panel of the present invention further includes: a first alignment film disposed on a side of the upper substrate toward the liquid crystal layer; and a second alignment film disposed on a side of the lower substrate toward the liquid crystal layer And an upper polarizer disposed on a side of the upper substrate away from the liquid crystal layer, and a lower polarizer disposed on a side of the lower substrate away from the liquid crystal layer, wherein the upper polarizer and the lower polarizer
  • the absorption axes of the sheets are perpendicular to each other.
  • the reflective liquid crystal display panel of the present invention further includes: a spacer disposed between the black matrix and the second alignment film, wherein the spacer and the black matrix are integrally formed of the same material.
  • the present invention also provides a reflective liquid crystal display panel, comprising: an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate, And a common electrode disposed on the first substrate;
  • the lower substrate includes a second substrate, a TFT device layer disposed on the second substrate, and a TFT device layer a color filter layer and a black matrix, and pixel electrodes disposed on the color filter layer and the black matrix;
  • the color filter layer includes a plurality of pixel units arranged in an array, each of the pixel units including a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel separated by a black matrix. a unit capable of reflecting red light and absorbing green light and blue light, the green sub-pixel unit capable of reflecting green light and absorbing red light and blue light, the blue sub-pixel unit capable of reflecting blue light and absorbing red light And green light;
  • the white sub-pixel unit is a reflective film layer, and the pixel electrode is a transparent electrode;
  • red, green, and blue light can be reflected by the red sub-pixel unit.
  • the arrangement of the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit in the pixel unit is any one of the following three arrangements:
  • the first arrangement is: a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit are arranged in a row from left to right;
  • the second arrangement is: a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit are arranged in a row from top to bottom;
  • the third arrangement is: the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit are arranged in two rows; the first row located above includes the red sub-orders arranged from left to right. a pixel unit and a green sub-pixel unit; the second row located below includes a blue sub-pixel unit and a white sub-pixel unit arranged in order from left to right; wherein the red sub-pixel unit and the blue sub-pixel unit are vertically corresponding to each other In one column, the green sub-pixel unit and the white sub-pixel unit are vertically aligned in a column.
  • the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit have the same thickness; the material of the pixel electrode is a transparent conductive metal oxide.
  • the reflective liquid crystal display panel of the present invention further includes: a first alignment film disposed on a side of the upper substrate toward the liquid crystal layer; and a second alignment film disposed on a side of the lower substrate toward the liquid crystal layer And an upper polarizer disposed on a side of the upper substrate away from the liquid crystal layer, and a lower polarizer disposed on a side of the lower substrate away from the liquid crystal layer, wherein the upper polarizer and the lower polarizer
  • the absorption axes of the sheets are perpendicular to each other.
  • the reflective liquid crystal display panel of the present invention further includes: a spacer disposed between the black matrix and the pixel electrode, wherein the spacer and the black matrix are integrally formed of the same material.
  • the present invention also provides a reflective liquid crystal display panel, comprising: an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer disposed between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate, And a common electrode disposed on the first substrate;
  • the lower substrate includes a second substrate, a TFT device layer disposed on the second substrate, and a TFT device layer a pixel electrode, and a color filter layer and a black matrix disposed on the pixel electrode;
  • the color filter layer includes a plurality of pixel units arranged in an array, each of the pixel units including a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel separated by a black matrix. a unit capable of reflecting red light and absorbing green light and blue light, the green sub-pixel unit capable of reflecting green light and absorbing red light and blue light, the blue sub-pixel unit capable of reflecting blue light and absorbing red light And green light;
  • the pixel electrode When the white sub-pixel unit is a transparent film layer, the pixel electrode is a reflective electrode; when the white sub-pixel unit is a reflective film layer, the pixel electrode is a transparent electrode or a non-transparent electrode;
  • the white sub-pixel unit When the white sub-pixel unit is a transparent film layer, red, green, and blue light can be transmitted therethrough; when the white sub-pixel unit is a reflective film layer, red, green, and blue light can be reflected by the same;
  • the arrangement of the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit in the pixel unit is any one of the following three arrangements:
  • the first arrangement is: a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit are arranged in a row from left to right;
  • the second arrangement is: a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit are arranged in a row from top to bottom;
  • the third arrangement is: the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit are arranged in two rows; the first row located above includes the red sub-orders arranged from left to right. a pixel unit and a green sub-pixel unit; the second row located below includes a blue sub-pixel unit and a white sub-pixel unit arranged in order from left to right; wherein the red sub-pixel unit and the blue sub-pixel unit are vertically corresponding to each other In one column, the green sub-pixel unit and the white sub-pixel unit are vertically arranged in a row;
  • the red sub-pixel unit, the green sub-pixel unit, the blue sub-pixel unit, and the white sub-pixel unit have the same thickness
  • the material of the pixel electrode is a metal
  • the material of the pixel electrode is a transparent conductive metal oxide
  • the material of the pixel electrode is a transparent conductive metal oxide
  • the material of the pixel electrode is metal
  • first alignment film disposed on a side of the upper substrate toward the liquid crystal layer
  • second alignment film disposed on a side of the lower substrate facing the liquid crystal layer, disposed on the upper substrate
  • An upper polarizer on a side of the liquid crystal layer and a lower polarizer disposed on a side of the lower substrate away from the liquid crystal layer, wherein an absorption axis of the upper polarizer and the lower polarizer are perpendicular to each other;
  • the method further includes: a spacer disposed between the black matrix and the second alignment film, wherein the spacer and the black matrix are integrally formed of the same material.
  • the reflective liquid crystal display panel of the present invention has a white sub-pixel unit added to the pixel unit.
  • the white sub-pixel unit is a transparent film layer and the pixel electrode is reflective.
  • the electrode or the white sub-pixel unit is a reflective film layer and the pixel electrode is a transparent electrode or a non-transparent electrode; when the pixel electrode is disposed above the color filter layer, the white sub-pixel unit is a reflective film layer and the pixel electrode is a transparent electrode.
  • the reflective liquid crystal display panel of the present invention can improve the utilization of ambient light by utilizing the cooperation of the white sub-pixel unit and the pixel electrode, thereby improving the brightness of the pixel unit, thereby improving the light-emitting brightness of the reflective liquid crystal display panel.
  • FIG. 1 is a schematic structural view of a conventional reflective liquid crystal display panel
  • FIG. 2 is a schematic structural view of another reflective liquid crystal display panel
  • FIG. 3 is a schematic structural view of a first reflective liquid crystal display panel of the present invention.
  • FIG. 4 is a schematic structural view of a second reflective liquid crystal display panel of the present invention.
  • FIG. 5 is a schematic view showing a first arrangement of pixel units in the first and second reflective liquid crystal display panels of the present invention
  • FIG. 6 is a schematic view showing a second arrangement of pixel units in the first and second reflective liquid crystal display panels of the present invention.
  • FIG. 7 is a schematic view showing a third arrangement of pixel units in the first and second reflective liquid crystal display panels of the present invention.
