WO2019045027A1 - Nondestructive test method and nondestructive test instrument - Google Patents

Nondestructive test method and nondestructive test instrument Download PDF

Info

Publication number
WO2019045027A1
WO2019045027A1 PCT/JP2018/032282 JP2018032282W WO2019045027A1 WO 2019045027 A1 WO2019045027 A1 WO 2019045027A1 JP 2018032282 W JP2018032282 W JP 2018032282W WO 2019045027 A1 WO2019045027 A1 WO 2019045027A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
measurement
field distribution
sample
magnetic
Prior art date
Application number
PCT/JP2018/032282
Other languages
French (fr)
Japanese (ja)
Inventor
孝二郎 関根
昌宏 今田
司 八木
匡章 土田
卓史 波多野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019539649A priority Critical patent/JPWO2019045027A1/en
Publication of WO2019045027A1 publication Critical patent/WO2019045027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nondestructive inspection method and a nondestructive inspection apparatus.
  • a magnetic field distribution measuring device for measuring a magnetic field distribution generated from a sample.
  • deterioration is determined by the difference or ratio of two magnetic field distributions obtained by two types of currents.
  • a magnetic sensor is disposed in the shield and in the vicinity of a sample, and deterioration is determined by the change in the difference before and after the passage of time.
  • patent document 3 in order to know deterioration of a fuel cell, it measures with a magnetic field sensor array, and determines abnormality by the difference from normal data.
  • the present invention has been made in view of the above problems in the prior art, and in measuring the magnetic field distribution generated by supplying a current to the sample to detect an abnormal part of the sample, Even if there is movement of the same sample with other measurements after the lapse of time, it is an object to match the position of the magnetic field distribution obtained respectively by both measurements.
  • the invention according to claim 1 for solving the above problems is a nondestructive inspection method for detecting an abnormal part of a sample by measuring a magnetic field distribution generated by supplying a current to the sample, After forming a magnetic mark on one sample, Perform one measurement and another measurement after the lapse of time for the one sample, Measuring the magnetic field distribution of the one sample including the magnetic field generated from the magnetic mark in the one measurement; Measuring the magnetic field distribution of the one sample including the magnetic field generated from the magnetic mark in the other measurement; Correspondence by matching the magnetic field detection coordinates of the magnetic mark with the coordinates of the magnetic field distribution of the one sample obtained by the one measurement and the coordinates of the magnetic field distribution of the one sample obtained by the other measurement Nondestructive inspection method.
  • the invention according to claim 2 is the nondestructive inspection method according to claim 1, wherein a magnetic material is mixed in the material constituting the magnetic mark.
  • the invention according to claim 3 takes the difference between the reference magnetic field distribution and the magnetic field distribution of the one sample obtained by the other measurement, and determines the position of the abnormal point of the one sample at the other measurement time. It is the nondestructive inspection method according to claim 1 or claim 2 to specify.
  • the invention according to claim 4 performs the one measurement at an early stage before use of the one sample, and uses the magnetic field distribution of the one sample acquired by the one measurement as the magnetic field distribution of the reference. It is a nondestructive inspection method of statement.
  • the invention according to claim 5 performs the one measurement on a plurality of reference samples, averages the magnetic field distribution acquired thereby, and stores it in a memory as a reference magnetic field distribution, For each of the plurality of reference samples and the other samples, Perform the other measurements
  • the invention according to claim 6 uses the magnetic field distribution of the reference which takes the difference from the magnetic field distribution acquired by the other measurement as an estimated value after the change with time until the time of the other measurement. 5.
  • the nondestructive inspection method according to any one of the above 5.
  • the invention according to claim 7 is the nondestructive inspection method according to any one of claims 3 to 6, wherein the time difference distribution taking the difference is further subjected to spatial difference in a magnetic field distribution space.
  • the invention according to claim 8 is the nondestructive inspection method according to any one of claims 1 to 7, wherein the magnetic field component for measuring the magnetic field distribution is a component in a direction parallel to the measurement target surface of the sample. It is.
  • the invention according to claim 9 is a nondestructive inspection apparatus for detecting an abnormal part of a sample by measuring a magnetic field distribution generated by supplying a current to the sample, The generated magnetic field of the magnetic mark having a predetermined direction and intensity is detected from the magnetic field distribution of one sample obtained by the first measurement, The generated magnetic field of the magnetic mark is detected from the magnetic field distribution of the one sample obtained by the later measurement by the one measurement, The coordinates of the magnetic field distribution of the one sample obtained by the one measurement are made to correspond to the coordinates of the magnetic field distribution of the one sample obtained by the other measurement by matching the magnetic field detection coordinates of the magnetic mark It is a nondestructive inspection device provided with a control device.
  • control device determines a difference between a reference magnetic field distribution and a magnetic field distribution of the one sample obtained by the other measurement, and calculates the difference between the one sample at the other measurement time.
  • the invention according to claim 11 is the nondestructive inspection device according to claim 10, wherein the control device uses the magnetic field distribution of the one sample obtained by the measurement of the one as the magnetic field distribution of the reference.
  • the invention according to claim 12 includes a memory in which a magnetic field distribution of a reference obtained by averaging the magnetic field distribution obtained by performing the one measurement on a plurality of reference samples is stored,
  • the controller is For each of the plurality of reference samples and the other samples,
  • the invention according to claim 13 is characterized in that the control device determines the magnetic field distribution of the reference, which is the difference with the magnetic field distribution acquired by the other measurement, as an estimated value after the change with time until the other measurement. It is the nondestructive inspection device according to any one of items 10 to 12.
  • the control device further performs spatial subtraction within the magnetic field distribution space from the time difference distribution obtained by taking the difference. It is an apparatus.
  • the invention according to claim 15 is the nondestructive inspection apparatus according to any one of claims 9 to 14, further comprising a magnetic sensor that detects a component in a direction parallel to the measurement target surface of the sample.
  • the same process is performed between one measurement of the same sample and another measurement after the lapse of time. Even if there is movement of the sample, by matching the magnetic field detection coordinates of the magnetic marks, it is possible to match the position of the magnetic field distribution obtained respectively by both measurements.
  • FIG. 3A It is a top view of the sample of an example. It is a longitudinal cross-sectional view of the electrode part of the sample of FIG. 1A. It is a structure block diagram of the nondestructive inspection device used by one embodiment of the present invention.
  • the top view of the two-dimensional magnetic field distribution of FIG. 3A is shown. It is a figure which shows the two-dimensional magnetic field distribution measured by one Embodiment of this invention, and shows a thing without an abnormal location at the time of one measurement performed previously. It is a figure which shows the two-dimensional magnetic field distribution measured by one Embodiment of this invention, and shows the thing with the abnormal location at the time of the other measurement performed later.
  • the top view of two-dimensional magnetic field distribution of 4A is shown.
  • the sample 1 shown in FIG. 1 is to be measured.
  • the sample 1 is a thin lithium ion battery, which is wide on the XY plane and thinly formed in the Z direction perpendicular to the XY plane, and has a positive electrode 11 and a negative electrode 12.
  • the sample 1 shown in FIG. 1 has positive electrodes 11 and negative electrodes 12 at both ends in the Y direction with gaps in the Z direction.
  • the direction 13 in which the main current in the sample 1 flows is illustrated.
  • FIG. 2 shows a configuration block diagram of an example nondestructive inspection device 2 used in the present embodiment.
  • the nondestructive inspection device 2 digitally converts the detection values of each magnetic sensor 21 by a two-dimensional sensor array 22 in which the magnetic sensors 21 are arranged in two dimensions, and each magnetic sensor on two-dimensional coordinates of the two-dimensional sensor array 22
