WO2019047003A1 - Procédé de commande dynamique pour système d'eau de pompe de chauffage - Google Patents

Procédé de commande dynamique pour système d'eau de pompe de chauffage Download PDF

Info

Publication number
WO2019047003A1
WO2019047003A1 PCT/CN2017/100484 CN2017100484W WO2019047003A1 WO 2019047003 A1 WO2019047003 A1 WO 2019047003A1 CN 2017100484 W CN2017100484 W CN 2017100484W WO 2019047003 A1 WO2019047003 A1 WO 2019047003A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
water
outlet
degrees
refrigerant
Prior art date
Application number
PCT/CN2017/100484
Other languages
English (en)
Chinese (zh)
Inventor
王玉军
刘军
许春林
季忠海
王颖
王天舒
Original Assignee
江苏天舒电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天舒电器股份有限公司 filed Critical 江苏天舒电器股份有限公司
Priority to PCT/CN2017/100484 priority Critical patent/WO2019047003A1/fr
Publication of WO2019047003A1 publication Critical patent/WO2019047003A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps

Definitions

  • the invention relates to a heating device control method, in particular to a heating heat pump water system dynamic control method.
  • radiators Most of the heating in the rural areas in the north is based on radiators. Because coal-fired boilers have a great impact on the environment, the state has implemented a “coal-to-electricity” policy, which provides a huge opportunity for air-source heat pumps to heat.
  • the general water supply temperature is about 65-50 °C
  • the return water temperature is 55-40 °C
  • the return water temperature difference is 10 °C.
  • the air source heat pump heating temperature is 55 ° C, the highest unit water outlet temperature can reach 60 ° C, and the heat pump water heater is a circulating heating type, the water pumped out from the radiator can only heat about 5 degrees, and the temperature reaching the radiator is only 20 Degree, much worse than 65 degrees, it takes a long time to warm up, the water in the whole system can be heated to 55 degrees, so the indoor heating rate will be very slow, which will cause users to be dissatisfied with the heating of the heat pump.
  • the technical problem to be solved by the present invention is to provide a dynamic control method of a heating heat pump water system with faster temperature rise and temperature control.
  • the technical solution of the present invention is: a dynamic control method for a heating heat pump water system, and the innovation is that the specific steps of the method are as follows:
  • Step S1 preparing a heating water circulation system composed of a refrigerant passage of the high temperature storage, a refrigerant passage of the intermediate temperature volume, a three-way thermostatic valve, a radiator and a water pump through the pipeline group;
  • the high temperature storage device has a refrigerant inlet A and a refrigerant outlet A.
  • the medium temperature volume has a refrigerant inlet B, a refrigerant outlet B1 and a refrigerant outlet B2.
  • the three-way thermostatic valve has an inlet A, an inlet B and an outlet C, and the radiator has a refrigerant inlet C and a refrigerant.
  • the water pump has a refrigerant inlet D and a refrigerant outlet D;
  • the refrigerant outlet A is connected to the inlet A through the water pipe A
  • the refrigerant outlet B1 is connected to the inlet B through the water pipe B
  • the outlet C is connected to the refrigerant inlet C through the water pipe C
  • the refrigerant outlet C passes
  • the water pipe D is connected to the refrigerant inlet D
  • the refrigerant outlet D is connected to the refrigerant inlet B through the water pipe E
  • the refrigerant outlet B2 is connected to the refrigerant inlet A through the water pipe F to form a water circulation passage;
  • Step S2 setting the pre-temperature, recorded as T0;
  • Step S3 measuring the indoor temperature, recorded as TS;
  • Step S4 comparing the difference between the indoor temperature TS and the pre-arrival temperature T0, when
  • Step S5 Turn on the strong heat mode, activate the hot water in the high temperature storage, adjust through the three-way thermostatic valve, the water in the high temperature storage and the medium temperature volumetric device simultaneously supply the radiator through the three-way thermostatic valve, and the three-way thermostatic valve outlet control Temperature 65 degrees;
  • Step S6 Turn on the energy-saving mode, further subdivide the difference between the indoor temperature TS and the pre-temperature T0.
  • Step S7 the water temperature of the medium temperature volume accumulator is increased by 8 degrees as the basic water temperature in the previous day, and the control temperature of the outlet C of the three-way thermostatic valve is increased to 10 degrees as the target temperature of the previous day; the identification is performed every 5 minutes, if 5 minutes If the indoor temperature is increased by 0.5 degrees or more, the temperature is maintained. If the temperature is lower than 0.5 degrees, the water temperature in the medium temperature volume accumulator and the water temperature at the outlet of the three-way thermostatic valve are both increased by 2 degrees;
  • Step S8 the water temperature of the medium temperature volume accumulator is increased by 5 degrees as the basic water temperature of the previous day, and the control temperature of the outlet C of the three-way thermostatic valve is the target temperature of the previous day's average water temperature plus 7 degrees; once every 5 minutes, if 5 minutes If the indoor temperature is increased by more than 0.5 degrees, the temperature is maintained. If the temperature is lower than 0.5 degrees, the water temperature in the medium temperature volumetric device and the water temperature at the outlet of the three-way thermostatic valve are both raised by one degree;
  • Step S9 the water temperature of the medium temperature volume accumulator is the average water temperature of the previous day as the base water temperature, and the control temperature of the three-way thermostatic valve outlet C is the target water temperature of the previous day;
  • Step S10 the water temperature of the medium temperature volume device is reduced by 3 degrees as the basic water temperature in the previous day, and the control temperature of the outlet C of the three-way thermostatic valve is reduced to 3 degrees as the target temperature of the previous day; the identification is performed every 5 minutes, if 5 minutes If the indoor temperature is lowered by 0.5 degrees or more, the temperature is maintained. If the temperature is lower than 0.5 degrees, the water temperature in the medium temperature volumetric device and the water temperature at the outlet of the three-way thermostatic valve are both lowered by one degree.
  • the water pump includes a water pump A and a water pump B connected in parallel with each other.
  • the control method changes the single heating mode of the heat pump water heater to the dual mode heating with strong heat and energy saving.
