WO2019045520A1 - Piston ring with low-friction coating film and manufacturing method therefor - Google Patents

Piston ring with low-friction coating film and manufacturing method therefor Download PDF

Info

Publication number
WO2019045520A1
WO2019045520A1 PCT/KR2018/010148 KR2018010148W WO2019045520A1 WO 2019045520 A1 WO2019045520 A1 WO 2019045520A1 KR 2018010148 W KR2018010148 W KR 2018010148W WO 2019045520 A1 WO2019045520 A1 WO 2019045520A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
piston ring
atom
nitrogen
vapor deposition
Prior art date
Application number
PCT/KR2018/010148
Other languages
French (fr)
Korean (ko)
Inventor
이한찬
윤혜원
문경일
방경배
신승용
전영하
여기호
홍정기
오세필
정훈
Original Assignee
한국생산기술연구원
(주)제이앤엘테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원, (주)제이앤엘테크 filed Critical 한국생산기술연구원
Priority to JP2020512033A priority Critical patent/JP6967209B2/en
Priority claimed from KR1020180103289A external-priority patent/KR102154823B1/en
Publication of WO2019045520A1 publication Critical patent/WO2019045520A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a piston ring and a manufacturing method thereof, and more particularly, to a piston ring coated with a nanocomposite coating film made of a multi-component metal and having excellent low friction characteristics, and a method for manufacturing the same.
  • the piston ring is a part that is mounted on the piston inside the cylinder of the internal combustion engine.
  • a plurality of piston ring grooves may be formed in the piston, and each piston ring groove may be fitted with a piston ring.
  • the piston is provided with three piston rings, the upper two piston rings serving as a compression ring to maintain the airtightness inside the combustion chamber and to transfer the heat of the piston heated by the combustion to the cylinder block, May serve as an oil ring to scrape off the engine oil supplied to the cylinder liner.
  • a technique of forming a thin film (or a thick film) having a low friction property on the surface of the piston ring can be applied. For example, energy consumption may occur due to friction between the cylinder inner wall and the piston ring. When the friction between these driving parts is reduced, the consumption of the automobile fuel is reduced, and the fuel efficiency can be improved.
  • the thin film (or the thick film) having such a low friction characteristic must withstand a severe friction environment, it is required to have a hardness of not less than a certain level and adhesion to the piston ring in addition to a low friction property, and a high resistance to an oxidizing atmosphere is required.
  • a nitride material having a high hardness a ceramic material based on a carbide, a diamond like carbon (DLC) or the like can be formed on the piston ring.
  • DLC diamond like carbon
  • the conventional ceramic-based thin film exhibits a high hardness of about 2000 Hv or more, but exhibits a high elastic modulus difference with the metal material (cast iron, carbon steel, alloy steel) forming the piston ring, which may be disadvantageous in terms of durability.
  • these problems are exemplary and do not limit the scope of the present invention.
  • a method of manufacturing a piston ring according to one aspect of the present invention includes forming a Zr-Cu-Si nanocomposite coating film containing nitrogen on the surface of the piston ring.
  • the composition of the component other than nitrogen ranges from 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  • Forming a nanocomposite coating film on the surface of the substrate placing the piston ring in a physical vapor deposition apparatus, introducing an inert gas, introducing a reaction gas containing a nitrogen gas (N 2 ) or a nitrogen element (N) Forming a nanocomposite coating film containing nitrogen on the surface of the piston ring by physical vapor deposition of a Zr-Cu-Si based alloy target, wherein the composition of the alloy target is 82 atom% to 90 atom% of Zr; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
  • the step of supplying the inert gas and the reactive gas into the physical vapor deposition apparatus while supplying pulse power or DC power having a frequency range of 50 kHz to 350 kHz to the physical vapor deposition plasma source At least 6 W / cm 2 per unit area is applied to the Zr-Cu-Si alloy target to discharge the plasma, and nitrogen ions generated from the activated reaction gas are combined with the metal ions of the alloy target to form the nanocomposite coating film .
  • the Zr-Cu-Si-based alloy target is physically vapor-deposited to form a Zr-Cu-Si alloy target by introducing an inert gas into the physical vapor deposition apparatus before forming the nanocomposite coating film, And forming a Cu-Si coating buffer film on the surface of the piston ring.
  • the forming of the Zr-Cu-Si coating buffer layer comprises supplying the physical vapor deposition plasma source with the inert gas in the frequency range of 50 kHz to 350 kHz while supplying the inert gas into the physical vapor deposition apparatus, A pulse power or a DC power is applied to the Zr-Cu-Si alloy target at a minimum of 6 W / cm 2 per unit area to discharge plasma, nitrogen ions generated from the activated reaction gas are combined with metal ions of the alloy target And forming the Zr-Cu-Si coating buffer film.
  • the manufacturing method of the piston ring having the low friction coating layer may include: forming the Zr-Cu-Si coating buffer film; A pretreatment step of activating the surface of the piston ring by previously injecting an inert gas into the ion gun plasma source in the physical vapor deposition apparatus and ionizing the inert gas by applying power to release the ion beam, .
  • the power may satisfy a current of 0.3 A to 1.0 A and a voltage of 1000 V to 2000 V.
  • the nitrogen-containing nanocomposite coating film contains Zr in an amount of 80 atom% to 92 atom% excluding the nitrogen; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  • the piston ring formed with the low friction coating film comprises a nitrogen-containing nanocomposite coating film formed on the surface of the piston ring, wherein the composition of the component other than nitrogen in the nanocomposite coating film is 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  • the nanocomposite coating film may have a ZrN or Zr 2 N-based crystal structure.
  • the nanocomposite coating film has a tribo-reaction film formed on at least a part of the surface thereof when the tribo-reaction coating film is rubbed in contact with the counter material, and the composition of Cu in the tribo-reaction film- Lt; / RTI >
  • composition of S and P in the region in which the tribo-reaction film is formed may be higher than that in the region in which the tribo-reaction film is not formed.
  • the nanocomposite coating film may have a hardness of 10 GPa to 45 GPa and an elastic modulus of 150 GPa to 450 GPa. Strictly speaking, the nanocomposite coating film may have a coefficient of friction of 0.008 to 0.024 while having a hardness of 23 GPa to 44 GPa and an elasticity of 265 GPa to 421 GPa.
  • the surface of the piston ring in which the nitrogen-containing nanocomposite coating film is formed may include an outer circumferential surface of the piston ring in contact with the cylinder liner or the inner surface of the block bore.
  • the piston ring may be made of a metal material, .
  • a piston ring provided with a low-friction coating film according to another aspect of the present invention.
  • the piston ring is a piston ring implemented by the manufacturing method described above, the Zr-Cu-Si coating buffer film formed on the surface of the piston ring; And a nitrogen-containing nanocomposite coating film formed on the Zr-Cu-Si coating buffer film, wherein the composition of the components other than nitrogen in the nanocomposite coating film is 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  • the nanocomposite coating film may have a hardness of 10 GPa to 45 GPa and an elastic modulus of 150 GPa to 450 GPa. Strictly speaking, the nanocomposite coating film may have a coefficient of friction of 0.008 to 0.024 while having a hardness of 23 GPa to 44 GPa and an elasticity of 265 GPa to 421 GPa.
  • the nitrogen-containing nanocomposite coating film may have a surface roughness Rz of 0.7 mu m and an Rpk of 0.06 mu m or less. Further, the adhesive force between the piston ring base material and the nitrogen containing nanocomposite coating film may be 28 N or more.
  • the thickness of the coating buffer layer may be 0.01 ⁇ to 5 ⁇ , and the thickness of the nanocomposite coating film containing nitrogen may be 0.5 ⁇ to 30 ⁇ .
  • a piston ring coated with a nanocomposite coating film having low friction characteristics can be provided.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a view of a piston ring with a low-friction coating formed thereon according to an embodiment of the present invention
  • FIG. 2 is a ternary phase diagram of a Zr-Cu-Si alloy which is an alloy constituting a physical vapor deposition alloy target according to an embodiment of the present invention.
  • Fig. 3 shows the results of SEM and BSE observations of the microstructure of the target specimen corresponding to the composition of Example 4.
  • FIG. 4 shows the result of SEM observation of the state of powders after mechanical alloying by introducing Zr, Cu and Si powders into a ball-mill to prepare a target specimen having a composition according to Example 5.
  • FIG. 4 shows the result of SEM observation of the state of powders after mechanical alloying by introducing Zr, Cu and Si powders into a ball-mill to prepare a target specimen having a composition according to Example 5.
  • 5 (a) to 5 (c) are the results of analyzing the composition of the powder by EDS.
  • FIG. 6 is a graph showing the particle size of a powder that has undergone mechanical alloying by using a particle size analyzer (PSA).
  • PSD particle size analyzer
  • FIG. 7 shows the results of SEM and BSE microstructures of specimens sintered by spark plasma sintering using powder subjected to mechanical alloying.
  • FIG. 8 is a view showing physical vapor deposition process conditions, XRD analysis conditions, and results of forming a coating film of an embodiment of the present invention.
  • FIG. 11A shows the result of TEM observation of the microstructure of the coating film according to Example 5.
  • FIG. 11B shows the result of SEAD (selective area diffraction) analysis.
  • FIG. 11A shows the result of TEM observation of the microstructure of the coating film according to Example 5.
  • FIG. 11B shows the result of SEAD (selective area diffraction) analysis.
  • FIG. 11A shows the result of TEM observation of the microstructure of the coating film according to Example 5.
  • FIG. 11B shows the result of SEAD (selective area diffraction) analysis.
  • FIG. 12 is a view showing conditions and results of a reciprocating friction test for a coating film according to some embodiments of the present invention and a comparative example.
  • 14A and 14B are AFM optical microscope photographs and friction coefficient mapping diagrams of LFM of a base material on which a coating film is formed according to an embodiment of the present invention.
  • 15A and 15B are AFM optical microscope photographs and friction coefficient mapping diagrams of LFM of a base material on which a coating film according to a comparative example of the present invention is formed.
  • 16 is an SEM image of an AES analysis result of a tappet having a coating film according to an embodiment of the present invention.
  • 17 is an SEM image for AES analysis of a tappet having a coating film according to a comparative example of the present invention.
  • Fig. 18 shows the results of TEM observation of the cross-section of the tribo-reaction layer.
  • FIG. 19 is a photograph of a digital camera taken with a piston ring having a low friction coating film formed according to an embodiment of the present invention.
  • 20 is an optical photograph of a section of a piston ring having a buffer layer and a low-friction coating film formed thereon.
  • FIG. 21 is a photograph showing a result of adhesion test for a piston ring having a low friction coating film formed according to an embodiment of the present invention.
  • FIG. 22 is a graph showing a result of evaluating a friction coefficient of a piston ring formed with a coating film according to Examples and Comparative Examples of the present invention.
  • &quot consist of " an element having a predetermined content range means that an element other than the specific elements except for unavoidable inevitable impurities has a significant content range, Of the population.
  • FIG. 1 is a view of a piston ring with a low-friction coating formed thereon according to an embodiment of the present invention
  • a piston ring 10 having a low friction coating film formed thereon has a low friction coating film formed on at least a part of the surfaces of the piston ring and the piston ring (e.g., sliding surfaces).
  • the low friction coating film is a material film realized in a physical vapor deposition process using a physical vapor deposition target made of a Zr-Cu-Si alloy having a specific composition range.
  • the physical vapor deposition target is a physical vapor deposition target made of a Zr-Cu-Si-based alloy for forming a low-friction coating film, and has a Zr of 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
  • Physical vapor deposition refers to a technique of coating a surface of a base material by vaporizing or sputtering a solid phase evaporation source by using a sputtering method or an evaporation method, deposition, ion beam deposition, and the like.
  • FIG. 2 is a ternary phase diagram of a Zr-Cu-Si alloy which is an alloy constituting a physical vapor deposition alloy target according to an embodiment of the present invention, and Table 1 below shows a physical vapor deposition alloy target according to embodiments of the present invention. The composition of the constituent alloy is shown.
  • an alloy for a physical vapor deposition target is made of at least 3 metal elements, and more specifically 4.0 atom% to 14.0 atom% of copper (Cu), silicon (Si) Of 4.0 atom% to 8.0 atom% and the balance of zirconium (Zr). That is, the Zr-Cu-Si-based alloy for the physical vapor deposition target has a Zr content of 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
  • the physical vapor deposition material film realized by using the physical vapor deposition target made of such an alloy can realize a high hardness of 23 GPa or more and a high elasticity of 265 GPa or more A friction coefficient lower than 0.024 can be realized.
  • the composition of Zr is lower than 82 atomic%, for example, the oxidation resistance of the alloy becomes relatively low, and when the composition of Cu exceeds 16 atomic%, the composition of Cu becomes 14 atomic% , The friction coefficient of the physical vapor deposition alloy film becomes remarkably high.
  • the composition of Si is more than 26 at%, more strictly, when the composition of Si exceeds 8 at% And there is a problem that hardness and elasticity of the physical vapor deposition alloy film are lowered.
  • the alloy target according to Example 1 has a chemical composition (atomic%) of Zr 82 Cu 13.5 Si 4.5
  • the alloy target according to Example 2 has a chemical composition (atomic%) of Zr 84.1 Cu 10.4 Si 5.5
  • the alloy target according to Example 3 had a chemical composition (atomic%) of Zr 86.3 Cu 7.2 Si 6.5
  • the alloy target according to Example 4 had a chemical composition (atomic%) of Zr 88.4 Cu 4.1 Si 7.5
  • the alloy target according to Example 5 has a chemical composition (atomic%) of Zr 89.6 Cu 3.3 Si 7.1 .
  • the Zr-Cu-Si-based alloy constituting the physical vapor deposition target may be a cast alloy realized by casting a molten metal.
  • the alloy may be produced by casting a molten metal produced by the plasma arc melting method, and then cutting the ingot to produce a target.
  • the Zr-Cu-Si-based alloy constituting the physical vapor deposition target may be a small-sized gold alloy produced by a powder metallurgy method.
  • Zr, Cu, and Si powders may be mechanically alloyed using a ball-mill or the like, followed by sintering the mechanically alloyed powders.
  • the sintering may include, for example, hot sintering, spark plasma sintering, hot pressing, hot isostatic press sintering, and the like.
  • the Zr-Cu-Si-based alloy constituting the physical vapor deposition target has a Zr content of 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si; a plurality of amorphous alloys or nanocrystalline alloys comprising: The first shrinkage of the amorphous alloy or the nanocrystalline alloy by pressing the amorphous alloy or the nanocrystalline alloy while maintaining the amorphous alloy or the nanocrystalline alloy at a temperature not higher than the glass transition temperature (Tg) of the amorphous alloy or the nanocrystalline alloy at the crystallization start temperature (Tx) ; And secondarily shrinking the plurality of amorphous alloys or nanocrystalline alloys by pressurizing the amorphous alloy or the nanocrystalline alloy while maintaining the temperature within a range of 0.7 to 0.9 times the melting temperature (Tm) of the amorphous alloy or nano-crystalline alloy for a predetermined period of time;
  • Tg glass transition temperature
  • Tx crystallization
  • the nanocomposite coating film according to another aspect of the present invention can be produced by injecting inert gas into a physical vapor deposition apparatus and introducing a reaction gas containing nitrogen gas (N 2 ) or nitrogen element (N) -Si-based alloy target by physical vapor deposition.
  • the nanocomposite coating film is a nanocomposite coating film containing nitrogen, and can be understood as a nano-structured film containing nitrogen, a nano-nitride film, or a nano-structured composite film.
  • a gas including nitrogen gas (N 2 ) or nitrogen (N), for example, ammonia (NH 3 ) as a reactive gas is introduced into a physical vapor deposition chamber, ,
  • N 2 nitrogen
  • N nitrogen
  • NH 3 ammonia
  • High zirconium (Zr) reactive with nitrogen in the alloy can react with nitrogen to form zirconium nitride.
  • Other elements may be solubilized in the zirconium nitride or may be present in the metal phase.
  • the thin film has a structure in which a nitride phase of a metal or one or more metal phases are mixed with each other, and the nitride phase of the metal may include, for example, zirconium as a constituent element of the nitride.
  • the nitrogen-containing nanocomposite coating film shows a crystal structure of zirconium nitride, and other metal elements can be dissolved in zirconium nitride in the form of nitride.
  • the zirconium nitride may contain any one or more of Zr or ZrN 2 N in accordance with the conditions of the reactive gas containing nitrogen during physical vapor deposition.
  • the nitride phase of the metal has a nanocrystalline structure consisting of crystal grains of several to several tens of nanometers in size.
  • the metal phase can be distributed in a trace amount to such a nanocrystalline system.
  • the metal phase is distributed in several atomic units and may exist in a form that does not form a special crystal structure.
  • such a metal phase is not distributed intensively in a specific region but distributed uniformly throughout the film.
