WO2019046911A1 - Véhicule aérien sans pilote - Google Patents
Véhicule aérien sans pilote Download PDFInfo
- Publication number
- WO2019046911A1 WO2019046911A1 PCT/AU2018/050984 AU2018050984W WO2019046911A1 WO 2019046911 A1 WO2019046911 A1 WO 2019046911A1 AU 2018050984 W AU2018050984 W AU 2018050984W WO 2019046911 A1 WO2019046911 A1 WO 2019046911A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uav
- wing assembly
- projectile casing
- uavs
- trajectory
- Prior art date
Links
- 239000002360 explosive Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 239000011800 void material Substances 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 238000005286 illumination Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 239000000779 smoke Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000013467 fragmentation Methods 0.000 description 5
- 238000006062 fragmentation reaction Methods 0.000 description 5
- 238000004377 microelectronic Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 231100001160 nonlethal Toxicity 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 206010068150 Acoustic shock Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910000743 fusible alloy Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- 230000002936 tranquilizing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000269799 Perca fluviatilis Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940052961 longrange Drugs 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/08—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles for carrying measuring instruments; Arrangements for mounting sensitive cargo within a projectile; Arrangements for acoustic sensitive cargo within a projectile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/70—Launching or landing using catapults, tracks or rails
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/60—Steering arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B30/00—Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
- F42B30/04—Rifle grenades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B30/00—Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
- F42B30/08—Ordnance projectiles or missiles, e.g. shells
- F42B30/10—Mortar projectiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/007—Switching between manual and automatic parameter input, and vice versa
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/08—Aircraft not otherwise provided for having multiple wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/15—UAVs specially adapted for particular uses or applications for conventional or electronic warfare
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/102—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/104—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
Definitions
- the present invention generally relates to an unmanned aerial vehicle (UAV).
- UAV unmanned aerial vehicle
- an unmanned aerial vehicle adapted for transit in and deployment from a projectile casing, comprising: a wing assembly, the wing assembly coupled to the projectile casing, the wing assembly moveable between a closed position and a deployed position; and a propulsion system including at least one rotor disposed on the wing assembly to generate lift, wherein: in the closed position, the wing assembly is substantially integral with the projectile casing and in the deployed position, the wing assembly is extended outwards from the projectile casing.
- UAV unmanned aerial vehicle
- the wing assembly in the closed position may be substantially integral with the projectile casing to effect aerodynamic flight when the projectile casing is projected into an airborne trajectory.
- the outer surface of the wing assembly may form part of the projectile casing outer surface in the closed position.
- this may provide protection for the internal components during storage, transit and ground handling.
- the wing assembly may also provide part of a substantially uninterrupted aerodynamic surface of the projectile casing.
- the wing assembly is coupled to the projectile casing via a hinge.
- the hinge may include a pin associated with a mounting flange.
- the hinge may be configured to pivot about an axis transverse to the movement of the wing assembly between the closed position and the deployed position.
- the wing assembly may include a spring return means used to bias the wing assembly towards the closed position.
- the wing assembly may be configured for coupling to the projectile casing so as to maintain a portion of the wing assembly in tension when accelerating along the trajectory. Coupling may be provided by a locking ring, thin frangible synthetic plastic membrane, resilient retention clips, friction, or the like.
- providing a mechanism for returning the wing assembly towards the closed position may eliminate the wing assembly from opening during transit and ground handling, smooth return travel may also be assured.
- the spring return means may be provided by virtue of the resiliency of the material used to form the wing assembly, for example, a resilient thermoplastic material or carbon fibre composite sufficiently flexible to interchange between the closed and deployed positions.
- the UAV may further comprise an actuator mechanically connected between the projectile casing and a portion of the wing assembly used to extend the wing assembly towards the deployed position.
- an actuator may provide a force to urge wing assembly towards the deployed position.
- the wing assembly is biased towards the closed position by way of gravity.
- the wing assembly may be configured to extend to the deployed position after passage through the apogee of the trajectory.
- biasing the wing assembly by way of gravity may provide an assembly of simplified construction, so that destroying the UAV is cost justified.
- the UAV may further comprise an inertial measurement unit (IMU); and a controller, configured to: estimate the UAVs trajectory; and provide signals to an actuation means allowing for movement between the closed position and the deployed position after passage through the apogee of the trajectory.
- IMU inertial measurement unit
- an IMU may provide a more accurate position output indicative of the position of the UAV when accelerating along an axis, and allow for configurable deployment of the wing assembly.
- the wing assembly may include one or more arms.
- the one or more arms of the wing assembly may further comprise a propulsion system including at least one rotor disposed to generate lift.
- a propulsion system including at least one rotor disposed to generate lift.
- providing one or more arms may provide helicopter, tricopter, and quadcopter, etc. configurations.
- the rotor may comprise a plurality of blades mounted to pivot outwardly under centrifugal force as the rotor rotates.
- the blades occupy a smaller footprint when in the closed position, this may simplify the design and assembly of the UAV and may further increase room for payloads.
- the propulsion system may include a plurality of individually controllable rotors, and by adjustment of the angular velocities of each rotor provide adjustment of lift and torque to support stable flight.
- the projectile casing is substantially hollow and has an interior void provided with means to accommodate a payload.
- the payload may include at least one of an explosive, an incendiary, a smoke charge, an incapacitating agent and an illumination composition.
- configurable lethal and nonlethal payloads may be supported.
- Nonlethal offensive approaches may be activated by applying a shock to enemy targets or by administering an incapacitating agent or tranquilizing gas.
- Further offensive functions may include, administering electric or acoustic shock, administering clouds of fine graphite or the like over electrical components to disrupt power, and providing electromagnetic pulse (EMP) Shockwaves.