  • the data generation unit 23 generates data of a format in which the position information and the detection value of 21 correspond to each other, a CPU (Central Processing Unit) 24 as a control device, a ROM (Read Only Memory) 25, a RAM (Random) (Access memory) 26, a display unit 27, an operation unit 28, a communication interface 29, and the like.
  • the nondestructive inspection device 2 has an ID reading unit 20 that reads a barcode (not shown) or the like described on the sample 1 and acquires individual identification information. It is for identifying and managing an individual of sample 1.
  • the distribution is measured via the two-dimensional sensor array 22.
  • magnetic marks 15a, 15b, 15c formed of ink mixed with a magnetic material are provided at three of four corners on the XY plane. If the magnetic field distribution is measured after applying an external magnetic field to magnetize the magnetic substance as necessary, it is possible to measure the magnetic field in a predetermined direction and intensity generated from the magnetic substance in the vicinity of the magnetic mark as shown in FIGS. It becomes possible to correct the position from the magnetic field distribution result without worrying about the deviation between the present device 2 and the sample 1 when measuring after the lapse of time.
  • the large number of samples 1 are sequentially measured at the time of initial measurement and after the lapse of time, but relative to the two-dimensional sensor array 22.
  • the positional relationship between the magnetic marks 15a, 15b, and 15c can be roughly calculated, and the difference processing can be performed accurately and accurately using the magnetic marks 15a, 15b, and 15c. That is, when performing one measurement and another measurement after the lapse of time for one sample 1, the magnetic field distribution of one sample 1 including the magnetic field generated from the magnetic marks 15a, 15b and 15c in one measurement (FIG. 3) is measured, and the magnetic field distribution (FIG.
  • the CPU 24 of the nondestructive inspection device 2 generates the generated magnetic field of the magnetic marks 15a, 15b, 15c having a predetermined direction and intensity from the magnetic field distribution of one sample 1 (FIG. 3) obtained by one measurement.
  • the generated magnetic field of the magnetic marks 15a, 15b, and 15c is detected from the magnetic field distribution (FIG. 4) of one sample 1 which is detected and acquired by another measurement later by one measurement.
  • the CPU 24 sets the coordinates of the magnetic field distribution of the one sample 1 (FIG. 3) acquired by one measurement and the coordinates of the magnetic field distribution of the one sample (FIG. 4) acquired by the other measurement to the magnetic mark 15a, It corresponds by matching the magnetic field detection coordinates of 15b and 15c.
  • the CPU 24 takes the difference (FIG. 5) between the reference magnetic field distribution (FIG. 3) and the magnetic field distribution of one sample 1 (FIG. 4) obtained by another measurement, and performs detection processing such as threshold processing. To identify the location of the abnormal point of one sample at another measurement.
  • the normal state can ideally be dealt with by measuring each initial state, storing it in the RAM 26 corresponding to the individual identification information, and calling it for each sample. That is, one measurement is performed at an early stage before use of one sample 1 and the magnetic field distribution of one sample 1 obtained by one measurement is used as a reference magnetic field distribution. Therefore, while acquiring individual identification information from the sample 1 via the ID reading unit 20 each time, the CPU 24 stores the magnetic field distribution of one sample 1 acquired by one measurement in the RAM 26 as a reference magnetic field distribution, and Use at the time of measurement.
  • the difference from the individual data of all the initial states is not performed by using the average value of the initial states as a representative value, and from the unified average initial state It is also possible to process with the difference of, which leads to significant time saving. That is, while acquiring individual identification information each time, the CPU 24 averages the acquired magnetic field distribution by performing one measurement on a plurality of reference samples, and stores the average in the RAM 26 as a reference magnetic field distribution. Furthermore, the CPU 24 performs individual measurement on each of a plurality of reference samples and other samples while acquiring individual identification information each time, in which case it acquires the reference magnetic field distribution read from the RAM 26 memory and other measurements.
  • the difference from the magnetic field distribution is taken, detection processing such as threshold processing is performed, and the position of the abnormal point at the time of other measurement is specified.
  • the positions of the magnetic marks 15a, 15b, and 15c are unified for all the samples to be measured, and the position accuracy is set to a level higher than the measurement accuracy of the magnetic field distribution. It is for ensuring the position accuracy at the time of taking the above-mentioned average value and the difference.
  • the magnetic field distribution at the time of other measurements after the passage of time includes not only the change due to the abnormal point (leakage) 14 after the passage of time but also the effect of the overall decrease of the current due to the deterioration over time. In that case, even if there is no leak, it is possible to already have a table in the ROM 25 as a typical current change value, and when taking the difference of the magnetic field distribution from the initial state, cancel the reduction of the entire signal and It is possible to take. That is, the CPU 24 sets the reference magnetic field distribution, which takes the difference from the magnetic field distribution acquired by the other measurement, as the estimated value after the change with time until the other measurement time.
  • the CPU 24 refers to the correspondence table between the time lapse from the normal time (one measurement time) and the magnetic field change (estimated value) stored in the ROM 25 and inputs the elapsed time until the other measurement time Calculate the estimated value by doing this.
  • the CPU 24 further obtains the spatial difference in the magnetic field distribution space (XY plane), which is the time difference distribution obtained by taking the difference between one measurement and the other measurement. Since the spatial difference due to the normal current is small, the value of the spatial difference due to the abnormal point 14 becomes more apparent.
  • the present embodiment is mainly intended to detect an abnormal portion (leakage) 14.
  • an abnormal portion (leakage) 14.
  • a phenomenon in which a small amount of current flows in the Z direction at a specific XY coordinate position is caused by the abnormal portion 14.
  • a change in the magnetic field distribution caused by the abnormal point 14 is likely to appear as a change in the X and Y components. Therefore, in the two-dimensional magnetic field distribution measurement, an X component or a Y component or both X and Y components may be acquired.
  • the nondestructive inspection device 2 includes the magnetic sensor 21 for detecting a component (X component and / or Y component) in a direction parallel to the measurement target surface (XY plane) of the sample 1, and X component or Y component or Implement a form to measure the two-dimensional magnetic field distribution of both X and Y components.
  • the magnetic marks 15a, 15b, and 15c may also serve as marks for obtaining a two-dimensional distribution in a later inspection apparatus (for example, an X-ray apparatus, a camera, cross section measurement, etc.).
  • a later inspection apparatus for example, an X-ray apparatus, a camera, cross section measurement, etc.
  • the magnetic mark is formed of a material containing a magnetic substance, for example, an ink containing iron, and if magnetized before measurement, it can be used as alignment information at a plurality of times of magnetic measurement with lapse of time. As shown in FIG.
  • the abnormal point can be identified with accuracy by taking the difference. Since the coordinates in FIG. 3 and the coordinates in FIG. 4 correspond to each other so that the position of the sample 1 matches, the magnetic field caused by the magnetic marks 15a, 15b, 15c measured in both FIG. 3 and FIG. Are canceled and eliminated in FIG. As described above, even when the normal state is the initial state of the same sample, the change in the magnetic field of the same sample after the lapse of time can be measured. In the normal state, it is not necessary to measure a plurality of normal samples and to measure the initial state of each sample if the average data is used.
  • the fall of the magnetic field intensity with the passage of time of the normal state magnetic field distribution is held in the data table, and the fall of the overall magnetic field intensity of the sample is estimated and the difference is taken to take the difference.
  • the change in the magnetic field can be evaluated correctly.
  • acquiring the spatial difference can make the abnormal part more apparent. Since the abnormal point generates a current in the in-plane vertical direction due to the leak current, the acquired magnetic field component should be a component parallel to the measurement target surface of the sample.
  • the present invention can be used for nondestructive inspection methods and nondestructive inspection devices such as lithium ion batteries.