  • the strong heat mode the indoor temperature can be quickly increased, and the defect that the indoor temperature rises slowly during the heating of the heat pump unit is solved.
  • the indoor temperature is close to the set temperature, it automatically switches to the energy-saving mode, which ensures that the indoor temperature is relatively constant, avoiding that the indoor temperature exceeds the comfortable temperature because the supplied water temperature is high.
  • the water temperature dynamically adjusts the heating temperature according to the difference between the indoor temperature and the set temperature, so as to minimize the heating temperature of the heat pump unit under the premise of ensuring the indoor temperature, the characteristic of the heat pump unit is heating.
  • the heating capacity of the unit can be increased, so that the room to be supplied is larger, and the electric energy consumed is smaller, heating The cost will drop significantly.
  • the water temperature is heated in a dynamic manner, and the heating temperature of the single heat pump unit becomes a dynamic temperature.
  • the generation of dynamic temperature draws on the heating state of the previous day, and combines the temperature change trend of the day.
  • the tendency to change at room temperature and the temperature of the heated water are organically combined.
  • the three-way thermostatic valve is used to adjust and control, and the medium-temperature hot water and high-temperature hot water are organically coordinated to ensure that the heating temperature in the supply room is more stable.
  • the invention discloses a dynamic control method of a heating heat pump water system, and the specific steps of the method are as follows:
  • Step S1 Prepare a heating water circulation system composed of a refrigerant passage of a high temperature storage, a refrigerant passage of a medium temperature volume, a three-way thermostatic valve, a radiator, and a water pump through a pipeline group.
  • the high temperature storage device has a refrigerant inlet A and a refrigerant outlet A.
  • the medium temperature volume has a refrigerant inlet B, a refrigerant outlet B1 and a refrigerant outlet B2.
  • the three-way thermostatic valve has an inlet A, an inlet B and an outlet C, and the radiator has a refrigerant inlet C and a refrigerant.
  • the water pump has a refrigerant inlet D and a refrigerant outlet D.
  • the refrigerant outlet A is connected to the inlet A through the water pipe A
  • the refrigerant outlet B1 is connected to the inlet B through the water pipe B
  • the outlet C is connected to the refrigerant inlet C through the water pipe C, thereby realizing the transfer of the hot water in the high temperature storage and the medium temperature volume to the heating.
  • the sheet is subjected to exothermic heating; the refrigerant outlet C is connected to the refrigerant inlet D through the water pipe D, the refrigerant outlet D is connected to the refrigerant inlet B through the water pipe E, and the refrigerant outlet B2 is connected to the refrigerant inlet A through the water pipe F to form a water circulation passage; Pumped back to the medium temperature volume, and then returned to the high temperature storage through the medium temperature volume to realize the recycling of the heat medium.
  • Step S2 Set the pre-temperature, which is recorded as T0.
  • Step S3 The indoor temperature is measured and recorded as TS.
  • Step S4 Comparing the difference between the indoor temperature TS and the pre-arrival temperature T0, when
  • Step S5 Turn on the strong heat mode, activate the hot water in the high temperature storage, adjust through the three-way thermostatic valve, the water in the high temperature storage and the medium temperature volumetric device simultaneously supply the radiator through the three-way thermostatic valve, and the three-way thermostatic valve outlet control
  • the temperature is 65 degrees.
  • the water pump A and the water pump B are simultaneously started. At this time, since the water temperature of the radiator is high and the flow rate is large, the heat dissipation effect of the heating is multiplied, so that the indoor temperature can be quickly raised to the set temperature.
  • Step S6 Turn on the energy-saving mode, and only start the water pump A or the water pump B, further subdivide the difference between the indoor temperature TS and the pre-temperature T0, and when TO-5 ⁇ TS ⁇ T0-3, proceed to step S7;
  • step S8 is performed;
  • step S9 is performed;
  • TS>T0+1 step S10 is performed.
  • Step S7 the water temperature of the medium temperature volume accumulator is increased by 8 degrees as the basic water temperature in the previous day, and the control temperature of the outlet C of the three-way thermostatic valve is increased to 10 degrees as the target temperature of the previous day; the identification is performed every 5 minutes, if 5 minutes If the indoor temperature is increased by 0.5 degrees or more, the temperature is maintained. If it is lower than 0.5 degrees, the water temperature in the medium temperature volume accumulator and the water temperature at the outlet of the three-way thermostatic valve are both raised by 2 degrees.
  • Step S8 the water temperature of the medium temperature volume accumulator is increased by 5 degrees as the basic water temperature of the previous day, and the control temperature of the outlet C of the three-way thermostatic valve is the target temperature of the previous day's average water temperature plus 7 degrees; once every 5 minutes, if 5 minutes If the indoor temperature is increased by 0.5 degrees or more, the temperature is maintained. If it is lower than 0.5 degrees, the water temperature in the medium temperature volume accumulator and the water temperature at the outlet of the three-way thermostatic valve are both raised by one degree.
  • Step S9 The water temperature of the medium temperature volume accumulator is the average water temperature of the previous day as the base water temperature, and the control temperature of the three-way thermostatic valve outlet C is the target water temperature of the previous day.
  • Step S10 the water temperature of the medium temperature volume device is reduced by 3 degrees as the basic water temperature in the previous day, and the control temperature of the outlet C of the three-way thermostatic valve is reduced to 3 degrees as the target temperature of the previous day; the identification is performed every 5 minutes, if 5 minutes If the indoor temperature is lowered by 0.5 degrees or more, the temperature is maintained. If the temperature is lower than 0.5 degrees, the water temperature in the medium temperature volumetric device and the water temperature at the outlet of the three-way thermostatic valve are both lowered by one degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