- EMP electromagnetic pulse
- the projectile casing may comprise a cartridge removably coupled to the projectile casing.
- the cartridge may be hollow and have an interior provided with means to accommodate a propelling charge.
- Providing a removable cartridge may allow for configurable propelling charges, for example, blanks, or high and low velocity charges. Additionally, providing a removable cartridge may allow for hand launching scenarios where an operative does not want to give away their position due to the report of the grenade launcher firing.
- the projectile casing is of generally right circular cylindrical shape.
- the projectile casing diameter may be approximately 40 mm.
- the projectile casing may be loaded as a normal round in a grenade launcher, such as an M203 single-shot 40 mm under- barrel grenade launcher, or launched by hand.
- the UAV may be launched by unspecialised operatives, and may thus reach a target area very quickly without using its own power.
- the UAV may also be carried in standard webbing, for example 40 mm grenade chest webbing.
- a method of launching an unmanned aerial vehicle comprising: providing the UAV as outlined above, in a launch tube; applying pressurized gases to a back end of the UAV, driving the UAV forward in the launch tube into a substantially parabolic trajectory; and transitioning to an autonomous loiter phase of flight after passage through the apogee of the trajectory.
- UAV unmanned aerial vehicle
- the UAV after transitioning to an autonomous loiter phase of flight after passage through the apogee of the trajectory, the UAV may depart from the trajectory.
- an operative may "break" from the substantially parabolic ballistic trajectory of conventional small arms systems, dynamically allowing for differences in distance, altitude, atmospheric conditions, the velocity of the projectile, and other factors.
- an operative may guide the UAV to a target.
- operatives may selectively engage with targets and identify, for example, soft spots in armour.
- Operatives may also guide a plurality of UAVs with explosive payloads to targets incrementally.
- the launch tube comprises a 40 mm grenade launcher.
- the UAV may be loaded as a normal round in a grenade launcher, such as an M203 single-shot 40 mm under-barrel grenade launcher.
- a target guidance system comprising a lunch tube, two or more unmanned aerial vehicles (UAVs) each adapted for transit in and deployment from a projectile casing, and a controller configured to communicate between two or more UAVs.
- UAVs unmanned aerial vehicles
- the controller is capable of relaying spatial and temporal data between two or more UAVs. This may include communicating with a nearby UAV to determine which one moves or whether both should move to avoid a collision via a mesh network, or the like.
- two or more UAVs are configured with a swarming feature which aggregates two or more UAVs together autonomously or by manual input from an operator by a ground station to the target.
- swarming may be used to overwhelm or saturate the defences of the target.
- Two or more UAVs are further configured to steer in a space over a target in a cooperative swarm.
- Such cooperative swarm functions are advantaged as operatives have the ability to stop the offensive functions, unlike traditional guided munitions or grenades which operate continuously. This feature allows an operative to change direction and take time to engage with targets particularly dynamic targets. Moreover, the constant changes in the modern battlefield, particularly where operatives are working in close confines with civilians, civilian targets and friendly personnel, providing a continuously adaptation provides a further advantage.
- FIG. 1 shows a UAV in a closed configuration
- FIG. 2 shows a UAV in a deployed configuration, in which the wing assembly is in an extended state
- FIG. 3 shows a section through the UAV in a closed configuration, in which a payload is shown
- FIG. 4 shows a UAV midway through a deployed configuration, in which the wing assembly is approaching an extended state
- FIG. 5 shows a flight scenario of a UAV adapted according to an exemplary embodiment of the invention.
- FIG. 6 shows a plurality of UAVs operating in a target area, and a swarming pattern according to an exemplary embodiment of the invention.
- the invention is suitable for deployment from a projectile casing and launched by a grenade launcher, and it will be convenient to describe the invention in relation to that exemplary, but non-limiting, application.
- FIG. 1 there is shown a side view of an exemplary embodiment of a UAV 100 in a closed position.
- the UAV 100 includes a projectile casing 105 and a wing assembly 1 10, mechanically connected as shown, with a removable cartridge 160, shown as removed from UAV 100.
- wing assembly 1 10 is substantially integral with projectile casing 105 to effect aerodynamic flight along axis 1 15 when the UAV 100 is thrown or projected into a trajectory.
- wing assembly 1 10 may comprise four rotor arms: a first rotor arm 120; a second rotor arm 125; a third rotor arm 130; and, a fourth rotor arm 135.
- Wing assembly 1 10 is mechanically connected to projectile casing 105 via a hinge 140 and a mounting flange 145 pivotally connected to the top of each of four rotor arms 120, 125, 130 and 135 via a pin 147 or other similar retention means.
- gravity biases rotor arms 120, 125, 130 and 135 towards the closed position.
- rotor arms 120, 125, 130 and 135, may be attached to the side, or bottom of projectile casing 105, where a dual torsion spring return means in the form of a coiled helical torsion spring, or similar may be used to bias rotor arms 120, 125, 130 and 135 towards the closed and/or the deployed position.
- the spring return means may be provided by virtue of the resiliency of the material used to form the rotor arm, for example, a resilient thermoplastic material or carbon fibre composite sufficiently flexible to interchange between the closed and deployed positions.
- additional or alternative biasing mechanisms may be employed, such as a microelectronic actuator arranged within projectile casing 105.
- the microelectronic actuator may provide a force applied by a shaft member, by way of a rotatable drive screw, arranged within projectile casing 105 so as to extend in an axial direction out from projectile casing 105 to urge wing assembly 1 10 towards the deployed position.