Abstract

According to the present invention, when the site of an abnormality in a sample is detected by measuring a magnetic field distribution generated by the flow of a current through the sample, even when there is movement of the same sample between one measurement of the sample and another measurement performed after time has passed, the positions of the magnetic field distribution respectively obtained through the two measurements are adjusted. In this nondestructive test method: magnetic marks 15a, 15b, 15c are formed on one sample 1; one measurement, and another measurement performed after time has passed, are subsequently performed on the one sample; a magnetic field distribution for the one sample that includes a magnetic field generated by the magnetic marks in the one measurement is measured; a magnetic field distribution for the one sample that includes a magnetic field generated by the magnetic marks in the other measurement is measured; and the coordinates of the magnetic field distribution for the one sample acquired in the one measurement and the coordinates of the magnetic field distribution for the one sample acquired in the other measurement are caused to conform to magnetic field detection coordinates of the magnetic marks.

Description

非破壊検査方法及び非破壊検査装置Nondestructive inspection method and nondestructive inspection device
 本発明は、非破壊検査方法及び非破壊検査装置に関する。 The present invention relates to a nondestructive inspection method and a nondestructive inspection apparatus.
 非破壊検査の分野において試料から発生する磁場分布を測定する磁場分布測定装置が知られている。
 特許文献1では、2種類の電流で得られた2つの磁場分布の差か比にて劣化を判定する。
 特許文献2では、シールド内と試料近接に磁気センサを配置し、時間経過前後の差の変化にて劣化を判定する。
 特許文献3では、燃料電池の劣化を知るのに磁場センサーアレイにて測定し、正常データからの差分にて異常を判定する。
In the field of nondestructive inspection, a magnetic field distribution measuring device for measuring a magnetic field distribution generated from a sample is known.
In patent document 1, deterioration is determined by the difference or ratio of two magnetic field distributions obtained by two types of currents.
In Patent Document 2, a magnetic sensor is disposed in the shield and in the vicinity of a sample, and deterioration is determined by the change in the difference before and after the passage of time.
In patent document 3, in order to know deterioration of a fuel cell, it measures with a magnetic field sensor array, and determines abnormality by the difference from normal data.
特開2014-89819号公報JP, 2014-89819, A 特開2016-219272号公報JP, 2016-219272, A 特許第4701389号公報Patent No. 4701389
 しかし、特許文献1に記載の発明においては、印加電流を2種類準備し測定することが必要で、それぞれの充放電のため時間がかかる。
 特許文献2に記載の発明においては、時間経過とともに磁場変化を取得できるが異常箇所の位置を特定できない。
 特許文献3に記載の発明においては、試料と磁気センサアレイを接触させており、位置合わせする必要はないが試料ごとに磁気センサーアレイが必要となる。
 複数の試料の時間経過状態を一つの磁場分布測定装置で測定する場合、測定データの空間的位置ずれが懸念される。すなわち、磁場分布測定装置で一つの試料を測定した後、他の試料を同磁場分布測定装置で測定する際には、前記一つの試料を同磁場分布測定装置から取り去る。その後前記一つの試料の時間経過状態を調べるために磁場分布測定装置で前記一つの試料を測定するが、同磁場分布測定装置への前記一つの試料の設置位置が前回の測定と一致しないことが懸念される。
However, in the invention described in Patent Document 1, it is necessary to prepare and measure two types of applied current, and it takes time for each charge and discharge.
In the invention described in Patent Document 2, although the magnetic field change can be acquired as time passes, the position of the abnormal point can not be specified.
In the invention described in Patent Document 3, the sample and the magnetic sensor array are in contact, and although it is not necessary to align, a magnetic sensor array is required for each sample.
When measuring the time-elapsed state of a plurality of samples with one magnetic field distribution measuring device, spatial positional deviation of measurement data is concerned. That is, after measuring one sample with the magnetic field distribution measuring device, when measuring another sample with the same magnetic field distribution measuring device, the one sample is removed from the same magnetic field distribution measuring device. After that, the one sample is measured by the magnetic field distribution measuring apparatus to check the time-elapsed state of the one sample, but the installation position of the one sample in the same magnetic field distribution measuring apparatus does not coincide with the previous measurement. I am concerned.
 本発明は以上の従来技術における問題に鑑みてなされたものであって、試料に電流を流して発生する磁場分布を測定して試料の異常箇所を検出するにあたり、同一試料についての一の測定と時間経過した後の他の測定との間に同試料の移動があっても、両測定によりそれぞれ得られた磁場分布の位置を整合させることを課題とする。 The present invention has been made in view of the above problems in the prior art, and in measuring the magnetic field distribution generated by supplying a current to the sample to detect an abnormal part of the sample, Even if there is movement of the same sample with other measurements after the lapse of time, it is an object to match the position of the magnetic field distribution obtained respectively by both measurements.
 以上の課題を解決するための請求項1記載の発明は、試料に電流を流して発生する磁場分布を測定して試料の異常箇所を検出する非破壊検査方法において、
一の試料に磁性マークを形成した後、
前記一の試料について一の測定と時間経過した後の他の測定とを行い、
前記一の測定において前記磁性マークから発生する磁場を含む前記一の試料の磁場分布を測定し、
前記他の測定において前記磁性マークから発生する磁場を含む前記一の試料の磁場分布を測定し、
前記一の測定により取得した前記一の試料の磁場分布の座標と、前記他の測定により取得した前記一の試料の磁場分布の座標とを、前記磁性マークの磁場検出座標を一致させることにより対応させる非破壊検査方法である。
The invention according to claim 1 for solving the above problems is a nondestructive inspection method for detecting an abnormal part of a sample by measuring a magnetic field distribution generated by supplying a current to the sample,
After forming a magnetic mark on one sample,
Perform one measurement and another measurement after the lapse of time for the one sample,
Measuring the magnetic field distribution of the one sample including the magnetic field generated from the magnetic mark in the one measurement;
Measuring the magnetic field distribution of the one sample including the magnetic field generated from the magnetic mark in the other measurement;
Correspondence by matching the magnetic field detection coordinates of the magnetic mark with the coordinates of the magnetic field distribution of the one sample obtained by the one measurement and the coordinates of the magnetic field distribution of the one sample obtained by the other measurement Nondestructive inspection method.
 請求項2記載の発明は、前記磁性マークを構成する素材には、磁性体が混ぜられている請求項1に記載の非破壊検査方法である。 The invention according to claim 2 is the nondestructive inspection method according to claim 1, wherein a magnetic material is mixed in the material constituting the magnetic mark.
 請求項3記載の発明は、基準の磁場分布と、前記他の測定により取得した前記一の試料の磁場分布との差分をとり、前記他の測定時における前記一の試料の異常箇所の位置を特定する請求項1又は請求項2に記載の非破壊検査方法である。 The invention according to claim 3 takes the difference between the reference magnetic field distribution and the magnetic field distribution of the one sample obtained by the other measurement, and determines the position of the abnormal point of the one sample at the other measurement time. It is the nondestructive inspection method according to claim 1 or claim 2 to specify.
 請求項4記載の発明は、前記一の測定を前記一の試料の使用前の初期に行い、前記一の測定により取得した前記一の試料の磁場分布を前記基準の磁場分布とする請求項3に記載の非破壊検査方法である。 The invention according to claim 4 performs the one measurement at an early stage before use of the one sample, and uses the magnetic field distribution of the one sample acquired by the one measurement as the magnetic field distribution of the reference. It is a nondestructive inspection method of statement.
 請求項5記載の発明は、前記一の測定を複数の基準試料について行い、これにより取得した磁場分布の平均をとって基準の磁場分布としてメモリに保存し、
前記複数の基準試料及び他の試料の各々について、
前記他の測定を行い、
前記メモリから読みだした前記基準の磁場分布と、前記他の測定により取得した磁場分布との差分をとり、前記他の測定時における異常箇所の位置を特定する請求項3に記載の非破壊検査方法である。
The invention according to claim 5 performs the one measurement on a plurality of reference samples, averages the magnetic field distribution acquired thereby, and stores it in a memory as a reference magnetic field distribution,
For each of the plurality of reference samples and the other samples,
Perform the other measurements
The nondestructive inspection according to claim 3, wherein the difference between the reference magnetic field distribution read from the memory and the magnetic field distribution obtained by the other measurement is taken to specify the position of the abnormal point at the time of the other measurement. It is a method.
 請求項6記載の発明は、前記他の測定により取得した磁場分布との差分をとる前記基準の磁場分布を、前記他の測定時までの経時変化後の推定値とする請求項3から請求項5のうちいずれか一に記載の非破壊検査方法である。 The invention according to claim 6 uses the magnetic field distribution of the reference which takes the difference from the magnetic field distribution acquired by the other measurement as an estimated value after the change with time until the time of the other measurement. 5. The nondestructive inspection method according to any one of the above 5.