  • the present invention provides a reflective liquid crystal display panel comprising: an upper substrate 10 and a lower substrate 20 disposed opposite to each other, and a liquid crystal layer 40 disposed between the upper substrate 10 and the lower substrate 20;
  • the upper substrate 10 includes a first substrate 11 and a common electrode 12 disposed on the first substrate 11;
  • the lower substrate 20 includes a second substrate 21 and is disposed on the second substrate a TFT device layer 22 on 21, a pixel electrode 23 disposed on the TFT device layer 22, and a color filter layer 24 disposed on the pixel electrode 23 and a black matrix 25;
  • the color filter layer 24 includes a plurality of pixel units 30 arranged in an array, each of the pixel units 30 including a red sub-pixel unit 31, a green sub-pixel unit 32, and a blue sub-pixel separated by a black matrix 25. a unit 33 and a white sub-pixel unit 34 capable of reflecting red light and absorbing green light and blue light, the green sub-pixel unit 32 being capable of reflecting green light and absorbing red light and blue light, the blue The sub-pixel unit 33 is capable of reflecting blue light and absorbing red light and green light;
  • the pixel electrode 23 is a reflective electrode; when the white sub-pixel unit 34 is a reflective film layer, the pixel electrode 23 is a transparent electrode or a non-transparent electrode.
  • the white sub-pixel unit 34 when the white sub-pixel unit 34 is a transparent film layer, red, green, and blue light can be transmitted therethrough; when the white sub-pixel unit 34 is a reflective film layer, red, green, and blue light can be reflected by the red sub-pixel unit 34. .
  • the display principle of the reflective liquid crystal display panel is: white ambient light passes through the liquid crystal layer 40 and reaches the color filter layer 24 .
  • the red sub-pixel unit 31, the green sub-pixel unit 32, and the blue sub-pixel unit 33 are selected, the red sub-pixel unit 31, the green sub-pixel unit 32, and the blue sub-pixel unit 33 of the color filter layer 24 respectively selectively select light.
  • the red, green and blue light are absorbed and reflected, and the reflected red, green and blue light pass through the liquid crystal layer 40 again and emerge from the surface of the upper substrate 10; the white ambient light passes through the liquid crystal layer 40 to reach the white color of the color filter layer 24.
  • the white ambient light is transmitted from the white sub-pixel unit 34, reaches the pixel electrode 23, and is reflected by the pixel electrode 23.
  • the reflected white light passes through the white sub-pixel unit 34 and passes through the liquid crystal layer 40 again.
  • the surface of the upper substrate 10 is emitted.
  • the display principle of the reflective liquid crystal display panel is: white ambient light passes through the liquid crystal layer 40 to reach the color filter.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, and the blue sub-pixel unit 33 of the optical layer 24 are respectively paired
  • the light selectively absorbs and reflects red, Green, blue light, reflected red, green, blue light again passes through the liquid crystal layer 40 and emerges from the surface of the upper substrate 10; white ambient light passes through the liquid crystal layer 40 to reach the white sub-pixel unit 34 of the color filter layer 24, white The ambient light is reflected by the white sub-pixel unit 34, and the reflected white light passes through the liquid crystal layer 40 again and is emitted from the surface of the upper substrate 10.
  • the reflective liquid crystal display panel of the present invention has a white sub-pixel unit 34 added to the pixel unit 30, and the white sub-pixel unit 34 and the pixel electrode 23 are used.
  • a white light is added to the light emitted from the pixel unit 30 to increase the brightness of the pixel unit 30, thereby improving the light-emitting brightness of the reflective liquid crystal display panel.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 in the pixel unit 30 may be arranged in the same row or in different rows, but both Located in the same layer structure.
  • the arrangement of the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 in the pixel unit 30 is any one of the following three arrangements:
  • the first arrangement is that the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are arranged in a row from left to right;
  • the second arrangement is: the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are arranged in a row from top to bottom;
  • the third arrangement is: the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are arranged in two rows; the first row above The red sub-pixel unit 31 and the green sub-pixel unit 32 are arranged in order from left to right; the second row located below includes blue sub-pixel units 33 and white sub-pixel units 34 arranged in order from left to right; The red sub-pixel unit 31 and the blue sub-pixel unit 33 are vertically connected in a row, and the green sub-pixel unit 32 and the white sub-pixel unit 34 are vertically aligned in a row.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 have the same thickness or slightly different.
  • the material of the pixel electrode 23 is preferably metal, more preferably aluminum; when the pixel electrode 23 is a transparent electrode, the material of the pixel electrode 23 is preferably transparent conductive.
  • the metal oxide is more preferably indium tin oxide (ITO); when the pixel electrode 23 is a non-transparent electrode, the material of the pixel electrode 23 may be a metal, preferably aluminum.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, and the blue sub-pixel unit are all organic materials.
  • the black matrix 25 is configured to prevent the light mixing of the adjacent sub-pixel units in the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34, thereby improving the single sub-pixel.
  • the color purity of the unit is configured to prevent the light mixing of the adjacent sub-pixel units in the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34, thereby improving the single sub-pixel. The color purity of the unit.
  • the reflective liquid crystal display panel of the present invention further includes: a first alignment film 51 disposed on a side of the upper substrate 10 facing the liquid crystal layer 40, and disposed on the lower substrate 20 toward the liquid crystal layer a second alignment film 52 on the 40 side, an upper polarizer 61 disposed on a side of the upper substrate 10 away from the liquid crystal layer 40, and a side disposed on the lower substrate 20 away from the liquid crystal layer 40.
  • the lower polarizer 62 wherein the absorption axes of the upper polarizer 61 and the lower polarizer 62 are perpendicular to each other.
  • the reflective liquid crystal display panel of the present invention further includes: a spacer 70 disposed between the black matrix 25 and the second alignment film 52, wherein the spacer 70 is used to maintain the thickness of the liquid crystal cell and prevent the liquid crystal display panel
  • the thickness of the liquid crystal layer 40 changes when pressed, and the spacer 70 is disposed corresponding to the black matrix 25 without affecting the aperture area of the pixel unit 30, which is advantageous for increasing the aperture ratio of the liquid crystal display panel.
  • the spacer 70 and the black matrix 25 are integrally formed of the same material, which is beneficial to save process time and reduce production cost.
  • the reflective liquid crystal display panel has a white sub-pixel unit 34 added to the pixel unit 30, and the pixel electrode 23 is disposed under the color filter layer 24. Further, the white sub-pixel unit 34 is disposed as a transparent film layer and the pixel electrode 23 is The reflective electrode is provided with the white sub-pixel unit 34 as a reflective film layer and the pixel electrode 23 as a transparent electrode or a non-transparent electrode.
  • the reflective liquid crystal display panel of the present invention can improve the utilization of ambient light by the cooperation of the white sub-pixel unit 34 and the pixel electrode 23, thereby improving the brightness of the pixel unit 30, thereby improving the light-emitting brightness of the reflective liquid crystal display panel.
