WO2011129474A1 - Device and method for monitoring pulmonary function using impedance of both hands - Google Patents

Device and method for monitoring pulmonary function using impedance of both hands Download PDF

Info

Publication number
WO2011129474A1
WO2011129474A1 PCT/KR2010/002392 KR2010002392W WO2011129474A1 WO 2011129474 A1 WO2011129474 A1 WO 2011129474A1 KR 2010002392 W KR2010002392 W KR 2010002392W WO 2011129474 A1 WO2011129474 A1 WO 2011129474A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
signal
pulmonary function
pulmonary
lung
Prior art date
Application number
PCT/KR2010/002392
Other languages
French (fr)
Korean (ko)
Inventor
조승현
이종수
이계형
심명헌
윤욱진
정운모
Original Assignee
(주)누가의료기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)누가의료기 filed Critical (주)누가의료기
Publication of WO2011129474A1 publication Critical patent/WO2011129474A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body

Definitions

  • the present invention relates to a pulmonary function monitoring system capable of extracting parameters used for pulmonary function evaluation by measuring the electrical impedance of a living body, and more particularly, by measuring the bioelectrical impedance from both hands of a subject through a hand grip type electrode.
  • IPFS Non-invasive and non-constrained extraction of the pulmonary function impedance signal
  • It relates to a pulmonary function monitoring device and method using two-hand impedance that can solve the constraint.
  • Common pulmonary function tests are to check the ventilation function of the lungs by covering the nose and breathing only through the mouth, evaluating the diffusion ability of gas through alveolar capillary membrane, and pulmonary circulation function test by cardiac catheter method.
  • the value is integrated to extract the volume of the lung and the parameters FVC, FEV1 Ratio of FEV1 / FVC for the evaluation of lung function are calculated from the volume value. Extract.
  • close cooperation between the examiner and the examinee is essential for accurate testing of the pulmonary function test by these methods.
  • this pulmonary function test method is not a painful and painful test, but because the pulmonary function test device is inserted into the oral cavity to check the maximum volume of breath, it is necessary to breathe quickly, much, harder, and tolerate the patient. There is a problem that can cause. In addition, there is a problem that the restraint side is followed by a long inspection time and accompanying the necessary experts.
  • the bioelectrical impedance detection system In order to detect the pulmonary function state through the bioelectrical impedance detection system, it is required to have a high-precision resolution within ⁇ 5) (ohm), but the measurement resolution of a general impedance system shows a resolution of 10 ⁇ (ohm) to 1K ⁇ (kohm). Therefore, since the base impedance of the human body must be used with extremely limited, the measurement resolution for change in impedance was inevitably small.
  • the general impedance measurement system uses a measurement method using a two-pole electrode in which current input and voltage measurement are performed at one electrode, and thus the influence of impedance due to contact impedance and frequency occurs when measuring impedance change due to respiration. There was a problem.
  • One embodiment of the present invention for achieving the above object is made of a hand grip type mounted on the hand of one side, the first current electrode (CH) for supplying a fine current and the first voltage electrode (VH) for detecting a voltage
  • a differential amplifier configured to differentially amplify a potential difference measured by the voltage electrode of the first impedance measuring unit and the voltage electrode of the second impedance measuring unit, and output a difference value of an impedance signal for two points of the human body
  • An AC / DC converter for converting the potential difference amplified by the differential amplifier into a direct current form and extracting a human body impedance signal (human impedance value) from an impedance signal amplified and DC biased through the differential amplifier; Detecting a pulmonary functional impedance signal
  • the pulmonary function monitoring device further includes a pulmonary function evaluation element extracting unit for extracting a parameter for pulmonary function state evaluation from the pulmonary function impedance signal detected by the base impedance feedback unit.
  • the pulmonary function evaluation element extracting unit sequentially detects the peak value and the lowest value of the pulmonary function impedance signal (IPFS) output from the base impedance feedback unit, and uses a time index and amplitude information of each value to determine a time interval between the peak value and the lowest value. Calculate the amplitude and amplitude, and try hard lung capacity (FVC), exhalation volume for 1 second (FEV1), exhalation volume for 1 second, and coercive lung capacity (FEV1 / FVC), maximum effort exhalation flow rate (FEF25-75) %) Detect the parameter.
  • FVC hard lung capacity
  • FEV1 exhalation volume for 1 second
  • FEV1 / FVC coercive lung capacity
  • FEF25-75 maximum effort exhalation flow rate
  • the base impedance feedback unit may include: a first low pass filter extracting only a DC component included in the non-inverted and amplified signal by low-pass filtering the impedance signal output from the AC / DC converter to a cutoff frequency of 0.03 Hz; A first differential amplifier differentially amplifying the low pass filtered DC component at an output of the first non-inverting amplifier and a cutoff frequency of 0.03 Hz to remove only the DC component included in the non-inverted amplified impedance signal; A high pass filter for passing a frequency signal of a cutoff frequency of 0.03 Hz or more among the signals differentially amplified by the first differential amplifier; And a second low pass filter configured to pass a frequency signal having a cutoff frequency of 100 Hz or less among the output signals of the high pass filter.
  • the base impedance feedback unit further includes a first non-inverting amplifier between the AC / DC converter and the first low pass filter to amplify the impedance signal output from the AC / DC converter to the first low pass. And a second non-inverting amplifier after the second low pass filter to output the second low pass filter.
  • the basic base impedance signal of the measurement site through the current input and voltage measurement by each electrode of the hand grip form from both hands of the subject the lung volume according to the breath (volume Physiological signal detection unit for detecting pulmonary function impedance signal (IPFS) indicating a temporal change of), pulmonary function evaluation element extraction unit for extracting parameters for pulmonary function state evaluation from pulmonary function impedance signal detected by the biosignal detection unit, Using a two-handed impedance including a main control unit for controlling the operation of the signal detection unit and the pulmonary function evaluation element extraction unit, and a data storage unit for storing the pulmonary function impedance signal detected by the biosignal detection unit and the signal extracted by the pulmonary function evaluation element extraction unit Pulmonary function monitoring device.
  • IPFS pulmonary function impedance signal
  • Another embodiment of the present invention for achieving the above object is a display that is operated by the control of the main control unit, and displays a user-induced graph that can induce the actual maximum inspiratory and maximum exhalation of the subject to detect the correct lung function data
  • Pulmonary function monitoring device using a two-handed impedance further comprises a wealth.
  • the biosignal detection unit feeds back an initial base impedance detected from a measurement site to a pulmonary functional impedance signal representing a temporal change in lung volume due to respiration, thereby providing a basic base impedance signal of the measurement site.
  • a base impedance feedback unit for detecting the removed closed function impedance signal.
  • Another embodiment of the present invention for achieving the above object is a bio-signal detection unit for detecting a pulmonary functional impedance signal indicating a temporal change in the base impedance, lung volume through the current inlet and potential difference measurement, pulmonary functional impedance signal
  • a pulmonary function monitoring method in a pulmonary function test apparatus having a pulmonary function evaluation element extracting unit extracting a plurality of parameters for pulmonary function state evaluation from Impedance detection step of detecting pulmonary functional impedance signal (IPFS) including basic base impedance and pulmonary function evaluation element of the measurement site from both hands of the subject, and detecting peak and lowest value from pulmonary functional impedance signal to evaluate lung function.
  • IPFS pulmonary functional impedance signal
  • Extraction of pulmonary function evaluation factors that extract parameters used A lung function monitoring method using both hands and impedance comprising a series.
  • a closed function impedance signal detected by the biosignal detection unit is fed back to an initial base impedance previously detected at a measurement site, thereby removing the basic base impedance signal of the measurement site.
  • a feedback processing step of detecting an impedance signal is performed.
  • the pulmonary function impedance signal (IPFS) detected through the biosignal detection unit is low-pass filtered to improve the signal-to-noise ratio (SNR) and have no effect on respiration.
  • a first step of acquiring IPFS data including a second step of establishing a baseline (threshold) for an initial predetermined time using the IPFS data obtained in the first step, and a peak value of the IPFS data when the initial predetermined time elapses.
  • the third step of detecting the lowest value sequentially and when the peak value and the lowest value are obtained through sequential detection, the time interval and amplitude between the peak value and the lowest value are calculated using the time index and amplitude information of each value, and the calculated Using the results of the two pieces of information, the effort-assisted lung capacity (FVC), the expiratory volume for one second (FEV1), and the ratio between the expiratory volume and the effort-related spirometry for one second are used.
  • FVC effort-assisted lung capacity
  • FEV1 the expiratory volume for one second
  • FEF25-75% the best effort castle middle expiratory flow
  • the pulmonary function monitoring system using the two-hand impedance according to the development of the pulmonary function impedance measurement system having a high precision resolution, such as flow-volume curve, FVC, FEV1, FEV25%, etc. It is possible to detect and correlate with actual pulmonary function test clinical equipment such as Sensormedics' Vmax Encore, which makes it easier and more applicable to the detection of pulmonary function status.
  • the present invention detects the pulmonary functional state through the electrical impedance method according to the non-binding and non-invasive detection of the basic impedance of the human body through the bioelectrical impedance measurement system and fed back to the pulmonary functional state detection system It will be able to resolve the inconvenience of functional testers will be able to actively use for long-term monitoring of lung function and early diagnosis of the disease.
  • the present invention unlike the indirect parameter detection system that can infer the pulmonary function state using the conventionally developed impedance, the same FVC, FEV1 as the pulmonary function test (Pulmonary Function Test) to evaluate the state of pulmonary function by direct breathing
  • the FEF25-75% parameters can be detected directly, providing a high-resolution resolution impedance system that is significantly different from existing impedance systems.
  • FIG. 1 is a block diagram schematically showing the overall configuration of a lung function monitoring apparatus using two-hand impedance according to an embodiment of the present invention.
  • FIG. 2 and 3 are a detailed view of the electrode and the configuration example of FIG.
  • FIG. 4 is a detailed view of the base impedance feedback unit of FIG. 1.
  • FIG. 5 is a reference diagram illustrating a display example of the display unit of FIG. 1.
  • FIG. 6 is an operation flowchart illustrating a data processing performed in the lung function evaluation element extractor of FIG. 1.
  • FIG. 7 is an exemplary flow and volume graph for pulmonary function states measured through bioelectrical impedances.
  • FIG. 8 is an exemplary diagram of a lung function evaluation graph obtained from the bioelectrical impedance measured by the present invention.
  • FIG. 1 is a block diagram schematically showing the overall configuration of a device for monitoring lung function using two-hand impedance according to an embodiment of the present invention
  • Figures 2 and 3 is a detailed view of the electrode portion of Figure 1
  • Figure 4 is Figure 1 Detailed diagram of the base impedance feedback unit.
  • the apparatus for monitoring lung function may include a biosignal detection unit 100, a lung function evaluation element extracting unit 200, a main control unit 300, a data storage unit 400, And a display unit 500.
  • the biosignal detector 100 includes a base impedance detector including electrodes 101 and 102, a sine wave generator 111, a constant current source 112, a differential amplifier 113, and an AC / DC converter 114 for detecting a base impedance signal. 110 and the base impedance feedback unit 120, the current injection and voltage measurement through each electrode to measure the basic base impedance signal of the measurement site, the time change of the lung volume (volume) according to breathing Detects a closed function impedance signal (IPFS).
  • IPFS closed function impedance signal
  • the base impedance detection unit 110 is an H / W that measures the basic base impedance of the measurement site before the parameter detection for pulmonary function evaluation through impedance, and has 1k ⁇ [kohm] ⁇ 3k ⁇ of the existing impedance hardware. Anything with a range of [kohm] can be used.
