WO2019044848A1 - Composition for three-dimensional surgical procedure training model and method for producing said composition - Google Patents

Composition for three-dimensional surgical procedure training model and method for producing said composition Download PDF

Info

Publication number
WO2019044848A1
WO2019044848A1 PCT/JP2018/031807 JP2018031807W WO2019044848A1 WO 2019044848 A1 WO2019044848 A1 WO 2019044848A1 JP 2018031807 W JP2018031807 W JP 2018031807W WO 2019044848 A1 WO2019044848 A1 WO 2019044848A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
group
weight
acrylamide monomer
content
Prior art date
Application number
PCT/JP2018/031807
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 宏明
細川 真幸
肇 小野
高橋 和也
瑛規 白川
Original Assignee
ユシロ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユシロ化学工業株式会社 filed Critical ユシロ化学工業株式会社
Priority to JP2019539544A priority Critical patent/JPWO2019044848A1/en
Publication of WO2019044848A1 publication Critical patent/WO2019044848A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Definitions

  • the present application relates to a three-dimensional surgical treatment training model composition and a method of manufacturing the same.
  • the surgical treatment training model is a model that simulates the shape and texture of human body organs, and in recent years, development of a three-dimensionally sophisticated surgical treatment training model has been promoted by the development of modeling technology using a 3D printer.
  • the three-dimensional surgical treatment training model is used especially by medical personnel such as medical department students, nursing department students, trainees and doctors at medical sites. For example, skin models for practicing sutures and incisions, blood collection, etc. There are models of blood vessels that practice injection, and models of organs such as heart and liver that practice surgery. Thus, the three-dimensional surgical treatment training model greatly contributes to the improvement of the skills of medical workers.
  • Patent Documents 1 and 2 disclose organ models using polyvinyl alcohol.
  • polyvinyl alcohol By using polyvinyl alcohol, it is possible to create a hydrogel containing water, so it is possible to create a model having a feel similar to that of a real organ. In other words, it is possible to create a model having reality in performing technique training.
  • patent documents 3 and 4 are mentioned as an example of a three-dimensional surgical treatment training model using materials other than polyvinyl alcohol.
  • the conventional three-dimensional surgical treatment training model can not be used repeatedly if it is subjected to surgical training with cutting as training for surgical treatment, and is currently discarded at one use.
  • the conventional model that can not be used repeatedly includes, for example, the following problems.
  • the present application solves the above-mentioned problems by providing a composition for a three-dimensional surgical treatment training model that can be used repeatedly even when cut or when a needle hole is generated.
  • the present inventors have found that by using a polymer gel having self-repairing property, it is possible to prepare a composition for a three-dimensional surgical treatment training model that can be repeatedly used. Completed the invention.
  • a three-dimensional surgical treatment training model composition comprising a polymer gel having self-repairing properties.
  • the “three-dimensional surgical treatment training model” is a structure three-dimensionally imitating human organs such as skin, blood vessels, and organs, and is provided with not only a single organ but a plurality of organs. Also included.
  • organ refers to a group of several tissues that form a unique form and exert a certain physiological action.
  • the polymer gel comprises a polymer that is self-repairing using the principle of host-guest interaction.
  • the polymer contains 1 mol% to 8 mol% of structural units derived from a host group-containing acrylamide monomer, 1 mol% to 8 mol% of structural units derived from a guest group-containing acrylamide monomer, and an acrylamide monomer
  • the polymer gel contains an aqueous solvent in the gaps of the network structure of the polymer, and the hardness of the composition is 931 mN to 4264 mN or less in conversion value Is preferred.
  • the “converted value” is a converted value calculated from the measured value of a device that measures the hardness of the composition, and for example, the converted value can be calculated from the measured value of the spring load of a rubber hardness tester.
  • the structural unit derived from the host group-containing acrylamide monomer is the following general formula (1)
  • the structural unit derived from the guest group-containing acrylamide monomer is the following general formula (2)
  • the acrylamide monomer is derived It is preferable that a structural unit is following General formula (3).
  • R 1 to R 7 each represent hydrogen or a methyl group.
  • R H represents a host group and is either ⁇ -cyclodextrin, ⁇ -cyclodextrin or ⁇ -cyclodextrin.
  • R G represents a guest group, which is any of n-butyl, n-dodecyl, t-butyl, isobornyl and adamantyl groups.
  • the aqueous solvent comprises water, or water and a hydrophilic solvent having a boiling point higher than that of water.
  • the hydrophilic solvent is not particularly limited, and includes, for example, at least one selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, glycerin and diethylene glycol monoethyl ether. preferable.
  • the content of the aqueous solvent in the composition is 49.45 wt% or more and 85.45 wt% or less based on the polymer gel, and the content of water in the aqueous solvent is 15 based on the polymer gel. It is preferable that it is 40 weight% or more.
  • the polymer gel contains a filler.
  • the said filler is an organic type filler.
  • the content of the aqueous solvent is 45.85% by weight or more and 69.21% by weight or less based on the polymer gel, and the content of water in the aqueous solvent is the above
  • the content is 14.50% by weight or more based on the polymer gel, and the content of the filler is 15.00% by weight or more and 26.00% by weight or less based on the polymer gel.
  • a method of producing the above composition which comprises the steps of mixing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, and the aqueous solvent, and a solution obtained by the mixing step. And a step of polymerizing the polymerization initiator, and a step of polymerizing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, and the acrylamide monomer, and the host in the solution in the polymerization step.
  • composition for three-dimensional surgical treatment training model which adjusts the hardness of the composition by adjusting the content of a group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, and the aqueous solvent
  • a method of manufacturing a product Disclosed is a method of manufacturing a product.
  • a method for producing the composition containing a filler which comprises mixing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, the aqueous solvent, and the filler; Including the steps of adding a polymerization initiator to the solution obtained by the step of adding, the step of polymerizing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, and the acrylamide monomer; The hardness of the composition is adjusted by adjusting the content of the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, the aqueous solvent, and the filler in the solution in , 3D Surgical Research Institute It discloses a process for the production of a model composition.
  • a polymerization accelerator is added in at least one of the mixing step and the adding step, and the content of the polymerization accelerator in the solution in the polymerization step is adjusted to adjust the content of the composition.
  • the hardness can be adjusted.
  • the method further comprises the step of immersing the gel obtained by the polymerization step in a solvent for immersion, wherein the solvent for immersion comprises the hydrophilic solvent, or contains the hydrophilic solvent and water, and the immersion time of the gel and
  • the hardness of the composition can be adjusted by adjusting at least one of the concentration of the hydrophilic solvent in the immersion solvent.
  • composition for three-dimensional surgical treatment training model of the present disclosure has self-repairing property, the cut interface can be self-repaired even if it is cut, and can be used repeatedly.
  • the compositions of the present disclosure can provide healthcare professionals with the opportunity to practice treatment well.
  • the reproducibility of treatment practice is high.
  • model waste can be reduced.
  • compositions for a three-dimensional surgical treatment training model of the present disclosure and a method of manufacturing the same will be described.
  • composition for a three-dimensional surgical treatment training model of the present disclosure includes a polymer gel having self-repairing properties.
  • the “three-dimensional surgical treatment training model” is a structure three-dimensionally imitating human organs such as skin, blood vessels, and organs, and is provided with not only a single organ but a plurality of organs. Also included.
  • organ refers to a group of several tissues that form a unique form and exert a certain physiological action.
  • polymer gel A preferred form of the above-mentioned polymer gel is one comprising a polymer that is self-repairing utilizing the host-guest interaction principle.
  • the host-guest interaction is a non-covalent interaction that occurs when a guest group is included in a host group to form an inclusion complex.
  • Noncovalent bond means bond form other than covalent bond, and is a concept including hydrophobic interaction, hydrogen bond, intermolecular force, electrostatic interaction, coordination bond, ⁇ electron interaction, etc. .
  • the said polymer is comprised by the structural unit derived from an acrylamide type monomer.
  • a structural unit derived from a host group-containing acrylamide monomer hereinafter sometimes referred to as "host group-containing AA monomer”
  • guest group-containing AA monomer A polymer gel comprising a polymer comprising a structural unit derived from “monomer” and a structural unit derived from an acrylamide monomer (hereinafter sometimes referred to as “AA monomer”).
  • the compositions can also be rendered antiseptic by synthesizing polymers using these AA monomers.
  • the hydrogel using the polyvinyl alcohol used conventionally there exists a subject which does not have antiseptic property and is easy to deteriorate.
  • the preferable content of the structural unit derived from these AA monomers constituting the polymer is as follows.
  • structural units derived from the host group-containing AA monomer be 0.5 mol% or more and 10 mol% or less
  • structural units derived from the guest group-containing AA be 0.5 mol% or more and 10 mol% or less.
  • the structural unit derived from the host group-containing AA monomer in the polymer is 1 mol% to 8 mol%, and the structural unit derived from the guest group-containing AA monomer is 1 mol% to 8 mol%.
  • the structural unit derived from the host group-containing AA monomer in the polymer is 2 mol% or more and 4 mol% or less, and the structural unit derived from the guest group-containing AA monomer is 2 mol% or more and 4 mol% or less.
  • the structural unit derived from the AA monomer in the polymer is preferably contained at 80 to 99 mol%, more preferably 84 to 98 mol%, and 92 to 96 mol%. Is particularly preferred.
  • the polymerization form of the polymer is not particularly limited as long as it has self-healing properties, and may be random copolymerization, block copolymerization, or graft copolymerization.
  • structural units derived from host group-containing AA monomers include structures of the following formula (1).
  • the structural unit derived from the host group-containing AA monomer represented by the following formula (1) may be only one type or two or more types in the polymer.
  • R 1 and R 2 each represent hydrogen or a methyl group.
  • R H represents a host group.
  • the structural unit derived from the guest group-containing AA monomer represented by the following formula (2) may be only one type or two or more types in the polymer.
  • R 3 and R 4 each represent hydrogen or a methyl group.
  • R G represents a guest group.
  • structural units derived from AA monomers include structures of the following formula (3).
  • the structural unit derived from the AA monomer represented by the following formula (3) may be only one type or two or more types in the polymer.
  • R 5 , R 6 and R 7 each represent hydrogen or a methyl group.
  • a host group and a guest group forming an inclusion complex for example, when ⁇ -cyclodextrin (cavity size: 4.7 to 5.2 ⁇ ) is used as the host group, the guest group has 4 carbon atoms.
  • examples thereof include alkyl groups of to 18 and alcohol derivatives thereof, carboxylic acid derivatives, amino derivatives, azobenzene derivatives having a cyclic alkyl group or a phenyl group, cinnamic acid derivatives and the like.
  • alkyl group having 4 to 18 carbon atoms examples include n-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, Hexadecyl group, heptadecyl group and octadecyl group can be mentioned.
  • ⁇ -cyclodextrin (cavity size: 6.0 to 6.5 ⁇ ) is used as a host group, a t-butyl group, an adamantyl group, an isobornyl group, an aromatic compound and an alcohol derivative thereof, a carboxylic acid derivative as a guest group And amino derivatives, ferrocene derivatives, azobenzenes, naphthalene derivatives, dansyl groups and the like.
  • ⁇ -cyclodextrin (cavity size: 7.5 to 8.5 ⁇ ) is used as a host group
  • a guest group an alkyl group having up to 18 carbon atoms and its alcohol derivative, carboxylic acid derivative, amino derivative, adamantyl group, Examples thereof include clusters composed of carbon atoms such as fullerene, and aromatic dansyl groups, ferrocene derivatives, anthracene derivatives and the like.
  • calix [6] arenesulfonic acid
  • calix [8] arenesulfonic acid
  • 12-crown-4 ether 18-crown-6 ether
  • [6] paracyclophane [2,2 ]
  • paracyclophane [2,2 ]
  • cucurbit [6] uril cucurbit [8] uril.
  • any of the guest groups exemplified above can be used.
  • the host group is either ⁇ -cyclodextrin, ⁇ -cyclodextrin or ⁇ -cyclodextrin.
  • the guest group is any of n-butyl group, n-dodecyl group, t-butyl group, isobornyl group or adamantyl group.
  • ⁇ -cyclodextrin and n-dodecyl group, or ⁇ -cyclodextrin and adamantyl group are particularly preferable.
  • the polymer gel preferably contains an aqueous solvent in the interstices of the polymer network structure.
  • the aqueous solvent is not particularly limited as long as it is a solvent containing water, but it is preferable to use water or a hydrophilic solvent having a boiling point higher than water and water.
  • water By including water, the composition can be given a texture and feel close to the actual organ. Further, by including a hydrophilic solvent having a boiling point higher than that of water, the composition becomes difficult to be dried, and deterioration due to drying, for example, deterioration of self-repairing property and deterioration such as texture and feel are suppressed. That is, it becomes a form suitable for long-term use as a training model.
  • water pure water, ion exchange water, tap water or the like can be used.
  • Hydrophilic solvents having a boiling point higher than that of water are those having a boiling point of over 100 ° C. at normal pressure.
  • the upper limit of the boiling point is not particularly limited, but if the pressure is 300 ° C. or less at normal pressure, the swelling property of the polymer gel is excellent, and the deterioration of physical properties is hardly caused.
  • a solvent having a hydroxyl group with high affinity to the polymer gel is preferable.
  • ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, glycerin and diethylene glycol monoethyl ether can be mentioned, and these may be one kind or may be mixed. More preferably, it is a solvent containing glycerin.
  • the content of the aqueous solvent in the polymer gel is preferably 49.45% by weight or more and 85.45% by weight or less based on the entire polymer gel. If the content of the aqueous solvent in the polymer gel exceeds 85.45% by weight, the shape of the polymer gel may not be maintained. On the other hand, when the content of the aqueous solvent in the polymer gel is less than 49.45% by weight, the hardness of the composition tends to be hard, and it becomes difficult to adjust the hardness of the composition.
  • the water-based solvent preferably contains 14.50% by weight or more, more preferably 15.40% by weight or more, based on the total weight of the polymer gel. This can give the composition a texture and feel close to the actual organ.
  • the aqueous solvent can contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire polymer gel.
