WO2019045097A1 - Ph-sensitive liposomes and method for producing same - Google Patents

Ph-sensitive liposomes and method for producing same Download PDF

Info

Publication number
WO2019045097A1
WO2019045097A1 PCT/JP2018/032611 JP2018032611W WO2019045097A1 WO 2019045097 A1 WO2019045097 A1 WO 2019045097A1 JP 2018032611 W JP2018032611 W JP 2018032611W WO 2019045097 A1 WO2019045097 A1 WO 2019045097A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposome
sensitive
betaine
membrane component
substance
Prior art date
Application number
PCT/JP2018/032611
Other languages
French (fr)
Japanese (ja)
Inventor
那波 慶彦
Original Assignee
一丸ファルコス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017169356A external-priority patent/JP6399530B1/en
Priority claimed from JP2017169359A external-priority patent/JP6462073B1/en
Application filed by 一丸ファルコス株式会社 filed Critical 一丸ファルコス株式会社
Priority to CN201880059659.0A priority Critical patent/CN111132753B/en
Priority to KR1020207008501A priority patent/KR20200050982A/en
Publication of WO2019045097A1 publication Critical patent/WO2019045097A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/63Steroids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying

Definitions

  • the present invention relates to a pH sensitive liposome and a method for producing the same, and more particularly, to a pH sensitive liposome obtained by adding and dissolving a membrane component of a liposome to a mixture of a diol and a trivalent or higher polyol and a method for producing the same About.
  • Liposomes are attracting attention as carriers for delivering biologically active molecules into the cytoplasm.
  • the major problem in drug delivery using liposomes is that the release of the drug encapsulated in the lipid bilayer membrane is slow after being transferred into the cytoplasm, since the normal liposome has low fusogenicity.
  • pH-sensitive liposomes have been developed which are stable under physiological conditions and then destabilized under acidic conditions after being translocated into the cytoplasm.
  • phosphatidyl ethanolamine type phospholipids transfer aggregate structure in response to pH and release inclusions in an acidic environment (pH 5 or less) (For example, refer to nonpatent literature 1).
  • a liposome containing as a constituent lipid a cationic amphiphilic molecule and at least one of an anionic amphiphilic molecule and a zwitterionic amphiphilic molecule is dispersed in an aqueous medium, under acidic pH environment
  • the liposome has a positive zeta potential, and in a basic pH environment, the liposome has a negative zeta potential, and the zeta potential increases as the pH of the dispersion increases. It has been reported that the change from plus to minus releases the target substance held (see, for example, Patent Document 1).
  • Liposomes can be prepared by various methods such as ultrasonic method, extrusion method, French press method, homogenization method, ethanol injection method, etc.
  • a lipid component such as phospholipid dissolved in a solvent
  • alcohols such as methanol, ethanol, isopropyl alcohol and butanol can be used as the water-miscible organic solvent, but the lipid solution is added and mixed while heating the lipid solution to maintain the dissolved state of the lipid. It is necessary to precisely control the temperature, the addition rate or the stirring rate (see Patent Document 2).
  • Patent No. 5588619 gazette Japanese Patent Application Publication No. 2006-517594 JP, 2017-66059, A
  • pH-sensitive liposomes are generally unstable, it is necessary to set the pH value at which the zeta potential is zero in an aqueous medium to a desired range, that is, the fusogenicity of the liposome is acidic. There is a problem that it is difficult to set arbitrarily within a wide range up to basicity, and it can not meet the potential applications of pH sensitive liposomes.
  • pH sensitive liposomes are unstable compared to normal liposomes, their industrial production is difficult, and a simple and stable method for producing pH sensitive liposomes is required.
  • the present invention has been made to solve such problems, and by adjusting the content ratio of specific components constituting the liposome, the zeta potential of the liposome can be obtained under an arbitrary pH condition within a predetermined range.
  • An object of the present invention is to provide a pH sensitive liposome which can be transferred from positive to negative.
  • Another object of the present invention is to stabilize pH-sensitive liposomes which have hitherto been unstable and difficult to prepare, and to enable preparation of pH-sensitive liposomes by a simple method.
  • the pH sensitive liposome comprises phospholipid, steroids, anionic substance, and zwitterionic substance as a liposome membrane component, relative to the whole liposome membrane component. It is characterized in that it contains 2.5 to 15% by mass of an anionic substance and 5 to 20% by mass of an amphoteric substance. And when it disperses in the aqueous medium of each of the following pH conditions, the zeta potential of the liposome is positive at pH 5 or less, negative at pH 8 or more, and increases in pH value between pH 5 and 8. Together with the move from plus to minus.
  • the method for producing a pH-sensitive liposome comprises mixing a diol, a trivalent or higher polyol, and a liposome membrane component under heating conditions, and mixing the diol and the polyol with the mixture. Preparing a mixture solution in which the liposome membrane components are dissolved, mixing the mixture solution with a preheated aqueous medium, homogenizing them, quenching the homogenized aqueous medium, The method is characterized by comprising the steps of producing a liposome and recovering the produced liposome.
  • the liposome membrane component contains at least a zwitterionic substance, and when the liposome is dispersed in an aqueous medium at each of the following pH conditions, its zeta potential is positive at pH 5 or less, and negative at pH 8 or more, Then, it was made to shift from positive to negative with increasing pH value between pH 5-8.
  • a pH sensitive liposome which can shift the zeta potential of the liposome from positive to negative under a wide range of arbitrary pH conditions can be provided.
  • stable pH-sensitive liposomes can be produced by a simple operation of mixing and dissolving a diol, a trivalent or higher polyol, and a liposome membrane component, and stirring and mixing with an aqueous medium.
  • composition and composition of pH sensitive liposomes Method for producing pH sensitive liposome pH sensitivity and its expression mechanism Shape, application or usage
  • a diol capable of dissolving the liposome membrane component is preferably a 1,2-alkanediol or a 1,3-alkanediol.
  • 1,2-alkanediol or 1,3-alkanediol 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 1,2-octanediol, 1,2-hexanediol 1,2-decanediol, 1,3-butylene glycol, 1,3-propanediol, propylene glycol and the like.
  • the 1,2-alkanediol or 1,3-alkanediol can be used alone or in combination of two or more.
  • the 1,2-alkanediol or 1,3-alkanediol is preferably 1,2-propanediol and 1,3-butylene glycol.
  • the amount of 1,2-alkanediol or 1,3-alkanediol to be used is not particularly limited as long as it can dissolve the liposome membrane component, but it is preferably about 10 to 50 times, preferably about 10 to 50 times the total mass of the liposome membrane component. By using about 15 to 30 times, the generated pH sensitive liposome can be stabilized.
  • Polyols which dissolve the liposome membrane component together with the diol are polyols having a valence of 3 or more and, for example, trehalose, sucrose, sorbose, melezitose, glycerol, fructose, mannose, maltose, lactose, arabinose, xylose, ribose, rhamnose, galactose, glucose , Mannitol, xylitol, erythritol, threitol, sorbitol, raffinose and the like.
  • it is sorbitol and glycerol.
  • the amount thereof used is not particularly limited as long as the liposome membrane component can be dissolved, but it is generated by using about 10 to 50 times, preferably about 15 to 30 times the total mass of the liposome membrane component pH sensitive liposomes can be stabilized.
  • the "aqueous medium” is an aqueous medium which does not contain an organic solvent and is a medium capable of dispersing the liposome membrane component, and is not particularly limited.
  • Target saline solution, ion exchange water, or an isotonic agent, a buffer solution, etc. may be added to these solutions.
  • a physiologically active substance as a liposome inclusion substance may be included.
  • Liposome membrane component include, in addition to phospholipids and cholesterol, anionic substances and amphoteric substances for imparting pH sensitivity to liposomes. The following will be described in order.
  • Phospholipids are generally amphiphilic substances having a hydrophilic group composed of a hydrophobic group composed of a long chain alkyl group and a phosphate group etc. in the molecule.
  • Examples of phospholipids include phosphatidylcholine (lecithin), phosphatidylglycerol, phosphatidic acid, phosphatidylethanolamine, glycerophospholipids such as phosphatidylserine and phosphatidylinositol, sphingophospholipids such as sphingomyelin, natural or cardiolipin Synthetic diphosphatidyl type phospholipids and derivatives thereof, and those obtained by hydrogenating them in a conventional manner (for example, hydrogenated soybean phosphatidyl choline (HSPC)) can be used.
  • HSPC hydrogenated soybean phosphatidyl choline
  • hydrogenated phospholipids such as HSPC, sphingomyelin and the like are preferable.
  • the amount of phospholipid is usually 20% by mass or more, preferably 40% by mass or more, based on the whole liposome membrane component.
  • the amount of other liposome membrane components is usually 80% by mass or less, preferably 60% by mass or less.
  • Steroids include all steroids having perhydrocyclopentanophenanthrene, such as sterols, bile acids, provitamin D, steroid hormones and the like. Among them, sterols are preferably used. Sterols include, for example, sterols acting as lipid membrane stabilizers such as cholesterol, dihydrocholesterol, cholesterol ester, phytosterol, sitosterol, stigmasterol, campesterol, cholestanol, lanosterol and the like.
  • sterol derivatives such as 1-O-sterol glucoside, 1-O-sterol maltoside or 1-O-sterol galactoside are effective for stabilizing the liposome (Japanese Patent Laid-Open No. 5-245357).
  • cholesterol is particularly preferred.
  • the content of the steroids is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and more preferably 0.1% by mass or more based on the entire components of the liposome. Is more preferred. Moreover, 30 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is more preferable. Steroids can act as stabilizers for molecular assemblies. The steroids may be used singly or in combination of two or more.
  • the anionic substance for imparting pH sensitivity to the liposome is diacylglycerol hemisuccinate, diacylglycerol hemimalonate, diacylglycerol hemiglutarate, diacylglycerol hemiadipate, diacylglycerol hemicyclohexane-1, Examples thereof include, but are not limited to, 4-dicarboxylic acids and fatty acids such as oleic acid, myristic acid, palmitic acid, stearic acid, nervonic acid, behenic acid and the like. In particular, saturated fatty acids which are solid at normal temperature are preferable, and palmitic acid and stearic acid are particularly preferable.
  • normal temperature means 10 ° C. to 30 ° C.
  • the content ratio of the above-mentioned anionic substance to the total amount of liposome constituents is 0 to 20% by mass, preferably 2.5% by mass or more, and more preferably 5% by mass or more. On the other hand, 20 mass% is good and, as for the upper limit of a content rate, 15 mass% is preferable.
  • the content ratio of the anionic substance exceeds 20%, it is difficult to maintain the emulsified state in the aqueous medium containing the liposome membrane component, and clouding, aggregation and precipitation occur to result in a heterogeneous liposome preparation.
  • N-alkyl-N, N-dimethyl amino acid betaines such as lauryl betaine (lauryl dimethylaminoacetic acid betaine); cocamidopropyl betaine Fatty acid amide alkyl-N, N-dimethyl amino acid betaines such as lauramidopropyl betaine; imidazoline type betaines such as sodium cocoamphoacetate, sodium lauroamphoacetate; alkylsulfobetaines such as alkyl dimethyl taurine; sulfuric acid such as alkyl dimethylamino ethanol sulfate ester And betaine-type betaines such as alkyldimethylaminoethanol phosphate ester.
  • the content ratio of the above-mentioned zwitterionic substance to the total amount of liposome constituents is 5 to 20% by mass, preferably 7% by mass or more. On the other hand, 20 mass% is good and, as for the upper limit of a content rate, 15 mass% is preferable. When the content of the amphoteric substance exceeds 20% by mass, it is difficult to maintain the liposome (lipid bilayer membrane) structure.
  • the pH sensitive liposome of the present invention can contain other additives as needed.
  • tocopherol homologues that is, vitamin E and the like can be mentioned.
  • the lipid derivative of the hydrophilic polymer that modifies the surface of the liposome is not particularly limited as long as it does not impair the structural stability of the liposome, and, for example, polyethylene glycol, dextran, pullulan, ficoll, polyvinyl alcohol, synthetic polyamino acid, amylose Amylopectin, mannan, cyclodextrin, pectin, carrageenan, and derivatives thereof. Among them, polyethylene glycol and polyethylene glycol derivatives are desirable.
  • the molecular weight of the lipid derivative of the hydrophilic polymer is preferably about 200 to 50,000, and more preferably about 1,000 to 10,000.
  • the pH sensitive liposome of the present invention can encapsulate various target substances of water solubility or lipid solubility.
  • the method for causing the liposome to retain the target substance may be appropriately selected according to the type of the target substance and the like.
  • the target substance is a water-soluble drug
  • it can be prepared by dissolving the drug in an aqueous medium at the time of liposome production.
