WO2019045536A1 - Structure and design method for variable three-dimensional printing - Google Patents

Structure and design method for variable three-dimensional printing Download PDF

Info

Publication number
WO2019045536A1
WO2019045536A1 PCT/KR2018/010188 KR2018010188W WO2019045536A1 WO 2019045536 A1 WO2019045536 A1 WO 2019045536A1 KR 2018010188 W KR2018010188 W KR 2018010188W WO 2019045536 A1 WO2019045536 A1 WO 2019045536A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional printing
designing
printing structure
core
boundary
Prior art date
Application number
PCT/KR2018/010188
Other languages
French (fr)
Korean (ko)
Inventor
이용구
서해원
조규진
이대영
주형준
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2019045536A1 publication Critical patent/WO2019045536A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a structure and a design method for variable three-dimensional printing (four-dimensional printing). More particularly, the present invention relates to a structure and a design method for variable three-dimensional printing including a smart material.
  • Three-dimensional printing refers to the technique of extracting objects from a printer. It is called 3D printing in a similar way to existing printers that print letters on paper, but as a technique of making stereoscopic models.
  • printers use ink, but 3D printers use hardenable materials such as plastic.
  • 3D printers use 3D modeling files as output sources. Less than one or two hours or as long as a couple of hours, you can complete the model entered in the 3D printer.
  • a design method for four-dimensional printing includes a boundary that does not deform under specific conditions, a core that deforms in a certain condition inside the boundary, a core that connects a plurality of gull motors or a boundary, Dimensional structure of the shape, wherein the core is designed to adjust a different period of bending angle to the deformation of the gantry.
  • FIG. 1 shows a four-dimensional printing structure according to an embodiment of the present invention.
  • FIG. 2 shows a structure of a core according to an embodiment of the present invention.
  • Figure 3 shows a specific embodiment of the second part described above.
  • Figure 4 is a diagram showing the need for a core.
  • FIG. 5 is a view for explaining a moving device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of designing a four-dimensional printing structure according to an exemplary embodiment of the present invention.
  • Four-dimensional printing is performed by outputting a smart material, such as a shape memory alloy or a resin, using a three-dimensional printer in the form of a thin 2D shape, and changing the output object into another desired shape as the time or the surrounding environment changes . It can be pre-programmed to design what kind of condition to change to. At this time, the deformation condition may be various environments or energy sources such as heat, vibration, gravity, moisture, light, and pH.
  • Four-dimensional printing is an area where industrial use is highly expected in terms of reduction of manufacturing time which is a big problem in conventional three-dimensional printing.
  • the present invention to be described below relates to a structure design for variable three-dimensional printing (four-dimensional printing).
  • the technique of designing the structure to be transformed into a desired shape is one of the core technologies of 4-dimensional printing.
  • a bending actuator capable of three-dimensional printing is proposed as an element structure capable of changing into a much more various form than a conventional one by connecting a specially designed core structure as a truss type using an intermediate connection portion.
  • FIG. 1 shows a four-dimensional printing structure according to an embodiment of the present invention.
  • a four-dimensional printing structure 1 may include a core 10, a gantry synchronizer 20, and a boundary 30.
  • the four-dimensional printing structure 1 has a planar shape.
  • the four-dimensional printing structure is printed in a planar shape (more precisely flat) by the first three-dimensional printer.
  • the three-dimensional shape is modeled as described above, and the printer performs printing according to the modeled three-dimensional shape to produce a desired shape.
  • the three-dimensional shape is printed first in a plane shape considering the three-dimensional shape.
  • the printing structure produced in the shape of a plane has advantages of relatively simple printing and convenient portability. Therefore, after being initially made into a planar shape, it can be deformed into a desired shape by exposure to specific conditions during use.
  • the core 10 is a portion for connecting the plurality of gull motors 20.
  • the core 10 comprises a relatively rigid portion and a relatively flexible portion.
  • the core 10 adjusts the bending angle of the behavior period when the shape of the gull synchronizer 20 changes under certain conditions.
  • the core 10 will be described in detail below.
  • the gating synchronizer 20 is a portion where the shape changes under a specific condition.
  • the gantry synchronizer 20 is configured to change its shape under specific conditions.
  • the first planar three-dimensional printing structure changes to a shape to be produced while the shape of the gantry synchronizer 20 changes.
  • a detailed description of the gating synchronizer 20 will be given below.
  • the boundary 30 is a portion in which the shape is not changed under any condition, unlike the gull synchronizer 20.
  • Boundary 30 refers to the portion that should not be deformed in its overall shape.
  • the boundary 30 is configured such that the shape does not change under certain conditions unlike the gantry 20.
  • the boundary 30 forms the outer shape of the shape and is provided inside the boundary 30 while the movable unit 20 is connected through the core 10.
  • FIG. 2 shows a structure of a core according to an embodiment of the present invention.
  • the core 10 can connect the gull synchronizer 20 or the boundary 30.
  • the core 10 can adjust the connection angle between the gull synchronizer 20 or the boundary 30 between the gull synchronizer 20 or the boundary 30. [ The structure of the core 10 for adjusting the connection angle will be described below.
  • the core 10 is comprised of a first portion 11 and a second portion 12.
  • the second part 11 is provided on at least one surface of the first part 11.
  • the first portion 11 is made of a relatively hard material compared to the second portion 12. The first part 11 does not play a direct role in adjusting the bending angle between the gull motors 20.
  • the first portion 11 may have a shape corresponding to the shape of the second portion 12. 2
  • the second portion 12 may have the shape of an arc corresponding to the shape of the spherical portion. Therefore, when the second portion 12 is bent by a change in the shape of the gantry 20, the degree of bending can be adjusted while abutting against the first portion 11.
  • the second portion 12 is provided at one end of the first portion 11 and a plurality of second portions 12 may be provided in a straight line as illustrated in Figure 2, It is not limited.
  • the second portion 12 is made of a material that is relatively flexible as compared to the first portion 11. Accordingly, the second portion 12 is bent in accordance with the movement of the gantry 20 connected to one end of the second portion 12, and can provide bending between the gantry motors 20.