  • a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire polymer gel.
  • the reason that “0% by weight or more” is used is that it is not essential that the aqueous solvent contains a hydrophilic solvent.
  • the content of the hydrophilic solvent is preferably 10.00% by weight or more.
  • the polymer gel can contain other additives as long as the self-repairing property is not impaired.
  • additives for example, colorants, antioxidants, ultraviolet light absorbers, light stabilizers, organic fillers, fillers such as inorganic compound fillers, metal fillers, electrolytes, ionic liquids, preservatives, antibacterial agents, etc. may be mentioned.
  • the polymer gel can comprise a filler.
  • the filler in the polymer gel, the hardness of the composition can be adjusted to a desired hardness.
  • the tackiness of the composition can be reduced.
  • the processability of the composition can be improved.
  • the inclusion of the filler in the polymer gel facilitates handling of the composition.
  • the tackiness refers to the tackiness of the composition.
  • the tackiness of the composition is preferably such that the composition does not stick to the finger when touching the surface. This makes it possible to obtain a feeling close to the actual organ. In a polymer gel not containing a filler, the tackiness appears strongly, and when the surface of the composition is touched, the composition may stick to the finger.
  • the processability refers to the easiness of processing the shape of the composition, and examples include cutability and cuttability. The improvement of the processability of the composition facilitates the production of an organ model that requires processing. For example, in the case of a skin model, a plurality of layers with different hardness may be laminated to be brought close to the actual skin texture.
  • the processability of the composition be better, since the sheet-like compositions having different hardnesses are cut and laminated after being adjusted in size.
  • the shape of the composition depends on the type (container) for producing the polymer gel, by improving the processability, the shape of the composition is processed after producing the polymer gel without using a precise organ shape type It becomes easy to do.
  • the feel at the time of cutting the composition also approaches real organs.
  • the type of filler that can be contained in the polymer gel is not particularly limited, and fillers such as organic fillers, inorganic compound fillers, and metal fillers can be used.
  • it is an organic filler.
  • Organic fillers have less influence on the human body and are suitable for organ models.
  • the organic filler it is preferable to use at least one selected from the group consisting of acrylic acid amide polymer, gelatin and agar. From the viewpoint of enhancing the transparency of the composition, an acrylic acid amide polymer close to the refractive index of the composition is more preferable.
  • the content of the filler in the polymer gel is preferably 15.00% by weight or more and 26.00% by weight or less based on the entire polymer gel. This makes it possible to obtain a composition having appropriate tackiness as the organ model (tackiness that does not stick to the finger when the surface of the composition is touched). More preferably, it is 21.00 wt% or more and 26.00 wt% or less. Thereby, a composition more suitable for processing can be obtained.
  • the content of the aqueous solvent is preferably 45.85% by weight or more and 69.21% by weight or less based on the whole polymer gel.
  • the content of water in the aqueous solvent is preferably 14.50% by weight or more based on the polymer gel.
  • the aqueous solvent can contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire polymer gel.
  • the hardness of the composition is a very important factor to reproduce the texture, feel, etc. of the actual organ.
  • the hardness of the composition is preferably 931 mN or more and 4264 mN or less in terms of a conversion value. Thereby, the texture and feel close to the desired organ can be imparted to the composition.
  • the “converted value” is a converted value calculated from the measured value of a device that measures the hardness of the composition, and for example, the converted value can be calculated from the measured value of the spring load of a rubber hardness tester.
  • the measuring method can be performed in accordance with JIS K6253-3.
  • the rubber hardness tester include Asker rubber hardness tester CSC2 (manufactured by Kobunshi Keiki Co., Ltd.).
  • compositions of the present disclosure can be shaped to mimic a model organ.
  • a desired shape can be formed by performing the manufacturing method described later in a mold imitating an organ.
  • the above mold can be produced by, for example, a 3D printer.
  • the composition can be colored or the like in order to resemble the model organ.
  • composition suitable for each model The composition of the composition suitable for each model is described below.
  • the structural unit derived from the host group-containing AA monomer is 1 mol% or more and 8 mol% or less, derived from the guest group-containing AA monomer It is preferable that a structural unit is 1 mol% or more and 8 mol% or less, and a structural unit derived from an AA monomer is 84 mol% or more and 98 mol% or less.
  • the content of the aqueous solvent in the polymer gel is preferably 55.60% by weight or more and 85.45% by weight or less based on the entire polymer gel.
  • the aqueous solvent preferably contains water at 15.4 wt% or more based on the entire polymer gel.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire polymer gel.
  • the content of the filler in the polymer gel is preferably 15.00% by weight or more and 21.00% by weight or less based on the entire polymer gel.
  • the content of the aqueous solvent in the polymer gel is preferably 64.41% by weight or more and 69.21% by weight or less based on the entire polymer gel.
  • the aqueous solvent preferably contains 17.30% by weight or more of water based on the entire polymer gel.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire polymer gel.
  • the hardness of the composition is preferably 931 mN or more and 1911 mN or less.
  • the structural unit derived from the host group-containing AA monomer is 1 mol% or more and 8 mol% or less
  • the guest group containing AA monomer derived It is preferable that a structural unit is 1 mol% or more and 8 mol% or less, and a structural unit derived from an AA monomer is 84 mol% or more and 98 mol% or less.
  • the content of the aqueous solvent in the polymer gel is preferably 55.60% by weight or more and 71.40% by weight or less based on the entire polymer gel.
  • the aqueous solvent contains 25.15% by weight or more of water based on the entire polymer gel.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water, in an amount of 0% by weight or more and 37.00% by weight or less based on the entire polymer gel.
  • the content of the filler in the polymer gel is preferably 23.00% by weight or more and 26.00% by weight or less based on the whole polymer gel.
  • the content of the aqueous solvent in the polymer gel is preferably 55.00% by weight or more and 62.00% by weight or less based on the whole polymer gel, and is 58.00% by weight or more and 61.00% by weight or less Is preferred.
  • the aqueous solvent more preferably contains water at 16.20% by weight or more based on the entire polymer gel.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water, in an amount of 0% to 44.11% by weight based on the entire polymer gel.
  • the hardness of the composition is preferably 2068 mN to 2696 mN.
  • the hardness of the heart varies depending on the sex and age of the patient to be reproduced, it may be appropriately changed without being limited to the above range. The same applies to the case of reproducing a diseased heart (myocardial infarction, cardiac hypertrophy, etc.).
  • the structural unit derived from the host group-containing AA monomer is 1 mol% or more and 8 mol% or less, derived from the guest group-containing AA monomer It is preferable that a structural unit is 1 mol% or more and 8 mol% or less, and a structural unit derived from an AA monomer is 84 mol% or more and 98 mol% or less.
  • the content of the aqueous solvent in the polymer gel is preferably 49.45% by weight or more and 71.89% by weight or less based on the entire polymer gel.
  • the aqueous solvent preferably contains water at 19.55% by weight or more based on the whole polymer gel.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 52.00% by weight or less based on the entire polymer gel.
  • the content of the filler in the polymer gel is preferably 15.00% by weight or more and 26.00% by weight or less based on the whole polymer gel.
  • the content of the aqueous solvent in the polymer gel is preferably 45.85% by weight or more and 69.21% by weight or less based on the entire polymer gel.
  • the aqueous solvent preferably contains water at 14.50% by weight or more based on the entire polymer gel.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% or less based on the entire polymer gel.
  • the hardness of the composition is preferably 1166 mN to 4264 mN.
  • the skin is a multi-layered organ such as the epidermis and the dermis, by laminating a plurality of polymer gels adjusted to various hardness and using it, it is possible to obtain a more realistic texture. Under these circumstances, the hardness of the skin model composition is set to a wider range than that of the liver model composition and the heart model composition.
  • the above-mentioned composition is usually constituted in a state where at least a part of the host group and the guest group form an inclusion complex.
  • the host and guest groups become dissociated at the cleavage interface.
  • the cleavage interface is recontacted to restore the composition, the dissociated host group and guest group are again included, and the cleavage interfaces adhere and fuse.
  • the composition of the present disclosure is self-repairing utilizing the host-guest interaction principle as described above, so that the cutting interface can be simplified easily at normal temperature and pressure without the use of special tools and complicated configuration requirements. Self-healing is possible.
  • a polymer gel having self-healing properties based on another principle heating or irradiation with ultraviolet light / visible light is performed, or microcapsules encapsulated in the polymer gel are broken, and contents (monomers etc. Release self-healing, etc., to enable self-healing.
  • a polymer gel having self-repairing properties using other principles needs to be equipped with the use of a special tool and complicated configuration requirements.
  • Production method 10 is obtained by the step of mixing a host group-containing acrylamide monomer, a guest group-containing acrylamide monomer, an acrylamide monomer, and an aqueous solvent (hereinafter sometimes referred to as "S11"), and S11. Adding a polymerization initiator to the solution (hereinafter sometimes referred to as "S12”), and a step of polymerizing a host group-containing acrylamide monomer, a guest group-containing acrylamide monomer, and an acrylamide monomer ((S12)) In the following, it may be written as "S13".
  • the hardness of the composition is adjusted by adjusting the contents of the host group-containing acrylamide monomer, guest group-containing acrylamide monomer, acrylamide monomer, and aqueous solvent in the solution in S13 in the above S11 and S12. be able to.
  • a flow chart of manufacturing method 10 is shown in FIG.
  • S11 step of mixing
  • a host group-containing AA monomer, a guest group-containing AA monomer, an AA monomer, and an aqueous solvent are mixed.
  • a polymerization accelerator is added in S11.
  • fillers may be added and mixed. The addition of the filler makes it possible to reduce the tackiness and to improve the processability of the produced composition.
  • heating, standing, ultrasonic dispersion treatment, or the like is preferably performed to clathrate the host group and the guest group to form an inclusion complex.
  • N, N, N ', N'-tetramethylethylenediamine (TEMED), sodium ascorbate, etc. can be mentioned.
  • S12 step to be added
  • a polymerization initiator is added to the solution obtained by S11.
  • the said polymerization accelerator can be added also in S12 as needed.
  • ammonium persulfate APS
  • azobisisobutyronitrile AIBN
  • 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride VA-044
  • 1,1'-azobis 1,1'-azobis (cyclohexanecarbonitrile)
  • di-tert-butylperoxide tert-butyl hydroperoxide
  • benzoyl peroxide hydrogen peroxide
  • photopolymerization initiators IRGACURE (registered trademark) series etc.
  • it is APS, VA-044.
  • S13 step of polymerizing
  • the host group-containing AA monomer, the guest group-containing AA monomer, and the AA monomer are polymerized.
  • the hardness of the composition to be produced is determined according to the contents of the host group-containing AA monomer, guest group-containing AA monomer, AA monomer, and aqueous solvent in the solution in S13. Therefore, in order to adjust the hardness of a composition to the target hardness, it is preferable to adjust content of the component in the solution in S13 in a front process (S11, S12).
  • the hardness of the composition to be produced is determined according to the content of host group-containing AA monomer, guest group-containing AA monomer, AA monomer, aqueous solvent, and filler in the solution in S13. .
  • the hardness of the composition also changes depending on the content of the polymerization accelerator in the solution in S13. Therefore, it is preferable to adjust the content of the filler and / or the content of the polymerization accelerator in S11 and S12.
  • the content of the host group-containing AA monomer in the solution at S13 is 2.00% by weight or more and 26.00% by weight or less based on the entire solution
  • the content of the guest group-containing AA monomer is the entire solution 0.35% by weight or more and 3.90% by weight or less
  • the content of the AA monomer is 9.00% by weight or more and 29.60% by weight or less based on the entire solution
  • the content of the aqueous solvent is It is preferable that it is 49.45 weight% or more and 85.45 weight% or less based on the whole solution.
  • the aqueous solvent preferably contains water at 14.50% by weight or more based on the whole solution, and more preferably at least 15.40% by weight.
  • the aqueous solvent can contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire solution.
  • 0% by weight or more is used is that it is not essential that the aqueous solvent contains a hydrophilic solvent.
  • the content of the hydrophilic solvent is preferably 10.00% by weight or more. Thereby, the composition can be adjusted to a desired hardness.
  • the content of the host group-containing AA monomer in the solution in S13 is 4.80% by weight or more and 10.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.70% by weight or more and 1.50% by weight or less based on the whole solution, the content of AA monomer is 8.00% by weight or more and 16.30% by weight or less based on the whole solution, and containing an aqueous solvent
  • the amount is adjusted to 45.85% by weight or more and 69.21% by weight or less based on the whole solution, and the content of the filler is 15.00% by weight or more and 26.00% by weight or less based on the whole solution preferable.
  • the aqueous solvent preferably contains water at 14.50% by weight or more based on the entire solution.
  • the aqueous solvent can include a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire solution.
  • the composition can be adjusted to a desired hardness.
  • a composition having appropriate tackiness as an organ model can also be obtained.
  • the content of the filler is 21.00% by weight or more and 26.00% by weight or less based on the entire solution, a composition more suitable for processing can be obtained.
  • the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 3.00% by weight or less based on the entire solution.
  • the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the entire solution, and 0.05% by weight or more.
  • the content is more preferably 50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less. If the content of the polymerization accelerator is less than 0.01% by weight, the polymerization reaction may not proceed rapidly. On the other hand, when the content of the polymerization accelerator exceeds 3.00% by weight, the polymerization reaction proceeds excessively, the resulting polymer gel tends to be too soft, and the shape becomes difficult to maintain.
  • the hardness of the composition can be adjusted also by the ratio of these components.
  • the content of water in the aqueous solvent is less than 14.50% by weight based on the entire solution, the solubility of the monomer tends to be deteriorated.
  • the preferred content for producing a composition suitable for each model is described.
  • the content of the host group-containing AA monomer in the solution in S13 is 2.00% by weight or more and 11.00% by weight or less based on the whole solution, and a guest group
  • the content of the contained AA monomer is 0.35% to 1.80% by weight based on the whole solution, and the content of the AA monomer is 9.00% to 18.50% by weight on the whole solution
  • the content of the aqueous solvent is preferably 55.60% by weight or more and 85.45% by weight or less based on the entire solution.