  • the water-soluble drug not retained can be separated from the liposome retaining the target substance by gel filtration, ultracentrifugation, ultrafiltration membrane treatment or the like.
  • lipid-soluble drug for example, by forming a liposome by mixing the drug in a state in which the liposome membrane component is dissolved in a mixture of diol and polyol, for example, It can hold the substance.
  • step S01 at least one diol and at least one polyol are mixed under heating conditions, and these are homogenized to prepare a mixture of diol and polyol.
  • the mixing ratio of diol and polyol is not particularly limited as long as the liposome membrane component can be uniformly dissolved, but 1: 5-5: 1 is preferable, 1: 2-2: 1 is more preferable, and almost 1: 1 Is most preferred.
  • These mixing methods can be performed using an ultrasonic vibrator or the like in addition to manual shaking, stirring using a stirrer, and stirring blades.
  • the heating condition at the time of mixing is not particularly limited as long as the mixture melts, but 60 ° C. to 90 ° C. is preferable, and 80 ° C. to 85 ° C. is more preferable.
  • the heating method is not particularly limited, and for example, a method of heating the container by direct fire in a state in which the mixture is put in the container, in addition to a warm bath in which the container is put in a bath containing warm water. It is possible to adopt a method of putting the container in the electric heater or the like.
  • step S02 a liposome membrane component is added to the above mixture in the homogenized state. Then, a mixture solution in which the added liposome membrane component is dissolved in a mixture of diol and polyol is prepared.
  • each component such as phospholipid may be separately added and mixed, it is preferable to mix all liposome membrane components in advance and add them to the above mixture to increase the efficiency of solubilization.
  • the content of each component is not particularly limited as long as it is within the above-mentioned range, but the content ratio of the anionic substance to the zwitterionic substance is preferably within the range of 1: 1 to 1: 3. .
  • Cholesterol which is a type of lipid, is usually difficult to dissolve in water, and it is difficult to adjust the concentration in the liposome membrane.
  • the amount of cholesterol introduced into the liposome membrane can be easily adjusted by dissolving the cholesterol in advance by causing the mixture of the diol and the polyol to coexist with the phospholipid as in the present embodiment.
  • step S03 the mixture solution prepared in step S02 is mixed with an aqueous medium preheated to 80 ° C. to 85 ° C.
  • the addition amount of the aqueous medium to the whole of these mixtures must be adjusted so that the liposome membrane components have an appropriate concentration range for forming liposomes.
  • the amount of the aqueous medium is too large, the lipid component dissolved in the mixture of diol and polyol can not be rapidly aggregated to form a liposome.
  • the amount of the aqueous medium added in this step is preferably such that the lipid component dissolved in the mixture solution of diol and polyol has a critical concentration that can be dissolved when it is mixed with the aqueous medium.
  • the amount is 2 to 6 times, preferably 3 to 5 times, more preferably about 4 times the volume of the mixture solution prepared in step S02.
  • the aqueous medium in which the liposome membrane component is dissolved is rapidly cooled to around room temperature at 80 ° C. to 85 ° C. to form a liposome.
  • the cooling method is not particularly limited.
  • a method of placing the container in a refrigerator or the like with the mixture in the container is adopted. it can.
  • the cooling temperature is not limited as long as the liposome is generated.
  • the cooling temperature is preferably 62 ° C. or less. Further, it may be cooled to around room temperature.
  • the cooling rate is preferably 0.5 ° C./min or more, and more preferably 1 ° C./min or more.
  • the liposomes present in the aqueous medium can be recovered by any method such as filtration or decantation.
  • the liposome membrane component is added in step S02 to the solution in which the diol and the polyol are mixed and homogenized in advance in step S01, but the procedure is not necessarily limited. I will not.
  • a liposome membrane component is added to a preheated diol, dissolved, and then a polyol is added and homogenized, or, conversely, the polyol and the liposome membrane component are first mixed and dissolved. Then, the diol may be added and homogenized. Therefore, as another embodiment of the present invention, as shown in FIG.
  • step S11 the diol, the polyol, and the liposome membrane component are mixed in any order, and finally the mixture of the diol and the polyol is obtained. Liposome membrane components may be dissolved.
  • the process after step S11 is the same as that of FIG.
  • the pH sensitive liposome of the present embodiment when dispersed in various aqueous media having different pH conditions, has a positive zeta potential at pH 5 or lower, negative at pH 8 or higher, and pH 5 to 8 It has the property of shifting from positive to negative as the pH value increases.
  • the zeta potential used as an indicator of the charge state of liposome particles dispersed in an aqueous medium defines the potential of a region sufficiently separated from the particle to be electrically neutral as zero, and this zero point is defined as It is defined as the potential of the "slip surface" when measured as a reference.
  • the zeta potential As the absolute value of the zeta potential increases, the repulsive force between particles becomes stronger and the stability of the particles becomes higher. Conversely, when the zeta potential approaches zero, the particles tend to aggregate.
  • the zeta potential is used as an indicator of the dispersion stability of dispersed particles (Kohoku original text, Furusawa Kunio, Ozaki Masataka, Oshima Hiroyuki, "Zeta Potential zeta potential: physical chemistry of fine particle interface", Scientific Co., Ltd., 1995).
  • the pH-sensitive liposome of the present embodiment exhibits a behavior in which the surface charge shifts from positive to negative with an increase in pH value between pH 5 and 8, so that the pH of the liposome dispersion is acidic condition of 5 or less. It is considered that the target substance is retained and stably present, and the liposome dispersion becomes unstable under a pH condition where the zeta potential becomes zero between 5 and 8, causing membrane fusion and releasing the inclusion.
  • a known method can be used as a method of measuring the zeta potential.
  • the particles migrate (move) toward the electrode, but since the velocity is proportional to the charge of the particles, the migration velocity of the particles is The zeta potential can be measured by measurement. Electrophoretic light scattering measurement is also called laser Doppler method, and the zeta potential is determined by observing the scattered light from the migrating particles.
  • the pH-sensitive liposome of the present embodiment When dispersed in an aqueous medium, the pH-sensitive liposome of the present embodiment has a positive zeta potential in an acidic pH environment and a negative pH such as having a negative zeta potential in a basic pH environment. It can show response behavior. In recent years, studies have been conducted to introduce negatively charged substances such as genes and nucleic acid derivatives into cells.
  • the pH-sensitive liposome of the present embodiment has a positive surface charge under acidic conditions of pH 5 or less, and thus can adsorb these substances, and releases these substances under weak to neutral pH 5 to 8 conditions. It can be used to introduce it into cells.
  • the shape is also not particularly limited, and may be a multilamellar liposome or unilamellar liposome having a particle diameter of 100 nm to 10 ⁇ m. It is also possible to adjust the particle size of the pH-sensitive liposome of the present embodiment as appropriate depending on its use. For example, for the purpose of in vivo administration, it is preferable to adjust the particle size to 200 nm or less.
  • the specific particle diameter adjustment method can adjust the particle diameter by passing through a filter with a small pore diameter using an extruder. It is said that unilamellar liposomes having a small particle size of about 100 nm or less are uniform in size and thermodynamically stable, and have good skin permeability even when used as a cosmetic It is said.
  • the pH-responsive liposome of the present embodiment when dispersed in an aqueous medium, has a positive zeta potential in an acidic pH environment and has a negative zeta potential in a basic pH environment, which has not been conventionally used. It can show pH response behavior. In recent years, studies have been conducted to introduce negatively charged substances such as genes and nucleic acid derivatives into cells. Since the pH-responsive liposome of the present embodiment has a positive surface charge under acidic conditions of pH 5 or less, it is expected that applications such as methods of introducing these substances into cells will be expanded.
  • Example 1 10.0 g of sorbitol was added to 10.0 g of propane-1,2-diol and dissolved by heating at 80 ° C. to 85 ° C. using a general-purpose stirrer 350 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, 0.05 g of palmitic acid, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this liquid under heating and stirring, and the mixture was similarly stirred and dissolved.
  • Example 2 10.0 g of glycerin was added to 10.0 g of propane-1,2-diol, and the mixture was heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.82 g of hydrogenated lecithin containing phosphatidyl choline, 0.18 g of cholesterol, 0.1 g of stearic acid, and 0.2 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved.
  • Example 3 10.0 g of glycerin was added to 5.0 g of propane-1,2-diol, and the mixture was heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 500 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and stirred and dissolved in the same manner. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
  • Example 4 10.0 g of sorbitol was added to 30.0 g of propane-1,2-diol and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 600 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, and 0.2 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and stirred and dissolved in the same manner. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
  • Example 5 10.0 g of glycerin is added to 10.0 g of 1,3-butylene glycol, and the mixture is heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 600 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, 0.05 g of palmitic acid, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this liquid under heating and stirring, and the mixture was similarly stirred and dissolved. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
  • Example 6 10.0 g of sorbitol was added to 30.0 g of 1,3-butylene glycol and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 600 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, 0.15 g of palmitic acid, and 0.3 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
  • Comparative Example 1 15.0 g of glycerin was added to 5.0 g of 1,3-butylene glycol, and the mixture was heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, and 0.05 g of palmitic acid were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. To the mixture solution prepared above, 100 g of purified water preheated to 80 ° C. to 85 ° C. was added and mixed while stirring, and after 1 to 2 hours, it was subjected to an extruder treatment.
  • Comparative Example 2 10.0 g of glycerin was added and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.82 g of hydrogenated lecithin containing phosphatidyl choline, 0.18 g of cholesterol, 0.05 g of palmitic acid, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above and mixed while stirring, and stirred with a general-purpose stirrer 350 rpm for 1 to 2 hours. The heating was stopped, quenched while stirring, cooled to about room temperature and filtered.
  • Comparative Example 3 10.0 g of glycerin was added and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.82 g of hydrogenated lecithin containing phosphatidyl choline, 0.18 g of cholesterol, and 0.05 g of palmitic acid were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. To the mixture solution prepared above, 100 g of purified water preheated to 80 ° C. to 85 ° C. was added and mixed while stirring, and stirred at 8,000 rpm using a homomixer for 1 to 2 hours. The heating was stopped, quenched while stirring, and cooled to about room temperature. In this comparative example, the reprecipitation of fats and oils was large (considered to be insufficient in the emulsifying ability), and the liposome could not be formed.
  • the liposome prepared in Comparative Example 1 showed a slightly positive zeta potential at pH 4 or less, but it is extremely unstable in this region because the absolute value of the zeta potential is small. it is conceivable that.
  • the liposome prepared in Comparative Example 2 showed a negative zeta potential at all pH.
  • the liposomes prepared in Examples 1 to 6 exhibit pH sensitivity and can be stably present because the absolute value of the zeta potential is large at pH 5 or less.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)

Abstract

This method for producing pH-sensitive liposomes comprises: a step wherein a diol, a polyol having a valence of 3 or more and a liposome membrane-constituting component are mixed with each other under heating conditions, thereby preparing a mixture solution wherein the liposome membrane-constituting component is dissolved in a mixture of the diol and the polyol; a step wherein this mixture solution and an aqueous medium, which has been heated in advance, are mixed with each other and homogenized; a step wherein the homogenized aqueous medium is rapidly cooled, thereby producing liposomes; and a step wherein the produced liposomes are collected. This method according to the present invention stabilizes pH-sensitive liposomes, which have been unstable and thus hard to prepare in the past, and is thus able to prepare pH-sensitive liposomes by a simple process.