 請求項7記載の発明は、前記差分をとった時間差分分布をさらに磁場分布空間内で空間差分をとる請求項3から請求項6のうちいずれか一に記載の非破壊検査方法である。 The invention according to claim 7 is the nondestructive inspection method according to any one of claims 3 to 6, wherein the time difference distribution taking the difference is further subjected to spatial difference in a magnetic field distribution space.
 請求項8記載の発明は、前記磁場分布を測定する磁場成分は前記試料の測定対象面に平行な方向の成分である請求項1から請求項7のうちいずれか一に記載の非破壊検査方法である。 The invention according to claim 8 is the nondestructive inspection method according to any one of claims 1 to 7, wherein the magnetic field component for measuring the magnetic field distribution is a component in a direction parallel to the measurement target surface of the sample. It is.
 請求項9記載の発明は、試料に電流を流して発生する磁場分布を測定して試料の異常箇所を検出する非破壊検査装置において、
一の測定により取得した一の試料の磁場分布から所定の方向及び強度を有する磁性マークの発生磁場を検出し、
前記一の測定により後の他の測定により取得した前記一の試料の磁場分布から前記磁性マークの発生磁場を検出し、
前記一の測定により取得した前記一の試料の磁場分布の座標と、他の測定により取得した前記一の試料の磁場分布の座標とを、前記磁性マークの磁場検出座標を一致させることにより対応させる制御装置を備える非破壊検査装置である。
The invention according to claim 9 is a nondestructive inspection apparatus for detecting an abnormal part of a sample by measuring a magnetic field distribution generated by supplying a current to the sample,
The generated magnetic field of the magnetic mark having a predetermined direction and intensity is detected from the magnetic field distribution of one sample obtained by the first measurement,
The generated magnetic field of the magnetic mark is detected from the magnetic field distribution of the one sample obtained by the later measurement by the one measurement,
The coordinates of the magnetic field distribution of the one sample obtained by the one measurement are made to correspond to the coordinates of the magnetic field distribution of the one sample obtained by the other measurement by matching the magnetic field detection coordinates of the magnetic mark It is a nondestructive inspection device provided with a control device.
 請求項10記載の発明は、前記制御装置は、基準の磁場分布と、前記他の測定により取得した前記一の試料の磁場分布との差分をとり、前記他の測定時における前記一の試料の異常箇所の位置を特定する請求項9に記載の非破壊検査装置である。 In the invention according to claim 10, the control device determines a difference between a reference magnetic field distribution and a magnetic field distribution of the one sample obtained by the other measurement, and calculates the difference between the one sample at the other measurement time. The nondestructive inspection device according to claim 9, wherein the position of the abnormal point is specified.
 請求項11記載の発明は、前記制御装置は、前記一の測定により取得した前記一の試料の磁場分布を前記基準の磁場分布とする請求項10に記載の非破壊検査装置である。 The invention according to claim 11 is the nondestructive inspection device according to claim 10, wherein the control device uses the magnetic field distribution of the one sample obtained by the measurement of the one as the magnetic field distribution of the reference.
 請求項12記載の発明は、複数の基準試料について前記一の測定を行って取得した磁場分布の平均をとった基準の磁場分布が保存されるメモリを備え、
前記制御装置は、
前記複数の基準試料及び他の試料の各々について、
前記メモリから読みだした前記基準の磁場分布と、前記他の測定により取得した磁場分布との差分をとり、前記他の測定時における異常箇所の位置を特定する請求項10に記載の非破壊検査装置である。
The invention according to claim 12 includes a memory in which a magnetic field distribution of a reference obtained by averaging the magnetic field distribution obtained by performing the one measurement on a plurality of reference samples is stored,
The controller is
For each of the plurality of reference samples and the other samples,
The nondestructive inspection according to claim 10, wherein the difference between the reference magnetic field distribution read from the memory and the magnetic field distribution obtained by the other measurement is taken to specify the position of the abnormal point at the other measurement. It is an apparatus.
 請求項13記載の発明は、前記制御装置は、前記他の測定により取得した磁場分布との差分をとる前記基準の磁場分布を、前記他の測定時までの経時変化後の推定値とする請求項10から請求項12のうちいずれか一に記載の非破壊検査装置である。 The invention according to claim 13 is characterized in that the control device determines the magnetic field distribution of the reference, which is the difference with the magnetic field distribution acquired by the other measurement, as an estimated value after the change with time until the other measurement. It is the nondestructive inspection device according to any one of items 10 to 12.
 請求項14記載の発明は、前記制御装置は、前記差分をとった時間差分分布をさらに磁場分布空間内で空間差分をとる請求項10から請求項13のうちいずれか一に記載の非破壊検査装置である。 In the invention according to claim 14, the non-destructive inspection according to any one of claims 10 to 13, wherein the control device further performs spatial subtraction within the magnetic field distribution space from the time difference distribution obtained by taking the difference. It is an apparatus.
 請求項15記載の発明は、前記試料の測定対象面に平行な方向の成分を検出する磁気センサーを備える請求項9から請求項14のうちいずれか一に記載の非破壊検査装置である。 The invention according to claim 15 is the nondestructive inspection apparatus according to any one of claims 9 to 14, further comprising a magnetic sensor that detects a component in a direction parallel to the measurement target surface of the sample.
 本発明によれば、試料に電流を流して発生する磁場分布を測定して試料の異常箇所を検出するにあたり、同一試料についての一の測定と時間経過した後の他の測定との間に同試料の移動があっても、磁性マークの磁場検出座標を一致させることにより、両測定によりそれぞれ得られた磁場分布の位置を整合させることができる。 According to the present invention, in measuring the magnetic field distribution generated by supplying a current to the sample to detect an abnormal part of the sample, the same process is performed between one measurement of the same sample and another measurement after the lapse of time. Even if there is movement of the sample, by matching the magnetic field detection coordinates of the magnetic marks, it is possible to match the position of the magnetic field distribution obtained respectively by both measurements.
一例の試料の平面図である。It is a top view of the sample of an example. 図1Aの試料の電極部分の縦断面図である。It is a longitudinal cross-sectional view of the electrode part of the sample of FIG. 1A. 本発明の一実施形態で用いる非破壊検査装置の構成ブロック図である。It is a structure block diagram of the nondestructive inspection device used by one embodiment of the present invention. 図3Aの2次元磁場分布の平面図を示す。The top view of the two-dimensional magnetic field distribution of FIG. 3A is shown. 本発明の一実施形態で測定した2次元磁場分布を示す図であり、先に行われた一の測定時の異常箇所が無いものを示す。It is a figure which shows the two-dimensional magnetic field distribution measured by one Embodiment of this invention, and shows a thing without an abnormal location at the time of one measurement performed previously. 本発明の一実施形態で測定した2次元磁場分布を示す図であり、後に行われる他の測定時の異常箇所があったものを示す。It is a figure which shows the two-dimensional magnetic field distribution measured by one Embodiment of this invention, and shows the thing with the abnormal location at the time of the other measurement performed later. 4Aの2次元磁場分布の平面図を示す。The top view of two-dimensional magnetic field distribution of 4A is shown. 図3Aの2次元磁場分布と図4Aの2次元磁場分布との差分分布を示す図である。It is a figure which shows the difference distribution of the two-dimensional magnetic field distribution of FIG. 3A, and the two-dimensional magnetic field distribution of FIG. 4A. 図3Bの2次元磁場分布と図4Bの2次元磁場分布との差分分布を示す図である。It is a figure which shows the difference distribution of the two-dimensional magnetic field distribution of FIG. 3B, and the two-dimensional magnetic field distribution of FIG. 4B.
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
 図1に示す試料1を測定対象とする。試料1は、薄型のリチウムイオン電池であり、XY平面上に広く、XY平面に垂直なZ方向に薄く形成されており、+極11、及び-極12を有する。図1に示す試料1は、Y方向の両端に+極11と-極12を互いにZ方向にギャップを設けて有する。試料1内の主電流が流れる方向13が図示するようになる。 The sample 1 shown in FIG. 1 is to be measured. The sample 1 is a thin lithium ion battery, which is wide on the XY plane and thinly formed in the Z direction perpendicular to the XY plane, and has a positive electrode 11 and a negative electrode 12. The sample 1 shown in FIG. 1 has positive electrodes 11 and negative electrodes 12 at both ends in the Y direction with gaps in the Z direction. The direction 13 in which the main current in the sample 1 flows is illustrated.
 図2に本実施形態で用いる一例の非破壊検査装置2の構成ブロック図を示す。非破壊検査装置2は、磁気センサー21を2次元に配列させた2次元センサーアレイ22と、各磁気センサー21の検出値をデジタル変換するとともに2次元センサーアレイ22の2次元座標上の各磁気センサー21の位置情報と同検出値とを対応させた形式のデータを生成するデータ生成部23と、制御装置としてのCPU(Central Processing Unit)24のほか、ROM(Read Only Memory)25、RAM(Random access memory)26,表示部27、操作部28、通信インターフェース29等を備える。
 また非破壊検査装置2は、試料1に記載された図示しないバーコード等を読み取り、個体識別情報を取得するID読取部20を有する。試料1の個体を識別し管理するためである。
FIG. 2 shows a configuration block diagram of an example nondestructive inspection device 2 used in the present embodiment. The nondestructive inspection device 2 digitally converts the detection values of each magnetic sensor 21 by a two-dimensional sensor array 22 in which the magnetic sensors 21 are arranged in two dimensions, and each magnetic sensor on two-dimensional coordinates of the two-dimensional sensor array 22 The data generation unit 23 generates data of a format in which the position information and the detection value of 21 correspond to each other, a CPU (Central Processing Unit) 24 as a control device, a ROM (Read Only Memory) 25, a RAM (Random) (Access memory) 26, a display unit 27, an operation unit 28, a communication interface 29, and the like.