  • Figure 3 shows a specific embodiment of the second part described above.
  • the second portion 12 is made of a relatively flexible material and is bent in accordance with the movement of the gantry 20.
  • the second part may be composed of a material having a degree of hardness of less than a certain value. At this time, the coupling angle between the gull motors 20 can be adjusted through the thickness of the second portion 12.
  • the second portion 12 of (a) is made relatively thinner than the second portion 12 of (b).
  • a desired shape can be produced under specific conditions.
  • the movable range of the gantry 20 is reduced, resulting in a greater coupling angle between the gantry motors 20.
  • the thinner the second portion 12 is formed the greater the movable range of the gull synchronizer 20 is, and consequently the coupling angle between the gull motors 20 becomes small. It is possible to adjust the angle of engagement between the gull motors 20 through the adjustment of the thickness of the second portion 12 and as a result this makes it possible to produce a specific desired shape using the core 10 and the gull synchronizer 20 .
  • Figure 4 is a diagram showing the need for a core.
  • the shape to be obtained according to the shape change of the flywheel 20 in a specific condition is (a). If there is no core 10, the gull synchronizer 20 is bent under a specific condition, and only the shape shown in (b) can be formed. However, when the core 10 is formed between the gull motors 20 as shown in (c), the gull motors 20 are bent around the core 10 to form a desired coupling angle. Therefore, the core 10 can be appropriately disposed according to a desired shape to form a desired shape.
  • FIG. 5 is a view for explaining a moving device according to an embodiment of the present invention.
  • (a) is a structure of a gantry synchronizer 20 according to the first embodiment of the present invention. 5 (a), the gantry synchronizer 20 according to the first embodiment is continuously printed with layers made of two different materials having different shrinkage ratios under specific conditions.
  • the gantry synchronizer 20 according to the first embodiment may be composed of a plurality of layers, in which a plurality of successive layers have a non-expanding portion 21 having no hydrogel characteristic and a non- (22), respectively.
  • the hydrogel property refers to the property of expanding when exposed to liquids such as water or alcohol. Therefore, the gull synchronizer 20 according to the first embodiment is bent in accordance with the difference in shrinkage ratio between the non-expanding portion 21 and the expanding portion 22 when exposed to the liquid flow.
  • the degree of bending can be adjusted according to the configuration of the non-expanding portion 21 and the expanding portion 22. For example, as the expansion ratio between the non-expanding portion 21 and the expanding portion 22 is increased, the bending angle between the gull motors 20 can be increased. Or the thickness ratio between the non-expandable portion 21 and the expanded portion 22 may be adjusted to adjust the bending angle between the gull motors 20.
  • the non-expanding portion 21 does not have a hydrogel property and does not expand even when exposed to a liquid flow.
  • the expanding portion 22 has a hydrogel characteristic and expands when exposed to liquids. As a result, only the expanding portion 22 expands when exposed to the liquid flow, and the actuator according to the first embodiment is bent.
  • the gantry synchronizer 20 according to the second embodiment includes a non-expanding portion 21 having a rectangular shape and an expanding portion 22 (not shown) provided between the non-expanding portion 21 ).
  • the false motors 20 are bent in accordance with the difference in shrinkage ratio between the non-expandable portion 21 and the expanded portion 22.
  • the unexpanded portion 21 in the shape of a rectangular frame does not expand under certain conditions, but only the expanding portion 22 expands under certain conditions and the expanding portion 22 is bent in a specific direction.
  • the unexpanded portion 21 is shown as a rectangular frame, but the shape of the nonexpanded portion 21 is not limited to that shown in FIG. 5 (b), and a frame having another shape is also possible.
  • the degree of bending can be adjusted by the constitution of the expanding portion (22).
  • the expanding portion 22 when the material having a high expansion ratio is used for the expanding portion 22, the expanding portion 22 can be bent relatively more, and in the opposite case, the expanding portion 22 can be bent relatively less.
  • FIG. 6 is a flowchart illustrating a method of designing a four-dimensional printing structure according to an exemplary embodiment of the present invention.
  • the four-dimensional printing design method is a design method considering deformation of a three-dimensional printing structure, and is a method of designing a three-dimensional printing structure of a pre-deformation plane in a specific condition.
  • the shape to be printed can be shaped into a mesh, which is a collection of a myriad of consecutive triangles, and the mesh contains innumerable vertices and edges.
  • a boundary is extracted from a shape to be printed (S101).
  • the boundary can serve as a frame in the four-dimensional printing as a portion that is not deformed under certain conditions.
  • a convex polygon is generated (S105).
  • a weighting matrix for a vertex of a triangle forming a mesh is defined (S107).
  • the triangles forming the mesh of the three-dimensional shape are planarized using the weight matrix (S109). Specifically, an operation of setting the z value of the x, y, and z values of the vertices to 0 is performed using a weighting matrix.
  • planarization see M. Botsch et al., Polygon Mesh Processing (2010).
  • the degree of LE Length Expansion Factor
  • the LE can be obtained by comparing the edges of the planarized mesh with the edges before planarization.
  • the material may exist only when the material is expanded more than the original and LE is larger than 0. Therefore, if LE is less than 0, it is necessary to correct it.
  • the weight matrix is readjusted (S117).
  • the re-adjustment of the weighting matrix is possible by a method of correcting a specific value to a weighting matrix used in the past.
  • the weights are re-adjusted until the LE of all edges has a positive value (LE> 0).
  • the coordinate of the vertex can be changed by the re-adjusted weight, and the LE when the triangle formed by the vertices of the changed coordinates is planarized can be calculated again to determine whether the LE for all the edges is larger than 0 .
  • the present invention described above can be embodied as computer-readable codes on a medium on which a program is recorded.
  • the computer readable medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of the computer readable medium include a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, , And may also be implemented in the form of a carrier wave (e.g., transmission over the Internet). Also, the computer may include a control unit 180 of the terminal. Accordingly, the above description should not be construed in a limiting sense in all respects and should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.