- a locking ring 170 may retain wing assembly 1 10 towards the closed position.
- the locking ring 170 is provided by a segmentally annular ring selectively encircling the projectile casing 105 and each of the four rotor arms 120, 125, 130 and 135.
- the locking ring 170 may be swivel fit to the projectile casing 105 and retained by a rib receivable in a groove on an outer portion of the projectile casing 105.
- a swivel fitting may be threadably engaged with the projectile casing 105, or the like, and those skilled in the art will recognize suitable designs for providing the stated functions.
- the locking ring 170 is preferably formed of a ridged material capable of retaining the rotor arms 120, 125, 130 and 135 in association with the projectile casing against the substantial pressures involved in a launch from a launching tube. After the launch, the locking ring 170 may be actuated by a microelectronic actuator arranged within projectile casing 105 during flight. However, in other embodiments, for example before a hand launch, it may be desirable to actuate the locking ring 170 by hand by twisting it, or the like.
- the locking ring 170 may further include a projection on the ring that, for example, engages and closes an electronic switch connected by suitable electrical conductors to a power supply, which ultimately powers the UAV 100.
- the locking ring 170 is provided by an annular ring selectively encircling the projectile casing 105 and each of the four rotor arms 120, 125, 130 and 135.
- the locking ring 170 is a spring-loaded retractable locking ring slidably mounted on the projectile casing 105.
- the locking ring 170 is biased to a reference position on the projectile casing 105 where it encircles each of the four rotor arms 120, 125, 130 and 135 in its closed position and is retractable to a portion beyond the rotor arm ends in its open position.
- the projectile casing 105 may be provided with flanges that are spaced below the arm ends to function as a stop for the locking ring 170 to limit its downward travel. Similarly, the projectile casing 105 may be provided with flanges that are spaced above the arm ends to function as a stop for the locking ring 170 to limit its upward travel, and those skilled in the art will recognize suitable designs for providing the stated functions, for example, semicircular mating flange segments formed in the projectile casing 105.
- the locking ring 170 may also be provided with an additional spring compressed to exert a strong biasing force on the locking ring 170 to normally maintain the locking ring 170 in its open position.
- the additional spring may be held in its cocked or inoperative state by means of a fusible alloy, at least until such time that an increase in the ambient temperature causes the fusible alloy to melt and release the locking ring 170, which in turn effects snap-action release of the rotor arms 120, 125, 130 and 135 in unison to simultaneously urge the wing assembly 1 10 towards the deployed position.
- This arrangement is advantaged in that it does not require a microelectronic actuator.
- the wing assembly 1 10 and projectile casing 105 may also be covered in a thin frangible synthetic plastic membrane or other suitable material(s) (not shown) to provide both a mechanical seal (protection for the internal components during storage, transit and ground handling) and additionally or alternatively bias rotor arms 120, 125, 130 and 135 towards the closed position.
- the membrane is fragile enough to crack or break by hand, or with engagement with rifling in a launching tube.
- the membrane may thus be prepared from and any suitable material having a yield to break point under such forces.
- wing assembly 1 10 to projectile casing 105 can be used, such as those, but not limited to including, resilient retention clips, or friction, so as to maintain a portion of the wing assembly 1 10 in tension when accelerating along the axis 1 15.
- the UAV 100 can be loaded as a normal round in a grenade launcher, such as an M203 single-shot 40 mm under-barrel grenade launcher, or launched by hand.
- a grenade launcher such as an M203 single-shot 40 mm under-barrel grenade launcher
- UAV 100 can be launched by unspecialised operatives, and can thus reach a target area very quickly without using its own power.
- the UAV 100 may also be carried in standard webbing, for example 40 mm grenade chest webbing.
- additional launch systems can be used, such as those, but not limited to including hand launching, pneumatic systems, flare and chaff dispensers, mortars, artillery cannons, submarine signal launch tubes, deployed from aircraft, the like, or a combination of these systems, which may be particularly suitable for larger UAVs. It is to be understood that the projectile casing 105 may have any suitable diameter.
- the UAV 100 is designed to withstand severe shock and deployment environments.
- the projectile casing 105 (incorporating the wing assembly 1 10 in the closed position) is of a largely conventional from factor, and those skilled in the art will recognize suitable designs for providing the stated functions, for example: a substantially hollow, one-piece aluminium body with driving bands and bore riders, coupled to a substantially ogive-shaped nose cone.
- wing assembly 1 10 and/or rotor arms 120, 125, 130 and 135 may alternatively be made from any other suitable material (e.g. plastics, other metals and composites).
- FIG. 2 there is shown a side view of the exemplary embodiment of FIG. 1 .
- the wing assembly 1 10 is in an extended position with hinge 140 shown to pivot about an axis transverse to the movement of the wing assembly 1 10 between the closed position and the deployed position.
- Each of the first rotor arm 120, the second rotor arm 125, the third rotor arm 130, and the fourth rotor arm 135 may be implemented with a first rotor 220, a second rotor 225, a third rotor 230, and a fourth rotor 235, respectively contributing to the propulsion system.
- a UAV provided with four rotors may be referred to as a quadcopter.
- UAV 200 may comprise any number of rotor arms and any number of blades.
- the UAV 200 may therefore be a helicopter, tricopter, a quadcopter, etc.
- the rotor arms need not be symmetrically positioned relative to projectile casing 105, and the propellers need not be symmetrically distributed on the rotor arms.
- the rotors which may be commercially available off the shelf (COTS) components or the like, are mounted such that the rotor shaft can support a plurality of blades.
- the propulsion system for providing lift and consequently aerial movement of the UAV may be provided by known propulsion means, such as electric motors with a rotor.