  • the present invention provides another reflective liquid crystal display panel, comprising: an upper substrate 10 and a lower substrate 20 disposed opposite to each other, and a liquid crystal layer 40 disposed between the upper substrate 10 and the lower substrate 20;
  • the substrate 10 includes a first substrate 11 and a common electrode 12 disposed on the first substrate 11;
  • the lower substrate 20 includes a second substrate 21 disposed on the second substrate a TFT device layer 22 on the substrate 21, a color filter layer 24 disposed on the TFT device layer 22, a black matrix 25, and pixel electrodes 23 disposed on the color filter layer 24 and the black matrix 25;
  • the color filter layer 24 includes a plurality of pixel units 30 arranged in an array, each of the pixel units 30 including a red sub-pixel unit 31, a green sub-pixel unit 32, and a blue sub-pixel separated by a black matrix 25. a unit 33 and a white sub-pixel unit 34 capable of reflecting red light and absorbing green light and blue light, the green sub-pixel unit 32 being capable of reflecting green light And absorbing red light and blue light, the blue sub-pixel unit 33 is capable of reflecting blue light and absorbing red light and green light;
  • the white sub-pixel unit 34 is a reflective film layer, and the pixel electrode 23 is a transparent electrode.
  • red, green, and blue light can be reflected by the red sub-pixel unit 34.
  • the display principle of the reflective liquid crystal display panel is that the white ambient light sequentially passes through the liquid crystal layer 40 and the pixel electrode 23 to reach the red sub-pixel unit 31, the green sub-pixel unit 32, and the blue sub-pixel unit 33 of the color filter layer 24.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, and the blue sub-pixel unit 33 of the color filter layer 24 selectively absorb light and reflect red, green, and blue light, and reflect red, green, and blue light.
  • the reflective liquid crystal display panel of the present invention has a white sub-pixel unit 34 added to the pixel unit 30, and the white sub-pixel unit 34 and the pixel electrode 23 are used.
  • a white light is added to the light emitted from the pixel unit 30 to increase the brightness of the pixel unit 30, thereby improving the light-emitting brightness of the reflective liquid crystal display panel.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 in the pixel unit 30 may be arranged in the same row or in different rows, but both Located in the same layer structure.
  • the arrangement of the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 in the pixel unit 30 is any one of the following three arrangements:
  • the first arrangement is that the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are arranged in a row from left to right;
  • the second arrangement is: the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are arranged in a row from top to bottom;
  • the third arrangement is: the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are arranged in two rows; the first row above The red sub-pixel unit 31 and the green sub-pixel unit 32 are arranged in order from left to right; the second row located below includes blue sub-pixel units 33 and white sub-pixel units 34 arranged in order from left to right; Red sub-pixel unit 31 and blue sub-pixel unit 33 The lower one corresponds to one column, and the green sub-pixel unit 32 and the white sub-pixel unit 34 are vertically connected in a row.
  • the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 have the same thickness or slightly different.
  • the material of the pixel electrode 23 is a transparent conductive metal oxide, preferably indium tin oxide (ITO).
  • ITO indium tin oxide
  • the materials of the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34 are all organic materials.
  • the black matrix 25 is configured to prevent the light mixing of the adjacent sub-pixel units in the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34, thereby improving the single sub-pixel.
  • the color purity of the unit is configured to prevent the light mixing of the adjacent sub-pixel units in the red sub-pixel unit 31, the green sub-pixel unit 32, the blue sub-pixel unit 33, and the white sub-pixel unit 34, thereby improving the single sub-pixel. The color purity of the unit.
  • the reflective liquid crystal display panel of the present invention further includes: a first alignment film 51 disposed on a side of the upper substrate 10 facing the liquid crystal layer 40, and disposed on the lower substrate 20 toward the liquid crystal layer a second alignment film 52 on the 40 side, an upper polarizer 61 disposed on a side of the upper substrate 10 away from the liquid crystal layer 40, and a side disposed on the lower substrate 20 away from the liquid crystal layer 40.
  • the lower polarizer 62 wherein the absorption axes of the upper polarizer 61 and the lower polarizer 62 are perpendicular to each other.
  • the reflective liquid crystal display panel of the present invention further includes: a spacer 70 disposed between the black matrix 25 and the pixel electrode 23, wherein the spacer 70 is used to maintain the thickness of the liquid crystal cell and prevent the liquid crystal display panel from being pressed.
  • the spacer 70 is disposed corresponding to the black matrix 25 so as not to affect the aperture area of the pixel unit 30, which is advantageous for increasing the aperture ratio of the liquid crystal display panel.
  • the spacer 70 and the black matrix 25 are integrally formed of the same material, which is beneficial to save process time and reduce production cost.
  • the reflective liquid crystal display panel has a white sub-pixel unit 34 added to the pixel unit 30, and the pixel electrode 23 is disposed above the color filter layer 24. Further, the white sub-pixel unit 34 is disposed as a reflective film layer and the pixel electrode. 23 is a transparent electrode.
  • the reflective liquid crystal display panel of the present invention can improve the utilization of ambient light by the cooperation of the white sub-pixel unit 34 and the pixel electrode 23, thereby improving the brightness of the pixel unit 30, thereby improving the light-emitting brightness of the reflective liquid crystal display panel.
  • the present invention provides a reflective liquid crystal display panel.
  • the reflective liquid crystal display panel of the present invention adds a white sub-pixel unit to the pixel unit.
  • the white sub-pixel unit is a transparent film layer and the pixel electrode is a reflective electrode, or a white sub-pixel.
  • the unit is a reflective film layer and the pixel electrode is a transparent electrode or a non-transparent electrode; when the pixel electrode is disposed above the color filter layer, the white sub-pixel unit is a reflective film layer and the pixel electrode is transparent.
  • Bright electrode when the pixel electrode is disposed above the color filter layer, the white sub-pixel unit is a reflective film layer and the pixel electrode is transparent.
  • the reflective liquid crystal display panel of the present invention can improve the utilization of ambient light by utilizing the cooperation of the white sub-pixel unit and the pixel electrode, thereby improving the brightness of the pixel unit, thereby improving the light-emitting brightness of the reflective liquid crystal display panel.