In addition, the nondestructive inspection device 2 has an ID reading unit 20 that reads a barcode (not shown) or the like described on the sample 1 and acquires individual identification information. It is for identifying and managing an individual of sample 1.
 試料1のXY平面と2次元センサーアレイ22のXY平面を平行にして、試料1に対し2次元センサーアレイ22をZ方向に近接配置した上で、試料1に電流を流して発生する2次元磁場分布を2次元センサーアレイ22を介して測定する。 A two-dimensional magnetic field generated by flowing an electric current through the sample 1 after arranging the two-dimensional sensor array 22 close to the sample 1 in the Z direction with the XY plane of the sample 1 and the XY plane of the two-dimensional sensor array 22 in parallel. The distribution is measured via the two-dimensional sensor array 22.
 図1Aに示すように試料1には、XY平面上の4隅のうち3箇所に磁性体を混ぜたインクで形成された磁性マーク15a,15b,15cが設置されている。
 必要に応じて磁性体を磁化させる外部磁場を与えたのち、磁場分布を測定すると、図3及び図4に示すように磁性マーク付近では磁性体から発生する所定の方向及び強度の磁場を測定でき、時間経過後に測定する際の本装置2と試料1とのずれを気にせず、磁場分布結果から位置補正することが可能となる。
As shown in FIG. 1A, in the sample 1, magnetic marks 15a, 15b, 15c formed of ink mixed with a magnetic material are provided at three of four corners on the XY plane.
If the magnetic field distribution is measured after applying an external magnetic field to magnetize the magnetic substance as necessary, it is possible to measure the magnetic field in a predetermined direction and intensity generated from the magnetic substance in the vicinity of the magnetic mark as shown in FIGS. It becomes possible to correct the position from the magnetic field distribution result without worrying about the deviation between the present device 2 and the sample 1 when measuring after the lapse of time.
 試料1から発生される磁場分布は図1に示すものではY方向に電流が流れ、異常箇所14付近に微弱な磁場が発生する。初期状態で異常箇所が存在しない場合はY方向電流に起因とする、X・Z成分を有する磁場分布となる(図3参照)。
 時間経過後の測定にて異常箇所14から微弱な磁場が発生した場合でも、そのほとんどは初期状態磁場分布に近い分布となり、異常箇所14の特定が難しい(図4参照)。
 ただし、時間経過後の磁場分布から初期状態の磁場分布を引く処理(差分)を行うと、異常状態付近のX・Y成分を有する、異常箇所14を周回する渦上の異常磁場成分を明らかにすることができ、異常箇所14はその周回のほぼ中心であることがわかる(図5参照)。
In the magnetic field distribution generated from the sample 1, a current flows in the Y direction in the case shown in FIG. 1, and a weak magnetic field is generated near the abnormal point 14. When there is no abnormal point in the initial state, a magnetic field distribution having an X and Z component caused by the Y direction current is obtained (see FIG. 3).
Even when a weak magnetic field is generated from the abnormal point 14 in the measurement after the passage of time, most of the distribution is close to the initial state magnetic field distribution, and it is difficult to identify the abnormal point 14 (see FIG. 4).
However, if processing (difference) is performed to subtract the magnetic field distribution in the initial state from the magnetic field distribution after the passage of time, the abnormal magnetic field component on the vortex around the abnormal point 14 having the X and Y components near the abnormal state is clarified It can be seen that the anomaly point 14 is approximately at the center of its turn (see FIG. 5).
 非破壊検査装置2に対し、測定対象の試料1が多量に存在する場合、初期の測定時及び時間経過後に多数の試料1を順番に測定することになるが、2次元センサーアレイ22との相対的な位置関係はおおよそでよく、磁性マーク15a,15b,15cを用いて精度よく正確に差分処理ができ、個別の時間経過による異常部分発生を検出できる。
 すなわち、一の試料1について一の測定と時間経過した後の他の測定とを行う際、一の測定において磁性マーク15a,15b,15cから発生する磁場を含む一の試料1の磁場分布(図3)を測定し、他の測定においても磁性マーク15a,15b,15cから発生する磁場を含む一の試料1の磁場分布(図4)を測定する。
 一の測定により取得した一の試料1の磁場分布(図3)の座標と、他の測定により取得した一の試料1の磁場分布(図4)の座標とを、磁性マーク15a,15b,15cの磁場検出座標を一致させることにより対応させる。
 その上で、基準の磁場分布(図3)と、他の測定により取得した一の試料1の磁場分布(図4)との差分(図5)をとり、他の測定時における一の試料1の異常箇所の位置を特定する。
When a large amount of the sample 1 to be measured is present with respect to the nondestructive inspection device 2, the large number of samples 1 are sequentially measured at the time of initial measurement and after the lapse of time, but relative to the two-dimensional sensor array 22. The positional relationship between the magnetic marks 15a, 15b, and 15c can be roughly calculated, and the difference processing can be performed accurately and accurately using the magnetic marks 15a, 15b, and 15c.
That is, when performing one measurement and another measurement after the lapse of time for one sample 1, the magnetic field distribution of one sample 1 including the magnetic field generated from the magnetic marks 15a, 15b and 15c in one measurement (FIG. 3) is measured, and the magnetic field distribution (FIG. 4) of one sample 1 including the magnetic field generated from the magnetic marks 15a, 15b and 15c is measured in the other measurement as well.
The coordinates of the magnetic field distribution (FIG. 3) of one sample 1 obtained by one measurement and the coordinates of the magnetic field distribution (FIG. 4) of one sample 1 obtained by another measurement are shown by the magnetic marks 15a, 15b, 15c. It corresponds by matching the magnetic field detection coordinates of.
Then, the difference (FIG. 5) between the reference magnetic field distribution (FIG. 3) and the magnetic field distribution of one sample 1 obtained by another measurement (FIG. 4) is taken, and one sample 1 at the other time Identify the location of the anomaly at
 これを実行するため非破壊検査装置2のCPU24は、一の測定により取得した一の試料1の磁場分布(図3)から所定の方向及び強度を有する磁性マーク15a,15b,15cの発生磁場を検出し、一の測定により後の他の測定により取得した一の試料1の磁場分布(図4)から磁性マーク15a,15b,15cの発生磁場を検出する。さらにCPU24は、一の測定により取得した一の試料1の磁場分布(図3)の座標と、他の測定により取得した一の試料の磁場分布(図4)の座標とを、磁性マーク15a,15b,15cの磁場検出座標を一致させることにより対応させる。
 その上でCPU24は、基準の磁場分布(図3)と、他の測定により取得した一の試料1の磁場分布(図4)との差分(図5)をとり、閾値処理等の検出処理を行って他の測定時における一の試料の異常箇所の位置を特定する。
In order to execute this, the CPU 24 of the nondestructive inspection device 2 generates the generated magnetic field of the magnetic marks 15a, 15b, 15c having a predetermined direction and intensity from the magnetic field distribution of one sample 1 (FIG. 3) obtained by one measurement. The generated magnetic field of the magnetic marks 15a, 15b, and 15c is detected from the magnetic field distribution (FIG. 4) of one sample 1 which is detected and acquired by another measurement later by one measurement. Further, the CPU 24 sets the coordinates of the magnetic field distribution of the one sample 1 (FIG. 3) acquired by one measurement and the coordinates of the magnetic field distribution of the one sample (FIG. 4) acquired by the other measurement to the magnetic mark 15a, It corresponds by matching the magnetic field detection coordinates of 15b and 15c.
Then, the CPU 24 takes the difference (FIG. 5) between the reference magnetic field distribution (FIG. 3) and the magnetic field distribution of one sample 1 (FIG. 4) obtained by another measurement, and performs detection processing such as threshold processing. To identify the location of the abnormal point of one sample at another measurement.
 正常状態は理想的にはそれぞれの初期状態を測定しておき、個体識別情報に対応させてRAM26に保存しておいて試料ごとに呼び出すことで対応が可能である。すなわち、一の測定を一の試料1の使用前の初期に行い、一の測定により取得した一の試料1の磁場分布を基準の磁場分布とする。したがって、CPU24は、試料1から個体識別情報をID読取部20を介して都度取得しつつ、一の測定により取得した一の試料1の磁場分布を基準の磁場分布としてRAM26に保存し、他の測定時に利用する。 The normal state can ideally be dealt with by measuring each initial state, storing it in the RAM 26 corresponding to the individual identification information, and calling it for each sample. That is, one measurement is performed at an early stage before use of one sample 1 and the magnetic field distribution of one sample 1 obtained by one measurement is used as a reference magnetic field distribution. Therefore, while acquiring individual identification information from the sample 1 via the ID reading unit 20 each time, the CPU 24 stores the magnetic field distribution of one sample 1 acquired by one measurement in the RAM 26 as a reference magnetic field distribution, and Use at the time of measurement.
 これに拘わらず、同一ロット製品の複数の試料を測定する場合は初期状態の平均値を代表値とすることで、全ての初期状態の個別のデータからの差分を行わず、統一平均初期状態からの差分で処理することも可能であり、大幅な時間短縮につながる。
 すなわち、CPU24は、個体識別情報を都度取得しつつ、複数の基準試料について一の測定を行って取得した磁場分布の平均をとり、これを基準の磁場分布としてRAM26に保存する。
 さらにCPU24は、個体識別情報を都度取得しつつ、複数の基準試料及び他の試料の各々について他の測定を行い、その際、RAM26メモリから読みだした基準の磁場分布と、他の測定により取得した磁場分布との差分をとり、閾値処理等の検出処理を行って他の測定時における異常箇所の位置を特定する。
 なお、測定対象の全試料について磁性マーク15a,15b,15cの位置を統一し、その位置精度を磁場分布の測定精度より高いレベルに収める。上記平均値や差分をとる際の位置精度を確保するためである。
Regardless of this, when measuring a plurality of samples of the same lot product, the difference from the individual data of all the initial states is not performed by using the average value of the initial states as a representative value, and from the unified average initial state It is also possible to process with the difference of, which leads to significant time saving.