- Airborne motion of the UAV 200 may be controlled by rotation of rotor blades 250, 255, 250, and 255 and by adjustment of the angular velocities of each rotor by known methods to provide adjustment of lift and torque to support stable flight of UAV 200, generally, via feedback from an inertial measurement unit (IMU) and an altimeter module.
- IMU inertial measurement unit
- rotors 220, 225, 230 and 235 include a pair of blades 250, 255, 260 and 265 mounted to pivot outwardly under centrifugal force as the rotor rotates.
- the blades occupy a smaller footprint when in the closed position, thereby simplifying the design and assembly of UAV 200 and further increases room for payloads, as is best shown with reference to FIG. 3, particularly blade pair 250.
- blade pairs 250, 255, 260, and 265 when in the overlapping state as shown, do not intervene with projectile casing 105 during transition between the closed and deployed positions.
- intervening blade pairs may provide an advantage when in transit, whereby the rotor arms may be contained in part by the blades against an inner surface 270 of projectile casing 105.
- the blade pairs 250, 255, 260, and 265, when deployed, are arranged in a substantially rectangular configuration about the centre of projectile casing 105 and centre of mass.
- the distance between the axis of rotation of opposing blade pairs 255 and 265 may be about 180 millimetres (mm).
- blade pairs 250, 255, 260, and 265 are seen to rotate in a common plane below rotor arms 120, 125, 130 and 135 to generate thrust in an upwards direction.
- this also forces wing assembly 1 10 towards the deployed position such that deployment configurations without a mechanical biasing means are possible, for example, when UAV 200 is held upside down, or reaches apogee where it starts its downward descent along a projected path.
- the UAV 200 may start its downward descent after the propulsive force from, for example, a grenade launcher is terminated and UAV 200 is acted upon only by gravity and aerodynamic drag.
- the remaining elements shown in FIG. 2 are identical to FIG. 1 and so share the same references.
- UAV 300 also includes a removable cartridge 315, mechanically connected as shown with the bottom of projectile casing 320 via an intermediate screw 325, according to one embodiment.
- projectile casing 320 is press fit into cartridge 315, or maintained by threaded engagement in the bottom of the projectile casing 320 periphery itself, such that it is removable by an operative wanting to hand launch the UAV 300 (e.g., without a grenade launcher).
- UAV 300 can be launched several times by refitting a new cartridge 315 to the bottom of projectile casing 320.
- Providing a removable cartridge 315 also allows for configurable propelling charges, for example, blanks, or high and low velocity charges. Additionally, providing removable cartridge 315 allows for hand launching scenarios where the operative does not want to give away their position due to the report of the grenade launcher firing.
- the cartridge 315 is a substantially hollow two-chambered 340 and 345 cylinder incorporating a primer 335.
- the propellant cup 340 is sealed by the primer 335, and contains a propelling charge (not shown).
- the propellant cup 340 acts as a high-pressure chamber, and the hollow cavity 345 in the cartridge 315 surrounding the cup 340 acts as a low-pressure chamber.
- this is typical of internal pressure chambers for high-low pressure systems including those employed by the M1 18 cartridge case as part of commonly used small arms grenade munitions.
- the bottom payload void 305 includes an explosive designed to inflict personnel casualties from a selectable air, ground or delayed burst effect, via an electronic fuzing system, resulting in blast and fragmentation of the projectile casing 320. Additionally or alternatively, the bottom payload void 305 may include a shaped explosive charge. It will be appreciated that the shaped explosive charge may further include the provision of a metal liner in the payload void 305, formed of a dense, ductile metal, such as copper. Other materials may also be employed, for example, molybdenum and pseudo-alloys of tungsten filler and copper binder.
- the metal-liner may be a hollow conical shape, with an internal apex angle of around 40 to 90 degrees.
- Other shapes may also be employed, for example, a hemisphere, tulip, trumpet, ellipse, bi-conic, and the like, which may be particularly suitable for not intervening with the blade pairs 250, 255, 260 and 265.
- shaping the explosive concentrates the explosive energy in the payload void 305.
- the enormous pressure generated by the detonation of the explosive drives the liner in the payload void 305 inward to collapse upon its central axis. Under ordinary practice this causes the formation and projection of a very high-velocity jet of metal particles forward along the axis.
- the high-velocity jet of metal particles may penetrate armour plating on vehicles or other protected structures from a significant standoff distance.
- additional or alternative payloads can be used, such as those, but not limited to including, incendiaries, smoke charges, incapacitating agents (e.g. CS gas), illumination compositions, the like, or a combination of these payloads.
- the top payload 310 is an electronic payload and includes at least one inertial measurement unit (IMU) that provides acceleration data and/or angular velocity data, and an altimeter module that provides altitude data of the UAV 300 to support stable flight, as discussed with reference to FIG. 2.
- IMU inertial measurement unit
- the IMU and altimeter module is shown as a printed circuit board (PCB) assembly 350.
- the PCB may further include other components, such as a global positioning system (GPS) module, a power supply, a signal processor, or ASIC, feedback electronics to resolve the position of the rotor arms in flight, a communication module and an autopilot module.
- GPS global positioning system
- the feedback system uses a mechanical switch or encoder to determine the position of each rotor arm.
- control circuitry may be employed for receiving the acceleration data and/or angular velocity data, to also provide a position output indicative of the position of UAV 300 when accelerating along axis 1 15.
- the control circuitry may employ a microcontroller or other circuitry for continuously monitoring the position of UAV 300 and controlling activation and deactivation of rotors 220, 225, 230 and 235 by known methods. It will be appreciated that the control circuitry may independently control the UAV 300 to execute a flight scenario without ongoing control from the operative.