Abstract

一种反射式液晶显示面板。反射式液晶显示面板在像素单元(30)中增设了白色子像素单元(34),当像素电极(23)设于彩色滤光层(24)下方时,白色子像素单元(34)为透明膜层且像素电极(23)为反射电极,或者白色子像素单元(34)为反射膜层且像素电极(23)为透明电极或者非透明电极;当像素电极(23)设于彩色滤光层(24)上方时,白色子像素单元(34)为反射膜层且像素电极(23)为透明电极。反射式液晶显示面板利用白色子像素单元(34)与像素电极(23)的配合能够提高环境光的利用率,从而提升像素单元(30)的亮度,进而提升反射式液晶显示面板的出光亮度。

Description

反射式液晶显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种反射式液晶显示面板。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等。
现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括背光模组(Backlight Module)、结合于背光模组上的液晶显示面板与固定该液晶显示面板与背光模组的前框。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
目前,液晶显示器根据光源类型的不同一般可分为透射式液晶显示器、反射式液晶显示器以及透反式液晶显示器。
随着移动设备以及可穿戴应用的兴起,显示设备对轻薄以及省电的需求也日益增大。所以开发出低能耗,省电的显示器件变得越来越重要。而传统的透射式液晶显示器在显示领域已经大量量产,其色彩、画质、分辨率已经可以满足大部分需求,但是它们耗电相对较高,特别是当该类显示器应用在可移动及可穿戴设备上时,显示设备的待机或使用时间受到很大限制。
由于反射式液晶显示器可以利用环境光线来显示,无需耗能高的背光源,因此其在移动设备以及可穿戴显示设备应用中具有很大的潜力。
图1为现有的一种反射式液晶显示面板的结构示意图,如图1所示,所述反射式液晶显示面板包括:相对设置的上基板100与下基板200、及设于所述上基板100与下基板200之间的液晶层400;所述上基板100包括第一衬底基板110、设于所述第一衬底基板110上的彩色滤光层240与黑色矩阵250、及设于所述彩色滤光层240与黑色矩阵250上的公共电极120;所述下基板200包括第二衬底基板210、设于所述第二衬底基板210上的TFT器件层220、及设于所述TFT器件层220上的像素电极230;其中,所述彩色滤光层240包括被黑色矩阵250间隔开的透过式红色子像素单元310、透 过式绿色子像素单元320、及透过式蓝色子像素单元330,所述像素电极23为反射电极,该反射式液晶显示面板的显示原理为:环境光穿过彩色滤光层240、液晶层400到达像素电极230,然后像素电极230将光线反射,反射光线会再次穿过液晶层400、彩色滤光层240并从上基板100表面射出,实现画面显示。该反射式液晶显示面板的工作过程中,由于环境光来回两次经过彩色滤光层240与液晶层400,导致环境光的损耗比较大,利用率低,从而造成液晶显示面板的显示画面亮度不够大。
为了提高反射式液晶显示面板对环境光的利用率,现有一种如图2所示的反射式液晶显示面板,如图2所示,所述反射式液晶显示面板包括:相对设置的上基板100与下基板200、及设于所述上基板100与下基板200之间的液晶层400;所述上基板100包括第一衬底基板110、及设于所述第一衬底基板110上的公共电极120;所述下基板200包括第二衬底基板210、设于所述第二衬底基板210上的TFT器件层220、设于所述TFT器件层220上的像素电极230、及设于所述像素电极230上的彩色滤光层240与黑色矩阵250;其中,所述彩色滤光层240包括被黑色矩阵250间隔开的反射式红色子像素单元310’、反射式绿色子像素单元320’及反射式蓝色子像素单元330’,所述像素电极230为透明电极,具体的,所述反射式红色子像素单元310’能够反射红光并吸收绿光和蓝光,所述反射式绿色子像素单元320’能够反射绿光并吸收红光和蓝光,所述反射式蓝色子像素单元330’能够反射蓝光并吸收红光和绿光。该反射式液晶显示面板的显示原理为:环境光穿过液晶层400到达彩色滤光层240,然后彩色滤光层240对光线进行选择性吸收与反射,反射光线再次穿过液晶层400并从上基板100表面射出,实现画面显示。该反射式液晶显示面板的工作过程中,环境光仅经过彩色滤光层240一次,减少了环境光在彩色滤光层240中的损耗,但由于彩色滤光层240吸收了大部分光谱,且环境光还需要两次经过液晶层400、上下配向膜(未图示)及第一衬底基板110等结构层,环境光的损耗依然很大,液晶显示面板的显示画面亮度仍然需要提高。
发明内容
本发明的目的在于提供一种反射式液晶显示面板,在像素单元中增设白色子像素单元,利用白色子像素单元与像素电极的配合提升像素单元的亮度,进而提升反射式液晶显示面板的出光亮度。
为实现上述目的,本发明提供一种反射式液晶显示面板,包括:相对设置的上基板与下基板、以及设于所述上基板与下基板之间的液晶层;所 述上基板包括第一衬底基板、及设于所述第一衬底基板上的公共电极;所述下基板包括第二衬底基板、设于所述第二衬底基板上的TFT器件层、设于所述TFT器件层上的像素电极、及设于所述像素电极上的彩色滤光层与黑色矩阵;
其中,所述彩色滤光层包括呈阵列排布的数个像素单元,每个像素单元包括被黑色矩阵间隔开的红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元,所述红色子像素单元能够反射红光并吸收绿光和蓝光,所述绿色子像素单元能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元能够反射蓝光并吸收红光和绿光;
所述白色子像素单元为透明膜层时,所述像素电极为反射电极;所述白色子像素单元为反射膜层时,所述像素电极为透明电极或者非透明电极;
所述白色子像素单元为透明膜层时,红、绿、蓝光均能从中透过;所述白色子像素单元为反射膜层时,红、绿、蓝光均能被其反射。
所述像素单元中红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的排列方式为以下三种排列方式中的任意一种:
第一种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从左至右依次排列成一行;
第二种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从上至下依次排列成一列;
第三种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元与绿色子像素单元;位于下方的第二行包括从左至右依次排列的蓝色子像素单元与白色子像素单元;其中,所述红色子像素单元与蓝色子像素单元上下对应成一列,所述绿色子像素单元与白色子像素单元上下对应成一列。
所述红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的厚度相同;
所述像素电极为反射电极时,所述像素电极的材料为金属;所述像素电极为透明电极时,所述像素电极的材料为透明导电金属氧化物;所述像素电极为非透明电极时,所述像素电极的材料为金属。
本发明的反射式液晶显示面板还包括:设于所述上基板上朝向所述液晶层一侧的第一配向膜、设于所述下基板上朝向所述液晶层一侧的第二配向膜、设于所述上基板上远离所述液晶层一侧的上偏光片、以及设于所述下基板上远离所述液晶层一侧的下偏光片,其中,所述上偏光片与下偏光 片的吸收轴相互垂直。
本发明的反射式液晶显示面板还包括:设于所述黑色矩阵与第二配向膜之间的间隙物,所述间隙物与黑色矩阵采用同种材料一体成型。
本发明还提供一种反射式液晶显示面板,包括:相对设置的上基板与下基板、以及设于所述上基板与下基板之间的液晶层;所述上基板包括第一衬底基板、及设于所述第一衬底基板上的公共电极;所述下基板包括第二衬底基板、设于所述第二衬底基板上的TFT器件层、设于所述TFT器件层上的彩色滤光层与黑色矩阵、及设于所述彩色滤光层与黑色矩阵上的像素电极;
其中,所述彩色滤光层包括呈阵列排布的数个像素单元,每个像素单元包括被黑色矩阵间隔开的红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元,所述红色子像素单元能够反射红光并吸收绿光和蓝光,所述绿色子像素单元能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元能够反射蓝光并吸收红光和绿光;
所述白色子像素单元为反射膜层,所述像素电极为透明电极;
所述白色子像素单元为反射膜层时,红、绿、蓝光均能被其反射。
所述像素单元中红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的排列方式为以下三种排列方式中的任意一种:
第一种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从左至右依次排列成一行;
第二种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从上至下依次排列成一列;
第三种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元与绿色子像素单元;位于下方的第二行包括从左至右依次排列的蓝色子像素单元与白色子像素单元;其中,所述红色子像素单元与蓝色子像素单元上下对应成一列,所述绿色子像素单元与白色子像素单元上下对应成一列。