  • a buffer layer is formed between the bottom of the nanocomposite coating film containing nitrogen, that is, between the base material (piston ring) and the nitrogen- May be formed.
  • the buffer layer may function as an adhesion layer for further improving the adhesion of the nanocomposite coating film containing nitrogen, for example, to the base material.
  • the stress relaxation layer may be a stress relaxation layer for relieving the stress between the base material and the nanocomposite coating film containing nitrogen, and as another example, it may be a corrosion resistant layer for improving corrosion resistance.
  • the buffer layer is not limited thereto, and may refer to both a nanocomposite coating film containing nitrogen in the structural aspect of the thin film (or thick film) and a layer that can be interposed between the parent material.
  • a Zr-Cu-Si coating buffer layer implemented by introducing an inert gas (for example, argon gas) into the physical vapor deposition apparatus and physical vapor deposition of the Zr-Cu-Si based alloy target described above is used .
  • an inert gas for example, argon gas
  • a buffer layer is formed on the base material by a non-reactive physical vapor deposition process with a predetermined thickness while introducing an inert gas into the physical vapor deposition chamber.
  • a nitrogen-containing nanocomposite coating film can be formed by performing physical vapor deposition while introducing nitrogen gas into the physical vapor deposition chamber.
  • the buffer layer and the nanostructured film containing nitrogen can be formed in-situ by using the same alloy target.
  • the nanocomposite coating film may be made of the same element as the buffer layer except nitrogen.
  • the present invention is not limited thereto.
  • the interface of the buffer layer and the nitrogen-containing nanocomposite coating film may include nitrogen or a boundary layer in which elements constituting the buffer layer are inclined and constituted. That is, the boundary layer may be formed in which the composition changes gradually without changing the composition abruptly at the interface, and the composition has a slope.
  • the thickness of the buffer layer described above may be, for example, from 0.01 ⁇ to 5 ⁇ , and the thickness of the nitrogen-containing nanocomposite coating film may be, for example, 0.5 ⁇ to 30 ⁇ .
  • the nanocomposite coating film containing nitrogen exhibits greatly improved friction characteristics, and has high hardness and adhesion.
  • Table 2 shows the composition, thickness, roughness, hardness, elasticity, and friction of the nanocomposite coating film implemented by the composition of the sputtering target and the sputtering process conditions according to Examples 1 to 5 and Comparative Examples 1 to 5 of the present invention Respectively.
  • the substrate carburized SCM415 was used as the substrate.
  • the sputtering target according to Examples 1 to 4 is a cast alloy produced by the plasma arc melting method, and the sputtering target according to Example 5 is a sintered alloy produced by the spark plasma sintering method.
  • Zr is 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And nitrogen (N 2 ) or a nitrogen element (N) in a sputtering apparatus, wherein the sputtering target is a sputtering target having a Si content of 4 to 8 atom% And the Zr-Cu-Si based alloy target is physically vapor deposited to form a nanocomposite coating film containing nitrogen, the composition of the nanocomposite coating film excluding nitrogen is 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  • Comparative Example 1 to Comparative Example 2 formed a nanocomposite coating film using a Zr-Cu-Si based alloy target, but the alloy target did not satisfy the above-mentioned composition range, Si-based alloy target instead of the Si-based alloy target, Comparative Example 4 corresponds to the case where the Si-DLC coating film of the prior art is applied without using the physical vapor deposition process, and Comparative Example 4 corresponds to the case of using the Zr- Example 5 corresponds to a case in which a coating film is not separately applied.
  • Table 2 shows that the nanocomposite coating film according to the embodiments of the present invention has a high hardness of 23 GPa to 44 GPa and a high elasticity of 265 GPa to 421 GPa and a low coefficient of friction of 0.008 to 0.024.
  • the hardness and elasticity are high but the friction coefficient is relatively high (Comparative Example 1 and Comparative Example 2), the friction coefficient is low but the hardness and elasticity are relatively low ), Low hardness and elasticity, and high coefficient of friction (Comparative Example 4 and Comparative Example 5), indicating that it is not suitable for a low friction coating film.
  • Fig. 3 shows the results of SEM and BSE observations of the microstructure of the target specimen corresponding to the composition of Example 4.
  • Fig. The relative density of the target specimen was as high as about 99%.
  • the cast specimen showed a dendrite structure.
  • EDS analysis was carried out and it was confirmed that the composition distribution was uniform throughout.
  • FIG. 4 shows the result of SEM observation of the state of the powder after mechanical alloying by injecting Zr, Cu and Si powder into a ball-mill to prepare a target specimen having a composition according to Example 5.
  • FIG. To (c) are the results of analyzing the composition of the powder by EDS. Referring to FIGS. 4 and 5, it is confirmed that the Zr, Cu and Si powders are alloyed so as to have a uniform distribution by mechanical alloying.
  • FIG. 6 shows that the particle size of the powder that has undergone mechanical alloying is analyzed by a particle size analyzer (PSA), and that it has a uniform particle size as a whole.
  • PSA particle size analyzer
  • FIG. 7 shows the result of SEM observation of the microstructure of a specimen sintered by spark plasma sintering using powder subjected to mechanical alloying. It shows uniform microstructure composed of very fine grains as a whole, and it can be confirmed that EDS analysis has a uniform composition distribution as a whole.
  • FIG. 8 is a view showing sputtering process conditions and XRD analysis conditions and results for forming a coating film according to Example 2 of the present invention
  • FIG. 9 is an XRD result of a coating film according to Example 5. 8 and 9, it is confirmed that the coating film has a ZrN-based nanocomposite crystal structure, wherein the coating film has a ZrN crystal structure as a basic structure, wherein Cu and Si form a ZrN crystal Structure having a nanocomposite crystal structure.
  • FIG. 10 (a) and 10 (b) show the results of SEM observation of the surface and cross-section of the coating film according to Example 5.
  • FIG. 10 (a) and 10 (b) it can be seen that the produced coating film has a very smooth surface and has a columnar structure.
  • FIG. 11A shows the result of TEM observation of the microstructure of the coating film according to Example 5.
  • FIG. 11B shows the result of SEAD (selective area diffraction) analysis.
  • FIG. 11 (a) it can be seen that the grain size has a very fine grain size in the range of 5 to 20 nm.
  • FIG. 11 (b) it can be seen that a ring-pattern is observed in the nanocomposite coating.
  • FIG. 12 is a view showing conditions and results of a reciprocating friction test for a coating film according to some embodiments of the present invention and a comparative example.
  • the coefficient of friction of the nitrogen-containing nanocomposite coating film according to the embodiments of the present invention is significantly lower than that of the DLC coating film. Therefore, it can be confirmed that the nitrogen-containing nanocomposite coating film according to the embodiments of the present invention is formed on the base material rather than the case where the DLC is formed on the base material, and thus the low friction characteristic is better.
  • the nanocomposite coating film containing nitrogen according to the technical idea of the present invention can be applied as a coating film formed on the surface of a piston ring which is a piston part.
  • a piston ring which is a piston part.
  • a piston ring made of cast iron, carbon steel or alloy steel is disposed inside the physical vapor deposition apparatus.
  • the piston ring Before being placed in the physical vapor deposition apparatus, the piston ring may optionally be nitrided or CrN or TiN surface treated.
  • inert gas is introduced and a reaction gas containing a nitrogen gas (N 2 ) or a nitrogen element (N) is introduced to physically deposit a Zr-Cu- Thereby forming a nanocomposite coating film containing nitrogen on the surface of the piston ring.
  • the composition of the alloy target is such that Zr is 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
  • the step of forming the nano-composite coating film containing nitrogen on the surface of the piston pin, the piston ring, or the tappet may include supplying the inert gas and the reactive gas into the sputtering apparatus while performing physical vapor deposition plasma
  • a pulse power or a DC power source having a frequency range of 50 kHz to 350 kHz is applied to the Zr-Cu-Si based alloy target at a minimum of 6 W / cm 2 per unit area, and nitrogen is generated from the activated reaction gas by discharging the plasma And forming the nanocomposite coating film by binding with metal ions of the alloy target.
  • a method of manufacturing a piston ring coated with a nanocomposite coating film containing nitrogen wherein an inert gas is introduced into the physical vapor deposition apparatus before forming the nanocomposite coating film, And forming a Zr-Cu-Si coating buffer film on the surface of the piston ring by physical vapor deposition of a Cu-Si based alloy target.
  • the step of forming the Zr-Cu-Si coating buffer film may include supplying pulsed power having a frequency range of 50 kHz to 350 kHz to a physical vapor deposition plasma source while supplying the inert gas into the physical vapor deposition apparatus, Is applied to the Zr-Cu-Si-based alloy target at a minimum of 6 W / cm 2 per unit area to discharge the plasma, nitrogen ions generated from the activated reaction gas combine with the metal ions of the alloy target to form the Zr- Si coating buffer film.
  • a method of manufacturing a piston ring coated with a nanocomposite coating film containing nitrogen comprises the steps of: forming the Zr-Cu-Si coating buffer film; A pretreatment step of activating the surface of the piston ring by previously injecting an inert gas into the ion gun plasma source in the physical vapor deposition apparatus and ionizing the inert gas by applying power to release the ion beam, .
  • the power may satisfy a current of 0.3 A to 1.0 A and a voltage of 1000 V to 2000 V.
  • the piston ring implemented by the above-described manufacturing method includes a nitrogen-containing nano composite coating film formed on the surface of the piston ring, wherein the composition of the component other than nitrogen in the nano composite coating film is 80 atom% to 92 atom% ; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  • the nitrogen-containing nanocomposite coating film has a high hardness of 10 GPa to 45 GPa and a high elasticity of 150 GPa to 450 GPa, and has a low friction coefficient of 0.008 to 0.024.
  • Fig. 13 shows the result of the ring-liner scuffing resistance test.
  • the test material on which the coating film was formed was a piston ring, and the test material was a cylinder liner.
  • the lubricant was a mixture of 5W30 and MoDTC.
  • As a comparative example two types of TaC (tetrahedral amorphous carbon) coating films TaC (1) (Comparative Example 7) and TaC (2) (Comparative Example 8) was used. Referring to FIG. 13, it can be seen that the coating film according to Example 5 of the present invention exhibits superior properties as compared with Comparative Examples 7 and 8.
  • Table 3 shows changes in roughness of Example 5, Comparative Example 7, and Comparative Example 8 before and after the liner scuffing resistance test.
  • Table 3 shows changes in roughness of Example 5, Comparative Example 7, and Comparative Example 8 before and after the liner scuffing resistance test.
  • the damage of the liner did not occur even after the test was completed, and the surface of the coating film itself was hardly worn.
  • Comparative Example 7 and Comparative Example 8 the roughness changes remarkably due to the severe wear of the coating film.
  • tribo-reaction layer analysis results of the coating film according to Examples and Comparative Examples of the present invention will be described.
  • a coating corresponding to Example 2 and Comparative Example 4 was formed, and after the reciprocating friction test was completed, the tribo reaction layer formed on the surface was analyzed.
  • Coated tappets were subjected to a friction test for 1 hour in a lubrication condition of 5W30 and MoDCT using a reciprocating high temperature friction tester. The applied load was 75 N, and the reciprocating distance was 10 mm, the speed was 5 Hz (100 mm / sec) and the temperature was 100 ° C.
  • the LFM measurement condition was a measurement of the area of 20 ⁇ 20 ⁇ m at a scan speed of 0.5 Hz and a load of 10 mN, and the measured coefficient of friction was represented by mapping.
  • LFM lateral force microscopy
  • AFM Anamic Force Microscopy
  • the degree of bending of the cantilever in the vertical direction is measured to collect information on the surface of the sample
  • the degree of bending of the cantilever in the horizontal direction is measured.
  • the degree of warping depends on the shape of the surface of the sample, the friction coefficient, the moving direction of the cantilever, and the horizontal spring constant of the cantilever. This makes it possible to analyze the friction characteristics of the sample surface by measuring the cantilever slope difference on the material surface composed of different components.
  • 14A and 14B are AFM optical microscope photographs and friction coefficient mapping diagrams of a tappet having a coating film formed according to the second embodiment of the present invention using LFM.
  • 15A and 15B are AFM optical microscope photographs and friction coefficient mapping diagrams of a tappet having a coating film according to Comparative Example 4 of the present invention, using LFM.
  • the tribo-reaction layer formed by friction has a total thickness of 300 nm to 600 nm, and the organic material layer formed at the outermost portion of the reaction layer has a thickness of 2 nm to 100 nm.
  • FIG. 18 exemplarily shows a cross- TEM observation results are shown.
  • a friction coefficient mapping image measured with LFM is shown in Figs. 14B and 15B.
  • the coating film of Example 2 has an average coefficient of friction of 0.016 and exhibits a low coefficient of friction over the whole area measured. Especially, in the dark region where solid contact occurs during the friction test, low friction coefficient was confirmed, and high friction coefficient was confirmed in the bright region.
  • the average coefficient of friction was 0.032, and a high coefficient of friction was confirmed throughout the entire region, and a low coefficient of friction was confirmed only in the minimum region in the measured region.
  • 16 is a SEM image for AES analysis results of a tappet having a coating film according to Example 2 of the present invention
  • Table 4 is a SEM image of a tappet-reaction layer of a tappet having a coating film formed according to Example 2 of the present invention. layer analysis results.
  • Table 17 is an SEM image for AES analysis results of a tappet having a coating film according to Comparative Example 4 of the present invention
  • Table 5 is a SEM image of a tappet having a coating film formed according to Comparative Example 4 of the present invention. The results are shown.
  • the coating layer compositions C and Si were detected to be high in the dark region.
  • S, P, Mo, Ca, and K are detected more in the bright region than in the dark region.
  • the low-friction region of the very small region confirmed in the friction coefficient mapping result using the dark region and the LFM confirmed in the AES analysis of the Si-DLC is the residual oil .
  • Cu which is well known as a solid lubricant soft metal among the nanocomposite coating films according to the embodiment of the present invention, reacts with the lubricant composition during the friction test to contribute to the formation of the tribo-reactive layer, can confirm.
  • FIG. 19 is a photograph of a digital camera taken on a piston ring having a low friction coating film formed thereon according to an embodiment of the present invention
  • FIG. 20 is an optical photograph of a cross section of a piston ring formed with a buffer layer and a low friction coating film.
  • the 'base material' shown in the figure corresponds to the base material of the piston ring
  • the 'Buffer' layer corresponds to the buffer layer described above
  • the 'ZALC' layer corresponds to the nanocomposite coating film.
  • the compression ring shown in Figs. 19 and 20 is a piston ring mounted on the upper portion of the piston, and serves to maintain the airtightness inside the combustion chamber and to transfer the heat of the piston heated by the combustion to the cylinder block,
  • the oil ring is a piston ring mounted on the lower part of the piston and serves to scrape down the engine oil supplied to the cylinder liner.
  • the base material of the compression ring (top, 2nd) and the oil ring (2 piece, 3 piece (side rail)) is, for example, a cast iron or carbon steel used as a bar in a metal state, Alternatively, the surface can be nitrided and coated with a low-friction coating.
  • the cast iron may include cast graphite cast iron, gray cast iron, spheroidized cast iron, or cast iron
  • the alloy steel may include molybdenum steel, chromium molybdenum steel, chromium nickel steel, or stainless steel.
  • the chromium component is contained in the alloy steel, it can be used by nitriding or non-nitriding.
  • the coating area is coated on the outer circumferential surface (sliding portion) of the piston ring in contact with the cylinder liner or the block bore inner diameter.
  • the coating film may be coated on a portion other than the outer peripheral surface of the piston ring.
  • FIG. 21 is a photograph showing a result of adhesion test for a piston ring having a low friction coating film formed according to an embodiment of the present invention.
  • FIG. 21 showing the result of the torsion test in the adhesion test, it can be confirmed that the piston ring formed with the low-friction coating film according to an embodiment of the present invention is free from boundary separation even when twisted.
  • the adhesive force between the piston ring body and the nitrogen-containing nanocomposite coating film is 35 N or more.
  • FIG. 22 is a graph showing a result of evaluating a friction coefficient of a piston ring formed with a coating film according to an embodiment of the present invention and a comparative example using a friction and wear tester for evaluating a friction coefficient against a piston ring.
  • the piston ring which is a first comparative example of the present invention, has a CrN coating film having a thickness of about 30 ⁇ ⁇ , a hardness of 850 to 1300 Hv, and a highest friction coefficient.
  • the piston ring which is the second comparative example of the present invention, has a Si-DLC coating film having a thickness of about 7 ⁇ , a hardness of about 1600 Hv, and a relatively high coefficient of friction.
  • the piston ring which is an embodiment of the present invention, is formed with a nanocomposite coating film (ZALC) coating film having a thickness of about 10 mu m, has a hardness of 2000 to 2500 Hv, and has the lowest friction coefficient.