- IMU 350 is operatively coupled to rotors 220 (not shown), 225, 230 and 235 and configured to transition to an autonomous phase of flight after passage through apogee on a substantially parabolic trajectory.
- an operative can manually configure UAV 300 to an autonomous phase of flight via a mechanical switch, for example, as part of locking ring 170, as discussed with reference to FIG. 1 .
- the mechanical switch may also be provided to turn UAV 300 off so as to conserve power when not in use.
- switches may be employed to activate the autonomous phase of flight, such as, but not limited to, altitude switches, magnetic switches, toggle switches, and pressure sensitive switches.
- IMUs are prone to transient saturation, this may occur when, for example, an accelerometer or gyroscope experiences a large, high-frequency, input acceleration or rotation beyond its dynamic operating range, as may be the case during a grenade launch which typically relies on spin stabilisation to provide increased accuracy during launch.
- the control circuit's amplification can saturate and cause signal distortions, which may unduly delay deployment of rotor arms 120 (not shown), 125, 130 and 135 when passing through apogee, as an accurate position output indicative of the position of UAV 300 when accelerating along axis 1 15 will not be acquired.
- the rotor arms may be forced outward, prematurely disrupting aerodynamic flight before passage through the apogee.
- projectile casing 320 may be provided with a free rotating portion that engages the rifling in the grenade launcher tube imparting spin on the free rotating portion, thereby reducing spin on the IMU.
- projectile casing 320 may be provided with a free rotating flared base that engages the rifling in the grenade launcher imparting spin on only the flared base.
- Other means of reducing spin are well known to those in the art, such as, for example fins and slipping obturators.
- IMUs are also sensitive to vibration, for example, when exposed to rotor vibrations and sudden altitude changes, as may be the case during a grenade launch. Excessive vibrations compromise the IMUs ability to support stable flight, leading to poor performance, particularly in modes that rely on accurate positioning (e.g. guided or loitering modes), but also may unduly delay deployment of rotor arms 120 (not shown), 125, 130 and 135 when passing through apogee, as an accurate position output indicative of the position of UAV 300 when accelerating along axis 1 15 will not be acquired.
- accurate positioning e.g. guided or loitering modes
- the top payload 310 may include two IMUs: a first IMU that provides acceleration data and/or angular velocity data of the UAV 300 to support stable flight, as discussed with reference to FIG. 2; and, a second IMU that provides baseline rotor vibration data.
- Control circuitry which may employ a microcontroller and firmware or other circuitry, continuously monitors data from both IMUs where a filter is employed to subtract the baseline rotor vibration data from the acceleration data and/or angular velocity data pertaining to the UAV 300 itself.
- filtering methods can be used, such as those, but not limited to including, extended Kalman filters, evenly weighted moving average filters, the like, or a combination of these filters, which may be particularly suitable for implementation in firmware.
- Mechanical isolation of the rotors or sensitive components, including the IMUs, may also be provided, including resilient suspension means, or gel pads formed of slow response silicone or urethane foam, or the like.
- the top payload 310 includes an optical sensor, which may be IR or visible range, to survey an area of interest, and communicate the images back to an operative.
- the communication module which is preferably a 900 MHz COTS module, may be any wireless communication such as, for example, a software-defined radio module, to enable data transfer to the operative or between numerous UAVs.
- the data may be encrypted or unencrypted.
- top payload 310 may comprise an explosive and bottom payload 305 may comprise, for example, the IMU and control circuitry.
- the communications module may have one or more internal or external antennas for enabling data transfer such as radio frequency signals.
- the antenna(s) may be patch antenna(s) arranged in rotor arms 120 (not shown), 125, 130 and 135.
- the antenna may be a simple dipole antenna with a radiation pattern in a desired alignment with ground operatives.
- the top payload 310 includes an infrared illumination module (or beacon), to provide illumination of a target for infrared seeking missiles, or to act as a decoy.
- an infrared illumination module or beacon
- the UAV 300 is adapted to attract infrared or heat seeking guided missiles away from the deploying vehicle (i.e., the target).
- this may give the appearance of a moving infrared target in the airspace in which the UAV 300 has been released and present a more attractive thermal target than the vehicle from which it is deployed, thus decoying the weapon away from the vehicle.
- the remaining elements shown in FIG. 3 are identical to FIG. 2 and so share the same references.
- FIG. 4 there is shown a partial deployment of the UAV 400 adapted according to an exemplary embodiment of the invention.
- Each of the rotor arms 120, 125, 130 and 135 are deployed simultaneously.
- the elements shown in FIG. 4 are identical to FIG. 2 and so share the same references.
- the present invention provides a number of advantages and improvements over prior art approaches to projectiles. More particularly, the projectile provides a UAV that can be loaded as a normal round in a grenade launcher by unspecialised operatives, and can thus reach a target area very quickly without using its own power during launch. Therefore, operatives may have more flexibility when engaging with enemy targets and personnel. Moreover, an operative may "break" from the substantially parabolic ballistic trajectory of conventional small arms systems, dynamically allowing for differences in distance, altitude, atmospheric conditions, the velocity of the projectile, and other factors. Operatives may also selectively engage with targets and identify, for example, soft spots in armour. Operatives may also guide a plurality of UAVs with explosive payloads to targets incrementally.
- the synergetic effect of blast waves and fragmentation of munitions deployed in this way is larger than the arithmetic sum of the effect of separate blast waves and fragmentation.