所述红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的厚度相同;所述像素电极的材料为透明导电金属氧化物。
本发明的反射式液晶显示面板还包括:设于所述上基板上朝向所述液晶层一侧的第一配向膜、设于所述下基板上朝向所述液晶层一侧的第二配向膜、设于所述上基板上远离所述液晶层一侧的上偏光片、以及设于所述下基板上远离所述液晶层一侧的下偏光片,其中,所述上偏光片与下偏光 片的吸收轴相互垂直。
本发明的反射式液晶显示面板还包括:设于所述黑色矩阵与像素电极之间的间隙物,所述间隙物与黑色矩阵采用同种材料一体成型。
本发明还提供一种反射式液晶显示面板,包括:相对设置的上基板与下基板、以及设于所述上基板与下基板之间的液晶层;所述上基板包括第一衬底基板、及设于所述第一衬底基板上的公共电极;所述下基板包括第二衬底基板、设于所述第二衬底基板上的TFT器件层、设于所述TFT器件层上的像素电极、及设于所述像素电极上的彩色滤光层与黑色矩阵;
其中,所述彩色滤光层包括呈阵列排布的数个像素单元,每个像素单元包括被黑色矩阵间隔开的红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元,所述红色子像素单元能够反射红光并吸收绿光和蓝光,所述绿色子像素单元能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元能够反射蓝光并吸收红光和绿光;
所述白色子像素单元为透明膜层时,所述像素电极为反射电极;所述白色子像素单元为反射膜层时,所述像素电极为透明电极或者非透明电极;
所述白色子像素单元为透明膜层时,红、绿、蓝光均能从中透过;所述白色子像素单元为反射膜层时,红、绿、蓝光均能被其反射;
其中,所述像素单元中红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的排列方式为以下三种排列方式中的任意一种:
第一种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从左至右依次排列成一行;
第二种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从上至下依次排列成一列;
第三种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元与绿色子像素单元;位于下方的第二行包括从左至右依次排列的蓝色子像素单元与白色子像素单元;其中,所述红色子像素单元与蓝色子像素单元上下对应成一列,所述绿色子像素单元与白色子像素单元上下对应成一列;
其中,所述红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的厚度相同;
所述像素电极为反射电极时,所述像素电极的材料为金属;所述像素电极为透明电极时,所述像素电极的材料为透明导电金属氧化物;所述像素电极为非透明电极时,所述像素电极的材料为金属;
还包括:设于所述上基板上朝向所述液晶层一侧的第一配向膜、设于所述下基板上朝向所述液晶层一侧的第二配向膜、设于所述上基板上远离所述液晶层一侧的上偏光片、以及设于所述下基板上远离所述液晶层一侧的下偏光片,其中,所述上偏光片与下偏光片的吸收轴相互垂直;
还包括:设于所述黑色矩阵与第二配向膜之间的间隙物,所述间隙物与黑色矩阵采用同种材料一体成型。
本发明的有益效果:本发明的反射式液晶显示面板在像素单元中增设了白色子像素单元,当像素电极设于彩色滤光层下方时,白色子像素单元为透明膜层且像素电极为反射电极,或者白色子像素单元为反射膜层且像素电极为透明电极或者非透明电极;当像素电极设于彩色滤光层上方时,白色子像素单元为反射膜层且像素电极为透明电极。本发明的反射式液晶显示面板利用白色子像素单元与像素电极的配合能够提高环境光的利用率,从而提升像素单元的亮度,进而提升反射式液晶显示面板的出光亮度。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为现有的一种反射式液晶显示面板的结构示意图;
图2为现有的另一种反射式液晶显示面板的结构示意图;
图3为本发明的第一种反射式液晶显示面板的结构示意图;
图4为本发明的第二种反射式液晶显示面板的结构示意图;
图5为本发明的第一种与第二种反射式液晶显示面板中像素单元的第一种排列方式的示意图;
图6为本发明的第一种与第二种反射式液晶显示面板中像素单元的第二种排列方式的示意图;
图7为本发明的第一种与第二种反射式液晶显示面板中像素单元的第三种排列方式的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图3,本发明提供一种反射式液晶显示面板,包括:相对设置的上基板10与下基板20、以及设于所述上基板10与下基板20之间的液晶层40;所述上基板10包括第一衬底基板11、及设于所述第一衬底基板11上的公共电极12;所述下基板20包括第二衬底基板21、设于所述第二衬底基板21上的TFT器件层22、设于所述TFT器件层22上的像素电极23、及设于所述像素电极23上的彩色滤光层24与黑色矩阵25;
其中,所述彩色滤光层24包括呈阵列排布的数个像素单元30,每个像素单元30包括被黑色矩阵25间隔开的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34,所述红色子像素单元31能够反射红光并吸收绿光和蓝光,所述绿色子像素单元32能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元33能够反射蓝光并吸收红光和绿光;
所述白色子像素单元34为透明膜层时,所述像素电极23为反射电极;所述白色子像素单元34为反射膜层时,所述像素电极23为透明电极或者非透明电极。
具体的,所述白色子像素单元34为透明膜层时,红、绿、蓝光均能从中透过;所述白色子像素单元34为反射膜层时,红、绿、蓝光均能被其反射。
当所述白色子像素单元34为透明膜层,所述像素电极23为反射电极时,该反射式液晶显示面板的显示原理为:白色的环境光穿过液晶层40到达彩色滤光层24的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33时,彩色滤光层24的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33分别对光线进行选择性吸收并反射出红、绿、蓝光,反射出的红、绿、蓝光再次穿过液晶层40并从上基板10表面射出;白色的环境光穿过液晶层40到达彩色滤光层24的白色子像素单元34时,白色的环境光从白色子像素单元34中透过,到达像素电极23后被像素电极23反射,反射出的白光透过白色子像素单元34,再次穿过液晶层40并从上基板10表面射出。
当所述白色子像素单元34为反射膜层,所述像素电极23为透明电极或者非透明电极时,该反射式液晶显示面板的显示原理为:白色的环境光穿过液晶层40到达彩色滤光层24的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33时,彩色滤光层24的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33分别对光线进行选择性吸收并反射出红、 绿、蓝光,反射出的红、绿、蓝光再次穿过液晶层40并从上基板10表面射出;白色的环境光穿过液晶层40到达彩色滤光层24的白色子像素单元34时,白色的环境光被白色子像素单元34反射,反射出的白光再次穿过液晶层40并从上基板10表面射出。
与图2所示的现有的反射式液晶显示面板相比,本发明的反射式液晶显示面板在像素单元30中增设了白色子像素单元34,利用该白色子像素单元34与像素电极23的配合在从像素单元30中出射的光中增加一束白光,从而提升像素单元30的亮度,进而提升反射式液晶显示面板的出光亮度。
具体的,所述像素单元30中红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34既可以排列在同一行,也可排列在不同行,但都位于同一层结构中。
具体的,所述像素单元30中红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34的排列方式为以下三种排列方式中的任意一种:
如图5所示,第一种排列方式为:红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34从左至右依次排列成一行;
如图6所示,第二种排列方式为:红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34从上至下依次排列成一列;
如图7所示,第三种排列方式为:红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元31与绿色子像素单元32;位于下方的第二行包括从左至右依次排列的蓝色子像素单元33与白色子像素单元34;其中,所述红色子像素单元31与蓝色子像素单元33上下对应成一列,所述绿色子像素单元32与白色子像素单元34上下对应成一列。
具体的,所述红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34的厚度相同或者存在略微差异。