That is, while acquiring individual identification information each time, the CPU 24 averages the acquired magnetic field distribution by performing one measurement on a plurality of reference samples, and stores the average in the RAM 26 as a reference magnetic field distribution.
Furthermore, the CPU 24 performs individual measurement on each of a plurality of reference samples and other samples while acquiring individual identification information each time, in which case it acquires the reference magnetic field distribution read from the RAM 26 memory and other measurements. The difference from the magnetic field distribution is taken, detection processing such as threshold processing is performed, and the position of the abnormal point at the time of other measurement is specified.
The positions of the magnetic marks 15a, 15b, and 15c are unified for all the samples to be measured, and the position accuracy is set to a level higher than the measurement accuracy of the magnetic field distribution. It is for ensuring the position accuracy at the time of taking the above-mentioned average value and the difference.
 時間経過後の他の測定時の磁場分布は時間経過後の異常箇所(リーク)14による変化以外に継時劣化による電流の全体的な低下の効果も含まれる。その場合はリークがなくても典型的な電流変化値として既にROM25にテーブルを持つことが可能で、初期状態との磁場分布の差分を取る際に、全体の信号の低下をキャンセルして差分を取ることが可能である。
 すなわち、CPU24は、他の測定により取得した磁場分布との差分をとる基準の磁場分布を、他の測定時までの経時変化後の推定値とする。その際、CPU24は、ROM25に保存しておいた正常時(一の測定時)からの時間経過と磁場変化(推定値)との対応テーブルを参照し、他の測定時までの経過時間を入力することで推定値を算出する。
The magnetic field distribution at the time of other measurements after the passage of time includes not only the change due to the abnormal point (leakage) 14 after the passage of time but also the effect of the overall decrease of the current due to the deterioration over time. In that case, even if there is no leak, it is possible to already have a table in the ROM 25 as a typical current change value, and when taking the difference of the magnetic field distribution from the initial state, cancel the reduction of the entire signal and It is possible to take.
That is, the CPU 24 sets the reference magnetic field distribution, which takes the difference from the magnetic field distribution acquired by the other measurement, as the estimated value after the change with time until the other measurement time. At that time, the CPU 24 refers to the correspondence table between the time lapse from the normal time (one measurement time) and the magnetic field change (estimated value) stored in the ROM 25 and inputs the elapsed time until the other measurement time Calculate the estimated value by doing this.
 また、差分データの変化分が小さい場合はさらに空間的な差分処理を行うことで変化をより強調することも可能である。すなわち、CPU24は、一の測定と他の測定とで差分をとった時間差分分布をさらに磁場分布空間内(XY平面)で空間差分をとる。正常な電流に起因する空間差分は小さいので、異常箇所14に起因する空間差分の値がより顕在化する。 In addition, when the variation of the difference data is small, it is possible to further emphasize the variation by further performing spatial difference processing. That is, the CPU 24 further obtains the spatial difference in the magnetic field distribution space (XY plane), which is the time difference distribution obtained by taking the difference between one measurement and the other measurement. Since the spatial difference due to the normal current is small, the value of the spatial difference due to the abnormal point 14 becomes more apparent.
 本実施形態は主に異常箇所(リーク)14の検出を目的としており、図1に示す試料1の構成では特定のXY座標位置にてZ方向に電流が少し流れる現象が異常箇所14に起因する現象となるため、X・Y成分の変化として異常箇所14に起因する磁場分布変化は現れやすい。そのため、2次元磁場分布測定はX成分またはY成分、もしくはX・Y両成分を取得すればよい。すなわち、非破壊検査装置2が、試料1の測定対象面(XY平面)に平行な方向の成分(X成分又は/及びY成分)を検出する磁気センサー21を備え、X成分またはY成分、もしくはX・Y両成分の2次元磁場分布を測定する形態を実施する。 The present embodiment is mainly intended to detect an abnormal portion (leakage) 14. In the configuration of the sample 1 shown in FIG. 1, a phenomenon in which a small amount of current flows in the Z direction at a specific XY coordinate position is caused by the abnormal portion 14. As a phenomenon occurs, a change in the magnetic field distribution caused by the abnormal point 14 is likely to appear as a change in the X and Y components. Therefore, in the two-dimensional magnetic field distribution measurement, an X component or a Y component or both X and Y components may be acquired. That is, the nondestructive inspection device 2 includes the magnetic sensor 21 for detecting a component (X component and / or Y component) in a direction parallel to the measurement target surface (XY plane) of the sample 1, and X component or Y component or Implement a form to measure the two-dimensional magnetic field distribution of both X and Y components.
 なお、磁性マーク15a,15b,15cが、後の検査装置(例えばX線装置、カメラ、断面測定など)での2次元分布取得時のマークを兼ねてもよい。 The magnetic marks 15a, 15b, and 15c may also serve as marks for obtaining a two-dimensional distribution in a later inspection apparatus (for example, an X-ray apparatus, a camera, cross section measurement, etc.).
(まとめ)
 以上説明したように、複数の試料の時間経過状態を1つの磁場分布測定装置(非破壊検査装置)で測定する場合、測定データの空間的位置ずれが懸念されるが、試料に磁性マークを形成しておくと、測定装置との相対位置を気にせず測定後に磁性マークに起因する磁場信号を元にXY空間磁気分布を補正することができるから、測定時間を短縮でき、位置精度も向上させることができる。
 磁性マークを磁性体を含む材料、たとえば鉄が含まれたインクで形成し、測定前に磁化させておけば時間経過のある複数回の磁気測定時に位置合わせ情報として利用できる。
 図5に示したように正常状態の磁場分布と時間経過後の磁場分布とを、磁性マークで座標を対応させた上で差分をとることで精度よく異常箇所を特定することができる。図3における座標と図4における座標とを試料1の位置が一致するように対応させて差分を取ったから、図3及び図4の双方で測定された磁性マーク15a,15b,15cに起因する磁場は、図5では相殺されて消失している。
 上述したように正常状態は同一試料の初期状態としても、時間経過後の同試料の磁場変化を測定できる。
 また正常状態は正常な試料の複数個を測定し、その平均のデータとすれば試料ごとの初期状態を測定することは不要となる。
 正常状態の磁場分布(基準の磁場分布)の時間経過に伴う磁場強度の低下をデータテーブルで持っておき、試料の全体的な磁場強度の低下を推定し差分を取ることで異常箇所に起因する磁場変化を正しく評価できる。 
 正常状態との差分を取ったのち、空間差分を取得することで異常箇所をさらに顕在化させることができる。
 異常箇所は、そのリーク電流に起因して面内垂直方向の電流を発生させるため、取得する磁場成分は試料の測定対象面に平行な成分がよい。
(Summary)
As described above, when measuring the time-elapsed state of a plurality of samples with one magnetic field distribution measuring device (nondestructive inspection device), there is a concern about spatial positional deviation of the measurement data, but magnetic marks are formed on the samples If this is done, the XY space magnetic distribution can be corrected based on the magnetic field signal attributable to the magnetic mark after measurement without regard to the relative position with the measurement device, so measurement time can be shortened and position accuracy is also improved. be able to.
The magnetic mark is formed of a material containing a magnetic substance, for example, an ink containing iron, and if magnetized before measurement, it can be used as alignment information at a plurality of times of magnetic measurement with lapse of time.
As shown in FIG. 5, after making the magnetic field distribution in the normal state and the magnetic field distribution after the passage of time correspond to the coordinates with the magnetic mark, the abnormal point can be identified with accuracy by taking the difference. Since the coordinates in FIG. 3 and the coordinates in FIG. 4 correspond to each other so that the position of the sample 1 matches, the magnetic field caused by the magnetic marks 15a, 15b, 15c measured in both FIG. 3 and FIG. Are canceled and eliminated in FIG.
As described above, even when the normal state is the initial state of the same sample, the change in the magnetic field of the same sample after the lapse of time can be measured.
In the normal state, it is not necessary to measure a plurality of normal samples and to measure the initial state of each sample if the average data is used.
The fall of the magnetic field intensity with the passage of time of the normal state magnetic field distribution (reference magnetic field distribution) is held in the data table, and the fall of the overall magnetic field intensity of the sample is estimated and the difference is taken to take the difference. The change in the magnetic field can be evaluated correctly.
After taking the difference from the normal state, acquiring the spatial difference can make the abnormal part more apparent.
Since the abnormal point generates a current in the in-plane vertical direction due to the leak current, the acquired magnetic field component should be a component parallel to the measurement target surface of the sample.
 本発明は、リチウムイオン電池等の非破壊検査方法及び非破壊検査装置に利用することができる。 The present invention can be used for nondestructive inspection methods and nondestructive inspection devices such as lithium ion batteries.
1 試料
2 非破壊検査装置
11 +極
12 -極
13 主電流が流れる方向
14 異常箇所
15a,15b,15c 磁性マーク
21 磁気センサー
22 2次元センサーアレイ
1 sample 2 nondestructive inspection device 11 + pole 12-pole 13 direction of main current flow 14 abnormal point 15a, 15b, 15c magnetic mark 21 magnetic sensor 22 two-dimensional sensor array