- operatives may be able to survey or defeat enemy targets in defilade positions or behind cover, allowing sufficient time for the operative to verify that a target is an enemy target, or select an air, ground or delayed burst effect, via an electronic fuzing system to best engage with said target.
- IMU saturation may be reduced.
- UAV 100 launched from a grenade launcher 505, by an operative 565 at time zero t 0 according to an exemplary embodiment of the present invention.
- UAV 100 is launched in a substantially parabolic ballistic trajectory 510 over an intervening hill 540 at a target 530.
- the target is a truck taking cover behind trees 555, and in a general target area 535.
- General target area 535 may be considered an effective kill zone radius.
- operative 565 does not have means to provide distance and bearing information as there is no direct line of sight.
- operative 565 must estimate the distance between target area 535 and set bearing information.
- the "best guess" distance and bearing information are used to launch UAV 100 at time zero t 0 .
- operative 565 does not know whether UAV 100 will accurately reach target area 535.
- UAV 100 travels along trajectory 510 in the closed state, as best shown with reference to FIG. 1 .
- UAV 100 moves between the closed position and the deployed position, as is best shown with reference to 545 and with further reference to FIG. 2.
- UAV 100 is acted upon only by gravity and aerodynamic drag.
- feedback electronics resolve the position of rotor arms 120, 125, 130 and 135 and the rotors disposed on the rotor arms generate lift.
- an IMU and a microcontroller configured to estimate UAV 100 trajectory 510 (e.g., based on altitude, velocity and GPS) may be employed to determine when UAV 100 is approaching apogee 515 at ti and when UAV 100 has passed through apogee 515 at .2, for example, by known methods.
- the IMU and microcontroller may be further configured to provide a signal to a microelectronic actuator used to urge wing assembly 1 10 towards the deployed position, as discussed with reference to FIG. 2.
- feedback electronics may resolve the position of rotor arms 120, 125, 130 and 135 and the rotors disposed on the rotor arms may receive a signal from the microcontroller to rotate and generate lift.
- UAV 100 may now also depart from substantially parabolic ballistic trajectory 510 before reaching point 520, for example.
- the deployment of rotor arms 120, 125, 130 and 135 may be determined by a timer delay or peak altitude.
- the IMU After departing from substantially parabolic trajectory 510, the IMU provides acceleration data and/or angular velocity data of UAV 100 to support stable flight by known methods, as discussed with reference to FIG. 2.
- operative 565 may steer UAV 100 autonomously or by manual input by the ground station 570 to target area 535.
- the ground station 570 includes a processor for executing management of UAV 100 and memory coring flight scenarios, as well as a dual path communications module for executing flight scenarios to UAV 100.
- operative 565 can validate the target 530 as an enemy target, for example, and/or select the best engagement method for that target.
- operative 565 has opted to inflict personnel casualties by selecting an air burst effect 525, via an electronic fuzing system, resulting in blast and fragmentation of the projectile casing 105, as discussed with reference to FIG. 3.
- the fuzing system accepts engagement commands from the operative via ground station 570.
- the fuze incorporates a redundant microcontroller or other circuitry for continuously monitoring the position, independently those used to support stable flight, so as to prevent mishaps.
- the rotors disposed on the rotor arms may receive a signal from the microcontroller, or via manual input by the ground station 570, to reverse the rotation direction of the rotors.
- a signal from the microcontroller or via manual input by the ground station 570, to reverse the rotation direction of the rotors.
- Being able to reverse each rotor individually gives the UAV 100 the ability to fly inverted, for specialised manoeuvres, or to flip over should it land upside down. Having the ability to fly inverted also provides an engagement method whereby the UAV 100 may be accelerated downwards towards the target.
- the acceleration of the UAV 100 is directly proportional to the force that will ultimately act on the target.
- the rotors may be driven beyond their maximum operating limits for a permissible period of operation before destruction by overheating of windings, for example, or other damage associated with the blast and fragmentation of the projectile casing 105, as discussed with reference to FIG. 3.
- the UAV 100 comprises at least one self-destruct means to render inoperative the microcontroller and other circuitry, particularly in embodiments without an explosive payload.
- the self-destruct may be caused via known means such as the use of a high electrical current passed through the microcontroller and other circuitry applied via a supercapacitor, or sudden battery discharge through it.
- the self-destruct may be remotely initiated by the operative 565 via ground station 570.
- FIG. 6 there is shown a flight scenario of a target guidance system of four UAVs 625 and one UAV 620, flying inverted, as discussed with reference to FIG. 5.
- Each of the five UAVs 625 and 620 has been launched by an operative 635 along different substantially parabolic trajectories 610 towards a target 605.
- the target 605 is an armoured truck, taking cover behind an intervening structure 650 in a general target area 600.
- General target area 600 may be considered an effective kill zone radius, or simply a monitored area.
- the target guidance system includes a ground station 630 for executing flight scenarios on the UAVs, which may be set to guide the UAVs to the general target area 600.
- Each UAV has departed from substantially parabolic trajectories 610 and has entered an autonomous phase of flight to execute the flight scenarios 612.
- the UAVs may execute the flight scenario without ongoing control from the operative 635, and this may involve having the UAV loiter or hold its position for a predetermined period of time, or until otherwise instructed by the operative 635 via manual input on ground station 630.
- the operative 635 may identify a loitering UAV in the group and instruct it to fly inverted towards the target as is shown with reference to UAV 620.
- the operative 635 may instruct a UAV to return home (RTH), self-destruct, or the like.
- control circuitry which may employ a microcontroller or other circuitry (e.g., swarming and/or flocking logic) for continuously monitoring the position of each UAV may also communicate information via the communications module between each UAV, as discussed with reference to FIG. 3.