  • the aqueous solvent preferably contains water at 15.40% by weight or more based on the entire solution.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire solution.
  • a polymerization accelerator it is preferable that content of the polymerization accelerator in the solution in S13 is 0.50 weight% or more and 3.00 weight% or less based on the whole solution.
  • the content of the host group-containing AA monomer in the solution in S13 is 5.10% by weight or more and 5.50% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.80% by weight or more and 0.90% by weight or less based on the whole solution, the content of the AA monomer is 8.50% by weight or more and 9.20% by weight or less based on the whole solution, and containing an aqueous solvent It is preferable that the amount is 64.41% by weight or more and 69.21% by weight or less based on the whole solution, and the content of the filler is 15.00% by weight or more and 21.00% by weight or less based on the whole solution.
  • the aqueous solvent preferably contains 17.30% by weight or more of water based on the entire solution.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire solution.
  • the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the whole solution, 0.05% by weight
  • the content is more preferably 0.50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
  • the content of the host group-containing AA monomer in the solution in S13 is 10.00 wt% or more and 15.50 wt% or less based on the entire solution
  • the guest group is
  • the content of the contained AA monomer is 1.50% by weight or more and 2.50% by weight or less based on the whole solution
  • the content of the AA monomer is 16.50% by weight or more and 26.00% by weight or less based on the whole solution
  • the content of the aqueous solvent is 55.60% by weight or more and 71.40% by weight or less based on the entire solution.
  • the aqueous solvent preferably contains 25.15% by weight or more of water based on the entire solution.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 37% by weight or less based on the entire solution.
  • a polymerization accelerator is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.40 wt% or more and 0.60 wt% or less based on the entire solution, and 0.45 wt% or more The content is more preferably 0.55% by weight or less, particularly preferably 0.50% by weight.
  • the content of the host group-containing AA monomer in the solution in S13 is 4.80% by weight or more and 5.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.70% by weight or more and 0.75% by weight or less based on the whole solution, the content of the AA monomer is 8.00% by weight or more and 8.30% by weight or less based on the whole solution, and containing the aqueous solvent
  • the amount is 55.00% by weight to 62.00% by weight based on the whole solution (more preferably 58.00% by weight to 61.00% by weight), and the content of the filler is the whole solution It is preferable that it is 23.00 weight% or more and 26.00 weight% or less based on.
  • the aqueous solvent preferably contains water at 16.20% by weight or more based on the entire solution.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 44.11% by weight or less based on the entire solution.
  • the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the whole solution, 0.05% by weight
  • the content is more preferably 0.50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
  • the content of the host group-containing AA monomer in the solution in S13 is 10% by weight or more and 26% by weight or less based on the entire solution, and the guest group-containing AA monomer
  • the content is 1.50 wt% or more and 3.90 wt% or less based on the whole solution
  • the content of AA monomer is 13.90 wt% or more and 29.60 wt% or less based on the whole solution
  • the content of the solvent is preferably 49.45% by weight or more and 71.89% by weight or less based on the entire solution.
  • the aqueous solvent preferably contains 19.95% by weight or more of water based on the entire solution.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 52.00% by weight or less based on the entire solution.
  • a polymerization accelerator it is preferable that content of the polymerization accelerator in the solution in S13 is 0.01 weight% or more and 1.50 weight% or less based on the whole solution.
  • the content of the host group-containing AA monomer in the solution in S13 is 4.80% by weight or more and 10.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.70% by weight or more and 1.50% by weight or less based on the whole solution, the content of AA monomer is 8.00% by weight or more and 16.30% by weight or less based on the whole solution, and containing an aqueous solvent
  • the amount is 45.85% by weight to 69.21% by weight based on the whole solution, and the content of the filler is 15.00% by weight to 26.00% by weight based on the whole solution.
  • the aqueous solvent preferably contains water at 14.50% by weight or more based on the entire solution.
  • the aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire solution.
  • the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the whole solution, 0.05% by weight
  • the content is more preferably 0.50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
  • the concentration of the polymerization initiator in the solution at S13 is not particularly limited as long as the above monomers can be appropriately polymerized, but it is 0.03 wt% or more and 0.10 wt% or less based on the whole solution. preferable.
  • the conditions of the polymerization reaction can be set as appropriate, for example, by stirring the solution at 0 to 80 ° C., preferably 5 to 25 ° C.
  • the reaction time of the polymerization reaction can be 30 seconds to 24 hours, preferably 30 seconds to 1 hour.
  • the polymerization reaction can be performed by irradiating the solution with UV light having a wavelength of 200 to 405 nm.
  • the gel obtained by S13 can perform refinement
  • composition of the present disclosure can be produced by the above-described steps S11 to S13, the following immersion step (which may be hereinafter referred to as "S14") may be further performed.
  • the gel obtained by S13 is immersed in the immersion solvent.
  • the immersion solvent preferably comprises the above-mentioned hydrophilic solvent, or preferably comprises the above-mentioned hydrophilic solvent and water. Immersion conditions can be performed at room temperature. In addition, when immersing, it is preferable to completely immerse the gel in the immersion solvent.
  • the immersion time of the gel in S14 can be suitably adjusted in order to make the composition to be manufactured into a desired hardness.
  • the immersion time can be 0.1 hours or more and 48 hours or less.
  • at least a portion of the water in the polymer gel is replaced by the hydrophilic solvent, and the polymer gel contains water and the hydrophilic solvent.
  • the immersion time is 12 hours or more and 48 hours or less when producing the composition for the liver model, and the immersion time is 6 hours or more and 24 hours or less when the composition for the heart model is produced,
  • these preferable immersion times are one example, and are suitably changed according to the size and surface area of a shaped article.
  • the hardness of the composition is also adjusted by the concentration of the hydrophilic solvent in the immersion solvent.
  • concentration of the hydrophilic solvent in the solvent for immersion the range of 20 weight% or more and 100 weight% or less can be mentioned.
  • the composition of this indication is obtained by the manufacturing method 10.
  • the manufacturing method 10 by performing the manufacturing method 10 in a mold imitating a model organ, it is possible to easily form a three-dimensionally sophisticated model even if it has a complicated shape.
  • composition of the present disclosure and the method for producing the same are not limited thereto.
  • the monomers used in the examples are as follows.
  • Host group-containing acrylamide monomer (host group-containing AA monomer): mono-6-deoxy-6- (acrylamide) - ⁇ -cyclodextrin (prepared according to WO 2012/036069, purity 88%) .
  • R 1 and R 2 are hydrogen and R H is ⁇ -cyclodextrin (bonded at the 6-position hydroxy group) in the above-mentioned formula (1).
  • Guest group-containing acrylamide-based monomer guest group-containing AA monomer
  • N- (1-adamantyl) acrylamide prepared according to WO 2012/036069, purity of 99% or more
  • Examples 1 to 4 and 8 to 13; Comparative Examples 1 and 2 and 5 to 8 In a sample tube (3 ml), host group-containing AA monomer, guest group-containing AA monomer, AA monomer, and water were placed and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer. Subsequently, APS (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization initiator and TEMED (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization accelerator are added to a solution, and the obtained solution is subjected to polymerization reaction conditions (room temperature) Left for 1 hour).
  • APS made by Wako Pure Chemical Industries, Ltd.
  • TEMED made by Wako Pure Chemical Industries, Ltd.
  • compositions (polymer gels) according to Examples 1 to 4 and 8 to 13 and Comparative Examples 1 and 2 to 5 were obtained.
  • the components of the solution at the start of polymerization are as shown in Tables 1 and 3 to 5.
  • Example 5 In a sample tube (3 ml), host group-containing AA monomer, guest group-containing AA monomer, AA monomer, and water were placed and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer. Subsequently, APS (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization initiator and TEMED (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization accelerator are added to a solution, and the obtained solution is subjected to polymerization reaction conditions (room temperature) Left for 1 hour).
  • APS made by Wako Pure Chemical Industries, Ltd.
  • TEMED made by Wako Pure Chemical Industries, Ltd.
  • Examples 6, 7, 14 to 19, Comparative Examples 3, 4, 9 In a sample tube (3 ml), a host group-containing AA monomer, a guest group-containing AA monomer, an AA monomer, water, and glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) were placed and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer.
  • compositions (polymer gels) according to Examples 6, 7 and 14 to 19 and Comparative Examples 3 and 4 and 9 were obtained.
  • the components of the solution at the start of polymerization are as shown in Tables 2, 3, 5, and 6.
  • Examples 20 to 25, Comparative Examples 10 to 13 First, 200 mg of acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.), 3000 mg of water, 17 mg of TEMED (manufactured by Wako Pure Chemical Industries, Ltd.), 34 mg of APS (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed, and left at room temperature for 1 hour. The polymer was obtained. Next, the obtained polymer was ground with a mortar to prepare a filler (polymer of acrylic acid amide).
  • host group-containing AA monomer guest group-containing AA monomer, AA monomer, water, glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), and the above-mentioned filler were placed in a sample tube (3 ml) and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer.
  • compositions (polymer gels) according to Examples 20 to 25 and Comparative Examples 10 to 13 were obtained.
  • the components of the solution at the start of polymerization are as shown in Table 6.
  • the self repairability of the composition prepared above was evaluated.
  • the composition having self-repairing property was evaluated as "o", and the composition having no self-repairing property was evaluated as "x”.
  • the results are shown in Tables 1 to 6.
  • the evaluation method is as follows. The composition was cut, and then the cut interfaces were brought into contact with each other and allowed to stand for 10 minutes under an environment of temperature 23 ° C. and humidity 50%, and then it was confirmed whether or not the cut interfaces adhered. When it adhered, it judged that it had self-repairing property.
  • the hardness (converted value) of the composition prepared above was measured according to Japanese Industrial Standard (JIS K6253-3) using an Asker rubber hardness meter CSC2 (manufactured by Kobunshi Keiki Co., Ltd.) according to Japanese Industrial Standard (JIS K6253-3). The converted value was calculated from the spring load of the rubber hardness tester. The results are shown in Tables 1 to 6.
  • the composition was cut using a cutter (PAPER CUTTER DN-1 manufactured by KOKUYO CO., LTD.), And the fractured surface was visually evaluated.
  • the evaluation method is as follows. When a composition (polymer gel) formed into a sheet shape having a thickness of 3 mm and an area of 50 mm ⁇ 50 mm is cut with a constant load, it can be cut without resistance and the broken surface of the composition is smooth. The case where the composition was caught by the blade at the time of cutting and the blade did not move or the resistance at the time of cutting was strong and the broken surface of the composition was rough was evaluated as “X”.
  • Table 1 Relationship between the blending amount of monomers and the hardness of the composition.
  • Table 2 Relationship between the presence or absence of the immersion step and the hardness of the composition.
  • Table 3 Relationship between water content and hardness of the composition.
  • Table 4 Relationship between TEMED content and hardness of the composition.
  • Table 5 Relationship between water and glycerin content and hardness of the composition.
  • Table 6 Relationship between the presence or absence of the filler and the hardness, tackiness and processability of the composition.
  • the concentration of monomers in the solution represents the molar concentration of each monomer based on the entire monomers in the solution at the start of the polymerization
  • the concentration of the monomers (mol / kg) Represents the total number of moles of all monomers per weight of the whole solution
  • the “content of each component in the solution (% by weight)” means the content of each component based on the whole solution at the start of the polymerization It represents the content.
  • the blanks indicate that the component relating to the blanks is not included, and that the method and evaluation relating to the blanks can not be performed.
  • compositions produced by the manufacturing method according to the examples have realized the texture and hardness of any organ of the human body, particularly the liver, heart, skin.
  • Table 7 summarizes the hardness of the composition and examples suitable for models of each organ. The numerical values in the table represent example numbers.
  • compositions suitable for the liver model are Examples 1, 6-8, 12-16, 22-24, and the composition of Example 13 added the filler particularly when the filler is not added.
  • the composition of Example 24 had a texture very close to that of the liver, in consideration of tackiness and processability.
  • the hardness is in a range similar to that of a real liver.
  • compositions suitable for cardiac models are Examples 2, 3, 17, 18, 25 and the composition of Example 17 is tacky, particularly when no filler is added, and when filler is added.
  • the composition of Example 25 had a texture very close to the heart in consideration of moldability and processability.
  • the hardness is in the same range as the real heart.
  • the compositions suitable for the skin model are Examples 2 to 6, 9 to 12, and 15 to 25. By combining one or more of them, the texture and hardness very similar to those of the skin can be reproduced.
  • the composition of Examples 16, 18 and 19 had texture and hardness very close to the skin.
  • the manufacturing method according to the comparative example is not suitable as a method for manufacturing a three-dimensional surgical treatment training model composition for the following reason.
  • the produced composition was slime-like, and the shape of the composition could not be maintained.
  • the produced composition was brittle. In addition, he was also poor in self-healing ability.
  • the monomer did not dissolve in the solution, and the composition could not be prepared.
  • the produced composition was slime-like, and the shape of the composition could not be maintained.
  • the polymerization reaction did not proceed and gelation occurred.
  • Comparative Example 7 the produced composition was softer than a predetermined hardness and could not maintain the shape of the polymer gel.
  • Comparative Example 8 the produced composition became slime-like, and the shape of the composition could not be maintained.
  • Comparative Example 9 the monomer concentration (mol / kg) was high, and the solution bumped due to the heat of reaction during the polymerization reaction, resulting in numerous bubbles in the composition. Therefore, it was unsuitable as a composition for a three-dimensional surgical treatment training model.
  • Comparative Examples 10 and 13 the self-repairing property of the produced composition was poor.
  • Comparative Examples 11 and 12 the composition produced did not gel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Educational Administration (AREA)
  • Computational Mathematics (AREA)
  • Medical Informatics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Algebra (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Instructional Devices (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention addresses the problem of providing a composition for a three-dimensional surgical procedure training model that can be repeatedly used despite being cut. The composition for a three-dimensional surgical procedure training model contains a self-healing polymer gel.

