WO2019045321A1 - Intraoperative nerve monitoring system using bio pressure sensor - Google Patents

Intraoperative nerve monitoring system using bio pressure sensor Download PDF

Info

Publication number
WO2019045321A1
WO2019045321A1 PCT/KR2018/009287 KR2018009287W WO2019045321A1 WO 2019045321 A1 WO2019045321 A1 WO 2019045321A1 KR 2018009287 W KR2018009287 W KR 2018009287W WO 2019045321 A1 WO2019045321 A1 WO 2019045321A1
Authority
WO
WIPO (PCT)
Prior art keywords
nerve
pressure sensor
bio
pressure
muscle
Prior art date
Application number
PCT/KR2018/009287
Other languages
French (fr)
Korean (ko)
Inventor
이병주
노정훈
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2019045321A1 publication Critical patent/WO2019045321A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges

Definitions

  • the present invention relates to an intraoperative neural surveillance system using a bio-pressure sensor, and more particularly, to a neural surveillance system using a bio-pressure sensor, and more particularly,
  • a bio-pressure sensor In order to measure the EMG of the muscles, the pressure change at the contact surface of the skin or muscles caused by the movement of the muscle is measured using a bio-pressure sensor, not by inserting a conventional electrode or measuring the action potential change due to the muscle movement of the human body surface And the measured pressure change is transmitted by wire or wireless so that the user can visually confirm the nervousness through a graph or an audible alarm. Further, the measured result is transmitted to the mobile device through wireless communication, Using a bio-pressure sensor that allows easy identification To an intraoperative nerve monitoring system.
  • the precise identification of the nerve of the recipient in performing the surgery is an important part of preventing complications from nerve injury in many surgical procedures such as otorhinolaryngology, brain surgery, thoracic surgery, spine surgery, or orthopedic surgery.
  • an intraoperative neurological surveillance system is used to continuously monitor the nerve area of the patient during surgery.
  • the neural surveillance system is very helpful in preventing complications due to nerve injury that may occur even during surgery of the patient.
  • Electromyography is a technique for measuring and recording electrical signals from skeletal muscles.
  • the conventional neural surveillance system is a system for assessing whether or not a nerve is affected by electrical stimulation of a structure suspected to be a nerve by electromyography according to the movement of the muscle.
  • the nerve stimulation is performed using a separate nerve probe, as shown in FIG. 1, which can provide electrical stimulation separately from the medical instrument that performs surgery during surgery, and then the electromyogram generated by the nerve stimulation is inspected .
  • the method of measuring the EMG of the muscle varies depending on the region, but for the EMG measurement, a needle electrode method for inserting a needle-shaped electrode as shown in FIG. 2 into the muscle, And the surface derivation method in which the same electrode is attached to measure the action potential of the muscles.
  • the needle electrode method can reflect the electromyogram of the corresponding muscle, but the need for inserting the needle into the muscle causes pain, infection by the needle and bleeding.
  • the thyroid gland in thyroid surgery the needle can not be inserted in the position can not use the needle electrode method.
  • a surface derivation method is used to measure the action potential of the vocal cord muscle by using an electrode that can be attached to the electromyographic or intubation intubation tube fixed on the surface of the airway intubation tube as shown in FIG.
  • this surface derivation method requires that all of the two electrodes should be in contact with the vocal cords in an attached EMG to the tube for tracheal intubation. If one of the electrodes is displaced and the vocal cord contact is incomplete, the neural surveillance system will fail to operate . In other words, if the electromyographic electrode inserted or attached to the tube is moved due to the change of the posture of the patient or the insertion direction of the intubation tube, if one electrode moves and the contact with the vocal cords is poor, EMG can not be measured.
  • Electrophysiographic measurement using fixed or attachable electrodes on the surface of the intubation tube used frequently for thyroid surgery has the problem that accurate EMG can not be measured due to interference or noise due to needle or spatula.
  • An apparatus and method for monitoring a nervous system during surgery can simultaneously monitor the nervous system of a subject during surgery using peak amplitude and peak time of excitation potential and are not bound to various kinds of stimuli ≪ / RTI >
  • Korean Patent Laid-Open No. 10-2009-0115162 discloses a surgical navigation and neural surveillance integrated system with automated surgical assistance and control, including an instrument tracking system configured to track movement of the instrument, And a database containing technical information about the patient's anatomy; And determining an anatomical structure proximate to the instrumentation tracking system and the database, the anatomical structure proximate the instrumentation; Determining a portion of the technical information associated with the anatomical structure included in the database; And identifiers for a portion of the descriptive information in a user-selectable manner that allows the user to selectively obtain descriptive information in connection with either the surgical procedure or the anatomical structure.
  • the computer is configured to automatically determine an electrostimulation pattern from the location of the neural structure and to electrically stimulate the neural structure according to the determined electrical stimulation pattern, To an apparatus that is further programmed to control the neural surveillance system.
  • the present invention has been made to solve the above problems of the prior art, and it is an object of the present invention to provide a method and apparatus for measuring electromyography by electrical stimulation in order to confirm a nervous state during surgery,
  • a bio-pressure sensor is attached to the surface of the intubation tube tube in the form of a tape so that the insertion of a needle corresponding to at least two electrodes for conventional electromyography
  • to eliminate the instability of measurement signals caused by acupuncture or sputum by eliminating the risk of pain, hemorrhage or infection due to contact failure due to movement of the vocal fold muscle in contact with the two electrodes of the intubation intubation tube
  • the pressure value at the contact surface of the skin or muscle which is the analog value measured from the bio pressure sensor
  • a new bio-pressure sensor that can be easily accessed by a user's portable device such as a doctor using a wireless communication technology by converting the digital signal into a digital signal. do.
  • the present invention provides a surgical operation method for a surgeon who is suspected of being an area corresponding to a nerve during surgery, A nerve probe that performs stimulation, and a portion located between the skin and the contact surface of the body's muscles and muscles, stimulates the region where the nerve is suspected through the nerve probe, and when the region corresponds to the nerve, A bio-pressure sensor for detecting a change in pressure due to movement of the muscle, and a bio-pressure sensor for detecting movement of the muscle due to electrical stimulation generated by the nerve probe, and transmitting the detected pressure change to the output device A microcontroller; And an output device for receiving a digital signal corresponding to a pressure change received from the microcontroller and outputting the digital signal to a user.
  • the bio-pressure sensor of the intraoperative nerve monitoring system using the bio-pressure sensor according to the present invention can be applied to a pressure sensor using a mechanical pressure sensor, an electric pressure sensor, a semiconductor pressure sensor, a strain gauge, a displacement sensor, Is measured.
  • the microcontroller of the intraoperative neural surveillance system using the bio pressure sensor according to the present invention detects the bio-pressure sensor 120 at a predetermined period after the electric stimulation is applied to the nerve by the nerve probe 110, An A / D converter for converting an analog signal corresponding to a change in pressure transmitted from the detector into a digital signal; And a communicator for transmitting the digital signal corresponding to the pressure change converted from the A / D converter 134 to the output device 140 in a wired or wireless manner.
  • the change of the muscle resulting from the electrical stimulation to the nerve is compared with the conventional needle It is possible to eliminate the risk of pain, hemorrhage or infection due to electrode needle insertion for measuring EMG by the conventional needle electrode method, It is possible to prevent an error in a measurement signal due to interference or noise caused by a nerve cut and a liquid such as a needle or sputum caused by unmeasured measurement caused by not contacting all the two electrodes of the intubation intubation tube, Instead of expensive medical devices that output changes, the skin or muscle measured using a bio-pressure sensor By a change of pressure in the contact surface is converted into the digital signal can be easily can confirm the measured value so reduce costs from a mobile device, the effect capable of providing convenience to users.
  • FIG. 1 is an illustration of a neural probe that stimulates a nerve to probe a conventional neural path according to an embodiment of the present invention
  • FIG. 2 is an illustration of a two-pole needle electrode used in a needle electrode method for electromyography according to an embodiment of the present invention
  • FIG. 3 is an illustration of a two-dimensional surface electrode used in a surface derivation method for EMG measurement according to an embodiment of the present invention
  • FIG. 4 illustrates an example of a tracheal intubation tube for insertion of a vocal cord using a surface derivation method according to an embodiment of the present invention
  • FIG. 5 is a block diagram of an intraoperative nerve monitoring system using a bio-pressure sensor according to an embodiment of the present invention
  • FIG. 6 (a) is an exemplary view of a contact type bio pressure sensor according to an embodiment of the present invention.
  • FIG. 6 (b) is a comparative experiment of a conventional needle electrode for rabbit hind leg muscles and a contact type bio pressure sensor according to an embodiment of the present invention
  • FIG. 7A is an exemplary graph of an amplitude graph of an electromyogram measured on a rabbit hindlimb muscle using a conventional needle electrode method
  • FIG. 7 (b) is a graph illustrating an amplitude graph of an electromyogram measured on a rabbit hind leg muscle using a contact type bio pressure sensor according to an embodiment of the present invention
  • FIG. 8 (a) is a view showing the shape of a contact type pressure sensor attached to a tracheal intubation tube for insertion of a vocal cord according to an embodiment of the present invention
  • FIG. 8 (b) is an experimental drawing of a pressure sensor on the laryngeal nerve and stimulating the exposed laryngeal nerve with a nerve probe;
  • FIG. 9 is a block diagram of a microcontroller of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • FIG. 10 is an exemplary view of an EMG output apparatus received from a communicator of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • An intraoperative nerve monitoring system 100 using a bio pressure sensor includes a nerve probe 110, a bio pressure sensor 120, a microcontroller 130, and an output device 140 .
  • the neurological probe 110 performs electrical stimulation when the surgeon uses the surgical instrument 10 to perform a surgical operation in a surgical tissue, do.
  • the nerve probe 110 contacts the suspected portion of the nerve and applies a current from a power supply (not shown) to give a fine electrical stimulus.
  • the surgeon generally uses the surgical instrument 10 to find a suspected nerve area during surgery. When the surgeon places the surgical instrument 10, the surgeon substitutes the nerve probe 110 for electric stimulation to the nerve.
  • the bio-pressure sensor 120 is positioned between the skin and the contact surface contacting the muscles and muscles of the body. If the stimulus is given to the suspicious part through the nerve probe 110, if the corresponding part is the nerve, The movement of the muscles due to the electrical stimulation by the stimulation unit 110 occurs, and the change of pressure due to the movement of the muscles is sensed.
  • the bio-pressure sensor 120 can measure pressure by various methods of measuring pressure, such as mechanical pressure sensors, electrical pressure sensors, semiconductor pressure sensors, strain gauges, displacement sensors, acceleration sensors, and optical sensors.
  • FIG. 6 (a) is an exemplary view of a contact-type bio-pressure sensor according to an embodiment of the present invention.
  • the bio-pressure sensor 120 attaches a thin tape-type bio-pressure sensor to the contact surface of the skin or muscles so that the pressure change on the skin or muscle contact surface due to the movement of the muscle Detection.
  • FIG. 6 (b) is a comparative experimental view of a conventional needle electrode for a rabbit hind leg muscle and a contact type bio pressure sensor according to an embodiment of the present invention.
  • FIG. 7 (a) is a graph showing an amplitude graph of an electromyogram measured on a rabbit hind leg muscle using a conventional needle electrode method
  • FIG. 7 (b) FIG. 2 is a graph showing an amplitude graph of an electromyogram measured using a rabbit hindlimb muscle.
  • FIG. 7 (a) when the muscle of the rabbit hind leg is subjected to 1 mA of nerve stimulation using the neural probe 110, measurement is performed through the conventional inserted needle electrode measured in FIG. 6 (b)
  • Fig. 7 (b) the pressure change at the contact surface of the skin or muscle due to the muscle movement measured by the attachment type bio-pressure sensor by the nerve stimulation of 1 mA, which is the same environment
  • a graph is presented by converting the analog signal to a digital signal.
  • the amplitude values for the nerve stimulation can not be compared in the two methods, but it can be seen that the movement of the muscles by the nerve stimulation can be perceived in the same way.
  • FIG. 8 (a) is a view showing the shape of a pressure sensor attached to a tracheal intubation tube for insertion of a vocal cord according to an embodiment of the present invention
  • FIG. 8 (b) It is an experiment to stimulate the exposed laryngeal nerve with a neural probe.
  • an arrow mark is attached to the surface of the airway intubation tube in place of the two electrodes attached to the electromyogram measurement using the conventional surface derivation method Type bio pressure sensor 120 to measure the pressure change due to the movement of the vocal cord muscles according to the nerve stimulated by the nerve probe 110.
  • the bio pressure sensor 120 may be installed to surround the surface of the intubation intubation tube or may be installed to surround the surface of the intubation intubation tube by expanding the area of the bio pressure sensor 120.
  • the bio-pressure sensor 120 installed on the surface of the intubation tube of the intubation measures changes in pressure, it is difficult to determine whether the nerve is present or not due to the fact that the two electrodes are not in contact with each other in the EMG measurement by the conventional surface derivation method. It is possible to eliminate measurement errors due to electrical interference or signal noise due to a liquid component such as dust or sputum.
  • FIG. 8 (b) is a graph showing the results of stimulation of the nerve by the nerve probe 110 indicated by arrows on the exposed laryngeal nerve after thyroid surgery in a pig anesthetized with the intubation tube with the bio-pressure sensor 120 attached thereto, And an output device 140 is provided to check the movement of the vocal cord muscle measured by the bio-pressure sensor 120 attached to the intubation tube.
  • FIG. 9 is a microcontroller configuration diagram of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • the microcontroller 130 comprises a configuration including a detector 131, a filter 132, an amplifier 133, an A / D converter 134 and a communicator 135,
  • the bio-pressure sensor 120 detects the movement of the muscle due to the electrical stimulation generated by the bio-sensor 110 and transmits the detected pressure change to the output device 140.
  • the detector 131 detects a change in pressure according to the movement of the muscle measured from the bio pressure sensor 120 at a predetermined period after the electrical stimulation of the nerve occurs with the nerve probe 110.
  • electrical stimulation is performed on a certain part of the body using the nerve probe 110, muscle movement occurs after a certain interval when corresponding to the nerve.
  • the detector 131 detects whether electrical stimulation of the nerve probe 110 is generated, and then detects a change in pressure according to the movement of the muscle measured by the bio-pressure sensor 120.
  • the filter 132 removes high frequency or low frequency signals that can be added as noise to the change in pressure transmitted from the detector 131.
  • noise may be generated due to the precision, so that the noise can be removed by using the filter 132 to exhibit a more accurate pressure change.
  • the amplifier 133 increases the amplitude according to the noise-removed pressure change through the filter 132.
  • the filter 132 is connected to the amplifier 133 through the amplifier 133 so that the change of the pressure can be easily confirmed so that the movement of the muscle due to the stimulation of the nerve can be more accurately confirmed. It is necessary to amplify the input signal.
  • the A / D converter 134 converts an analog signal corresponding to a change in pressure transmitted from the detector 131 or the amplifier 133 into a digital signal. As the development of the digital device and the resolution of the analog signal are improved, many recent devices that receive, output or transmit the measured values from the sensor use digital signals, And converts the analog signal into a digital signal through the A / D converter 134. [
  • the communicator 135 transmits the digital signal corresponding to the pressure change converted from the A / D converter 134 to the output device 140 by wire or wirelessly.
  • the communicator 135 transmits the digital signal corresponding to the pressure change to the output device 140.
  • the communication device 135 transmits the digital signal in response to the pressure change to the output device 140.
  • wireless such as WiFi and Bluetooth, Lt; / RTI >
  • FIG. 10 is an exemplary diagram of an electromyography output device of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • the output device 140 receives a digital signal corresponding to the pressure change received from the communicator 135 of the microcontroller 130, and outputs the digital signal to the user.
  • the output device 140 may be visually represented graphically or audibly through a warning tone so that the user can easily recognize whether the user is nervous during surgery.
  • Output device 140 may be typically a wired or wireless monitor 141 that provides a visual display and may also appear through the user's portable device 142 using wireless communication and may also include an audible beep Can be output together.
  • FIG. 5 is a configuration diagram of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • the intraoperative nerve monitoring system 100 using the bio pressure sensor includes a nerve probe 110, a bio pressure sensor 120, a micro controller 130, (140).
  • the neurological probe 110 performs electrical stimulation when the surgeon uses the surgical instrument 10 to perform a surgical operation in a surgical tissue, do.
  • the nerve probe 110 contacts the suspected portion of the nerve and applies a current from a power supply (not shown) to give a fine electrical stimulus.
  • the surgeon generally uses the surgical instrument 10 to find a suspected nerve area during surgery. When the surgeon places the surgical instrument 10, the surgeon substitutes the nerve probe 110 for electric stimulation to the nerve.
  • the bio-pressure sensor 120 is positioned between the skin and the contact surface contacting the muscles and muscles of the body. If the stimulus is given to the suspicious part through the nerve probe 110, if the corresponding part is the nerve, The movement of the muscles due to the electrical stimulation by the stimulation unit 110 occurs, and the change of pressure due to the movement of the muscles is sensed.
  • the bio-pressure sensor 120 can measure pressure by various methods of measuring pressure, such as mechanical pressure sensors, electrical pressure sensors, semiconductor pressure sensors, strain gauges, displacement sensors, acceleration sensors, and optical sensors.
  • FIG. 6 (a) is an exemplary view of a contact-type bio-pressure sensor according to an embodiment of the present invention.
  • the bio-pressure sensor 120 attaches a thin tape-type bio-pressure sensor to the contact surface of the skin or muscles so that the pressure change on the skin or muscle contact surface due to the movement of the muscle Detection.
  • FIG. 6 (b) is a comparative experimental view of a conventional needle electrode for a rabbit hind leg muscle and a contact type bio pressure sensor according to an embodiment of the present invention.
  • FIG. 7 (a) is a graph showing an amplitude graph of an electromyogram measured on a rabbit hind leg muscle using a conventional needle electrode method
  • FIG. 7 (b) FIG. 2 is a graph showing an amplitude graph of an electromyogram measured using a rabbit hindlimb muscle.
  • FIG. 7 (a) when the muscle of the rabbit hind leg is subjected to 1 mA of nerve stimulation using the neural probe 110, measurement is performed through the conventional inserted needle electrode measured in FIG. 6 (b)
  • Fig. 7 (b) the pressure change at the contact surface of the skin or muscle due to the muscle movement measured by the attachment type bio-pressure sensor by the nerve stimulation of 1 mA, which is the same environment
  • a graph is presented by converting the analog signal to a digital signal.
  • the amplitude values for the nerve stimulation can not be compared in the two methods, but it can be seen that the movement of the muscles by the nerve stimulation can be perceived in the same way.
  • FIG. 8 (a) is a view showing the shape of a pressure sensor attached to a tracheal intubation tube for insertion of a vocal cord according to an embodiment of the present invention
  • FIG. 8 (b) It is an experiment to stimulate the exposed laryngeal nerve with a neural probe.
  • an arrow mark is attached to the surface of the airway intubation tube in place of the two electrodes attached to the electromyogram measurement using the conventional surface derivation method Type bio pressure sensor 120 to measure the pressure change due to the movement of the vocal cord muscles according to the nerve stimulated by the nerve probe 110.
  • the bio pressure sensor 120 may be installed to surround the surface of the intubation intubation tube or may be installed to surround the surface of the intubation intubation tube by expanding the area of the bio pressure sensor 120.
  • the bio-pressure sensor 120 installed on the surface of the intubation tube of the intubation measures changes in pressure, it is difficult to determine whether the nerve is present or not due to the fact that the two electrodes are not in contact with each other in the EMG measurement by the conventional surface derivation method. It is possible to eliminate measurement errors due to electrical interference or signal noise due to a liquid component such as dust or sputum.
  • FIG. 8 (b) is a graph showing the results of stimulation of the nerve by the nerve probe 110 indicated by arrows on the exposed laryngeal nerve after thyroid surgery in a pig anesthetized with the intubation tube with the bio-pressure sensor 120 attached thereto, And an output device 140 is provided to check the movement of the vocal cord muscle measured by the bio-pressure sensor 120 attached to the intubation tube.
  • FIG. 9 is a microcontroller configuration diagram of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • the microcontroller 130 comprises a configuration including a detector 131, a filter 132, an amplifier 133, an A / D converter 134 and a communicator 135,
  • the bio-pressure sensor 120 detects the movement of the muscle due to the electrical stimulation generated by the bio-sensor 110 and transmits the detected pressure change to the output device 140.
  • the detector 131 detects a change in pressure according to the movement of the muscle measured from the bio pressure sensor 120 at a predetermined period after the electrical stimulation of the nerve occurs with the nerve probe 110.
  • electrical stimulation is performed on a certain part of the body using the nerve probe 110, muscle movement occurs after a certain interval when corresponding to the nerve.
  • the detector 131 detects whether electrical stimulation of the nerve probe 110 is generated, and then detects a change in pressure according to the movement of the muscle measured by the bio-pressure sensor 120.
  • the filter 132 removes high frequency or low frequency signals that can be added as noise to the change in pressure transmitted from the detector 131.
  • noise may be generated due to the precision, so that the noise can be removed by using the filter 132 to exhibit a more accurate pressure change.
  • the amplifier 133 increases the amplitude according to the noise-removed pressure change through the filter 132.
  • the filter 132 is connected to the amplifier 133 through the amplifier 133 so that the change of the pressure can be easily confirmed so that the movement of the muscle due to the stimulation of the nerve can be more accurately confirmed. It is necessary to amplify the input signal.
  • the A / D converter 134 converts an analog signal corresponding to a change in pressure transmitted from the detector 131 or the amplifier 133 into a digital signal. As the development of the digital device and the resolution of the analog signal are improved, many recent devices that receive, output or transmit the measured values from the sensor use digital signals, And converts the analog signal into a digital signal through the A / D converter 134. [
  • the communicator 135 transmits the digital signal corresponding to the pressure change converted from the A / D converter 134 to the output device 140 by wire or wirelessly.
  • the communicator 135 transmits the digital signal corresponding to the pressure change to the output device 140.
  • wireless such as WiFi and Bluetooth, Lt; / RTI >
  • FIG. 10 is an exemplary diagram of an electromyography output device of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
  • the output device 140 receives a digital signal corresponding to the pressure change received from the communicator 135 of the microcontroller 130, and outputs the digital signal to the user.
  • the output device 140 may be visually represented graphically or audibly through a warning tone so that the user can easily recognize whether the user is nervous during surgery.
  • Output device 140 may be typically a wired or wireless monitor 141 that provides a visual display and may also appear through the user's portable device 142 using wireless communication and may also include an audible beep Can be output together.
  • the surgical nerve monitoring system using the bio-pressure sensor of the present invention is a system for measuring the electromyography of a corresponding muscle according to nerve stimulation in order to identify a portion corresponding to a nerve in order to prevent complications due to nerve damage during surgery,
  • the pressure change on the surface of the skin or muscle caused by the movement of the muscle is measured using a bio-pressure sensor, and the measured pressure change Can be transmitted by wire or wireless so that the user can be visually confirmed through a graph or an acoustic warning sound. Further, the measured result can be transmitted to a portable device through wireless communication and can be easily confirmed on a portable device. It is available in the medical field for related surgery. High.