  • ZALC nanocomposite coating film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention provides a manufacturing method for a piston ring, the method comprising the steps of: placing a piston ring inside a physical deposition apparatus, introducing inert gas thereinto, and feeding reactive gas containing nitrogen gas (N2) or nitrogen atoms (N), thereby forming a nanocomposite coating film containing nitrogen on a surface of the piston ring through physical deposition of a Zr-Cu-Si based alloy target, wherein the composition of the alloy target is composed of 82-90 at% of Zr, 4-14 at% of Cu, and 4-8 at% of Si.

Description

저마찰 코팅막이 형성된 피스톤 링 및 그 제조방법Patent application title: PISTON RING WITH A LOW FRICTION COATING FILM
본 발명은 피스톤 링 및 그 제조방법에 관한 것으로서, 더욱 상세하게는, 다성분계 금속으로 이루어지며, 저마찰 특성이 우수한 나노 복합 코팅막이 코팅된 피스톤 링 및 그 제조방법에 관한 것이다.The present invention relates to a piston ring and a manufacturing method thereof, and more particularly, to a piston ring coated with a nanocomposite coating film made of a multi-component metal and having excellent low friction characteristics, and a method for manufacturing the same.
피스톤 링은 내연기관의 실린더 내부의 피스톤에 장착되는 부품이다. 예를 들어, 피스톤에 복수의 피스톤 링그루브가 형성되고, 각각의 피스톤 링그루브에 피스톤링이 장착될 수 있다. 가령, 피스톤에는 3개의 피스톤 링이 구비되는데, 상부 2개의 피스톤 링은 압축링(compression ring)으로서 연소실 내부의 기밀을 유지하고 연소에 의해 가열된 피스톤의 열을 실린더 블록으로 전달하는 역할을 하며, 최하부의 피스톤 링은 오일링(oil ring)으로서 실린더 라이너로 공급된 엔진오일을 긁어 내리는 역할을 할 수 있다. The piston ring is a part that is mounted on the piston inside the cylinder of the internal combustion engine. For example, a plurality of piston ring grooves may be formed in the piston, and each piston ring groove may be fitted with a piston ring. For example, the piston is provided with three piston rings, the upper two piston rings serving as a compression ring to maintain the airtightness inside the combustion chamber and to transfer the heat of the piston heated by the combustion to the cylinder block, May serve as an oil ring to scrape off the engine oil supplied to the cylinder liner.
이러한 피스톤 링에서는 우수한 윤활특성을 필요로 하는 경우가 다수 발생한다. 이러한 윤활특성의 개선을 위해서 피스톤 링의 표면에 저마찰 특성을 가지는 박막(또는 후막)을 형성하는 기술이 적용될 수 있다. 예를 들어, 실린더 내벽과 피스톤 링 간의 마찰로 인하여 에너지의 소모가 발생될 수 있다. 이러한 구동부품간의 마찰을 저감시키게 될 경우 자동차 연료의 소모를 감소시킴에 따라 연비 향상의 효과를 가져 올 수 있다. 이러한 저마찰특성을 가지는 박막(또는 후막)은 가혹한 마찰환경에서 견뎌야 하므로 저마찰 특성 이외에도 일정정도 이상의 경도와 피스톤 링에 대한 밀착력을 갖추어야 하며 산화분위기에 대한 높은 저항성이 요구된다. 이러한 저마찰 특성을 가지는 박막(또는 후막)으로 고경도를 가지는 질화물이나 탄화물 계열의 세라믹 재료, 혹은 DLC(diamond like carbon) 등이 피스톤 링 상에 형성될 수 있다. 그러나 종래의 세라믹 계열의 박막은 약 2000Hv 이상의 고경도를 나타내기는 하지만, 피스톤 링을 형성하는 금속소재(주철, 탄소강, 합금강)와 탄성계수의 높은 차이를 나타내므로 내구성 측면에서 불리할 수 있다. In such a piston ring, a large number of cases where excellent lubrication characteristics are required are generated. In order to improve such lubrication characteristics, a technique of forming a thin film (or a thick film) having a low friction property on the surface of the piston ring can be applied. For example, energy consumption may occur due to friction between the cylinder inner wall and the piston ring. When the friction between these driving parts is reduced, the consumption of the automobile fuel is reduced, and the fuel efficiency can be improved. Since the thin film (or the thick film) having such a low friction characteristic must withstand a severe friction environment, it is required to have a hardness of not less than a certain level and adhesion to the piston ring in addition to a low friction property, and a high resistance to an oxidizing atmosphere is required. As the thin film (or the thick film) having such a low friction characteristic, a nitride material having a high hardness, a ceramic material based on a carbide, a diamond like carbon (DLC) or the like can be formed on the piston ring. However, the conventional ceramic-based thin film exhibits a high hardness of about 2000 Hv or more, but exhibits a high elastic modulus difference with the metal material (cast iron, carbon steel, alloy steel) forming the piston ring, which may be disadvantageous in terms of durability.
또한, 자동차용 엔진 등과 같은 중요한 구동부재에 적용하기에는 높은 마찰계수값을 나타낸다. 한편 DLC 막의 경우 경계윤활환경에서 마찰저감효과가 크지 않고, 준안정상으로서 마찰부의 고체간 접촉에 의해 온도상승을 동반하는 경계윤활환경 하에서 마모에 의한 흑연화(graphitization, sp3 →sp2)가 진행되어 막의 심각한 마모가 발생할 수 있고, 윤활유내의 첨가된 마찰조정제(friction modifier), 예를 들어 유기몰리브덴 화합물(MoDTC, Molybdenum dialkyldithiocarbamate) 등의 첨가제와 부합되지 않아 첨가제 효율을 떨어뜨리고, DLC막의 마모 마찰을 촉진하는 문제점이 발생될 수 있다. It also exhibits a high coefficient of friction to be applied to important drive members such as automotive engines and the like. On the other hand, in the case of the DLC film, the friction reduction effect is not large in the boundary lubrication environment, and graphitization (sp 3 → sp 2 ) progresses due to abrasion under the boundary lubrication environment accompanied by the temperature rise due to the solid- This can result in serious wear of the membrane and may not be compatible with additives such as friction modifiers added in the lubricating oil, such as, for example, organic molybdenum compounds (MoDTC, Molybdenum dialkyldithiocarbamate), which reduces the additive efficiency and increases wear resistance of the DLC film There may be a problem in promoting the use of the present invention.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 열적, 기계적 안정성이 우수한 합금으로 이루어진 저마찰 및 고경도 특성의 코팅막이 형성된 피스톤 링의 제공을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.It is an object of the present invention to solve the above-mentioned problems and to provide a piston ring having a coating film of low friction and high hardness, which is made of an alloy having excellent thermal and mechanical stability. However, these problems are exemplary and do not limit the scope of the present invention.
본 발명의 일 관점에 의한 피스톤 링의 제조방법을 제공한다. 상기 피스톤 링의 제조방법은 피스톤 링의 표면에 질소를 함유하는 Zr-Cu-Si계 나노 복합 코팅막을 형성하는 단계;를 포함한다. 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성은 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어질 수 있다. A method of manufacturing a piston ring according to one aspect of the present invention is provided. The manufacturing method of the piston ring includes forming a Zr-Cu-Si nanocomposite coating film containing nitrogen on the surface of the piston ring. In the nanocomposite coating film, the composition of the component other than nitrogen ranges from 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
상기 나노 복합 코팅막을 형성하는 단계;는 상기 피스톤 링을 물리증착 장치 내부에 배치한 후, 불활성가스를 투입하고, 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하여, Zr-Cu-Si계 합금타겟을 물리증착함으로써 질소를 함유하는 나노 복합 코팅막을 상기 피스톤 링의 표면에 형성하는 단계;를 포함하되, 상기 합금타겟의 조성은 Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진 것을 특징으로 한다. Forming a nanocomposite coating film on the surface of the substrate, placing the piston ring in a physical vapor deposition apparatus, introducing an inert gas, introducing a reaction gas containing a nitrogen gas (N 2 ) or a nitrogen element (N) Forming a nanocomposite coating film containing nitrogen on the surface of the piston ring by physical vapor deposition of a Zr-Cu-Si based alloy target, wherein the composition of the alloy target is 82 atom% to 90 atom% of Zr; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
상기 저마찰 코팅막이 형성된 피스톤 링의 제조방법에서, 상기 단계는 상기 불활성가스 및 상기 반응가스를 상기 물리증착 장치 내로 공급하면서 물리증착 플라즈마 소스에 50kHz 내지 350kHz의 주파수 영역을 가지는 펄스 파워 또는 DC 전원을 상기 Zr-Cu-Si계 합금타겟에 단위면적당 최소 6W/cm2 를 인가하여 플라즈마를 방전시켜 활성화된 반응가스로부터 생성된 질소이온이 상기 합금타겟의 금속이온들과 결합하여 상기 나노 복합 코팅막을 형성하는 단계를 포함할 수 있다. In the manufacturing method of the piston ring in which the low friction coating film is formed, the step of supplying the inert gas and the reactive gas into the physical vapor deposition apparatus while supplying pulse power or DC power having a frequency range of 50 kHz to 350 kHz to the physical vapor deposition plasma source At least 6 W / cm 2 per unit area is applied to the Zr-Cu-Si alloy target to discharge the plasma, and nitrogen ions generated from the activated reaction gas are combined with the metal ions of the alloy target to form the nanocomposite coating film .
상기 저마찰 코팅막이 형성된 피스톤 링의 제조방법은, 상기 나노 복합 코팅막을 형성하기 전에, 상기 물리증착 장치 내부로, 불활성가스를 투입하여, 상기 Zr-Cu-Si계 합금타겟을 물리증착하여 Zr-Cu-Si 코팅버퍼막을 상기 피스톤 링의 표면에 형성하는 단계;를 더 포함할 수 있다. Wherein the Zr-Cu-Si-based alloy target is physically vapor-deposited to form a Zr-Cu-Si alloy target by introducing an inert gas into the physical vapor deposition apparatus before forming the nanocomposite coating film, And forming a Cu-Si coating buffer film on the surface of the piston ring.
상기 저마찰 코팅막이 형성된 피스톤 링의 제조방법에서, 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계는 상기 불활성가스를 상기 물리증착 장치 내로 공급하면서 물리증착 플라즈마 소스에 50kHz 내지 350kHz의 주파수 영역을 가지는 펄스 파워 또는 DC 전원을 상기 Zr-Cu-Si계 합금타겟에 단위면적당 최소 6W/cm2 를 인가하여 플라즈마를 방전시켜 활성화된 반응가스로부터 생성된 질소이온이 상기 합금타겟의 금속이온들과 결합하여 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계를 포함할 수 있다. Wherein the forming of the Zr-Cu-Si coating buffer layer comprises supplying the physical vapor deposition plasma source with the inert gas in the frequency range of 50 kHz to 350 kHz while supplying the inert gas into the physical vapor deposition apparatus, A pulse power or a DC power is applied to the Zr-Cu-Si alloy target at a minimum of 6 W / cm 2 per unit area to discharge plasma, nitrogen ions generated from the activated reaction gas are combined with metal ions of the alloy target And forming the Zr-Cu-Si coating buffer film.
상기 저마찰 코팅막이 형성된 피스톤 링의 제조방법은, 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계; 이전에, 상기 물리증착 장치 내에서 이온 건 플라즈마 소스 내에 불활성가스를 투입하고 파워를 인가하여 상기 불활성가스를 이온화시키고 이온빔을 방출시켜 상기 피스톤 링의 표면을 활성화시키는 전처리 단계;를 더 포함할 수 있다. The manufacturing method of the piston ring having the low friction coating layer may include: forming the Zr-Cu-Si coating buffer film; A pretreatment step of activating the surface of the piston ring by previously injecting an inert gas into the ion gun plasma source in the physical vapor deposition apparatus and ionizing the inert gas by applying power to release the ion beam, .
상기 저마찰 코팅막이 형성된 피스톤 링의 제조방법의 상기 전처리 단계에서 상기 파워는 0.3A 내지 1.0A의 전류 및 1000V 내지 2000V의 전압 조건을 만족할 수 있다. In the pretreatment step of the method of manufacturing the piston ring in which the low friction coating film is formed, the power may satisfy a current of 0.3 A to 1.0 A and a voltage of 1000 V to 2000 V.
상기 저마찰 코팅막이 형성된 피스톤 링의 제조방법에서, 상기 질소를 함유하는 나노 복합 코팅막은 상기 질소를 제외하고 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어질 수 있다. In the method of manufacturing the piston ring in which the low friction coating film is formed, the nitrogen-containing nanocomposite coating film contains Zr in an amount of 80 atom% to 92 atom% excluding the nitrogen; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
본 발명의 다른 관점에 따른 저마찰 코팅막이 형성된 피스톤 링을 제공한다. 상기 저마찰 코팅막이 형성된 피스톤 링은 상기 피스톤 링의 표면에 형성된 질소를 함유하는 나노 복합 코팅막을 포함하되, 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성은 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어진다. There is provided a piston ring provided with a low-friction coating film according to another aspect of the present invention. Wherein the piston ring formed with the low friction coating film comprises a nitrogen-containing nanocomposite coating film formed on the surface of the piston ring, wherein the composition of the component other than nitrogen in the nanocomposite coating film is 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
상기 나노 복합 코팅막은 ZrN 또는 Zr2N 기반의 결정구조를 가질 수 있다.The nanocomposite coating film may have a ZrN or Zr 2 N-based crystal structure.
상기 나노 복합 코팅막은 상대재와 접촉하여 마찰될 경우, 표면의 적어도 일 부 영역에 트라이보 반응막이 형성되며, 상기 트라이보 반응막이 형성된 영역에서의 Cu의 조성이 상기 트라이보 반응막이 형성되지 않은 영역에 비해 더 높을 수 있다.Wherein the nanocomposite coating film has a tribo-reaction film formed on at least a part of the surface thereof when the tribo-reaction coating film is rubbed in contact with the counter material, and the composition of Cu in the tribo-reaction film- Lt; / RTI >
상기 트라이보 반응막이 형성된 영역에서의 S 및 P의 조성이 상기 트라이보 반응막이 형성되지 않은 영역에 비해 더 높을 수 있다. The composition of S and P in the region in which the tribo-reaction film is formed may be higher than that in the region in which the tribo-reaction film is not formed.
상기 나노 복합 코팅막은 10GPa 내지 45GPa의 경도와 150GPa 내지 450GPa의 탄성률을 가질 수 있다. 엄격하게는, 상기 나노 복합 코팅막은 23GPa 내지 44GPa의 경도와 265GPa 내지 421GPa의 탄성을 가지면서도 0.008 내지 0.024의 마찰계수를 가질 수 있다.The nanocomposite coating film may have a hardness of 10 GPa to 45 GPa and an elastic modulus of 150 GPa to 450 GPa. Strictly speaking, the nanocomposite coating film may have a coefficient of friction of 0.008 to 0.024 while having a hardness of 23 GPa to 44 GPa and an elasticity of 265 GPa to 421 GPa.
상기 질소를 함유하는 나노 복합 코팅막이 형성되는 상기 피스톤 링의 표면은 실린더 라이너 또는 블록 보어 내경과 접촉되는 피스톤 링의 외주면을 포함할 수 있으며, 상기 피스톤 링은 모재 재질이 금속재질인 압축링 또는 오일링일 수 있다. The surface of the piston ring in which the nitrogen-containing nanocomposite coating film is formed may include an outer circumferential surface of the piston ring in contact with the cylinder liner or the inner surface of the block bore. The piston ring may be made of a metal material, .
본 발명의 또 다른 관점에 따른 저마찰 코팅막이 형성된 피스톤 링을 제공한다. 상기 피스톤 링은 상술한 제조방법에 의하여 구현된 피스톤 링으로서, 상기 피스톤 링의 표면에 형성된 Zr-Cu-Si 코팅버퍼막; 및 상기 Zr-Cu-Si 코팅버퍼막 상에 형성된 질소를 함유하는 나노 복합 코팅막;을 포함하되, 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성은 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어진다. 이 경우, 상기 나노 복합 코팅막은 10GPa 내지 45GPa의 경도와 150GPa 내지 450GPa의 탄성률을 가질 수 있다. 엄격하게는, 상기 나노 복합 코팅막은 23GPa 내지 44GPa의 경도와 265GPa 내지 421GPa의 탄성을 가지면서도 0.008 내지 0.024의 마찰계수를 가질 수 있다. 또한, 상기 질소를 함유하는 나노 복합 코팅막은 표면 조도가 Rz 0.7 ㎛, Rpk 0.06 ㎛ 이하일 수 있다. 나아가, 피스톤 링 모재와 상기 질소를 함유하는 나노 복합 코팅막 사이에서의 접착력은 28 N 이상일 수 있다. There is provided a piston ring provided with a low-friction coating film according to another aspect of the present invention. Wherein the piston ring is a piston ring implemented by the manufacturing method described above, the Zr-Cu-Si coating buffer film formed on the surface of the piston ring; And a nitrogen-containing nanocomposite coating film formed on the Zr-Cu-Si coating buffer film, wherein the composition of the components other than nitrogen in the nanocomposite coating film is 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si. In this case, the nanocomposite coating film may have a hardness of 10 GPa to 45 GPa and an elastic modulus of 150 GPa to 450 GPa. Strictly speaking, the nanocomposite coating film may have a coefficient of friction of 0.008 to 0.024 while having a hardness of 23 GPa to 44 GPa and an elasticity of 265 GPa to 421 GPa. The nitrogen-containing nanocomposite coating film may have a surface roughness Rz of 0.7 mu m and an Rpk of 0.06 mu m or less. Further, the adhesive force between the piston ring base material and the nitrogen containing nanocomposite coating film may be 28 N or more.