Description

pH感受性リポソームおよびその製造方法pH sensitive liposome and method for producing the same クロスリファレンスCross reference
 本出願は、2017年9月4日に日本国において出願された特願2017-169356号および特願2017-169359号に基づく優先権を主張するものであり、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。また、本願において引用した全ての特許、特許出願及び文献に記載された内容は全て、参照によりそのまま本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2017-169356 and Japanese Patent Application No. 2017-169359 filed in Japan on September 4, 2017, and the contents described in that application are all incorporated herein. , Which is incorporated herein by reference in its entirety. Also, all the contents described in all the patents, patent applications and documents cited in the present application are incorporated herein by reference in their entirety.
 本発明は、pH感受性リポソームおよびその製造方法に関し、より詳細には、ジオールと三価以上のポリオールとの混合物に、リポソームの膜構成成分を添加、溶解して得られるpH感受性リポソームおよびその製造方法に関する。 The present invention relates to a pH sensitive liposome and a method for producing the same, and more particularly, to a pH sensitive liposome obtained by adding and dissolving a membrane component of a liposome to a mixture of a diol and a trivalent or higher polyol and a method for producing the same About.
 リポソームは、生物学的に活性な分子を細胞質内に送達するためのキャリアとして注目されている。リポソームを用いた薬剤送達における主な課題は、通常のリポソームでは膜融合性が低いため、細胞質内へ移行した後で、脂質二分子膜に内包された薬剤の放出が遅いことである。これを解決するため、生理的条件下では安定でありながら、細胞質内に移行した後、酸性条件下で不安定化されるpH感受性リポソームが開発されている。例えば、ホスファチジルエタノールアミン型リン脂質を用いたリポソームは、ホスファチジルエタノールアミン型リン脂質がpHに応答して集合構造が転移し、酸性環境(pH5以下)で内包物を放出することが報告されている(例えば、非特許文献1参照)。 Liposomes are attracting attention as carriers for delivering biologically active molecules into the cytoplasm. The major problem in drug delivery using liposomes is that the release of the drug encapsulated in the lipid bilayer membrane is slow after being transferred into the cytoplasm, since the normal liposome has low fusogenicity. In order to solve this, pH-sensitive liposomes have been developed which are stable under physiological conditions and then destabilized under acidic conditions after being translocated into the cytoplasm. For example, in liposomes using phosphatidyl ethanolamine type phospholipids, it has been reported that phosphatidyl ethanolamine type phospholipids transfer aggregate structure in response to pH and release inclusions in an acidic environment (pH 5 or less) (For example, refer to nonpatent literature 1).
 一方、カチオン性両親媒性分子と、アニオン性両親媒性分子及び両イオン性両親媒性分子の少なくとも1種とを構成脂質として含むリポソームを水性媒体中に分散させたとき、酸性pH環境下で、該リポソームがプラスのゼータ電位を有し、かつ、塩基性pH環境下で、該リポソームがマイナスのゼータ電位を有しており、該ゼータ電位が、該分散液のpHの増加に伴って、プラスからマイナスへと変化すると、保持していた目的物質が放出されることが報告されている(例えば、特許文献1参照)。 On the other hand, when a liposome containing as a constituent lipid a cationic amphiphilic molecule and at least one of an anionic amphiphilic molecule and a zwitterionic amphiphilic molecule is dispersed in an aqueous medium, under acidic pH environment The liposome has a positive zeta potential, and in a basic pH environment, the liposome has a negative zeta potential, and the zeta potential increases as the pH of the dispersion increases. It has been reported that the change from plus to minus releases the target substance held (see, for example, Patent Document 1).
 リポソームの製法には、超音波法、エクストルージョン法、フレンチプレス法、ホモジナイゼーション法、エタノール注入法等の種々の方法があるが、典型的なリポソームの工業的製造法において、水混和性有機溶媒に溶解したリン脂質等の脂質成分を撹拌しながら水溶液に注入添加する方法がある。この方法は、水混和性有機溶媒として、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類を用いることができるが、脂質の溶解状態を維持するため脂質溶液を加温しながら、水溶液に添加混合する必要があり、温度や添加速度あるいは撹拌速度を精密に制御する必要があった(特許文献2参照)。 Liposomes can be prepared by various methods such as ultrasonic method, extrusion method, French press method, homogenization method, ethanol injection method, etc. There is a method of injecting and adding a lipid component such as phospholipid dissolved in a solvent to an aqueous solution while stirring. In this method, alcohols such as methanol, ethanol, isopropyl alcohol and butanol can be used as the water-miscible organic solvent, but the lipid solution is added and mixed while heating the lipid solution to maintain the dissolved state of the lipid. It is necessary to precisely control the temperature, the addition rate or the stirring rate (see Patent Document 2).
 また、レシチンとコレステロールとトリグリセライドを所定の重量比で含むリポソームは、均質高圧処理等の工程を行わなくても、一般的な混合に要する攪拌のみで形成できることが報告されている(特許文献3参照)。 In addition, it has been reported that a liposome containing lecithin, cholesterol, and triglyceride at a predetermined weight ratio can be formed only by stirring required for general mixing, without performing processes such as homogeneous high-pressure treatment (see Patent Document 3) ).
特許第5588619号公報Patent No. 5588619 gazette 特表2006-517594号公報Japanese Patent Application Publication No. 2006-517594 特開2017-66059号公報JP, 2017-66059, A
 しかしながら、このようなpH感受性リポソームは一般的に不安定であるため、水性媒体中におけるゼータ電位がゼロとなるpH値を所望の範囲に設定すること、すなわち、リポソームの膜融合性を、酸性から塩基性までの幅広い範囲内で任意に設定することが難しく、pH感受性リポソームが有する潜在的な用途への期待に応えられないという問題があった。また、pH感受性リポソームは通常のリポソームに比べて不安定であるため、その工業的な製造が難しく、簡便で且つ安定化されたpH感受性リポソームの製造方法が求められている。 However, since such pH-sensitive liposomes are generally unstable, it is necessary to set the pH value at which the zeta potential is zero in an aqueous medium to a desired range, that is, the fusogenicity of the liposome is acidic. There is a problem that it is difficult to set arbitrarily within a wide range up to basicity, and it can not meet the potential applications of pH sensitive liposomes. In addition, since pH sensitive liposomes are unstable compared to normal liposomes, their industrial production is difficult, and a simple and stable method for producing pH sensitive liposomes is required.
 本発明はかかる課題を解決するためになされたものであって、リポソームを構成する特定の構成成分の含有比率を調整することで、所定の範囲内における任意のpH条件下でリポソームのゼータ電位をプラスからマイナスへ移行させることのできるpH感受性リポソームを提供することにある。また、これまで不安定で調製が難しかったpH感受性リポソームを安定化し、簡便な方法によりpH感受性リポソームの調製を可能にすることにある。 The present invention has been made to solve such problems, and by adjusting the content ratio of specific components constituting the liposome, the zeta potential of the liposome can be obtained under an arbitrary pH condition within a predetermined range. An object of the present invention is to provide a pH sensitive liposome which can be transferred from positive to negative. Another object of the present invention is to stabilize pH-sensitive liposomes which have hitherto been unstable and difficult to prepare, and to enable preparation of pH-sensitive liposomes by a simple method.
 本発明の1つの実施形態に係るpH感受性リポソームは、リン脂質と、ステロイド類と、アニオン性物質と、両イオン性物質とを、リポソーム膜構成成分として含み、リポソーム膜構成成分全体に対して、アニオン性物質を2.5~15質量%、及び両イオン性物質を5~20質量%含むことを特徴とする。そして、以下の各pH条件の水性媒体中に分散させたとき、リポソームのゼータ電位が、pH5以下でプラスであり、pH8以上でマイナスであり、そして、pH5~8の間で、pH値の増加とともにプラスからマイナスへ移行するようにした。 The pH sensitive liposome according to one embodiment of the present invention comprises phospholipid, steroids, anionic substance, and zwitterionic substance as a liposome membrane component, relative to the whole liposome membrane component. It is characterized in that it contains 2.5 to 15% by mass of an anionic substance and 5 to 20% by mass of an amphoteric substance. And when it disperses in the aqueous medium of each of the following pH conditions, the zeta potential of the liposome is positive at pH 5 or less, negative at pH 8 or more, and increases in pH value between pH 5 and 8. Together with the move from plus to minus.
 本発明の他の実施形態に係るpH感受性リポソームの製造方法は、ジオールと、三価以上のポリオールと、リポソーム膜構成成分とを加温条件下に混合し、前記ジオールとポリオールとの混合物に、前記リポソーム膜構成成分を溶解した混合物溶液を調製する工程と、この混合物溶液と、あらかじめ加温した水性媒体とを混合し、これらを均質化する工程と、均質化された水性媒体を急冷し、リポソームを生成する工程と、生成したリポソームを回収する工程と、を含むことを特徴とする。リポソーム膜構成成分は、少なくとも両イオン性物質を含み、リポソームを以下の各pH条件における水性媒体中に分散させたとき、そのゼータ電位は、pH5以下でプラスであり、pH8以上でマイナスであり、そして、pH5~8の間で、pH値の増加とともにプラスからマイナスへ移行するようにした。 The method for producing a pH-sensitive liposome according to another embodiment of the present invention comprises mixing a diol, a trivalent or higher polyol, and a liposome membrane component under heating conditions, and mixing the diol and the polyol with the mixture. Preparing a mixture solution in which the liposome membrane components are dissolved, mixing the mixture solution with a preheated aqueous medium, homogenizing them, quenching the homogenized aqueous medium, The method is characterized by comprising the steps of producing a liposome and recovering the produced liposome. The liposome membrane component contains at least a zwitterionic substance, and when the liposome is dispersed in an aqueous medium at each of the following pH conditions, its zeta potential is positive at pH 5 or less, and negative at pH 8 or more, Then, it was made to shift from positive to negative with increasing pH value between pH 5-8.
 本発明によれば、リポソームを構成する特定の構成成分の含有比率を調整することで、幅広い範囲の任意のpH条件下でリポソームのゼータ電位をプラスからマイナスへ移行させることのできるpH感受性リポソームを提供することができる。また、ジオールと三価以上のポリオールと、リポソーム膜構成成分とを混合、溶解し、水性媒体と撹拌及び混合するという簡単な操作により、安定なpH感受性リポソームを製造することができる。 According to the present invention, by adjusting the content ratio of specific components constituting the liposome, a pH sensitive liposome which can shift the zeta potential of the liposome from positive to negative under a wide range of arbitrary pH conditions Can be provided. In addition, stable pH-sensitive liposomes can be produced by a simple operation of mixing and dissolving a diol, a trivalent or higher polyol, and a liposome membrane component, and stirring and mixing with an aqueous medium.
本発明の一実施形態にかかるpH感受性リポソームの製造方法のフローチャートである。It is a flowchart of the manufacturing method of pH sensitive liposome concerning one Embodiment of this invention. 本発明の他の実施形態にかかるpH感受性リポソームの製造方法のフローチャートである。It is a flowchart of the manufacturing method of pH sensitive liposome concerning other embodiment of this invention. 実施例1~6で製造したリポソームを水性媒体に分散して測定したゼータ電位のpHプロフィールである。6 is a pH profile of zeta potential measured by dispersing the liposomes prepared in Examples 1 to 6 in an aqueous medium. 比較例1及び2で製造したリポソームを水性媒体に分散して測定したゼータ電位のpHプロフィールである。It is a pH profile of zeta potential measured by dispersing the liposomes produced in Comparative Examples 1 and 2 in an aqueous medium.
 以下、本発明の好適な実施の形態について、図面を参照しながら以下の順序により説明する。
1.pH感受性リポソームの成分及び組成
2.pH感受性リポソームの製造方法
3.pH感受性とその発現機構
4.形状、用途又は使用方法
Hereinafter, preferred embodiments of the present invention will be described in the following order with reference to the drawings.
1. Composition and composition of pH sensitive liposomes Method for producing pH sensitive liposome pH sensitivity and its expression mechanism Shape, application or usage
[pH感受性リポソームの成分及び組成]
 (ジオール)
 本実施形態において、リポソーム膜構成成分を溶解するジオールとしては、1,2-アルカンジオール又は1,3-アルカンジオールが好ましい。1,2-アルカンジオール又は1,3-アルカンジオールとしては、1,2-プロパンジオール、1,2-ブタンジオール、1,2-ペンタンジオール、1,2-オクタンジオール、1,2-ヘキサンジオール、1,2-デカンジオール、1,3-ブチレングリコール、1,3-プロパンジオール、プロピレングリコール等が挙げられる。1,2-アルカンジオール又は1,3-アルカンジオールは、一種または二種以上を併用することができる。1,2-アルカンジオール又は1,3-アルカンジオールは、好ましくは、1,2-プロパンジオール、及び1,3-ブチレングリコールである。1,2-アルカンジオール又は1,3-アルカンジオールの使用量は、リポソーム膜構成成分を溶解しうる限り特に限定されないが、リポソーム膜構成成分の全質量に対して10~50倍程度、好ましくは15~30倍程度使用することで、生成したpH感受性リポソームを安定化することができる。
[Composition and composition of pH sensitive liposome]
(Diol)
In the present embodiment, a diol capable of dissolving the liposome membrane component is preferably a 1,2-alkanediol or a 1,3-alkanediol. As 1,2-alkanediol or 1,3-alkanediol, 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 1,2-octanediol, 1,2-hexanediol 1,2-decanediol, 1,3-butylene glycol, 1,3-propanediol, propylene glycol and the like. The 1,2-alkanediol or 1,3-alkanediol can be used alone or in combination of two or more. The 1,2-alkanediol or 1,3-alkanediol is preferably 1,2-propanediol and 1,3-butylene glycol. The amount of 1,2-alkanediol or 1,3-alkanediol to be used is not particularly limited as long as it can dissolve the liposome membrane component, but it is preferably about 10 to 50 times, preferably about 10 to 50 times the total mass of the liposome membrane component. By using about 15 to 30 times, the generated pH sensitive liposome can be stabilized.