Abstract

The present invention provides an intraoperative nerve monitoring system using a bio pressure sensor. The intraoperative nerve monitoring system using a bio pressure sensor, according to the present invention, has technical features of: measuring, by using the bio pressure sensor, a surface pressure change in a contact surface of a skin or a muscle, occurred by a movement of the corresponding muscle; wiredly or wirelessly transmitting the measured pressure change so as to allow a user to identify nerve through a visual graph or an auditory alarm sound; and further, transmitting the measured result to a portable device through wireless communications such that the result can be easily checked in the portable, unlike the conventional methods of inserting an electrode or measuring an action potential change caused by a muscular movement of a human body surface so as to identify a part corresponding to nerve for preventing complications caused by a neural damage during surgery, and to measure an electromyogram of a corresponding muscle according to neural stimulation.

Description

바이오 압력센서를 이용한 수술 중 신경감시시스템Neuro-surveillance system using bio-pressure sensor
본 발명은 바이오 압력센서를 이용한 수술 중 신경감시시스템에 관한 것으로, 좀 더 구체적으로는 수술을 수행하는 중에 신경 손상에 따른 합병증을 예방하기 위해 신경에 해당하는 부분을 확인하기 위해 신경자극에 따른 해당 근육의 근전도 측정을 위해 종래 전극을 삽입하거나 인체 표면의 근육운동에 의한 활동 전위 변화를 측정하는 것이 아니라 해당 근육의 움직임으로 인하여 발생하는 피부나 근육의 접촉면에서의 압력 변화를 바이오 압력센서를 이용하여 측정하고, 측정된 압력변화를 유선 또는 무선으로 전송하여 사용자에게 시각적으로 그래프나 청각적인 경고음을 통해 신경임을 확인시켜 줄 수 있으며, 나아가 측정된 결과를 무선통신을 통해 휴대기기에 전송하여 휴대기기에서 용이하게 확인할 수 있도록 하는 바이오 압력센서를 이용한 수술 중 신경감시시스템에 관한 것이다.The present invention relates to an intraoperative neural surveillance system using a bio-pressure sensor, and more particularly, to a neural surveillance system using a bio-pressure sensor, and more particularly, In order to measure the EMG of the muscles, the pressure change at the contact surface of the skin or muscles caused by the movement of the muscle is measured using a bio-pressure sensor, not by inserting a conventional electrode or measuring the action potential change due to the muscle movement of the human body surface And the measured pressure change is transmitted by wire or wireless so that the user can visually confirm the nervousness through a graph or an audible alarm. Further, the measured result is transmitted to the mobile device through wireless communication, Using a bio-pressure sensor that allows easy identification To an intraoperative nerve monitoring system.
수술을 수행하는데 있어 수술을 받는 사람의 신경을 정확히 확인하는 것은 이비인후과, 뇌 수술, 흉부외과, 척추 수술, 정형외과 수술 등 많은 외과 수술에서 신경 손상에 의한 합병증을 예방하기 위해 매우 중요한 부분이다. 즉, 척추 수술, 귀 수술, 갑상선 수술, 이하선 수술 등 여러 수술을 하면서 수술 중인 환자의 신경에 해당하는 부위를 지속적으로 확인하기 위한 수술 중 신경감시시스템을 별도로 사용하게 된다. 이러한 수술 중 신경감시시스템은 환자의 수술 중 혹시라도 발생할 수 있는 신경 손상에 의한 합병증을 예방하는데 많은 도움이 된다.The precise identification of the nerve of the recipient in performing the surgery is an important part of preventing complications from nerve injury in many surgical procedures such as otorhinolaryngology, brain surgery, thoracic surgery, spine surgery, or orthopedic surgery. In other words, during surgery, such as spinal surgery, ear surgery, thyroid surgery, and parotid surgery, an intraoperative neurological surveillance system is used to continuously monitor the nerve area of the patient during surgery. During this operation, the neural surveillance system is very helpful in preventing complications due to nerve injury that may occur even during surgery of the patient.
근전도(Electromyography) 검사는 골격근에서 발생하는 전기적인 신호를 측정하고 기록하는 기술이다. 종래의 수술 중 신경감시시스템은 신경으로 의심되는 구조물에 전기적 자극을 주어 해당 근육의 움직임에 따른 근전도 검사를 통해 신경에 해당하는지 여부를 평가하는 시스템이다. 즉 수술 중에 수술을 시행하는 의료기구와는 별개로 전기적 자극을 줄 수 있는 도 1에 도시된 바와 같은 별도의 신경 탐침을 이용하여 신경을 자극한 후, 신경 자극에 의해 발생하는 근전도를 검사하여 확인하는 방법이다. Electromyography is a technique for measuring and recording electrical signals from skeletal muscles. The conventional neural surveillance system is a system for assessing whether or not a nerve is affected by electrical stimulation of a structure suspected to be a nerve by electromyography according to the movement of the muscle. In other words, the nerve stimulation is performed using a separate nerve probe, as shown in FIG. 1, which can provide electrical stimulation separately from the medical instrument that performs surgery during surgery, and then the electromyogram generated by the nerve stimulation is inspected .
이러한 근육의 근전도를 측정하는 방법은 부위에 따라 차이가 있으나, 근전도 측정을 위하여 도 2에 도시된 바와 같은 바늘 형태의 전극을 해당 근육에 삽입하는 바늘전극법과 근육의 표면에 도 3에 도시된 바와 같은 전극을 부착시켜 근육의 활동 전위를 측정하는 표면도출법으로 구분된다.The method of measuring the EMG of the muscle varies depending on the region, but for the EMG measurement, a needle electrode method for inserting a needle-shaped electrode as shown in FIG. 2 into the muscle, And the surface derivation method in which the same electrode is attached to measure the action potential of the muscles.
바늘전극법은 해당 근육의 근전도를 잘 반영할 수 있지만, 해당 근육에 바늘을 삽입해야 하기 때문에 통증이 발생하고, 바늘에 의한 감염 및 출혈 등이 발생할 수 있다. 또한 갑상선 수술에서 중요한 성대근은 바늘을 삽입 할 수 없는 위치에 있어 바늘전극법을 사용할 수 없다. The needle electrode method can reflect the electromyogram of the corresponding muscle, but the need for inserting the needle into the muscle causes pain, infection by the needle and bleeding. In addition, the thyroid gland in thyroid surgery, the needle can not be inserted in the position can not use the needle electrode method.
따라서 도 4에 도시된 바와 같은 기도삽관튜브의 표면에 고정되어 있는 근전도 또는 기도삽관 튜브에 부착할 수 있는 전극(electrode)을 이용하여 성대근의 활동 전위를 측정하는 표면도출법을 사용한다.Therefore, a surface derivation method is used to measure the action potential of the vocal cord muscle by using an electrode that can be attached to the electromyographic or intubation intubation tube fixed on the surface of the airway intubation tube as shown in FIG.
그러나 이러한 표면도출법은 기관삽관용 튜브에 부착형 근전도에서 2개의 전극이 모두 성대에 접촉해야 하는데, 이중 하나의 전극이 위치 이동에 의해 성대 접촉이 불완전하면 신경감시시스템이 작동에 오류가 발생한다. 즉, 튜브에 삽입되어 있거나 부착된 근전도 전극이 환자의 자세 변화나 기관 삽관 튜브의 삽입 방향에 따른 위치 변화에 의해 하나의 전극이 이동하여 성대와의 접촉이 불량하면 신경을 자극하여도 성대근의 근전도를 측정할 수 없다. However, this surface derivation method requires that all of the two electrodes should be in contact with the vocal cords in an attached EMG to the tube for tracheal intubation. If one of the electrodes is displaced and the vocal cord contact is incomplete, the neural surveillance system will fail to operate . In other words, if the electromyographic electrode inserted or attached to the tube is moved due to the change of the posture of the patient or the insertion direction of the intubation tube, if one electrode moves and the contact with the vocal cords is poor, EMG can not be measured.
그리고 갑상선 수술에 많이 사용하는 기도 삽관 튜브 표면에 고정된 또는 부착형의 전극에 의한 근전도 측정은 침 또는 가래 유무로 인한 간섭이나 노이즈로 인해 정확한 근전도가 측정되지 못하는 문제점이 있다. Electrophysiographic measurement using fixed or attachable electrodes on the surface of the intubation tube used frequently for thyroid surgery has the problem that accurate EMG can not be measured due to interference or noise due to needle or spatula.
종래의 대한민국 특허등록번호 제10-1270935호 수술 중 신경계 감시 장치 및 방법은 유발 전위의 피크 진폭 및 피크 시점을 동시에 이용하여 수술 중의 피험자의 신경계를 실시간으로 감시 가능하고 다양한 인가 자극의 종류에 구속받지 않는 신경감시 시스템에 관한 것이다.Conventional Korean Patent Registration No. 10-1270935 An apparatus and method for monitoring a nervous system during surgery can simultaneously monitor the nervous system of a subject during surgery using peak amplitude and peak time of excitation potential and are not bound to various kinds of stimuli ≪ / RTI >
그러나 이와 같은 종래의 신경감시시스템을 이용하여 수술을 하더라도 신경 손상이 발생하는 경우가 있는데, 수술 중 신경 손상이 되는 원인 중의 하나는 비정상적인 위치에 있는 신경을 신경으로 인지하지 못하고 절단하는 경우이다. 즉 종래의 신경감시시스템은 수술 중 신경으로 의심되는 부분에 별도의 신경 탐침으로 전기적 자극을 주어 신경을 확인하는 방식이므로, 의사가 신경으로 의심되지 않는 등의 이유로 신경 탐침으로 신경 확인을 수행하지 않거나 튜브의 위치 변화에 의한 신경 감시 시스템의 오류로 인해 신경으로 인지하지 못하고 절단하게 되는 경우가 발생하여 이러한 종래의 신경감시시스템은 완전하게 신경 손상을 예방할 수 없는 한계가 있다.However, there is a case where nerve damage occurs even when the conventional neural surveillance system is used. One of the causes of nerve injury during surgery is a case where the neuron in the abnormal position is cut without recognizing the nerve. That is, since the conventional neural surveillance system is a method of identifying the nerve by giving electrical stimulation to the suspected part of the nerve during surgery as an extra nerve probe, the nerve probe is not performed by the nerve probe There is a case where the neural surveillance system is not able to prevent nerve damage because of the error of the neural surveillance system due to the change of the position of the tube.
또한, 대한민국 특허공개번호 제10-2009-0115162 호 자동화된 수술보조 및 제어를 구비한 수술용 내비게이션 및 신경감시 통합시스템은 기구의 움직임을 추적하도록 구성된 기구 추적시스템(instrument tracking system);과 외과수술 및 환자의 해부구조(patient anatomy)에 대한 기술 정보(technical information)를 포함한 데이터베이스; 및 상기 기구 추적시스템 및 상기 데이터베이스와 작동적으로 연결되고, 상기 기구에 근접한 해부학적 구조(anatomical structure)를 판정하고; 상기 데이터베이스에 포함된 상기 해부학적 구조와 관련되는 상기 기술 정보의 일부분을 판정하고; 및 사용자가 상기 외과수술 및 상기 해부학적 구조 중 어느 하나와 관련하여 기술 정보를 선택적으로 수득하도록 허용하는 사용자-선택가능한 방식(user-selectable manner)으로 상기 기술 정보의 일부분을 위한 식별자들(identifiers)을 생성하고 표시하도록 프로그램된 컴퓨터를 포함하며, 상기 컴퓨터는 상기 신경구조체의 상기 위치로부터 전기자극 패턴(electrostimulation pattern)을 자동으로 판정하고, 상기 판정된 전기자극 패턴에 따라 상기 신경구조체를 전기자극하도록 상기 신경감시시스템을 제어하도록 더 프로그램되는 장치에 관한 것이다.Also, Korean Patent Laid-Open No. 10-2009-0115162 discloses a surgical navigation and neural surveillance integrated system with automated surgical assistance and control, including an instrument tracking system configured to track movement of the instrument, And a database containing technical information about the patient's anatomy; And determining an anatomical structure proximate to the instrumentation tracking system and the database, the anatomical structure proximate the instrumentation; Determining a portion of the technical information associated with the anatomical structure included in the database; And identifiers for a portion of the descriptive information in a user-selectable manner that allows the user to selectively obtain descriptive information in connection with either the surgical procedure or the anatomical structure. Wherein the computer is configured to automatically determine an electrostimulation pattern from the location of the neural structure and to electrically stimulate the neural structure according to the determined electrical stimulation pattern, To an apparatus that is further programmed to control the neural surveillance system.