또한, 상기 코팅버퍼막의 두께는 0.01㎛ 내지 5㎛이며, 상기 질소를 함유하는 나노 복합 코팅막의 두께는 0.5㎛ 내지 30㎛일 수 있다.In addition, the thickness of the coating buffer layer may be 0.01 탆 to 5 탆, and the thickness of the nanocomposite coating film containing nitrogen may be 0.5 탆 to 30 탆.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 저마찰 특성을 갖는 나노 복합 코팅막이 코팅된 피스톤 링을 제공할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention as described above, a piston ring coated with a nanocomposite coating film having low friction characteristics can be provided. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 의한 저마찰 코팅막이 형성된 피스톤 링의 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of a piston ring with a low-friction coating formed thereon according to an embodiment of the present invention; FIG.
도 2는 본 발명의 실시예에 따른 물리증착용 합금 타겟을 구성하는 합금인 Zr-Cu-Si 합금의 삼원계 상태도이다. 2 is a ternary phase diagram of a Zr-Cu-Si alloy which is an alloy constituting a physical vapor deposition alloy target according to an embodiment of the present invention.
도 3은 실시예 4의 조성에 해당되는 타겟 시편의 미세조직을 SEM 및 BSE로 관찰한 결과이다.Fig. 3 shows the results of SEM and BSE observations of the microstructure of the target specimen corresponding to the composition of Example 4. Fig.
도 4는 실시예5에 해당되는 조성의 타겟 시편을 제조하기 위하여 Zr, Cu 및 Si 분말을 볼-밀에 투입하여 기계적 합금화 후 분말의 상태를 SEM으로 관찰한 결과이다.FIG. 4 shows the result of SEM observation of the state of powders after mechanical alloying by introducing Zr, Cu and Si powders into a ball-mill to prepare a target specimen having a composition according to Example 5. FIG.
도 5의 (a) 내지 (c)는 상기 분말의 조성을 EDS로 분석한 결과이다. 5 (a) to 5 (c) are the results of analyzing the composition of the powder by EDS.
도 6은 기계적 합금화가 완료된 분말의 입도를 PSA(particle size analyzer)로 분석한 결과이다.FIG. 6 is a graph showing the particle size of a powder that has undergone mechanical alloying by using a particle size analyzer (PSA).
도 7은 기계적 합금화가 수행된 분말을 이용하여 스파크 플라즈마 소결법으로 소결한 시편의 미세구조를 SEM 및 BSE 으로 관찰한 결과이다.FIG. 7 shows the results of SEM and BSE microstructures of specimens sintered by spark plasma sintering using powder subjected to mechanical alloying.
도 8는 본 발명의 실시예의 코팅막을 형성하는 물리증착 공정 조건과 XRD 분석 조건 및 결과를 나타낸 도면이다.FIG. 8 is a view showing physical vapor deposition process conditions, XRD analysis conditions, and results of forming a coating film of an embodiment of the present invention.
도 9은 실시예5에 해당되는 코팅막의 XRD 결과이다.9 is an XRD result of the coating film according to Example 5. Fig.
도 10의 (a) 및 (b)는 실시예5에 해당되는 코팅막의 표면 및 단면을 SEM으로 관찰한 결과이다. 10 (a) and 10 (b) show the results of SEM observation of the surface and cross-section of the coating film according to Example 5. Fig.
도 11의 (a)는 실시예5에 해당되는 코팅막의 미세구조를 TEM으로 관찰한 결과이며, 도 11의 (b)는 SEAD(selective area diffraction) 분석을 수행한 결과이다.FIG. 11A shows the result of TEM observation of the microstructure of the coating film according to Example 5. FIG. 11B shows the result of SEAD (selective area diffraction) analysis. FIG.
도 12은 본 발명의 일부 실시예들 및 비교예에 따른 코팅막에 대하여 왕복동 마찰시험의 조건 및 결과를 나타낸 도면이다.12 is a view showing conditions and results of a reciprocating friction test for a coating film according to some embodiments of the present invention and a comparative example.
도 13는 링-라이너 스커핑 저항성 시험 결과이다. 13 shows the ring-liner scuffing resistance test result.
도 14a 및 도 14b는 본 발명의 실시예에 따른 코팅막이 형성된 모재의 AFM 광학현미경 사진 및 LFM을 이용한 마찰계수 매핑도이다. 14A and 14B are AFM optical microscope photographs and friction coefficient mapping diagrams of LFM of a base material on which a coating film is formed according to an embodiment of the present invention.
도 15a 및 도 15b는 본 발명의 비교예에 따른 코팅막이 형성된 모재의 AFM 광학현미경 사진 및 LFM을 이용한 마찰계수 매핑도이다.15A and 15B are AFM optical microscope photographs and friction coefficient mapping diagrams of LFM of a base material on which a coating film according to a comparative example of the present invention is formed.
도 16은 본 발명의 실시예에 따른 코팅막이 형성된 타펫의 AES 분석 결과를 위한 SEM 이미지이다. 16 is an SEM image of an AES analysis result of a tappet having a coating film according to an embodiment of the present invention.
도 17은 본 발명의 비교예에 따른 코팅막이 형성된 타펫의 AES 분석 결과를 위한 SEM 이미지이다.17 is an SEM image for AES analysis of a tappet having a coating film according to a comparative example of the present invention.
도 18에는 예시적으로 트라이보 반응층의 단면을 TEM으로 관찰한 결과가 나타나 있다. Fig. 18 shows the results of TEM observation of the cross-section of the tribo-reaction layer.
도 19는 본 발명의 일 실시예에 따른 저마찰 코팅막이 형성된 피스톤 링을 촬영한 디지털 카메라 촬영사진이다. 19 is a photograph of a digital camera taken with a piston ring having a low friction coating film formed according to an embodiment of the present invention.
도 20은 버퍼층 및 저마찰 코팅막이 형성된 피스톤 링의 단면을 촬영한 광학사진이다.20 is an optical photograph of a section of a piston ring having a buffer layer and a low-friction coating film formed thereon.
도 21은 본 발명의 일 실시예에 따른 저마찰 코팅막이 형성된 피스톤 링에 대한 밀착성 시험 결과를 나타낸 사진이다. FIG. 21 is a photograph showing a result of adhesion test for a piston ring having a low friction coating film formed according to an embodiment of the present invention.
도 22는 본 발명의 실시예 및 비교예에 따른 코팅막이 형성된 피스톤 링에 대한 마찰계수를 평가한 결과를 도시한 그래프이다. 22 is a graph showing a result of evaluating a friction coefficient of a piston ring formed with a coating film according to Examples and Comparative Examples of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 본 명세서에서 언급하는 막은 막의 두께에 따라 박막 또는 후막으로도 명명될 수 있다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, Is provided to fully inform the user. Also, for convenience of explanation, the components may be exaggerated or reduced in size. The membrane referred to herein may also be referred to as a thin film or a thick film depending on the thickness of the film.
본 발명에서, 합금이 소정의 함량 범위를 가지는 특정 원소들로 '이루어진다(consist of)'고 하는 것은, 의도하지 않은 불가피한 불순물을 제외한 상기 특정 원소들 외의 다른 원소는 유의미한 함량 범위를 가지면서 상기 합금의 조성에 참여하지 않는다는 것을 의미한다. In the present invention, the term " consist of " an element having a predetermined content range means that an element other than the specific elements except for unavoidable inevitable impurities has a significant content range, Of the population.
도 1은 본 발명의 일 실시예에 의한 저마찰 코팅막이 형성된 피스톤 링의 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of a piston ring with a low-friction coating formed thereon according to an embodiment of the present invention; FIG.
도 1을 참조하면, 저마찰 코팅막이 형성된 피스톤 링(10)은 피스톤 링 및 피스톤 링의 표면의 적어도 일부(예를 들어, 습동면) 상에 형성된 저마찰 코팅막을 구비한다. 상기 저마찰 코팅막은 특정 조성 범위를 가지는 Zr-Cu-Si계 합금으로 이루어진 물리증착 타겟을 이용하여 물리증착 공정으로 구현된 물질막이다. 상기 물리증착 타겟은 저마찰 코팅막을 형성하기 위하여 Zr-Cu-Si계 합금으로 이루어진 물리증착 타겟으로서, Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진다. Referring to Fig. 1, a piston ring 10 having a low friction coating film formed thereon has a low friction coating film formed on at least a part of the surfaces of the piston ring and the piston ring (e.g., sliding surfaces). The low friction coating film is a material film realized in a physical vapor deposition process using a physical vapor deposition target made of a Zr-Cu-Si alloy having a specific composition range. The physical vapor deposition target is a physical vapor deposition target made of a Zr-Cu-Si-based alloy for forming a low-friction coating film, and has a Zr of 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
물리증착(physical vapor deposition)은 고상의 증착원을 용용시켜 기화시키거나 스퍼터링(sputtering)시켜 모재의 표면에 코팅을 하는 기술을 말하며, 예를 들어 스퍼터링법(sputtering), 증발벌, 아크증착법(arc deposition), 이온빔 증착법(ion beam deposition) 등을 포함할 수 있다.Physical vapor deposition refers to a technique of coating a surface of a base material by vaporizing or sputtering a solid phase evaporation source by using a sputtering method or an evaporation method, deposition, ion beam deposition, and the like.
이하, 본 발명의 이해를 돕기 위해서 다양한 실시예들을 제공한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실시예들에 의해서 한정되는 것은 아니다.Hereinafter, various embodiments are provided to facilitate understanding of the present invention. It should be understood, however, that the following examples are for the purpose of promoting understanding of the present invention, but the present invention is not limited by the following examples.
도 2는 본 발명의 실시예에 따른 물리증착용 합금 타겟을 구성하는 합금인 Zr-Cu-Si 합금의 삼원계 상태도이고, 하기 표 1은 본 발명의 실시예들에 의한 물리증착용 합금 타겟을 구성하는 합금의 조성을 나타낸다.FIG. 2 is a ternary phase diagram of a Zr-Cu-Si alloy which is an alloy constituting a physical vapor deposition alloy target according to an embodiment of the present invention, and Table 1 below shows a physical vapor deposition alloy target according to embodiments of the present invention. The composition of the constituent alloy is shown.
Figure PCTKR2018010148-appb-T000001
Figure PCTKR2018010148-appb-T000001
도 2 및 표 1을 참조하면, 본 발명의 일 관점에 따른 물리증착 타겟용 합금은 3 이상의 금속원소로 이루어지는 바, 구체적으로, 구리(Cu)가 4.0원자% 내지 14.0원자%, 규소(Si)가 4.0원자% 내지 8.0원자% 및 잔부가 지르코늄(Zr)으로 이루어진다. 즉, 물리증착 타겟용 Zr-Cu-Si계 합금은 Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진다.2 and Table 1, an alloy for a physical vapor deposition target according to one aspect of the present invention is made of at least 3 metal elements, and more specifically 4.0 atom% to 14.0 atom% of copper (Cu), silicon (Si) Of 4.0 atom% to 8.0 atom% and the balance of zirconium (Zr). That is, the Zr-Cu-Si-based alloy for the physical vapor deposition target has a Zr content of 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
본 발명의 Zr-Cu-Si계 합금에서 상술한 조성범위를 만족하는 경우 이러한 합금으로 이루어진 물리증착 타겟을 이용하여 구현한 물리증착 물질막은 23 GPa 이상의 높은 경도와 265 GPa 이상의 높은 탄성을 동시에 구현하면서도 0.024 보다 낮은 마찰계수를 구현할 수 있다. 이에 반하여, 예를 들어, Zr의 조성이 82원자% 보다 낮은 경우 합금의 내산화성이 상대적으로 낮아지며, Cu의 조성이 16원자%를 초과하는 경우, 더욱 엄격하게는, Cu의 조성이 14원자%를 초과하는 경우 물리증착 합금막의 마찰계수가 현저하게 높아지는 문제점이 발생하며, Si의 조성이 26원자%를 초과하는 경우, 더욱 엄격하게는, Si의 조성이 8원자%를 초과하는 경우 Si은 질화물에 고용되지 않고 과다하게 석출되어 물리증착 합금막의 경도와 탄성이 낮아지는 문제점이 발생한다. When the Zr-Cu-Si alloy of the present invention satisfies the above-mentioned composition range, the physical vapor deposition material film realized by using the physical vapor deposition target made of such an alloy can realize a high hardness of 23 GPa or more and a high elasticity of 265 GPa or more A friction coefficient lower than 0.024 can be realized. On the contrary, when the composition of Zr is lower than 82 atomic%, for example, the oxidation resistance of the alloy becomes relatively low, and when the composition of Cu exceeds 16 atomic%, the composition of Cu becomes 14 atomic% , The friction coefficient of the physical vapor deposition alloy film becomes remarkably high. When the composition of Si is more than 26 at%, more strictly, when the composition of Si exceeds 8 at% And there is a problem that hardness and elasticity of the physical vapor deposition alloy film are lowered.
표 1에 나타난 본 발명의 실시예들은 상술한 조성 범위를 만족한다. 예를 들어, 실시예 1에 따른 합금타겟은 Zr82Cu13.5Si4.5의 화학조성(원자%)을 가지며, 실시예 2에 따른 합금타겟은 Zr84.1Cu10.4Si5.5의 화학조성(원자%)을 가지며, 실시예 3에 따른 합금타겟은 Zr86.3Cu7.2Si6.5의 화학조성(원자%)을 가지고, 실시예 4에 따른 합금타겟은 Zr88.4Cu4.1Si7.5의 화학조성(원자%)을 가지며, 실시예 5에 따른 합금타겟은 Zr89.6Cu3.3Si7.1 의 화학조성(원자%)을 가진다. The embodiments of the present invention shown in Table 1 satisfy the composition ranges described above. For example, the alloy target according to Example 1 has a chemical composition (atomic%) of Zr 82 Cu 13.5 Si 4.5 , and the alloy target according to Example 2 has a chemical composition (atomic%) of Zr 84.1 Cu 10.4 Si 5.5 , The alloy target according to Example 3 had a chemical composition (atomic%) of Zr 86.3 Cu 7.2 Si 6.5 , the alloy target according to Example 4 had a chemical composition (atomic%) of Zr 88.4 Cu 4.1 Si 7.5 , The alloy target according to Example 5 has a chemical composition (atomic%) of Zr 89.6 Cu 3.3 Si 7.1 .
일 실시예로서, 상기 물리증착 타겟을 구성하는 상기 Zr-Cu-Si계 합금은, 용탕을 주조하여 구현한, 주조 합금일 수 있다. 예를 들어, 상기 합금은 플라즈마 아크 멜팅법을 이용하여 제조한 용탕을 주조하여 잉곳을 제조한 후 이를 절단 가공하여 타겟을 제조할 수 있다. In one embodiment, the Zr-Cu-Si-based alloy constituting the physical vapor deposition target may be a cast alloy realized by casting a molten metal. For example, the alloy may be produced by casting a molten metal produced by the plasma arc melting method, and then cutting the ingot to produce a target.
다른 실시예로서, 상기 물리증착 타겟을 구성하는 상기 Zr-Cu-Si계 합금은, 분말야금법에 의해 제조된 소결합금일 수 있다. 예를 들어, Zr, Cu 및 Si 분말을 볼-밀 등을 이용하여 기계적 합금화한 후 기계적 합금화된 분말을 소결하여 제조할 수 있다. 상기 소결은, 예를 들어, 열간 소결, 스파크 플라즈마 소결(spark plasma sintering), 핫 프레스(hot press), 등온등압(hot isostatic press) 소결 등을 포함할 수 있다.In another embodiment, the Zr-Cu-Si-based alloy constituting the physical vapor deposition target may be a small-sized gold alloy produced by a powder metallurgy method. For example, Zr, Cu, and Si powders may be mechanically alloyed using a ball-mill or the like, followed by sintering the mechanically alloyed powders. The sintering may include, for example, hot sintering, spark plasma sintering, hot pressing, hot isostatic press sintering, and the like.