Description

3次元外科治療研修モデル用組成物及びその製造方法Composition for three-dimensional surgical treatment training model and method for producing the same
 本願は3次元外科治療研修モデル用組成物及びその製造方法に関する。 The present application relates to a three-dimensional surgical treatment training model composition and a method of manufacturing the same.
 従来から皮膚や血管、心臓、肝臓等の治療を練習するために用いられる外科治療研修モデルが開発されている。外科治療研修モデルとは、人体の器官の形状や質感を模したものであり、近年では3Dプリンタによる造形技術の発達により、3次元的に精巧な外科治療研修モデルの開発が進められている。 Surgical treatment training models used to practice treatments for skin, blood vessels, heart, liver, etc. have been developed. The surgical treatment training model is a model that simulates the shape and texture of human body organs, and in recent years, development of a three-dimensionally sophisticated surgical treatment training model has been promoted by the development of modeling technology using a 3D printer.
 現在、3次元外科治療研修モデルとして様々な製品が開発され、上市されている。3次元外科治療研修モデルは、特に医学部学生、看護学部学生、研修医や医療現場の医師等の医療従事者が使用するものであり、例えば、縫合や切開を練習する皮膚のモデルや、採血や注射を練習する血管のモデル、外科手術を練習する心臓及び肝臓等の臓器モデル等がある。
  このように、3次元外科治療研修モデルは医療従事者の技量向上に大きく貢献している。
Currently, various products are developed and marketed as three-dimensional surgical treatment training models. The three-dimensional surgical treatment training model is used especially by medical personnel such as medical department students, nursing department students, trainees and doctors at medical sites. For example, skin models for practicing sutures and incisions, blood collection, etc. There are models of blood vessels that practice injection, and models of organs such as heart and liver that practice surgery.
Thus, the three-dimensional surgical treatment training model greatly contributes to the improvement of the skills of medical workers.
 これまで、3次元外科治療研修モデルに用いられる材料としては、ポリビニルアルコールやシリコン、ウレタン、ポリ乳酸、ABS樹脂などが知られている。
  例えば、特許文献1、2にはポリビニルアルコールを用いた臓器モデルが開示されている。ポリビニルアルコールを用いることにより、水分を含有するヒドロゲルを作成可能であるため、本物の臓器と感触が類似するモデルが作製可能となる。つまり、手技トレーニングをする上でリアリティーを有するモデルが作製可能となる。また、ポリビニルアルコール以外の材料を用いた3次元外科治療研修モデルの例としては特許文献3、4が挙げられる。
Heretofore, polyvinyl alcohol, silicone, urethane, polylactic acid, ABS resin and the like have been known as materials used for a three-dimensional surgical treatment training model.
For example, Patent Documents 1 and 2 disclose organ models using polyvinyl alcohol. By using polyvinyl alcohol, it is possible to create a hydrogel containing water, so it is possible to create a model having a feel similar to that of a real organ. In other words, it is possible to create a model having reality in performing technique training. Moreover, patent documents 3 and 4 are mentioned as an example of a three-dimensional surgical treatment training model using materials other than polyvinyl alcohol.
特開2015-41020号公報Unexamined-Japanese-Patent No. 2015-41020 特開2010-277003号公報JP, 2010-277003, A 特開2015-138192号公報JP, 2015-138192, A 特開2017-21137号公報Unexamined-Japanese-Patent No. 2017-21137
 従来の3次元外科治療研修モデルは、外科治療の研修として切断を伴う執刀トレーニング等に供されると、繰り返しの使用ができず、1度の使用で廃棄されるのが現状である。繰り返し使用ができない従来のモデルでは、例えば以下の問題が挙げられる。 The conventional three-dimensional surgical treatment training model can not be used repeatedly if it is subjected to surgical training with cutting as training for surgical treatment, and is currently discarded at one use. The conventional model that can not be used repeatedly includes, for example, the following problems.
(i)実際の治療現場においては、患者の容態により術前シミュレーションに掛けられる時間が制限される場合もあり、繰り返し使用ができない従来のモデルでは、短時間で多角的な(様々な執刀イメージ)シミュレーションが困難である。また、採血研修モデルにおいては、模擬血管内部に圧力を加えた模擬血液を留置しているため、採血のトレーニングで生じた針穴から模擬血液が溢れ出る虞がある。そのため、トレーニングの際に作業環境が劣悪になるだけでなく、模擬血液や採血モデルの消耗が著しい問題がある。
(ii)3次元外科治療研修モデルは比較的高価なものであるため、1度の使用で廃棄される従来のモデルでは練習に必要な数が用意できない場合があり、医療従事者が十分に練習できない虞が生じる。
(iii)形状や質感等に個体差が出るものであるため、練習の再現性が悪く、治療技量の向上の妨げとなる虞がある。
(iv)1回の使用で廃棄されるため廃棄物量も増加する。
(I) At the actual treatment site, the time taken for preoperative simulation may be limited depending on the condition of the patient, and in the conventional model which can not be used repeatedly, it is multi-directional in a short time (various operating images) Simulation is difficult. In addition, in the blood collection training model, since the simulated blood in which pressure is applied is placed inside the simulated blood vessel, there is a possibility that the simulated blood may spill out from the needle hole generated in the blood collection training. As a result, not only the working environment becomes poor at the time of training, but there is a significant problem of the consumption of simulated blood and blood collection models.
(Ii) The 3D surgical treatment training model is relatively expensive, so the conventional model discarded in one use may not have the necessary number for practice, and the medical worker practices enough. There is a risk of failure.
(Iii) Since individual differences appear in the shape, texture, etc., the reproducibility of practice is poor, and there is a possibility that it will hinder the improvement of the treatment skill.
(Iv) The amount of waste also increases because it is disposed of once.
 そこで本願は、切断された場合や針穴が生じた場合でも繰り返し使用可能な3次元外科治療研修モデル用組成物を提供することにより、上記課題を解決するものである。 Thus, the present application solves the above-mentioned problems by providing a composition for a three-dimensional surgical treatment training model that can be used repeatedly even when cut or when a needle hole is generated.
 本発明者らは、上記課題を解決するために鋭意検討の結果、自己修復性を有するポリマーゲルを用いることにより、繰り返し使用可能な3次元外科治療研修モデル用組成物を作製できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that by using a polymer gel having self-repairing property, it is possible to prepare a composition for a three-dimensional surgical treatment training model that can be repeatedly used. Completed the invention.
 すなわち、本願は上記課題を解決するための一つの手段として、
自己修復性を有するポリマーゲルを含む3次元外科治療研修モデル用組成物、を開示する。
That is, the present application is one means for solving the above problems.
Disclosed is a three-dimensional surgical treatment training model composition comprising a polymer gel having self-repairing properties.
 ここで、「3次元外科治療研修モデル」とは皮膚や血管、臓器等の人体の器官を3次元的に模した構造物であり、単一の器官だけでなく、複数の器官を備えたものも含まれる。なお、「器官」とはいくつかの組織が集まって固有の形態を作り、一定の生理作用を営むものである。 Here, the “three-dimensional surgical treatment training model” is a structure three-dimensionally imitating human organs such as skin, blood vessels, and organs, and is provided with not only a single organ but a plurality of organs. Also included. The term "organ" refers to a group of several tissues that form a unique form and exert a certain physiological action.
 前記組成物において、前記ポリマーゲルがホスト-ゲスト相互作用の原理を利用して自己修復する重合体を備えることが好ましい。 In the composition, it is preferable that the polymer gel comprises a polymer that is self-repairing using the principle of host-guest interaction.
 また、前記重合体がホスト基含有アクリルアミド系モノマー由来の構造単位を1モル%以上8モル%以下、ゲスト基含有アクリルアミド系モノマー由来の構造単位を1モル%以上8モル%以下、アクリルアミド系モノマー由来の構造単位を84モル%以上98モル%以下含有し、前記ポリマーゲルは前記重合体の網目構造の間隙に水系溶媒を含み、前記組成物の硬さが換算値で931mN以上4264mN以下であることが好ましい。 Further, the polymer contains 1 mol% to 8 mol% of structural units derived from a host group-containing acrylamide monomer, 1 mol% to 8 mol% of structural units derived from a guest group-containing acrylamide monomer, and an acrylamide monomer The polymer gel contains an aqueous solvent in the gaps of the network structure of the polymer, and the hardness of the composition is 931 mN to 4264 mN or less in conversion value Is preferred.
 ここで「換算値」とは、組成物の硬さを測定する機器の測定値から算出される換算値であり、例えばゴム硬度計のスプリング荷重の測定値から換算値を算出することができる。 Here, the “converted value” is a converted value calculated from the measured value of a device that measures the hardness of the composition, and for example, the converted value can be calculated from the measured value of the spring load of a rubber hardness tester.
 さらに、前記ホスト基含有アクリルアミド系モノマー由来の構造単位が下記一般式(1)であり、前記ゲスト基含有アクリルアミド系モノマー由来の構造単位が下記一般式(2)であり、前記アクリルアミド系モノマー由来の構造単位が下記一般式(3)であることが好ましい。 Furthermore, the structural unit derived from the host group-containing acrylamide monomer is the following general formula (1), the structural unit derived from the guest group-containing acrylamide monomer is the following general formula (2), and the acrylamide monomer is derived It is preferable that a structural unit is following General formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ここで、R~Rは水素又はメチル基を表している。Rはホスト基を表しており、α-シクロデキストリン、β-シクロデキストリン、又はγ-シクロデキストリンのいずれかである。Rはゲスト基を表しており、n-ブチル基、n-ドデシル基、t-ブチル基、イソボルニル基又はアダマンチル基のいずれかである。 Here, R 1 to R 7 each represent hydrogen or a methyl group. R H represents a host group and is either α-cyclodextrin, β-cyclodextrin or γ-cyclodextrin. R G represents a guest group, which is any of n-butyl, n-dodecyl, t-butyl, isobornyl and adamantyl groups.
 また、前記水系溶媒が水からなる、或いは水及び水よりも沸点の高い親水性溶媒を含むことが好ましい。前記親水性溶媒としては特に限定されないが、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン及びジエチレングリコールモノエチルエーテルからなる群から選ばれる少なくとも1種を含むことが好ましい。 Preferably, the aqueous solvent comprises water, or water and a hydrophilic solvent having a boiling point higher than that of water. The hydrophilic solvent is not particularly limited, and includes, for example, at least one selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, glycerin and diethylene glycol monoethyl ether. preferable.
 前記組成物における前記水系溶媒の含有量が前記ポリマーゲルを基準として49.45重量%以上85.45重量%以下であり、前記水系溶媒中の水の含有量が前記ポリマーゲルを基準として15.40重量%以上であることが好ましい。 The content of the aqueous solvent in the composition is 49.45 wt% or more and 85.45 wt% or less based on the polymer gel, and the content of water in the aqueous solvent is 15 based on the polymer gel. It is preferable that it is 40 weight% or more.
 また、前記組成物において、前記ポリマーゲルがフィラーを含むことが好ましい。また、前記フィラーは有機系フィラーであることが好ましい。さらに、前記ポリマーゲルがフィラーを含む場合、前記水系溶媒の含有量が前記ポリマーゲルを基準として45.85重量%以上69.21重量%以下であり、前記水系溶媒中の水の含有量が前記ポリマーゲルを基準として14.50重量%以上であり、前記フィラーの含有量が前記ポリマーゲルを基準として15.00重量%以上26.00重量%以下であることが好ましい。 In the composition, it is preferable that the polymer gel contains a filler. Moreover, it is preferable that the said filler is an organic type filler. Furthermore, when the polymer gel contains a filler, the content of the aqueous solvent is 45.85% by weight or more and 69.21% by weight or less based on the polymer gel, and the content of water in the aqueous solvent is the above Preferably, the content is 14.50% by weight or more based on the polymer gel, and the content of the filler is 15.00% by weight or more and 26.00% by weight or less based on the polymer gel.
 さらに、本願は上記課題を解決するための一つの手段として、
上記組成物を製造する方法であって、前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、及び前記水系溶媒を混合する工程と、前記混合する工程により得られる溶液に重合開始剤を添加する工程と、前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、及び前記アクリルアミド系モノマーを重合させる工程と、を備え、前記重合させる工程における溶液中の前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、及び前記水系溶媒の含有量を調整することで、前記組成物の硬さを調整する、3次元外科治療研修モデル用組成物の製造方法、を開示する。
Furthermore, the present application is one means for solving the above problems.
A method of producing the above composition, which comprises the steps of mixing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, and the aqueous solvent, and a solution obtained by the mixing step. And a step of polymerizing the polymerization initiator, and a step of polymerizing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, and the acrylamide monomer, and the host in the solution in the polymerization step. Composition for three-dimensional surgical treatment training model which adjusts the hardness of the composition by adjusting the content of a group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, and the aqueous solvent Disclosed is a method of manufacturing a product.
 上記組成物がフィラーを含む場合は、本願は上記課題を解決するための一つの手段として、
フィラーを含む上記組成物を製造する方法であって、前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、前記水系溶媒、及び前記フィラーを混合する工程と、前記混合する工程により得られる溶液に重合開始剤を添加する工程と、前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、及び前記アクリルアミド系モノマーを重合させる工程と、を備え、前記重合させる工程における溶液中の前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、前記水系溶媒、及び前記フィラーの含有量を調整することで、前記組成物の硬さを調整する、3次元外科治療研修モデル用組成物の製造方法を開示する。
When the above composition contains a filler, the present invention is one means for solving the above problems.
A method for producing the composition containing a filler, which comprises mixing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, the aqueous solvent, and the filler; Including the steps of adding a polymerization initiator to the solution obtained by the step of adding, the step of polymerizing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, and the acrylamide monomer; The hardness of the composition is adjusted by adjusting the content of the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, the aqueous solvent, and the filler in the solution in , 3D Surgical Research Institute It discloses a process for the production of a model composition.
 これらの製造方法において、前記混合する工程及び添加する工程のうち少なくとも一方において重合促進剤を添加し、前記重合させる工程における溶液中の前記重合促進剤の含有量を調整することにより前記組成物の硬さを調整することができる。 In these production methods, a polymerization accelerator is added in at least one of the mixing step and the adding step, and the content of the polymerization accelerator in the solution in the polymerization step is adjusted to adjust the content of the composition. The hardness can be adjusted.