  • the sine wave generator 111 is a device for generating a sine wave signal for supplying to an electrode, and may be configured as a wein bridge oscillator or the like for generating a high frequency signal required for current injection into a human body.
  • the constant current source 112 converts a sine wave signal output from the sine wave generator 111 into a constant current source and injects the measured current through the current electrode.
  • the constant current source 112 converts the output of the sine wave generator into a constant current and sends it out to the current electrode.
  • the electrodes 101 and 102 are sensor devices consisting of a tetrapolar electrode in the form of a hand grip, and include a first current electrode CH, a first voltage electrode VH, a second current electrode CL, and a second voltage electrode ( VL) to inject a current directly into the measurement site and to measure the voltage change according to the change in the bioelectrical impedance, and to form an electrode of the hand grip type as shown in FIGS. 2 and 3.
  • Such an electrode supplies a constant current supplied from the constant current source 112 to the measurement site of the subject through the first current electrode CH and the second current electrode CL, and thus is generated at the two measurement sites. The potential difference is measured through the first voltage electrode VH and the second voltage electrode VL.
  • the present invention it is possible to minimize the influence of the impedance according to the contact impedance and the frequency when measuring the impedance change due to respiration, in particular the output impedance of the constant current source and the input impedance of the AC Volt meter between the electrode impedance and the electrode and skin If the contact resistance is considerably larger than the impedance of the electrode and the contact resistance of the electrode can be minimized.
  • the differential amplifier 113 differentially amplifies the potential difference measured by the two voltage electrodes VH and VL and outputs a difference value of an impedance signal for two points of the human body.
  • the AC / DC converter 114 converts the potential difference amplified by the differential amplifier 113 into a DC form and outputs it. In other words, by converting the amplified potential difference in the form of direct current, the human body impedance value is extracted from the amplified and DC biased impedance signal through the differential amplifier.
  • the base impedance feedback unit 120 includes a first non-inverting amplifier 121, a first differential amplifier 122, a high pass filter (HPF) 123 having a cutoff frequency of 0.03 Hz, and a cutoff frequency of 100 Hz. And a low pass filter (LPF) 124, a second non-inverting amplifier 125, and a low pass filter (LPF) 126 having a cutoff frequency of 0.03 Hz, indicating a temporal change in lung volume due to respiration.
  • HPF high pass filter
  • LPF low pass filter
  • the initial base impedance detected from the measurement site is fed back to the lung function impedance signal, and the lung function impedance signal from which the basic base impedance signal of the measurement site is removed is detected and supplied to the lung function evaluation element extracting unit 200.
  • the change in lung volume is a value representing volume
  • the change in impedance is also a voltage value representing change in lung volume, so that the two values are values that maintain correlation with each other.
  • the first non-inverting amplifier 121 amplifies the closed function impedance signal detected from the measurement site.
  • the low pass filter 126 low-pass filters the output of the first non-inverting amplifier 121 at a cutoff frequency of 0.03 Hz to extract only a DC component included in the non-inverted amplified signal.
  • the first differential amplifier 122 differentially amplifies the low-pass filtered DC component at an output of the first non-inverting amplifier 121 and a cutoff frequency of 0.03 Hz to remove and output only the DC component included in the non-inverted amplified impedance signal. . That is, the first differential amplifier 122 amplifies the difference between the signal amplified by the first non-inverting amplifier 121 and the initial base impedance signal fed back (the output signal of the low pass filter) to remove the base impedance. Output an impedance signal.
  • the high pass filter (HPF) 123 is a filter for passing all frequency signals above the cutoff frequency and attenuating all other frequency signals among the signals differentially amplified through the first differential amplifier 122.
  • the AC signal passes through an amplifier 122 having a cutoff frequency of 0.03 Hz or more.
  • the low pass filter (LPF) 124 is a filter that passes all frequency signals below the cutoff frequency and attenuates all other frequency signals among the high pass filtered signals.
  • the low pass filter (LPF) is filtered through the high pass filter (HPF). Pass a DC signal with a cutoff frequency of 100 Hz or less among the signals.
  • the second non-inverting amplifier 125 sequentially non-inverts and amplifies the high-pass filtered and low-pass filtered signals again through the two filters, and outputs a pulmonary functional impedance signal IPFS including a pulmonary function evaluation element.
  • the pulmonary function evaluation element extracting unit 200 is a device for extracting a parameter for pulmonary function state evaluation from the pulmonary function impedance signal detected by the biosignal detection unit 100, and the pulmonary function impedance signal output from the biosignal detection unit 100.
  • Effort spirometry used for pulmonary function evaluation by detecting peaks and troughs (IPFS) sequentially and calculating time intervals and amplitudes between peaks and troughs using time index and amplitude information for each value.
  • Initial expiratory volume (FEV1), ratio of exhaled volume and cooperative spirometry for 1 second (FEV1 / FVC), and hardest peak expiratory flow rate (FEF25-75%) parameters are obtained.
  • FVC Forced Vital Capacity, which means the maximum amount of air that can be exhaled to the maximum after inhaling maximum breathing capacity
  • FEV1 stands for Forced Expiratiory Volume in 1s. Air volume (air quality indicator,% PRED is 80-100% normal)
  • FEV1 / FVC is the ratio of FEV1 and FVC
  • FEF25-75% is the slope of 25-75% of FEV1. (Medium / small airway evaluation index, and% PRED is 75 ⁇ 100% normal).
  • the main control unit 300 controls the operations of the biosignal detection unit 100 and the lung function evaluation element extraction unit 200.
  • the data storage unit 400 stores the lung function impedance signal detected by the biosignal detection unit 100 and the signals extracted by the lung function evaluation element extraction unit 200.
  • the display unit 500 is operated under the control of the main controller 300, and as shown in FIG. 5, a user-induced graph capable of inducing the actual maximum inspiration and the maximum exhalation of the subject to detect the correct lung function data. Display.
  • the display unit 500 is a current source that is introduced into the current measurement site through the electrode in the bio-signal detection unit 100, AC impedance, base impedance, lung volume measured directly from both hands in the bio-signal detection unit Displays a pulmonary function impedance signal representing the temporal change of the signal.
  • the pulmonary function monitoring method includes a basic base impedance and pulmonary function evaluation element of the measurement site from both hands of the subject through current input and voltage measurement through each electrode in the biosignal detection unit.
  • Impedance detection step of detecting each of the pulmonary function impedance signal (IPFS)
  • IPFS pulmonary function impedance signal
  • the pulmonary function evaluation element extraction step of extracting the parameters used for pulmonary function evaluation by detecting the peak value and the lowest value from the pulmonary function impedance signal.
  • the impedance detection step feeds back the initial base impedance previously detected at the measurement site to the lung function impedance signal detected by the biosignal detection unit, and detects the lung function impedance signal from which the basic base impedance signal of the measurement site is removed. It is preferred to include a treatment step.
  • FIG. 6 is an operation flowchart illustrating a data processing process performed in the lung function evaluation element extractor of FIG. 1.
  • FIG. 7 is an exemplary view illustrating a flow and volume graph of a lung function state measured through bioelectrical impedance. Pulmonary function evaluation graph obtained from the bioelectrical impedance measured by the present invention is an exemplary view, Figure 9 is a lung function evaluation result obtained from the bioelectrical impedance measured by the present invention.
  • the data processing performed in the lung function evaluation element extracting unit 200 of the monitoring apparatus of FIG. 1 according to the present invention includes a lung function impedance signal (IPFS) detected through the biosignal detection unit as shown in the operation flowchart of FIG. 6.
  • IPFS lung function impedance signal
  • Efficacy spirometry (FVC), exhalation volume for 1 second (FEV1) and ratio of exhalation volume and exertion spirometry for 1 second (FEV1 / FVC), highest intermediary exhalation flow rate (FEF25-75%) It comprises a fourth step (S111, S112) to obtain a.
  • the first step is to feed back the lung function impedance signal detected by the biosignal detection unit to an initial base impedance previously detected at the measurement site, thereby detecting the lung function impedance signal from which the basic base impedance signal of the measurement part is removed. It is preferably configured to include a feedback processing step.
  • the data processing process of the monitoring apparatus is a fifth step (S104-1 ⁇ S104-) to obtain the flow curve change through the first derivative of the IPFS data with improved signal-to-noise ratio (SNR) through the first step It may also comprise 2).
  • the biosignal detection unit 100 generates a pulmonary functional impedance signal (IPFS) including basic base impedance and pulmonary function evaluation elements of the measurement site from both hands of the subject through current input and voltage measurement through each electrode. Detect.
  • IPFS pulmonary functional impedance signal
  • the lung function impedance signal detected by the biosignal detection unit may be fed back to the initial base impedance previously detected at the measurement site, and the basic function of the impedance signal may be removed to detect the lung function impedance signal. Will be.
  • the pulmonary function parameter extraction unit 200 reads the pulmonary function parameter detection signal IPFS using impedance (S101) and low-pass filtering (a minimum frequency of 1 Hz without affecting respiration). Through the SNR to obtain the IPFS data is improved (S102, S103).
  • a baseline (Threshold) is set for an initial predetermined time (for example, 3 seconds) by using the IPFS data obtained in the first step (S104, S105).
  • the data for the initial constant time (for example, data for 3 seconds) is the data for the stable time of the signal for the transient response, during which the initial baseline value is determined.
  • IPFS data is read afterwards and the IPFS data is compared with the baseline value (S106). If the IPFS data is larger than the preset baseline value as a result of the comparison, the peak value detection process is called to determine the IPFS data. Peak values are detected (S107, S108). When the detection of these peak values is completed, the lowest value detection process is called again to detect the lowest values of the IPFS data (S109, S110).
  • the fourth step calculates the time interval and the amplitude between the peak value and the lowest value using the respective time index and amplitude information (S111).
  • FVC, FEV1, Ratio of FEV1 / FVC, etc. which are parameters used for pulmonary function evaluation, are determined and detected (S112).
  • the fifth step it is possible to obtain a change in flow with respect to the impedance volume change through the first derivative of the IPFS data with the improved SNR in the first step (S104-1, S104-2).
  • a flow-volume curve appearing in a general PFT device can also be detected through an impednace.
  • impedance is a quantitative change of the air entering and exiting the lungs, that is, measuring the volume, so that when the volume is differentiated, the flow can be extracted, and as a result, the flow-volum curve of the PFT used in the existing clinic is detected in the same way. It is possible to maintain the measurement more easily.
  • the evaluation of the pulmonary function state using the electrical impedance method according to the present invention can replace the evaluation of the state of pulmonary function using the PFT sufficiently, and thus may cause patient's rejection and fatigue, and long examination time and expert companion are essential. It can be said to have a significant advantage over PFT inspection.
  • the output of the AC / DC converter 114 is amplified once more, and the difference between the amplified signal and the fed back base impedance signal is amplified again.
  • a resolution of ⁇ 3 k ⁇ [kohm] as well as a high resolution within ⁇ 5 ohm (ohm) can be detected, it is possible to extract the parameters for detecting the lung function state.
  • Pulmonary function monitoring system using the two-hand impedance of the present invention has a high precision resolution, it is possible to detect the flow parameters such as flow-volume curve, FVC, FEV1, FEV25%, which is a direct parameter used for pulmonary function evaluation, easier and more accurate lung function state Can be detected and actively utilized for long-term monitoring of lung function and early diagnosis of disease.
  • flow parameters such as flow-volume curve, FVC, FEV1, FEV25%