Abstract

A design method for four-dimensional printing is disclosed. A design method for four-dimensional printing according to an embodiment of the present invention comprises a method for designing a plane-shaped three-dimensional structure comprising a boundary that is not deformed under a specific condition, a behavior unit that is deformed under a specific condition inside the boundary, and a core connecting a plurality of behavior units or boundaries. The core is designed to adjust the bending angle between behavior units following deformation of the behavior units.

Description

가변형 3차원 프린팅을 위한 구조 및 설계 방법Structure and design method for variable three-dimensional printing
본 발명은 가변형 3차원 프린팅(4차원 프린팅)을 위한 구조 및 설계 방법에 관한 것이다. 구체적으로, 스마트 재료를 포함하는 가변형 3차원 프린팅을 위한 구조 및 설계 방법에 관한 것이다.The present invention relates to a structure and a design method for variable three-dimensional printing (four-dimensional printing). More particularly, the present invention relates to a structure and a design method for variable three-dimensional printing including a smart material.
3차원 프린팅은 프린터로 물체를 뽑아내는 기술을 말한다. 종이에 글자를 인쇄하는 기존 프린터와 비슷한 방식으로, 다만 입체 모형을 만드는 기술이라고 하여 3차원 프린팅이라고 부른다.Three-dimensional printing refers to the technique of extracting objects from a printer. It is called 3D printing in a similar way to existing printers that print letters on paper, but as a technique of making stereoscopic models.
보통 프린터는 잉크를 사용하지만, 3차원 프린터는 플라스틱을 비롯한 경화성 소재를 쓴다. 기존 프린터가 문서나 그림파일 등 2차원 자료를 인쇄하지만, 3차원 프린터는 3차원 모델링 파일을 출력 소스로 활용한다는 점도 차이점이다. 적게는 한두 시간에서 길게는 십여 시간이면 3차원 프린터에 입력한 모형을 완성할 수 있다.Usually, printers use ink, but 3D printers use hardenable materials such as plastic. The difference is that existing printers print 2D documents such as documents or picture files, but 3D printers use 3D modeling files as output sources. Less than one or two hours or as long as a couple of hours, you can complete the model entered in the 3D printer.
더하여, 3차원 프린팅된 물질의 형상이 상황에 따라 변화할 수 있다면, 이는 3차원 프린팅의 영역을 또 한번 크게 확장시켜 줄 것이다. 4차원 프린팅이라 명명된 이러한 기술을 위하여 스스로 움직일 수 있는 다양한 재료에 대한 연구가 진행 중이지만, 움직일 수 있는 구조를 설계하는 기술에 대해서는 아직 본격적인 연구가 시작되지 않았다.In addition, if the shape of the three-dimensional printed material can change depending on the situation, this will again greatly expand the area of three-dimensional printing. Although research on various materials that can move by themselves for this technique called 4-dimensional printing is underway, research on designing a movable structure has not yet started.
현존하는 설계 기술은 움직임이 2차원 적으로 제약이 있거나, 단순한 형태의 선이 뭉치거나 평면에 굴곡을 만드는 듯 그 변화의 범위가 제한적이기 때문에 실제로 활용되기에는 큰 제약이 존재한다.Existing design techniques have a great limitation to be practically used because the range of the change is limited in that the movement is two-dimensionally restricted, or a simple shape of a line is bundled or a plane is bent.
특정 조건에서 변형하는 소재를 활용하여 다양한 형태로 변화할 수 있는 3차원 프린팅 구조 및 그 설계 방법을 제안 한다.We propose a 3D printing structure and its design method that can be changed into various forms by utilizing materials that deform under specific conditions.
4차원 프린팅을 위한 설계 방법이 개시된다. 본 발명의 일 실시 예에 따른 4차원 프린팅을 위한 설계 방법은 특정 조건에서 변형하지 않는 바운더리, 상기 바운더리 내부에 특정 조건에서 변형하는 거동기, 복수의 거동기 또는 바운더리를 연결하는 코어를 포함하는 평면 형상의 3차원 구조를 설계하는 방법을 포함하며, 상기 코어는 상기 거동기의 변형에 다른 거동기간 굽힘 각도를 조절하도록 설계된다. A design method for four-dimensional printing is disclosed. A design method for four-dimensional printing according to an exemplary embodiment of the present invention includes a boundary that does not deform under specific conditions, a core that deforms in a certain condition inside the boundary, a core that connects a plurality of gull motors or a boundary, Dimensional structure of the shape, wherein the core is designed to adjust a different period of bending angle to the deformation of the gantry.
본 발명의 일 실시 예에 따른 3차원 프린팅 구조를 이용하여 4차원 프린팅을 통해 다양한 형태를 제한 없이 제작할 수 있다.It is possible to produce various shapes without restriction by four-dimensional printing using the three-dimensional printing structure according to an embodiment of the present invention.
도 1은 본 발명의 일 실시 예에 따른 4차원 프린팅 구조를 나타낸다.1 shows a four-dimensional printing structure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 코어의 구조를 나타낸다.2 shows a structure of a core according to an embodiment of the present invention.
도 3은 상술한 제2 부분에 대한 구체적인 실시 예를 나타낸다.Figure 3 shows a specific embodiment of the second part described above.
도 4는 코어의 필요성을 보여주는 도면이다.Figure 4 is a diagram showing the need for a core.
도 5는 본 발명의 일 실시 예에 따른 거동기를 설명하기 위한 도면이다.5 is a view for explaining a moving device according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 4차원 프린팅 구조의 설계 방법을 나타내는 흐름도이다.6 is a flowchart illustrating a method of designing a four-dimensional printing structure according to an exemplary embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나 본 발명의 사상은 이하의 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 제안할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. It should be understood, however, that there is no intention to limit the invention to the embodiments described below, and that those skilled in the art, upon reading and understanding the spirit of the invention, It is to be understood that this is also included within the scope of the present invention.
첨부 도면은 발명의 사상을 이해하기 쉽게 표현하기 위하여 전체적인 구조를 설명함에 있어서는 미소한 부분은 구체적으로 표현하지 않을 수도 있고, 미소한 부분을 설명함에 있어서는 전체적인 구조는 구체적으로 반영되지 않을 수도 있다. 또한, 설치 위치 등 구체적인 부분이 다르더라도 그 작용이 동일한 경우에는 동일한 명칭을 부여함으로써, 이해의 편의를 높일 수 있도록 한다. 또한, 동일한 구성이 복수 개가 있을 때에는 어느 하나의 구성에 대해서만 설명하고 다른 구성에 대해서는 동일한 설명이 적용되는 것으로 하고 그 설명을 생략한다. The accompanying drawings are merely exemplary and are not to be construed as limiting the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Further, even if specific parts such as installation positions are different, the same names are given when the functions are the same, so that the convenience of understanding can be improved. When there are a plurality of identical configurations, only one configuration will be described, and the same description will be applied to the other configurations, and a description thereof will be omitted.
실시예를 설명함에 앞서서 4차원 프린팅에 대하여 설명한다. Prior to describing the embodiment, the four-dimensional printing will be described.
4차원 프린팅은 형상기억합금 또는 수지 등을 재질로 하는 같은 스마트 재료를 얇은 2D의 형상으로 3차원 프린터를 이용하여 출력하고, 출력된 물체가 시간 또는 주변 환경이 변함에 따라서 목적하는 다른 모양으로 변하도록 하는 것이다. 어떤 조건에서 어떤 모양으로 변하도록 할지는 미리 프로그래밍하여 설계할 수 있다. 이때 변형 조건은, 열, 진동, 중력, 수분, 빛, 및 pH 등 다양한 환경이나 에너지원이 될 수 있다. 4차원 프린팅은 종래 3차원 프린팅에서 큰 문제였던 제조시간의 단축 등의 측면에서 산업적인 사용가능성이 크게 기대되는 분야라고 할 수 있다.Four-dimensional printing is performed by outputting a smart material, such as a shape memory alloy or a resin, using a three-dimensional printer in the form of a thin 2D shape, and changing the output object into another desired shape as the time or the surrounding environment changes . It can be pre-programmed to design what kind of condition to change to. At this time, the deformation condition may be various environments or energy sources such as heat, vibration, gravity, moisture, light, and pH. Four-dimensional printing is an area where industrial use is highly expected in terms of reduction of manufacturing time which is a big problem in conventional three-dimensional printing.