- the communicated information may include spatial and temporal information (e.g., GPS and altitude data) such that each UAV is aware of each other UAV in space and time. As will be appreciated, this may include communicating with a nearby UAV to determine which one moves or whether both should move to avoid a collision via a mesh network, or the like.
- Each UAV may include a unique identifier.
- UAVs may be used to provide surveillance of the general target area 600 or to identify soft spots in armour of the target 605 such as windows. Operatives may also guide numerous UAVs with explosive payloads to targets incrementally in a synchronised or choreographed manner.
- swarming may be used to control the UAVs as they fly over the general target area 600 and approach the target 605.
- a swarm may be thought of as a self-organising network of UAVs in which each UAV is aware of each other's movements such that they aggregate together or move en masse towards the target.
- swarming is used to overwhelm or saturate the defences of the target 605.
- each of the five UAVs 625 and 620 autonomously attack the target 605 from the front and the rear of the target 605 with airbursts 615 (e.g. two simultaneous airburst effects).
- airbursts 615 e.g. two simultaneous airburst effects
- the network of UAVs can also be used as a communication interface as illustrated by air interface 640.
- Available radio resources for example bandwidth, may be limited in the battlefield, and it may be necessary for the UAVs to behave as repeaters.
- operative 635 may instruct a UAV to perch on an intervening structure 650, which has caused an information-bearing signal to degrade.
- the perched UAV may increase the power of signals and retransmit them allowing them to travel further or, in this case over obstructions. Examples of such communications include surveillance information and UAV monitoring information. In this way, long- range communications can be realised without having to build large direct communications systems and without having to rely on expensive satellite bandwidth.
- the UAV for instance, during reconnaissance, may identify an access point into a vehicle.
- Nonlethal offensive approaches may be activated by applying a shock to enemy targets or by administering an incapacitating agent or tranquilizing gas. It will be appreciated by those skilled in the art that swarms may also be used in this nonlethal context by continuously administering an incapacitating agent through the window in a choreographed manner, whereby upon depletion of one UAV another UAV fills its place. A similar approach may be used to provide a smoke cover.
- Further offensive swarm functions may include clearing improvised explosive devices or mines, administering electric or acoustic shock, administering clouds of fine graphite or the like over electrical components to disrupt power, and providing electromagnetic pulse (EMP) Shockwaves.
- EMP electromagnetic pulse
- Such swarm functions are advantaged as operatives have the ability to stop the offensive functions, unlike traditional guided munitions or grenades which operate continuously. This feature allows an operative to change direction and take time to engage with targets particularly dynamic targets, including other UAVs.
- the constant changes in the modern battlefield, particularly where operatives are working in close confines with civilians, civilian targets and friendly personnel, providing a continuously adaptation provides an ideal weapons system.
- the swarm may comprise a large group of tens or hundreds of UAVs that are launched from various locations, including aircraft, into a battlefield.
- the swarm may encounter various targets, with the swarm dividing into numerous smaller groups of UAVs for specific attacks.
- the groups may regroup to further engage with other targets or lay dormant in the battlefield where they may be reactivated, remotely detonated, or remotely initiated to self-destruct.
- UAVs can be used as defensive mines to protect mobile personnel and then strike enemy targets as they enter a specific area.
- the term "projectile”, as used herein, refers to any object projected through a medium (e.g., air).
- the projection force can be delivered by a mechanism (e.g., a grenade launcher) or can be delivered by a human operative (e.g., by throwing it).
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Fluid Mechanics (AREA)
- Combustion & Propulsion (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Toys (AREA)
Abstract
L'invention concerne un véhicule aérien sans pilote (UAV) conçu pour être transporté dans un boîtier de projectile et pour être déployé à partir de ce dernier. L'UAV comprend un ensemble aile accouplé au boîtier de projectile et l'ensemble aile peut passer d'une position fermée à une position déployée et inversement. L'UAV comprend en outre un système de propulsion comprenant au moins un rotor disposé sur l'ensemble aile pour produire une portance. Dans la position fermée, l'ensemble aile fait sensiblement corps avec le boîtier de projectile et dans la position déployée, l'ensemble aile est étendu vers l'extérieur à partir du boîtier de projectile.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2017228525 | 2017-09-11 | ||
AU2017228525A AU2017228525B2 (en) | 2017-09-11 | 2017-09-11 | Unmanned aerial vehicle |
US15/700,436 US11040772B2 (en) | 2017-09-11 | 2017-09-11 | Unmanned aerial vehicle |