Claims (15)

  1. 試料に電流を流して発生する磁場分布を測定して試料の異常箇所を検出する非破壊検査方法において、
    一の試料に磁性マークを形成した後、
    前記一の試料について一の測定と時間経過した後の他の測定とを行い、
    前記一の測定において前記磁性マークから発生する磁場を含む前記一の試料の磁場分布を測定し、
    前記他の測定において前記磁性マークから発生する磁場を含む前記一の試料の磁場分布を測定し、
    前記一の測定により取得した前記一の試料の磁場分布の座標と、前記他の測定により取得した前記一の試料の磁場分布の座標とを、前記磁性マークの磁場検出座標を一致させることにより対応させる非破壊検査方法。
    In a nondestructive inspection method for detecting an abnormal part of a sample by measuring a magnetic field distribution generated by flowing a current through the sample,
    After forming a magnetic mark on one sample,
    Perform one measurement and another measurement after the lapse of time for the one sample,
    Measuring the magnetic field distribution of the one sample including the magnetic field generated from the magnetic mark in the one measurement;
    Measuring the magnetic field distribution of the one sample including the magnetic field generated from the magnetic mark in the other measurement;
    Correspondence by matching the magnetic field detection coordinates of the magnetic mark with the coordinates of the magnetic field distribution of the one sample obtained by the one measurement and the coordinates of the magnetic field distribution of the one sample obtained by the other measurement Nondestructive inspection method.
  2. 前記磁性マークを構成する素材には、磁性体が混ぜられている請求項1に記載の非破壊検査方法。 The nondestructive inspection method according to claim 1, wherein a magnetic material is mixed in the material forming the magnetic mark.
  3. 基準の磁場分布と、前記他の測定により取得した前記一の試料の磁場分布との差分をとり、前記他の測定時における前記一の試料の異常箇所の位置を特定する請求項1又は請求項2に記載の非破壊検査方法。 The difference between the reference magnetic field distribution and the magnetic field distribution of the one sample obtained by the other measurement is calculated, and the position of the abnormal point of the one sample at the other measurement time is specified. The nondestructive inspection method as described in 2.
  4. 前記一の測定を前記一の試料の使用前の初期に行い、前記一の測定により取得した前記一の試料の磁場分布を前記基準の磁場分布とする請求項3に記載の非破壊検査方法。 The nondestructive inspection method according to claim 3, wherein the one measurement is performed early before use of the one sample, and the magnetic field distribution of the one sample acquired by the one measurement is the magnetic field distribution of the reference.
  5. 前記一の測定を複数の基準試料について行い、これにより取得した磁場分布の平均をとって基準の磁場分布としてメモリに保存し、
    前記複数の基準試料及び他の試料の各々について、
    前記他の測定を行い、
    前記メモリから読みだした前記基準の磁場分布と、前記他の測定により取得した磁場分布との差分をとり、前記他の測定時における異常箇所の位置を特定する請求項3に記載の非破壊検査方法。
    The above one measurement is performed on a plurality of reference samples, and the magnetic field distribution thus obtained is averaged to be stored in a memory as a reference magnetic field distribution,
    For each of the plurality of reference samples and the other samples,
    Perform the other measurements
    The nondestructive inspection according to claim 3, wherein the difference between the reference magnetic field distribution read from the memory and the magnetic field distribution obtained by the other measurement is taken to specify the position of the abnormal point at the time of the other measurement. Method.
  6. 前記他の測定により取得した磁場分布との差分をとる前記基準の磁場分布を、前記他の測定時までの経時変化後の推定値とする請求項3から請求項5のうちいずれか一に記載の非破壊検査方法。 The magnetic field distribution of the said reference | standard which takes the difference with the magnetic field distribution acquired by the said other measurement is made into the estimated value after the time-dependent change until the time of the said other measurement in any one of Claim 3 to 5 Nondestructive inspection method.
  7. 前記差分をとった時間差分分布をさらに磁場分布空間内で空間差分をとる請求項3から請求項6のうちいずれか一に記載の非破壊検査方法。 The nondestructive inspection method according to any one of claims 3 to 6, wherein the time difference distribution obtained by taking the difference is further subjected to spatial difference in a magnetic field distribution space.
  8. 前記磁場分布を測定する磁場成分は前記試料の測定対象面に平行な方向の成分である請求項1から請求項7のうちいずれか一に記載の非破壊検査方法。 The nondestructive inspection method according to any one of claims 1 to 7, wherein the magnetic field component for measuring the magnetic field distribution is a component in a direction parallel to the measurement target surface of the sample.
  9. 試料に電流を流して発生する磁場分布を測定して試料の異常箇所を検出する非破壊検査装置において、
    一の測定により取得した一の試料の磁場分布から所定の方向及び強度を有する磁性マークの発生磁場を検出し、
    前記一の測定により後の他の測定により取得した前記一の試料の磁場分布から前記磁性マークの発生磁場を検出し、
    前記一の測定により取得した前記一の試料の磁場分布の座標と、他の測定により取得した前記一の試料の磁場分布の座標とを、前記磁性マークの磁場検出座標を一致させることにより対応させる制御装置を備える非破壊検査装置。
    In a nondestructive inspection device that detects an abnormal part of a sample by measuring a magnetic field distribution generated by supplying a current to the sample,
    The generated magnetic field of the magnetic mark having a predetermined direction and intensity is detected from the magnetic field distribution of one sample obtained by the first measurement,
    The generated magnetic field of the magnetic mark is detected from the magnetic field distribution of the one sample obtained by the later measurement by the one measurement,
    The coordinates of the magnetic field distribution of the one sample obtained by the one measurement are made to correspond to the coordinates of the magnetic field distribution of the one sample obtained by the other measurement by matching the magnetic field detection coordinates of the magnetic mark Nondestructive inspection device provided with a control device.
  10. 前記制御装置は、基準の磁場分布と、前記他の測定により取得した前記一の試料の磁場分布との差分をとり、前記他の測定時における前記一の試料の異常箇所の位置を特定する請求項9に記載の非破壊検査装置。 The controller calculates the difference between the reference magnetic field distribution and the magnetic field distribution of the one sample obtained by the other measurement, and specifies the position of the abnormal part of the one sample at the other measurement time. The nondestructive inspection device according to item 9.
  11. 前記制御装置は、前記一の測定により取得した前記一の試料の磁場分布を前記基準の磁場分布とする請求項10に記載の非破壊検査装置。 The nondestructive inspection device according to claim 10, wherein the control device sets the magnetic field distribution of the one sample obtained by the one measurement as the magnetic field distribution of the reference.
  12. 複数の基準試料について前記一の測定を行って取得した磁場分布の平均をとった基準の磁場分布が保存されるメモリを備え、
    前記制御装置は、
    前記複数の基準試料及び他の試料の各々について、
    前記メモリから読みだした前記基準の磁場分布と、前記他の測定により取得した磁場分布との差分をとり、前記他の測定時における異常箇所の位置を特定する請求項10に記載の非破壊検査装置。
    A memory for storing a reference magnetic field distribution obtained by averaging the magnetic field distribution obtained by performing the one measurement on a plurality of reference samples;
    The controller is
    For each of the plurality of reference samples and the other samples,
    The nondestructive inspection according to claim 10, wherein the difference between the reference magnetic field distribution read from the memory and the magnetic field distribution obtained by the other measurement is taken to specify the position of the abnormal point at the other measurement. apparatus.
  13. 前記制御装置は、前記他の測定により取得した磁場分布との差分をとる前記基準の磁場分布を、前記他の測定時までの経時変化後の推定値とする請求項10から請求項12のうちいずれか一に記載の非破壊検査装置。 The control device determines the magnetic field distribution of the reference, which is the difference between the magnetic field distribution obtained by the other measurement and the reference, as an estimated value after the change with time until the time of the other measurement. The nondestructive inspection device according to any one.
  14. 前記制御装置は、前記差分をとった時間差分分布をさらに磁場分布空間内で空間差分をとる請求項10から請求項13のうちいずれか一に記載の非破壊検査装置。 The nondestructive inspection device according to any one of claims 10 to 13, wherein the control device further spatially subtracts the time difference distribution obtained by the difference in the magnetic field distribution space.
  15. 前記試料の測定対象面に平行な方向の成分を検出する磁気センサーを備える請求項9から請求項14のうちいずれか一に記載の非破壊検査装置。 The nondestructive inspection device according to any one of claims 9 to 14, further comprising a magnetic sensor that detects a component in a direction parallel to the measurement target surface of the sample.
PCT/JP2018/032282 2017-09-01 2018-08-31 Nondestructive test method and nondestructive test instrument WO2019045027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539649A JPWO2019045027A1 (en) 2017-09-01 2018-08-31 Non-destructive inspection method and non-destructive inspection equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168168 2017-09-01
JP2017-168168 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019045027A1 true WO2019045027A1 (en) 2019-03-07