이하에서 설명하고자 하는 본 발명은 가변형 3차원 프린팅(4차원 프린팅)을 위한 구조 설계에 관한 것이다. 구조가 원하는 형상으로 변형할 수 있도록 설계하는 기술은 4차원 프린팅의 핵심 기술 중 하나이다. 본 발명에서는 3차원 프린팅이 가능한 굽힘 구동기를 특수 설계된 코어 구조를 중간 연결 부위로 사용하여 트러스 형태로 연결함으로써, 기존 보다 월등히 다양한 형태로 변화할 수 있는 요소 구조를 제안한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention to be described below relates to a structure design for variable three-dimensional printing (four-dimensional printing). The technique of designing the structure to be transformed into a desired shape is one of the core technologies of 4-dimensional printing. According to the present invention, a bending actuator capable of three-dimensional printing is proposed as an element structure capable of changing into a much more various form than a conventional one by connecting a specially designed core structure as a truss type using an intermediate connection portion.
도 1은 본 발명의 일 실시 예에 따른 4차원 프린팅 구조를 나타낸다.1 shows a four-dimensional printing structure according to an embodiment of the present invention.
도 1에 도시된 바와 같이 본 발명의 일 실시 예에 따른 4차원 프린팅 구조(1)는 코어(10), 거동기(20) 및 바운더리(30)을 포함할 수 있다.As shown in FIG. 1, a four-dimensional printing structure 1 according to an embodiment of the present invention may include a core 10, a gantry synchronizer 20, and a boundary 30.
본 발명의 일 실시 예에 따른 4차원 프린팅 구조(1)는 평면 형상을 갖는다. 다시 말해서 4차원 프린팅 구조는 최초 3차원 프린터에 의해 평면 형상(더욱 정확하게는 평면에 가까운)으로 인쇄된다. 일반적인 3차원 프린팅의 경우 상술한 바와 같이 3차원 형상이 모델링 되고, 프린터가 모델링된 3차원 형상에 따라 프린팅을 수행하여 원하는 형상을 제작한다. 그러나, 본 발명의 일 실시 예에 따른 가변형 3차원 프린팅 구조의 경우 3차원 형상을 고려한 평면 형상으로 최초 인쇄되며, 이후 특정 조건에서 거동기(20)의 형상 변화에 따라 원하는 형상으로 변화한다.The four-dimensional printing structure 1 according to an embodiment of the present invention has a planar shape. In other words, the four-dimensional printing structure is printed in a planar shape (more precisely flat) by the first three-dimensional printer. In the case of general three-dimensional printing, the three-dimensional shape is modeled as described above, and the printer performs printing according to the modeled three-dimensional shape to produce a desired shape. However, in the case of the variable type three-dimensional printing structure according to the embodiment of the present invention, the three-dimensional shape is printed first in a plane shape considering the three-dimensional shape.
따라서, 처음부터 원하는 형상으로 프린팅할 필요가 없으며, 평면의 형상으로 제작된 프린팅 구조는 인쇄가 상대적으로 간단하며, 휴대가 편리하다는 장점이 있다. 따라서, 평면의 형상으로 최초 제작한 뒤, 사용시에 특정 조건에 노출시켜 원하는 형상으로 변형시킬 수 있다.Therefore, there is no need to print in a desired shape from the beginning, and the printing structure produced in the shape of a plane has advantages of relatively simple printing and convenient portability. Therefore, after being initially made into a planar shape, it can be deformed into a desired shape by exposure to specific conditions during use.
이때, 코어(10)는 복수의 거동기(20)를 연결하는 부분이다. 코어(10)는 상대적으로 단단한 부분과 상대적으로 유연한 부분으로 구성된다. 코어(10)는 특정 조건에서 거동기(20)의 형상이 변화하는 경우 거동기간의 굽힘 각도를 조절한다. 코어(10)에 대한 상세한 설명은 이하에서 하도록 한다.At this time, the core 10 is a portion for connecting the plurality of gull motors 20. The core 10 comprises a relatively rigid portion and a relatively flexible portion. The core 10 adjusts the bending angle of the behavior period when the shape of the gull synchronizer 20 changes under certain conditions. The core 10 will be described in detail below.
거동기(20)는 특정 조건에서 형상이 변화하는 부분이다. 거동기(20)는 특정 조건에서 형상이 변화하도록 구성되어 있다. 거동기(20)의 형상이 변화하면서, 최초의 평면 형상의 3차원 프린팅 구조가 제작하고자 하는 형상으로 변화한다. 거동기(20)에 대한 상세한 설명은 이하에서 하도록 한다.The gating synchronizer 20 is a portion where the shape changes under a specific condition. The gantry synchronizer 20 is configured to change its shape under specific conditions. The first planar three-dimensional printing structure changes to a shape to be produced while the shape of the gantry synchronizer 20 changes. A detailed description of the gating synchronizer 20 will be given below.
바운더리(30)는 거동기(20)와 달리 어느 조건에서도 그 형상이 변하지 않는 부분이다. 바운더리(30)는 전체 형상에서 변형되지 않아야 하는 부분을 지칭한다. 바운더리(30)는 거동기(20)와 달리 특정 조건에서 형상이 변하지 않도록 구성되어 있다. 일반적으로 바운더리(30)가 형상의 외곽을 형성하며, 거동기가(20)가 코어(10)를 통해 연결되면서 바운더리(30)의 내부에 마련된다.The boundary 30 is a portion in which the shape is not changed under any condition, unlike the gull synchronizer 20. Boundary 30 refers to the portion that should not be deformed in its overall shape. The boundary 30 is configured such that the shape does not change under certain conditions unlike the gantry 20. Generally, the boundary 30 forms the outer shape of the shape and is provided inside the boundary 30 while the movable unit 20 is connected through the core 10. [
도 2는 본 발명의 일 실시 예에 따른 코어의 구조를 나타낸다.2 shows a structure of a core according to an embodiment of the present invention.
상술한 바와 같이 코어(10)는 거동기(20) 또는 바운더리(30)를 연결할 수 있다. 그리고, 코어(10)는 거동기(20) 또는 바운더리(30) 사이에서 거동기(20) 또는 바운더리(30)간 연결 각도를 조절할 수 있다. 이러한 연결 각도 조절을 위한 코어(10)의 구조를 이하에서 설명한다.As described above, the core 10 can connect the gull synchronizer 20 or the boundary 30. The core 10 can adjust the connection angle between the gull synchronizer 20 or the boundary 30 between the gull synchronizer 20 or the boundary 30. [ The structure of the core 10 for adjusting the connection angle will be described below.
도 2에 도시된 바와 같이, 코어(10)는 제1 부분(11) 및 제2 부분(12)으로 구성된다. 여기에서 제2 부분(11)은 제1 부분(11)의 일면에 하나 이상으로 마련된다. 제1 부분(11)은 제2 부분(12)에 비해 상대적으로 단단한 물질로 구성된다. 제1 부분(11)은 거동기(20)간 굽힘 각도를 조절하는데 직접적인 역할을 수행하지는 않는다. As shown in Figure 2, the core 10 is comprised of a first portion 11 and a second portion 12. Here, the second part 11 is provided on at least one surface of the first part 11. The first portion 11 is made of a relatively hard material compared to the second portion 12. The first part 11 does not play a direct role in adjusting the bending angle between the gull motors 20.
한편, 제1 부분(11)은 제2 부분(12)의 형상에 대응하는 형상을 가질 수 있다. 도 2의 예시로 설명하면, 제1 부분(11)이 구형의 형상을 갖는 경우, 제2 부분(12)은 구형의 형상에 대응하는 원호의 형상을 가질 수 있다. 따라서, 제2 부분(12)이 거동기(20)의 형상 변화에 의해 굽혀지는 경우 제1 부분(11)과 맞닿으면서 굽힘 정도가 조절될 수 있다.On the other hand, the first portion 11 may have a shape corresponding to the shape of the second portion 12. 2, when the first portion 11 has a spherical shape, the second portion 12 may have the shape of an arc corresponding to the shape of the spherical portion. Therefore, when the second portion 12 is bent by a change in the shape of the gantry 20, the degree of bending can be adjusted while abutting against the first portion 11.