具体的,所述像素电极23为反射电极时,所述像素电极23的材料优选为金属,更优选为铝;所述像素电极23为透明电极时,所述像素电极23的材料优选为透明导电金属氧化物,更优选为氧化铟锡(ITO);所述像素电极23为非透明电极时,所述像素电极23的材料可以为金属,优选为铝。
具体的,所述红色子像素单元31、绿色子像素单元32、蓝色子像素单 元33、及白色子像素单元34的材料均为有机材料。
具体的,所述黑色矩阵25用于防止红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34中相邻子像素单元的出光混色,提高单一子像素单元的出光色纯度。
具体的,本发明的反射式液晶显示面板还包括:设于所述上基板10上朝向所述液晶层40一侧的第一配向膜51、设于所述下基板20上朝向所述液晶层40一侧的第二配向膜52、设于所述上基板10上远离所述液晶层40一侧的上偏光片61、以及设于所述下基板20上远离所述液晶层40一侧的下偏光片62,其中,所述上偏光片61与下偏光片62的吸收轴相互垂直。
进一步的,本发明的反射式液晶显示面板还包括:设于所述黑色矩阵25与第二配向膜52之间的间隙物70,所述间隙物70用于维持液晶盒厚,防止液晶显示面板受到按压时液晶层40的厚度发生变化,所述间隙物70对应于黑色矩阵25设置不会影响像素单元30的开口面积,有利于提高液晶显示面板的开口率。
优选的,所述间隙物70与黑色矩阵25采用同种材料一体成型,有利于节省制程时间,降低生产成本。
上述反射式液晶显示面板在像素单元30中增设了白色子像素单元34,并将像素电极23设置于彩色滤光层24下方,另外,设置白色子像素单元34为透明膜层且像素电极23为反射电极,或者设置白色子像素单元34为反射膜层且像素电极23为透明电极或者非透明电极。本发明的反射式液晶显示面板利用白色子像素单元34与像素电极23的配合能够提高环境光的利用率,从而提升像素单元30的亮度,进而提升反射式液晶显示面板的出光亮度。
请参阅图4,本发明提供另一种反射式液晶显示面板,包括:相对设置的上基板10与下基板20、以及设于所述上基板10与下基板20之间的液晶层40;所述上基板10包括第一衬底基板11、及设于所述第一衬底基板11上的公共电极12;所述下基板20包括第二衬底基板21、设于所述第二衬底基板21上的TFT器件层22、设于所述TFT器件层22上的彩色滤光层24与黑色矩阵25、及设于所述彩色滤光层24与黑色矩阵25上的像素电极23;
其中,所述彩色滤光层24包括呈阵列排布的数个像素单元30,每个像素单元30包括被黑色矩阵25间隔开的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34,所述红色子像素单元31能够反射红光并吸收绿光和蓝光,所述绿色子像素单元32能够反射绿光 并吸收红光和蓝光,所述蓝色子像素单元33能够反射蓝光并吸收红光和绿光;
所述白色子像素单元34为反射膜层,所述像素电极23为透明电极。
具体的,所述白色子像素单元34为反射膜层时,红、绿、蓝光均能被其反射。
该反射式液晶显示面板的显示原理为:白色的环境光依次穿过液晶层40及像素电极23到达彩色滤光层24的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33时,彩色滤光层24的红色子像素单元31、绿色子像素单元32、蓝色子像素单元33分别对光线进行选择性吸收并反射出红、绿、蓝光,反射出的红、绿、蓝光再次穿过液晶层40并从上基板10表面射出;白色的环境光穿过液晶层40及像素电极23到达彩色滤光层24的白色子像素单元34时,白色的环境光被白色子像素单元34反射,反射出的白光透过像素电极23,再次穿过液晶层40并从上基板10表面射出。
与图2所示的现有的反射式液晶显示面板相比,本发明的反射式液晶显示面板在像素单元30中增设了白色子像素单元34,利用该白色子像素单元34与像素电极23的配合在从像素单元30中出射的光中增加一束白光,从而提升像素单元30的亮度,进而提升反射式液晶显示面板的出光亮度。
具体的,所述像素单元30中红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34既可以排列在同一行,也可排列在不同行,但都位于同一层结构中。
具体的,所述像素单元30中红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34的排列方式为以下三种排列方式中的任意一种:
如图5所示,第一种排列方式为:红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34从左至右依次排列成一行;
如图6所示,第二种排列方式为:红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34从上至下依次排列成一列;
如图7所示,第三种排列方式为:红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元31与绿色子像素单元32;位于下方的第二行包括从左至右依次排列的蓝色子像素单元33与白色子像素单元34;其中,所述红色子像素单元31与蓝色子像素单元33上 下对应成一列,所述绿色子像素单元32与白色子像素单元34上下对应成一列。
具体的,所述红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34的厚度相同或者存在略微差异。
具体的,所述像素电极23的材料为透明导电金属氧化物,优选为氧化铟锡(ITO)。
具体的,所述红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34的材料均为有机材料。
具体的,所述黑色矩阵25用于防止红色子像素单元31、绿色子像素单元32、蓝色子像素单元33、及白色子像素单元34中相邻子像素单元的出光混色,提高单一子像素单元的出光色纯度。
具体的,本发明的反射式液晶显示面板还包括:设于所述上基板10上朝向所述液晶层40一侧的第一配向膜51、设于所述下基板20上朝向所述液晶层40一侧的第二配向膜52、设于所述上基板10上远离所述液晶层40一侧的上偏光片61、以及设于所述下基板20上远离所述液晶层40一侧的下偏光片62,其中,所述上偏光片61与下偏光片62的吸收轴相互垂直。
进一步的,本发明的反射式液晶显示面板还包括:设于所述黑色矩阵25与像素电极23之间的间隙物70,所述间隙物70用于维持液晶盒厚,防止液晶显示面板受到按压时液晶层40的厚度发生变化,所述间隙物70对应于黑色矩阵25设置不会影响像素单元30的开口面积,有利于提高液晶显示面板的开口率。
优选的,所述间隙物70与黑色矩阵25采用同种材料一体成型,有利于节省制程时间,降低生产成本。
上述反射式液晶显示面板在像素单元30中增设了白色子像素单元34,并将像素电极23设置于彩色滤光层24上方,另外,设置所述白色子像素单元34为反射膜层且像素电极23为透明电极。本发明的反射式液晶显示面板利用白色子像素单元34与像素电极23的配合能够提高环境光的利用率,从而提升像素单元30的亮度,进而提升反射式液晶显示面板的出光亮度。
综上所述,本发明提供一种反射式液晶显示面板。本发明的反射式液晶显示面板在像素单元中增设了白色子像素单元,当像素电极设于彩色滤光层下方时,白色子像素单元为透明膜层且像素电极为反射电极,或者白色子像素单元为反射膜层且像素电极为透明电极或者非透明电极;当像素电极设于彩色滤光层上方时,白色子像素单元为反射膜层且像素电极为透 明电极。本发明的反射式液晶显示面板利用白色子像素单元与像素电极的配合能够提高环境光的利用率,从而提升像素单元的亮度,进而提升反射式液晶显示面板的出光亮度。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种反射式液晶显示面板,包括:相对设置的上基板与下基板、以及设于所述上基板与下基板之间的液晶层;所述上基板包括第一衬底基板、及设于所述第一衬底基板上的公共电极;所述下基板包括第二衬底基板、设于所述第二衬底基板上的TFT器件层、设于所述TFT器件层上的像素电极、及设于所述像素电极上的彩色滤光层与黑色矩阵;
    其中,所述彩色滤光层包括呈阵列排布的数个像素单元,每个像素单元包括被黑色矩阵间隔开的红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元,所述红色子像素单元能够反射红光并吸收绿光和蓝光,所述绿色子像素单元能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元能够反射蓝光并吸收红光和绿光;
    所述白色子像素单元为透明膜层时,所述像素电极为反射电极;所述白色子像素单元为反射膜层时,所述像素电极为透明电极或者非透明电极;
    所述白色子像素单元为透明膜层时,红、绿、蓝光均能从中透过;所述白色子像素单元为反射膜层时,红、绿、蓝光均能被其反射。
  2. 如权利要求1所述的反射式液晶显示面板,其中,所述像素单元中红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的排列方式为以下三种排列方式中的任意一种:
    第一种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从左至右依次排列成一行;
    第二种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从上至下依次排列成一列;