Abstract

The present invention relates to a device and a method for monitoring pulmonary function using the impedance of both hands, and aims to extract an impedance pulmonary function signal (IPFS), which indicates a change in a pulmonary volume, using the bioelectrical impedance detected from both hands of an evaluation subject. To this end, the present invention provides a device for monitoring the pulmonary function and a method using same, the device comprising: a base impedance signal which obtains a measured area by a current lead-in and a voltage measurement; a bio-signal detection unit that detects the IPFS, which indicates temporal changes of the pulmonary volume according to respiration; a pulmonary function evaluation factor extraction unit, which extracts a parameter for evaluating a pulmonary function condition from the IPFS that has been detected by the bio-signal detection unit; a main control unit, which controls the action of the bio-signal detection unit and the pulmonary function evaluation factor extraction unit; and a data storage unit, which stores the IPFS that has been detected by the pulmonary function evaluation factor extraction unit and the signal that has been extracted by the extraction unit. Therefore, the present invention can solve the restraints of the conventional pulmonary function tests and be actively utilized in long-term monitoring of the pulmonary function and early diagnosis of a disease.

Description

양손 임피던스를 이용한 폐기능 모니터링장치 및 방법Pulmonary function monitoring device and method using two-hand impedance
본 발명은 생체의 전기적 임피던스 측정을 통해 폐기능 평가에 사용되는 파라미터 추출이 가능한 폐기능 모니터링 시스템에 관한 것으로, 보다 상세하게는 생체전기 임피던스를 핸드그립 형태의 전극을 통해 피측정자의 양손으로부터 측정하여 호흡에 따른 폐 용적(volume)의 변화 추이를 알 수 있는 폐기능 임피던스 신호(Impedance Pulmonary Function Signal: 이하, IPFS 라 칭함)를 비침습적 및 비구속적으로 추출할 수 있도록 함으로써 기존의 폐기능 검사의 구속성을 해결할 수 있는 양손 임피던스를 이용한 폐기능 모니터링 장치 및 방법에 관한 것이다.The present invention relates to a pulmonary function monitoring system capable of extracting parameters used for pulmonary function evaluation by measuring the electrical impedance of a living body, and more particularly, by measuring the bioelectrical impedance from both hands of a subject through a hand grip type electrode. Non-invasive and non-constrained extraction of the pulmonary function impedance signal (hereinafter referred to as IPFS), which shows the change in lung volume due to respiration, can be performed. It relates to a pulmonary function monitoring device and method using two-hand impedance that can solve the constraint.
일반적인 폐기능 검사는 코를 막고 입으로만 숨을 쉬면서 폐의 환기기능을 검사하는 방법, 폐포 모세관 막을 뚫고 가스가 분포하는 확산 능력을 평가하는 방법, 심장 카테테르법 등에 의한 폐순환기능 검사 방법 등이 있으며, 일반적인 PFT장비에서는 공기의 흐름(Flow)을 측정한 후 그 값을 적분하여 폐 용적(Volume)을 추출하고 그 용적 값으로부터 폐기능 평가를 위한 파라미터 FVC, FEV1 Ratio of FEV1/FVC 등을 추출한다. 그러나 이들 방법들에 의한 폐기능 검사시 정확한 검사를 수행하기 위해서는 검사자와 피검사자 간의 긴밀한 협조가 반드시 필요하다.Common pulmonary function tests are to check the ventilation function of the lungs by covering the nose and breathing only through the mouth, evaluating the diffusion ability of gas through alveolar capillary membrane, and pulmonary circulation function test by cardiac catheter method. In general PFT equipment, after measuring the flow of air, the value is integrated to extract the volume of the lung and the parameters FVC, FEV1 Ratio of FEV1 / FVC for the evaluation of lung function are calculated from the volume value. Extract. However, close cooperation between the examiner and the examinee is essential for accurate testing of the pulmonary function test by these methods.
그러나 이러한 폐기능 검사방법은 물론 고통스럽고 아픈 검사는 아니지만 폐기능 검사기기를 구강에 삽입 후 최대 호흡량을 검사하는 것임에 따라 숨을 빨리, 많이, 세게 쉬기도 하고 참기도 해야 하므로 환자의 거부감 및 피로감을 유발할 수 있는 문제점이 있다. 또한 긴 검사 시간과 필수적인 전문가의 동반에 따라 구속적인 측면이 뒤따르게 되는 문제점이 있다.However, this pulmonary function test method, of course, is not a painful and painful test, but because the pulmonary function test device is inserted into the oral cavity to check the maximum volume of breath, it is necessary to breathe quickly, much, harder, and tolerate the patient. There is a problem that can cause. In addition, there is a problem that the restraint side is followed by a long inspection time and accompanying the necessary experts.
한편, 종래의 생체전기 임피던스(Bioelectrical impedance) 검출 시스템은 인체의 구성성분을 검출하는 몸체 임피던스(body Impedance)와 인체의 체적 변화를 검출하는 방법으로 기관, 사지 혹은 어떠한 해부학적 부위에서의 변화를 기록할 수 있는 전기 임피던스 체적기록계(Electrical Impedance Plethysmography)로 구분할 수 있다.On the other hand, conventional bioelectrical impedance detection system records changes in organs, limbs or any anatomical parts by detecting body impedance and body volume changes that detect components of the human body. Electric Impedance Plethysmography.
이러한 생체 전기적 임피던스 검출 시스템을 통해 폐기능 상태를 검출하기 위해서는 ±5Ω(ohm) 이내의 고정밀 분해능을 보유하여야 하나, 일반적인 임피던스 시스템의 측정 분해능은 10Ω(ohm) ~ 1KΩ(kohm) 단위의 분해능을 보이게 되므로, 인체가 가지고 있는 베이스 임피던스를 극히 제한적으로 사용하여야만 하므로, 이에 따라 Impedance 변화에 대한 측정 분해능이 극히 작을 수 밖에 없었다. In order to detect the pulmonary function state through the bioelectrical impedance detection system, it is required to have a high-precision resolution within ± 5) (ohm), but the measurement resolution of a general impedance system shows a resolution of 10Ω (ohm) to 1KΩ (kohm). Therefore, since the base impedance of the human body must be used with extremely limited, the measurement resolution for change in impedance was inevitably small.
또한 일반적인 임피던스 측정 시스템은 전류인입과 전압측정을 하나의 전극에서 수행하게 되는 2극 전극을 이용하는 측정 방법을 사용하게 되므로, 호흡에 따른 임피던스 변화 측정시 접촉 임피던스 및 주파수에 따른 임피던스의 영향이 발생하는 등의 문제점이 있었다.In addition, the general impedance measurement system uses a measurement method using a two-pole electrode in which current input and voltage measurement are performed at one electrode, and thus the influence of impedance due to contact impedance and frequency occurs when measuring impedance change due to respiration. There was a problem.
본 발명이 해결하고자 하는 기술적 과제는, 평가 대상의 양손으로부터 생체 전기적 임피던스를 검출하여 호흡에 따른 폐 용적의 변화 추이를 나타내는 폐기능 임피던스 신호를 추출함으로써 기존의 폐기능 검사의 구속성을 해결할 수 있으며 폐기능의 장기적인 모니터링 및 질환의 조기 진단에 적극적으로 활용할 수 있는 양손 임피던스를 이용한 폐기능 모니터링 장치 및 방법을 제공하고자 하는 것이다. Technical problem to be solved by the present invention, by detecting the bioelectrical impedance from both hands of the evaluation target to extract the pulmonary function impedance signal indicating the change in lung volume due to respiration can solve the limitation of the existing pulmonary function test and lung It is an object of the present invention to provide an apparatus and method for monitoring lung function using two-hand impedance that can be actively used for long-term monitoring of function and early diagnosis of a disease.
상기 목적을 달성하기 위한 본 발명의 일 실시 형태는, 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제1 전류 전극(CH)과 전압을 검출하는 제1 전압 전극(VH)을 구비하는 제1 임피던스 측정부; 다른 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제2 전류 전극(CL)과 전압을 검출하는 제2전압 전극(VL)을 구비하는 제2 임피던스 측정부; 상기 제1 임피던스 측정부의 전압 전극과 상기 제2 임피던스 측정부의 전압 전극에서 측정되는 전위차를 차동 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력하는 차동 증폭부; 상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하여, 상기 차동 증폭부를 통해 증폭 및 직류 바이어스된 임피던스 신호에서 인체 임피던스 신호(인체 임피던스 값)을 추출하게 하는 교류/직류 변환부; 상기 인체 임피던스 신호에서 제1 전류전극과 제1 전압전극이 장착된 측정 부위 및 제2 전류전극과 제2 전압전극이 장착된 측정 부위가 갖는 베이스 임피던스 신호를 제거하여 폐기능 임피던스 신호를 검출하게 하는 베이스 임피던스 피드백부;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치이다.One embodiment of the present invention for achieving the above object is made of a hand grip type mounted on the hand of one side, the first current electrode (CH) for supplying a fine current and the first voltage electrode (VH) for detecting a voltage A first impedance measuring unit having a); A second impedance measuring unit formed of a hand grip type mounted on the other hand and having a second current electrode CL for supplying a microcurrent and a second voltage electrode VL for detecting a voltage; A differential amplifier configured to differentially amplify a potential difference measured by the voltage electrode of the first impedance measuring unit and the voltage electrode of the second impedance measuring unit, and output a difference value of an impedance signal for two points of the human body; An AC / DC converter for converting the potential difference amplified by the differential amplifier into a direct current form and extracting a human body impedance signal (human impedance value) from an impedance signal amplified and DC biased through the differential amplifier; Detecting a pulmonary functional impedance signal by removing a base impedance signal of a measurement part equipped with a first current electrode and a first voltage electrode and a measurement part equipped with a second current electrode and a second voltage electrode from the human body impedance signal; The base impedance feedback unit; lung function monitoring device using a two-hand impedance, characterized in that it comprises a.
상기 폐기능 모니터링 장치는 상기 베이스 임피던스 피드백부에서 검출된 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 파라미터를 추출하는 폐기능 평가요소 추출부를 더 포함한다.The pulmonary function monitoring device further includes a pulmonary function evaluation element extracting unit for extracting a parameter for pulmonary function state evaluation from the pulmonary function impedance signal detected by the base impedance feedback unit.
상기 폐기능 평가요소 추출부는 상기 베이스 임피던스 피드백부에서 출력된 폐기능 임피던스 신호(IPFS)의 피크치와 최저치를 순차적으로 검출하고, 각 값의 시간지수와 진폭 정보를 이용하여 피크치와 최저치 사이의 시간간격과 진폭을 계산하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1), 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 검출한다.The pulmonary function evaluation element extracting unit sequentially detects the peak value and the lowest value of the pulmonary function impedance signal (IPFS) output from the base impedance feedback unit, and uses a time index and amplitude information of each value to determine a time interval between the peak value and the lowest value. Calculate the amplitude and amplitude, and try hard lung capacity (FVC), exhalation volume for 1 second (FEV1), exhalation volume for 1 second, and coercive lung capacity (FEV1 / FVC), maximum effort exhalation flow rate (FEF25-75) %) Detect the parameter.
상기 베이스 임피던스 피드백부는, 상기 교류/직류 변환부로부터 출력된 임피던스 신호를 차단 주파수 0.03Hz로 저역 필터링하여 상기 비반전 증폭된 신호 중에 포함된 직류 성분만을 추출해내는 제1 저역통과필터; 상기 제1비반전 증폭기의 출력과 차단 주파수 0.03Hz로 저역 필터링된 직류 성분을 차동 증폭하여 상기 비반전 증폭된 임피던스 신호 중에 포함된 직류 성분만을 제거하여 출력하는 제1 차동 증폭기; 상기 제1 차동 증폭기를 통해 차동 증폭된 신호 중에서 차단 주파수 0.03Hz 이상의 주파수 신호를 통과시키는 고역통과필터; 상기 고역통과필터의 출력신호 중에서 차단 주파수 100Hz 이하의 주파수 신호를 통과시키는 제2 저역통과필터;를 포함한다.The base impedance feedback unit may include: a first low pass filter extracting only a DC component included in the non-inverted and amplified signal by low-pass filtering the impedance signal output from the AC / DC converter to a cutoff frequency of 0.03 Hz; A first differential amplifier differentially amplifying the low pass filtered DC component at an output of the first non-inverting amplifier and a cutoff frequency of 0.03 Hz to remove only the DC component included in the non-inverted amplified impedance signal; A high pass filter for passing a frequency signal of a cutoff frequency of 0.03 Hz or more among the signals differentially amplified by the first differential amplifier; And a second low pass filter configured to pass a frequency signal having a cutoff frequency of 100 Hz or less among the output signals of the high pass filter.
상기 베이스 임피던스 피드백부는, 상기 교류/직류 변환부와 상기 제1 저역통과필터 사이에 제1 비반전 증폭기를 더 구비하여, 상기 교류/직류 변환부로부터 출력된 임피던스 신호를 증폭하여 상기 제1 저역통과필터로 출력하며, 상기 제2 저역통과필터의 다음에 제2 비반전 증폭기를 더 구비하여 상기 제2 저역통과필터의 출력한다.The base impedance feedback unit further includes a first non-inverting amplifier between the AC / DC converter and the first low pass filter to amplify the impedance signal output from the AC / DC converter to the first low pass. And a second non-inverting amplifier after the second low pass filter to output the second low pass filter.