제2 부분(12)은 제1 부분(11)의 일 단에 마련되며, 도 2에 예시된 바와 같이, 복수의 제2 부분(12)이 일직선 상에 마련될 수 있으나, 도 2의 예에 한정되지 않는다. 제2 부분(12)은 제1 부분(11)에 비해 상대적으로 유연한 물질로 구성된다. 따라서, 제2 부분(12)은 제2 부분(12)의 일단에 연결되는 거동기(20)의 움직임에 따라 휘어지며, 거동기(20)간의 굽힘을 제공할 수 있다.The second portion 12 is provided at one end of the first portion 11 and a plurality of second portions 12 may be provided in a straight line as illustrated in Figure 2, It is not limited. The second portion 12 is made of a material that is relatively flexible as compared to the first portion 11. Accordingly, the second portion 12 is bent in accordance with the movement of the gantry 20 connected to one end of the second portion 12, and can provide bending between the gantry motors 20.
도 3은 상술한 제2 부분에 대한 구체적인 실시 예를 나타낸다.Figure 3 shows a specific embodiment of the second part described above.
상술한 바와 같이, 제2 부분(12)은 상대적으로 유연한 물질로 구성되어 거동기(20)의 움직임에 따라 휘어진다. 다시 말해서, 제2 부분은 특정 수치 이하의 단단한 정도를 갖는 물질로 구성될 수 있다. 이때 제2 부분(12)의 두께를 통해 거동기(20)간 결합 각도를 조절할 수 있다.As described above, the second portion 12 is made of a relatively flexible material and is bent in accordance with the movement of the gantry 20. In other words, the second part may be composed of a material having a degree of hardness of less than a certain value. At this time, the coupling angle between the gull motors 20 can be adjusted through the thickness of the second portion 12.
도 3에 도시된 바와 같이, (a)의 제2 부분(12)이 (b)의 제2 부분(12)보다 상대적으로 얇게 제작되어 있는 것을 확인할 수 있다. 그리고 제2 부분(12)의 두께를 달리함으로써, 특정 조건에서 원하는 형상을 제작할 수 있다.As shown in Fig. 3, it can be seen that the second portion 12 of (a) is made relatively thinner than the second portion 12 of (b). By varying the thickness of the second portion 12, a desired shape can be produced under specific conditions.
구체적으로, 제2 부분(12)이 두껍게 형성될수록 거동기(20)의 가동 범위가 줄어들어 결과적으로 거동기(20)간 결합각이 커진다. 반대로 제2 부분(12)이 얇게 형성될수록 거동기(20)의 가동 범위가 늘어나 결과적으로 거동기(20)간 결합각이 작아진다. 제2 부분(12)의 두께 조정을 통해 거동기(20)간 결합각을 조절할 수 있으며, 결과적으로, 이는 코어(10) 및 거동기(20)를 이용하여 특정의 원하는 형상을 제작할 수 있게 한다.Specifically, as the second portion 12 is formed thicker, the movable range of the gantry 20 is reduced, resulting in a greater coupling angle between the gantry motors 20. On the other hand, the thinner the second portion 12 is formed, the greater the movable range of the gull synchronizer 20 is, and consequently the coupling angle between the gull motors 20 becomes small. It is possible to adjust the angle of engagement between the gull motors 20 through the adjustment of the thickness of the second portion 12 and as a result this makes it possible to produce a specific desired shape using the core 10 and the gull synchronizer 20 .
도 4는 코어의 필요성을 보여주는 도면이다.Figure 4 is a diagram showing the need for a core.
만약, 특정의 조건에서 거동기(20)의 형상 변화에 따라 얻고자 하는 형상을 (a)라고 가정한다. 만약, 코어(10)가 없는 경우, 거동기(20)가 특정 조건에서 휘어지면서 (b)에 도시된 형상만을 형성할 수 밖에 없다. 그러나, (c)와 같이 코어(10)가 거동기(20)간에 형성되어 있는 경우, 코어(10)를 중심으로 거동기(20)가 휘어지며 원하는 결합각을 형성할 수 있다. 따라서, 코어(10)를 원하는 형상에 따라 적절히 배치하여 원하는 형상을 형성할 수 있다.Suppose that the shape to be obtained according to the shape change of the flywheel 20 in a specific condition is (a). If there is no core 10, the gull synchronizer 20 is bent under a specific condition, and only the shape shown in (b) can be formed. However, when the core 10 is formed between the gull motors 20 as shown in (c), the gull motors 20 are bent around the core 10 to form a desired coupling angle. Therefore, the core 10 can be appropriately disposed according to a desired shape to form a desired shape.
도 5는 본 발명의 일 실시 예에 따른 거동기를 설명하기 위한 도면이다.5 is a view for explaining a moving device according to an embodiment of the present invention.
(a)는 본 발명의 제1 실시 예에 따른 거동기(20) 구조이다. 제1 실시 예에 따른 거동기(20)는 도 5(a)에 도시된 바와 같이, 특정 조건에서 수축율을 달리하는 두개의 서로 다른 물질로 이루어진 층이 연속적으로 프린팅되어 있다.(a) is a structure of a gantry synchronizer 20 according to the first embodiment of the present invention. 5 (a), the gantry synchronizer 20 according to the first embodiment is continuously printed with layers made of two different materials having different shrinkage ratios under specific conditions.
예를 들어, 제1 실시 예에 따른 거동기(20)는 복수의 층으로 구성될 수 있으며, 이때, 연속하는 복수의 층은 hydrogel 특성을 갖지 않는 비팽창부(21) 및 hydrogel 특성을 갖는 팽창부(22)로 각각 구성될 수 있다. 여기에서 hydrogel 특성이란 물이나 알코올 등과 같은 액체류에 노출되는 경우 팽창하는 성질을 말한다. 따라서, 제1 실시 예에 따른 거동기(20)는 액체류에 노출되는 경우 비팽창부(21) 및 팽창부(22)간의 수축율 차이에 따라 휘어진다. 이런구조외에 선형적으로 팽창하는 구조도 생각할 수 있는데 이럴 경우 팽창부로만 이루어진다. 참고로 선형적으로 팽창하는 구조가 없다면 도4-c와 같이 궤적의 길이가 긴 결과를 도출할 수 없다.For example, the gantry synchronizer 20 according to the first embodiment may be composed of a plurality of layers, in which a plurality of successive layers have a non-expanding portion 21 having no hydrogel characteristic and a non- (22), respectively. Here, the hydrogel property refers to the property of expanding when exposed to liquids such as water or alcohol. Therefore, the gull synchronizer 20 according to the first embodiment is bent in accordance with the difference in shrinkage ratio between the non-expanding portion 21 and the expanding portion 22 when exposed to the liquid flow. In addition to this structure, it is possible to think of a linearly expanding structure. For reference, if there is no linearly expanding structure, a long trajectory can not be obtained as shown in FIG. 4-c.
이때, 비팽창부(21) 및 팽창부(22)의 구성에 따라 굽혀지는 정도를 조절할 수 있다. 예를 들어 비팽창부(21)와 팽창부(22)간 팽창비를 크게 할수록 거동기(20)간 굽힘 각도를 크게 할 수 있다. 또는 비팽팡부(21)와 팽창부(22)간의 두께비를 조절하여 거동기(20)간 굽힘 각도를 조절할 수도 있다.At this time, the degree of bending can be adjusted according to the configuration of the non-expanding portion 21 and the expanding portion 22. For example, as the expansion ratio between the non-expanding portion 21 and the expanding portion 22 is increased, the bending angle between the gull motors 20 can be increased. Or the thickness ratio between the non-expandable portion 21 and the expanded portion 22 may be adjusted to adjust the bending angle between the gull motors 20.
구체적으로, 비팽창부(21)는 hydrogel 특성을 갖지 않는바, 액체류에 노출되어도 팽창하지 않는다. 반면에 팽창부(22)는 hydrogel 특성을 갖는바, 액체류에 노출되는 경우 팽창한다. 결과적으로, 팽창부(22)만 액체류에 노출될 때 팽창하며 제1 실시 예에 따른 거동기가 휘어진다.Specifically, the non-expanding portion 21 does not have a hydrogel property and does not expand even when exposed to a liquid flow. On the other hand, the expanding portion 22 has a hydrogel characteristic and expands when exposed to liquids. As a result, only the expanding portion 22 expands when exposed to the liquid flow, and the actuator according to the first embodiment is bent.