    第三种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元与绿色子像素单元;位于下方的第二行包括从左至右依次排列的蓝色子像素单元与白色子像素单元;其中,所述红色子像素单元与蓝色子像素单元上下对应成一列,所述绿色子像素单元与白色子像素单元上下对应成一列。
  3. 如权利要求1所述的反射式液晶显示面板,其中,所述红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的厚度相同;
    所述像素电极为反射电极时,所述像素电极的材料为金属;所述像素电极为透明电极时,所述像素电极的材料为透明导电金属氧化物;所述像 素电极为非透明电极时,所述像素电极的材料为金属。
  4. 如权利要求1所述的反射式液晶显示面板,还包括:设于所述上基板上朝向所述液晶层一侧的第一配向膜、设于所述下基板上朝向所述液晶层一侧的第二配向膜、设于所述上基板上远离所述液晶层一侧的上偏光片、以及设于所述下基板上远离所述液晶层一侧的下偏光片,其中,所述上偏光片与下偏光片的吸收轴相互垂直。
  5. 如权利要求1所述的反射式液晶显示面板,还包括:设于所述黑色矩阵与第二配向膜之间的间隙物,所述间隙物与黑色矩阵采用同种材料一体成型。
  6. 一种反射式液晶显示面板,包括:相对设置的上基板与下基板、以及设于所述上基板与下基板之间的液晶层;所述上基板包括第一衬底基板、及设于所述第一衬底基板上的公共电极;所述下基板包括第二衬底基板、设于所述第二衬底基板上的TFT器件层、设于所述TFT器件层上的彩色滤光层与黑色矩阵、及设于所述彩色滤光层与黑色矩阵上的像素电极;
    其中,所述彩色滤光层包括呈阵列排布的数个像素单元,每个像素单元包括被黑色矩阵间隔开的红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元,所述红色子像素单元能够反射红光并吸收绿光和蓝光,所述绿色子像素单元能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元能够反射蓝光并吸收红光和绿光;
    所述白色子像素单元为反射膜层,所述像素电极为透明电极;
    所述白色子像素单元为反射膜层时,红、绿、蓝光均能被其反射。
  7. 如权利要求6所述的反射式液晶显示面板,其中,所述像素单元中红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的排列方式为以下三种排列方式中的任意一种:
    第一种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从左至右依次排列成一行;
    第二种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从上至下依次排列成一列;
    第三种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元与绿色子像素单元;位于下方的第二行包括从左至右依次排列的蓝色子像素单元与白色子像素单元;其中,所述红色子像素单元与蓝色子像素单元上下对应成一列,所述绿色子像素单元与白色子像素单元上下对应成一列。
  8. 如权利要求6所述的反射式液晶显示面板,其中,所述红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的厚度相同;所述像素电极的材料为透明导电金属氧化物。
  9. 如权利要求6所述的反射式液晶显示面板,还包括:设于所述上基板上朝向所述液晶层一侧的第一配向膜、设于所述下基板上朝向所述液晶层一侧的第二配向膜、设于所述上基板上远离所述液晶层一侧的上偏光片、以及设于所述下基板上远离所述液晶层一侧的下偏光片,其中,所述上偏光片与下偏光片的吸收轴相互垂直。
  10. 如权利要求6所述的反射式液晶显示面板,还包括:设于所述黑色矩阵与像素电极之间的间隙物,所述间隙物与黑色矩阵采用同种材料一体成型。
  11. 一种反射式液晶显示面板,包括:相对设置的上基板与下基板、以及设于所述上基板与下基板之间的液晶层;所述上基板包括第一衬底基板、及设于所述第一衬底基板上的公共电极;所述下基板包括第二衬底基板、设于所述第二衬底基板上的TFT器件层、设于所述TFT器件层上的像素电极、及设于所述像素电极上的彩色滤光层与黑色矩阵;
    其中,所述彩色滤光层包括呈阵列排布的数个像素单元,每个像素单元包括被黑色矩阵间隔开的红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元,所述红色子像素单元能够反射红光并吸收绿光和蓝光,所述绿色子像素单元能够反射绿光并吸收红光和蓝光,所述蓝色子像素单元能够反射蓝光并吸收红光和绿光;
    所述白色子像素单元为透明膜层时,所述像素电极为反射电极;所述白色子像素单元为反射膜层时,所述像素电极为透明电极或者非透明电极;
    所述白色子像素单元为透明膜层时,红、绿、蓝光均能从中透过;所述白色子像素单元为反射膜层时,红、绿、蓝光均能被其反射;
    其中,所述像素单元中红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的排列方式为以下三种排列方式中的任意一种:
    第一种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从左至右依次排列成一行;
    第二种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元从上至下依次排列成一列;
    第三种排列方式为:红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元排列成上下两行;位于上方的第一行包括从左至右依次排列的红色子像素单元与绿色子像素单元;位于下方的第二行包括 从左至右依次排列的蓝色子像素单元与白色子像素单元;其中,所述红色子像素单元与蓝色子像素单元上下对应成一列,所述绿色子像素单元与白色子像素单元上下对应成一列;
    其中,所述红色子像素单元、绿色子像素单元、蓝色子像素单元、及白色子像素单元的厚度相同;
    所述像素电极为反射电极时,所述像素电极的材料为金属;所述像素电极为透明电极时,所述像素电极的材料为透明导电金属氧化物;所述像素电极为非透明电极时,所述像素电极的材料为金属;
    还包括:设于所述上基板上朝向所述液晶层一侧的第一配向膜、设于所述下基板上朝向所述液晶层一侧的第二配向膜、设于所述上基板上远离所述液晶层一侧的上偏光片、以及设于所述下基板上远离所述液晶层一侧的下偏光片,其中,所述上偏光片与下偏光片的吸收轴相互垂直;
    还包括:设于所述黑色矩阵与第二配向膜之间的间隙物,所述间隙物与黑色矩阵采用同种材料一体成型。
PCT/CN2017/113016 2017-09-11 2017-11-27 反射式液晶显示面板 WO2019047384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/579,946 US10509282B2 (en) 2017-09-11 2017-11-27 Reflective LCD panel having reflective red sub-pixel, reflective green sub-pixel, reflective blue sub-pixel, and reflective white sub-pixel separated by black matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710814427.9 2017-09-11
CN201710814427.9A CN107357081A (zh) 2017-09-11 2017-09-11 反射式液晶显示面板

Publications (1)

Publication Number Publication Date
WO2019047384A1 true WO2019047384A1 (zh) 2019-03-14

Family

ID=60290931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113016 WO2019047384A1 (zh) 2017-09-11 2017-11-27 反射式液晶显示面板

Country Status (3)

Country Link
US (3) US10509282B2 (zh)
CN (1) CN107357081A (zh)
WO (1) WO2019047384A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357081A (zh) * 2017-09-11 2017-11-17 深圳市华星光电半导体显示技术有限公司 反射式液晶显示面板
KR102632165B1 (ko) * 2018-07-10 2024-02-01 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN109633968A (zh) * 2019-01-21 2019-04-16 深圳市华星光电半导体显示技术有限公司 液晶显示面板
CN109814292B (zh) 2019-04-04 2022-04-12 福州京东方光电科技有限公司 一种反射式彩膜基板及其驱动方法、显示面板和显示装置