 また、前記重合させる工程により得られるゲルを浸漬用溶媒に浸漬させる工程をさらに備え、前記浸漬用溶媒は前記親水性溶媒からなり、或いは前記親水性溶媒及び水を含み、前記ゲルの浸漬時間及び前記浸漬用溶媒における前記親水性溶媒の濃度のうち少なくとも一方を調整することにより前記組成物の硬さを調整することができる。 The method further comprises the step of immersing the gel obtained by the polymerization step in a solvent for immersion, wherein the solvent for immersion comprises the hydrophilic solvent, or contains the hydrophilic solvent and water, and the immersion time of the gel and The hardness of the composition can be adjusted by adjusting at least one of the concentration of the hydrophilic solvent in the immersion solvent.
 本開示の3次元外科治療研修モデル用組成物は自己修復性を有するため、切断されたとしても切断界面を自己修復可能であり、繰り返し使用することができる。よって本開示の組成物によれば、十分に治療の練習をする機会を医療従事者に与えることができる。また、繰り返し使用することができるため、治療練習の再現性が高い。さらに、モデルの廃棄量も低減できる。 Since the composition for three-dimensional surgical treatment training model of the present disclosure has self-repairing property, the cut interface can be self-repaired even if it is cut, and can be used repeatedly. Thus, the compositions of the present disclosure can provide healthcare professionals with the opportunity to practice treatment well. In addition, since it can be used repeatedly, the reproducibility of treatment practice is high. In addition, model waste can be reduced.
組成物の製造方法の1つの態様(製造方法10)を説明する図である。It is a figure explaining one aspect (manufacturing method 10) of a manufacturing method of a composition.
 以下、本開示の3次元外科治療研修モデル用組成物及びその製造方法の実施形態を説明する。 Hereinafter, embodiments of the composition for a three-dimensional surgical treatment training model of the present disclosure and a method of manufacturing the same will be described.
<3次元外科治療研修モデル用組成物>
 本開示の3次元外科治療研修モデル用組成物は自己修復性を有するポリマーゲルを含む。
<Composition for 3D surgical treatment training model>
The composition for a three-dimensional surgical treatment training model of the present disclosure includes a polymer gel having self-repairing properties.
 ここで、「3次元外科治療研修モデル」とは皮膚や血管、臓器等の人体の器官を3次元的に模した構造物であり、単一の器官だけでなく、複数の器官を備えたものも含まれる。なお、「器官」とはいくつかの組織が集まって固有の形態を作り、一定の生理作用を営むものである。 Here, the “three-dimensional surgical treatment training model” is a structure three-dimensionally imitating human organs such as skin, blood vessels, and organs, and is provided with not only a single organ but a plurality of organs. Also included. The term "organ" refers to a group of several tissues that form a unique form and exert a certain physiological action.
(ポリマーゲル)
  上記ポリマーゲルの好ましい形態としては、ホスト-ゲスト相互作用の原理を利用して自己修復する重合体を備えるものである。
  ホスト-ゲスト相互作用とは、ゲスト基がホスト基に包接され包接錯体を形成する際に生じる非共有結合性の相互作用である。
(Polymer gel)
A preferred form of the above-mentioned polymer gel is one comprising a polymer that is self-repairing utilizing the host-guest interaction principle.
The host-guest interaction is a non-covalent interaction that occurs when a guest group is included in a host group to form an inclusion complex.
(重合体)
 ホスト-ゲスト相互作用の原理を利用する重合体は、ホスト基及びゲスト基が包接錯体を形成し、それにより分子中に架橋された部位が形成されるため、全体として3次元の網目構造を有する。そして、この網目構造の間隙に後述する水系溶媒が含有される。なお、非共有結合とは、共有結合以外の結合形式を意味し、疎水性相互作用や、水素結合、分子間力、静電相互作用、配位結合、π電子相互作用等を含む概念である。
  ホスト-ゲスト相互作用の原理を利用して重合体を構成することにより、ポリマーゲルに自己修復性の機能を付与することができ、加えて、従来の素材(例えば、シリコンやウレタン等)では為しえなかった高伸縮性や形状記憶性、強靭性を付与することができる。特に強靭性が付与されることにより、例えば皮膚モデルを作製した場合に、針や糸で縫合したとしてもモデルに亀裂が生じ難くなる。
(Polymer)
Polymers utilizing the principle of host-guest interaction form a complex in which a host group and a guest group form an inclusion complex, thereby forming a cross-linked site in the molecule. Have. And the aqueous solvent mentioned later is contained in the gap of this network structure. In addition, noncovalent bond means bond form other than covalent bond, and is a concept including hydrophobic interaction, hydrogen bond, intermolecular force, electrostatic interaction, coordination bond, π electron interaction, etc. .
By constructing a polymer using the principle of host-guest interaction, it is possible to impart a self-repairing function to a polymer gel, and additionally, in conventional materials (eg, silicon, urethane, etc.) It is possible to impart high stretchability, shape memory and toughness that could not be achieved. In particular, when toughness is imparted, for example, when a skin model is produced, cracking does not easily occur in the model even when sutured with a needle or thread.
  上記重合体は、アクリルアミド系モノマー由来の構造単位により構成されることが好ましい。具体的には、ホスト基含有アクリルアミド系モノマー(以下において、「ホスト基含有AAモノマー」と表記することがある。)由来の構造単位、ゲスト基含有アクリルアミド系モノマー(以下において、「ゲスト基含有AAモノマー」と表記することがある。)由来の構造単位、及びアクリルアミド系モノマー(以下において、「AAモノマー」と表記することがある。)由来の構造単位を含む重合体を備えるポリマーゲルである。
  これらのAAモノマーを使用して重合体を合成することにより、組成物に防腐性を付与することもできる。なお、従来用いられるポリビニルアルコールを用いたヒドロゲルでは、防腐性がなく劣化しやすい課題がある。
It is preferable that the said polymer is comprised by the structural unit derived from an acrylamide type monomer. Specifically, a structural unit derived from a host group-containing acrylamide monomer (hereinafter sometimes referred to as "host group-containing AA monomer"), a guest group-containing acrylamide monomer (hereinafter, "guest group-containing AA monomer" A polymer gel comprising a polymer comprising a structural unit derived from “monomer” and a structural unit derived from an acrylamide monomer (hereinafter sometimes referred to as “AA monomer”).
The compositions can also be rendered antiseptic by synthesizing polymers using these AA monomers. In addition, in the hydrogel using the polyvinyl alcohol used conventionally, there exists a subject which does not have antiseptic property and is easy to deteriorate.
 ここで、重合体を構成するこれらAAモノマー由来の構造単位の好ましい含有量は以下のとおりである。
  重合体において、ホスト基含有AAモノマー由来の構造単位が0.5モル%以上10モル%以下、ゲスト基含有AA由来の構造単位が0.5モル%以上10モル%以下であることが好ましい。これにより、ホスト基とゲスト基との相互作用が生じやすくなり、重合体中に架橋構造が形成され、安定した構造体が得られやすく、かつ、自己修復性にも優れた重合体となる。より好ましくは、重合体におけるホスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、ゲスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下である。これにより、自己修復性が向上する。特に好ましくは、重合体におけるホスト基含有AAモノマー由来の構造単位が2モル%以上4モル%以下、ゲスト基含有AAモノマー由来の構造単位が2モル%以上4モル%以下である。これにより、さらに自己修復性が向上するとともに、伸縮性も向上する。
  なお、重合体中におけるAAモノマー由来の構造単位は80モル%以上99モル%以下含有することが好ましく、84モル%以上98モル%以下であることがより好ましく、92モル%以上96モル%以下であることが特に好ましい。
Here, the preferable content of the structural unit derived from these AA monomers constituting the polymer is as follows.
In the polymer, it is preferable that structural units derived from the host group-containing AA monomer be 0.5 mol% or more and 10 mol% or less, and structural units derived from the guest group-containing AA be 0.5 mol% or more and 10 mol% or less. As a result, interaction between the host group and the guest group easily occurs, a crosslinked structure is formed in the polymer, a stable structure is easily obtained, and a polymer excellent in self-repairing property is obtained. More preferably, the structural unit derived from the host group-containing AA monomer in the polymer is 1 mol% to 8 mol%, and the structural unit derived from the guest group-containing AA monomer is 1 mol% to 8 mol%. This improves self-healing properties. Particularly preferably, the structural unit derived from the host group-containing AA monomer in the polymer is 2 mol% or more and 4 mol% or less, and the structural unit derived from the guest group-containing AA monomer is 2 mol% or more and 4 mol% or less. Thereby, the self-repairing property is further improved, and the stretchability is also improved.
The structural unit derived from the AA monomer in the polymer is preferably contained at 80 to 99 mol%, more preferably 84 to 98 mol%, and 92 to 96 mol%. Is particularly preferred.
 重合体の重合形態は自己修復性を有することができれば特に限定されず、ランダム共重合であってもよくブロック共重合であってもよく、グラフト共重合であってもよい。 The polymerization form of the polymer is not particularly limited as long as it has self-healing properties, and may be random copolymerization, block copolymerization, or graft copolymerization.
 具体的なホスト基含有AAモノマー由来の構造単位としては下記式(1)の構造が挙げられる。下記式(1)で表されるホスト基含有AAモノマー由来の構造単位は重合体中に1種類のみであってもよく、2種類以上あってもよい。 Specific examples of structural units derived from host group-containing AA monomers include structures of the following formula (1). The structural unit derived from the host group-containing AA monomer represented by the following formula (1) may be only one type or two or more types in the polymer.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ここで、R、Rは水素又はメチル基を表している。Rはホスト基を表している。 Here, R 1 and R 2 each represent hydrogen or a methyl group. R H represents a host group.
 具体的なゲスト基含有AAモノマー由来の構造単位としては下記式(2)の構造が挙げられる。下記式(2)で表されるゲスト基含有AAモノマー由来の構造単位は重合体中に1種類のみであってもよく、2種類以上あってもよい。 As a structural unit derived from a guest group containing AA monomer, the structure of following formula (2) is mentioned. The structural unit derived from the guest group-containing AA monomer represented by the following formula (2) may be only one type or two or more types in the polymer.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ここで、R、Rは水素又はメチル基を表している。Rはゲスト基を表している。 Here, R 3 and R 4 each represent hydrogen or a methyl group. R G represents a guest group.
 具体的なAAモノマー由来の構造単位としては下記式(3)の構造が挙げられる。下記式(3)で表されるAAモノマー由来の構造単位は重合体中に1種類のみであってもよく、2種類以上あってもよい。 Specific examples of structural units derived from AA monomers include structures of the following formula (3). The structural unit derived from the AA monomer represented by the following formula (3) may be only one type or two or more types in the polymer.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ここで、R、R、Rは水素又はメチル基を表している。 Here, R 5 , R 6 and R 7 each represent hydrogen or a methyl group.
 包接錯体を形成するホスト基及びゲスト基の好ましい組み合わせとしては、例えば、ホスト基としてα-シクロデキストリン(空洞サイズ:4.7~5.2Å)を用いる場合、ゲスト基としては、炭素数4~18のアルキル基及びそのアルコール誘導体、カルボン酸誘導体、アミノ誘導体、環状アルキル基又はフェニル基を有するアゾベンゼン誘導体、桂皮酸誘導体等が挙げられる。上記炭素数4~18のアルキル基としては、n-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基が挙げられる。 As a preferable combination of a host group and a guest group forming an inclusion complex, for example, when α-cyclodextrin (cavity size: 4.7 to 5.2 Å) is used as the host group, the guest group has 4 carbon atoms. Examples thereof include alkyl groups of to 18 and alcohol derivatives thereof, carboxylic acid derivatives, amino derivatives, azobenzene derivatives having a cyclic alkyl group or a phenyl group, cinnamic acid derivatives and the like. Examples of the alkyl group having 4 to 18 carbon atoms include n-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, Hexadecyl group, heptadecyl group and octadecyl group can be mentioned.
 ホスト基としてβ-シクロデキストリン(空洞サイズ:6.0~6.5Å)を用いる場合、ゲスト基としては、t-ブチル基、アダマンチル基、イソボルニル基、芳香族化合物及びそのアルコール誘導体、カルボン酸誘導体、アミノ誘導体、フェロセン誘導体、アゾベンゼン、ナフタレン誘導体、ダンシル基等が挙げられる。 When β-cyclodextrin (cavity size: 6.0 to 6.5 Å) is used as a host group, a t-butyl group, an adamantyl group, an isobornyl group, an aromatic compound and an alcohol derivative thereof, a carboxylic acid derivative as a guest group And amino derivatives, ferrocene derivatives, azobenzenes, naphthalene derivatives, dansyl groups and the like.
 ホスト基としてγ-シクロデキストリン(空洞サイズ:7.5~8.5Å)を用いる場合、ゲスト基としては、炭素数18までのアルキル基及びそのアルコール誘導体、カルボン酸誘導体、アミノ誘導体、アダマンチル基、フラーレン等の炭素原子で構成されるクラスター類、及び芳香族系ダンシル基、フェロセン誘導体、アントラセン誘導体等が挙げられる。 When γ-cyclodextrin (cavity size: 7.5 to 8.5 Å) is used as a host group, as a guest group, an alkyl group having up to 18 carbon atoms and its alcohol derivative, carboxylic acid derivative, amino derivative, adamantyl group, Examples thereof include clusters composed of carbon atoms such as fullerene, and aromatic dansyl groups, ferrocene derivatives, anthracene derivatives and the like.
 上記のほかに、ホスト基としてはカリックス[6]アレーンスルホン酸、カリックス[8]アレーンスルホン酸、12-クラウン-4エーテル、18-クラウン-6エーテル、[6]パラシクロファン、[2,2]パラシクロファン、ククルビット[6]ウリル及びククルビット[8]ウリルを挙げることができる。これに組み合わせるゲスト基としては、上記に例示したゲスト基のいずれかを用いることができる。 Besides the above, as host groups, calix [6] arenesulfonic acid, calix [8] arenesulfonic acid, 12-crown-4 ether, 18-crown-6 ether, [6] paracyclophane, [2,2 ] May be mentioned paracyclophane, cucurbit [6] uril and cucurbit [8] uril. As a guest group to be combined with this, any of the guest groups exemplified above can be used.