한편, 다른 예로서, 상기 물리증착 타겟을 구성하는 상기 Zr-Cu-Si계 합금은 Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진 비정질 합금 또는 나노결정질 합금을 복수개로 준비하는 단계; 상기 복수개의 비정질 합금 또는 나노결정질 합금을 상기 비정질 합금 또는 나노결정질 합금의 유리천이온도(Tg) 이상 결정화 개시온도(Tx) 이하의 온도범위에서 소정의 시간 동안 유지하면서 가압함으로써 제 1 차 수축하는 단계; 및 상기 복수개의 비정질 합금 또는 나노결정질 합금을 상기 비정질 합금 또는 나노결정질 합금의 용융온도(Tm)의 0.7 배 내지 0.9 배의 온도범위에서 소정의 시간 동안 유지하면서 가압함으로써 제 2 차 수축하는 단계;를 수행함으로써 구현된, 결정질 합금일 수 있다. On the other hand, as another example, the Zr-Cu-Si-based alloy constituting the physical vapor deposition target has a Zr content of 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si; a plurality of amorphous alloys or nanocrystalline alloys comprising: The first shrinkage of the amorphous alloy or the nanocrystalline alloy by pressing the amorphous alloy or the nanocrystalline alloy while maintaining the amorphous alloy or the nanocrystalline alloy at a temperature not higher than the glass transition temperature (Tg) of the amorphous alloy or the nanocrystalline alloy at the crystallization start temperature (Tx) ; And secondarily shrinking the plurality of amorphous alloys or nanocrystalline alloys by pressurizing the amorphous alloy or the nanocrystalline alloy while maintaining the temperature within a range of 0.7 to 0.9 times the melting temperature (Tm) of the amorphous alloy or nano-crystalline alloy for a predetermined period of time; The present invention may be a crystalline alloy, which is implemented by performing the above process.
본 발명의 또 다른 관점에 의한 나노 복합 코팅막은 물리증착 장치 내부로, 불활성가스를 투입하고, 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하여, 상술한 Zr-Cu-Si계 합금타겟을 물리증착하여 구현할 수 있다. The nanocomposite coating film according to another aspect of the present invention can be produced by injecting inert gas into a physical vapor deposition apparatus and introducing a reaction gas containing nitrogen gas (N 2 ) or nitrogen element (N) -Si-based alloy target by physical vapor deposition.
상기 나노 복합 코팅막은 질소를 함유하는 나노 복합 코팅막이며, 질소를 함유하는 나노구조막, 나노질화막 또는 나노구조 복합막 등으로 이해될 수 있다. The nanocomposite coating film is a nanocomposite coating film containing nitrogen, and can be understood as a nano-structured film containing nitrogen, a nano-nitride film, or a nano-structured composite film.
예를 들어, 물리증착 공정에서 반응성 가스로서, 질소가스(N2) 또는 질소(N)를 포함하는 가스, 예를 들어, 암모니아(NH3)와 같은 가스를 물리증착 챔버 내부로 도입하면서 물리증착을 수행하는 경우, 합금 내에서 질소와 반응성인 높은 지르코늄(Zr)이 질소와 반응하여 지르코늄 질화물을 형성할 수 있다. 그 외의 원소들은 지르코늄 질화물에 고용되거나 금속상으로 존재할 수도 있다.For example, in a physical vapor deposition process, a gas including nitrogen gas (N 2 ) or nitrogen (N), for example, ammonia (NH 3 ) as a reactive gas is introduced into a physical vapor deposition chamber, , High zirconium (Zr) reactive with nitrogen in the alloy can react with nitrogen to form zirconium nitride. Other elements may be solubilized in the zirconium nitride or may be present in the metal phase.
상기 박막은 금속의 질화물상 또는 하나 이상의 금속상이 서로 혼합되어 있는 구조를 가지며, 상기 금속의 질화물상은 질화물의 구성원소로서, 예를 들어, 지르코늄을 포함할 수 있다. 이 때, 상기 질소를 함유하는 나노 복합 코팅막은 지르코늄 질화물의 결정구조를 나타내며, 다른 금속원소들은 질화물의 형태로 지르코늄 질화물에 고용될 수 있다. 이때, 지르코늄 질화물은 물리증착 시 질소를 포함하는 반응성 가스의 조건에 따라 ZrN 또는 Zr2N 중 어느 하나 이상이 포함될 수 있다. The thin film has a structure in which a nitride phase of a metal or one or more metal phases are mixed with each other, and the nitride phase of the metal may include, for example, zirconium as a constituent element of the nitride. At this time, the nitrogen-containing nanocomposite coating film shows a crystal structure of zirconium nitride, and other metal elements can be dissolved in zirconium nitride in the form of nitride. At this time, the zirconium nitride may contain any one or more of Zr or ZrN 2 N in accordance with the conditions of the reactive gas containing nitrogen during physical vapor deposition.
질소를 함유하는 나노 복합 코팅막에서 금속의 질화물상은 수 내지 수십 나노미터 크기 수준의 결정립으로 이루어진 나노 결정질 구조를 갖는다. 이에 비해 금속상은 이러한 나노 결정립계에 미량 분포될 수 있다. 예를 들어, 금속상은 수개의 원자 단위로 분포하며 특별한 결정구조를 이루지 못한 형태로 존재할 수 있다. 다만 이러한 금속상은 특정 영역에 집중적으로 분포하는 것이 아니라 막 전체에 균일하게 분포하게 된다.In the nanocomposite coating film containing nitrogen, the nitride phase of the metal has a nanocrystalline structure consisting of crystal grains of several to several tens of nanometers in size. On the other hand, the metal phase can be distributed in a trace amount to such a nanocrystalline system. For example, the metal phase is distributed in several atomic units and may exist in a form that does not form a special crystal structure. However, such a metal phase is not distributed intensively in a specific region but distributed uniformly throughout the film.
질소를 함유하는 나노 복합 코팅막이 도포된 모재의 특성을 더욱 향상시키기 위해서 질소를 함유하는 나노 복합 코팅막의 하부, 즉 모재(피스톤 링)와 질소를 함유하는 나노 복합 코팅막의 사이에는 버퍼층(buffer layer)이 더 형성될 수도 있다. 이때 버퍼층은, 예를 들어 질소를 함유하는 나노 복합 코팅막의 모재에 대한 접착력을 더욱 향상시키기 위한 접착층(adhesion layer)으로서 기능할 수 있다. 다른 예로서 모재와 질소를 함유하는 나노 복합 코팅막 사이의 응력을 이완시키기 위한 응력이완층이 될 수 있으며, 또 다른 예로서 내식성을 향상시키기 위한 내식층이 될 수도 있다. 그러나 버퍼층은 이에 한정되지 않으며 박막(또는 후막)의 구조적인 측면에서 질소를 함유하는 나노 복합 코팅막과 모재 사이에 개재될 수 있는 층을 모두 지칭할 수도 있다.In order to further improve the characteristics of the base material coated with the nitrogen-containing nanocomposite coating film, a buffer layer is formed between the bottom of the nanocomposite coating film containing nitrogen, that is, between the base material (piston ring) and the nitrogen- May be formed. At this time, the buffer layer may function as an adhesion layer for further improving the adhesion of the nanocomposite coating film containing nitrogen, for example, to the base material. As another example, the stress relaxation layer may be a stress relaxation layer for relieving the stress between the base material and the nanocomposite coating film containing nitrogen, and as another example, it may be a corrosion resistant layer for improving corrosion resistance. However, the buffer layer is not limited thereto, and may refer to both a nanocomposite coating film containing nitrogen in the structural aspect of the thin film (or thick film) and a layer that can be interposed between the parent material.
이러한 버퍼층으로는 상기 물리증착 장치 내부로, 불활성가스(예를 들어, 아르곤 가스)를 투입하고, 상술한 Zr-Cu-Si계 합금타겟을 물리증착하여 구현한 Zr-Cu-Si 코팅버퍼층이 이용될 수 있다. 구체적으로 물리증착 챔버 내에 합금타겟을 장착한 후 물리증착으로 모재를 코팅하는 공정에서, 상기 물리증착 챔버 내부로 불활성가스를 도입하면서 비반응성 물리증착 공정으로 모재의 상부에 버퍼층을 소정의 두께만큼 형성한 후 상기 물리증착 챔버 내부로 질소가스를 도입하면서 물리증착을 수행하여 질소를 함유하는 나노 복합 코팅막을 형성할 수 있다. 이 경우 동일한 합금타겟을 이용하여 버퍼층 및 질소를 포함한 나노구조막을 인-시츄(in-situ)로 형성할 수 있다. 이 경우, 나노 복합 코팅막은 질소를 제외하고는 버퍼층과 동일한 원소로 이루어질 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니다.As such a buffer layer, a Zr-Cu-Si coating buffer layer implemented by introducing an inert gas (for example, argon gas) into the physical vapor deposition apparatus and physical vapor deposition of the Zr-Cu-Si based alloy target described above is used . Specifically, in the step of coating the base material with physical vapor deposition after the alloy target is mounted in the physical vapor deposition chamber, a buffer layer is formed on the base material by a non-reactive physical vapor deposition process with a predetermined thickness while introducing an inert gas into the physical vapor deposition chamber Then, a nitrogen-containing nanocomposite coating film can be formed by performing physical vapor deposition while introducing nitrogen gas into the physical vapor deposition chamber. In this case, the buffer layer and the nanostructured film containing nitrogen can be formed in-situ by using the same alloy target. In this case, the nanocomposite coating film may be made of the same element as the buffer layer except nitrogen. However, the present invention is not limited thereto.
상기 버퍼층 및 질소를 함유하는 나노 복합 코팅막의 계면은 질소 또는 상기 버퍼층을 구성하는 원소들이 경사조성화된 경계층을 포함할 수 있다. 즉, 계면에서 조성이 급격하게 변화되지 않고 점진적으로 변화되어 조성이 경사를 가지는 경계층이 형성될 수 있다. The interface of the buffer layer and the nitrogen-containing nanocomposite coating film may include nitrogen or a boundary layer in which elements constituting the buffer layer are inclined and constituted. That is, the boundary layer may be formed in which the composition changes gradually without changing the composition abruptly at the interface, and the composition has a slope.
상술한 버퍼층의 두께는, 예를 들어, 0.01㎛ 내지 5㎛일 수 있으며, 상기 질소를 함유하는 나노 복합 코팅막의 두께는, 예를 들어, 0.5㎛ 내지 30㎛일 수 있다. The thickness of the buffer layer described above may be, for example, from 0.01 탆 to 5 탆, and the thickness of the nitrogen-containing nanocomposite coating film may be, for example, 0.5 탆 to 30 탆.
이하에서는, 본 발명의 실시예들에 따른 질소를 함유하는 나노 복합 코팅막이 종래에 비해 월등하게 개선된 마찰특성을 나타내면서도 높은 경도와 밀착성을 가짐을 설명한다. Hereinafter, it will be explained that the nanocomposite coating film containing nitrogen according to the embodiments of the present invention exhibits greatly improved friction characteristics, and has high hardness and adhesion.
Figure PCTKR2018010148-appb-T000002
Figure PCTKR2018010148-appb-T000002
표 2는 본 발명의 실시예1 내지 실시예5 및 비교예1 내지 비교예5에 따른 스퍼터링 타겟의 조성과 스퍼터링 공정 조건에 의하여 구현된 나노 복합 코팅막의 조성, 두께, 조도, 경도, 탄성, 마찰계수를 나타낸 것이다. 기판으로는 침탄된 SCM415를 사용하였다. Table 2 shows the composition, thickness, roughness, hardness, elasticity, and friction of the nanocomposite coating film implemented by the composition of the sputtering target and the sputtering process conditions according to Examples 1 to 5 and Comparative Examples 1 to 5 of the present invention Respectively. As the substrate, carburized SCM415 was used.
실시예1 내지 실시예4에 해당되는 스퍼터링 타겟은 플라즈마 아크 멜팅법으로 제조한 주조 합금이며, 실시예5에 해당되는 스퍼터링 타겟은 스파크 플라즈마 소결법으로 제조한 소결 합금이다. The sputtering target according to Examples 1 to 4 is a cast alloy produced by the plasma arc melting method, and the sputtering target according to Example 5 is a sintered alloy produced by the spark plasma sintering method.
실시예1 내지 실시예5에 의하면, Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진 스퍼터링 타겟을 스퍼터링 장치 내에 장착하고, 스퍼터링 장치 내부로, 불활성가스를 투입하고, 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하여, Zr-Cu-Si계 합금타겟을 물리증착하여 질소를 함유하는 나노 복합 코팅막을 형성하는 경우, 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성은 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어짐을 확인할 수 있다. According to Examples 1 to 5, Zr is 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And nitrogen (N 2 ) or a nitrogen element (N) in a sputtering apparatus, wherein the sputtering target is a sputtering target having a Si content of 4 to 8 atom% And the Zr-Cu-Si based alloy target is physically vapor deposited to form a nanocomposite coating film containing nitrogen, the composition of the nanocomposite coating film excluding nitrogen is 80 atom% to 92 atom% of Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
이에 반하여, 비교예1 내지 비교예2는 Zr-Cu-Si계 합금타겟을 사용하여 나노 복합 코팅막을 형성하였지만 합금타겟이 상술한 조성범위를 만족하지 못한 경우이며, 비교예3은 Zr-Cu-Si계 합금타겟이 아니라 Zr-Si 2원계 합금타겟을 사용하여 코팅막을 형성한 경우에 해당하며, 비교예4는 물리증착 공정을 사용하지 않고 종래기술인 Si-DLC 코팅막을 적용한 경우에 해당하며, 비교예5는 코팅막을 별도로 적용하지 않은 경우에 해당한다. On the contrary, Comparative Example 1 to Comparative Example 2 formed a nanocomposite coating film using a Zr-Cu-Si based alloy target, but the alloy target did not satisfy the above-mentioned composition range, Si-based alloy target instead of the Si-based alloy target, Comparative Example 4 corresponds to the case where the Si-DLC coating film of the prior art is applied without using the physical vapor deposition process, and Comparative Example 4 corresponds to the case of using the Zr- Example 5 corresponds to a case in which a coating film is not separately applied.
표 2를 살펴보면, 본 발명의 실시예들에 따른 나노 복합 코팅막은 23GPa 내지 44GPa의 높은 경도와 265GPa 내지 421GPa의 높은 탄성을 가지면서도 0.008 내지 0.024의 낮은 마찰계수를 가짐을 확인할 수 있다. 이에 반하여, 본 발명의 비교예에 따르면, 경도 및 탄성은 높지만 마찰계수가 상대적으로 높거나(비교예1, 비교예2), 마찰계수는 낮지만 경도나 탄성이 상대적으로 낮거나(비교예3), 경도와 탄성으 낮고 마찰계수는 높아(비교예4, 비교예5) 저마찰용 코팅막에 적합하지 않음을 확인할 수 있다.Table 2 shows that the nanocomposite coating film according to the embodiments of the present invention has a high hardness of 23 GPa to 44 GPa and a high elasticity of 265 GPa to 421 GPa and a low coefficient of friction of 0.008 to 0.024. On the other hand, according to the comparative example of the present invention, the hardness and elasticity are high but the friction coefficient is relatively high (Comparative Example 1 and Comparative Example 2), the friction coefficient is low but the hardness and elasticity are relatively low ), Low hardness and elasticity, and high coefficient of friction (Comparative Example 4 and Comparative Example 5), indicating that it is not suitable for a low friction coating film.
도 3은 실시예4의 조성에 해당되는 타겟 시편의 미세조직을 SEM 및 BSE로 관찰한 결과이다. 상기 타겟 시편의 상대밀도는 약 99%으로 매우 높은 값을 나타내었다. 한편, 도 3에 나타낸 바와 같이 주조된 시편은 덴드라이트 구조(dendrite structure)를 나타내었다. 각 시편의 조성균일도를 조사하기 하기 위하여 EDS 분석을 진행하였으며, 전체적으로 균일한 조성분포를 가지는 것을 확인하였다.Fig. 3 shows the results of SEM and BSE observations of the microstructure of the target specimen corresponding to the composition of Example 4. Fig. The relative density of the target specimen was as high as about 99%. On the other hand, as shown in Fig. 3, the cast specimen showed a dendrite structure. In order to investigate the uniformity of the composition of each specimen, EDS analysis was carried out and it was confirmed that the composition distribution was uniform throughout.