(ポリオール)
 ジオールとともにリポソーム膜構成成分を溶解するポリオールは、3価以上のポリオールであり、例えばトレハロース、スクロース、ソルボース、メレジトース、グリセロール、フルクトース、マンノース、マルトース、ラクトース、アラビノース、キシロース、リボース、ラムノース、ガラクトース、グルコース、マンニトール、キシリトール、エリスリトール、スレイトール、ソルビトール、ラフィノース等が挙げられる。好ましくは、ソルビトール、及びグリセロールである。これらの使用量は、リポソーム膜構成成分を溶解しうる限り特に限定されないが、リポソーム膜構成成分の全質量に対して10~50倍程度、好ましくは15~30倍程度使用することで、生成したpH感受性リポソームを安定化することができる。
(Polyol)
Polyols which dissolve the liposome membrane component together with the diol are polyols having a valence of 3 or more and, for example, trehalose, sucrose, sorbose, melezitose, glycerol, fructose, mannose, maltose, lactose, arabinose, xylose, ribose, rhamnose, galactose, glucose , Mannitol, xylitol, erythritol, threitol, sorbitol, raffinose and the like. Preferably, it is sorbitol and glycerol. The amount thereof used is not particularly limited as long as the liposome membrane component can be dissolved, but it is generated by using about 10 to 50 times, preferably about 15 to 30 times the total mass of the liposome membrane component pH sensitive liposomes can be stabilized.
(水性媒体)
 本発明において「水性媒体」とは、有機溶剤を含まない水性媒体であって、リポソーム膜構成成分を分散しうる媒体をいい、特に限定されないが、例えば水、好適には注射用蒸留水、生理的食塩水、イオン交換水や、これらの溶液に等張化剤や緩衝液等を加えても良い。あるいは、リポソーム内包物質としての生理活性物質を含ませておいても良い。
(Aqueous medium)
In the present invention, the "aqueous medium" is an aqueous medium which does not contain an organic solvent and is a medium capable of dispersing the liposome membrane component, and is not particularly limited. Target saline solution, ion exchange water, or an isotonic agent, a buffer solution, etc. may be added to these solutions. Alternatively, a physiologically active substance as a liposome inclusion substance may be included.
(リポソーム膜構成成分)
 リポソーム膜構成成分としては、リン脂質やコレステロール等の他、リポソームにpH感受性を付与するためのアニオン性物質及び両イオン性物質等があげられる。以下、順を追って説明する。
(Liposome membrane component)
Liposome membrane components include, in addition to phospholipids and cholesterol, anionic substances and amphoteric substances for imparting pH sensitivity to liposomes. The following will be described in order.
(1)リン脂質
 リン脂質は、一般的に、分子内に長鎖アルキル基より構成される疎水基とリン酸基等で構成される親水基を持つ両親媒性物質である。リン脂質としては、例えば、ホスファチジルコリン(レシチン)、ホスファチジルグリセロール、フォスファチジン酸、ホスファチジルエタノールアミン、ホスファチジルセリンおよびホスファチジルイノシトールのようなグリセロリン脂質、スフィンゴミエリンのようなスフィンゴリン脂質、カルジオリピンのような天然または合成のジホスファチジル系リン脂質およびこれらの誘導体、さらには、これらを常法に従って水素添加したもの(例えば、水素添加大豆ホスファチジルコリン(HSPC))等を用いることができる。これらのうちでも、HSPC等の水素添加されたリン脂質、スフィンゴミエリン等が好ましい。リン脂質の量は、リポソーム膜構成成分全体中、通常、20質量%以上であり、好ましくは40質量%以上である。また、その他のリポソーム膜構成成分の量は、通常、80質量%以下であり、好ましくは60質量%以下である。
(1) Phospholipids Phospholipids are generally amphiphilic substances having a hydrophilic group composed of a hydrophobic group composed of a long chain alkyl group and a phosphate group etc. in the molecule. Examples of phospholipids include phosphatidylcholine (lecithin), phosphatidylglycerol, phosphatidic acid, phosphatidylethanolamine, glycerophospholipids such as phosphatidylserine and phosphatidylinositol, sphingophospholipids such as sphingomyelin, natural or cardiolipin Synthetic diphosphatidyl type phospholipids and derivatives thereof, and those obtained by hydrogenating them in a conventional manner (for example, hydrogenated soybean phosphatidyl choline (HSPC)) can be used. Among these, hydrogenated phospholipids such as HSPC, sphingomyelin and the like are preferable. The amount of phospholipid is usually 20% by mass or more, preferably 40% by mass or more, based on the whole liposome membrane component. The amount of other liposome membrane components is usually 80% by mass or less, preferably 60% by mass or less.
(2)ステロイド類
 リポソーム膜の構成成分として、上記リン脂質の他に、ステロイド類をさらに含むことができる。ステロイド類としては、ステロール、胆汁酸、プロビタミンD、ステロイドホルモンなど、ペルヒドロシクロペンタノフェナントレンを有する全てのステロイドが挙げられる。中でもステロール類を用いることが好ましい。ステロール類としては、例えば、脂質膜安定化剤として作用するステロール類、例えばコレステロール、ジヒドロコレステロール、コレステロールエステル、フィトステロール、シトステロール、スチグマステロール、カンペステロール、コレスタノール、またはラノステロールなどが挙げられる。また1-O-ステロールグルコシド,1-O-ステロールマルトシドまたは1-O-ステロールガラクトシドといったステロール誘導体もリポソームの安定化に効果があることが示されている(特開平5-245357号公報)。これらの中で、特にコレステロールが好ましい。
(2) Steroids In addition to the above-mentioned phospholipids, steroids can be further included as a component of a liposome membrane. Steroids include all steroids having perhydrocyclopentanophenanthrene, such as sterols, bile acids, provitamin D, steroid hormones and the like. Among them, sterols are preferably used. Sterols include, for example, sterols acting as lipid membrane stabilizers such as cholesterol, dihydrocholesterol, cholesterol ester, phytosterol, sitosterol, stigmasterol, campesterol, cholestanol, lanosterol and the like. It has also been shown that sterol derivatives such as 1-O-sterol glucoside, 1-O-sterol maltoside or 1-O-sterol galactoside are effective for stabilizing the liposome (Japanese Patent Laid-Open No. 5-245357). Among these, cholesterol is particularly preferred.
 ステロイド類の含有量は、特に制限されるものではないが、リポソームの構成成分全体に対して、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。また、30質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。ステロイド類は、分子集合体の安定化剤として作用することができる。ステロイド類は1種単独でも2種以上を組み合わせて使用してもよい。 The content of the steroids is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and more preferably 0.1% by mass or more based on the entire components of the liposome. Is more preferred. Moreover, 30 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is more preferable. Steroids can act as stabilizers for molecular assemblies. The steroids may be used singly or in combination of two or more.
(3)アニオン性物質
 リポソームにpH感受性を付与するためのアニオン性物質は、ジアシルグリセロールヘミスクシネート、ジアシルグリセロールヘミマロネート、ジアシルグリセロールヘミグルタレート、ジアシルグリセロールヘミアジペート、ジアシルグリセロールヘミシクロヘキサン-1,4-ジカルボン酸、脂肪酸、例えば、オレイン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ネルボン酸、ベヘン酸等が挙げられるが、これらに限定はされない。特に、常温で固体の飽和脂肪酸が好ましく、パルミチン酸やステアリン酸が特に好ましい。本明細書において、常温とは10℃~30℃をいう。リポソーム構成成分の全体量に対する上記アニオン性物質の含有割合は、0~20質量%であり、2.5質量%以上が好ましく、5質量%以上がさらに好ましい。一方、含有割合の上限は、20質量%がよく、15質量%が好ましい。アニオン性物質の含有割合が20%を超えるとリポソーム膜構成成分を含む水性媒体中で乳化状態を維持することが難しく、白濁、凝集や沈殿が生じて不均質なリポソーム製剤となってしまう。
(3) Anionic substance The anionic substance for imparting pH sensitivity to the liposome is diacylglycerol hemisuccinate, diacylglycerol hemimalonate, diacylglycerol hemiglutarate, diacylglycerol hemiadipate, diacylglycerol hemicyclohexane-1, Examples thereof include, but are not limited to, 4-dicarboxylic acids and fatty acids such as oleic acid, myristic acid, palmitic acid, stearic acid, nervonic acid, behenic acid and the like. In particular, saturated fatty acids which are solid at normal temperature are preferable, and palmitic acid and stearic acid are particularly preferable. In the present specification, normal temperature means 10 ° C. to 30 ° C. The content ratio of the above-mentioned anionic substance to the total amount of liposome constituents is 0 to 20% by mass, preferably 2.5% by mass or more, and more preferably 5% by mass or more. On the other hand, 20 mass% is good and, as for the upper limit of a content rate, 15 mass% is preferable. When the content ratio of the anionic substance exceeds 20%, it is difficult to maintain the emulsified state in the aqueous medium containing the liposome membrane component, and clouding, aggregation and precipitation occur to result in a heterogeneous liposome preparation.
(4)両イオン性物質
 リポソームにpH感受性を付与するための両イオン性物質としては、ラウリルベタイン(ラウリルジメチルアミノ酢酸ベタイン)等のN-アルキル-N,N-ジメチルアミノ酸ベタイン;コカミドプロピルベタイン、ラウラミドプロピルベタイン等の脂肪酸アミドアルキル-N,N-ジメチルアミノ酸ベタイン;ココアンホ酢酸ナトリウム、ラウロアンホ酢酸ナトリウム等のイミダゾリン型ベタイン;アルキルジメチルタウリン等のアルキルスルホベタイン;アルキルジメチルアミノエタノール硫酸エステル等の硫酸型ベタイン;アルキルジメチルアミノエタノールリン酸エステル等のリン酸型ベタインを挙げることができる。リポソーム構成成分の全体量に対する上記両イオン性物質の含有割合は、5~20質量%であり、7質量%以上が好ましい。一方、含有割合の上限は、20質量%がよく、15質量%が好ましい。両イオン性物質の含有割合が20質量%を超えるとリポソーム(脂質二重膜)構造を保つことが難しい。
(4) Zwitterionic substance As the zwitterionic substance for imparting pH sensitivity to the liposome, N-alkyl-N, N-dimethyl amino acid betaines such as lauryl betaine (lauryl dimethylaminoacetic acid betaine); cocamidopropyl betaine Fatty acid amide alkyl-N, N-dimethyl amino acid betaines such as lauramidopropyl betaine; imidazoline type betaines such as sodium cocoamphoacetate, sodium lauroamphoacetate; alkylsulfobetaines such as alkyl dimethyl taurine; sulfuric acid such as alkyl dimethylamino ethanol sulfate ester And betaine-type betaines such as alkyldimethylaminoethanol phosphate ester. The content ratio of the above-mentioned zwitterionic substance to the total amount of liposome constituents is 5 to 20% by mass, preferably 7% by mass or more. On the other hand, 20 mass% is good and, as for the upper limit of a content rate, 15 mass% is preferable. When the content of the amphoteric substance exceeds 20% by mass, it is difficult to maintain the liposome (lipid bilayer membrane) structure.
(5)その他の添加剤
 本発明のpH感受性リポソームは、必要に応じてその他の添加剤を含むことができる。例えば、酸化防止剤として、トコフェロール同族体、即ち、ビタミンEなどが挙げられる。また、リポソーム表面を修飾する親水性高分子の脂質誘導体は、リポソームの構造安定を損なうものでなければ特に限定されず、例えば、ポリエチレングリコール、デキストラン、プルラン、フィコール、ポリビニルアルコール、合成ポリアミノ酸、アミロース、アミロペクチン、マンナン、シクロデキストリン、ペクチン、カラギーナン、及びこれらの誘導体が挙げられる。中でもポリエチレングリコールおよびポリエチレングリコール誘導体が望ましい。親水性高分子の脂質誘導体の分子量は、200~5万程度であることが好ましく、1000~1万程度であることがより好ましい。
(5) Other Additives The pH sensitive liposome of the present invention can contain other additives as needed. For example, as an antioxidant, tocopherol homologues, that is, vitamin E and the like can be mentioned. The lipid derivative of the hydrophilic polymer that modifies the surface of the liposome is not particularly limited as long as it does not impair the structural stability of the liposome, and, for example, polyethylene glycol, dextran, pullulan, ficoll, polyvinyl alcohol, synthetic polyamino acid, amylose Amylopectin, mannan, cyclodextrin, pectin, carrageenan, and derivatives thereof. Among them, polyethylene glycol and polyethylene glycol derivatives are desirable. The molecular weight of the lipid derivative of the hydrophilic polymer is preferably about 200 to 50,000, and more preferably about 1,000 to 10,000.
(内包物質)
 本発明のpH感受性リポソームは、水溶性又は脂溶性の種々の目的物質を内包することができる。リポソームに目的物質を保持させる方法は、目的物質の種類等に応じて適宜選択すればよい。例えば目的物質が水溶性薬物の場合には、リポソーム製造時に薬物を水性媒体に溶解させて調製することができる。保持されなかった水溶性薬物はゲルろ過、超遠心分離または限外ろ過膜処理などにより目的物質を保持したリポソームと分離できる。他方、脂溶性薬物の場合には、リポソーム膜構成成分がジオールとポリオールとの混合物に溶けている状態で薬物を混合してリポソームを形成することにより、例えば二分子膜小胞体の疎水部に目的物質を保持させることができる。
(Inclusion substance)
The pH sensitive liposome of the present invention can encapsulate various target substances of water solubility or lipid solubility. The method for causing the liposome to retain the target substance may be appropriately selected according to the type of the target substance and the like. For example, when the target substance is a water-soluble drug, it can be prepared by dissolving the drug in an aqueous medium at the time of liposome production. The water-soluble drug not retained can be separated from the liposome retaining the target substance by gel filtration, ultracentrifugation, ultrafiltration membrane treatment or the like. On the other hand, in the case of a lipid-soluble drug, for example, by forming a liposome by mixing the drug in a state in which the liposome membrane component is dissolved in a mixture of diol and polyol, for example, It can hold the substance.
[pH感受性リポソームの製造方法]
 次に本実施形態にかかるpH感受性リポソームの製造方法を、図1を参照しながら説明する。なお、以下の各工程は好ましい例であって、適宜各工程に変形を加え、または公知の製造方法をさらに追加してもよい。例えば、リポソームの粒子径を調整するために、超音波照射法、エクストルージョン法、フレンチプレス法、ホモジナイゼーション法等を組み合わせてもよい。