 ホスト-ゲスト相互作用が起こりやすく、自己修復性をより向上させる観点から、ホスト基としてα-シクロデキストリン、β-シクロデキストリン、又はγ-シクロデキストリンのいずれかあることが好ましい。同様の理由により、ゲスト基としてn-ブチル基、n-ドデシル基、t-ブチル基、イソボルニル基又はアダマンチル基のいずれかであることが好ましい。ホスト基とゲスト基の組み合わせとしては、α-シクロデキストリン及びn-ドデシル基、又はβ-シクロデキストリン及びアダマンチル基が特に好ましい。 From the viewpoint of facilitating host-guest interaction and further improving the self-repairing property, it is preferable that the host group is either α-cyclodextrin, β-cyclodextrin or γ-cyclodextrin. For the same reason, it is preferable that the guest group is any of n-butyl group, n-dodecyl group, t-butyl group, isobornyl group or adamantyl group. As a combination of host group and guest group, α-cyclodextrin and n-dodecyl group, or β-cyclodextrin and adamantyl group are particularly preferable.
(水系溶媒)
  ポリマーゲルは重合体の網目構造の間隙に水系溶媒を含むことが好ましい。水系溶媒は水を含む溶媒であれば特に限定されないが、水からなる、或いは水及び水よりも沸点の高い親水性溶媒を含むことが好ましい。
  水を含むことにより、実際の器官に近い質感や感触を組成物に与えることができる。また、水よりも沸点が高い親水性溶媒を含むことにより、組成物が乾燥され難くなり、乾燥による劣化、例えば、自己修復性の低下や質感及び感触等の劣化が抑制される。すなわち、研修モデルとして長期間の使用に適する形態になる。
(Water-based solvent)
The polymer gel preferably contains an aqueous solvent in the interstices of the polymer network structure. The aqueous solvent is not particularly limited as long as it is a solvent containing water, but it is preferable to use water or a hydrophilic solvent having a boiling point higher than water and water.
By including water, the composition can be given a texture and feel close to the actual organ. Further, by including a hydrophilic solvent having a boiling point higher than that of water, the composition becomes difficult to be dried, and deterioration due to drying, for example, deterioration of self-repairing property and deterioration such as texture and feel are suppressed. That is, it becomes a form suitable for long-term use as a training model.
 水としては、純水、イオン交換水、水道水等を用いることができる。 As water, pure water, ion exchange water, tap water or the like can be used.
 水よりも沸点が高い親水性溶媒は、常圧で100℃を超える沸点を有するものである。沸点の上限は特に限定されないが、常圧で300℃以下であれば、ポリマーゲルの膨潤性が優れ、物性の悪化も引き起こしにくい。また、ポリマーゲルに対して親和性の高い水酸基を有する溶媒が好ましい。
  具体的には、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン及びジエチレングリコールモノエチルエーテルを挙げることができ、これらは1種類でもよく2種類混合されていてもよい。より好ましくはグリセリンを含む溶媒である。
Hydrophilic solvents having a boiling point higher than that of water are those having a boiling point of over 100 ° C. at normal pressure. The upper limit of the boiling point is not particularly limited, but if the pressure is 300 ° C. or less at normal pressure, the swelling property of the polymer gel is excellent, and the deterioration of physical properties is hardly caused. In addition, a solvent having a hydroxyl group with high affinity to the polymer gel is preferable.
Specifically, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, glycerin and diethylene glycol monoethyl ether can be mentioned, and these may be one kind or may be mixed. More preferably, it is a solvent containing glycerin.
 ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、49.45重量%以上85.45重量%以下であることが好ましい。ポリマーゲル中の水系溶媒の含有量が85.45重量%を超えると、ポリマーゲルの形状が維持できない虞がある。一方で、ポリマーゲル中の水系溶媒の含有量が49.45重量%未満であると組成物の硬さが硬くなる傾向にあり、組成物の硬さの調整がし難くなる。
  なお、水系溶媒中には水を、ポリマーゲル全体を基準として14.50重量%以上含むことが好ましく、15.40重量%以上含むことがより好ましい。これにより、実際の器官に近い質感や感触を組成物に与えることができる。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上56.00重量%以下含むことができる。「0重量%以上」としているのは、水系溶媒に親水性溶媒を含むことが必須ではないからである。ただし、耐乾燥性を高めるためには、上記親水性溶媒の含有量が10.00重量%以上であることが好ましい。
The content of the aqueous solvent in the polymer gel is preferably 49.45% by weight or more and 85.45% by weight or less based on the entire polymer gel. If the content of the aqueous solvent in the polymer gel exceeds 85.45% by weight, the shape of the polymer gel may not be maintained. On the other hand, when the content of the aqueous solvent in the polymer gel is less than 49.45% by weight, the hardness of the composition tends to be hard, and it becomes difficult to adjust the hardness of the composition.
The water-based solvent preferably contains 14.50% by weight or more, more preferably 15.40% by weight or more, based on the total weight of the polymer gel. This can give the composition a texture and feel close to the actual organ. In addition, the aqueous solvent can contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire polymer gel. The reason that “0% by weight or more” is used is that it is not essential that the aqueous solvent contains a hydrophilic solvent. However, in order to enhance the drying resistance, the content of the hydrophilic solvent is preferably 10.00% by weight or more.
(その他の添加剤)
 ポリマーゲルは、自己修復性を損なわない範囲で、その他の添加剤を含有することができる。例えば、着色料、酸化防止剤、紫外線吸収剤、光安定化剤、有機系フィラーや、無機化合物フィラー、金属フィラー等のフィラー、電解質、イオン液体、防腐剤、抗菌剤等が挙げられる。
(Other additives)
The polymer gel can contain other additives as long as the self-repairing property is not impaired. For example, colorants, antioxidants, ultraviolet light absorbers, light stabilizers, organic fillers, fillers such as inorganic compound fillers, metal fillers, electrolytes, ionic liquids, preservatives, antibacterial agents, etc. may be mentioned.
(フィラー)
 上記したとおり、ポリマーゲルはフィラーを含むことができる。ポリマーゲル中にフィラーが含まれることにより、組成物の硬さを所望の硬さに調整することができる。また、組成物のタック性を低減することができる。さらに組成物の加工性を向上させることができる。よって、ポリマーゲルにフィラーを含めることにより、組成物の取り扱いが容易になる。
(Filler)
As mentioned above, the polymer gel can comprise a filler. By containing the filler in the polymer gel, the hardness of the composition can be adjusted to a desired hardness. In addition, the tackiness of the composition can be reduced. Furthermore, the processability of the composition can be improved. Thus, the inclusion of the filler in the polymer gel facilitates handling of the composition.
 ここで、タック性とは組成物の粘着性を表している。組成物の粘着性は表面を指触した際に、組成物が指にくっつかない程度であることが好ましい。これにより、実際の臓器に近い感触を得られる。フィラーが含まれていないポリマーゲルでは、タック性が強く現れ、組成物の表面を指触すると組成物が指にくっつく場合がある。
  また、加工性とは組成物の形状の加工し易さを表しており、例えば裁断性や切削性を挙げることができる。組成物の加工性を向上することにより、加工が必要な臓器モデルの作製が容易になる。例えば皮膚モデルの場合、現実の皮膚の質感に近付けるために硬さの異なる層を複数積層させて作製する場合がある。その場合、硬さの異なるシート状の組成物をそれぞれ裁断し、大きさを合わせた後に積層するため、組成物の加工性は良い方が好ましい。また、組成物の形状はポリマーゲルを作製する型(容器)に依存するため、加工性を向上させることにより、精密な臓器形状の型を用いなくともポリマーゲルを作製後に組成物の形状を加工することが容易となる。なお、組成物の加工性を向上させることにより、組成物の裁断時における感触も現実の臓器に近付く。
Here, the tackiness refers to the tackiness of the composition. The tackiness of the composition is preferably such that the composition does not stick to the finger when touching the surface. This makes it possible to obtain a feeling close to the actual organ. In a polymer gel not containing a filler, the tackiness appears strongly, and when the surface of the composition is touched, the composition may stick to the finger.
Further, the processability refers to the easiness of processing the shape of the composition, and examples include cutability and cuttability. The improvement of the processability of the composition facilitates the production of an organ model that requires processing. For example, in the case of a skin model, a plurality of layers with different hardness may be laminated to be brought close to the actual skin texture. In that case, it is preferable that the processability of the composition be better, since the sheet-like compositions having different hardnesses are cut and laminated after being adjusted in size. In addition, since the shape of the composition depends on the type (container) for producing the polymer gel, by improving the processability, the shape of the composition is processed after producing the polymer gel without using a precise organ shape type It becomes easy to do. In addition, by improving the processability of the composition, the feel at the time of cutting the composition also approaches real organs.
 ポリマーゲルに含むことができるフィラーの種類は特に限定されず、有機系フィラーや、無機化合物フィラー、金属フィラー等のフィラーを用いることができる。好ましくは、有機系フィラーである。有機系フィラーは人体への影響が少なく、臓器モデルに適している。有機系フィラーとしてはアクリル酸アミド重合物、ゼラチン、及び寒天からなる群から選ばれる少なくとも1種を用いることが好ましい。組成物の透明性を高める観点から、組成物の屈折率と近いアクリル酸アミド重合物であることがより好ましい。 The type of filler that can be contained in the polymer gel is not particularly limited, and fillers such as organic fillers, inorganic compound fillers, and metal fillers can be used. Preferably, it is an organic filler. Organic fillers have less influence on the human body and are suitable for organ models. As the organic filler, it is preferable to use at least one selected from the group consisting of acrylic acid amide polymer, gelatin and agar. From the viewpoint of enhancing the transparency of the composition, an acrylic acid amide polymer close to the refractive index of the composition is more preferable.
 ポリマーゲル中のフィラーの含有量は、ポリマーゲル全体を基準として15.00重量%以上26.00重量%以下であることが好ましい。これにより、臓器モデルとして適切なタック性(組成物の表面を指触した場合、指にくっつかない程度のタック性)を有する組成物を得ることができる。より好ましくは、21.00重量%以上26.00重量%以下である。これにより、より加工に適した組成物を得ることができる。
  なお、ポリマーゲル中にフィラーを含める場合、水系溶媒の含有量はポリマーゲル全体を基準として45.85重量%以上69.21重量%以下であることが好ましい。また、このとき水系溶媒中の水の含有量は前記ポリマーゲルを基準として14.50重量%以上であることが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上50.61重量%以下含むことができる。
The content of the filler in the polymer gel is preferably 15.00% by weight or more and 26.00% by weight or less based on the entire polymer gel. This makes it possible to obtain a composition having appropriate tackiness as the organ model (tackiness that does not stick to the finger when the surface of the composition is touched). More preferably, it is 21.00 wt% or more and 26.00 wt% or less. Thereby, a composition more suitable for processing can be obtained.
When the polymer gel contains a filler, the content of the aqueous solvent is preferably 45.85% by weight or more and 69.21% by weight or less based on the whole polymer gel. At this time, the content of water in the aqueous solvent is preferably 14.50% by weight or more based on the polymer gel. In addition, the aqueous solvent can contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire polymer gel.
(組成物の硬さ)
 組成物の硬さは、実際の器官の質感、感触等を再現するために非常に重要な要因である。本願においては、組成物の硬さを換算値で931mN以上4264mN以下にすることが好ましい。これにより、所望の器官に近い質感や感触を組成物に付与することができる。
(Hardness of composition)
The hardness of the composition is a very important factor to reproduce the texture, feel, etc. of the actual organ. In the present invention, the hardness of the composition is preferably 931 mN or more and 4264 mN or less in terms of a conversion value. Thereby, the texture and feel close to the desired organ can be imparted to the composition.
 ここで「換算値」とは、組成物の硬さを測定する機器の測定値から算出される換算値であり、例えばゴム硬度計のスプリング荷重の測定値から換算値を算出することができる。測定方法はJIS K6253‐3に倣って行うことができる。ゴム硬度計としてはアスカーゴム硬度計CSC2型(高分子計器株式会社製)が挙げられる。 Here, the “converted value” is a converted value calculated from the measured value of a device that measures the hardness of the composition, and for example, the converted value can be calculated from the measured value of the spring load of a rubber hardness tester. The measuring method can be performed in accordance with JIS K6253-3. Examples of the rubber hardness tester include Asker rubber hardness tester CSC2 (manufactured by Kobunshi Keiki Co., Ltd.).
(組成物の形状)
 本開示の組成物はモデルとする器官を模した形状とすることができる。例えば、後述する製造方法をモデルとする器官に模した型内で行うことにより、望みの形状を形成することができる。上記型は、例えば3Dプリンタ等によって作製できる。また、モデルとする器官に似せるために、組成物に着色等を行うこともできる。
(Shape of composition)
The compositions of the present disclosure can be shaped to mimic a model organ. For example, a desired shape can be formed by performing the manufacturing method described later in a mold imitating an organ. The above mold can be produced by, for example, a 3D printer. In addition, the composition can be colored or the like in order to resemble the model organ.
(各モデルに適した組成物)
  以下に各モデルに適した組成物の組成について説明する。
(Composition suitable for each model)
The composition of the composition suitable for each model is described below.