(b)는 본 발명의 제2 실시 예에 따른 거동기(20)의 구조이다. 제2 실시 예에 따른 거동기(20)는 도 5(b)에 도시된 바와 같이, 사각의 형상을 갖는 비팽창부(21) 및 비팽창부(21)의 사이에 마련되는 팽창부(22)로 구성된다. 상술한 바와 같이 특정 조건에서 비팽창부(21)와 팽창부(22)의 수축률 차이에 따라 거동기(20)가 휘어진다. (b) is a structure of the gantry synchronizer 20 according to the second embodiment of the present invention. 5 (b), the gantry synchronizer 20 according to the second embodiment includes a non-expanding portion 21 having a rectangular shape and an expanding portion 22 (not shown) provided between the non-expanding portion 21 ). As described above, under the specific conditions, the false motors 20 are bent in accordance with the difference in shrinkage ratio between the non-expandable portion 21 and the expanded portion 22.
제2 실시 예의 경우, 사각의 틀 형상인 비팽창부(21)는 특정 조건에서 팽창하지 않으나, 팽창부(22)만이 특정 조건에서 팽창하여 팽창부(22)가 특정의 방향으로 휘어진다. 도 5(b)에서는 비팽창부(21)가 사각형 틀로 도시되어 있으나, 비팽창부(21)의 형상은 도 5(b)의 실시 예에 한정되지 않고 다른 형상의 틀도 가능하다.In the case of the second embodiment, the unexpanded portion 21 in the shape of a rectangular frame does not expand under certain conditions, but only the expanding portion 22 expands under certain conditions and the expanding portion 22 is bent in a specific direction. 5 (b), the unexpanded portion 21 is shown as a rectangular frame, but the shape of the nonexpanded portion 21 is not limited to that shown in FIG. 5 (b), and a frame having another shape is also possible.
이때, 팽창부(22)의 구성으로 굽힘 정도를 조절할 수 있다. 예를 들어, 팽창부(22)에 팽창률이 높은 물질을 사용하는 경우 팽창부(22)가 상대적으로 많이 굽혀질 수 있으며, 반대의 경우 팽창부(22)가 상대적으로 적게 굽혀질 수 있다.At this time, the degree of bending can be adjusted by the constitution of the expanding portion (22). For example, when the material having a high expansion ratio is used for the expanding portion 22, the expanding portion 22 can be bent relatively more, and in the opposite case, the expanding portion 22 can be bent relatively less.
도 6은 본 발명의 일 실시 예에 따른 4차원 프린팅 구조의 설계 방법을 나타내는 흐름도이다.6 is a flowchart illustrating a method of designing a four-dimensional printing structure according to an exemplary embodiment of the present invention.
4차원 프린팅 설계 방법은 3차원 프린팅 구조의 변형을 고려하는 설계 방법으로, 특정 조건에서 변형 전 평면의 3차원 프린팅 구조를 설계하는 방법이다.The four-dimensional printing design method is a design method considering deformation of a three-dimensional printing structure, and is a method of designing a three-dimensional printing structure of a pre-deformation plane in a specific condition.
인쇄하고자는 형상은 연속되는 무수히 많은 삼각형의 집합인 메쉬로 형상화될 수 있으며, 메쉬는 무수히 많은 꼭지점 및 모서리를 포함하고 있다. 여기에서 꼭지점 및 모서리의 개수가 많을수록 정교한 설계가 가능하나, 연산량이 많아지는 단점이 있을 수 있다.The shape to be printed can be shaped into a mesh, which is a collection of a myriad of consecutive triangles, and the mesh contains innumerable vertices and edges. The more vertices and edges there are, the more sophisticated the design can be, but the computational cost may increase.
먼저, 인쇄하고자 하는 형상에서 바운더리를 추출한다(S101). 여기에서 바운더리는 상술한 바와 같이, 특정 조건에서 변형되지 않는 부분으로 4차원 프린팅에서 틀 역할을 할 수 있다.First, a boundary is extracted from a shape to be printed (S101). Here, as described above, the boundary can serve as a frame in the four-dimensional printing as a portion that is not deformed under certain conditions.
추출된 바운더리가 평면인지 여부를 판단한다(S103). 구체적으로 제작하고자 하는 3D 형상에서 추출한 바운더리가 평면인지 여부를 판단하다.It is determined whether the extracted boundary is flat (S103). Specifically, it is determined whether or not the boundary extracted from the 3D shape to be produced is a flat surface.
일 실시 예에서, 추출한 바운더리가 평면이 아닐 경우, convex polygon을 생성한다(S105). In one embodiment, if the extracted boundary is not plane, a convex polygon is generated (S105).
또 다른 실시 예에서, 추출한 바운더리가 평면일 경우, 메쉬를 이루는 삼각형의 정점에 대한 가중치 행렬을 정의한다(S107). In another embodiment, if the extracted boundary is a plane, a weighting matrix for a vertex of a triangle forming a mesh is defined (S107).
가중치 행렬을 이용하여 3차원 형상의 메쉬를 이루는 삼각형들을 평면화 한다(S109). 구체적으로 정점의 x,y,z 값 중 z 값을 0으로 하는 연산을 가중치 행렬을 이용하여 수행한다. 평면화에 대한 구체적인 내용은 M. Botsch et al, Polygon Mesh Processing (2010)을 참고한다.The triangles forming the mesh of the three-dimensional shape are planarized using the weight matrix (S109). Specifically, an operation of setting the z value of the x, y, and z values of the vertices to 0 is performed using a weighting matrix. For more information on planarization, see M. Botsch et al., Polygon Mesh Processing (2010).
모든 삼각형이 평면화되었는지 확인한다(S111).It is checked whether all the triangles are flattened (S111).
일 실시 예에서 모든 삼각형이 평면화된 경우, 평면 메쉬의 모서리가 제작하고자 하는 3차원 형상으로 되기 위해 팽창되어야 하는 정도(LE, Length Expansion Factor)를 계산한다(S113). 이때, LE는 평면화된 메쉬의 모서리와 평면화 전 모서리를 비교하여 획득할 수 있다.In a case where all the triangles are planarized in one embodiment, the degree of LE (Length Expansion Factor) that the edges of the plane mesh should expand to have a three-dimensional shape to be produced is calculated (S113). In this case, the LE can be obtained by comparing the edges of the planarized mesh with the edges before planarization.
이때, LE가 0 보다 작은 모서리가 존재하는지 여부를 판단한다(S115).At this time, it is determined whether or not an edge whose LE is smaller than 0 exists (S115).
본 발명의 일 실시 예에 따른 팽창 소재를 사용한 4차원 프린팅의 경우, 소재가 원래보다 팽창하여 LE가 0보다 큰 경우만 존재할 수 있다. 따라서 LE가 0보다 작는 경우 이를 보정하는 작업이 필요하다.In the case of four-dimensional printing using an expansion material according to an embodiment of the present invention, the material may exist only when the material is expanded more than the original and LE is larger than 0. Therefore, if LE is less than 0, it is necessary to correct it.
일 실시 예에서 LE가 0보다 작은 모서리가 존재하는 경우, 가중치 행렬을 재조정한다(S117). 가중치 행렬의 재조정은 기존에 사용한 가중치 행렬에 특정 값을 보정하는 방식으로 가능하다. 그리고 가중치의 재조정은 모든 모서리의 LE가 양의 값을 가질 때(LE > 0)까지 반복된다. 구체적으로 재조정된 가중치에 의해 정점의 좌표가 변경될 수 있으며, 변경된 좌표에 따른 정점들이 구성하는 삼각형이 평면화되었을 때의 LE를 다시 연산하여 모든 모서리에 대한 LE가 0보다 큰지 여부를 판단할 수 있다.In one embodiment, if the LE is less than zero, the weight matrix is readjusted (S117). The re-adjustment of the weighting matrix is possible by a method of correcting a specific value to a weighting matrix used in the past. And the weights are re-adjusted until the LE of all edges has a positive value (LE> 0). Specifically, the coordinate of the vertex can be changed by the re-adjusted weight, and the LE when the triangle formed by the vertices of the changed coordinates is planarized can be calculated again to determine whether the LE for all the edges is larger than 0 .
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 단말기의 제어부(180)를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.The present invention described above can be embodied as computer-readable codes on a medium on which a program is recorded. The computer readable medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of the computer readable medium include a hard disk drive (HDD), a solid state disk (SSD), a silicon disk drive (SDD), a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, , And may also be implemented in the form of a carrier wave (e.g., transmission over the Internet). Also, the computer may include a control unit 180 of the terminal. Accordingly, the above description should not be construed in a limiting sense in all respects and should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.