[Method for producing pH-sensitive liposome]
Next, a method of producing the pH sensitive liposome according to the present embodiment will be described with reference to FIG. The following steps are preferable examples, and each step may be appropriately modified or a known manufacturing method may be further added. For example, in order to adjust the particle size of the liposome, an ultrasonic irradiation method, an extrusion method, a French press method, a homogenization method or the like may be combined.
(ジオール及びポリオールの溶解工程)
 図1において、ステップS01では、少なくとも1種のジオールと、少なくとも1種のポリオールとを加温条件下に混合し、これらを均質化してジオールとポリールとの混合物を調製する。ジオールとポリオールとの混合割合は、リポソーム膜構成成分を均一に溶解しうる限り特に限定されないが、1:5~5:1が好ましく、1:2~2:1がさらに好ましく、ほぼ1:1が最も好ましい。これらの混合方法は、手動による揺動、撹拌子、撹拌羽根を用いた撹拌の他、超音波振動器等を用いて行うことができる。また、混合時の加温条件は、これらの混合物が溶融する温度であれば特に制限されないが、60℃~90℃が好ましく、80℃~85℃がより好ましい。
(Dissolution process of diol and polyol)
In FIG. 1, in step S01, at least one diol and at least one polyol are mixed under heating conditions, and these are homogenized to prepare a mixture of diol and polyol. The mixing ratio of diol and polyol is not particularly limited as long as the liposome membrane component can be uniformly dissolved, but 1: 5-5: 1 is preferable, 1: 2-2: 1 is more preferable, and almost 1: 1 Is most preferred. These mixing methods can be performed using an ultrasonic vibrator or the like in addition to manual shaking, stirring using a stirrer, and stirring blades. Further, the heating condition at the time of mixing is not particularly limited as long as the mixture melts, but 60 ° C. to 90 ° C. is preferable, and 80 ° C. to 85 ° C. is more preferable.
 加温方法は、特に限定されるものではないが、例えば、容器を、温水を入れた浴槽内に入れる温浴の他、容器内に混合物を入れた状態で当該容器を直火で加熱する方法、容器を電熱器内に入れる方法などを採用できる。 The heating method is not particularly limited, and for example, a method of heating the container by direct fire in a state in which the mixture is put in the container, in addition to a warm bath in which the container is put in a bath containing warm water. It is possible to adopt a method of putting the container in the electric heater or the like.
(リポソーム膜構成成分の溶解工程)
 次に、ステップS02において、均質化した状態の上記混合物に、リポソーム膜構成成分を添加する。そして、添加したリポソーム膜構成成分をジオールとポリオールとの混合物に溶解した混合物溶液を調製する。リン脂質等の各成分を別々に添加、混合してもよいが、あらかじめ全てのリポソーム膜構成成分を混合しておきこれらを上記混合物に添加することが、可溶化の効率を上げるために好ましい。このとき、各成分の含有量は、上述した範囲内であれば特に限定されないが、アニオン性物質と両イオン性物質との含有比率が1:1~1:3の範囲内であることが好ましい。
(Dissolution process of liposome membrane components)
Next, in step S02, a liposome membrane component is added to the above mixture in the homogenized state. Then, a mixture solution in which the added liposome membrane component is dissolved in a mixture of diol and polyol is prepared. Although each component such as phospholipid may be separately added and mixed, it is preferable to mix all liposome membrane components in advance and add them to the above mixture to increase the efficiency of solubilization. At this time, the content of each component is not particularly limited as long as it is within the above-mentioned range, but the content ratio of the anionic substance to the zwitterionic substance is preferably within the range of 1: 1 to 1: 3. .
 脂質の一種であるコレステロールは、通常、水に溶けにくく、リポソーム膜中の濃度を調製することが難しい。しかし、本実施形態のようにあらかじめジオールとポリオールとの混合物にリン脂質を共存させてコレステロールが溶解することにより、リポソーム膜へのコレステロールの導入量を容易に調整することができる。 Cholesterol, which is a type of lipid, is usually difficult to dissolve in water, and it is difficult to adjust the concentration in the liposome membrane. However, the amount of cholesterol introduced into the liposome membrane can be easily adjusted by dissolving the cholesterol in advance by causing the mixture of the diol and the polyol to coexist with the phospholipid as in the present embodiment.
(均質化工程)
 ステップS03では、ステップS02で調製した混合物溶液と、あらかじめ80℃~85℃で加温しておいた水性媒体とを混合する。このとき、これらの混合物全体に対する水性媒体の添加量は、リポソーム膜構成成分がリポソームを形成するための適切な濃度領域となるように調整しなければならない。水性媒体の量が多すぎると、ジオールとポリオールとの混合物に溶解している脂質成分が急に凝集してリポソームを形成することができない。したがって、本工程で添加する水性媒体の量は、ジオールとポリオールとの混合物溶液に溶解している脂質成分が水性媒体と混合したときに溶解できる臨界的な濃度となるようにすることが好ましい。例えば、ステップS02で調製した混合物溶液の容量に対して、2~6倍量、好ましくは3~5倍量、更に好ましくは約4倍量である。
(Homogenization process)
In step S03, the mixture solution prepared in step S02 is mixed with an aqueous medium preheated to 80 ° C. to 85 ° C. At this time, the addition amount of the aqueous medium to the whole of these mixtures must be adjusted so that the liposome membrane components have an appropriate concentration range for forming liposomes. When the amount of the aqueous medium is too large, the lipid component dissolved in the mixture of diol and polyol can not be rapidly aggregated to form a liposome. Therefore, the amount of the aqueous medium added in this step is preferably such that the lipid component dissolved in the mixture solution of diol and polyol has a critical concentration that can be dissolved when it is mixed with the aqueous medium. For example, the amount is 2 to 6 times, preferably 3 to 5 times, more preferably about 4 times the volume of the mixture solution prepared in step S02.
(リポソーム生成工程)
 ステップS04では、80℃~85℃でリポソーム膜構成成分が溶解している水性媒体を、室温付近まで急冷することでリポソームを生成させる。冷却方法は、特に限定されるものではないが、例えば、容器を、冷水を入れた浴槽内に入れる方法の他、容器内に混合物を入れた状態で当該容器を冷蔵庫等に入れる方法などを採用できる。冷却温度は、リポソームが生成する温度であれば限定されるものではない。一例を挙げると、脂質にホスファチジルコリンとコレステロールを用いた場合には、冷却温度としては、62℃以下にするのが好ましい。さらに室温付近まで冷却してもよい。また、冷却速度としては、0.5℃/分以上が好ましく、さらには、1℃/分以上が好ましい。
(Liposome formation process)
In step S04, the aqueous medium in which the liposome membrane component is dissolved is rapidly cooled to around room temperature at 80 ° C. to 85 ° C. to form a liposome. The cooling method is not particularly limited. For example, in addition to a method of placing the container in a bath containing cold water, a method of placing the container in a refrigerator or the like with the mixture in the container is adopted. it can. The cooling temperature is not limited as long as the liposome is generated. For example, when phosphatidyl choline and cholesterol are used as the lipid, the cooling temperature is preferably 62 ° C. or less. Further, it may be cooled to around room temperature. Further, the cooling rate is preferably 0.5 ° C./min or more, and more preferably 1 ° C./min or more.
(回収工程)
 ステップS05では、水性媒体中に存在するリポソームをろ過やデカンテーションなど任意の方法で回収することができる。なお、図1に示した実施形態において、ステップS01で予めジオールとポリオールとを混合して均質化した溶液に、ステップS02においてリポソーム膜構成成分を添加しているが、必ずしもこのような手順に限定されない。例えば、予め加温したジオールにリポソーム膜構成成分を添加、溶解し、その後ポリオールを添加して均質化する方法や、これとは逆に、最初にポリオールとリポソーム膜構成成分とを混合、溶解し、その後ジオールを添加して均質化する方法でもよい。したがって、本発明の他の実施形態としては、図2に示すように、ステップS11において、ジオールとポリオールとリポソーム膜構成成分とを任意の順序で混合し、最終的にジオールとポリオールとの混合物にリポソーム膜構成成分を溶解するようにしてもよい。ステップS11以降の工程は図1と同様である。
(Recovery process)
In step S05, the liposomes present in the aqueous medium can be recovered by any method such as filtration or decantation. In the embodiment shown in FIG. 1, the liposome membrane component is added in step S02 to the solution in which the diol and the polyol are mixed and homogenized in advance in step S01, but the procedure is not necessarily limited. I will not. For example, a liposome membrane component is added to a preheated diol, dissolved, and then a polyol is added and homogenized, or, conversely, the polyol and the liposome membrane component are first mixed and dissolved. Then, the diol may be added and homogenized. Therefore, as another embodiment of the present invention, as shown in FIG. 2, in step S11, the diol, the polyol, and the liposome membrane component are mixed in any order, and finally the mixture of the diol and the polyol is obtained. Liposome membrane components may be dissolved. The process after step S11 is the same as that of FIG.
[pH感受性とその発現機構]
 本実施形態のpH感受性リポソームは、pH条件の異なる種々の水性媒体中に分散させたとき、そのゼータ電位が、pH5以下でプラスであり、pH8以上でマイナスであり、そして、pH5~8の間で、pH値の増加とともにプラスからマイナスへ移行するという性質を有する。
[PH sensitivity and its expression mechanism]
The pH sensitive liposome of the present embodiment, when dispersed in various aqueous media having different pH conditions, has a positive zeta potential at pH 5 or lower, negative at pH 8 or higher, and pH 5 to 8 It has the property of shifting from positive to negative as the pH value increases.
 ここで、水性媒体中に分散されたリポソーム粒子の荷電状態の指標として用いたゼータ電位は、粒子から充分に離れて電気的に中性である領域の電位をゼロと定義し、このゼロ点を基準として測った場合の、「滑り面」の電位と定義されている。微粒子の場合、ゼータ電位の絶対値が増加すれば、粒子間の反発力が強くなり粒子の安定性は高くなる。逆に、ゼータ電位がゼロに近くなると、粒子は凝集しやすくなる。そこで、ゼータ電位は分散された粒子の分散安定性の指標として用いられる(北原文雄、古澤邦夫、尾崎正孝、大島広行、「Zeta  Potentialゼータ電位:微粒子界面の物理化学」、サイエンティスト社、1995)。 Here, the zeta potential used as an indicator of the charge state of liposome particles dispersed in an aqueous medium defines the potential of a region sufficiently separated from the particle to be electrically neutral as zero, and this zero point is defined as It is defined as the potential of the "slip surface" when measured as a reference. In the case of fine particles, as the absolute value of the zeta potential increases, the repulsive force between particles becomes stronger and the stability of the particles becomes higher. Conversely, when the zeta potential approaches zero, the particles tend to aggregate. Therefore, the zeta potential is used as an indicator of the dispersion stability of dispersed particles (Kohoku original text, Furusawa Kunio, Ozaki Masataka, Oshima Hiroyuki, "Zeta Potential zeta potential: physical chemistry of fine particle interface", Scientific Co., Ltd., 1995).
 従って、本実施形態のpH感受性リポソームは、表面電荷が、pH5~8の間でpH値の増加とともにプラスからマイナスへ移行するという挙動を示すため、リポソーム分散液のpHが5以下の酸性条件下で目的物質を保持して安定に存在し、リポソーム分散液のpHが5~8の間でゼータ電位がゼロになるpH条件で不安定となり膜融合を起こして内包物を放出すると考えられる。ゼータ電位の測定方法としては公知の方法を用いることができる。例えば、帯電した粒子が分散している系に、外部から電場をかけると、粒子は電極に向かって泳動(移動)するが、その速度は粒子の荷電に比例するため、その粒子の泳動速度を測定することによりゼータ電位を測定することができる。電気泳動光散乱測定法は、別名レーザードップラー法と呼ばれ、泳動している粒子からの散乱光を観測することによって、ゼータ電位が求められる。 Therefore, the pH-sensitive liposome of the present embodiment exhibits a behavior in which the surface charge shifts from positive to negative with an increase in pH value between pH 5 and 8, so that the pH of the liposome dispersion is acidic condition of 5 or less. It is considered that the target substance is retained and stably present, and the liposome dispersion becomes unstable under a pH condition where the zeta potential becomes zero between 5 and 8, causing membrane fusion and releasing the inclusion. A known method can be used as a method of measuring the zeta potential. For example, when an external electric field is applied to a system in which charged particles are dispersed, the particles migrate (move) toward the electrode, but since the velocity is proportional to the charge of the particles, the migration velocity of the particles is The zeta potential can be measured by measurement. Electrophoretic light scattering measurement is also called laser Doppler method, and the zeta potential is determined by observing the scattered light from the migrating particles.
[形状、用途又は使用方法]
 本実施形態のpH感受性リポソームは、水性媒体に分散させたとき、酸性pH環境下でプラスのゼータ電位を有し、かつ、塩基性pH環境下でマイナスのゼータ電位を有するといった、従来にないpH応答挙動を示すことができる。近年、遺伝子や核酸誘導体などのマイナスに荷電した物質を細胞内へ導入する研究が行われている。本実施形態のpH感受性リポソームは、pH5以下の酸性条件下でプラスの表面電荷を有するため、これらの物質を吸着することができ、pH5~8の弱酸性から中性条件でこれらの物質を放出して細胞内へ導入するために用いることができる。また、形状についても特に制限はなく、粒子径が100nm~10μmの多重層リポソームであっても単層リポソームであってもよい。本実施形態のpH感受性リポソームは、その用途によって適宜粒子径を調整することも可能である。例えば、生体内への投与を目的とするのであれば、200nm以下の粒径に調整することが好ましい。具体的な粒子径の調整方法は、エクストルーダーを用いて、孔径の小さいフィルターを通過させることによって、粒子径の調節が可能である。粒子径が100nm程度又はそれ以下の小さいサイズの単層リポソームはその大きさが均一であって熱力学的に安定であり、化粧料として用いた場合にも皮膚への浸透性が良好であるといわれている。
[Shape, use or method of use]