상기 목적을 달성하기 위한 본 발명의 다른 실시 형태는, 피측정자의 양손으로부터 핸드그립 형태의 각 전극에 의한 전류 인입과 전압 측정을 통해 측정부위가 갖는 기본적인 베이스 임피던스 신호, 호흡에 따른 폐 용적(volume)의 시간적 변화를 나타내는 폐기능 임피던스 신호(IPFS)를 검출해내는 생체신호 검출부, 생체신호 검출부에서 검출된 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 파라미터를 추출하는 폐기능 평가요소 추출부, 생체신호 검출부 및 폐기능 평가요소 추출부의 동작을 조절하는 주제어부, 및 생체신호 검출부에서 검출된 폐기능 임피던스 신호와 폐기능 평가요소 추출부에서 추출된 신호를 저장하는 데이터 저장부를 포함하는 양손 임피던스를 이용한 폐기능 모니터링 장치이다.Another embodiment of the present invention for achieving the above object is, the basic base impedance signal of the measurement site through the current input and voltage measurement by each electrode of the hand grip form from both hands of the subject, the lung volume according to the breath (volume Physiological signal detection unit for detecting pulmonary function impedance signal (IPFS) indicating a temporal change of), pulmonary function evaluation element extraction unit for extracting parameters for pulmonary function state evaluation from pulmonary function impedance signal detected by the biosignal detection unit, Using a two-handed impedance including a main control unit for controlling the operation of the signal detection unit and the pulmonary function evaluation element extraction unit, and a data storage unit for storing the pulmonary function impedance signal detected by the biosignal detection unit and the signal extracted by the pulmonary function evaluation element extraction unit Pulmonary function monitoring device.
상기 목적을 달성하기 위한 본 발명의 다른 실시 형태는, 주제어부의 제어에 의해 동작되며, 올바른 폐기능 데이터 검출을 위해 피측정자의 실제 최대 흡기와 최대 호기를 유도할 수 있는 사용자 유도 그래프를 표시하는 디스플레이부를 더 포함하는 양손 임피던스를 이용한 폐기능 모니터링 장치이다.Another embodiment of the present invention for achieving the above object is a display that is operated by the control of the main control unit, and displays a user-induced graph that can induce the actual maximum inspiratory and maximum exhalation of the subject to detect the correct lung function data Pulmonary function monitoring device using a two-handed impedance further comprises a wealth.
상기 본 발명 장치의 각 실시 예에서 생체신호 검출부는 호흡에 따른 폐 용적의 시간적 변화를 나타내는 폐기능 임피던스 신호에 측정 부위로부터 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내는 베이스 임피던스 피드백부를 구비하는 것을 특징으로 한다.In each embodiment of the present invention, the biosignal detection unit feeds back an initial base impedance detected from a measurement site to a pulmonary functional impedance signal representing a temporal change in lung volume due to respiration, thereby providing a basic base impedance signal of the measurement site. And a base impedance feedback unit for detecting the removed closed function impedance signal.
상기 목적을 달성하기 위한 본 발명의 또 다른 실시 형태는, 전류 인입 및 전위차 측정을 통해 베이스 임피던스, 폐 용적(volume)의 시간적 변화를 나타내는 폐기능 임피던스 신호를 검출하는 생체신호 검출부, 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 다수의 파라미터를 추출하는 폐기능 평가요소 추출부를 구비한 폐기능 검사장치에서의 폐기능 모니터링 방법에 있어서, 생체신호 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 기본적인 베이스 임피던스 및 폐기능 평가 요소가 포함된 폐기능 임피던스 신호(IPFS)를 각각 검출하는 임피던스 검출단계, 폐기능 임피던스 신호로부터 피크치와 최저치를 검출하여 폐기능 평가에 사용되는 파라미터들을 추출하는 폐기능 평가요소 추출단계를 포함하는 양손 임피던스를 이용한 폐기능 모니터링 방법이다.Another embodiment of the present invention for achieving the above object is a bio-signal detection unit for detecting a pulmonary functional impedance signal indicating a temporal change in the base impedance, lung volume through the current inlet and potential difference measurement, pulmonary functional impedance signal A pulmonary function monitoring method in a pulmonary function test apparatus having a pulmonary function evaluation element extracting unit extracting a plurality of parameters for pulmonary function state evaluation from Impedance detection step of detecting pulmonary functional impedance signal (IPFS) including basic base impedance and pulmonary function evaluation element of the measurement site from both hands of the subject, and detecting peak and lowest value from pulmonary functional impedance signal to evaluate lung function. Extraction of pulmonary function evaluation factors that extract parameters used A lung function monitoring method using both hands and impedance comprising a series.
상기 본 발명 방법에 의한 임피던스 검출단계는, 생체신호 검출부에서 검출되는 폐기능 임피던스 신호에, 측정 부위에서 미리 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내는 피드백 처리단계를 포함하는 것을 특징으로 한다. In the impedance detection step according to the method of the present invention, a closed function impedance signal detected by the biosignal detection unit is fed back to an initial base impedance previously detected at a measurement site, thereby removing the basic base impedance signal of the measurement site. And a feedback processing step of detecting an impedance signal.
상기 본 발명 방법에 의한 폐기능 평가요소 추출단계는, 생체신호 검출부를 통해 검출되는 폐기능 임피던스 신호(IPFS)를 저역 필터링하여 신호 대 잡음비(SNR)가 향상되고 호흡에 영향이 없는 폐기능 평가요소가 포함된 IPFS 데이터를 획득하는 제1단계, 제1단계에서 획득된 IPFS 데이터를 이용하여 초기 일정한 시간동안 베이스 라인(임계치)을 설정하는 제2단계, 초기 일정한 시간이 경과되면 IPFS 데이터의 피크치와 최저치를 각각 순차적으로 검출하는 제3단계, 및 순차적 검출을 통해 피크치와 최저치가 획득되면 각 값의 시간지수와 진폭정보를 이용하여 피크치와 최저치 사이의 시간간격과와 진폭을 계산하고, 그 계산된 두 정보의 결과를 이용하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1) 및 그 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 획득하는 제4단계를 포함하여 이루어지는 것을 특징으로 한다.In the extracting of the pulmonary function evaluation element by the method of the present invention, the pulmonary function impedance signal (IPFS) detected through the biosignal detection unit is low-pass filtered to improve the signal-to-noise ratio (SNR) and have no effect on respiration. A first step of acquiring IPFS data including a second step of establishing a baseline (threshold) for an initial predetermined time using the IPFS data obtained in the first step, and a peak value of the IPFS data when the initial predetermined time elapses. In the third step of detecting the lowest value sequentially, and when the peak value and the lowest value are obtained through sequential detection, the time interval and amplitude between the peak value and the lowest value are calculated using the time index and amplitude information of each value, and the calculated Using the results of the two pieces of information, the effort-assisted lung capacity (FVC), the expiratory volume for one second (FEV1), and the ratio between the expiratory volume and the effort-related spirometry for one second are used. And a fourth step of obtaining (FEV1 / FVC), the best effort castle middle expiratory flow (FEF25-75%) parameters is characterized in that formed.
본 발명에 따른 양손 임피던스를 이용한 폐기능 모니터링 시스템에 의하면, 고정밀 분해능을 가지는 폐기능 임피던스 측정 시스템을 개발함에 따라 폐기능 평가에 사용되는 직접적 파라미터인 Flow-Volume Curve, FVC, FEV1, FEV25% 등의 검출이 가능하며, Sensormedics 사의 Vmax Encore와 같은 실제 폐기능 검사 임상 장비들과의 상관 관계분석을 통해 보다 손쉽고 정확한 폐기능 상태의 검출에 응용가능하게 되는 이점이 있다.According to the pulmonary function monitoring system using the two-hand impedance according to the present invention, according to the development of the pulmonary function impedance measurement system having a high precision resolution, such as flow-volume curve, FVC, FEV1, FEV25%, etc. It is possible to detect and correlate with actual pulmonary function test clinical equipment such as Sensormedics' Vmax Encore, which makes it easier and more applicable to the detection of pulmonary function status.
또한 본 발명은 생체전기 임피던스 측정 시스템을 통해 비구속적 및 비침습적으로 인체의 기본 임피던스를 검출하고 이것을 폐기능 상태 검출 시스템에 피드백시킴에 따라 전기적 임피던스 방법을 통해 폐기능 상태의 검출이 가능하여 폐기능 검사자들의 불편을 해소할 수 있게 되므로 폐기능의 장기적인 모니터링 및 질환의 조기 진단에 적극적으로 활용 가능하게 될 것이다.In addition, the present invention detects the pulmonary functional state through the electrical impedance method according to the non-binding and non-invasive detection of the basic impedance of the human body through the bioelectrical impedance measurement system and fed back to the pulmonary functional state detection system It will be able to resolve the inconvenience of functional testers will be able to actively use for long-term monitoring of lung function and early diagnosis of the disease.
또한 본 발명은 종래 개발된 임피던스를 이용한 폐기능 상태를 유추할 수 있는 간접적인 파라미터 검출 시스템과는 달리, 직접 호흡하여 폐기능의 상태를 평가하는 폐기능 검사(Pulmonary Function Test)와 동일한 FVC, FEV1, FEF25-75%의 파라미터를 직접 검출 가능함에 따라 기존의 임피던스 시스템과는 상당한 차별성을 갖는 고정밀 분해능 임피던스 시스템을 제공할 수 있게 될 것이다.In addition, the present invention, unlike the indirect parameter detection system that can infer the pulmonary function state using the conventionally developed impedance, the same FVC, FEV1 as the pulmonary function test (Pulmonary Function Test) to evaluate the state of pulmonary function by direct breathing In addition, the FEF25-75% parameters can be detected directly, providing a high-resolution resolution impedance system that is significantly different from existing impedance systems.
도 1은 본 발명의 일 실시 형태에 따른 양손 임피던스를 이용한 폐기능 모니터링장치의 전체적인 구성을 개략적으로 도시한 블록도이다.1 is a block diagram schematically showing the overall configuration of a lung function monitoring apparatus using two-hand impedance according to an embodiment of the present invention.
도 2와 도 3은 도 1의 전극 상세도와 구성 예시도이다.2 and 3 are a detailed view of the electrode and the configuration example of FIG.
도 4는 도 1의 베이스 임피던스 피드백부 상세도이다.4 is a detailed view of the base impedance feedback unit of FIG. 1.
도 5는 도 1의 디스플레이부의 표시 예를 나타낸 참고도이다.5 is a reference diagram illustrating a display example of the display unit of FIG. 1.
도 6은 도 1의 폐기능 평가요소 추출부에서 이루어지는 데이터 처리과정을 예시한 동작 흐름도이다.6 is an operation flowchart illustrating a data processing performed in the lung function evaluation element extractor of FIG. 1.
도 7은 생체전기 임피던스를 통해 측정되는 폐기능 상태에 대한 흐름 및 용적 그래프 예시도이다.7 is an exemplary flow and volume graph for pulmonary function states measured through bioelectrical impedances.
도 8은 본 발명에 의해 측정된 생체전기 임피던스로부터 얻은 폐기능 평가 그래프 예시도이다.8 is an exemplary diagram of a lung function evaluation graph obtained from the bioelectrical impedance measured by the present invention.
도 9는 본 발명에 의해 측정된 생체전기 임피던스로부터 얻은 폐기능 평가 결과값이다.9 is a lung function evaluation result value obtained from the bioelectrical impedance measured by the present invention.
이하, 본 발명의 일 실시 예에 의한 양손 임피던스를 이용한 폐기능 모니터링장치의 구성 및 동작을 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, the configuration and operation of a lung function monitoring apparatus using two-hand impedance according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may properly define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, since the embodiments shown in the specification and the configuration shown in the drawings is only one of the most preferred embodiment of the present invention, it is understood that there may be various equivalents and modifications that can replace them at the time of the present application shall.
도 1은 본 발명의 실시예에 따른 양손 임피던스를 이용한 폐기능 모니터링장치의 전체적인 구성을 개략적으로 도시한 블록도이고, 도 2와 도 3은 도 1의 전극부 상세도이며, 도 4는 도 1의 베이스 임피던스 피드백부 상세도이다.1 is a block diagram schematically showing the overall configuration of a device for monitoring lung function using two-hand impedance according to an embodiment of the present invention, Figures 2 and 3 is a detailed view of the electrode portion of Figure 1, Figure 4 is Figure 1 Detailed diagram of the base impedance feedback unit.
도 1에 도시된 바와 같이 본 발명의 일 실시 형태에 따른 폐기능 모니터링 장치는 생체신호 검출부(100), 폐기능 평가요소 추출부(200), 주제어부(300), 데이터 저장부(400), 및 디스플레이부(500)를 포함하여 구성된다.As shown in FIG. 1, the apparatus for monitoring lung function according to an embodiment of the present invention may include a biosignal detection unit 100, a lung function evaluation element extracting unit 200, a main control unit 300, a data storage unit 400, And a display unit 500.