CN112305797A (zh) * 2019-07-30 2021-02-02 瀚宇彩晶股份有限公司 反射式显示面板及其像素结构
CN110361893B (zh) * 2019-08-07 2022-08-23 京东方科技集团股份有限公司 反射型显示面板及制造和控制方法、控制单元、显示装置
CN111308762B (zh) * 2020-04-01 2021-05-07 深圳市华星光电半导体显示技术有限公司 一种显示面板及电子装置
EP4139009A4 (en) 2020-04-23 2024-05-08 Dynamic Accession LLC DYNAMIC MOVEMENT RESISTANCE MODULE
CN112213882A (zh) * 2020-10-26 2021-01-12 京东方科技集团股份有限公司 反射式显示基板及制作方法、显示面板和显示装置
US11860491B2 (en) * 2021-02-26 2024-01-02 Boe Technology Group Co., Ltd. Display panel, preparation method thereof, and display apparatus
CN114967209B (zh) * 2021-02-26 2023-11-17 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN113050336A (zh) * 2021-03-18 2021-06-29 Tcl华星光电技术有限公司 一种阵列基板及液晶显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055525A1 (en) * 2006-09-06 2008-03-06 Koichi Igeta Liquid crystal display device
TW201040587A (en) * 2009-05-08 2010-11-16 Prime View Int Co Ltd Color filter and color reflective display with the same
KR20110031010A (ko) * 2009-09-18 2011-03-24 엘지디스플레이 주식회사 반사투과형 액정표시소자
CN102998834A (zh) * 2011-09-16 2013-03-27 上海天马微电子有限公司 一种半反半透液晶显示器及其图像显示方法
CN105301830A (zh) * 2015-11-25 2016-02-03 昆山龙腾光电有限公司 半透半反式液晶显示面板及液晶显示装置
CN106292119A (zh) * 2016-09-29 2017-01-04 京东方科技集团股份有限公司 彩色电子纸及其制备方法
CN107357081A (zh) * 2017-09-11 2017-11-17 深圳市华星光电半导体显示技术有限公司 反射式液晶显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585411B2 (ja) * 2005-09-12 2010-11-24 株式会社 日立ディスプレイズ 透過型液晶表示装置
KR101430149B1 (ko) * 2007-05-11 2014-08-18 삼성디스플레이 주식회사 액정 표시 장치 및 그 구동 방법
CN103412435B (zh) * 2013-07-24 2015-11-25 北京京东方光电科技有限公司 一种液晶显示屏及显示装置
KR101552902B1 (ko) * 2014-06-24 2015-09-15 엘지디스플레이 주식회사 곡면 액정표시장치
CN104199213A (zh) * 2014-08-18 2014-12-10 京东方科技集团股份有限公司 一种半透半反式液晶显示面板及液晶显示器
CN105717702A (zh) * 2016-03-11 2016-06-29 深圳市华星光电技术有限公司 反射式液晶显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055525A1 (en) * 2006-09-06 2008-03-06 Koichi Igeta Liquid crystal display device
TW201040587A (en) * 2009-05-08 2010-11-16 Prime View Int Co Ltd Color filter and color reflective display with the same
KR20110031010A (ko) * 2009-09-18 2011-03-24 엘지디스플레이 주식회사 반사투과형 액정표시소자
CN102998834A (zh) * 2011-09-16 2013-03-27 上海天马微电子有限公司 一种半反半透液晶显示器及其图像显示方法
CN105301830A (zh) * 2015-11-25 2016-02-03 昆山龙腾光电有限公司 半透半反式液晶显示面板及液晶显示装置
CN106292119A (zh) * 2016-09-29 2017-01-04 京东方科技集团股份有限公司 彩色电子纸及其制备方法
CN107357081A (zh) * 2017-09-11 2017-11-17 深圳市华星光电半导体显示技术有限公司 反射式液晶显示面板

Also Published As

Publication number Publication date
CN107357081A (zh) 2017-11-17
US10509282B2 (en) 2019-12-17
US20190079329A1 (en) 2019-03-14
US11029570B2 (en) 2021-06-08
US20210003893A1 (en) 2021-01-07
US10816863B2 (en) 2020-10-27
US20200064698A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2019047384A1 (zh) 反射式液晶显示面板
US10359664B2 (en) Display device and electronic apparatus
US20200089052A1 (en) Liquid crystal module and liquid crystal display device
CN104536179A (zh) 平板显示器
WO2018176524A1 (zh) 透反射式液晶显示器
US10663798B2 (en) Liquid crystal display panel comprising a liquid crystal prism and a reflective prism disposed between first and second substrates and driving method thereof, and display device
US9513505B2 (en) Transflective liquid crystal display panel and liquid crystal display device
US20180031915A1 (en) Liquid crystal display device and reflective display module of the same
CN101311803A (zh) 液晶显示面板及液晶显示装置
WO2019104746A1 (zh) 双面显示装置及其显示模组
CN102981324A (zh) 一种半透半反蓝相液晶显示面板及液晶显示装置
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
CN101988998B (zh) 液晶显示装置
US9759957B2 (en) Transflective liquid crystal display panel and a liquid crystal display device
US20210165292A1 (en) Display panel and display apparatus using same
WO2019029036A1 (zh) 半穿透半反射式液晶显示器
WO2018176601A1 (zh) 透反式液晶显示装置
US20160018697A1 (en) Transflective liquid crystal display panel and display device
WO2019134193A1 (zh) 一种低功耗的显示面板和显示模组
KR20100080058A (ko) 백라이트장치 및 이를 구비한 액정표시소자
US20210405467A1 (en) Display device
WO2016173323A1 (zh) 显示面板及显示装置
KR20170064639A (ko) 미러 표시패널 및 이를 포함하는 표시장치
CN220105483U (zh) 显示面板及显示装置
US20240021138A1 (en) Display apparatus and mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924009

Country of ref document: EP

Kind code of ref document: A1