하지만 상기의 수술용 내비게이션 및 신경감시 통합시스템의 경우에도 자동으로 판정된 전기자극의 패턴을 이용하는 점에서 종래의 바늘전극법에 의한 전기적인 검침을 수행하는데 따른 한계를 나타내고 있다.However, even in the case of the surgical navigation system and the neural surveillance integrated system, the above-described pattern of the electrical stimulation is automatically determined, which is a limitation of the conventional needle electrode method.
따라서 본 발명은 이와 같은 종래 기술의 문제점을 개선하여, 수술 중 신경 상태를 확인하기 위해 전기적 자극에 의한 근전도를 측정하는 하는 데 있어, 신경 자극에 의한 근육의 움직임에 따른 피부나 근육의 접촉면에서의 압력 변화를 부착형 바이오 압력센서로 이용하여 측정하고, 성대근의 경우, 바이오 압력센서를 기도 삽관 튜브 표면에 테이프 형태로 부착함으로써, 종래 근전도 측정을 위한 최소 2개의 전극에 해당하는 바늘의 삽입에 따른 통증, 출혈이나 감염 등의 위험성을 제거하고, 기도 삽관 튜브의 2개의 전극 접촉에 있어 성대근의 움직임에 따른 접촉 불량으로 인한 근전도 미측정이나 침이나 가래로 인한 측정신호의 불안정을 해소할 수 있으며, 나아가 바이오 압력센서로부터 측정된 아날로그 값인 피부나 근육의 접촉면에서의 압력변화를 디지털 신호로 변환하여 무선통신기술을 이용하여 의사 등 사용자의 휴대기기에서 용이하게 확인할 수 있도록 하여 사용자의 편리를 도모할 수 있는 새로운 바이오 압력센서를 이용한 수술 중 신경감시시스템을 제공하는 것을 목적으로 한다. Accordingly, the present invention has been made to solve the above problems of the prior art, and it is an object of the present invention to provide a method and apparatus for measuring electromyography by electrical stimulation in order to confirm a nervous state during surgery, In the case of the vocal cord muscle, a bio-pressure sensor is attached to the surface of the intubation tube tube in the form of a tape so that the insertion of a needle corresponding to at least two electrodes for conventional electromyography And to eliminate the instability of measurement signals caused by acupuncture or sputum by eliminating the risk of pain, hemorrhage or infection due to contact failure due to movement of the vocal fold muscle in contact with the two electrodes of the intubation intubation tube And furthermore, the pressure value at the contact surface of the skin or muscle, which is the analog value measured from the bio pressure sensor With a new bio-pressure sensor that can be easily accessed by a user's portable device such as a doctor using a wireless communication technology by converting the digital signal into a digital signal. do.
상술한 목적을 달성하기 위한 본 발명의 특징에 의하면, 본 발명은 수술을 수행하고 있는 수술 대상 신체조직에서 의사가 수술을 수행하기 위하여 수술 중에 신경에 해당하는 부위인지 여부가 의심스러운 경우에 전기적인 자극을 수행하는 신경 탐침;과 신체의 근육과 근육에 접촉되는 피부나 접촉면 사이에 위치하여 상기 신경 탐침을 통하여 신경으로 의심되는 부위에 자극을 주면 해당 부위가 신경에 해당하는 경우, 근육의 움직임이 발생하고, 근육의 움직임에 따른 압력의 변화를 감지하는 바이오 압력센서;와 상기 신경 탐침에 의해 발생한 전기적인 자극에 따른 근육의 움직임을 상기 바이오 압력센서로 검출하여 검출된 압력 변화를 출력장치에 전송하는 마이크로컨트롤러; 및 상기 마이크로컨트롤러로부터 수신된 압력 변화에 따른 디지털 신호를 수신하여 사용자에게 출력하는 출력장치;를 포함하는 것을 특징으로 하는 바이오 압력센서를 이용한 수술 중 신경감시시스템을 제공한다.According to an aspect of the present invention for achieving the above object, the present invention provides a surgical operation method for a surgeon who is suspected of being an area corresponding to a nerve during surgery, A nerve probe that performs stimulation, and a portion located between the skin and the contact surface of the body's muscles and muscles, stimulates the region where the nerve is suspected through the nerve probe, and when the region corresponds to the nerve, A bio-pressure sensor for detecting a change in pressure due to movement of the muscle, and a bio-pressure sensor for detecting movement of the muscle due to electrical stimulation generated by the nerve probe, and transmitting the detected pressure change to the output device A microcontroller; And an output device for receiving a digital signal corresponding to a pressure change received from the microcontroller and outputting the digital signal to a user.
이와 같은 본 발명에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 바이오 압력센서는 기계식 압력센서, 전기식 압력센서, 반도체식 압력센서, 스트레인 게이지식, 변위 센서, 가속도 센서, 광센서를 이용하여 압력을 측정하는 것을 특징으로 한다.The bio-pressure sensor of the intraoperative nerve monitoring system using the bio-pressure sensor according to the present invention can be applied to a pressure sensor using a mechanical pressure sensor, an electric pressure sensor, a semiconductor pressure sensor, a strain gauge, a displacement sensor, Is measured.
이와 같은 본 발명에 따른 본 발명에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 마이크로컨트롤러는 상기 신경 탐침(110)으로 신경에 대한 전기적인 자극이 발생한 후 일정한 주기에 상기 바이오 압력센서(120)로부터 측정된 근육의 움직임에 따른 압력의 변화를 검출하는 검출기;와 상기 검출기로부터 전송된 압력의 변화에 대한 아날로그 신호를 디지털 신호로 변환하는 A/D변환기; 및 상기 A/D변환기(134)로부터 변환된 압력 변화에 대한 디지털 신호를 유선 또는 무선으로 출력장치(140)에 전송하는 통신기;를 포함하여 이루어진다.The microcontroller of the intraoperative neural surveillance system using the bio pressure sensor according to the present invention according to the present invention detects the bio-pressure sensor 120 at a predetermined period after the electric stimulation is applied to the nerve by the nerve probe 110, An A / D converter for converting an analog signal corresponding to a change in pressure transmitted from the detector into a digital signal; And a communicator for transmitting the digital signal corresponding to the pressure change converted from the A / D converter 134 to the output device 140 in a wired or wireless manner.
본 발명에 의한 바이오 압력센서를 이용한 수술 중 신경감시시스템에 의하면, 수술을 수행하는데 있어 신경을 정확히 확인하기 위한 근전도 측정방법에 있어, 신경에 대한 전기적 자극을 통한 결과인 근육의 변화를 종래의 바늘을 대신하는 바이오 압력센서를 이용하는 비침습적인 방법을 제시함으로써, 종래의 바늘전극법에 의한 근전도 측정을 위해 전극 바늘 삽입에 의한 통증, 출혈이나 감염 등의 위험성을 제거할 수 있으며, 표면도출법에 의한 기도삽관튜브의 2개의 전극이 모두 접촉되지 않음으로써 발생하는 미측정에 의한 신경의 절단 및 침이나 가래 등의 액체에 의한 간섭이나 노이즈에 의한 측정신호의 오류를 방지할 수 있고, 또한 종래의 근전도 변화를 출력하는 고가의 의료장비를 대신하여 바이오 압력센서를 이용하여 측정된 피부나 근육의 접촉면에서의 압력변화를 디지털 신호로 변환하여 휴대기기에서 용이하게 측정된 값을 확인할 수 있어 비용을 매우 절감할 수 있고, 사용자에게도 편리함을 제공할 수 있는 효과가 있습니다.According to the intraoperative neural surveillance system using the bio pressure sensor according to the present invention, in the method of measuring the EMG for precisely confirming the nerve in performing the surgery, the change of the muscle resulting from the electrical stimulation to the nerve is compared with the conventional needle It is possible to eliminate the risk of pain, hemorrhage or infection due to electrode needle insertion for measuring EMG by the conventional needle electrode method, It is possible to prevent an error in a measurement signal due to interference or noise caused by a nerve cut and a liquid such as a needle or sputum caused by unmeasured measurement caused by not contacting all the two electrodes of the intubation intubation tube, Instead of expensive medical devices that output changes, the skin or muscle measured using a bio-pressure sensor By a change of pressure in the contact surface is converted into the digital signal can be easily can confirm the measured value so reduce costs from a mobile device, the effect capable of providing convenience to users.
도 1은 종래 발명의 실시예에 따른 종래의 신경여부를 탐침하기 위해 신경을 자극하는 신경 탐침의 예시도;BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustration of a neural probe that stimulates a nerve to probe a conventional neural path according to an embodiment of the present invention; FIG.
도 2는 종래 발명의 실시예에 따른 근전도 측정을 위한 바늘전극법에 사용되는 2극의 바늘전극 예시도;FIG. 2 is an illustration of a two-pole needle electrode used in a needle electrode method for electromyography according to an embodiment of the present invention; FIG.
도 3은 종래 발명의 실시예에 따른 근전도 측정을 위한 표면도출법에 사용되는 2근의 표면전극 예시도;3 is an illustration of a two-dimensional surface electrode used in a surface derivation method for EMG measurement according to an embodiment of the present invention;
도 4는 종래 발명의 실시예에 따른 표면도출법을 이용한 성대근 삽입을 위한 기도삽관튜브의 예시도;FIG. 4 illustrates an example of a tracheal intubation tube for insertion of a vocal cord using a surface derivation method according to an embodiment of the present invention;
도 5는 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 구성도;FIG. 5 is a block diagram of an intraoperative nerve monitoring system using a bio-pressure sensor according to an embodiment of the present invention; FIG.
도 6의 (a)는 본 발명의 실시예에 따른 접촉형 바이오 압력센서의 예시도;6 (a) is an exemplary view of a contact type bio pressure sensor according to an embodiment of the present invention;
도 6의 (b)는 토끼 뒷다리 근육을 대상으로 한 종래 바늘전극과 본 발명의 실시예에 따른 접촉형 바이오 압력센서의 비교실험도;FIG. 6 (b) is a comparative experiment of a conventional needle electrode for rabbit hind leg muscles and a contact type bio pressure sensor according to an embodiment of the present invention; FIG.
도 7의 (a)는 종래 바늘전극법을 이용한 토끼 뒷다리 근육을 대상으로 한 측정한 근전도의 진폭 그래프의 예시도;FIG. 7A is an exemplary graph of an amplitude graph of an electromyogram measured on a rabbit hindlimb muscle using a conventional needle electrode method; FIG.
도 7의 (b)는 본 발명의 실시예에 따른 접촉형 바이오 압력센서를 이용한 토끼 뒷다리 근육을 대상으로 한 측정한 근전도의 진폭 그래프의 예시도;.FIG. 7 (b) is a graph illustrating an amplitude graph of an electromyogram measured on a rabbit hind leg muscle using a contact type bio pressure sensor according to an embodiment of the present invention;
도 8의 (a)는 본 발명의 실시예에 따른 성대근 삽입을 위한 기도삽관튜브에 부착되는 접촉형 압력센서의 형상도; 8 (a) is a view showing the shape of a contact type pressure sensor attached to a tracheal intubation tube for insertion of a vocal cord according to an embodiment of the present invention;
도 8의 (b)는 돼지 후두 신경에 압력센서를 삽입한 후, 노출된 반회후두신경에 신경 탐침으로 자극하는 실험도;FIG. 8 (b) is an experimental drawing of a pressure sensor on the laryngeal nerve and stimulating the exposed laryngeal nerve with a nerve probe;
도 9는 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 마이크로컨트롤러 구성도;9 is a block diagram of a microcontroller of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention;
도 10은 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 통신기로부터 수신된 근전도 출력장치의 예시도이다.10 is an exemplary view of an EMG output apparatus received from a communicator of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템(100)는 신경 탐침(110), 바이오 압력센서(120), 마이크로컨트롤러(130) 및 출력장치(140)를 포함하는 구성으로 이루어진다.An intraoperative nerve monitoring system 100 using a bio pressure sensor according to an embodiment of the present invention includes a nerve probe 110, a bio pressure sensor 120, a microcontroller 130, and an output device 140 .