La présente invention concerne un procédé de commande dynamique pour un système d'eau de pompe de chauffage, le procédé comprenant les étapes spécifiques suivantes : la préparation d'un système de circulation d'eau de chauffage ; la définition d'une température à atteindre et l'enregistrement de celle-ci en tant que T0 ; la mesure de la température intérieure et l'enregistrement de celle-ci en tant que TS ; la comparaison d'une valeur de différence entre la température intérieure TS et la température T0 à atteindre et le démarrage d'un mode de chauffage élevé lorsque |T0-TS| ≥ 5 ; le démarrage d'un mode d'économie d'énergie lorsque |T0-TS| < 5 ; et lorsque le mode d'économie d'énergie est démarré, le réglage de la température de l'eau d'un récipient à température intermédiaire et de la température d'une sortie C d'une soupape thermostatique à trois voies de façon dynamique en fonction de la valeur de différence entre la température intérieure TS et la température T0 à atteindre de manière à régler de façon dynamique la température de chauffage, ce qui permet d'assurer une température intérieure appropriée. Les avantages de la présente invention sont les suivants : avec le procédé de commande, la forme de chauffage singulière d'un chauffe-eau à pompe à chaleur est modifiée en un chauffage qui présente les deux modes de chauffage élevé et d'économie d'énergie. Dans le mode de chauffage élevé, la température intérieure peut être rapidement augmentée ; et lorsque la température intérieure est proche de la température définie, le mode de chauffage élevé est automatiquement commuté vers le mode d'économie d'énergie, ce qui peut garantir que la température intérieure est relativement constante et peut éviter que la température intérieure ne dépasse une température confortable.
PCT/CN2017/100484 2017-09-05 2017-09-05 Procédé de commande dynamique pour système d'eau de pompe de chauffage WO2019047003A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100484 WO2019047003A1 (fr) 2017-09-05 2017-09-05 Procédé de commande dynamique pour système d'eau de pompe de chauffage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100484 WO2019047003A1 (fr) 2017-09-05 2017-09-05 Procédé de commande dynamique pour système d'eau de pompe de chauffage