생체신호 검출부(100)는 베이스 임피던스 신호 검출을 위한 전극(101,102)과 사인파 발생기(111)와 정전류원(112)과 차동 증폭부(113) 및 교류/직류 변환부(114)로 이루어지는 베이스 임피던스 검출부(110), 및 베이스 임피던스 피드백부(120)로 구성되며, 각각의 전극을 통해 전류 주입과 전압 측정을 실시하여 측정부위가 갖는 기본적인 베이스 임피던스 신호, 호흡에 따른 폐 용적(volume)의 시간적 변화를 나타내는 폐기능 임피던스 신호(IPFS)를 검출해낸다.The biosignal detector 100 includes a base impedance detector including electrodes 101 and 102, a sine wave generator 111, a constant current source 112, a differential amplifier 113, and an AC / DC converter 114 for detecting a base impedance signal. 110 and the base impedance feedback unit 120, the current injection and voltage measurement through each electrode to measure the basic base impedance signal of the measurement site, the time change of the lung volume (volume) according to breathing Detects a closed function impedance signal (IPFS).
베이스 임피던스 검출부(110)는 먼저 임피던스를 통한 폐기능 평가를 위한 파라미터 검출 전에 측정 부위가 가지고 있는 기본적인 베이스 임피던스(Base Impedance)를 측정하는 H/W로써 기존의 임피던스 하드웨어가 가지는 1kΩ[kohm]~3kΩ[kohm]의 범위를 가지는 것을 사용할 수 있다.The base impedance detection unit 110 is an H / W that measures the basic base impedance of the measurement site before the parameter detection for pulmonary function evaluation through impedance, and has 1kΩ [kohm] ~ 3k 가 of the existing impedance hardware. Anything with a range of [kohm] can be used.
사인파 발생기(111)는 전극에 공급하기 위한 사인파(sine wave) 신호를 발생시키는 장치로서, 인체로의 전류 주입에 필요한 고주파 신호를 발생시키는 빈 브리지 오실레이터(wein bridge oscillator) 등으로 구성가능하다.The sine wave generator 111 is a device for generating a sine wave signal for supplying to an electrode, and may be configured as a wein bridge oscillator or the like for generating a high frequency signal required for current injection into a human body.
정전류원(112)은 사인파 발생기(111)에서 출력된 사인파 신호를 정전류원으로 변환하여 전류 전극을 통해 측정대상에 주입하게 되는 장치로서, 사인파 발생기의 출력을 정전류로 변환하여 전류 전극으로 내보낸다.The constant current source 112 converts a sine wave signal output from the sine wave generator 111 into a constant current source and injects the measured current through the current electrode. The constant current source 112 converts the output of the sine wave generator into a constant current and sends it out to the current electrode.
전극(101,102)은 핸드 그립 형태의 4극(tetra polar) 전극으로 이루어지는 센서 장치로서 제1 전류 전극(CH)과 제1 전압 전극(VH), 제2 전류 전극(CL)과 제2 전압 전극(VL)으로 구성하여 측정부위에 직접 전류를 주입하고 그에 따른 생체전기 임피던스 변화에 따른 전압 변화를 측정하며, 도 2 및 도 3에 도시된 바와 같이 핸드 그립 형태의 전극을 구성한다. 이러한 전극은 정전류원(112)에서 공급되는 정전류를 제1 전류 전극(CH)과 제2 전류 전극(CL)을 통해 피측정자의 측정부위에 전류를 공급하게 되며, 그에 따라 두 측정부위에 발생되는 전위차를 제1전압전극(VH)과 제2전압전극(VL)을 통해 측정하게 된다. 이를 통해 본 발명에서는 호흡에 따른 임피던스 변화 측정시 접촉 임피던스 및 주파수에 따른 임피던스의 영향을 최소화할 수 있게 되며, 특히 정전류원의 출력 임피던스와 AC Volt meter의 입력 임피던스가 전극의 임피던스 및 전극과 피부사이의 접촉 저항에 비해 상당히 크면 전극의 임피던스 및 전극의 접촉저항에 영향을 최소화 할 수 있게 된다.The electrodes 101 and 102 are sensor devices consisting of a tetrapolar electrode in the form of a hand grip, and include a first current electrode CH, a first voltage electrode VH, a second current electrode CL, and a second voltage electrode ( VL) to inject a current directly into the measurement site and to measure the voltage change according to the change in the bioelectrical impedance, and to form an electrode of the hand grip type as shown in FIGS. 2 and 3. Such an electrode supplies a constant current supplied from the constant current source 112 to the measurement site of the subject through the first current electrode CH and the second current electrode CL, and thus is generated at the two measurement sites. The potential difference is measured through the first voltage electrode VH and the second voltage electrode VL. Through this, in the present invention, it is possible to minimize the influence of the impedance according to the contact impedance and the frequency when measuring the impedance change due to respiration, in particular the output impedance of the constant current source and the input impedance of the AC Volt meter between the electrode impedance and the electrode and skin If the contact resistance is considerably larger than the impedance of the electrode and the contact resistance of the electrode can be minimized.
차동 증폭부(113)는 상기 두 전압 전극(VH, VL)에서 측정되는 전위차를 차동 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력한다.The differential amplifier 113 differentially amplifies the potential difference measured by the two voltage electrodes VH and VL and outputs a difference value of an impedance signal for two points of the human body.
교류/직류 변환부(114)는 차동 증폭부(113)를 통해 증폭된 전위차를 직류 형태로 변환하여 출력한다. 즉 증폭된 전위차를 직류 형태로 변환하여 차동 증폭부를 통해 증폭 및 직류 바이어스된 임피던스 신호에서 인체 임피던스값을 추출한다.The AC / DC converter 114 converts the potential difference amplified by the differential amplifier 113 into a DC form and outputs it. In other words, by converting the amplified potential difference in the form of direct current, the human body impedance value is extracted from the amplified and DC biased impedance signal through the differential amplifier.
베이스 임피던스 피드백부(120)는 도 4에 도시된 바와 같이 제1 비반전 증폭기(121), 제1 차동 증폭기(122), 차단주파수 0.03Hz의 고역통과필터(HPF;123), 차단주파수 100Hz의 저역통과필터(LPF;124), 제2 비반전 증폭기(125) 및 차단 주파수 0.03Hz의 저역통과필터(LPF;126)를 포함하여 구성되며, 호흡에 따른 폐 용적(volume)의 시간적 변화를 나타내는 폐기능 임피던스 신호에 측정 부위로부터 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내 폐기능 평가요소 추출부(200)로 공급한다. 여기서 폐 용적의 변화는 부피를 나타내는 값이고, 임피던스의 변화도 폐 용적의 변화를 나타내는 전압 값임에 따라 두 값은 서로의 연관성을 유지하는 값임을 알 수 있다.As shown in FIG. 4, the base impedance feedback unit 120 includes a first non-inverting amplifier 121, a first differential amplifier 122, a high pass filter (HPF) 123 having a cutoff frequency of 0.03 Hz, and a cutoff frequency of 100 Hz. And a low pass filter (LPF) 124, a second non-inverting amplifier 125, and a low pass filter (LPF) 126 having a cutoff frequency of 0.03 Hz, indicating a temporal change in lung volume due to respiration. The initial base impedance detected from the measurement site is fed back to the lung function impedance signal, and the lung function impedance signal from which the basic base impedance signal of the measurement site is removed is detected and supplied to the lung function evaluation element extracting unit 200. Here, it can be seen that the change in lung volume is a value representing volume, and the change in impedance is also a voltage value representing change in lung volume, so that the two values are values that maintain correlation with each other.
제1 비반전 증폭기(121)는 측정부위로부터 검출된 폐기능 임피던스 신호를 증폭한다.The first non-inverting amplifier 121 amplifies the closed function impedance signal detected from the measurement site.
저역통과필터(126)는 제1비반전 증폭기(121)의 출력을 차단 주파수 0.03Hz로 저역 필터링하여 상기 비반전 증폭된 신호 중에 포함된 직류 성분만을 추출해낸다.The low pass filter 126 low-pass filters the output of the first non-inverting amplifier 121 at a cutoff frequency of 0.03 Hz to extract only a DC component included in the non-inverted amplified signal.
제1 차동 증폭기(122)는 제1비반전 증폭기(121)의 출력과 차단 주파수 0.03Hz로 저역 필터링된 직류 성분을 차동 증폭하여 상기 비반전 증폭된 임피던스 신호 중에 포함된 직류 성분만을 제거하여 출력한다. 즉, 제1 차동 증폭기(122)는 제1 비반전 증폭기(121)에서 증폭된 신호와 피드백된 초기의 베이스 임피던스 신호(저역통과필터의 출력신호)와의 차이를 증폭하여 베이스 임피던스가 제거된 폐기능 임피던스 신호를 출력한다.The first differential amplifier 122 differentially amplifies the low-pass filtered DC component at an output of the first non-inverting amplifier 121 and a cutoff frequency of 0.03 Hz to remove and output only the DC component included in the non-inverted amplified impedance signal. . That is, the first differential amplifier 122 amplifies the difference between the signal amplified by the first non-inverting amplifier 121 and the initial base impedance signal fed back (the output signal of the low pass filter) to remove the base impedance. Output an impedance signal.
고역통과필터(HPF;123)는 제1 차동 증폭기(122)를 통해 차동 증폭된 신호 중에서 차단 주파수 이상의 모든 주파수 신호를 통과시키고 그 이외의 주파수 신호를 모두 감쇠시키는 필터로서, 본 발명에서는 제1 차동 증폭기(122)를 통해 차동 증폭된 신호 중에서 차단 주파수 0.03Hz 이상의 교류신호를 통과시킨다.The high pass filter (HPF) 123 is a filter for passing all frequency signals above the cutoff frequency and attenuating all other frequency signals among the signals differentially amplified through the first differential amplifier 122. The AC signal passes through an amplifier 122 having a cutoff frequency of 0.03 Hz or more.
저역통과필터(LPF;124)는 고역 필터링된 신호 중에서 차단 주파수 이하의 모든 주파수 신호를 통과시키고 그 이외의 모든 주파수 신호를 모두 감쇠시키는 필터로서, 본 발명에서는 고역통과필터(HPF)를 통해 필터링된 신호 중에서 차단 주파수 100Hz 이하의 직류 신호를 통과시킨다.The low pass filter (LPF) 124 is a filter that passes all frequency signals below the cutoff frequency and attenuates all other frequency signals among the high pass filtered signals. In the present invention, the low pass filter (LPF) is filtered through the high pass filter (HPF). Pass a DC signal with a cutoff frequency of 100 Hz or less among the signals.
제2 비반전 증폭기(125)는 상기 두 필터를 통해 차례로 고역 필터링 및 저역 필터링된 신호를 다시 비반전 증폭하여 폐기능 평가 요소가 포함된 폐기능 임피던스 신호(IPFS)를 출력한다. The second non-inverting amplifier 125 sequentially non-inverts and amplifies the high-pass filtered and low-pass filtered signals again through the two filters, and outputs a pulmonary functional impedance signal IPFS including a pulmonary function evaluation element.
폐기능 평가요소 추출부(200)는 생체신호 검출부(100)에서 검출된 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 파라미터를 추출하는 장치로서, 생체신호 검출부(100)에서 출력된 폐기능 임피던스 신호(IPFS)의 피크치와 최저치를 순차적으로 검출하고, 각 값의 시간지수와 진폭 정보를 이용하여 피크치와 최저치 사이의 시간간격과 진폭을 계산하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1), 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 획득한다. 여기서 FVC는 Forced Vital Capacity의 약자로서 폐활량으로 최대한 숨을 들이마신 후에 최대한으로 내쉴 수 있는 공기의 양을 의미하고, FEV1는 Forced Expiratiory Volume in 1s의 약자로서 초당 강제 호기량으로 1초 동안 내쉴 수 있는 최대 공기양(대기도 평가 지표이며, %PRED가 80~100%가 정상)을 의미하며, FEV1/FVC는 FEV1과 FVC의 비율이고, FEF25-75%는 FEV1의 25 ~ 75% 해당하는 구간의 기울기(중·소 기도 평가 지표이며, %PRED가 75~100%가 정상)를 의미한다.The pulmonary function evaluation element extracting unit 200 is a device for extracting a parameter for pulmonary function state evaluation from the pulmonary function impedance signal detected by the biosignal detection unit 100, and the pulmonary function impedance signal output from the biosignal detection unit 100. Effort spirometry (FVC), used for pulmonary function evaluation by detecting peaks and troughs (IPFS) sequentially and calculating time intervals and amplitudes between peaks and troughs using time index and amplitude information for each value. Initial expiratory volume (FEV1), ratio of exhaled volume and cooperative spirometry for 1 second (FEV1 / FVC), and hardest peak expiratory flow rate (FEF25-75%) parameters are obtained. FVC stands for Forced Vital Capacity, which means the maximum amount of air that can be exhaled to the maximum after inhaling maximum breathing capacity, and FEV1 stands for Forced Expiratiory Volume in 1s. Air volume (air quality indicator,% PRED is 80-100% normal), FEV1 / FVC is the ratio of FEV1 and FVC, FEF25-75% is the slope of 25-75% of FEV1. (Medium / small airway evaluation index, and% PRED is 75 ~ 100% normal).
주제어부(300)는 생체신호 검출부(100) 및 폐기능 평가요소 추출부(200)의 동작을 조절한다.The main control unit 300 controls the operations of the biosignal detection unit 100 and the lung function evaluation element extraction unit 200.
데이터 저장부(400)는 생체신호 검출부(100)에서 검출된 폐기능 임피던스 신호 및 폐기능 평가요소 추출부(200)에서 추출된 신호들을 저장한다.The data storage unit 400 stores the lung function impedance signal detected by the biosignal detection unit 100 and the signals extracted by the lung function evaluation element extraction unit 200.
디스플레이부(500)는 주제어부(300)의 제어에 의해 동작되며, 도 5에 도시된 바와 같이 올바른 폐기능 데이터 검출을 위해 피측정자의 실제 최대 흡기와 최대 호기를 유도할 수 있는 사용자 유도 그래프를 표시한다. 또한 이 디스플레이부(500)는 생체신호 검출부(100)에서 전극을 통해 현재 측정 부위에 인입되는 전류원, 생체신호 검출부에서 양손으로부터 직접 측정되는 교류 임피던스(AC Impedance), 베이스 임피던스, 호흡에 따른 폐 용적의 시간적 변화를 나타내는 폐기능 임피던스 신호를 표시한다.The display unit 500 is operated under the control of the main controller 300, and as shown in FIG. 5, a user-induced graph capable of inducing the actual maximum inspiration and the maximum exhalation of the subject to detect the correct lung function data. Display. In addition, the display unit 500 is a current source that is introduced into the current measurement site through the electrode in the bio-signal detection unit 100, AC impedance, base impedance, lung volume measured directly from both hands in the bio-signal detection unit Displays a pulmonary function impedance signal representing the temporal change of the signal.