신경 탐침(110)은 수술을 수행하고 있는 수술 대상 신체조직에서 의사가 수술을 수행하기 위하여 수술기구(10)를 이용하여 수술 중에 신경에 해당하는 부위인지 여부가 의심스러운 경우에 전기적인 자극을 수행한다. 신경 탐침(110)은 신경이 의심스러운 부위에 접촉하여 미세한 전기적인 자극을 주기 위하여 전원장치(미도시)로부터 전달되는 전류를 인가되도록 한다.The neurological probe 110 performs electrical stimulation when the surgeon uses the surgical instrument 10 to perform a surgical operation in a surgical tissue, do. The nerve probe 110 contacts the suspected portion of the nerve and applies a current from a power supply (not shown) to give a fine electrical stimulus.
의사들은 일반적으로 수술기구(10)를 이용하여 수술하는 중에 신경으로 의심되는 부위를 발견하면 수술기구(10)를 놓고, 신경 탐침(110)으로 교체하여 신경에 전기적인 자극을 주는데 최근 대한민국 등록특허 제10-1731004호 “신경 탐침이 부착된 에너지 디바이스 수술기구”에서는 수술기구(10)와 신경 탐침(110)을 일체화한 수술기구를 제시한다. The surgeon generally uses the surgical instrument 10 to find a suspected nerve area during surgery. When the surgeon places the surgical instrument 10, the surgeon substitutes the nerve probe 110 for electric stimulation to the nerve. Recently, 10-1731004 entitled " Energy Device Surgical Instrument Attached with a Neural Probe " discloses a surgical instrument in which a surgical instrument 10 and a neural probe 110 are integrated.
바이오 압력센서(120)는 신체의 근육과 근육에 접촉되는 피부나 접촉면 사이에 위치하여 상기 신경 탐침(110)을 통하여 신경으로 의심되는 부위에 자극을 주면 해당 부위가 신경에 해당하는 경우, 신경 탐침(110)에 의한 전기적인 자극에 의한 근육의 움직임이 발생하고, 근육의 움직임에 따른 압력의 변화를 감지한다. 바이오 압력센서(120)는 기계식 압력센서, 전기식 압력센서, 반도체식 압력센서, 스트레인 게이지식, 변위 센서, 가속도 센서, 광센서 등 압력을 측정하는 다양한 방법으로 압력을 측정할 수 있다.The bio-pressure sensor 120 is positioned between the skin and the contact surface contacting the muscles and muscles of the body. If the stimulus is given to the suspicious part through the nerve probe 110, if the corresponding part is the nerve, The movement of the muscles due to the electrical stimulation by the stimulation unit 110 occurs, and the change of pressure due to the movement of the muscles is sensed. The bio-pressure sensor 120 can measure pressure by various methods of measuring pressure, such as mechanical pressure sensors, electrical pressure sensors, semiconductor pressure sensors, strain gauges, displacement sensors, acceleration sensors, and optical sensors.
도 6의 (a)는 본 발명의 실시예에 따른 접촉형 바이오 압력센서의 예시도 이다.6 (a) is an exemplary view of a contact-type bio-pressure sensor according to an embodiment of the present invention.
도 6의 (a)에 도시된 바와 같이, 바이오 압력센서(120)는 얇은 테이프 형태의 바이오 압력센서를 피부나 근육의 접촉면에 부착시키어 근육의 움직임에 의한 피부나 근육의 접촉면에서의 압력 변화를 감지한다. 6 (a), the bio-pressure sensor 120 attaches a thin tape-type bio-pressure sensor to the contact surface of the skin or muscles so that the pressure change on the skin or muscle contact surface due to the movement of the muscle Detection.
도 6의 (b)는 토끼 뒷다리 근육을 대상으로 한 종래 바늘전극과 본 발명의 실시예에 따른 접촉형 바이오 압력센서의 비교실험도이다. 6 (b) is a comparative experimental view of a conventional needle electrode for a rabbit hind leg muscle and a contact type bio pressure sensor according to an embodiment of the present invention.
도 6의 (b)에 도시된 바와 같이, 신경 탐침(110)에 의한 전기적인 자극에 의한 토끼의 뒷 다리 근육의 근전도을 측정함에 있어, 종래의 바늘전극법과 접촉형 바이오 바이오 압력센서를 이용한 비교 실험하여 종래의 바늘전극법을 이용하는 경우, 바늘 삽입에 의한 통증, 출혈, 감염의 위험성이 있었으나, 바이오 압력센서(120)를 이용한 비침습적인 방법으로 측정한다. 6 (b), in measuring the electromyogram of the hind leg muscles of the rabbit by electrical stimulation by the nerve probe 110, a comparative experiment using a conventional needle electrode method and a contact type bio-biometric pressure sensor However, when the conventional needle electrode method is used, there is a risk of pain, bleeding, or infection due to needle insertion, but the non-invasive method using the bio pressure sensor 120 is used.
도 7의 (a)는 종래 바늘전극법을 이용하여 토끼 뒷다리 근육을 대상으로 측정한 근전도의 진폭 그래프의 예시도이고, 도 7의 (b)는 본 발명의 실시예에 따른 접촉형 바이오 압력센서를 이용하여 토끼 뒷다리 근육을 대상으로 측정한 근전도의 진폭 그래프의 예시도이다.7 (a) is a graph showing an amplitude graph of an electromyogram measured on a rabbit hind leg muscle using a conventional needle electrode method, and FIG. 7 (b) FIG. 2 is a graph showing an amplitude graph of an electromyogram measured using a rabbit hindlimb muscle. FIG.
도 7의 (a)에 도시된 바와 같이, 토끼 뒷다리 근육에 신경 탐침(110)을 이용하여 1mA의 신경 자극을 준 경우, 도 6의 (b)에서 측정되는 종래의 삽입된 바늘전극을 통해 측정된 근전도의 그래프를 보여주고 있으며, 도 7의 (b)에 도시된 바와 같이, 동일한 환경인 1mA의 신경 자극에 의한 부착형 바이오 압력센서에서 측정되는 근육 움직임에 의한 피부나 근육의 접촉면에서 압력 변화에 대한 아날로그 신호를 디지털 신호로 변환하여 나타나 그래프를 제시하고 있다. 신경 자극에 대한 진폭값에서는 두 가지 방법에 있어 그 차이를 비교할 수 없지만, 신경자극에 의한 근육의 움직임은 동일하게 감지할 수 있음을 알 수 있다.As shown in FIG. 7 (a), when the muscle of the rabbit hind leg is subjected to 1 mA of nerve stimulation using the neural probe 110, measurement is performed through the conventional inserted needle electrode measured in FIG. 6 (b) As shown in Fig. 7 (b), the pressure change at the contact surface of the skin or muscle due to the muscle movement measured by the attachment type bio-pressure sensor by the nerve stimulation of 1 mA, which is the same environment And a graph is presented by converting the analog signal to a digital signal. The amplitude values for the nerve stimulation can not be compared in the two methods, but it can be seen that the movement of the muscles by the nerve stimulation can be perceived in the same way.
도 8의 (a)는 본 발명의 실시예에 따른 성대근 삽입을 위한 기도삽관튜브에 부착되는 압력센서의 형상도이고, 도 8의 (b)는 돼지 후두 신경에 압력센서를 삽입한 후, 노출된 반회후두신경에 신경 탐침으로 자극하는 실험도이다.8 (a) is a view showing the shape of a pressure sensor attached to a tracheal intubation tube for insertion of a vocal cord according to an embodiment of the present invention, FIG. 8 (b) It is an experiment to stimulate the exposed laryngeal nerve with a neural probe.
도 8의 (a)에 도시된 바와 같이, 성대근 삽입을 위한 기도삽관튜브에 종래의 표면도출법을 이용한 근전도 측정을 위해 부착한 2개의 전극을 대신하여 기도삽관튜브의 표면에 화살표로 가르치는 부착형 바이오 압력센서(120)를 부착하여 신경 탐침(110)을 이용하여 자극한 신경에 따른 성대근육의 움직임에 따른 압력변화를 측정할 수 있다. 상기의 바이오 압력센서(120)는 기도삽관튜브의 표면에 둘러지도록 복수개가 설치될 수도 있으며, 하나의 바이오 압력센서(120)의 면적을 확장하여 기도삽관튜브의 표면을 둘러싸서 설치될 수도 있다.As shown in FIG. 8 (a), in the airway intubation tube for the insertion of the sacroiliac joint, an arrow mark is attached to the surface of the airway intubation tube in place of the two electrodes attached to the electromyogram measurement using the conventional surface derivation method Type bio pressure sensor 120 to measure the pressure change due to the movement of the vocal cord muscles according to the nerve stimulated by the nerve probe 110. [ The bio pressure sensor 120 may be installed to surround the surface of the intubation intubation tube or may be installed to surround the surface of the intubation intubation tube by expanding the area of the bio pressure sensor 120.
기도삽관튜브의 표면에 설치된 바이오 압력센서(120)는 압력의 변화를 측정하기 때문에 종래의 표면도출법에 의한 근전도 측정에 있어, 2개의 전극이 모두 접촉되지 않아 발생하는 신경유무판단의 불확실성이나 침이나 가래와 같은 액체성분에 따른 전기적 간섭이나 신호의 노이즈로 인한 측정상의 오류를 제거할 수 있다.Since the bio-pressure sensor 120 installed on the surface of the intubation tube of the intubation measures changes in pressure, it is difficult to determine whether the nerve is present or not due to the fact that the two electrodes are not in contact with each other in the EMG measurement by the conventional surface derivation method. It is possible to eliminate measurement errors due to electrical interference or signal noise due to a liquid component such as dust or sputum.
도 8의 (b)는 상기 바이오 압력센서(120)가 부착된 기관삽관 튜브로 전신 마취된 돼지에서 갑상선 수술 후, 노출된 반회후두신경에 화살표로 표시된 신경 탐침(110)으로 신경을 자극하고, 상기 기관삽관튜브에 부착된 바이오 압력센서(120)에서 측정된 성대근의 움직임을 확인할 수 있도록 출력장치(140)를 통해 보여주고 있다.FIG. 8 (b) is a graph showing the results of stimulation of the nerve by the nerve probe 110 indicated by arrows on the exposed laryngeal nerve after thyroid surgery in a pig anesthetized with the intubation tube with the bio-pressure sensor 120 attached thereto, And an output device 140 is provided to check the movement of the vocal cord muscle measured by the bio-pressure sensor 120 attached to the intubation tube.
도 9는 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 마이크로컨트롤러 구성도이다.9 is a microcontroller configuration diagram of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
도 9에 도시된 바와 같이, 마이크로컨트롤러(130)는 검출기(131), 필터(132), 증폭기(133), A/D변환기(134) 및 통신기(135)를 포함하는 구성으로 이루어져 상기 신경 탐침(110)에 의해 발생한 전기적인 자극에 따른 근육의 움직임을 상기 바이오 압력센서(120)로 검출하여 검출된 압력변화를 출력장치(140)에 전송한다.9, the microcontroller 130 comprises a configuration including a detector 131, a filter 132, an amplifier 133, an A / D converter 134 and a communicator 135, The bio-pressure sensor 120 detects the movement of the muscle due to the electrical stimulation generated by the bio-sensor 110 and transmits the detected pressure change to the output device 140.
검출기(131)는 상기 신경 탐침(110)으로 신경에 대한 전기적인 자극이 발생한 후 일정한 주기에 상기 바이오 압력센서(120)로부터 측정된 근육의 움직임에 따른 압력의 변화를 검출한다. 상기 신경 탐침(110)을 이용하여 신체의 일정부위에 전기적인 자극을 수행하면, 신경에 해당하는 경우에 일정한 간격 후에 근육의 움직임이 발생하는 한다. The detector 131 detects a change in pressure according to the movement of the muscle measured from the bio pressure sensor 120 at a predetermined period after the electrical stimulation of the nerve occurs with the nerve probe 110. When electrical stimulation is performed on a certain part of the body using the nerve probe 110, muscle movement occurs after a certain interval when corresponding to the nerve.
신경 탐침(110) 이외의 다른 요인으로 인하여 근육이 움직이는 것은 수술 중 신경에 해당하는지 여부를 탐지하고자 하는 신경감시시스템의 기술과 관련성이 없다. 따라서 검출기(131)는 상기 신경 탐침(110)의 전기적인 자극을 발생여부를 감지한 후, 상기 바이오 압력센서(120)에서 측정되는 근육의 움직임에 따른 압력의 변화를 검출하게 된다.Movement of the muscles due to other factors other than the nerve probe 110 is not related to the technique of the neural surveillance system to detect whether or not it is a nerve during surgery. Therefore, the detector 131 detects whether electrical stimulation of the nerve probe 110 is generated, and then detects a change in pressure according to the movement of the muscle measured by the bio-pressure sensor 120.
필터(132)는 상기 검출기(131)로부터 전송된 압력의 변화에 잡음으로서 추가될 수 있는 고주파나 저주파의 신호를 제거한다. 바이오 압력센서(120)의 경우에 정밀하기 때문에 노이즈가 발생할 수 있어 보다 정확한 압력의 변화를 나타내기 위해 필터(132)를 이용하여 노이즈를 제거할 수 있다.The filter 132 removes high frequency or low frequency signals that can be added as noise to the change in pressure transmitted from the detector 131. In the case of the bio-pressure sensor 120, noise may be generated due to the precision, so that the noise can be removed by using the filter 132 to exhibit a more accurate pressure change.