When dispersed in an aqueous medium, the pH-sensitive liposome of the present embodiment has a positive zeta potential in an acidic pH environment and a negative pH such as having a negative zeta potential in a basic pH environment. It can show response behavior. In recent years, studies have been conducted to introduce negatively charged substances such as genes and nucleic acid derivatives into cells. The pH-sensitive liposome of the present embodiment has a positive surface charge under acidic conditions of pH 5 or less, and thus can adsorb these substances, and releases these substances under weak to neutral pH 5 to 8 conditions. It can be used to introduce it into cells. The shape is also not particularly limited, and may be a multilamellar liposome or unilamellar liposome having a particle diameter of 100 nm to 10 μm. It is also possible to adjust the particle size of the pH-sensitive liposome of the present embodiment as appropriate depending on its use. For example, for the purpose of in vivo administration, it is preferable to adjust the particle size to 200 nm or less. The specific particle diameter adjustment method can adjust the particle diameter by passing through a filter with a small pore diameter using an extruder. It is said that unilamellar liposomes having a small particle size of about 100 nm or less are uniform in size and thermodynamically stable, and have good skin permeability even when used as a cosmetic It is said.
 本実施形態のpH応答性リポソームは、水性媒体に分散させたとき、酸性pH環境下でプラスのゼータ電位を有し、かつ、塩基性pH環境下でマイナスのゼータ電位を有するといった、従来にないpH応答挙動を示すことができる。近年、遺伝子や核酸誘導体などのマイナスに荷電した物質を細胞内へ導入する研究が行われている。本実施形態のpH応答性リポソームは、pH5以下の酸性条件下でプラスの表面電荷を有するため、これらの物質を細胞内へ導入する方法等の用途が広がるものと期待される。 The pH-responsive liposome of the present embodiment, when dispersed in an aqueous medium, has a positive zeta potential in an acidic pH environment and has a negative zeta potential in a basic pH environment, which has not been conventionally used. It can show pH response behavior. In recent years, studies have been conducted to introduce negatively charged substances such as genes and nucleic acid derivatives into cells. Since the pH-responsive liposome of the present embodiment has a positive surface charge under acidic conditions of pH 5 or less, it is expected that applications such as methods of introducing these substances into cells will be expanded.
 以下の実施例は、本発明の1つの態様及び局面を実証し、さらに例示するために記載するものであり、本発明の範囲を限定していると解釈すべきではない。 The following examples demonstrate and describe one aspect and aspect of the present invention for further illustration and should not be construed as limiting the scope of the present invention.
[実施例1]
 プロパン-1,2-ジオール10.0gにソルビトール10.0gを加え、80℃~85℃にて汎用撹拌機350rpmにて加温撹拌溶解し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.41g、コレステロール0.09g、パルミチン酸0.05g、ラウリルジメチルアミノ酢酸ベタイン0.1gを添加し、同様に撹拌溶解した。
Example 1
10.0 g of sorbitol was added to 10.0 g of propane-1,2-diol and dissolved by heating at 80 ° C. to 85 ° C. using a general-purpose stirrer 350 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, 0.05 g of palmitic acid, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this liquid under heating and stirring, and the mixture was similarly stirred and dissolved.
 上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、1~2時間汎用撹拌機350rpmで撹拌した。加温を停止し、撹拌しながら急冷し、室温程度まで冷却し生成したリポソームをろ過して回収した。 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above and mixed while stirring, and stirred with a general-purpose stirrer 350 rpm for 1 to 2 hours. The heating was stopped, the reaction solution was rapidly cooled while stirring, cooled to about room temperature, and the formed liposome was collected by filtration.
[実施例2]
 プロパン-1,2-ジオール10.0gにグリセリン10.0gを加え、80℃~85℃にて汎用撹拌機350rpmにて加温撹拌し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.82g、コレステロール0.18g、ステアリン酸0.1g、ラウリルジメチルアミノ酢酸ベタイン0.2gを添加し、同様に撹拌溶解した。
Example 2
10.0 g of glycerin was added to 10.0 g of propane-1,2-diol, and the mixture was heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.82 g of hydrogenated lecithin containing phosphatidyl choline, 0.18 g of cholesterol, 0.1 g of stearic acid, and 0.2 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved.
 上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、1~2時間ホモミキサーにて8,000rpmで撹拌した。加温を停止し、撹拌しながら急冷し、室温程度まで冷却し生成したリポソームをろ過して回収した。 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above and mixed while stirring, and stirred at 8,000 rpm with a homomixer for 1 to 2 hours. The heating was stopped, the reaction solution was rapidly cooled while stirring, cooled to about room temperature, and the formed liposome was collected by filtration.
[実施例3]
 プロパン-1,2-ジオール5.0gにグリセリン10.0gを加え、80℃~85℃にて汎用撹拌機500rpmにて加温撹拌し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.41g、コレステロール0.09g、ラウリルジメチルアミノ酢酸ベタイン0.1gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、エクストルーダーで処理した。
[Example 3]
10.0 g of glycerin was added to 5.0 g of propane-1,2-diol, and the mixture was heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 500 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and stirred and dissolved in the same manner. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
[実施例4]
 プロパン-1,2-ジオール30.0gにソルビトール10.0gを加え、80℃~85℃にて汎用撹拌機600rpmにて加温撹拌溶解し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.41g、コレステロール0.09g、ラウリルジメチルアミノ酢酸ベタイン0.2gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、エクストルーダーで処理した。
Example 4
10.0 g of sorbitol was added to 30.0 g of propane-1,2-diol and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 600 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, and 0.2 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and stirred and dissolved in the same manner. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
[実施例5]
 1,3-ブチレングリコール10.0gにグリセリン10.0gを加え、80℃~85℃にて汎用撹拌機600rpmにて加温撹拌し、均質化する。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.41g、コレステロール0.09g、パルミチン酸0.05g、ラウリルジメチルアミノ酢酸ベタイン0.1gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、エクストルーダーで処理した。
[Example 5]
10.0 g of glycerin is added to 10.0 g of 1,3-butylene glycol, and the mixture is heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 600 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, 0.05 g of palmitic acid, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this liquid under heating and stirring, and the mixture was similarly stirred and dissolved. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
[実施例6]
 1,3-ブチレングリコール30.0gにソルビトール10.0gを加え、80℃~85℃にて汎用撹拌機600rpmにて加温撹拌溶解し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.41g、コレステロール0.09g、パルミチン酸0.15g、ラウリルジメチルアミノ酢酸ベタイン0.3gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、エクストルーダーで処理した。
[Example 6]
10.0 g of sorbitol was added to 30.0 g of 1,3-butylene glycol and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 600 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, 0.15 g of palmitic acid, and 0.3 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above, mixed with stirring, and treated with an extruder.
[比較例1]
 1,3-ブチレングリコール5.0gにグリセリン15.0gを加え、80℃~85℃にて汎用撹拌機350rpmにて加温撹拌し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.41g、コレステロール0.09g、パルミチン酸0.05gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、1~2時間後、エクストルーダー処理した。
Comparative Example 1
15.0 g of glycerin was added to 5.0 g of 1,3-butylene glycol, and the mixture was heated and stirred at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.41 g of hydrogenated lecithin containing phosphatidyl choline, 0.09 g of cholesterol, and 0.05 g of palmitic acid were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. To the mixture solution prepared above, 100 g of purified water preheated to 80 ° C. to 85 ° C. was added and mixed while stirring, and after 1 to 2 hours, it was subjected to an extruder treatment.
[比較例2]
 グリセリン10.0gを加え、80℃~85℃にて汎用撹拌機350rpmにて加温撹拌溶解し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.82g、コレステロール0.18g、パルミチン酸0.05g、ラウリルジメチルアミノ酢酸ベタイン0.1gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、1~2時間汎用撹拌機350rpmで撹拌した。加温を停止し、撹拌しながら急冷し、室温程度まで冷却しろ過した。
Comparative Example 2
10.0 g of glycerin was added and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.82 g of hydrogenated lecithin containing phosphatidyl choline, 0.18 g of cholesterol, 0.05 g of palmitic acid, and 0.1 g of lauryl dimethylaminoacetic acid betaine were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. 100 g of purified water preheated to 80 ° C. to 85 ° C. was added to the mixture solution prepared above and mixed while stirring, and stirred with a general-purpose stirrer 350 rpm for 1 to 2 hours. The heating was stopped, quenched while stirring, cooled to about room temperature and filtered.
[比較例3]
 グリセリン10.0gを加え、80℃~85℃にて汎用撹拌機350rpmにて加温撹拌溶解し、均質化した。加温撹拌しているこの液に、ホスファチジルコリンを含む水添レシチン0.82g、コレステロール0.18g、パルミチン酸0.05gを添加し、同様に撹拌溶解した。上記で調製した混合物溶液に、予め、80℃~85℃に加温した精製水を100gになるよう加えて撹拌しながら混合し、1~2時間ホモミキサーを用いて8,000rpmで撹拌した。加温を停止し、撹拌しながら急冷し、室温程度まで冷却した。本比較例では、油脂の再析出が多く(乳化力不足と考えられる)、リポソーム作成が不能であった。
Comparative Example 3
10.0 g of glycerin was added and dissolved by heating at 80 ° C. to 85 ° C. with a general-purpose stirrer 350 rpm for homogenization. 0.82 g of hydrogenated lecithin containing phosphatidyl choline, 0.18 g of cholesterol, and 0.05 g of palmitic acid were added to this solution under heating and stirring, and the mixture was similarly stirred and dissolved. To the mixture solution prepared above, 100 g of purified water preheated to 80 ° C. to 85 ° C. was added and mixed while stirring, and stirred at 8,000 rpm using a homomixer for 1 to 2 hours. The heating was stopped, quenched while stirring, and cooled to about room temperature. In this comparative example, the reprecipitation of fats and oils was large (considered to be insufficient in the emulsifying ability), and the liposome could not be formed.
[3]ゼータ電位の測定
 上記実施例及び比較例で調製したリポソームの水性分散液を、水酸化カリウム水溶液とリン酸水溶液を使用して種々のpHに調整し、26℃恒温条件下にてマルバーン社製の商品名ゼータサイザーナノシリーズZSPを用いてゼータ電位を測定した。その結果を図3及び4に示す。図3に示したように、実施例1~6で調製したリポソームは、pH5以下の水性媒体中ではすべてプラスのゼータ電位を有し、pH5.4からpH7.6の間でpH値の増加とともにゼータ電位がゼロに近づき、プラスからマイナスへ移行することが分かった。この範囲よりもpHが高くなるとゼータ電位がマイナスの値に変化した。これに対し、図4に示したように、比較例1で調製したリポソームは、pH4以下でわずかにプラスのゼータ電位を示したがゼータ電位の絶対値が小さいためこの領域では極めて不安定であると考えられる。また、比較例2で調製したリポソームはすべてのpHでマイナスのゼータ電位を示した。このように、実施例1~6で調製したリポソームはpH感受性を示すとともに、pH5以下でゼータ電位の絶対値が大きいため安定して存在しうることが分かった。
[3] Measurement of Zeta Potential The aqueous dispersions of the liposomes prepared in the above Examples and Comparative Examples are adjusted to various pHs using an aqueous solution of potassium hydroxide and an aqueous solution of phosphoric acid, and Malvern under constant temperature conditions of 26 ° C. The zeta potential was measured using Zetasizer Nano Series ZSP manufactured by Co. Ltd. The results are shown in FIGS. As shown in FIG. 3, the liposomes prepared in Examples 1 to 6 all have a positive zeta potential in the aqueous medium of pH 5 or less, and increase with pH value between pH 5.4 and pH 7.6. It was found that the zeta potential approaches zero and shifts from positive to negative. When the pH was higher than this range, the zeta potential changed to a negative value. On the other hand, as shown in FIG. 4, the liposome prepared in Comparative Example 1 showed a slightly positive zeta potential at pH 4 or less, but it is extremely unstable in this region because the absolute value of the zeta potential is small. it is conceivable that. In addition, the liposome prepared in Comparative Example 2 showed a negative zeta potential at all pH. Thus, it was found that the liposomes prepared in Examples 1 to 6 exhibit pH sensitivity and can be stably present because the absolute value of the zeta potential is large at pH 5 or less.