Claims (13)

  1. 특정 조건에서 스스로 변형하는 4차원 프린팅 구조에 있어서,In a four-dimensional printing structure that deforms itself under certain conditions,
    특정 조건에서 변형하지 않는 바운더리;Boundaries that do not deform under certain conditions;
    상기 바운더리의 내부에 마련되며, 특정 조건에서 변형하는 거동기; 및A motive element provided in the boundary and deforming under a specific condition; And
    복수의 거동기 또는 바운더리를 연결하는 코어를 포함하고,And a core connecting the plurality of gull motors or the boundary,
    상기 코어는 상기 거동기의 변형에 따른 거동기간 굽힘 각도를 조절하는Wherein the core adjusts the bending angle of the action period according to the deformation of the gantry
    4차원 프린팅 구조.Four-dimensional printing structure.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 거동기는The actuator
    특정 조건에서 팽창하는 제1층과 특정 조건에서 팽창하지 않는 제2층이 이중 레이어로 형성되는A first layer that expands under certain conditions and a second layer that does not expand under certain conditions are formed as a double layer
    4차원 프린팅 구조.Four-dimensional printing structure.
  3. 제 1 항에 있어서,The method according to claim 1,
    상기 거동기는The actuator
    특정 조건에서 팽창하는 제1부분과 상기 제1 부분을 특정 조건에서 팽창하지 않는 제2 부분이 둘러싸도록 제공되는And is provided so as to surround a first portion that expands under certain conditions and a second portion that does not expand the first portion under certain conditions
    4차원 프린팅 구조.Four-dimensional printing structure.
  4. 제 1 항에 있어서,The method according to claim 1,
    상기 코어는 상대적으로 단단한 소재로 구성되는 제3 부분과 상기 제3 부분에 비해 상대적으로 유연한 소재로 구성되는 제4 부분을 포함하는Wherein the core comprises a third portion comprised of a relatively rigid material and a fourth portion comprised of a material relatively flexible relative to the third portion
    4차원 프린팅 구조.Four-dimensional printing structure.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 제4 부분의 일면은 상기 제3 부분의 형상과 대응되는And one surface of the fourth portion corresponds to the shape of the third portion
    4차원 프린팅 구조.Four-dimensional printing structure.
  6. 특정조건에서 원하는 형상으로 변화하는 4차원 프린팅 구조 설계 방법에 있어서,A method for designing a four-dimensional printing structure that changes from a specific condition to a desired shape,
    특정 조건에서 변형하지 않는 바운더리, 상기 바운더리 내부에 특정 조건에서 변형하는 거동기, 복수의 거동기 또는 바운더리를 연결하는 코어를 포함하는 평면 형상의 3차원 구조를 설계하는 방법을 포함하며,A method of designing a planar three-dimensional structure including a boundary that does not deform under a specific condition, a core that connects a plurality of gull motors or a boundary to a boundary,
    상기 코어는 상기 거동기의 변형에 다른 거동기간 굽힘 각도를 조절하도록 설계되는The core is designed to adjust the bending angle of the period of motion different from the deformation of the gantry
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
  7. 제 6항에 있어서, The method according to claim 6,
    상기 거동기를 설계하는 단계는,The step of designing the actuator includes:
    특정 조건에서 팽창하는 팽창부와 특정 조건에서 팽창하지 않는 비팽창부를 2중의 레이어로 각각 설계하는 단계를 포함하는Designing the expanding portion expanding under a specific condition and the nonexpansion expanding portion not expanding under a specific condition into a double layer, respectively
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 거동기를 설계하는 단계는The step of designing the actuator
    상기 거동기의 굽힘 정도를 조절하기 위해 상기 팽창부와 상기 비팽창부의 두께간 비율을 조절하는 단계를 포함하는Adjusting the ratio between the thickness of the inflating portion and the thickness of the non-inflating portion to adjust the degree of bending of the gantry
    4차원 프링팅 구조 설계 방법.Four - Dimensional Priding Structural Design Method.
  9. 제 6 항에 있어서,The method according to claim 6,
    상기 거동기를 설계하는 단계는The step of designing the actuator
    특정 조건에서 팽창하는 제1부분과 상기 제1 부분을 특정 조건에서 팽창하지 않는 제2 부분이 둘러싸도록 설계하는 단계를 포함하는Designing to surround a first portion that expands under certain conditions and a second portion that does not expand the first portion under certain conditions
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 거동기를 설계하는 단계는The step of designing the actuator
    상기 거동기의 굽힘 정도를 조절하기 위해 상기 제1 부분에 포함되는 특정 조건에서 변형하는 소재 비율을 조절하는 단계를 포함하는Adjusting the rate of material deforming under specific conditions included in the first portion to adjust the degree of bending of the gantry
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
  11. 제 6 항에 있어서,The method according to claim 6,
    상기 코어를 설계하는 단계는The step of designing the core
    상대적으로 단단한 소재로 구성되는 제3 부분과 상기 제3 부분에 비해 상대적으로 유연한 소재로 구성되는 제4 부분을 포함하도록 코어를 설계하는 단계를 포함하는Comprising the step of designing the core to include a third portion comprised of a relatively rigid material and a fourth portion comprised of a material relatively flexible relative to the third portion
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
  12. 제 11 항에 있어서,12. The method of claim 11,
    상기 코어를 설계하는 단계는The step of designing the core
    상기 거동기의 굽힘 정도를 조절하기 위해 상기 제4 부분의 두께를 조절하는 단계를 포함하는And adjusting the thickness of the fourth portion to adjust the degree of bending of the gantry
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
  13. 제 6 항에 있어서,The method according to claim 6,
    원하는 형상을 평면화한 3차원 구조를 설계하는 방법은,As a method of designing a three-dimensional structure in which a desired shape is flattened,
    원하는 형상으로부터 바운더리를 추출하는 단계;Extracting a boundary from a desired shape;
    추출한 바운더리가 평면일 경우, 원하는 형사에 대한 메쉬를 이루는 삼각형의 정점에 대한 가중치 행렬을 정의하는 단계;Defining a weighting matrix for a vertex of a triangle forming a mesh for a desired pattern if the extracted boundary is a plane;
    상기 가중치 행렬을 이용하여 상기 삼각형을 평면화하는 단계;Flattening the triangle using the weighting matrix;
    모든 삼각형이 평면화된 때, 평면의 메쉬를 이루는 삼각형이 원하는 형상으로 되기 위해 팽창되어야 하는 정도인 제1 값을 연산하는 단계;Computing a first value that is such that when all triangles are flattened, the triangle forming the mesh of the planes must be expanded to become the desired shape;
    상기 제1 값이 0보다 작은 모서리가 존재하는지 여부를 판단하는 단계; 및Determining whether the first value is less than zero; And
    상기 제1 값이 0보다 작은 모서리가 존재하는 경우, 제1 값이 0보다 작은 모서리가 없을 때까지 가중치 행렬을 재조정하는 단계를 포함하는If the first value is less than zero, re-adjusting the weighting matrix until the first value is less than zero
    4차원 프린팅 구조 설계 방법.Four Dimensional Printing Structure Design Method.
PCT/KR2018/010188 2017-08-31 2018-08-31 Structure and design method for variable three-dimensional printing WO2019045536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0111440 2017-08-31
KR1020170111440A KR101992720B1 (en) 2017-08-31 2017-08-31 A structure and design method for transformable 3 dimensional printing