증폭기(133)는 상기 필터(132)를 통해 노이즈가 제거된 압력 변화에 따른 진폭을 증대시킨다. 수술 중에 신경을 정확히 확인하는 것은 매우 중요한 부분이기 때문에 신경의 자극에 따른 근육의 움직임을 보다 정확하게 확인할 수 있도록 조금만 압력의 변화에 대하여도 쉽게 확인할 수 있도록 상기 증폭기(133)를 통해 상기 필터(132)로부터 입력된 신호를 증폭시킬 필요가 있다.The amplifier 133 increases the amplitude according to the noise-removed pressure change through the filter 132. [ Since it is very important to accurately identify the nerve during surgery, the filter 132 is connected to the amplifier 133 through the amplifier 133 so that the change of the pressure can be easily confirmed so that the movement of the muscle due to the stimulation of the nerve can be more accurately confirmed. It is necessary to amplify the input signal.
A/D변환기(134)는 상기 검출기(131) 또는 증폭기(133)로부터 전송된 압력의 변화에 대한 아날로그 신호를 디지털 신호로 변환한다. 디지털 장치의 발전과 아날로그 신호에 대한 분해능이 향상되어 센서로부터 측정된 값을 수신하여 출력하거나 전송하는 최근의 많은 장치들이 디지털 신호를 이용하므로, 상기 바이오 압력센서(120)로부터 측정된 압력 변화에 따른 아날로그 신호를 A/D변환기(134)를 통하여 디지털 신호로 변환한다.The A / D converter 134 converts an analog signal corresponding to a change in pressure transmitted from the detector 131 or the amplifier 133 into a digital signal. As the development of the digital device and the resolution of the analog signal are improved, many recent devices that receive, output or transmit the measured values from the sensor use digital signals, And converts the analog signal into a digital signal through the A / D converter 134. [
통신기(135)는 상기 A/D변환기(134)로부터 변환된 압력 변화에 대한 디지털 신호를 유선 또는 무선으로 출력장치(140)에 전송한다. 통신기(135)는 압력 변화에 대한 디지털 신호를 출력장치(140)에 전송하는데 있어, 랜선이나 광케이블 등의 유 선의 경우에는 유선방식으로 전송하며, 와이파이(WiFi), 블루투스 등 무선의 경우에는 무선방식으로 전송한다.The communicator 135 transmits the digital signal corresponding to the pressure change converted from the A / D converter 134 to the output device 140 by wire or wirelessly. The communicator 135 transmits the digital signal corresponding to the pressure change to the output device 140. The communication device 135 transmits the digital signal in response to the pressure change to the output device 140. In the case of wireless such as WiFi and Bluetooth, Lt; / RTI >
도 10은 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 근전도 출력장치의 예시도이다.10 is an exemplary diagram of an electromyography output device of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
도 10에 도시된 바와 같이, 출력장치(140)는 상기 마이크로컨트롤러(130)의 통신기(135)로부터 수신된 압력 변화에 따른 디지털 신호를 수신하여 사용자에게 출력한다. 출력장치(140)는 사용자가 수술 중에 신경에 해당하는지 여부를 쉽게 알아볼 수 있도록 시각적으로 표현된 그래프나 청각적으로 경고음을 통해 출력될 수 있다. 10, the output device 140 receives a digital signal corresponding to the pressure change received from the communicator 135 of the microcontroller 130, and outputs the digital signal to the user. The output device 140 may be visually represented graphically or audibly through a warning tone so that the user can easily recognize whether the user is nervous during surgery.
출력장치(140)는 시각적으로 화면을 제공하는 유선 또는 무선의 모니터(141)가 일반적으로 이용될 수 있으며, 무선 통신을 이용하여 사용자의 휴대기기(142)를 통해서도 나타날 수 있으며, 청각적인 경고음도 함께 출력될 수 있다. Output device 140 may be typically a wired or wireless monitor 141 that provides a visual display and may also appear through the user's portable device 142 using wireless communication and may also include an audible beep Can be output together.
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부된 도면 도 1 내지 도 10에 의거하여 상세히 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 통상적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 한편, 도면과 상세한 설명에서 수술기구, 신경 탐침, 기도 삽관 튜브 및 신경감시시스템 등 이 분야의 종사자들이 용이하게 알 수 있는 구성 및 작용에 대한 도시 및 언급은 간략히 하거나 생략하였다. 특히, 도면의 도시 및 상세한 설명에 있어서 본 발명의 기술적 특징과 직접적으로 연관되지 않는 요소의 구체적인 기술적 구성 및 작용에 대한 상세한 설명 및 도시는 생략하고, 본 발명과 관련되는 기술적 구성만을 간략하게 도시하거나 설명하였다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to fully understand the present invention, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings 1 to 10. The embodiments of the present invention may be modified into various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. The present embodiments are provided to enable those skilled in the art to more fully understand the present invention. Therefore, the shapes and the like of the elements in the drawings can be exaggeratedly expressed to emphasize a clearer description. It should be noted that in the drawings, the same members are denoted by the same reference numerals. In the drawings and the detailed description, the construction and operation of the surgical instrument, the neural probe, the intubation tube, and the neural surveillance system can be easily understood by those skilled in the art. Particularly, in the drawings and the detailed description of the drawings, detailed description and illustration of elements and structures of elements that are not directly related to the technical features of the present invention are omitted and only a technical structure related to the present invention is shown briefly .
도 5는 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 구성도이다.5 is a configuration diagram of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템(100)은 도 5에 도시된 바와 같이, 신경 탐침(110), 바이오 압력센서(120), 마이크로컨트롤러(130) 및 출력장치(140)를 포함하는 구성으로 이루어진다.5, the intraoperative nerve monitoring system 100 using the bio pressure sensor according to an embodiment of the present invention includes a nerve probe 110, a bio pressure sensor 120, a micro controller 130, (140).
신경 탐침(110)은 수술을 수행하고 있는 수술 대상 신체조직에서 의사가 수술을 수행하기 위하여 수술기구(10)를 이용하여 수술 중에 신경에 해당하는 부위인지 여부가 의심스러운 경우에 전기적인 자극을 수행한다. 신경 탐침(110)은 신경이 의심스러운 부위에 접촉하여 미세한 전기적인 자극을 주기 위하여 전원장치(미도시)로부터 전달되는 전류를 인가되도록 한다.The neurological probe 110 performs electrical stimulation when the surgeon uses the surgical instrument 10 to perform a surgical operation in a surgical tissue, do. The nerve probe 110 contacts the suspected portion of the nerve and applies a current from a power supply (not shown) to give a fine electrical stimulus.
의사들은 일반적으로 수술기구(10)를 이용하여 수술하는 중에 신경으로 의심되는 부위를 발견하면 수술기구(10)를 놓고, 신경 탐침(110)으로 교체하여 신경에 전기적인 자극을 주는데 최근 대한민국 등록특허 제10-1731004호 “신경 탐침이 부착된 에너지 디바이스 수술기구”에서는 수술기구(10)와 신경 탐침(110)을 일체화한 수술기구를 제시한다. The surgeon generally uses the surgical instrument 10 to find a suspected nerve area during surgery. When the surgeon places the surgical instrument 10, the surgeon substitutes the nerve probe 110 for electric stimulation to the nerve. Recently, 10-1731004 entitled " Energy Device Surgical Instrument Attached with a Neural Probe " discloses a surgical instrument in which a surgical instrument 10 and a neural probe 110 are integrated.
바이오 압력센서(120)는 신체의 근육과 근육에 접촉되는 피부나 접촉면 사이에 위치하여 상기 신경 탐침(110)을 통하여 신경으로 의심되는 부위에 자극을 주면 해당 부위가 신경에 해당하는 경우, 신경 탐침(110)에 의한 전기적인 자극에 의한 근육의 움직임이 발생하고, 근육의 움직임에 따른 압력의 변화를 감지한다. 바이오 압력센서(120)는 기계식 압력센서, 전기식 압력센서, 반도체식 압력센서, 스트레인 게이지식, 변위 센서, 가속도 센서, 광센서 등 압력을 측정하는 다양한 방법으로 압력을 측정할 수 있다.The bio-pressure sensor 120 is positioned between the skin and the contact surface contacting the muscles and muscles of the body. If the stimulus is given to the suspicious part through the nerve probe 110, if the corresponding part is the nerve, The movement of the muscles due to the electrical stimulation by the stimulation unit 110 occurs, and the change of pressure due to the movement of the muscles is sensed. The bio-pressure sensor 120 can measure pressure by various methods of measuring pressure, such as mechanical pressure sensors, electrical pressure sensors, semiconductor pressure sensors, strain gauges, displacement sensors, acceleration sensors, and optical sensors.
도 6의 (a)는 본 발명의 실시예에 따른 접촉형 바이오 압력센서의 예시도이다.6 (a) is an exemplary view of a contact-type bio-pressure sensor according to an embodiment of the present invention.
도 6의 (a)에 도시된 바와 같이, 바이오 압력센서(120)는 얇은 테이프 형태의 바이오 압력센서를 피부나 근육의 접촉면에 부착시키어 근육의 움직임에 의한 피부나 근육의 접촉면에서의 압력 변화를 감지한다. 6 (a), the bio-pressure sensor 120 attaches a thin tape-type bio-pressure sensor to the contact surface of the skin or muscles so that the pressure change on the skin or muscle contact surface due to the movement of the muscle Detection.
도 6의 (b)는 토끼 뒷다리 근육을 대상으로 한 종래 바늘전극과 본 발명의 실시예에 따른 접촉형 바이오 압력센서의 비교실험도이다. 6 (b) is a comparative experimental view of a conventional needle electrode for a rabbit hind leg muscle and a contact type bio pressure sensor according to an embodiment of the present invention.
도 6의 (b)에 도시된 바와 같이, 신경 탐침(110)에 의한 전기적인 자극에 의한 토끼의 뒷다리 근육의 근전도을 측정함에 있어, 종래의 바늘전극법과 접촉형 바이오 압력센서를 이용한 비교 실험하여 종래의 바늘전극법을 이용하는 경우, 바늘 삽입에 의한 통증, 출혈, 감염의 위험성이 있었으나, 바이오 압력센서(120)를 이용한 비침습적인 방법으로 측정한다. 6 (b), in the measurement of the electromyogram of the muscle of the hind leg of the rabbit by electrical stimulation by the nerve probe 110, a comparative experiment using a conventional needle electrode method and a contact type biosensor, There is a risk of pain, bleeding, or infection due to needle insertion, but the non-invasive method using the bio-pressure sensor 120 is used.
도 7의 (a)는 종래 바늘전극법을 이용하여 토끼 뒷다리 근육을 대상으로 측정한 근전도의 진폭 그래프의 예시도이고, 도 7의 (b)는 본 발명의 실시예에 따른 접촉형 바이오 압력센서를 이용하여 토끼 뒷다리 근육을 대상으로 측정한 근전도의 진폭 그래프의 예시도이다.7 (a) is a graph showing an amplitude graph of an electromyogram measured on a rabbit hind leg muscle using a conventional needle electrode method, and FIG. 7 (b) FIG. 2 is a graph showing an amplitude graph of an electromyogram measured using a rabbit hindlimb muscle. FIG.
도 7의 (a)에 도시된 바와 같이, 토끼 뒷다리 근육에 신경 탐침(110)을 이용하여 1mA의 신경 자극을 준 경우, 도 6의 (b)에서 측정되는 종래의 삽입된 바늘전극을 통해 측정된 근전도의 그래프를 보여주고 있으며, 도 7의 (b)에 도시된 바와 같이, 동일한 환경인 1mA의 신경 자극에 의한 부착형 바이오 압력센서에서 측정되는 근육 움직임에 의한 피부나 근육의 접촉면에서 압력 변화에 대한 아날로그 신호를 디지털 신호로 변환하여 나타나 그래프를 제시하고 있다. 신경 자극에 대한 진폭값에서는 두 가지 방법에 있어 그 차이를 비교할 수 없지만, 신경자극에 의한 근육의 움직임은 동일하게 감지할 수 있음을 알 수 있다.As shown in FIG. 7 (a), when the muscle of the rabbit hind leg is subjected to 1 mA of nerve stimulation using the neural probe 110, measurement is performed through the conventional inserted needle electrode measured in FIG. 6 (b) As shown in Fig. 7 (b), the pressure change at the contact surface of the skin or muscle due to the muscle movement measured by the attachment type bio-pressure sensor by the nerve stimulation of 1 mA, which is the same environment And a graph is presented by converting the analog signal to a digital signal. The amplitude values for the nerve stimulation can not be compared in the two methods, but it can be seen that the movement of the muscles by the nerve stimulation can be perceived in the same way.