 3次元外科治療研修モデルとして肝臓モデルを作製する場合は、ポリマーゲルを構成する重合体において、ホスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、ゲスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、AAモノマー由来の構造単位が84モル%以上98モル%以下であることが好ましい。
  ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、55.60重量%以上85.45重量%以下であることが好ましい。このとき、水系溶媒は水を、ポリマーゲル全体を基準として15.4重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上56.00重量%以下含むこともできる。
  一方で、ポリマーゲル中にフィラーを含める場合は、ポリマーゲル中のフィラーの含有量はポリマーゲル全体を基準として、15.00重量%以上21.00重量%以下であることが好ましい。ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、64.41重量%以上69.21重量%以下であることが好ましい。このとき、水系溶媒は水を、ポリマーゲル全体を基準として17.30重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上50.61重量%以下含むこともできる。
  組成物の硬さは931mN以上1911mN以下であることが好ましい。
  上記した範囲を満たすことにより、実際の健康な肝臓に非常に近い質感や感触を再現できる。ただし、再現する患者の性別や年齢により、肝臓の硬さは様々であるため、上記範囲に留まらず適宜変更してもよい。病変した肝臓(肝硬変、肝臓がんなど)を再現する場合においても同様である。
When producing a liver model as a three-dimensional surgical treatment training model, in the polymer constituting the polymer gel, the structural unit derived from the host group-containing AA monomer is 1 mol% or more and 8 mol% or less, derived from the guest group-containing AA monomer It is preferable that a structural unit is 1 mol% or more and 8 mol% or less, and a structural unit derived from an AA monomer is 84 mol% or more and 98 mol% or less.
The content of the aqueous solvent in the polymer gel is preferably 55.60% by weight or more and 85.45% by weight or less based on the entire polymer gel. At this time, the aqueous solvent preferably contains water at 15.4 wt% or more based on the entire polymer gel. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire polymer gel.
On the other hand, when a filler is included in the polymer gel, the content of the filler in the polymer gel is preferably 15.00% by weight or more and 21.00% by weight or less based on the entire polymer gel. The content of the aqueous solvent in the polymer gel is preferably 64.41% by weight or more and 69.21% by weight or less based on the entire polymer gel. At this time, the aqueous solvent preferably contains 17.30% by weight or more of water based on the entire polymer gel. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire polymer gel.
The hardness of the composition is preferably 931 mN or more and 1911 mN or less.
By satisfying the above-mentioned range, it is possible to reproduce the texture and feel very close to the actual healthy liver. However, since the hardness of the liver varies depending on the sex and age of the patient to be reproduced, it may be changed appropriately without staying in the above range. The same applies to the case of reproducing a diseased liver (cirrhosis, liver cancer, etc.).
 3次元外科治療研修モデルとして心臓モデルを作製する場合は、ポリマーゲルを構成する重合体において、ホスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、ゲスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、AAモノマー由来の構造単位が84モル%以上98モル%以下であることが好ましい。
  ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、55.60重量%以上71.40重量%以下であることが好ましい。このとき、水系溶媒は水を、ポリマーゲル全体を基準として25.15重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上37.00重量%以下含むこともできる。
  一方で、ポリマーゲル中にフィラーを含める場合は、ポリマーゲル中のフィラーの含有量はポリマーゲル全体を基準として、23.00重量%以上26.00重量%以下であることが好ましい。ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、55.00重量%以上62.00重量%以下であることが好ましく、58.00重量%以上61.00重量%以下であることが好ましい。このとき、水系溶媒は水を、ポリマーゲル全体を基準として16.20重量%以上含むことがより好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上44.11重量%以下含むこともできる。
  組成物の硬さは2068mN以上2696mN以下であることが好ましい。
  上記した範囲を満たすことにより、実際の健康な心臓に非常に近い質感や感触を再現できる。ただし、再現する患者の性別や年齢により、心臓の硬さは様々であるため、上記範囲に留まらず適宜変更してもよい。病変した心臓(心筋梗塞、心臓肥大など)を再現する場合においても同様である。
When producing a cardiac model as a three-dimensional surgical treatment training model, in the polymer constituting the polymer gel, the structural unit derived from the host group-containing AA monomer is 1 mol% or more and 8 mol% or less, the guest group containing AA monomer derived It is preferable that a structural unit is 1 mol% or more and 8 mol% or less, and a structural unit derived from an AA monomer is 84 mol% or more and 98 mol% or less.
The content of the aqueous solvent in the polymer gel is preferably 55.60% by weight or more and 71.40% by weight or less based on the entire polymer gel. At this time, it is preferable that the aqueous solvent contains 25.15% by weight or more of water based on the entire polymer gel. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water, in an amount of 0% by weight or more and 37.00% by weight or less based on the entire polymer gel.
On the other hand, when the filler is contained in the polymer gel, the content of the filler in the polymer gel is preferably 23.00% by weight or more and 26.00% by weight or less based on the whole polymer gel. The content of the aqueous solvent in the polymer gel is preferably 55.00% by weight or more and 62.00% by weight or less based on the whole polymer gel, and is 58.00% by weight or more and 61.00% by weight or less Is preferred. At this time, the aqueous solvent more preferably contains water at 16.20% by weight or more based on the entire polymer gel. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water, in an amount of 0% to 44.11% by weight based on the entire polymer gel.
The hardness of the composition is preferably 2068 mN to 2696 mN.
By satisfying the above-mentioned range, it is possible to reproduce the texture and feel very close to the actual healthy heart. However, since the hardness of the heart varies depending on the sex and age of the patient to be reproduced, it may be appropriately changed without being limited to the above range. The same applies to the case of reproducing a diseased heart (myocardial infarction, cardiac hypertrophy, etc.).
 3次元外科治療研修モデルとして皮膚モデルを作製する場合は、ポリマーゲルを構成する重合体において、ホスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、ゲスト基含有AAモノマー由来の構造単位が1モル%以上8モル%以下、AAモノマー由来の構造単位が84モル%以上98モル%以下であることが好ましい。
  ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、49.45重量%以上71.89重量%以下であることが好ましい。このとき、水系溶媒は水を、ポリマーゲル全体を基準として19.55重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上52.00重量%以下含むこともできる。
  一方で、ポリマーゲル中にフィラーを含める場合は、ポリマーゲル中のフィラーの含有量はポリマーゲル全体を基準として、15.00重量%以上26.00重量%以下であることが好ましい。ポリマーゲル中の水系溶媒の含有量はポリマーゲル全体を基準として、45.85重量%以上69.21重量%以下であることが好ましい。このとき、水系溶媒は水を、ポリマーゲル全体を基準として14.50重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、ポリマーゲル全体を基準として0重量%以上50.61%以下含むこともできる。
  組成物の硬さは1166mN以上4264mN以下であることが好ましい。
  上記した範囲を満たすことにより、実際の皮膚に非常に近い質感や感触を再現できる。ただし、再現する患者の性別や年齢により、皮膚の硬さは様々であるため、上記範囲に留まらず適宜変更してもよい。病変した皮膚(やけど、皮膚がん、ケロイドなど)を再現する場合においても同様である。
  なお、皮膚は表皮や真皮など多層に渡る器官であるため、様々な硬さに調整したポリマーゲルを複数積層させて用いることで、より本物に近い質感を得ることができる。このような事情から、皮膚モデル用組成物の硬さは、肝臓モデル用組成物や心臓モデル用組成物よりも広い範囲に設定される。
When preparing a skin model as a three-dimensional surgical treatment training model, in the polymer constituting the polymer gel, the structural unit derived from the host group-containing AA monomer is 1 mol% or more and 8 mol% or less, derived from the guest group-containing AA monomer It is preferable that a structural unit is 1 mol% or more and 8 mol% or less, and a structural unit derived from an AA monomer is 84 mol% or more and 98 mol% or less.
The content of the aqueous solvent in the polymer gel is preferably 49.45% by weight or more and 71.89% by weight or less based on the entire polymer gel. At this time, the aqueous solvent preferably contains water at 19.55% by weight or more based on the whole polymer gel. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 52.00% by weight or less based on the entire polymer gel.
On the other hand, when the filler is contained in the polymer gel, the content of the filler in the polymer gel is preferably 15.00% by weight or more and 26.00% by weight or less based on the whole polymer gel. The content of the aqueous solvent in the polymer gel is preferably 45.85% by weight or more and 69.21% by weight or less based on the entire polymer gel. At this time, the aqueous solvent preferably contains water at 14.50% by weight or more based on the entire polymer gel. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% or less based on the entire polymer gel.
The hardness of the composition is preferably 1166 mN to 4264 mN.
By satisfying the above-mentioned range, it is possible to reproduce the texture and feel very close to the actual skin. However, since the hardness of the skin varies depending on the sex and age of the patient to be reproduced, it may be changed appropriately without being limited to the above range. The same is true for reproducing the skin that has been affected (burn, skin cancer, keloid, etc.).
In addition, since the skin is a multi-layered organ such as the epidermis and the dermis, by laminating a plurality of polymer gels adjusted to various hardness and using it, it is possible to obtain a more realistic texture. Under these circumstances, the hardness of the skin model composition is set to a wider range than that of the liver model composition and the heart model composition.
(ホスト-ゲスト相互作用の原理を利用した自己修復)
 ここで、ホスト-ゲスト相互作用によりポリマーゲルが自己修復する機構について簡単に説明する。
  上記組成物は、通常、ホスト基及びゲスト基の少なくとも一部が包接錯体を形成している状態で構成されている。この組成物が治療トレーニングに供され切断されると、切断界面においてホスト基及びゲスト基が解離した状態になる。そして、トレーニング等が終わった後、組成物を元に戻すために切断界面を再接触させると、解離したホスト基及びゲスト基が再度包接され、切断界面同士が接着融合する。
(Self-healing using the principle of host-guest interaction)
Here, the mechanism by which the polymer gel self-repairs by host-guest interaction is briefly described.
The above-mentioned composition is usually constituted in a state where at least a part of the host group and the guest group form an inclusion complex. When the composition is subjected to therapeutic training and cleaved, the host and guest groups become dissociated at the cleavage interface. Then, after training or the like is completed, when the cleavage interface is recontacted to restore the composition, the dissociated host group and guest group are again included, and the cleavage interfaces adhere and fuse.
 本開示の組成物は上記のようなホスト-ゲスト相互作用の原理を利用して自己修復するため、特殊な用具の使用や複雑な構成要件を備えることなく、常温常圧下において切断界面を簡易に自己修復可能となっている。
  一方、他の原理を用いた自己修復性を有するポリマーゲルでは加温や紫外線/可視光照射を行ったり、ポリマーゲル中に内包させたマイクロカプセルを破壊し、該マイクロカプセルから内容物(モノマー等)を放出させたりすることで、自己修復を可能にしている。このように、他の原理を用いた自己修復性を有するポリマーゲルでは、特殊な用具の使用や複雑な構成要件を備える必要がある。
The composition of the present disclosure is self-repairing utilizing the host-guest interaction principle as described above, so that the cutting interface can be simplified easily at normal temperature and pressure without the use of special tools and complicated configuration requirements. Self-healing is possible.
On the other hand, in the case of a polymer gel having self-healing properties based on another principle, heating or irradiation with ultraviolet light / visible light is performed, or microcapsules encapsulated in the polymer gel are broken, and contents (monomers etc. Release self-healing, etc., to enable self-healing. Thus, a polymer gel having self-repairing properties using other principles needs to be equipped with the use of a special tool and complicated configuration requirements.
<3次元外科治療研修モデル用組成物の製造方法>
  次に上記した3次元外科治療研修モデル用組成物の製造方法について説明する。
<Method of Producing Composition for 3D Surgical Treatment Training Model>
Next, a method of producing the composition for training a model for three-dimensional surgical treatment described above will be described.
 上記組成物の製造方法の1つの態様(以下において、「製造方法10」と表記することがある。)について説明する。
  製造方法10は、ホスト基含有アクリルアミド系モノマー、ゲスト基含有アクリルアミド系モノマー、アクリルアミド系モノマー、及び水系溶媒を混合する工程(以下において、「S11」と表記することがある。)と、S11により得られる溶液に重合開始剤を添加する工程(以下において、「S12」と表記することがある。)と、ホスト基含有アクリルアミド系モノマー、ゲスト基含有アクリルアミド系モノマー、及びアクリルアミド系モノマーを重合させる工程(以下において、「S13」と表記することがある。)と、を備える。
  上記のS11、S12において、S13における溶液中のホスト基含有アクリルアミド系モノマー、ゲスト基含有アクリルアミド系モノマー、アクリルアミド系モノマー、及び水系溶媒の含有量を調整することで、組成物の硬さを調整することができる。
  図1に製造方法10のフローチャートを示した。
One aspect of the method for producing the composition (hereinafter sometimes referred to as “production method 10”) will be described.
Production method 10 is obtained by the step of mixing a host group-containing acrylamide monomer, a guest group-containing acrylamide monomer, an acrylamide monomer, and an aqueous solvent (hereinafter sometimes referred to as "S11"), and S11. Adding a polymerization initiator to the solution (hereinafter sometimes referred to as "S12"), and a step of polymerizing a host group-containing acrylamide monomer, a guest group-containing acrylamide monomer, and an acrylamide monomer ((S12)) In the following, it may be written as "S13".
The hardness of the composition is adjusted by adjusting the contents of the host group-containing acrylamide monomer, guest group-containing acrylamide monomer, acrylamide monomer, and aqueous solvent in the solution in S13 in the above S11 and S12. be able to.
A flow chart of manufacturing method 10 is shown in FIG.
(S11:混合する工程)
  S11ではホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、及び水系溶媒を混合する。必要に応じてS11において重合促進剤を添加する。また、フィラーを添加して混合してもよい。フィラーを添加すると、製造される組成物のタック性の低減及び加工性の向上が可能となる。
  なお、S11において混合後に加温や静置、超音波分散処理等を行い、ホスト基とゲスト基とを包接させ、包接錯体を形成しておくことが好ましい。
(S11: step of mixing)
In S11, a host group-containing AA monomer, a guest group-containing AA monomer, an AA monomer, and an aqueous solvent are mixed. If necessary, a polymerization accelerator is added in S11. Also, fillers may be added and mixed. The addition of the filler makes it possible to reduce the tackiness and to improve the processability of the produced composition.
In addition, after mixing in S11, heating, standing, ultrasonic dispersion treatment, or the like is preferably performed to clathrate the host group and the guest group to form an inclusion complex.
 重合促進剤としては、N,N,N’,N’-テトラメチルエチレンジアミン(TEMED)、アスコルビン酸ナトリウム等を挙げることができる。 As a polymerization accelerator, N, N, N ', N'-tetramethylethylenediamine (TEMED), sodium ascorbate, etc. can be mentioned.