한편 본 발명의 다른 실시 형태에 의한 폐기능 모니터링 방법은, 생체신호 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 기본적인 베이스 임피던스 및 폐기능 평가 요소가 포함된 폐기능 임피던스 신호(IPFS)를 각각 검출하는 임피던스 검출단계와, 상기 폐기능 임피던스 신호로부터 피크치와 최저치를 검출하여 폐기능 평가에 사용되는 파라미터들을 추출하는 폐기능 평가요소 추출단계로 이루어진다.Meanwhile, the pulmonary function monitoring method according to another embodiment of the present invention includes a basic base impedance and pulmonary function evaluation element of the measurement site from both hands of the subject through current input and voltage measurement through each electrode in the biosignal detection unit. Impedance detection step of detecting each of the pulmonary function impedance signal (IPFS), and the pulmonary function evaluation element extraction step of extracting the parameters used for pulmonary function evaluation by detecting the peak value and the lowest value from the pulmonary function impedance signal.
임피던스 검출단계는 생체신호 검출부에서 검출되는 폐기능 임피던스 신호에, 측정 부위에서 미리 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내는 피드백 처리단계를 포함하는 것이 바람직하다. The impedance detection step feeds back the initial base impedance previously detected at the measurement site to the lung function impedance signal detected by the biosignal detection unit, and detects the lung function impedance signal from which the basic base impedance signal of the measurement site is removed. It is preferred to include a treatment step.
도 6는 도 1의 폐기능 평가요소 추출부에서 이루어지는 데이터 처리과정을 예시한 동작 흐름도이고, 도 7은 생체전기 임피던스를 통해 측정되는 폐기능 상태에 대한 흐름 및 용적 그래프 예시도이며, 도 8은 본 발명에 의해 측정된 생체전기 임피던스로부터 얻은 폐기능 평가 그래프 예시도이고, 도 9는 본 발명에 의해 측정된 생체전기 임피던스로부터 얻은 폐기능 평가 결과값이다.FIG. 6 is an operation flowchart illustrating a data processing process performed in the lung function evaluation element extractor of FIG. 1. FIG. 7 is an exemplary view illustrating a flow and volume graph of a lung function state measured through bioelectrical impedance. Pulmonary function evaluation graph obtained from the bioelectrical impedance measured by the present invention is an exemplary view, Figure 9 is a lung function evaluation result obtained from the bioelectrical impedance measured by the present invention.
본 발명에 의한 도 1의 모니터링 장치의 폐기능 평가요소 추출부(200)에서 이루어지는 데이터 처리과정은 도 6의 동작 흐름도에 도시된 바와 같이 생체신호 검출부를 통해 검출되는 폐기능 임피던스 신호(IPFS)를 저역 필터링하여 신호대 잡음비가 향상되고 호흡에 영향이 없는 폐기능 평가요소가 포함된 IPFS 데이터를 획득하는 제1단계(S101~S103), 제1단계에서 획득된 IPFS 데이터를 이용하여 초기 일정한 시간동안 베이스 라인(임계치)을 설정하는 제2단계(S104,S105), 초기 일정한 시간이 경과되면 IPFS 데이터의 피크치와 최저치를 각각 순차적으로 검출하는 제3단계(S106~S110), 및 순차적 검출을 통해 피크치와 최저치가 획득되면 각 값의 시간지수와 진폭정보를 이용하여 피크치와 최저치 사이의 시간간격과와 진폭을 계산하고, 그 계산된 두 정보의 결과를 이용하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1) 및 그 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 획득하는 제4단계(S111,S112)를 포함하여 이루어진다.The data processing performed in the lung function evaluation element extracting unit 200 of the monitoring apparatus of FIG. 1 according to the present invention includes a lung function impedance signal (IPFS) detected through the biosignal detection unit as shown in the operation flowchart of FIG. 6. The first step (S101 ~ S103) of acquiring IPFS data including the pulmonary function evaluation factor that improves the signal-to-noise ratio and does not affect the breathing by low-pass filtering, using the IPFS data obtained in the first step, the base for an initial constant time. A second step (S104, S105) of setting a line (threshold value), a third step (S106-S110) of sequentially detecting peak and minimum values of IPFS data after an initial predetermined time elapses, and the peak value and When the lowest value is obtained, the time interval and amplitude between the peak value and the lowest value are calculated using the time index and amplitude information of each value, and the result of the calculated two information is used. Efficacy spirometry (FVC), exhalation volume for 1 second (FEV1) and ratio of exhalation volume and exertion spirometry for 1 second (FEV1 / FVC), highest intermediary exhalation flow rate (FEF25-75%) It comprises a fourth step (S111, S112) to obtain a.
상기 제1단계는 생체신호 검출부에서 검출되는 폐기능 임피던스 신호에, 측정 부위에서 미리 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내는 피드백 처리단계를 포함하여 구성되는 것이 바람직하다.The first step is to feed back the lung function impedance signal detected by the biosignal detection unit to an initial base impedance previously detected at the measurement site, thereby detecting the lung function impedance signal from which the basic base impedance signal of the measurement part is removed. It is preferably configured to include a feedback processing step.
특히 본 발명에 의한 모니터링 장치의 데이터 처리과정은 제1단계를 통해 신호대 잡음비(SNR)가 향상된 IPFS 데이터의 1차 미분을 통해 용적곡선의 흐름 변화를 획득하는 제5단계(S104-1 ~ S104-2)를 더 포함하여 이루어질 수도 있다. In particular, the data processing process of the monitoring apparatus according to the present invention is a fifth step (S104-1 ~ S104-) to obtain the flow curve change through the first derivative of the IPFS data with improved signal-to-noise ratio (SNR) through the first step It may also comprise 2).
이와 같은 구성의 본 발명에 따른 폐기능 모니터링 방법 및 폐기능 평가요소 추출부(200)에서의 동작을 상세히 설명한다.Operation of the pulmonary function monitoring method and pulmonary function evaluation element extracting unit 200 according to the present invention having such a configuration will be described in detail.
먼저, 생체신호 검출부(100)에서는 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 기본적인 베이스 임피던스 및 폐기능 평가 요소가 포함된 폐기능 임피던스 신호(IPFS)를 각각 검출한다. 이때 임피던스 검출단계에서는 생체신호 검출부에서 검출되는 폐기능 임피던스 신호에, 측정 부위에서 미리 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호를 제거함으로써 폐기능 임피던스 신호를 검출해낼 수 있게 된다. First, the biosignal detection unit 100 generates a pulmonary functional impedance signal (IPFS) including basic base impedance and pulmonary function evaluation elements of the measurement site from both hands of the subject through current input and voltage measurement through each electrode. Detect. In the impedance detection step, the lung function impedance signal detected by the biosignal detection unit may be fed back to the initial base impedance previously detected at the measurement site, and the basic function of the impedance signal may be removed to detect the lung function impedance signal. Will be.
다음으로 폐기능 평가요소 추출단계에서는 우선 폐기능 평가요소 추출부(200)에서 임피던스를 이용한 폐기능 파라미터 검출 신호(IPFS)를 읽어(S101) 저역통과필터링(호흡에 영향이 없는 최소 주파수인 1Hz)를 통하여 SNR이 향상된 IPFS 데이터를 획득(S102,S103)한다. Next, in the pulmonary function evaluation element extraction step, first, the pulmonary function parameter extraction unit 200 reads the pulmonary function parameter detection signal IPFS using impedance (S101) and low-pass filtering (a minimum frequency of 1 Hz without affecting respiration). Through the SNR to obtain the IPFS data is improved (S102, S103).
다음으로 제2단계에서는 제1단계에서 획득된 IPFS 데이터를 이용하여 초기 일정한 시간(예를 들어 3초) 동안 베이스 라인(Threshold)을 설정(S104,S105)한다. 이때 초기의 일정한 시간 동안의 데이터(예를 들어 3초간의 데이터)는 과도응답에 대한 신호의 안정 가능한 시간동안의 데이터이며, 이 시간 동안 초기 베이스 라인값을 결정하게 된다. Next, in the second step, a baseline (Threshold) is set for an initial predetermined time (for example, 3 seconds) by using the IPFS data obtained in the first step (S104, S105). At this time, the data for the initial constant time (for example, data for 3 seconds) is the data for the stable time of the signal for the transient response, during which the initial baseline value is determined.
다음으로 제3단계에서는 이후 입력되는 IPFS 데이터를 읽어 IPFS 데이터와 베이스 라인값을 비교(S106)하고, 그 비교결과 기 설정된 베이스 라인값보다 IPFS 데이터가 클 경우에는 피크치 검출 프로세스를 호출하여 IPFS 데이터의 피크치를 검출(S107,S108)하고, 이러한 피크치의 검출이 완료되면 다시 최저치 검출 프로세스를 호출하여 IPFS 데이터의 최저치를 차례로 검출(S109,S110)한다. Next, in the third step, IPFS data is read afterwards and the IPFS data is compared with the baseline value (S106). If the IPFS data is larger than the preset baseline value as a result of the comparison, the peak value detection process is called to determine the IPFS data. Peak values are detected (S107, S108). When the detection of these peak values is completed, the lowest value detection process is called again to detect the lowest values of the IPFS data (S109, S110).
상기와 같은 순차적인 검출을 통해 IPFS 데이터의 피크치와 최저치가 획득 된 경우 제 4단계에서는 각각의 시간 지수와 진폭 정보를 이용하여 피크치와 최저치 사이의 시간 간격과 진폭을 계산(S111)하며, 이렇게 계산된 두 정보의 결과를 이용하여 다시 폐기능 평가에 사용되는 파라미터인 FVC, FEV1, Ratio of FEV1/FVC 등을 결정 및 검출(S112)하게 된다.When the peak value and the lowest value of the IPFS data are obtained through the sequential detection as described above, the fourth step calculates the time interval and the amplitude between the peak value and the lowest value using the respective time index and amplitude information (S111). Using the result of the two pieces of information, FVC, FEV1, Ratio of FEV1 / FVC, etc., which are parameters used for pulmonary function evaluation, are determined and detected (S112).
또한 제5단계에서는 상기 제1단계에서 SNR을 향상시킨 IPFS 데이터의 1차 미분을 통해 임피던스 용적(volume) 변화에 대한 흐름(flow) 변화를 획득(S104-1,S104-2) 가능하게 된다.In addition, in the fifth step, it is possible to obtain a change in flow with respect to the impedance volume change through the first derivative of the IPFS data with the improved SNR in the first step (S104-1, S104-2).
이와 같은 처리과정을 통해 본 발명에서는 일반적인 PFT장비에서 나타나는 Flow-Volume Curve 또한 Impednace를 통해 검출 가능하게 된다. 즉, 임피던스는 폐로 들어오고 나가는 공기의 양적 변화, 즉 Volume을 측정하는 것임에 따라 Volume을 미분하게 되면 Flow의 추출이 가능하고, 결과적으로 기존 임상에서 이용되는 PFT의 Flow-Volum Curve를 동일하게 검출 가능하며, 더욱 손쉬운 측정을 유지하게 된다.Through such a process, in the present invention, a flow-volume curve appearing in a general PFT device can also be detected through an impednace. In other words, impedance is a quantitative change of the air entering and exiting the lungs, that is, measuring the volume, so that when the volume is differentiated, the flow can be extracted, and as a result, the flow-volum curve of the PFT used in the existing clinic is detected in the same way. It is possible to maintain the measurement more easily.
따라서 본 발명에 의한 전기적 임피던스 방법을 이용한 폐기능 상태 평가는 PFT를 이용한 폐기능의 상태 평가를 충분히 대신할 수 있으며, 따라서 환자의 거부감 및 피로감을 유발할 수 있으며, 긴 검사 시간과 전문가의 동반이 필수적인 PFT 검사에 비해 상당한 장점을 지닌다고 할 수 있다.Therefore, the evaluation of the pulmonary function state using the electrical impedance method according to the present invention can replace the evaluation of the state of pulmonary function using the PFT sufficiently, and thus may cause patient's rejection and fatigue, and long examination time and expert companion are essential. It can be said to have a significant advantage over PFT inspection.
이상의 본 발명에서는 교류/직류 변환부(114)의 출력을 한번 더 증폭하고, 그 증폭된 신호와 피드백된 베이스 임피던스 신호와의 차이를 다시 증폭함에 따라 기존의 임피던스 측정 장비가 가지고 있었던 500Ω[ohm]~3kΩ[kohm]의 분해능 뿐만 아니라 ±5Ω(ohm)이내의 고정밀 분해능도 검출할 수 있게 되므로, 폐기능 상태 검출을 위한 파리미터의 추출이 가능하게 된다.In the present invention, the output of the AC / DC converter 114 is amplified once more, and the difference between the amplified signal and the fed back base impedance signal is amplified again. As well as a resolution of ˜3 kΩ [kohm] as well as a high resolution within ± 5 ohm (ohm) can be detected, it is possible to extract the parameters for detecting the lung function state.
본 발명의 양손 임피던스를 이용한 폐기능 모니터링 시스템은 고정밀 분해능을 가지며, 폐기능 평가에 사용되는 직접적 파라미터인 Flow-Volume Curve, FVC, FEV1, FEV25% 등의 검출이 가능하며, 보다 손쉽고 정확한 폐기능 상태의 검출할 수 있어, 폐기능의 장기적인 모니터링 및 질환의 조기 진단에 적극적으로 활용 가능하다.Pulmonary function monitoring system using the two-hand impedance of the present invention has a high precision resolution, it is possible to detect the flow parameters such as flow-volume curve, FVC, FEV1, FEV25%, which is a direct parameter used for pulmonary function evaluation, easier and more accurate lung function state Can be detected and actively utilized for long-term monitoring of lung function and early diagnosis of disease.