도 4은 실시예5에 해당되는 조성의 타겟 시편을 제조하기 위하여 Zr, Cu 및 Si 분말을 볼-밀에 투입하여 기계적 합금화 후 분말의 상태를 SEM으로 관찰한 결과이며, 도 5의 (a) 내지 (c)는 상기 분말의 조성을 EDS로 분석한 결과이다. 도 4 및 도 5를 참조하면, 투입된 Zr, Cu 및 Si 분말은 기계적 합금화에 의해 균일한 분포를 갖도록 합금화된 것을 확인할 수 있다. 도 6는 기계적 합금화가 완료된 분말의 입도를 PSA(particle size analyzer)로 분석한 결과로서, 전체적으로 균일한 입도를 가짐을 확인할 수 있다. FIG. 4 shows the result of SEM observation of the state of the powder after mechanical alloying by injecting Zr, Cu and Si powder into a ball-mill to prepare a target specimen having a composition according to Example 5. FIG. To (c) are the results of analyzing the composition of the powder by EDS. Referring to FIGS. 4 and 5, it is confirmed that the Zr, Cu and Si powders are alloyed so as to have a uniform distribution by mechanical alloying. FIG. 6 shows that the particle size of the powder that has undergone mechanical alloying is analyzed by a particle size analyzer (PSA), and that it has a uniform particle size as a whole.
도 7은 기계적 합금화가 수행된 분말을 이용하여 스파크 플라즈마 소결법으로 소결한 시편의 미세구조를 SEM으로 관찰한 결과이다. 전체적으로 매우 미세한 결정립으로 구성된 균일한 미세조직을 나타내며, EDS 분석을 통해 전체적으로 균일한 조성분포를 가짐을 확인할 수 있었다.FIG. 7 shows the result of SEM observation of the microstructure of a specimen sintered by spark plasma sintering using powder subjected to mechanical alloying. It shows uniform microstructure composed of very fine grains as a whole, and it can be confirmed that EDS analysis has a uniform composition distribution as a whole.
도 8은 본 발명의 실시예2에 해당되는 코팅막을 형성하는 스퍼터링 공정 조건과 XRD 분석 조건 및 결과를 나타낸 도면이며 도 9는 실시예5에 해당되는 코팅막의 XRD 결과이다. 도 8 및 도 9을 참조하면, 제조된 코팅막은 ZrN를 기반으로 하는 나노복합 결정구조를 가지고 있음이 확인되며, 이로부터 상기 코팅막은 ZrN 결정구조를 기본 구조로 하되, Cu 및 Si이 상기 ZrN 결정구조에 포함되는 나노복합 결정구조를 가짐을 알 수 있다.FIG. 8 is a view showing sputtering process conditions and XRD analysis conditions and results for forming a coating film according to Example 2 of the present invention, and FIG. 9 is an XRD result of a coating film according to Example 5. 8 and 9, it is confirmed that the coating film has a ZrN-based nanocomposite crystal structure, wherein the coating film has a ZrN crystal structure as a basic structure, wherein Cu and Si form a ZrN crystal Structure having a nanocomposite crystal structure.
도 10의 (a) 및 (b)에는 실시예5에 해당되는 코팅막의 표면 및 단면을 SEM으로 관찰한 결과가 나타나 있다. 도 10의 (a) 및 (b)를 참조하면, 제조된 코팅막은 매우 매끄러운 표면을 나타내며, 주상조직(columnar structure)를 가짐을 알 수 있다. 10 (a) and 10 (b) show the results of SEM observation of the surface and cross-section of the coating film according to Example 5. FIG. 10 (a) and 10 (b), it can be seen that the produced coating film has a very smooth surface and has a columnar structure.
도 11의 (a)는 실시예5에 해당되는 코팅막의 미세구조를 TEM으로 관찰한 결과이며, 도 11의 (b)는 SEAD(selective area diffraction) 분석을 수행한 결과이다. 도 11의 (a)를 참조하면, 결정립의 크기는 5 내지 20nm 범위의 매우 미세한 결정립 크기를 가짐을 알 수 있다. 또한 도 11의 (b)를 참조하면, 나노 복합 코팅에서 확인되는 링 패턴(ring-pattern)이 나타남을 알 수 있다. FIG. 11A shows the result of TEM observation of the microstructure of the coating film according to Example 5. FIG. 11B shows the result of SEAD (selective area diffraction) analysis. FIG. Referring to FIG. 11 (a), it can be seen that the grain size has a very fine grain size in the range of 5 to 20 nm. Referring to FIG. 11 (b), it can be seen that a ring-pattern is observed in the nanocomposite coating.
도 12은 본 발명의 일부 실시예들 및 비교예에 따른 코팅막에 대하여 왕복동 마찰시험의 조건 및 결과를 나타낸 도면이다. 12 is a view showing conditions and results of a reciprocating friction test for a coating film according to some embodiments of the present invention and a comparative example.
도 12을 참조하면, 본 발명의 실시예들에 의한 질소를 함유하는 나노 복합 코팅막의 마찰계수는 DLC 코팅막에 비해 현저히 낮음을 확인하였다. 따라서, 모재 상에 DLC가 형성된 경우보다 모재 상에 본 발명의 실시예들에 따른 질소를 함유하는 나노 복합 코팅막이 형성된 경우 저마찰 특성이 더 우수함을 확인할 수 있다. Referring to FIG. 12, the coefficient of friction of the nitrogen-containing nanocomposite coating film according to the embodiments of the present invention is significantly lower than that of the DLC coating film. Therefore, it can be confirmed that the nitrogen-containing nanocomposite coating film according to the embodiments of the present invention is formed on the base material rather than the case where the DLC is formed on the base material, and thus the low friction characteristic is better.
상술한 본 발명의 기술적 사상에 따른 질소를 함유하는 나노 복합 코팅막은 피스톤 부품인 피스톤 링의 표면에 형성되는 코팅막으로 적용될 수 있다. 이하에서, 이러한 적용예를 설명한다. The nanocomposite coating film containing nitrogen according to the technical idea of the present invention can be applied as a coating film formed on the surface of a piston ring which is a piston part. Hereinafter, such an application example will be described.
본 발명의 기술적 사상에 따른 피스톤 링의 제조방법은, 먼저, 주철, 탄소강 또는 합금강 재질의 피스톤 링을 물리증착 장치 내부에 배치한다. 물리증착 장치에 배치하기 전에 상기 피스톤 링은 경우에 따라서는 질화처리되거나, CrN 또는 TiN 표면처리될 수도 있다. 피스톤 링을 물리증착 장치 내부에 배치한 후에, 불활성가스를 투입하고, 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하여, Zr-Cu-Si계 합금타겟을 물리증착함으로써 질소를 함유하는 나노 복합 코팅막을 상기 피스톤 링의 표면에 형성하는 단계;를 포함한다. 이 경우, 상기 합금타겟의 조성은 Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진다. In the manufacturing method of the piston ring according to the technical idea of the present invention, first, a piston ring made of cast iron, carbon steel or alloy steel is disposed inside the physical vapor deposition apparatus. Before being placed in the physical vapor deposition apparatus, the piston ring may optionally be nitrided or CrN or TiN surface treated. After the piston ring is placed inside the physical vapor deposition apparatus, inert gas is introduced and a reaction gas containing a nitrogen gas (N 2 ) or a nitrogen element (N) is introduced to physically deposit a Zr-Cu- Thereby forming a nanocomposite coating film containing nitrogen on the surface of the piston ring. In this case, the composition of the alloy target is such that Zr is 82 atom% to 90 atom%; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
물리증착법 중 스퍼터링으로 증착하는 경우, 상기 질소를 함유하는 나노 복합 코팅막을 상기 피스톤 핀, 피스톤 링 또는 타펫의 표면에 형성하는 단계는 상기 불활성가스 및 상기 반응가스를 상기 스퍼터링 장치 내로 공급하면서 물리증착 플라즈마 소스에 50kHz 내지 350kHz의 주파수 영역을 가지는 펄스 파워 또는 DC 전원을 상기 Zr-Cu-Si계 합금타겟에 단위면적당 최소 6W/cm2를 인가하여 플라즈마를 방전시켜 활성화된 반응가스로부터 생성된 질소이온이 상기 합금타겟의 금속이온들과 결합하여 상기 나노 복합 코팅막을 형성하는 단계를 포함할 수 있다. The step of forming the nano-composite coating film containing nitrogen on the surface of the piston pin, the piston ring, or the tappet may include supplying the inert gas and the reactive gas into the sputtering apparatus while performing physical vapor deposition plasma A pulse power or a DC power source having a frequency range of 50 kHz to 350 kHz is applied to the Zr-Cu-Si based alloy target at a minimum of 6 W / cm 2 per unit area, and nitrogen is generated from the activated reaction gas by discharging the plasma And forming the nanocomposite coating film by binding with metal ions of the alloy target.
한편, 본 발명의 기술적 사상에 따른 질소를 함유하는 나노 복합 코팅막이 코팅된 피스톤 링의 제조방법은 상기 나노 복합 코팅막을 형성하기 전에, 상기 물리증착 장치 내부로, 불활성가스를 투입하여, 상기 Zr-Cu-Si계 합금타겟을 물리증착하여 Zr-Cu-Si 코팅버퍼막을 상기 피스톤 링의 표면에 형성하는 단계;를 더 포함할 수 있다. According to another aspect of the present invention, there is provided a method of manufacturing a piston ring coated with a nanocomposite coating film containing nitrogen, wherein an inert gas is introduced into the physical vapor deposition apparatus before forming the nanocomposite coating film, And forming a Zr-Cu-Si coating buffer film on the surface of the piston ring by physical vapor deposition of a Cu-Si based alloy target.
예를 들어, 스퍼터링의 경우, 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계는 상기 불활성가스를 상기 물리증착 장치 내로 공급하면서 물리증착 플라즈마 소스에 50kHz 내지 350kHz의 주파수 영역을 가지는 펄스 파워 또는 DC 전원을 상기 Zr-Cu-Si계 합금타겟에 단위면적당 최소 6W/cm2 를 인가하여 플라즈마를 방전시켜 활성화된 반응가스로부터 생성된 질소이온이 상기 합금타겟의 금속이온들과 결합하여 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계를 포함할 수 있다. For example, in the case of sputtering, the step of forming the Zr-Cu-Si coating buffer film may include supplying pulsed power having a frequency range of 50 kHz to 350 kHz to a physical vapor deposition plasma source while supplying the inert gas into the physical vapor deposition apparatus, Is applied to the Zr-Cu-Si-based alloy target at a minimum of 6 W / cm 2 per unit area to discharge the plasma, nitrogen ions generated from the activated reaction gas combine with the metal ions of the alloy target to form the Zr- Si coating buffer film.
나아가, 본 발명의 기술적 사상에 따른 질소를 함유하는 나노 복합 코팅막이 코팅된 피스톤 링의 제조방법은 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계; 이전에, 상기 물리증착 장치 내에서 이온 건 플라즈마 소스 내에 불활성가스를 투입하고 파워를 인가하여 상기 불활성가스를 이온화시키고 이온빔을 방출시켜 상기 피스톤 링의 표면을 활성화시키는 전처리 단계;를 더 포함할 수 있다. 이 경우, 상기 전처리 단계에서 상기 파워는 0.3A 내지 1.0A의 전류 및 1000V 내지 2000V의 전압 조건을 만족할 수 있다. Further, a method of manufacturing a piston ring coated with a nanocomposite coating film containing nitrogen according to the technical idea of the present invention comprises the steps of: forming the Zr-Cu-Si coating buffer film; A pretreatment step of activating the surface of the piston ring by previously injecting an inert gas into the ion gun plasma source in the physical vapor deposition apparatus and ionizing the inert gas by applying power to release the ion beam, . In this case, in the preprocessing step, the power may satisfy a current of 0.3 A to 1.0 A and a voltage of 1000 V to 2000 V.
상술한 제조방법에 의하여 구현된 피스톤 링은 상기 피스톤 링의 표면에 형성된 질소를 함유하는 나노 복합 코팅막을 포함하되, 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성은 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어진다. 상기 질소를 함유하는 나노 복합 코팅막은 10GPa 내지 45GPa의 높은 경도와 150GPa 내지 450GPa의 높은 탄성을 가지면서도 0.008 내지 0.024의 낮은 마찰계수를 가진다.The piston ring implemented by the above-described manufacturing method includes a nitrogen-containing nano composite coating film formed on the surface of the piston ring, wherein the composition of the component other than nitrogen in the nano composite coating film is 80 atom% to 92 atom% ; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si. The nitrogen-containing nanocomposite coating film has a high hardness of 10 GPa to 45 GPa and a high elasticity of 150 GPa to 450 GPa, and has a low friction coefficient of 0.008 to 0.024.
도 13에는 링-라이너 스커핑 저항성 시험 결과가 도시되어 있다. 코팅막이 형성되는 시험재는 피스톤 링이었으며, 시험 상대재는 실린더 라이너였다. 윤활제는 5W30과 MoDTC를 혼합하여 사용하였다. 본 시험에서는 실시예5에 해당되는 코팅막으로 시험하였으며, 이에 대한 비교예로는 별도로 제작된 2 종류의 TaC(tetrahedral amorphous carbon) 코팅막 TaC(1)(비교예7), TaC(2)(비교예8)을 사용하였다. 도 13을 참조하면, 본 발명의 실시예5를 따르는 코팅막이 비교예7 및 비교예8에 비해 월등하게 우수한 특성을 나타냄을 확인할 수 있다.Fig. 13 shows the result of the ring-liner scuffing resistance test. The test material on which the coating film was formed was a piston ring, and the test material was a cylinder liner. The lubricant was a mixture of 5W30 and MoDTC. As a comparative example, two types of TaC (tetrahedral amorphous carbon) coating films TaC (1) (Comparative Example 7) and TaC (2) (Comparative Example 8) was used. Referring to FIG. 13, it can be seen that the coating film according to Example 5 of the present invention exhibits superior properties as compared with Comparative Examples 7 and 8.
표 3에는 라이너 스커핑 저항성 시험 전후 실시예5, 비교예7 및 비교예8의 조도 변화가 나타나 있다. 표 3을 참조하면, 실시예5의 코팅막의 경우, 시험이 완료된 후에도 라이너의 손상이 발생하지 않았으며, 코팅막 표면 자체도 마모가 거의 일어나지 않았다. 반면 비교예7 및 비교예8의 경우에는 코팅막의 심한 마모에 의해 조도가 변화가 현저하게 나타났다. Table 3 shows changes in roughness of Example 5, Comparative Example 7, and Comparative Example 8 before and after the liner scuffing resistance test. Referring to Table 3, in the case of the coating film of Example 5, the damage of the liner did not occur even after the test was completed, and the surface of the coating film itself was hardly worn. On the other hand, in the case of Comparative Example 7 and Comparative Example 8, the roughness changes remarkably due to the severe wear of the coating film.
Figure PCTKR2018010148-appb-T000003
Figure PCTKR2018010148-appb-T000003
이하에서는 본 발명의 실시예 및 비교예에 따른 코팅막의 트라이보 반응층(tribo-reaction layer) 분석 결과를 설명한다. 시편인 타펫의 표면에는 실시예2 및 비교예4에 해당되는 코팅을 형성하였으며, 왕복동 마찰시험이 완료된 후 표면에 형성된 트라이보 반응층을 분석하였다. 코팅된 타펫들은 왕복동형 고온마찰시험기를 이용하여 5W30 및 MoDCT의 윤활상태에서 1시간 동안 마찰시험이 진행되었다. 이 때 적용된 하중은 75N이며, 왕복동 거리는 10mm, 속도 5Hz(100mm/sec), 100℃의 온도에서 수행되었다. 각 샘플들은 LFM 분석 전, 표면의 잔여 윤활성분의 제거를 위해 1분 동안 에탄올과 함께 초음파 배스(ultrasonic bath)에서 세척하였다. 그 후, 나노 복합 코팅막에 생성된 트라이보 반응층(tribo reaction layer)의 마찰 특성을 자세히 살펴보기 위해 AFM장비를 이용하여 LFM 모드로 마찰계수를 구하였다. LFM 측정조건은 스캔 속도 0.5Hz, 10mN의 하중으로 20X20um의 영역을 측정하였으며, 측정된 마찰계수는 매핑(mapping)으로 나타내었다.Hereinafter, the tribo-reaction layer analysis results of the coating film according to Examples and Comparative Examples of the present invention will be described. On the surface of the specimen tappet, a coating corresponding to Example 2 and Comparative Example 4 was formed, and after the reciprocating friction test was completed, the tribo reaction layer formed on the surface was analyzed. Coated tappets were subjected to a friction test for 1 hour in a lubrication condition of 5W30 and MoDCT using a reciprocating high temperature friction tester. The applied load was 75 N, and the reciprocating distance was 10 mm, the speed was 5 Hz (100 mm / sec) and the temperature was 100 ° C. Each sample was washed in an ultrasonic bath with ethanol for 1 minute to remove residual lubricant on the surface prior to LFM analysis. Then, in order to investigate the friction characteristics of the tribo reaction layer formed on the nanocomposite coating film, the friction coefficient was obtained in the LFM mode using an AFM machine. The LFM measurement condition was a measurement of the area of 20 × 20 μm at a scan speed of 0.5 Hz and a load of 10 mN, and the measured coefficient of friction was represented by mapping.