Family

ID=65527760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032282 WO2019045027A1 (en) 2017-09-01 2018-08-31 Nondestructive test method and nondestructive test instrument

Country Status (2)

Country Link
JP (1) JPWO2019045027A1 (en)
WO (1) WO2019045027A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520136A (en) * 2002-03-08 2005-07-07 ブラウン ユニバーシティ リサーチ ファウンデーション High-resolution scanning magnetic microscope capable of operating at high temperatures
JP2013054984A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Magnetic measuring device and magnetic measurement method
JP2013164317A (en) * 2012-02-10 2013-08-22 Mitsubishi Heavy Ind Ltd Method for detecting inspection position, inspection method, and inspection device
JP2015059818A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Magnetic foreign matter detection method and magnetic foreign matter detection apparatus
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2016176829A (en) * 2015-03-20 2016-10-06 国立研究開発法人産業技術総合研究所 Sample holder, and composite image obtaining method
JP2017003574A (en) * 2015-06-12 2017-01-05 横河電機株式会社 System and method for managing corrosion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520136A (en) * 2002-03-08 2005-07-07 ブラウン ユニバーシティ リサーチ ファウンデーション High-resolution scanning magnetic microscope capable of operating at high temperatures
JP2013054984A (en) * 2011-09-06 2013-03-21 Hitachi Ltd Magnetic measuring device and magnetic measurement method
JP2013164317A (en) * 2012-02-10 2013-08-22 Mitsubishi Heavy Ind Ltd Method for detecting inspection position, inspection method, and inspection device
JP2015059818A (en) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 Magnetic foreign matter detection method and magnetic foreign matter detection apparatus
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2016176829A (en) * 2015-03-20 2016-10-06 国立研究開発法人産業技術総合研究所 Sample holder, and composite image obtaining method
JP2017003574A (en) * 2015-06-12 2017-01-05 横河電機株式会社 System and method for managing corrosion

Also Published As

Publication number Publication date
JPWO2019045027A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US10845432B2 (en) Calibration and monitoring for 3-axis magnetometer arrays of arbitrary geometry
TWI279547B (en) Probe card and method for testing magnetic sensor
US8374803B2 (en) Damage detection apparatus, damage detection method and recording medium
WO2015107725A1 (en) Surface characteristic examination device and surface characteristic examination method
RU2014128570A (en) IDENTIFICATION OF CHARACTERISTIC SIGNS OF DISTORTION FOR COMPENSATION, DETECTION AND CORRECTION OF ERRORS IN ELECTROMAGNETIC TRACKING
CN111458573A (en) Method, device and system for measuring electric parameters of conducting wire and computer equipment
US11828811B2 (en) Storage battery inspection device and storage battery inspection method
JP7126146B2 (en) Nondestructive test method
WO2019045027A1 (en) Nondestructive test method and nondestructive test instrument
JP2007057547A (en) Inspection method for magnetic sensor
JP7126147B2 (en) Nondestructive test method
KR101242477B1 (en) Apparatus detecting energized insulator polymer for distribution line
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
CN112074733B (en) Method for non-destructive inspection of anodes of aluminium electrolysis cells
JP2014175345A (en) Method of manufacturing semiconductor device
GB201107669D0 (en) Electrochemical sensor
US20230213480A1 (en) Magnetic body inspection apparatus and magnetic body inspection method
RU93539U1 (en) DEVICE FOR MEASURING MAGNETIC FIELD PARAMETERS
US20150134273A1 (en) Visualization of references during induction thermography
CN206248599U (en) Test device is assessed in a kind of metallographic structure
WO2014109314A1 (en) METHOD FOR IDENTIFYING pH, DEVICE FOR SAME, AND METHOD FOR IDENTIFYING ION CONCENTRATION
JP2016038356A (en) Method for measuring zero magnetic field position of permanent magnet
CN116295651A (en) Space positioning method for measuring equipment sensor
JP2015137930A (en) Wastage detector
KR20120028766A (en) Apparatus and method of testing bending modulus of specimen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852386

Country of ref document: EP

Kind code of ref document: A1