Claims (15)

  1.  リン脂質と、ステロイド類と、アニオン性物質と、両イオン性物質とを、リポソーム膜構成成分として含むpH感受性リポソームであって、
     当該リポソームは、前記リポソーム膜構成成分全体に対して、前記アニオン性物質を2.5~15質量%、及び前記両イオン性物質を5~20質量%含み、
     前記リポソームを以下の各pH条件の水性媒体中に分散させたとき、前記リポソームのゼータ電位が、pH5以下でプラスであり、pH8以上でマイナスであり、そして、pH5~8の間で、pH値の増加とともにプラスからマイナスへ移行することを特徴とする、pH感受性リポソーム。
    A pH-sensitive liposome comprising phospholipid, steroids, an anionic substance and a zwitterionic substance as a liposome membrane component,
    The liposome contains 2.5 to 15% by mass of the anionic substance and 5 to 20% by mass of the amphoteric substance based on the whole liposome membrane component.
    When the liposome is dispersed in an aqueous medium at each of the following pH conditions, the zeta potential of the liposome is positive at pH 5 or less, negative at pH 8 or more, and pH 5 to 8. PH-sensitive liposome characterized in that the transition from positive to negative with the increase of
  2.  前記アニオン性物質と、前記両イオン性物質との含有比率が1:1~1:3である請求項1に記載のpH感受性リポソーム。 The pH sensitive liposome according to claim 1, wherein the content ratio of the anionic substance to the zwitterionic substance is 1: 1 to 1: 3.
  3.  前記アニオン性物質が、常温で固体の飽和脂肪酸である請求項1または2記載のpH感受性リポソーム。 The pH sensitive liposome according to claim 1 or 2, wherein the anionic substance is a saturated fatty acid which is solid at normal temperature.
  4.  前記両イオン性物質が、ラウリルベタイン(ラウリルジメチルアミノ酢酸ベタイン)を含むN-アルキル-N,N-ジメチルアミノ酸ベタイン;コカミドプロピルベタイン、ラウラミドプロピルベタインを含む脂肪酸アミドアルキル-N,N-ジメチルアミノ酸ベタイン;ココアンホ酢酸ナトリウム、ラウロアンホ酢酸ナトリウムを含むイミダゾリン型ベタイン;アルキルジメチルタウリンを含むアルキルスルホベタイン;アルキルジメチルアミノエタノール硫酸エステルを含む硫酸型ベタイン;及びアルキルジメチルアミノエタノールリン酸エステルを含むリン酸型ベタインからなる群より選択される少なくとも1つである請求項1~3いずれか記載のpH感受性リポソーム。 N-alkyl-N, N-dimethyl amino acid betaines containing lauryl betaine (lauryl dimethylaminoacetic acid betaine); fatty acid amide alkyl-N, N-dimethyl esters comprising cocamidopropyl betaine and lauramidopropyl betaine Amino acid betaine; imidazoline type betaine including sodium cocoamphoacetate, sodium lauroamphoacetate; alkyl sulfobetaine including alkyl dimethyl taurine; sulfuric acid type betaine including alkyl dimethylaminoethanol sulfate ester; and phosphoric acid type including alkyl dimethylaminoethanol phosphate ester The pH sensitive liposome according to any one of claims 1 to 3, which is at least one selected from the group consisting of betaines.
  5.  前記常温で固体の飽和脂肪酸が、パルミチン酸又はステアリン酸である請求項3に記載のpH感受性リポソーム。 The pH sensitive liposome according to claim 3, wherein the saturated fatty acid which is solid at normal temperature is palmitic acid or stearic acid.
  6.  ジオールと、三価以上のポリオールと、リポソーム膜構成成分とを加温条件下に混合し、前記ジオールとポリオールとの混合物に、前記リポソーム膜構成成分を溶解した混合物溶液を調製する工程と、
     前記混合物溶液と、あらかじめ加温した水性媒体とを混合し、これらを均質化する工程と、
     前記均質化された水性媒体を急冷し、リポソームを生成する工程と、
     前記リポソームを回収する工程と、を含み、
     前記リポソーム膜構成成分は、少なくとも両イオン性物質を含み、
     前記リポソームを以下の各pH条件の水性媒体中に分散させたとき、前記リポソームのゼータ電位は、pH5以下でプラスであり、pH8以上でマイナスであり、そして、pH5~8の間で、pH値の増加とともにプラスからマイナスへ移行することを特徴とする、pH感受性リポソームの製造方法。
    Preparing a mixture solution in which a diol, a trivalent or higher polyol, and a liposome membrane component are mixed under heating conditions, and the liposome membrane component is dissolved in the mixture of the diol and the polyol;
    Mixing the mixture solution with a preheated aqueous medium and homogenizing them;
    Quenching the homogenized aqueous medium to form liposomes;
    Recovering the liposome.
    The liposome membrane component contains at least a zwitterionic substance,
    When the liposome is dispersed in an aqueous medium at each of the following pH conditions, the zeta potential of the liposome is positive at pH 5 or less, negative at pH 8 or more, and pH 5 to 8 The method for producing pH-sensitive liposomes, characterized in that the transition from positive to negative with the increase of
  7.  前記混合物溶液は、前記ジオールと前記三価以上のポリオールとをあらかじめ加温条件下に混合して均質化した溶液に、前記リポソーム膜構成成分を添加及び攪拌することを特徴とする請求項6に記載のpH感受性リポソームの製造方法。 7. The liposome membrane component according to claim 6, wherein the mixture solution is prepared by adding and stirring the liposome membrane component to a solution obtained by mixing and homogenizing the diol and the trivalent or higher polyol in advance under heating conditions. The manufacturing method of the pH sensitive liposome as described.
  8.  前記両イオン性物質が、前記リポソーム膜構成成分全体に対して5~20質量%含まれる請求項6又は7に記載のpH感受性リポソームの製造方法。 The method for producing a pH-sensitive liposome according to claim 6, wherein the zwitterionic substance is contained in an amount of 5 to 20% by mass based on the whole of the liposome membrane component.
  9.  前記リポソーム膜構成成分全体に対して、2.5~15質量%の比率でアニオン性物質を含む請求項6~8いずれか記載のpH感受性リポソームの製造方法。 The method for producing a pH sensitive liposome according to any one of claims 6 to 8, wherein the anionic substance is contained in a ratio of 2.5 to 15% by mass with respect to the whole liposome membrane component.
  10.  前記アニオン性物質と、前記両イオン性物質との含有比率が1:1~1:3である請求項9に記載のpH感受性リポソームの製造方法。 The method for producing a pH-sensitive liposome according to claim 9, wherein a content ratio of the anionic substance to the zwitterionic substance is 1: 1 to 1: 3.
  11.  前記リポソーム膜構成成分が、さらにリン脂質とコレステロールとを含む請求項6~10いずれか記載のpH感受性リポソームの製造方法。 The method for producing a pH-sensitive liposome according to any one of claims 6 to 10, wherein the liposome membrane component further comprises phospholipid and cholesterol.
  12.  前記アニオン性物質が、常温で固体の飽和脂肪酸である請求項9~11のいずれか記載のpH感受性リポソームの製造方法。 The method for producing a pH sensitive liposome according to any one of claims 9 to 11, wherein the anionic substance is a saturated fatty acid which is solid at normal temperature.
  13.  前記両イオン性物質が、ラウリルベタイン(ラウリルジメチルアミノ酢酸ベタイン)を含むN-アルキル-N,N-ジメチルアミノ酸ベタイン;コカミドプロピルベタイン、ラウラミドプロピルベタインを含む脂肪酸アミドアルキル-N,N-ジメチルアミノ酸ベタイン;ココアンホ酢酸ナトリウム、ラウロアンホ酢酸ナトリウムを含むイミダゾリン型ベタイン;アルキルジメチルタウリンを含むアルキルスルホベタイン;アルキルジメチルアミノエタノール硫酸エステルを含む硫酸型ベタイン;及びアルキルジメチルアミノエタノールリン酸エステルを含むリン酸型ベタインからなる群より選択される少なくとも1つである請求項6~12のいずれか記載のpH感受性リポソームの製造方法。 N-alkyl-N, N-dimethyl amino acid betaines containing lauryl betaine (lauryl dimethylaminoacetic acid betaine); fatty acid amide alkyl-N, N-dimethyl esters comprising cocamidopropyl betaine and lauramidopropyl betaine Amino acid betaine; imidazoline type betaine including sodium cocoamphoacetate, sodium lauroamphoacetate; alkyl sulfobetaine including alkyl dimethyl taurine; sulfuric acid type betaine including alkyl dimethylaminoethanol sulfate ester; and phosphoric acid type including alkyl dimethylaminoethanol phosphate ester The method for producing a pH sensitive liposome according to any one of claims 6 to 12, which is at least one selected from the group consisting of betaines.
  14.  前記ジオールが、プロパン-1,2-ジオール、1,3-ブチレングリコール又はこれらの混合物であり、前記ポリオールが、ソルビトール、グリセリン又はこれらの混合物である請求項6~13のいずれか記載のpH感受性リポソームの製造方法。 The pH-sensitive agent according to any one of claims 6 to 13, wherein the diol is propane-1,2-diol, 1,3-butylene glycol or a mixture thereof, and the polyol is sorbitol, glycerin or a mixture thereof. Method of producing liposome.
  15.  前記常温で固体の飽和脂肪酸が、パルミチン酸又はステアリン酸である請求項12に記載のpH感受性リポソームの製造方法。 The method for producing a pH-sensitive liposome according to claim 12, wherein the saturated fatty acid which is solid at normal temperature is palmitic acid or stearic acid.
PCT/JP2018/032611 2017-09-04 2018-09-03 Ph-sensitive liposomes and method for producing same WO2019045097A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880059659.0A CN111132753B (en) 2017-09-04 2018-09-03 pH-sensitive liposome and method for producing same
KR1020207008501A KR20200050982A (en) 2017-09-04 2018-09-03 pH-sensitive liposomes and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-169356 2017-09-04
JP2017-169359 2017-09-04
JP2017169356A JP6399530B1 (en) 2017-09-04 2017-09-04 pH sensitive liposomes
JP2017169359A JP6462073B1 (en) 2017-09-04 2017-09-04 Method for producing pH-sensitive liposomes