Claims (16)

  1. 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제1 전류 전극(CH)과 전압을 검출하는 제1 전압 전극(VH)을 구비하는 제1 임피던스 측정부;A first impedance measuring unit formed of a hand grip type mounted on one hand and having a first current electrode CH for supplying a microcurrent and a first voltage electrode VH for detecting a voltage;
    다른 일측의 손에 장착되는 핸드 그립형으로 이루어지며, 미세전류를 공급하는 제2 전류 전극(CL)과 전압을 검출하는 제2전압 전극(VL)을 구비하는 제2 임피던스 측정부;A second impedance measuring unit formed of a hand grip type mounted on the other hand and having a second current electrode CL for supplying a microcurrent and a second voltage electrode VL for detecting a voltage;
    상기 제1 임피던스 측정부의 전압 전극과 상기 제2 임피던스 측정부의 전압 전극에서 측정되는 전위차를 차동 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력하는 차동 증폭부;A differential amplifier configured to differentially amplify a potential difference measured by the voltage electrode of the first impedance measuring unit and the voltage electrode of the second impedance measuring unit, and output a difference value of an impedance signal for two points of the human body;
    상기 차동 증폭부에서 증폭된 전위차를 직류 형태로 변환하여, 상기 차동 증폭부를 통해 증폭 및 직류 바이어스된 임피던스 신호에서 인체 임피던스 신호(인체 임피던스 값)을 추출하게 하는 교류/직류 변환부;An AC / DC converter for converting the potential difference amplified by the differential amplifier into a direct current form and extracting a human body impedance signal (human impedance value) from an impedance signal amplified and DC biased through the differential amplifier;
    상기 인체 임피던스 신호에서 제1 전류전극과 제1 전압전극이 장착된 측정 부위 및 제2 전류전극과 제2 전압전극이 장착된 측정 부위가 갖는 베이스 임피던스 신호를 제거하여 폐기능 임피던스 신호를 검출하게 하는 베이스 임피던스 피드백부;Detecting a pulmonary functional impedance signal by removing a base impedance signal of a measurement part equipped with a first current electrode and a first voltage electrode and a measurement part equipped with a second current electrode and a second voltage electrode from the human body impedance signal; A base impedance feedback unit;
    를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.Lung function monitoring device using a two-hand impedance, characterized in that it comprises a.
  2. 제1항에 있어서,The method of claim 1,
    상기 베이스 임피던스 피드백부에서 검출된 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 파라미터를 추출하는 폐기능 평가요소 추출부를 더 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.And a lung function evaluation element extracting unit for extracting a parameter for pulmonary function state evaluation from the lung function impedance signal detected by the base impedance feedback unit.
  3. 제2항에 있어서,The method of claim 2,
    상기 폐기능 평가요소 추출부는 상기 베이스 임피던스 피드백부에서 출력된 폐기능 임피던스 신호(IPFS)의 피크치와 최저치를 순차적으로 검출하고, 각 값의 시간지수와 진폭 정보를 이용하여 피크치와 최저치 사이의 시간간격과 진폭을 계산하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1), 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 검출하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.The pulmonary function evaluation element extracting unit sequentially detects the peak value and the lowest value of the pulmonary function impedance signal (IPFS) output from the base impedance feedback unit, and uses a time index and amplitude information of each value to determine a time interval between the peak value and the lowest value. Calculate the amplitude and amplitude, and try hard lung capacity (FVC), exhalation volume for 1 second (FEV1), exhalation volume for 1 second, and coercive lung capacity (FEV1 / FVC), maximum effort exhalation flow rate (FEF25-75) %) Pulmonary function monitoring device using two-hand impedance, characterized in that for detecting the parameter.
  4. 제3항에 있어서, The method of claim 3,
    상기 베이스 임피던스 피드백부는 The base impedance feedback unit
    상기 교류/직류 변환부로부터 출력된 임피던스 신호를 차단 주파수 0.03Hz로 저역 필터링하여 상기 비반전 증폭된 신호 중에 포함된 직류 성분만을 추출해내는 제1 저역통과필터;A first low pass filter extracting only DC components included in the non-inverted and amplified signal by low-pass filtering the impedance signal output from the AC / DC converter to a cutoff frequency of 0.03 Hz;
    상기 제1비반전 증폭기의 출력과 차단 주파수 0.03Hz로 저역 필터링된 직류 성분을 차동 증폭하여 상기 비반전 증폭된 임피던스 신호 중에 포함된 직류 성분만을 제거하여 출력하는 제1 차동 증폭기;A first differential amplifier differentially amplifying the low pass filtered DC component at an output of the first non-inverting amplifier and a cutoff frequency of 0.03 Hz to remove only the DC component included in the non-inverted amplified impedance signal;
    상기 제1 차동 증폭기를 통해 차동 증폭된 신호 중에서 차단 주파수 0.03Hz 이상의 주파수 신호를 통과시키는 고역통과필터;A high pass filter for passing a frequency signal of a cutoff frequency of 0.03 Hz or more among the signals differentially amplified by the first differential amplifier;
    상기 고역통과필터의 출력신호 중에서 차단 주파수 100Hz 이하의 주파수 신호를 통과시키는 제2 저역통과필터; A second low pass filter configured to pass a frequency signal having a cutoff frequency of 100 Hz or less among the output signals of the high pass filter;
    를 포함하여 이루어진 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.Pulmonary function monitoring device using two-hand impedance, characterized in that consisting of.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 베이스 임피던스 피드백부는 The base impedance feedback unit
    상기 교류/직류 변환부와 상기 제1 저역통과필터 사이에 제1 비반전 증폭기를 더 구비하여, 상기 교류/직류 변환부로부터 출력된 임피던스 신호를 증폭하여 상기 제1 저역통과필터로 출력하며, A first non-inverting amplifier is further provided between the AC / DC converter and the first low pass filter to amplify the impedance signal output from the AC / DC converter to output the first low pass filter.
    상기 제2 저역통과필터의 다음에 제2 비반전 증폭기를 더 구비하여 상기 제2 저역통과필터의 출력하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.And a second non-inverting amplifier after the second low pass filter to output the second low pass filter.
  6. 피측정자의 양손으로부터 각각의 전극에 의한 전류 인입과 전압 측정을 통해 측정부위가 갖는 기본적인 베이스 임피던스 신호, 호흡에 따른 폐 용적(volume)의 시간적 변화를 나타내는 폐기능 임피던스 신호(IPFS)를 검출해내는 생체신호 검출부;Through the current input and voltage measurement by each electrode from both hands of the subject, the basic base impedance signal of the measurement site and the pulmonary functional impedance signal (IPFS) representing the temporal change of the lung volume due to respiration are detected. A biosignal detection unit;
    상기 생체신호 검출부에서 검출된 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 파라미터를 추출하는 폐기능 평가요소 추출부;A pulmonary function evaluation element extracting unit for extracting a parameter for pulmonary function state evaluation from the pulmonary function impedance signal detected by the biosignal detection unit;
    상기 생체신호 검출부 및 폐기능 평가요소 추출부의 동작을 조절하는 주제어부;A main control unit controlling an operation of the biosignal detection unit and the pulmonary function evaluation element extracting unit;
    상기 생체신호 검출부에서 검출된 폐기능 임피던스 신호와 폐기능 평가요소 추출부에서 추출된 신호를 저장하는 데이터 저장부;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.And a data storage unit for storing the lung function impedance signal detected by the biosignal detection unit and the signal extracted by the lung function evaluation element extracting unit.
  7. 제6항에 있어서, The method of claim 6,
    상기 주제어부의 제어에 의해 동작되며, 올바른 폐기능 데이터 검출을 위해 피측정자의 실제 최대 흡기와 최대 호기를 유도할 수 있는 사용자 유도 그래프를 표시하는 디스플레이부;를 더 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 장치.And a display unit which is operated by the control of the main control unit and displays a user induction graph that can induce the actual maximum inspiration and the maximum exhalation of the subject for correct lung function data detection. Pulmonary function monitoring device using.
  8. 제7항에 있어서, 상기 디스플레이부는, The method of claim 7, wherein the display unit,
    상기 생체신호 검출부에서 전극을 통해 측정 부위에 인입되는 전류원, 생체신호 검출부에서 측정되는 교류 임피던스(AC Impedance), 베이스 임피던스, 호흡에 따른 폐 용적의 시간적 변화를 나타내는 폐기능 임피던스 신호를 표시하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링장치.The biosignal detection unit displays a pulmonary function impedance signal representing a current source introduced into the measurement site through an electrode, an AC impedance measured by the biosignal detection unit, a base impedance, and a temporal change in lung volume due to respiration. Pulmonary function monitoring device using two-hand impedance.
  9. 제6항에 있어서, 상기 생체신호 검출부는,The method of claim 6, wherein the bio-signal detection unit,
    인체로의 전류 주입에 필요한 고주파 신호를 발생시키는 사인파 발생기;A sine wave generator for generating a high frequency signal for injection of current into the human body;
    상기 사인파 발생기의 출력을 정전류로 변환하는 정전류원;A constant current source for converting the output of the sine wave generator into a constant current;
    상기 정전류원에서 공급되는 정전류를 피측정자의 측정 부위에 인입시키기 위한 제1전류전극(CH)과 제2전류전극(CL);A first current electrode CH and a second current electrode CL for introducing a constant current supplied from the constant current source into a measurement site of the subject;
    상기 각 전류전극에 의해 전류가 인입되는 두 측정 부위 양단의 전압차를 측정하기 위한 제1전압전극(VH)과 제2전압전극(VL);A first voltage electrode (VH) and a second voltage electrode (VL) for measuring a voltage difference across the two measurement sites into which current is drawn by each of the current electrodes;
    상기 두 전압 전극에서 측정되는 전위차를 증폭하여 인체의 두 지점에 대한 임피던스 신호의 차이값을 출력하는 차동 증폭부;A differential amplifier for amplifying a potential difference measured by the two voltage electrodes and outputting a difference value of an impedance signal for two points of the human body;
    상기 증폭된 전위차를 직류 형태로 변환하여 증폭부를 통해 증폭 및 직류 바이어스된 임피던스 신호에서 인체 임피던스값을 추출하는 교류/직류 변환부;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링장치.And an AC / DC converter for converting the amplified potential difference into a direct current form and extracting a human body impedance value from an amplified and DC biased impedance signal through an amplification unit.
  10. 제6항에 있어서, 상기 생체신호 검출부는, The method of claim 6, wherein the bio-signal detection unit,
    호흡에 따른 폐 용적의 시간적 변화를 나타내는 폐기능 임피던스 신호에 측정 부위로부터 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내는 베이스 임피던스 피드백부;를 구비하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링장치.Base impedance feedback which detects the pulmonary function impedance signal from which the basic base impedance signal of the measurement site is removed by feeding back the initial base impedance detected from the measurement site to the pulmonary function impedance signal representing the temporal change of lung volume due to respiration. Lung function monitoring apparatus using a two-hand impedance, characterized in that it comprises a.
  11. 제6항에 있어서, 상기 베이스 임피던스 피드백부는,The method of claim 6, wherein the base impedance feedback unit,
    측정부위로부터 검출된 폐기능 임피던스 신호를 증폭하는 제1비반전 증폭기(121);A first non-inverting amplifier 121 for amplifying the closed function impedance signal detected from the measurement site;
    상기 제1비반전 증폭기의 출력을 저역 필터링하여 상기 비반전 증폭된 신호 중에 포함된 직류 성분만을 추출하는 저역통과필터(126);A low pass filter 126 for low pass filtering the output of the first non-inverting amplifier to extract only a DC component included in the non-inverted amplified signal;
    상기 제1비반전 증폭기의 출력과 상기 저역 필터링된 직류 성분을 차동 증폭하여 상기 비반전 증폭된 임피던스 신호 중에 포함된 직류 성분만을 제거하여 출력하는 제1 차동 증폭기(122);A first differential amplifier 122 for differentially amplifying the output of the first non-inverting amplifier and the low-pass filtered DC component to remove only the DC component included in the non-inverted amplified impedance signal and outputting the DC component;
    상기 차동 증폭된 신호를 순차적으로 고역필터링, 저역필터링 및 비반전 증폭하여 폐기능 평가 요소가 포함된 폐기능 임피던스 신호(IPFS)를 출력하는 고역통과필터(123)와 저역통과필터(124) 및 제2비반전 증폭기(125);로 구성되는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링장치.The high pass filter 123 and the low pass filter 124 and the low pass filter 123 for outputting a pulmonary function impedance signal (IPFS) including a pulmonary function evaluation element by sequentially high-pass filtering, low-pass filtering and non-inverted amplification of the differentially amplified signal 2 non-inverting amplifier (125); lung function monitoring device using a two-hand impedance, characterized in that consisting of.
  12. 제6항에 있어서, 상기 폐기능 평가요소 추출부는, The method of claim 6, wherein the lung function evaluation element extracting unit,
    상기 생체신호 검출부에서 출력된 폐기능 임피던스 신호(IPFS)의 피크치와 최저치를 순차적으로 검출하고, 각 값의 시간지수와 진폭 정보를 이용하여 피크치와 최저치 사이의 시간간격과 진폭을 계산하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1), 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 획득하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링장치.Evaluate the peak value and the lowest value of the pulmonary functional impedance signal (IPFS) output from the biosignal detection unit sequentially, and calculate the time interval and amplitude between the peak value and the lowest value using time index and amplitude information of each value to evaluate the lung function. It is characterized by acquiring the coercive spirometry (FVC), the exhalation volume for 1 second (FEV1), the ratio of exhalation volume and coercive lung capacity for 1 second (FEV1 / FVC), and the highest coercive expiratory flow rate (FEF25-75%). Pulmonary function monitoring device using two-hand impedance.
  13. 전류 인입 및 전위차 측정을 통해 베이스 임피던스, 폐 용적(volume)의 시간적 변화를 나타내는 폐기능 임피던스 신호를 검출하는 생체신호 검출부, 상기 폐기능 임피던스 신호로부터 폐기능 상태 평가를 위한 다수의 파라미터를 추출하는 폐기능 평가요소 추출부를 구비한 폐기능 검사장치에서의 폐기능 모니터링 방법에 있어서, The biosignal detection unit detects a pulmonary functional impedance signal indicating a temporal change in base impedance and lung volume through current inflow and potential difference measurement, and a lung extracting a plurality of parameters for pulmonary functional state evaluation from the pulmonary functional impedance signal. In the pulmonary function monitoring method in the pulmonary function tester having a function evaluation element extraction unit,
    상기 생체신호 검출부에서 각각의 전극을 통한 전류 인입과 전압 측정을 통해 피측정자의 양손으로부터 측정 부위가 갖는 기본적인 베이스 임피던스 및 폐기능 평가 요소가 포함된 폐기능 임피던스 신호(IPFS)를 각각 검출하는 임피던스 검출단계;Impedance detection for detecting the pulmonary function impedance signal (IPFS) including the basic base impedance and pulmonary function evaluation elements of the measurement site from both hands of the subject through current input and voltage measurement through each electrode in the biosignal detection unit step;
    상기 폐기능 임피던스 신호로부터 피크치와 최저치를 검출하여 폐기능 평가에 사용되는 파라미터들을 추출하는 폐기능 평가요소 추출단계;를 포함하여 이루어지는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 방법.The lung function monitoring method using two-hand impedance, characterized in that it comprises a; extracting the lung function evaluation element for extracting the parameters used for the lung function evaluation by detecting the peak value and the lowest value from the lung function impedance signal.
  14. 제13항에 있어서, 상기 임피던스 검출단계는,The method of claim 13, wherein the impedance detection step comprises:
    생체신호 검출부에서 검출되는 폐기능 임피던스 신호에, 측정 부위에서 미리 검출된 초기의 베이스 임피던스를 피드백시켜, 측정부위가 갖는 기본적인 베이스 임피던스 신호가 제거된 폐기능 임피던스 신호를 검출해내는 피드백 처리단계;를 포함하는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링방법.A feedback processing step of feeding back the initial base impedance previously detected at the measurement site to the lung function impedance signal detected by the biosignal detection unit to detect the lung function impedance signal from which the basic base impedance signal of the measurement site is removed; Pulmonary function monitoring method using a two-handed impedance comprising a.
  15. 제13항 또는 제14항 중 어느 한 항에 있어서, 상기 폐기능 평가요소 추출단계는,The method of claim 13 or 14, wherein the pulmonary function evaluation element extraction step,
    생체신호 검출부를 통해 검출되는 폐기능 임피던스 신호(IPFS)를 저역 필터링하여 신호 대 잡음비(SNR)가 향상되고 호흡에 영향이 없는 폐기능 평가요소가 포함된 IPFS 데이터를 획득하는 제1단계;Performing a low pass filtering of the pulmonary function impedance signal (IPFS) detected through the biosignal detection unit to obtain IPFS data including a pulmonary function evaluation element having an improved signal-to-noise ratio (SNR) and having no effect on respiration;
    상기 제1단계에서 획득된 IPFS 데이터를 이용하여 초기 일정한 시간동안 베이스 라인(임계치)을 설정하는 제2단계;A second step of setting a baseline (threshold) for an initial predetermined time using the IPFS data obtained in the first step;
    상기 초기 일정한 시간이 경과되면 IPFS 데이터의 피크치와 최저치를 각각 순차적으로 검출하는 제3단계; 및,Detecting a peak value and a lowest value of IPFS data sequentially after the initial constant time elapses; And,
    상기 순차적 검출을 통해 피크치와 최저치가 획득되면 각 값의 시간지수와 진폭정보를 이용하여 피크치와 최저치 사이의 시간간격과와 진폭을 계산하고, 그 계산된 두 정보의 결과를 이용하여 폐기능 평가에 사용되는 노력성 폐활량(FVC), 1초간 호기량(FEV1) 및 그 1초간 호기량과 노력성 폐활량의 비율(FEV1/FVC), 노력성 최고 중간 호기유속(FEF25-75%) 파라미터를 획득하는 제4단계;를 포함하여 이루어지는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 방법.When the peak value and the lowest value are obtained through the sequential detection, the time interval and the amplitude between the peak value and the lowest value are calculated using the time index and amplitude information of each value, and the lung function evaluation is performed using the results of the calculated two informations. Fourth to obtain the parameters of coherent spirometry (FVC) used, exhalation volume for 1 second (FEV1) and the ratio of exhalation volume and coercive lung capacity for 1 second (FEV1 / FVC), and peak effort middle expiratory flow rate (FEF25-75%) Pulmonary function monitoring method using a two-hand impedance, characterized in that comprises a.
  16. 제15항에 있어서, The method of claim 15,
    상기 제1단계를 통해 SNR이 향상된 IPFS 데이터의 1차 미분을 통해 폐 용적의 변화에 대한 흐름의 변화 곡선을 획득하는 제5단계;를 더 포함하여 이루어지는 것을 특징으로 하는 양손 임피던스를 이용한 폐기능 모니터링 방법.And a fifth step of acquiring a change curve of the flow for the change in the lung volume through the first derivative of the IPFS data with the improved SNR through the first step. Way.
PCT/KR2010/002392 2010-04-15 2010-04-16 Device and method for monitoring pulmonary function using impedance of both hands WO2011129474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100034732A KR101159209B1 (en) 2010-04-15 2010-04-15 Apparatus for monitoring a pulmonary function using a bioelectrical impedance of both hands and method thereof
KR10-2010-0034732 2010-04-15