LFM(Lateral Force Microscopy)의 원리는 AFM(Atomic Force Microscopy)과 매우 유사하다. AFM의 경우 콘택 모드(Contact mode)에서는 캔틸레버(cantilever)의 수직방향으로의 휘는 정도를 측정하여 시료 표면의 정보를 수집하는 반면, LFM에서는 캔틸레버의 수평방향으로의 휘는 정도를 측정한다. 캔틸레버로 시료 표면을 측정 시 시료 표면의 형상, 마찰계수(friction coefficient), 캔틸레버의 이동방향, 캔틸레버의 수평 스프링 상수에 따라 그 휘는 정도가 달라지게 된다. 이를 통해 상이한 성분으로 구성된 재료 표면에서 캔티레버 기울기 차이를 측정함으로서 시료 표면의 마찰특성을 분석 할 수 있다. The principle of LFM (lateral force microscopy) is very similar to AFM (Atomic Force Microscopy). In the contact mode of the AFM, the degree of bending of the cantilever in the vertical direction is measured to collect information on the surface of the sample, while in the LFM, the degree of bending of the cantilever in the horizontal direction is measured. When measuring the surface of a sample with a cantilever, the degree of warping depends on the shape of the surface of the sample, the friction coefficient, the moving direction of the cantilever, and the horizontal spring constant of the cantilever. This makes it possible to analyze the friction characteristics of the sample surface by measuring the cantilever slope difference on the material surface composed of different components.
도 14a 및 도 14b는 본 발명의 실시예2에 따른 코팅막이 형성된 타펫의 AFM 광학현미경 사진 및 LFM을 이용한 마찰계수 매핑도이다. 도 15a 및 도 15b는 본 발명의 비교예4에 따른 코팅막이 형성된 타펫의 AFM 광학현미경 사진 및 LFM을 이용한 마찰계수 매핑도이다. 14A and 14B are AFM optical microscope photographs and friction coefficient mapping diagrams of a tappet having a coating film formed according to the second embodiment of the present invention using LFM. 15A and 15B are AFM optical microscope photographs and friction coefficient mapping diagrams of a tappet having a coating film according to Comparative Example 4 of the present invention, using LFM.
LFM으로 측정된 마찰계수의 결과 나노 복합 코팅막(실시예2)이 증착 된 타펫은 Si-DLC(비교예4)가 증착된 타펫에 비해 현저하게 낮은 마찰계수를 나타내었다. 이는 도 14 및 도 15의 LFM 결과로부터 알 수 있다. 각 조성의 마찰부위를 측정하기 위한 SEM 관찰 결과를 보면, 도 14a의 나노 복합 코팅막(실시예2)의 경우 다크(dark) 영역과 브라이트(bright) 영역이 확연하게 차이가 나는 것이 확인되었다. 반면, 도 15a의 코팅막(비교예4)은 상대적으로 큰 차이가 없음을 알 수 있다. 도 14a의 나노 복합 코팅막(실시예2)에서 확인된 다크 영역은 트라이보 반응층(tribo-reaction layer)으로 판단되며, 브라이트 영역은 이러한 트라이보 반응층이 형성되지 않은 영역으로 판단된다. As a result of the friction coefficient measured by LFM, the tappet on which the nanocomposite coating film (Example 2) was deposited showed a significantly lower friction coefficient than the tappet on which Si-DLC (Comparative Example 4) was deposited. This can be seen from the LFM results in Figs. 14 and 15. Fig. The SEM observation results for measuring the friction region of each composition show that the dark region and the bright region are significantly different in the case of the nanocomposite coating film of Example 14 (FIG. 14A). On the other hand, it can be seen that the coating film of Comparative Example 4 (FIG. 15A) does not have a relatively large difference. The dark region identified in the nanocomposite coating film (Example 2) of FIG. 14A is regarded as a tribo-reaction layer, and the bright region is determined as a region in which such a trivalent reaction layer is not formed.
마찰에 의해 형성되는 트라이보 반응층은 총 300nm 내지 600nm의 두께로 그 중 반응층의 최외각에 형성되는 유기물 층은 2nm 내지 100nm의 두께를 가지며, 도 18에는 예시적으로 마찰반응층의 단면을 TEM으로 관찰한 결과가 나타나 있다. The tribo-reaction layer formed by friction has a total thickness of 300 nm to 600 nm, and the organic material layer formed at the outermost portion of the reaction layer has a thickness of 2 nm to 100 nm. FIG. 18 exemplarily shows a cross- TEM observation results are shown.
LFM으로 측정된 마찰계수 매핑(friction coefficient mapping) 이미지를 도 14b 및 도 15b에 나타내었다. 실시예2의 코팅막은 평균 마찰계수 0.016이며, 측정된 전 영역에 걸쳐 낮은 마찰계수를 나타낸다. 특히 마찰시험 중 고상 접촉(solid contact)이 일어나는 다크 영역에서는 낮은 마찰계수가 확인되었으며, 브라이트 영역에서는 높은 마찰계수가 확인되었다. 반면, 도 15b를 참조하면, 비교예4의 경우 평균 마찰계수가 0.032로 전 영역에 걸쳐 높은 마찰계수가 확인되었으며, 측정된 영역 내 극소 영역에서만 낮은 마찰계수가 확인되었다.A friction coefficient mapping image measured with LFM is shown in Figs. 14B and 15B. The coating film of Example 2 has an average coefficient of friction of 0.016 and exhibits a low coefficient of friction over the whole area measured. Especially, in the dark region where solid contact occurs during the friction test, low friction coefficient was confirmed, and high friction coefficient was confirmed in the bright region. On the other hand, referring to FIG. 15B, in Comparative Example 4, the average coefficient of friction was 0.032, and a high coefficient of friction was confirmed throughout the entire region, and a low coefficient of friction was confirmed only in the minimum region in the measured region.
트라이보 반응층의 좀 더 상세한 성분 분석을 위해 AES 측정을 실시하였다. 도 16는 본 발명의 실시예2에 따른 코팅막이 형성된 타펫의 AES 분석 결과를 위한 SEM 이미지이고, 표 4는 본 발명의 실시예2에 따른 코팅막이 형성된 타펫에 대하여 트라이보 반응층(tribo-reaction layer)에 대한 포인트 분석 결과를 나타낸 것이다. AES measurements were performed for more detailed component analysis of the triabo reaction layer. 16 is a SEM image for AES analysis results of a tappet having a coating film according to Example 2 of the present invention, and Table 4 is a SEM image of a tappet-reaction layer of a tappet having a coating film formed according to Example 2 of the present invention. layer analysis results.
Figure PCTKR2018010148-appb-T000004
Figure PCTKR2018010148-appb-T000004
도 17은 본 발명의 비교예4에 따른 코팅막이 형성된 타펫의 AES 분석 결과를 위한 SEM 이미지이고, 표 5는 본 발명의 비교예4에 따른 코팅막이 형성된 타펫에 대하여 트라이보 반응층에 대한 포인트 분석 결과를 나타낸 것이다. 17 is an SEM image for AES analysis results of a tappet having a coating film according to Comparative Example 4 of the present invention, and Table 5 is a SEM image of a tappet having a coating film formed according to Comparative Example 4 of the present invention. The results are shown.
Figure PCTKR2018010148-appb-T000005
Figure PCTKR2018010148-appb-T000005
AES 포인트 분석을 통해 도 16 및 도 17의 SEM 이미지에서 확인된 각 샘플의 트라이보 반응층으로 판단되는 다크 영역과 트라이보 반응층이 없는 브라이트 영역의 원소(element) 분석을 진행하였다. AES 분석 결과 두 샘플의 전역에 걸쳐 코팅층 구성성분과 윤활조성이 모두 검출이 되었다. 표 4에 나노 복합 코팅막(실시예2)의 다크 영역과 브라이트 영역의 함량 변화를 나타내었다. 다크 영역에서는 코팅조성 중 Cu가 브라이트 영역에 비해 높은 함량을 나타내었으며, Zr, Si의 함량은 오히려 브라이트 영역에서 높은 값을 나타내었다. 또한 윤활유 성분 중 트라이보 반응층으로 작용한다고 알려진 S, P 와 낮은 마찰 특성을 나타내는 Mo, Ca, K 가 다크 영역에서 높게 검출되었다. An element analysis of a dark region and a bright region without a triboactivation layer, which were judged to be the tribo-reaction layers of each sample confirmed in the SEM images of FIGS. 16 and 17, were performed through the AES point analysis. AES analysis showed that both the coating layer composition and the lubricant composition were detected throughout the two samples. Table 4 shows changes in the contents of the dark region and the bright region of the nanocomposite coating film (Example 2). In the dark region, the content of Cu was higher than that of bright region, and the content of Zr and Si was higher in bright region. Among the lubricating oil components, S, P, which are known to act as a tribo - reaction layer, and Mo, Ca, K, which exhibit low friction characteristics, were detected high in the dark region.
도 17 및 표 5를 참조하면, 비교예4의 경우, 다크 영역에서 코팅층 조성 C, Si가 높게 검출되었다. S, P, Mo, Ca, K 은 다크 영역에 비해 오히려 브라이트 영역에서 더 많이 검출된다. 나노 복합 코팅막(실시예2) 결과와 비교해 볼 때 Si-DLC의 AES 분석에서 확인된 다크 영역과 LFM을 이용한 마찰계수 매핑 결과에서 확인된 극소부위의 저마찰 영역은 트라이보 반응층이 아닌 잔류 오일로 판단된다. 17 and Table 5, in the case of Comparative Example 4, the coating layer compositions C and Si were detected to be high in the dark region. S, P, Mo, Ca, and K are detected more in the bright region than in the dark region. Compared with the results of the nanocomposite coating film (Example 2), the low-friction region of the very small region confirmed in the friction coefficient mapping result using the dark region and the LFM confirmed in the AES analysis of the Si-DLC is the residual oil .
이 결과로부터 본 발명의 실시예에 따른 나노 복합 코팅막 중 고체 윤활재 연질금속으로 잘 알려진 구리(Cu)가 마찰 시험 중에 윤활유 조성과 반응하여 트라이보 반응층 생성에 기여하며, 이것이 낮은 마찰계수에 이르게 함을 확인할 수 있다. As a result, copper (Cu), which is well known as a solid lubricant soft metal among the nanocomposite coating films according to the embodiment of the present invention, reacts with the lubricant composition during the friction test to contribute to the formation of the tribo-reactive layer, can confirm.
도 19는 본 발명의 일 실시예에 따른 저마찰 코팅막이 형성된 피스톤 링을 촬영한 디지털 카메라 촬영사진이며, 도 20은 버퍼층 및 저마찰 코팅막이 형성된 피스톤 링의 단면을 촬영한 광학사진이다. 도면에 도시된 '모재'는 피스톤 링의 모재에 해당하며, 'Buffer'층은 상술한 버퍼층에 해당하며, 'ZALC'층은 상술한 나노 복합 코팅막에 해당한다. FIG. 19 is a photograph of a digital camera taken on a piston ring having a low friction coating film formed thereon according to an embodiment of the present invention, and FIG. 20 is an optical photograph of a cross section of a piston ring formed with a buffer layer and a low friction coating film. The 'base material' shown in the figure corresponds to the base material of the piston ring, the 'Buffer' layer corresponds to the buffer layer described above, and the 'ZALC' layer corresponds to the nanocomposite coating film.
도 19 및 도 20에서 도시된 압축링(compression ring)은 피스톤의 상부에 장착되는 피스톤 링으로서 연소실 내부의 기밀을 유지하고 연소에 의해 가열된 피스톤의 열을 실린더 블록으로 전달하는 역할을 하며, 오일링(oil ring)은 피스톤의 하부에 장착되는 피스톤 링으로서 실린더 라이너로 공급된 엔진오일을 긁어 내리는 역할을 한다. The compression ring shown in Figs. 19 and 20 is a piston ring mounted on the upper portion of the piston, and serves to maintain the airtightness inside the combustion chamber and to transfer the heat of the piston heated by the combustion to the cylinder block, The oil ring is a piston ring mounted on the lower part of the piston and serves to scrape down the engine oil supplied to the cylinder liner.
압축링(top, 2nd)과 오일링(2 piece, 3 piece(Side rail))의 모재 재질은, 예를 들어, 금속재질인 바, 베이스 상태 그대로 사용되는 주철 또는 탄소강이 있으며, 합금강의 경우 베이스 상태 그대로 사용하거나, 표면을 질화(Nitriding)처리하여 저마찰 코팅을 코팅하여 사용 할 수 있다. 상기 주철은 편상흑연주철, 회주철, 구상화 주철 또는 버미큘러 주철을 포함할 수 있으며, 상기 합금강은 몰리브덴강, 크롬 몰리브덴강, 크롬 니켈강 또는 스테인리스강을 포함할 수 있다. 예를 들어, 합금강 중 크롬 성분이 함유된 경우 질화처리 또는 비질화하여 사용할 수 있다.The base material of the compression ring (top, 2nd) and the oil ring (2 piece, 3 piece (side rail)) is, for example, a cast iron or carbon steel used as a bar in a metal state, Alternatively, the surface can be nitrided and coated with a low-friction coating. The cast iron may include cast graphite cast iron, gray cast iron, spheroidized cast iron, or cast iron, and the alloy steel may include molybdenum steel, chromium molybdenum steel, chromium nickel steel, or stainless steel. For example, if the chromium component is contained in the alloy steel, it can be used by nitriding or non-nitriding.
본 발명의 일 실시예에 따른 저마찰 코팅막이 형성된 피스톤 링에서 코팅막이 코팅되어지는 부위는 실린더 라이너 또는 블록 보어 내경과 접촉되는 피스톤 링의 외주면(습동부)이다. 물론, 특별한 경우, 상기 코팅막은 피스톤 링의 외주면 외의 부위에 코팅 할 수도 있다.In the piston ring formed with the low friction coating film according to an embodiment of the present invention, the coating area is coated on the outer circumferential surface (sliding portion) of the piston ring in contact with the cylinder liner or the block bore inner diameter. Of course, in a special case, the coating film may be coated on a portion other than the outer peripheral surface of the piston ring.
도 21은 본 발명의 일 실시예에 따른 저마찰 코팅막이 형성된 피스톤 링에 대한 밀착성 시험 결과를 나타낸 사진이다. FIG. 21 is a photograph showing a result of adhesion test for a piston ring having a low friction coating film formed according to an embodiment of the present invention.
밀착성 시험 중에서 비틀림 시험 결과를 나타내는 도 21을 참조하면 본 발명의 일 실시예에 따른 저마찰 코팅막이 형성된 피스톤 링은 비틀림에도 경계박리가 없음을 확인할 수 있다. 한편, 밀착성 시험 중에서 스크래치(scratch) 시험 결과에서는, 피스톤 링 본체와 상기 질소를 함유하는 나노 복합 코팅막 사이에서의 접착력은 35 N 이상임을 확인할 수 있다. Referring to FIG. 21 showing the result of the torsion test in the adhesion test, it can be confirmed that the piston ring formed with the low-friction coating film according to an embodiment of the present invention is free from boundary separation even when twisted. On the other hand, as a result of the scratch test in the adhesion test, it can be confirmed that the adhesive force between the piston ring body and the nitrogen-containing nanocomposite coating film is 35 N or more.
도 22는 피스톤 링에 대한 마찰계수를 평가하기 위한 마찰 마모 시험기를 이용하여 본 발명의 실시예 및 비교예에 따른 코팅막이 형성된 피스톤 링에 대한 마찰계수를 평가한 결과를 도시한 그래프이다. 22 is a graph showing a result of evaluating a friction coefficient of a piston ring formed with a coating film according to an embodiment of the present invention and a comparative example using a friction and wear tester for evaluating a friction coefficient against a piston ring.
도 22를 참조하면, 본 발명의 제 1 비교예인 피스톤 링은 두께가 약 30㎛인 CrN 코팅막이 형성되며, 경도가 850 내지 1300 Hv이며, 마찰계수가 상대적으로 가장 높다. 본 발명의 제 2 비교예인 피스톤 링은 두께가 약 7㎛인 Si-DLC 코팅막이 형성되며, 경도가 약 1600 Hv이며, 마찰계수가 상대적으로 높다. 본 발명의 실시예인 피스톤 링은 두께가 약 10㎛인 나노 복합 코팅막(ZALC) 코팅막이 형성되며, 경도가 2000 내지 2500 Hv이며, 마찰계수가 상대적으로 가장 낮다. Referring to FIG. 22, the piston ring, which is a first comparative example of the present invention, has a CrN coating film having a thickness of about 30 占 퐉, a hardness of 850 to 1300 Hv, and a highest friction coefficient. The piston ring, which is the second comparative example of the present invention, has a Si-DLC coating film having a thickness of about 7 탆, a hardness of about 1600 Hv, and a relatively high coefficient of friction. The piston ring, which is an embodiment of the present invention, is formed with a nanocomposite coating film (ZALC) coating film having a thickness of about 10 mu m, has a hardness of 2000 to 2500 Hv, and has the lowest friction coefficient.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (20)

  1. 피스톤 링의 표면에 질소를 함유하는 Zr-Cu-Si계 나노 복합 코팅막을 형성하는 단계;를 포함하는, And forming a Zr-Cu-Si nanocomposite coating film containing nitrogen on the surface of the piston ring.