도 8의 (a)는 본 발명의 실시예에 따른 성대근 삽입을 위한 기도삽관튜브에 부착되는 압력센서의 형상도이고, 도 8의 (b)는 돼지 후두 신경에 압력센서를 삽입한 후, 노출된 반회후두신경에 신경 탐침으로 자극하는 실험도이다.8 (a) is a view showing the shape of a pressure sensor attached to a tracheal intubation tube for insertion of a vocal cord according to an embodiment of the present invention, FIG. 8 (b) It is an experiment to stimulate the exposed laryngeal nerve with a neural probe.
도 8의 (a)에 도시된 바와 같이, 성대근 삽입을 위한 기도삽관튜브에 종래의 표면도출법을 이용한 근전도 측정을 위해 부착한 2개의 전극을 대신하여 기도삽관튜브의 표면에 화살표로 가르치는 부착형 바이오 압력센서(120)를 부착하여 신경 탐침(110)을 이용하여 자극한 신경에 따른 성대근육의 움직임에 따른 압력변화를 측정할 수 있다. 상기의 바이오 압력센서(120)는 기도삽관튜브의 표면에 둘러지도록 복수개가 설치될 수도 있으며, 하나의 바이오 압력센서(120)의 면적을 확장하여 기도삽관튜브의 표면을 둘러싸서 설치될 수도 있다.As shown in FIG. 8 (a), in the airway intubation tube for the insertion of the sacroiliac joint, an arrow mark is attached to the surface of the airway intubation tube in place of the two electrodes attached to the electromyogram measurement using the conventional surface derivation method Type bio pressure sensor 120 to measure the pressure change due to the movement of the vocal cord muscles according to the nerve stimulated by the nerve probe 110. [ The bio pressure sensor 120 may be installed to surround the surface of the intubation intubation tube or may be installed to surround the surface of the intubation intubation tube by expanding the area of the bio pressure sensor 120.
기도삽관튜브의 표면에 설치된 바이오 압력센서(120)는 압력의 변화를 측정하기 때문에 종래의 표면도출법에 의한 근전도 측정에 있어, 2개의 전극이 모두 접촉되지 않아 발생하는 신경유무판단의 불확실성이나 침이나 가래와 같은 액체성분에 따른 전기적 간섭이나 신호의 노이즈로 인한 측정상의 오류를 제거할 수 있다.Since the bio-pressure sensor 120 installed on the surface of the intubation tube of the intubation measures changes in pressure, it is difficult to determine whether the nerve is present or not due to the fact that the two electrodes are not in contact with each other in the EMG measurement by the conventional surface derivation method. It is possible to eliminate measurement errors due to electrical interference or signal noise due to a liquid component such as dust or sputum.
도 8의 (b)는 상기 바이오 압력센서(120)가 부착된 기관삽관 튜브로 전신 마취된 돼지에서 갑상선 수술 후, 노출된 반회후두신경에 화살표로 표시된 신경 탐침(110)으로 신경을 자극하고, 상기 기관삽관튜브에 부착된 바이오 압력센서(120)에서 측정된 성대근의 움직임을 확인할 수 있도록 출력장치(140)를 통해 보여주고 있다.FIG. 8 (b) is a graph showing the results of stimulation of the nerve by the nerve probe 110 indicated by arrows on the exposed laryngeal nerve after thyroid surgery in a pig anesthetized with the intubation tube with the bio-pressure sensor 120 attached thereto, And an output device 140 is provided to check the movement of the vocal cord muscle measured by the bio-pressure sensor 120 attached to the intubation tube.
도 9는 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 마이크로컨트롤러 구성도이다.9 is a microcontroller configuration diagram of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
도 9에 도시된 바와 같이, 마이크로컨트롤러(130)는 검출기(131), 필터(132), 증폭기(133), A/D변환기(134) 및 통신기(135)를 포함하는 구성으로 이루어져 상기 신경 탐침(110)에 의해 발생한 전기적인 자극에 따른 근육의 움직임을 상기 바이오 압력센서(120)로 검출하여 검출된 압력변화를 출력장치(140)에 전송한다.9, the microcontroller 130 comprises a configuration including a detector 131, a filter 132, an amplifier 133, an A / D converter 134 and a communicator 135, The bio-pressure sensor 120 detects the movement of the muscle due to the electrical stimulation generated by the bio-sensor 110 and transmits the detected pressure change to the output device 140.
검출기(131)는 상기 신경 탐침(110)으로 신경에 대한 전기적인 자극이 발생한 후 일정한 주기에 상기 바이오 압력센서(120)로부터 측정된 근육의 움직임에 따른 압력의 변화를 검출한다. 상기 신경 탐침(110)을 이용하여 신체의 일정부위에 전기적인 자극을 수행하면, 신경에 해당하는 경우에 일정한 간격 후에 근육의 움직임이 발생하는 한다. The detector 131 detects a change in pressure according to the movement of the muscle measured from the bio pressure sensor 120 at a predetermined period after the electrical stimulation of the nerve occurs with the nerve probe 110. When electrical stimulation is performed on a certain part of the body using the nerve probe 110, muscle movement occurs after a certain interval when corresponding to the nerve.
신경 탐침(110) 이외의 다른 요인으로 인하여 근육이 움직이는 것은 수술 중 신경에 해당하는지 여부를 탐지하고자 하는 신경감시시스템의 기술과 관련성이 없다. 따라서 검출기(131)는 상기 신경 탐침(110)의 전기적인 자극을 발생여부를 감지한 후, 상기 바이오 압력센서(120)에서 측정되는 근육의 움직임에 따른 압력의 변화를 검출하게 된다.Movement of the muscles due to other factors other than the nerve probe 110 is not related to the technique of the neural surveillance system to detect whether or not it is a nerve during surgery. Therefore, the detector 131 detects whether electrical stimulation of the nerve probe 110 is generated, and then detects a change in pressure according to the movement of the muscle measured by the bio-pressure sensor 120.
필터(132)는 상기 검출기(131)로부터 전송된 압력의 변화에 잡음으로서 추가될 수 있는 고주파나 저주파의 신호를 제거한다. 바이오 압력센서(120)의 경우에 정밀하기 때문에 노이즈가 발생할 수 있어 보다 정확한 압력의 변화를 나타내기 위해 필터(132)를 이용하여 노이즈를 제거할 수 있다.The filter 132 removes high frequency or low frequency signals that can be added as noise to the change in pressure transmitted from the detector 131. In the case of the bio-pressure sensor 120, noise may be generated due to the precision, so that the noise can be removed by using the filter 132 to exhibit a more accurate pressure change.
증폭기(133)는 상기 필터(132)를 통해 노이즈가 제거된 압력 변화에 따른 진폭을 증대시킨다. 수술 중에 신경을 정확히 확인하는 것은 매우 중요한 부분이기 때문에 신경의 자극에 따른 근육의 움직임을 보다 정확하게 확인할 수 있도록 조금만 압력의 변화에 대하여도 쉽게 확인할 수 있도록 상기 증폭기(133)를 통해 상기 필터(132)로부터 입력된 신호를 증폭시킬 필요가 있다.The amplifier 133 increases the amplitude according to the noise-removed pressure change through the filter 132. [ Since it is very important to accurately identify the nerve during surgery, the filter 132 is connected to the amplifier 133 through the amplifier 133 so that the change of the pressure can be easily confirmed so that the movement of the muscle due to the stimulation of the nerve can be more accurately confirmed. It is necessary to amplify the input signal.
A/D변환기(134)는 상기 검출기(131) 또는 증폭기(133)로부터 전송된 압력의 변화에 대한 아날로그 신호를 디지털 신호로 변환한다. 디지털 장치의 발전과 아날로그 신호에 대한 분해능이 향상되어 센서로부터 측정된 값을 수신하여 출력하거나 전송하는 최근의 많은 장치들이 디지털 신호를 이용하므로, 상기 바이오 압력센서(120)로부터 측정된 압력 변화에 따른 아날로그 신호를 A/D변환기(134)를 통하여 디지털 신호로 변환한다.The A / D converter 134 converts an analog signal corresponding to a change in pressure transmitted from the detector 131 or the amplifier 133 into a digital signal. As the development of the digital device and the resolution of the analog signal are improved, many recent devices that receive, output or transmit the measured values from the sensor use digital signals, And converts the analog signal into a digital signal through the A / D converter 134. [
통신기(135)는 상기 A/D변환기(134)로부터 변환된 압력 변화에 대한 디지털 신호를 유선 또는 무선으로 출력장치(140)에 전송한다. 통신기(135)는 압력 변화에 대한 디지털 신호를 출력장치(140)에 전송하는데 있어, 랜선이나 광케이블 등의 유선의 경우에는 유선방식으로 전송하며, 와이파이(WiFi), 블루투스 등 무선의 경우에는 무선방식으로 전송한다.The communicator 135 transmits the digital signal corresponding to the pressure change converted from the A / D converter 134 to the output device 140 by wire or wirelessly. The communicator 135 transmits the digital signal corresponding to the pressure change to the output device 140. In the case of wireless such as WiFi and Bluetooth, Lt; / RTI >
도 10은 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템의 근전도 출력장치의 예시도이다.10 is an exemplary diagram of an electromyography output device of an intraoperative nerve monitoring system using a bio pressure sensor according to an embodiment of the present invention.
도 10에 도시된 바와 같이, 출력장치(140)는 상기 마이크로컨트롤러(130)의 통신기(135)로부터 수신된 압력 변화에 따른 디지털 신호를 수신하여 사용자에게 출력한다. 출력장치(140)는 사용자가 수술 중에 신경에 해당하는지 여부를 쉽게 알아볼 수 있도록 시각적으로 표현된 그래프나 청각적으로 경고음을 통해 출력될 수 있다. 10, the output device 140 receives a digital signal corresponding to the pressure change received from the communicator 135 of the microcontroller 130, and outputs the digital signal to the user. The output device 140 may be visually represented graphically or audibly through a warning tone so that the user can easily recognize whether the user is nervous during surgery.
출력장치(140)는 시각적으로 화면을 제공하는 유선 또는 무선의 모니터(141)가 일반적으로 이용될 수 있으며, 무선 통신을 이용하여 사용자의 휴대기기(142)를 통해서도 나타날 수 있으며, 청각적인 경고음도 함께 출력될 수 있다. Output device 140 may be typically a wired or wireless monitor 141 that provides a visual display and may also appear through the user's portable device 142 using wireless communication and may also include an audible beep Can be output together.
상술한 바와 같은, 본 발명의 실시예에 따른 바이오 압력센서를 이용한 수술 중 신경감시시스템을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.Although the intraoperative nerve monitoring system using the bio pressure sensor according to the embodiment of the present invention has been described with reference to the above description and drawings, it should be understood that the present invention is not limited to the described embodiments, It will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the spirit and scope of the invention.
본 발명의 바이오 압력센서를 이용한 수술 중 신경감시시스템은 수술을 수행하는 중에 신경 손상에 따른 합병증을 예방하기 위해 신경에 해당하는 부분을 확인하기 위해 신경자극에 따른 해당 근육의 근전도 측정을 위해 종래 전극을 삽입하거나 인체 표면의 근육운동에 의한 활동 전위 변화를 측정하는 것이 아니라 해당 근육의 움직임으로 인하여 발생하는 피부나 근육의 접촉면에서 표면의 압력 변화를 바이오 압력센서를 이용하여 측정하고, 측정된 압력변화를 유선 또는 무선으로 전송하여 사용자에게 시각적으로 그래프나 청각적인 경고음을 통해 신경임을 확인시켜 줄 수 있으며, 나아가 측정된 결과를 무선통신을 통해 휴대기기에 전송하여 휴대기기에서 용이하게 확인할 수 있어 신경과 관련된 수술에 대한 의학분야에 있어 이용가능성이 매우 높다.The surgical nerve monitoring system using the bio-pressure sensor of the present invention is a system for measuring the electromyography of a corresponding muscle according to nerve stimulation in order to identify a portion corresponding to a nerve in order to prevent complications due to nerve damage during surgery, The pressure change on the surface of the skin or muscle caused by the movement of the muscle is measured using a bio-pressure sensor, and the measured pressure change Can be transmitted by wire or wireless so that the user can be visually confirmed through a graph or an acoustic warning sound. Further, the measured result can be transmitted to a portable device through wireless communication and can be easily confirmed on a portable device. It is available in the medical field for related surgery. High.