Publications (1)

Publication Number Publication Date
WO2019045536A1 true WO2019045536A1 (en) 2019-03-07

Family

ID=65525892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010188 WO2019045536A1 (en) 2017-08-31 2018-08-31 Structure and design method for variable three-dimensional printing

Country Status (2)

Country Link
KR (1) KR101992720B1 (en)
WO (1) WO2019045536A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812020A (en) * 2020-06-16 2020-10-23 重庆大学 Complex geological structure mining rock stratum movement simulation method
CN113954361A (en) * 2021-10-29 2022-01-21 陕西科技大学 Form-variable wheel type mechanism based on 4D printing technology
CN115780828A (en) * 2022-11-20 2023-03-14 中国航空工业集团公司洛阳电光设备研究所 Process method for improving 3D printing success rate of aluminum alloy hollow grid
CN112658256B (en) * 2019-09-30 2024-05-07 河北工业大学 Three-dimensional enhanced star-shaped structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150158244A1 (en) * 2013-12-05 2015-06-11 Stratasys Ltd. Object Of Additive Manufacture With Encoded Predicted Shape Change And Method Of Manufacturing Same
CN106738875A (en) * 2016-12-08 2017-05-31 吉林大学 A kind of 4D Method of printings of programmable Curvature varying
KR101749212B1 (en) * 2016-04-18 2017-06-21 광주과학기술원 4D Printing Assembly Structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104116578B (en) * 2014-07-18 2016-01-20 西安交通大学 A kind of method of 4D printing shaping artificial blood vessel bracket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150158244A1 (en) * 2013-12-05 2015-06-11 Stratasys Ltd. Object Of Additive Manufacture With Encoded Predicted Shape Change And Method Of Manufacturing Same
KR101749212B1 (en) * 2016-04-18 2017-06-21 광주과학기술원 4D Printing Assembly Structure
CN106738875A (en) * 2016-12-08 2017-05-31 吉林大学 A kind of 4D Method of printings of programmable Curvature varying

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GE, Q: "Active materials by four-dimension printing", APPLIED PHYSICS LETTERS, vol. 103, no. 131901, 23 September 2013 (2013-09-23), pages 1 - 5, XP002760207, DOI: doi:10.1063/1.4819837 � *
MOMENI, F: "A review of 4D printing", MATERIALS & DESIGN, vol. 122, 1 March 2017 (2017-03-01), pages 42 - 79, XP029963010, DOI: doi:10.1016/j.matdes.2017.02.068 *
SEO HAC-WON: "Design of the Initial Printing Model from the target 3D Shape in 4D Printing", KOREAN JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, vol. 22, no. 3, September 2017 (2017-09-01), pages 246 - 254 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658256B (en) * 2019-09-30 2024-05-07 河北工业大学 Three-dimensional enhanced star-shaped structure
CN111812020A (en) * 2020-06-16 2020-10-23 重庆大学 Complex geological structure mining rock stratum movement simulation method
CN113954361A (en) * 2021-10-29 2022-01-21 陕西科技大学 Form-variable wheel type mechanism based on 4D printing technology
CN115780828A (en) * 2022-11-20 2023-03-14 中国航空工业集团公司洛阳电光设备研究所 Process method for improving 3D printing success rate of aluminum alloy hollow grid
CN115780828B (en) * 2022-11-20 2024-04-09 中国航空工业集团公司洛阳电光设备研究所 Technological method for improving 3D printing success rate of aluminum alloy hollowed-out grid

Also Published As

Publication number Publication date
KR101992720B1 (en) 2019-06-25
KR20190024445A (en) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2019045536A1 (en) Structure and design method for variable three-dimensional printing
Munkres Obstructions to the smoothing of piecewise-differentiable homeomorphisms
Tachi Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh
Alves de Sousa et al. A new one‐point quadrature enhanced assumed strain (EAS) solid‐shell element with multiple integration points along thickness—part II: nonlinear applications
US5768488A (en) Enhanced page placement for multiple-up presentation
Chen et al. Three-dimensional shape optimization with variational geometry
WO1999019838B1 (en) Method and system for estimating jointed-figure configurations
CA2397237A1 (en) Pose estimation method and apparatus
JP2004072723A (en) Utilization of gloss mark for improving graphic art work
EP3606060A1 (en) Projection device, projection system and image correction method
JP2012053758A (en) Three-dimensional simulation program, method and device
JP2021529605A (en) Image processing methods and devices, computer devices and computer storage media
US6081275A (en) Image compositing apparatus
KR100511228B1 (en) Cloth simulation method and computer-readable media storing the program executing the method
CN113313794A (en) Animation migration method and device, equipment and storage medium
Yang et al. Design of single degree-of-freedom triangular resch patterns with thick-panel origami
CN110741413A (en) rigid body configuration method and optical motion capture method
CN113947661A (en) Modeling method for fitting generalized cylinder curved surface based on water elastic paper folding derivative structure
EP0326153B1 (en) Method and apparatus for producing animation images
US8022949B2 (en) System and method for generating curvature adapted isosurface based on delaunay triangulation
JPH07254075A (en) Method for deforming three-dimensional object and modeling system
US6493603B1 (en) Modeling and fabrication of objects represented as developable surfaces
Yokoyama et al. Application of attribute information of voxel-based 3D data format FAV for metamaterials structure design
KR100571832B1 (en) Method and apparatus for integrated modeling of 3D object considering its physical features
JP6967150B2 (en) Learning device, image generator, learning method, image generation method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851895

Country of ref document: EP

Kind code of ref document: A1