Publications (1)

Publication Number Publication Date
WO2019047003A1 true WO2019047003A1 (fr) 2019-03-14

Family

ID=65633467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100484 WO2019047003A1 (fr) 2017-09-05 2017-09-05 Procédé de commande dynamique pour système d'eau de pompe de chauffage

Country Status (1)

Country Link
WO (1) WO2019047003A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644456A (zh) * 2008-08-04 2010-02-10 Lg电子株式会社 用于控制与热泵相关的热水循环系统的方法
US20110011943A1 (en) * 2008-03-20 2011-01-20 Daikin Industries, Ltd. Heating installation and method for controlling the heating installation
CN105042671A (zh) * 2015-08-27 2015-11-11 江苏天舒电器有限公司 一种采暖热泵水系统动态控制方法
CN105042679A (zh) * 2015-08-27 2015-11-11 江苏天舒电器有限公司 一种采暖热泵动态控制装置
CN105180450A (zh) * 2015-08-27 2015-12-23 江苏天舒电器有限公司 一种超低温一次加热式热泵热水机水系统控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011943A1 (en) * 2008-03-20 2011-01-20 Daikin Industries, Ltd. Heating installation and method for controlling the heating installation
CN101644456A (zh) * 2008-08-04 2010-02-10 Lg电子株式会社 用于控制与热泵相关的热水循环系统的方法
CN105042671A (zh) * 2015-08-27 2015-11-11 江苏天舒电器有限公司 一种采暖热泵水系统动态控制方法
CN105042679A (zh) * 2015-08-27 2015-11-11 江苏天舒电器有限公司 一种采暖热泵动态控制装置
CN105180450A (zh) * 2015-08-27 2015-12-23 江苏天舒电器有限公司 一种超低温一次加热式热泵热水机水系统控制方法

Similar Documents

Publication Publication Date Title
CN106895525A (zh) 一种带热回收/全自然冷却的机房散热系统及其运行方法
CN204757538U (zh) 一种带有语音控制的太阳能半导体制冷箱
CN103822303B (zh) 一种节能多变工况全范围精确可调空调系统及其控制方法
CN111678278B (zh) 一种预热型空气源热泵抑霜系统及抑霜方法
WO2020000927A1 (fr) Système de climatisation ainsi que procédé et appareil de commande de réglage intelligent associés, et dispositif informatique
CN204854018U (zh) 一种太阳能建筑构件及太阳能自供热建筑结构
WO2024124863A1 (fr) Système de pompe à chaleur parallèle en cascade
WO2019047003A1 (fr) Procédé de commande dynamique pour système d&#39;eau de pompe de chauffage
CN204880702U (zh) 一种智能调节水温的空气源热泵热水器
CN112344424A (zh) 一种高温水采暖系统
CN204880715U (zh) 一种自动高温杀菌的空气源热泵热水器
CN103292398A (zh) 一种集成吹风型空调与辐射末端复合空调系统
CN105042671A (zh) 一种采暖热泵水系统动态控制方法
CN206338898U (zh) 一种带热回收的双冷源新风机组
CN202836264U (zh) 一种室内节能冷暖调节装置
CN206222448U (zh) 一种热管太阳能热水器的供暖装置
CN103876518B (zh) 温控床的温度调节系统
CN206037473U (zh) 家用太阳能空气能联合应用集成换能模块
CN201805800U (zh) 热泵式箱体孵化机加热装置
CN205002270U (zh) 超大温差蓄能中央空调系统
CN106196723B (zh) 家用太阳能空气能联合应用集成换能模块
CN110848901A (zh) 一种温度可控的空气热回收装置及其控制方法
CN206478788U (zh) 一种屋顶光伏/半导体温度调节系统
CN206269207U (zh) 一种循环水自动排放的采暖系统
CN105737281A (zh) 双向节能恒温恒湿空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924757

Country of ref document: EP

Kind code of ref document: A1