    저마찰 코팅막이 형성된 피스톤 링의 제조방법.A method for manufacturing a piston ring having a low friction coating film formed thereon.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 복합 코팅막은 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성이 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어진 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링의 제조방법.Wherein the composition of the nanocomposite coating film is composed of 80 atomic% to 92 atomic% of Zr, 2 atom% to 10 atom% Cu; And Si is 5 atomic% to 15 atomic%, based on the total mass of the low-friction coating film.
  3. 제 1 항에 있어서,The method according to claim 1,
    상기 나노 복합 코팅막을 형성하는 단계;는 상기 피스톤 링을 물리증착 장치 내부에 배치한 후, 불활성가스를 투입하고, 질소가스(N2) 또는 질소원소(N)를 함유하는 반응가스를 투입하여, Zr-Cu-Si계 합금타겟을 물리증착함으로써 질소를 함유하는 나노 복합 코팅막을 상기 피스톤 링의 표면에 형성하는 물리증착 단계;를 포함하되,Forming a nanocomposite coating film on the surface of the substrate, placing the piston ring in a physical vapor deposition apparatus, introducing an inert gas, introducing a reaction gas containing a nitrogen gas (N 2 ) or a nitrogen element (N) And a physical vapor deposition step of forming a nanocomposite coating film containing nitrogen on the surface of the piston ring by physical vapor deposition of a Zr-Cu-Si alloy target,
    상기 합금타겟의 조성은 Zr이 82원자% 내지 90원자%; Cu가 4원자% 내지 14원자%; 및 Si이 4원자% 내지 8원자%;로 이루어진 것을 특징으로 하는,The composition of the alloy target is 82 atom% to 90 atom% of Zr; 4 atom% to 14 atom% Cu; And 4 at% to 8 at% of Si.
    저마찰 코팅막이 형성된 피스톤 링의 제조방법.A method for manufacturing a piston ring having a low friction coating film formed thereon.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 물리증착 단계는 상기 불활성가스 및 상기 반응가스를 상기 물리증착 장치 내로 공급하면서 물리증착 플라즈마 소스에 50kHz 내지 350kHz의 주파수 영역을 가지는 펄스 파워 또는 DC 전원을 상기 Zr-Cu-Si계 합금타겟에 단위면적당 최소 6W/cm2 를 인가하여 플라즈마를 방전시켜 활성화된 반응가스로부터 생성된 질소이온이 상기 합금타겟의 금속이온들과 결합하여 상기 나노 복합 코팅막을 형성하는 단계를 포함하는, 저마찰 코팅막이 형성된 피스톤 링의 제조방법. Wherein the physical vapor deposition step comprises supplying a pulsed power or a DC power having a frequency range of 50 kHz to 350 kHz to the physical vapor deposition plasma source to the Zr-Cu-Si based alloy target in the unit of the physical vapor deposition apparatus while supplying the inert gas and the reactive gas into the physical vapor deposition apparatus. coating at least 6W / by applying cm 2 with nitrogen ions produced from the reaction gas activated by a discharge plasma is formed with a low-friction coating, comprising the step of forming the nanocomposite coating in conjunction with the metal ion of the alloy target A method of manufacturing a piston ring.
  5. 제 3 항에 있어서,The method of claim 3,
    상기 나노 복합 코팅막을 형성하기 전에, Before forming the nanocomposite coating film,
    상기 물리증착 장치 내부로, 불활성가스를 투입하여, 상기 Zr-Cu-Si계 합금타겟을 물리증착하여 Zr-Cu-Si 코팅버퍼막을 상기 피스톤 링의 표면에 형성하는 단계;를 더 포함하는, And forming a Zr-Cu-Si coating buffer film on the surface of the piston ring by physically depositing the Zr-Cu-Si alloy target by injecting an inert gas into the physical vapor deposition apparatus.
    저마찰 코팅막이 형성된 피스톤 링의 제조방법.A method for manufacturing a piston ring having a low friction coating film formed thereon.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계는 상기 불활성가스를 상기 물리증착 장치 내로 공급하면서 물리증착 플라즈마 소스에 50kHz 내지 350kHz의 주파수 영역을 가지는 펄스 파워 또는 DC 전원을 상기 Zr-Cu-Si계 합금타겟에 단위면적당 최소 6W/cm2 를 인가하여 플라즈마를 방전시켜 활성화된 반응가스로부터 생성된 질소이온이 상기 합금타겟의 금속이온들과 결합하여 상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계를 포함하는, 저마찰 코팅막이 형성된 피스톤 링의 제조방법. The forming of the Zr-Cu-Si coating buffer layer may include supplying a pulsed power having a frequency of 50 kHz to 350 kHz or a DC power source to the physical vapor deposition plasma source while supplying the inert gas into the physical vapor deposition apparatus, The step of discharging the plasma by applying a minimum of 6 W / cm 2 per unit area to the alloy target to form the Zr-Cu-Si coated buffer film by binding nitrogen ions generated from the activated reaction gas with the metal ions of the alloy target Wherein the low friction coating film is formed on the piston ring.
  7. 제 5 항에 있어서,6. The method of claim 5,
    상기 Zr-Cu-Si 코팅버퍼막을 형성하는 단계; 이전에, Forming a Zr-Cu-Si coated buffer film; Before,
    상기 물리증착 장치 내에서 이온 건 플라즈마 소스 내에 불활성가스를 투입하고 파워를 인가하여 상기 불활성가스를 이온화시키고 이온빔을 방출시켜 상기 피스톤 링의 표면을 활성화시키는 전처리 단계;를 더 포함하는, A pretreatment step of applying an inert gas into the ion gun plasma source in the physical vapor deposition apparatus and applying power to ionize the inert gas and emit an ion beam to activate the surface of the piston ring;
    저마찰 코팅막이 형성된 피스톤 링의 제조방법.A method for manufacturing a piston ring having a low friction coating film formed thereon.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 전처리 단계에서 상기 파워는 0.3A 내지 1.0A의 전류 및 1000V 내지 2000V의 전압 조건을 만족하는 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링의 제조방법. Wherein the power in the pretreatment step satisfies a current of 0.3 A to 1.0 A and a voltage condition of 1000 V to 2000 V. A method of manufacturing a piston ring,
  9. 피스톤 링의 표면에 형성된 질소를 함유하는 Zr-Cu-Si계 나노 복합 코팅막을 포함하는, 저마찰 코팅막이 형성된 피스톤 링.And a nitrogen-containing Zr-Cu-Si nanocomposite coating film formed on the surface of the piston ring.
  10. 제 9 항에 있어서, 10. The method of claim 9,
    상기 나노 복합 코팅막은 상기 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성이 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어진 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링.Wherein the composition of the nanocomposite coating film is composed of 80 atomic% to 92 atomic% of Zr, 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  11. 제 10 항에 있어서,11. The method of claim 10,
    상기 나노 복합 코팅막은 ZrN 또는 Zr2N 기반의 결정구조를 가지는, 저마찰 코팅막이 형성된 피스톤 링.The nano-composite coating film is ZrN or Zr 2 N base having a crystal structure of a low-friction piston ring coating film is formed.
  12. 제 10 항에 있어서,11. The method of claim 10,
    상기 나노 복합 코팅막은 상대재와 접촉하여 마찰될 경우, 표면의 적어도 일 부 영역에 트라이보 반응막이 형성되며, When the nanocomposite coating film is rubbed in contact with the counter material, a tribo-reaction film is formed on at least a part of the surface,
    상기 트라이보 반응막이 형성된 영역에서의 Cu의 조성이 상기 트라이보 반응막이 형성되지 않은 영역에 비해 더 높은, 저마찰 코팅막이 형성된 피스톤 링.Wherein a composition of Cu in the region in which the tribo-reaction film is formed is higher than that in the region in which the tribo-reaction film is not formed.
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 트라이보 반응막이 형성된 영역에서의 S 및 P의 조성이 상기 트라이보 반응막이 형성되지 않은 영역에 비해 더 높은, 저마찰 코팅막이 형성된 피스톤 링.And the composition of S and P in the region where the tri-anti-reflection film is formed is higher than that in the region where the anti-tribo-reaction film is not formed.
  14. 제 10 항에 있어서,11. The method of claim 10,
    상기 질소를 함유하는 나노 복합 코팅막은 10GPa 내지 45GPa의 경도와 150GPa 내지 450GPa의 탄성률을 가지는 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링.Wherein the nitrogen-containing nanocomposite coating film has a hardness of 10 GPa to 45 GPa and an elastic modulus of 150 GPa to 450 GPa.
  15. 제 10 항에 있어서,11. The method of claim 10,
    상기 질소를 함유하는 나노 복합 코팅막이 형성되는 상기 피스톤 링의 표면은 실린더 라이너 또는 블록 보어 내경과 접촉되는 피스톤 링의 외주면을 포함하는, 저마찰 코팅막이 형성된 피스톤 링. Wherein the surface of the piston ring in which the nitrogen-containing nanocomposite coating film is formed comprises an outer circumferential surface of the piston ring in contact with the cylinder liner or the block bore inner diameter.
  16. 제 10 항에 있어서,11. The method of claim 10,
    상기 피스톤 링은 모재 재질이 금속재질인 압축링 또는 오일링인, 저마찰 코팅막이 형성된 피스톤 링. Wherein the piston ring is a compression ring or an oil ring whose base material is made of a metal, and a low friction coating film is formed on the piston ring.
  17. 제 5 항 내지 제 8 항 중 어느 한 항에 따른 상기 제조방법에 의하여 구현된 피스톤 링으로서, 상기 피스톤 링의 표면에 형성된 Zr-Cu-Si 코팅버퍼막; 및 상기 Zr-Cu-Si 코팅버퍼막 상에 형성된 질소를 함유하는 Zr-Cu-Si계 나노 복합 코팅막;을 포함하는, 저마찰 코팅막이 형성된 피스톤 링.9. A piston ring embodied by the method according to any one of claims 5 to 8, comprising: a Zr-Cu-Si coated buffer film formed on the surface of the piston ring; And a nitrogen-containing Zr-Cu-Si nanocomposite coating film formed on the Zr-Cu-Si coating buffer film.
  18. 제 17 항에 있어서, 18. The method of claim 17,
    상기 질소를 함유하는 Zr-Cu-Si계 나노 복합 코팅막은 상기 질소를 함유하는 Zr-Cu-Si계 나노 복합 코팅막 중에서 질소를 제외한 성분의 조성이 Zr이 80원자% 내지 92원자%; Cu가 2원자% 내지 10원자%; 및 Si이 5원자% 내지 15원자%;로 이루어진 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링.Wherein the nitrogen-containing Zr-Cu-Si nanocomposite coating film contains Zr-Cu-Si nanocomposite coating films containing nitrogen in an amount of 80 atomic% to 92 atomic% Zr; 2 atom% to 10 atom% Cu; And 5 atom% to 15 atom% of Si.
  19. 제 17 항에 있어서,18. The method of claim 17,
    상기 질소를 함유하는 나노 복합 코팅막은 10GPa 내지 45GPa의 경도와 150GPa 내지 450GPa의 탄성률을 가지는 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링.Wherein the nitrogen-containing nanocomposite coating film has a hardness of 10 GPa to 45 GPa and an elastic modulus of 150 GPa to 450 GPa.
  20. 제 17 항에 있어서,18. The method of claim 17,
    상기 코팅버퍼막의 두께는 0.01㎛ 내지 5㎛이며, 상기 질소를 함유하는 나노 복합 코팅막의 두께는 0.5㎛ 내지 30㎛인 것을 특징으로 하는, 저마찰 코팅막이 형성된 피스톤 링.Wherein the thickness of the coating buffer film is 0.01 탆 to 5 탆, and the thickness of the nitrogen-containing nanocomposite coating film is 0.5 탆 to 30 탆.
PCT/KR2018/010148 2017-08-31 2018-08-31 Piston ring with low-friction coating film and manufacturing method therefor WO2019045520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020512033A JP6967209B2 (en) 2017-08-31 2018-08-31 Piston ring on which a low friction coating film is formed and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0110963 2017-08-31
KR20170110963 2017-08-31
KR10-2018-0103289 2018-08-31
KR1020180103289A KR102154823B1 (en) 2017-08-31 2018-08-31 Piston ring coated low-friction layer and method of fabricating the same

Publications (1)

Publication Number Publication Date
WO2019045520A1 true WO2019045520A1 (en) 2019-03-07

Family

ID=65525970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010148 WO2019045520A1 (en) 2017-08-31 2018-08-31 Piston ring with low-friction coating film and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2019045520A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773766B1 (en) * 2006-11-09 2007-11-12 한국원자력연구원 Hot isostatic pressing joining method between be using one process in physical vapor deposition chamber and cu alloy
US20100187765A1 (en) * 2007-07-28 2010-07-29 Steffen Hoppe Piston ring
JP2010529389A (en) * 2007-06-13 2010-08-26 フェデラル−モーグル ブルシェイド ゲーエムベーハー piston ring
KR20110055473A (en) * 2009-11-19 2011-05-25 한국생산기술연구원 Multi-component unary sputtering target and manufacturing method thereof, and method for manufacturing nano structured thin film with multi-component alloy system using the same
KR20140144755A (en) * 2013-06-05 2014-12-22 한국생산기술연구원 Nano structured composite thin film, methods for forming the same, members with low friction and method for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773766B1 (en) * 2006-11-09 2007-11-12 한국원자력연구원 Hot isostatic pressing joining method between be using one process in physical vapor deposition chamber and cu alloy
JP2010529389A (en) * 2007-06-13 2010-08-26 フェデラル−モーグル ブルシェイド ゲーエムベーハー piston ring
US20100187765A1 (en) * 2007-07-28 2010-07-29 Steffen Hoppe Piston ring
KR20110055473A (en) * 2009-11-19 2011-05-25 한국생산기술연구원 Multi-component unary sputtering target and manufacturing method thereof, and method for manufacturing nano structured thin film with multi-component alloy system using the same
KR20140144755A (en) * 2013-06-05 2014-12-22 한국생산기술연구원 Nano structured composite thin film, methods for forming the same, members with low friction and method for forming the same

Similar Documents

Publication Publication Date Title
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
EP2443267B1 (en) Protective coating, a coated member having a protective coating as well as method for producing a protective coating
CN110770362B (en) Sliding member and coating film
JPH0578821A (en) Piston ring and its manufacture
Young et al. Low pressure plasma spray coatings
JP4360082B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
KR102154823B1 (en) Piston ring coated low-friction layer and method of fabricating the same
WO2014175697A1 (en) Method for manufacturing amorphous alloy film and method for manufacturing nanostructured film comprising nitrogen
KR102174328B1 (en) Tappet coated low-friction layer and method of fabricating the same
Ouyang et al. The friction and wear characteristics of low-pressure plasma-sprayed ZrO2-BaCrO4 composite coating at elevated temperatures
JP5077293B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
KR102030456B1 (en) Target for physical vapor deposition, nano composite coating layer using the same and method of fabricating thereof
WO2019045520A1 (en) Piston ring with low-friction coating film and manufacturing method therefor
WO2011062450A2 (en) Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same
WO2016140544A1 (en) Thermal-spray coating composition having high abrasion resistance and low friction coefficient
JPH05208806A (en) Rigid and solid lubricating film having self-repairing property and its production
WO2019045519A1 (en) Target for physical vapor deposition, nanocomposite coating film using same, and preparation method therefor
KR102174327B1 (en) Piston pin coated low-friction layer and method of fabricating the same
KR101493357B1 (en) Method for forming amorphous alloy layer
JP4374153B2 (en) piston ring
EP1052306A1 (en) s METAL-BASED GRADIENT COMPOSITE MATERIAL HAVING GOOD LUBRICATION AND WEAR RESISTANCE PROPERTY, THE PRODUCTION AND THE USE OF THE SAME
WO2016068635A1 (en) Amorphous film and method for fabricating nano-structured film comprising nitrogen
WO2016068562A1 (en) Sputtering target alloy and sputtering target comprising same
Dai et al. A Study on Metal‐Doped Diamond‐Like Carbon Film Synthesized by Ion Source and Sputtering Technique
WO2010140750A1 (en) Fe alloy for a self-lubricating bearing, method for manufacturing same, and self-lubricating bearing manufactured therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849876

Country of ref document: EP

Kind code of ref document: A1