Publications (1)

Publication Number Publication Date
WO2019045097A1 true WO2019045097A1 (en) 2019-03-07

Family

ID=65525733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032611 WO2019045097A1 (en) 2017-09-04 2018-09-03 Ph-sensitive liposomes and method for producing same

Country Status (3)

Country Link
KR (1) KR20200050982A (en)
CN (1) CN111132753B (en)
WO (1) WO2019045097A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115068355A (en) * 2022-07-04 2022-09-20 成都科建生物医药有限公司 Nerolidol liposome and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143339A1 (en) * 2007-05-17 2008-11-27 Waseda University Amphipathic molecule, molecular aggregate comprising the amphipathic molecule, and use of the molecular aggregate
JP2010209012A (en) * 2009-03-11 2010-09-24 Ichimaru Pharcos Co Ltd Ph-responsive liposome

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426086B1 (en) * 1998-02-03 2002-07-30 The Regents Of The University Of California pH-sensitive, serum-stable liposomes
DE10109897A1 (en) * 2001-02-21 2002-11-07 Novosom Ag Optional cationic liposomes and their use
KR20050105455A (en) 2003-02-11 2005-11-04 네오팜 인코포레이티드 Manufacturing process for liposomal preparations
CN1823733A (en) * 2006-01-06 2006-08-30 中国药科大学 Self asembled precusor liposome containing camptothecin kind medicine and its preparation method
AU2009331158A1 (en) * 2008-12-24 2010-07-01 Biomedcore Inc. Method for producing liposome and method for dissolving cholesterol
CN102688153A (en) * 2012-06-05 2012-09-26 东南大学 Blank liposome prepared by compounding phospholipid and preparation method thereof
CN103585106B (en) * 2013-10-29 2015-07-22 北京化工大学 PH sensitivity modified liposome and its preparation method
CN104739769B (en) * 2015-03-04 2019-02-19 王海龙 A kind of preparation method of liposome and its product of preparation
JP6661319B2 (en) 2015-09-28 2020-03-11 小林製薬株式会社 Liposome

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143339A1 (en) * 2007-05-17 2008-11-27 Waseda University Amphipathic molecule, molecular aggregate comprising the amphipathic molecule, and use of the molecular aggregate
JP2010209012A (en) * 2009-03-11 2010-09-24 Ichimaru Pharcos Co Ltd Ph-responsive liposome

Also Published As

Publication number Publication date
CN111132753A (en) 2020-05-08
KR20200050982A (en) 2020-05-12
CN111132753B (en) 2022-05-27

Similar Documents

Publication Publication Date Title
Akhavan et al. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals
Lovelyn et al. Current state of nanoemulsions in drug delivery
EP0130577B2 (en) Method for producing liposomes
JP4900536B2 (en) Method for producing single cell liposomes by a two-stage emulsification method using an external aqueous phase containing a specific dispersant, and a method for producing a single cell liposome dispersion or a dry powder thereof using the method for producing single cell liposomes
JPH0428412B2 (en)
Martiel et al. Phospholipid-based nonlamellar mesophases for delivery systems: Bridging the gap between empirical and rational design
JP5494054B2 (en) Method for producing liposomes by two-stage emulsification
Hwang et al. Fabrication of nano-scale liposomes containing doxorubicin using Shirasu porous glass membrane
JP5371030B2 (en) Method for producing vesicle, vesicle obtained by this production method, and W / O / W emulsion for producing vesicle
JP6399530B1 (en) pH sensitive liposomes
JP5853453B2 (en) Method for producing liposomes
JP5588619B2 (en) pH-responsive liposome
WO2019045097A1 (en) Ph-sensitive liposomes and method for producing same
Sjöström et al. Preparation of submicron drug particles in lecithin-stabilized ow emulsions: I. Model studies of the precipitation of cholesteryl acetate
Reddy et al. Niosomes as nanocarrier systems: a review
JPH0436735B2 (en)
JP6462073B1 (en) Method for producing pH-sensitive liposomes
JP2009132629A (en) Method for producing liposome preparation
JP5649074B2 (en) Method for producing liposome by two-stage emulsification using nano-sized primary emulsion
JP2016163851A (en) Composite type solubilized nanoliposome and method for producing the same
JPH06239734A (en) Preparation of liposome and loposome formulation
JP5838970B2 (en) Method for producing single-cell liposome by two-stage emulsification method in which water-soluble lipid is added to the inner aqueous phase, and single-cell liposome obtained by the production method
CN110368362A (en) A kind of preparation method of phosphatidylserine emulsion
EP1028711A1 (en) Method for producing liposomes
KR100778946B1 (en) Nano?concentrated capsule compositions with high content oil?soluble active materials, it's manufacturing method and cosmetic composition containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207008501

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18850195

Country of ref document: EP

Kind code of ref document: A1