Claims (3)

  1. 수술을 수행하고 있는 수술 대상 신체조직에서 의사가 수술을 수행하기 위하여 수술 중에 신경에 해당하는 부위인지 여부가 의심스러운 경우에 전기적인 자극을 수행하는 신경 탐침;A neurostimulator that performs electrical stimulation when a surgeon performs a surgical operation and the surgeon suspects that the surgeon is suspected to be a site corresponding to a nerve to perform surgery;
    신체의 근육과 근육에 접촉되는 피부나 접촉면 사이에 위치하여 상기 신경 탐침을 통하여 신경으로 의심되는 부위에 자극을 주면 해당 부위가 신경에 해당하는 경우, 근육의 움직임이 발생하고, 근육의 움직임에 따른 압력의 변화를 감지하는 바이오 압력센서;It is located between the skin and the contact surface of the body that is in contact with the muscles and muscles of the body. If a stimulus is given to the suspected nerve region through the nerve probe, if the corresponding region is a nerve, muscle movement occurs, A bio pressure sensor for detecting a change in pressure;
    상기 신경 탐침에 의해 발생한 전기적인 자극에 따른 근육의 움직임을 상기 바이오 압력센서로 검출하여 검출된 압력 변화를 출력장치에 전송하는 마이크로컨트롤러; 및A microcontroller for detecting a movement of a muscle due to electrical stimulation generated by the nerve probe by the bio pressure sensor and transmitting the detected pressure change to an output device; And
    상기 마이크로컨트롤러로부터 수신된 압력 변화에 따른 디지털 신호를 수신하여 사용자에게 출력하는 출력장치;를 포함하여 이루어지는 것을 특징으로 하는 바이오 압력센서를 이용한 수술 중 신경감시시스템.And an output device for receiving a digital signal corresponding to a pressure change received from the microcontroller and outputting the digital signal to a user.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 바이오 압력센서는,The bio-pressure sensor includes:
    기계식 압력센서, 전기식 압력센서, 반도체식 압력센서, 스트레인 게이지식, 변위 센서, 가속도 센서, 광센서를 이용하여 압력을 측정하는 것을 특징으로 하는 바이오 압력센서를 이용한 수술 중 신경감시시스템.An intraoperative neural surveillance system using a bio pressure sensor, characterized in that the pressure is measured using a mechanical pressure sensor, an electric pressure sensor, a semiconductor pressure sensor, a strain gauge, a displacement sensor, an acceleration sensor, and an optical sensor.
  3. 제 1항 및 제 2항에 있어서,3. The method according to claim 1 or 2,
    마이크로컨트롤러는,The microcontroller,
    상기 신경 탐침으로 신경에 대한 전기적인 자극이 발생한 후 일정한 주기에 상기 바이오 압력센서로부터 측정된 근육의 움직임에 따른 압력의 변화를 검출하는 검출기;A detector for detecting a change in pressure according to movement of the muscle measured from the bio pressure sensor at a predetermined period after electrical stimulation of the nerve occurs with the nerve probe;
    상기 검출기로부터 전송된 압력의 변화에 대한 아날로그 신호를 디지털 신호로 변환하는 A/D변환기; 및An A / D converter for converting an analog signal corresponding to a change in pressure transmitted from the detector into a digital signal; And
    상기 A/D변환기로부터 변환된 압력 변화에 대한 디지털 신호를 유선 또는 무선으로 출력장치에 전송하는 통신기;를 포함하여 이루어지는 것을 특징으로 하는 바이오 압력센서를 이용한 수술 중 신경감시시스템.And a communicator for transmitting the digital signal corresponding to the pressure change converted from the A / D converter to the output device by wire or wireless.
PCT/KR2018/009287 2017-08-30 2018-08-13 Intraoperative nerve monitoring system using bio pressure sensor WO2019045321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0110330 2017-08-30
KR1020170110330A KR102062252B1 (en) 2017-08-30 2017-08-30 Intraoperative Neuromonitoring System Using Bio-pressure Sensor