Publications (1)

Publication Number Publication Date
WO2011129474A1 true WO2011129474A1 (en) 2011-10-20

Family

ID=44798832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002392 WO2011129474A1 (en) 2010-04-15 2010-04-16 Device and method for monitoring pulmonary function using impedance of both hands

Country Status (2)

Country Link
KR (1) KR101159209B1 (en)
WO (1) WO2011129474A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105054935A (en) * 2015-09-15 2015-11-18 成都汉康信息产业有限公司 Respiration signal detecting terminal
CN105105749A (en) * 2015-09-15 2015-12-02 成都汉康信息产业有限公司 Improved breathing signal detection device
CN112155546A (en) * 2020-09-22 2021-01-01 芯海科技(深圳)股份有限公司 Pulmonary function detection device and computer-readable storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141419A1 (en) * 2012-03-21 2013-09-26 연세대학교 원주산학협력단 Biometric system using both hands for evaluation of blood vessel and cardio pulmonary function
KR101696791B1 (en) * 2015-07-31 2017-01-17 연세대학교 원주산학협력단 Pulmonary function test apparatus using chest impedance and thereof method
KR101765423B1 (en) * 2016-11-18 2017-08-07 경희대학교 산학협력단 Method and apparatus for pulmonary function test

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000050493A (en) * 1999-01-11 2000-08-05 차기철 Method of attatching electrodes for monitoring ECG and cardiac outputs and apparatus of using thereof
KR20010040047A (en) * 1999-10-12 2001-05-15 가부시키가이샤 타니타 Bioelectrical impedance measuring apparatus with handgrip
JP2009189409A (en) * 2008-02-12 2009-08-27 Kansai Electric Power Co Inc:The Bio-information measuring method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000050493A (en) * 1999-01-11 2000-08-05 차기철 Method of attatching electrodes for monitoring ECG and cardiac outputs and apparatus of using thereof
KR20010040047A (en) * 1999-10-12 2001-05-15 가부시키가이샤 타니타 Bioelectrical impedance measuring apparatus with handgrip
JP2009189409A (en) * 2008-02-12 2009-08-27 Kansai Electric Power Co Inc:The Bio-information measuring method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105054935A (en) * 2015-09-15 2015-11-18 成都汉康信息产业有限公司 Respiration signal detecting terminal
CN105105749A (en) * 2015-09-15 2015-12-02 成都汉康信息产业有限公司 Improved breathing signal detection device
CN112155546A (en) * 2020-09-22 2021-01-01 芯海科技(深圳)股份有限公司 Pulmonary function detection device and computer-readable storage medium

Also Published As

Publication number Publication date
KR101159209B1 (en) 2012-06-25
KR20110115302A (en) 2011-10-21

Similar Documents

Publication Publication Date Title
JP6993005B2 (en) Pulmonary function test device and its method
Ernst et al. Impedance pneumography: Noise as signal in impedance cardiography
US7283875B2 (en) Nerve stimulation device
Lanatà et al. Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate
KR102491756B1 (en) Devices, methods, and systems for processing neuromuscular signals
RU2514329C2 (en) Measuring device and method of determining regional consumption/perfusion of oxygen
WO2011129474A1 (en) Device and method for monitoring pulmonary function using impedance of both hands
US20160135715A1 (en) Method for respiratory measurement
EP2717766B1 (en) Method and apparatus for selecting differential input leads
CN108135535A (en) For handling the device and method of the electromyogram signal related with respiratory activity
WO2011031062A2 (en) Apparatus for measuring biological information comprising a handle cradle
CA2721325A1 (en) Multiple polarity piezoelectric film sensor respiratory output
CN103153183A (en) Apparatus and method for diagnosing obstructive sleep apnea
WO2011129478A1 (en) Device and method for monitoring cardiac output using impedance of both hands
CN105916440A (en) Method and system for validating inspiratory muscle activity of patient, and mechanical ventilation system using the method and the system
US6490480B1 (en) Apparatus and methods for measuring autonomic nervous system function
Młyńczak et al. Impedance pneumography: Is it possible?
KR101696791B1 (en) Pulmonary function test apparatus using chest impedance and thereof method
D’Alvia et al. Tetrapolar low-cost systems for thoracic impedance plethysmography
KR20130010768A (en) Multiple -energy x-ray imaging system and control method for the same
CN102438516B (en) System and method for processing signals for the real-time detection of a functional cyclic activity
WO2012115346A2 (en) Device and method for facial nerve monitoring
RU2306841C2 (en) Device for integrated study of vegetative nervous system state
Parak et al. Device for long term measurement of heart rate
Młyńczak et al. Ability to determine dynamic respiratory parameters evaluated during forced vital capacity maneuver using impedance pneumography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849879

Country of ref document: EP

Kind code of ref document: A1