US15/700,436 | 2017-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019046911A1 true WO2019046911A1 (fr) | 2019-03-14 |
Family
ID=65633324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2018/050984 WO2019046911A1 (fr) | 2017-09-11 | 2018-09-11 | Véhicule aérien sans pilote |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019046911A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019104866A1 (de) * | 2019-02-26 | 2020-08-27 | Rheinmetall Waffe Munition Gmbh | Drohne sowie Verfahren zur Zielbekämpfung |
WO2020193991A1 (fr) * | 2019-03-28 | 2020-10-01 | Iss Group Ltd | Engin volant sans pilote embarqué lancé depuis un tube |
KR102184420B1 (ko) * | 2020-05-08 | 2020-12-01 | 부경대학교 산학협력단 | 유탄 발사형 드론 공격 장치 및 방법 |
US20200409366A1 (en) * | 2018-03-05 | 2020-12-31 | Root3 Labs, Inc. | Remote deployed obscuration system |
US11305872B2 (en) * | 2019-07-29 | 2022-04-19 | Aurora Flight Sciences Corporation | Retractable propulsor assemblies for vertical take-off and landing (VTOL) aircraft |
PL441807A1 (pl) * | 2022-07-21 | 2024-01-22 | Filipek-Motors Spółka Z Ograniczoną Odpowiedzialnością | Dron składany |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100057285A1 (en) * | 2008-08-27 | 2010-03-04 | Murphy Timothy A | Unmanned surveillance vehicle |
US20100093270A1 (en) * | 2008-10-09 | 2010-04-15 | Jamie Bass | Signal transmission surveillance system |
US20120044710A1 (en) * | 2010-08-17 | 2012-02-23 | Jones Kenneth R | Aerially Deployed Illumination System |
US20150142210A1 (en) * | 2012-01-03 | 2015-05-21 | Bae Systems Plc | Surveillance system |
US20160046372A1 (en) * | 2014-05-23 | 2016-02-18 | L'garde, Inc. | Rocket Morphing Aerial Vehicle |
US20170057635A1 (en) * | 2015-09-02 | 2017-03-02 | The Boeing Company | Drone launch systems and methods |
US20180093753A1 (en) * | 2016-09-30 | 2018-04-05 | Edward Chow | Collapsible and Rapidly-Deployable Unmanned Aerial Vehicle |
-
2018
- 2018-09-11 WO PCT/AU2018/050984 patent/WO2019046911A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100057285A1 (en) * | 2008-08-27 | 2010-03-04 | Murphy Timothy A | Unmanned surveillance vehicle |
US20100093270A1 (en) * | 2008-10-09 | 2010-04-15 | Jamie Bass | Signal transmission surveillance system |
US20120044710A1 (en) * | 2010-08-17 | 2012-02-23 | Jones Kenneth R | Aerially Deployed Illumination System |
US20150142210A1 (en) * | 2012-01-03 | 2015-05-21 | Bae Systems Plc | Surveillance system |
US20160046372A1 (en) * | 2014-05-23 | 2016-02-18 | L'garde, Inc. | Rocket Morphing Aerial Vehicle |
US20170057635A1 (en) * | 2015-09-02 | 2017-03-02 | The Boeing Company | Drone launch systems and methods |
US20180093753A1 (en) * | 2016-09-30 | 2018-04-05 | Edward Chow | Collapsible and Rapidly-Deployable Unmanned Aerial Vehicle |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200409366A1 (en) * | 2018-03-05 | 2020-12-31 | Root3 Labs, Inc. | Remote deployed obscuration system |
DE102019104866A1 (de) * | 2019-02-26 | 2020-08-27 | Rheinmetall Waffe Munition Gmbh | Drohne sowie Verfahren zur Zielbekämpfung |
WO2020173680A1 (fr) | 2019-02-26 | 2020-09-03 | Rheinmetall Waffe Munition Gmbh | Drone et procédé de lutte contre des cibles |
WO2020193991A1 (fr) * | 2019-03-28 | 2020-10-01 | Iss Group Ltd | Engin volant sans pilote embarqué lancé depuis un tube |
GB2584817A (en) * | 2019-03-28 | 2020-12-23 | Iss Group Ltd | Tube-launched unmanned aerial vehicle |
GB2584817B (en) * | 2019-03-28 | 2022-11-23 | Iss Group Ltd | Tube-launched unmanned aerial vehicle |
US11305872B2 (en) * | 2019-07-29 | 2022-04-19 | Aurora Flight Sciences Corporation | Retractable propulsor assemblies for vertical take-off and landing (VTOL) aircraft |
KR102184420B1 (ko) * | 2020-05-08 | 2020-12-01 | 부경대학교 산학협력단 | 유탄 발사형 드론 공격 장치 및 방법 |
PL441807A1 (pl) * | 2022-07-21 | 2024-01-22 | Filipek-Motors Spółka Z Ograniczoną Odpowiedzialnością | Dron składany |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11753160B2 (en) | Unmanned aerial vehicle | |
WO2019046911A1 (fr) | Véhicule aérien sans pilote | |
US11940251B2 (en) | Remotely controllable aeronautical ordnance | |
US8115149B1 (en) | Gun launched hybrid projectile | |
US9074858B2 (en) | Projectile-deployed countermeasure system | |
US8122810B2 (en) | Rocket propelled barrier defense system | |
US20220170725A1 (en) | Visual guidance system for barrel-fired projectiles | |
KR101188294B1 (ko) | 제트엔진을 이용한 전자전 무인 항공기 | |
US10753715B2 (en) | Long range large caliber frangible round for defending against UAVS | |
ES2452068T3 (es) | Arma guiada con múltiples modos de espoleta conmutables en vuelo | |
US20100313741A1 (en) | Applications of directional ammunition discharged from a low velocity cannon | |
AU2017228525B2 (en) | Unmanned aerial vehicle | |
US11802940B2 (en) | Method and system for electronic warfare obscuration and suppression of enemy defenses | |
US9939239B1 (en) | Stackable collaborative engagement munition | |
RU2131107C1 (ru) | Средство постановки радиопомех | |
JPH11264699A (ja) | スピン安定化ロケットから迎撃要素を展開するための対抗装置 | |
RU2818743C1 (ru) | Гранатометный выстрел для противодейсвия малогабаритным беспилотным летательным аппаратам | |
Urinov | COMBAT DRONES–DANGEROUS AND PERSPECTIVE WEAPON OF THE FUTURE ARMED CONFLICT | |
RU2206057C1 (ru) | Самонаводящаяся зенитная ракета | |
JP2023532299A (ja) | 到来脅威防御システムおよびその使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853780 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18853780 Country of ref document: EP Kind code of ref document: A1 |