Publications (1)

Publication Number Publication Date
WO2019045321A1 true WO2019045321A1 (en) 2019-03-07

Family

ID=65527742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009287 WO2019045321A1 (en) 2017-08-30 2018-08-13 Intraoperative nerve monitoring system using bio pressure sensor

Country Status (2)

Country Link
KR (1) KR102062252B1 (en)
WO (1) WO2019045321A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366309A (en) * 2022-01-17 2022-04-19 上海锦立城医疗科技有限公司 Surgical robot with nerve monitoring function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745034B1 (en) * 2006-06-19 2007-08-01 이우철 Integrative muscle function analysis device
JP2011500144A (en) * 2007-10-09 2011-01-06 イムセラ・メディカル・インコーポレーテッド System and method for neural stimulation
KR20110010828A (en) * 2008-06-02 2011-02-07 워쏘우 오르쏘페딕 인코포레이티드 Method, system and tool for surgical procedures
JP2015507948A (en) * 2012-01-26 2015-03-16 オートノミクス メディカル,インコーポレーテッド Controlled sympathectomy and microcautery system and method
JP2015513988A (en) * 2012-04-09 2015-05-18 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with nerve detection function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592493B2 (en) * 1988-04-09 1997-03-19 コーリン電子株式会社 Muscle relaxation monitor
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
KR100877229B1 (en) * 2007-05-14 2009-01-09 가천의과학대학교 산학협력단 Neural electronic interface device for motor and sensory controls of human body
MX344095B (en) * 2011-03-24 2016-12-05 Univ Louisville Res Found Inc Neurostimulator.
KR101270935B1 (en) 2012-01-19 2013-06-11 서울대학교산학협력단 Apparatus and methods of intraoperative monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745034B1 (en) * 2006-06-19 2007-08-01 이우철 Integrative muscle function analysis device
JP2011500144A (en) * 2007-10-09 2011-01-06 イムセラ・メディカル・インコーポレーテッド System and method for neural stimulation
KR20110010828A (en) * 2008-06-02 2011-02-07 워쏘우 오르쏘페딕 인코포레이티드 Method, system and tool for surgical procedures
JP2015507948A (en) * 2012-01-26 2015-03-16 オートノミクス メディカル,インコーポレーテッド Controlled sympathectomy and microcautery system and method
JP2015513988A (en) * 2012-04-09 2015-05-18 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with nerve detection function

Also Published As

Publication number Publication date
KR20190023914A (en) 2019-03-08
KR102062252B1 (en) 2020-01-03

Similar Documents

Publication Publication Date Title
US6725086B2 (en) Method and system for monitoring sedation, paralysis and neural-integrity
US8882679B2 (en) Neural monitoring system
CA1191207A (en) Vaginal myograph method and apparatus
US5131401A (en) Method and apparatus for monitoring neuromuscular blockage
US8343065B2 (en) Neural event detection
AU752978B2 (en) A medical measuring system
JP2021164702A (en) Quantitative neuromusculature blockade sensing systems and methods
WO2013019069A2 (en) Apparatus for measuring and treating dysphagia
US20090105788A1 (en) Minimally invasive nerve monitoring device and method
US20120245482A1 (en) Anesthesia Monitoring Device and Method
US20210022647A1 (en) System and Method for Motion Detection and Accounting
CN113274038B (en) Lip-shaped sensor device combining myoelectricity and pressure signals
US20210290144A1 (en) Monitoring device and method for controlling threshold thereof
WO2017026829A1 (en) Vibration detection apparatus
US20090326387A1 (en) Electrocardiogram and Respiration Monitoring in Animals
WO2011129474A1 (en) Device and method for monitoring pulmonary function using impedance of both hands
WO2019045321A1 (en) Intraoperative nerve monitoring system using bio pressure sensor
WO2017010795A1 (en) Epidural checkpoint
WO2023003229A1 (en) Neuromonitoring apparatus and control method therefor
WO2012115346A2 (en) Device and method for facial nerve monitoring
CN210961971U (en) Nerve monitoring system
CN211131065U (en) Split type nerve monitoring system
KR100555065B1 (en) Blood Vessel Diagnosis Apparatus
WO2021040390A1 (en) Polysomnography system using rabbit model
CN109937003A (en) System and method for placing spinal stimulator lead

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851164

Country of ref document: EP

Kind code of ref document: A1