(S12:添加する工程)
 S12では、S11により得られる溶液に重合開始剤を添加する。また、必要に応じてS12においても上記重合促進剤を添加することができる。
(S12: step to be added)
In S12, a polymerization initiator is added to the solution obtained by S11. Moreover, the said polymerization accelerator can be added also in S12 as needed.
 重合開始剤としては、過硫酸アンモニウム(APS)、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド(VA-044)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、ジ-tert-ブチルペルオキシド、tert-ブチルヒドロペルオキシド、過酸化ベンゾイル、過酸化水素、光重合開始剤(イルガキュア(登録商標)シリーズ等)等が挙げられる。好ましくは、APS、VA-044である。 As a polymerization initiator, ammonium persulfate (APS), azobisisobutyronitrile (AIBN), 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (VA-044), 1,1'-azobis (cyclohexanecarbonitrile), di-tert-butylperoxide, tert-butyl hydroperoxide, benzoyl peroxide, hydrogen peroxide, photopolymerization initiators (IRGACURE (registered trademark) series etc.), etc. . Preferably, it is APS, VA-044.
(S13:重合させる工程)
 S13ではホスト基含有AAモノマー、ゲスト基含有AAモノマー、及びAAモノマーを重合させる。
  このとき、S13における溶液中のホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、及び水系溶媒の含有量に応じて、製造される組成物の硬さが決定する。よって、組成物の硬さを目的の硬さに調整するために、S13における溶液中の成分の含有量を前工程(S11、S12)において調整することが好ましい。フィラーを添加した場合は、S13における溶液中のホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、水系溶媒、及びフィラーの含有量に応じて、製造される組成物の硬さが決定する。また、重合促進剤を添加した場合、S13における溶液中の重合促進剤の含有量に応じても組成物の硬さが変化する。よって、フィラーの含有量及び/又は重合促進剤の含有量もS11、S12において調整することが好ましい。
(S13: step of polymerizing)
In S13, the host group-containing AA monomer, the guest group-containing AA monomer, and the AA monomer are polymerized.
At this time, the hardness of the composition to be produced is determined according to the contents of the host group-containing AA monomer, guest group-containing AA monomer, AA monomer, and aqueous solvent in the solution in S13. Therefore, in order to adjust the hardness of a composition to the target hardness, it is preferable to adjust content of the component in the solution in S13 in a front process (S11, S12). When a filler is added, the hardness of the composition to be produced is determined according to the content of host group-containing AA monomer, guest group-containing AA monomer, AA monomer, aqueous solvent, and filler in the solution in S13. . In addition, when the polymerization accelerator is added, the hardness of the composition also changes depending on the content of the polymerization accelerator in the solution in S13. Therefore, it is preferable to adjust the content of the filler and / or the content of the polymerization accelerator in S11 and S12.
 具体的には、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として2.00重量%以上26.00重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として0.35重量%以上3.90重量%以下であり、AAモノマーの含有量が溶液全体を基準として9.00重量%以上29.60重量%以下であり、水系溶媒の含有量が溶液全体を基準として49.45重量%以上85.45重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として14.50重量%以上含むことが好ましく、15.40重量%以上含むことがより好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上56.00重量%以下含むことができる。「0重量%以上」としているのは、水系溶媒に親水性溶媒を含むことが必須ではないからである。耐乾燥性を高めるためには、上記親水性溶媒の含有量が10.00重量%以上であることが好ましい。
  これにより、組成物を所望の硬さに調整することができる。
Specifically, the content of the host group-containing AA monomer in the solution at S13 is 2.00% by weight or more and 26.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is the entire solution 0.35% by weight or more and 3.90% by weight or less, the content of the AA monomer is 9.00% by weight or more and 29.60% by weight or less based on the entire solution, and the content of the aqueous solvent is It is preferable that it is 49.45 weight% or more and 85.45 weight% or less based on the whole solution.
The aqueous solvent preferably contains water at 14.50% by weight or more based on the whole solution, and more preferably at least 15.40% by weight. In addition, the aqueous solvent can contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire solution. The reason that “0% by weight or more” is used is that it is not essential that the aqueous solvent contains a hydrophilic solvent. In order to enhance the drying resistance, the content of the hydrophilic solvent is preferably 10.00% by weight or more.
Thereby, the composition can be adjusted to a desired hardness.
 フィラーを添加した場合は、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として4.80重量%以上10.00重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として0.70重量%以上1.50重量%以下であり、AAモノマーの含有量が溶液全体を基準として8.00重量%以上16.30重量%以下であり、水系溶媒の含有量が溶液全体を基準として45.85重量%以上69.21重量%以下に調整であり、フィラーの含有量が溶液全体を基準として15.00重量%以上26.00重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として14.50重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上50.61重量%以下含むことができる。
  これにより、組成物を所望の硬さに調整することができる。また、臓器モデルとして適切なタック性を有する組成物も得ることができる。また、フィラーの含有量が溶液全体を基準として21.00重量%以上26.00重量%以下である場合、より加工に適した組成物を得ることができる。
When the filler is added, the content of the host group-containing AA monomer in the solution in S13 is 4.80% by weight or more and 10.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.70% by weight or more and 1.50% by weight or less based on the whole solution, the content of AA monomer is 8.00% by weight or more and 16.30% by weight or less based on the whole solution, and containing an aqueous solvent The amount is adjusted to 45.85% by weight or more and 69.21% by weight or less based on the whole solution, and the content of the filler is 15.00% by weight or more and 26.00% by weight or less based on the whole solution preferable.
The aqueous solvent preferably contains water at 14.50% by weight or more based on the entire solution. In addition, the aqueous solvent can include a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire solution.
Thereby, the composition can be adjusted to a desired hardness. In addition, a composition having appropriate tackiness as an organ model can also be obtained. Moreover, when the content of the filler is 21.00% by weight or more and 26.00% by weight or less based on the entire solution, a composition more suitable for processing can be obtained.
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が溶液全体を基準として0.01重量%以上3.00重量%以下であることが好ましい。フィラーを添加した場合は、S13における溶液中の重合促進剤の含有量が溶液全体を基準として0.01重量%以上1.00重量%以下であることが好ましく、0.05重量%以上0.50重量%以下であることがより好ましく、0.09重量%以上0.25重量%以下であることがさらに好ましい。
  重合促進剤の含有量が0.01重量%未満であると、重合反応が速やかに進行しない場合がある。一方で、重合促進剤の含有量が3.00重量%を超えると、重合反応が過剰に進行し、得られるポリマーゲルが柔らかくなりすぎる傾向にあり、形状の維持が難しくなる。
When a polymerization accelerator is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 3.00% by weight or less based on the entire solution. When a filler is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the entire solution, and 0.05% by weight or more. The content is more preferably 50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
If the content of the polymerization accelerator is less than 0.01% by weight, the polymerization reaction may not proceed rapidly. On the other hand, when the content of the polymerization accelerator exceeds 3.00% by weight, the polymerization reaction proceeds excessively, the resulting polymer gel tends to be too soft, and the shape becomes difficult to maintain.
 なお、水系溶媒が2種類以上の成分から構成されるときは、これらの成分の比率によっても組成物の硬さを調整することができる。
  また、水系溶媒のうち水の含有量が溶液全体を基準として14.50重量%未満であると、モノマーの溶解性が悪くなる傾向にある。
When the aqueous solvent is composed of two or more components, the hardness of the composition can be adjusted also by the ratio of these components.
In addition, when the content of water in the aqueous solvent is less than 14.50% by weight based on the entire solution, the solubility of the monomer tends to be deteriorated.
 さらに各モデルに適した組成物を製造するための好ましい含有量を説明する。
  肝臓モデルのための組成物を製造する際には、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として2.00重量%以上11.00重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として0.35重量%以上1.80重量%以下であり、AAモノマーの含有量が溶液全体を基準として9.00重量%以上18.50重量%以下であり、水系溶媒の含有量が溶液全体を基準として55.60重量%以上85.45重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として15.40重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上56.00重量%以下含むこともできる。
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が、溶液全体を基準として0.50重量%以上3.00重量%以下であることが好ましい。
Furthermore, the preferred content for producing a composition suitable for each model is described.
When producing a composition for a liver model, the content of the host group-containing AA monomer in the solution in S13 is 2.00% by weight or more and 11.00% by weight or less based on the whole solution, and a guest group The content of the contained AA monomer is 0.35% to 1.80% by weight based on the whole solution, and the content of the AA monomer is 9.00% to 18.50% by weight on the whole solution The content of the aqueous solvent is preferably 55.60% by weight or more and 85.45% by weight or less based on the entire solution.
The aqueous solvent preferably contains water at 15.40% by weight or more based on the entire solution. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 56.00% by weight or less based on the entire solution.
When adding a polymerization accelerator, it is preferable that content of the polymerization accelerator in the solution in S13 is 0.50 weight% or more and 3.00 weight% or less based on the whole solution.
 フィラーを添加した場合は、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として5.10重量%以上5.50重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として0.80重量%以上0.90重量%以下であり、AAモノマーの含有量が溶液全体を基準として8.50重量%以上9.20重量%以下であり、水系溶媒の含有量が溶液全体を基準として64.41重量%以上69.21重量%以下であり、フィラーの含有量が溶液全体を基準として15.00重量%以上21.00重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として17.30重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上50.61重量%以下含むこともできる。
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が、溶液全体を基準として0.01重量%以上1.00重量%以下であることが好ましく、0.05重量%以上0.50重量%以下であることがより好ましく、0.09重量%以上0.25重量%以下であることがさらに好ましい。
When the filler is added, the content of the host group-containing AA monomer in the solution in S13 is 5.10% by weight or more and 5.50% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.80% by weight or more and 0.90% by weight or less based on the whole solution, the content of the AA monomer is 8.50% by weight or more and 9.20% by weight or less based on the whole solution, and containing an aqueous solvent It is preferable that the amount is 64.41% by weight or more and 69.21% by weight or less based on the whole solution, and the content of the filler is 15.00% by weight or more and 21.00% by weight or less based on the whole solution.
The aqueous solvent preferably contains 17.30% by weight or more of water based on the entire solution. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire solution.
When a polymerization accelerator is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the whole solution, 0.05% by weight The content is more preferably 0.50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
 心臓モデルのための組成物を製造する際には、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として10.00重量%以上15.50重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として1.50重量%以上2.50重量%以下であり、AAモノマーの含有量が溶液全体を基準として16.50重量%以上26.00重量%以下であり、水系溶媒の含有量が溶液全体を基準として55.60重量%以上71.40重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として25.15重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上37重量%以下含むこともできる。
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が、溶液全体を基準として0.40重量以上0.60重量%以下であることが好ましく、0.45重量%以上0.55重量%以下であることがより好ましく、0.50重量%であることが特に好ましい。
When producing the composition for the heart model, the content of the host group-containing AA monomer in the solution in S13 is 10.00 wt% or more and 15.50 wt% or less based on the entire solution, and the guest group is The content of the contained AA monomer is 1.50% by weight or more and 2.50% by weight or less based on the whole solution, and the content of the AA monomer is 16.50% by weight or more and 26.00% by weight or less based on the whole solution It is preferable that the content of the aqueous solvent is 55.60% by weight or more and 71.40% by weight or less based on the entire solution.
The aqueous solvent preferably contains 25.15% by weight or more of water based on the entire solution. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 37% by weight or less based on the entire solution.
When a polymerization accelerator is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.40 wt% or more and 0.60 wt% or less based on the entire solution, and 0.45 wt% or more The content is more preferably 0.55% by weight or less, particularly preferably 0.50% by weight.
 フィラーを添加した場合は、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として4.80重量%以上5.00重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として0.70重量%以上0.75重量%以下であり、AAモノマーの含有量が溶液全体を基準として8.00重量%以上8.30重量%以下であり、水系溶媒の含有量が溶液全体を基準として55.00重量%以上62.00重量%以下であり(より好ましくは、58.00重量%以上61.00重量%以下である。)、フィラーの含有量が溶液全体を基準として23.00重量%以上26.00重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として16.20重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上44.11重量%以下含むこともできる。
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が、溶液全体を基準として0.01重量%以上1.00重量%以下であることが好ましく、0.05重量%以上0.50重量%以下であることがより好ましく、0.09重量%以上0.25重量%以下であることがさらに好ましい。
When the filler is added, the content of the host group-containing AA monomer in the solution in S13 is 4.80% by weight or more and 5.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.70% by weight or more and 0.75% by weight or less based on the whole solution, the content of the AA monomer is 8.00% by weight or more and 8.30% by weight or less based on the whole solution, and containing the aqueous solvent The amount is 55.00% by weight to 62.00% by weight based on the whole solution (more preferably 58.00% by weight to 61.00% by weight), and the content of the filler is the whole solution It is preferable that it is 23.00 weight% or more and 26.00 weight% or less based on.
The aqueous solvent preferably contains water at 16.20% by weight or more based on the entire solution. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 44.11% by weight or less based on the entire solution.
When a polymerization accelerator is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the whole solution, 0.05% by weight The content is more preferably 0.50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
 皮膚モデルのための組成物を製造する際には、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として10重量%以上26重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として1.50重量%以上3.90重量%以下であり、AAモノマーの含有量が溶液全体を基準として13.90重量%以上29.60重量%以下であり、水系溶媒の含有量が溶液全体を基準として49.45重量%以上71.89重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として19.55重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上52.00重量%以下含むこともできる。
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が、溶液全体を基準として0.01重量%以上1.50重量%以下であることが好ましい。
When producing the composition for the skin model, the content of the host group-containing AA monomer in the solution in S13 is 10% by weight or more and 26% by weight or less based on the entire solution, and the guest group-containing AA monomer The content is 1.50 wt% or more and 3.90 wt% or less based on the whole solution, the content of AA monomer is 13.90 wt% or more and 29.60 wt% or less based on the whole solution, water system The content of the solvent is preferably 49.45% by weight or more and 71.89% by weight or less based on the entire solution.
The aqueous solvent preferably contains 19.95% by weight or more of water based on the entire solution. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 52.00% by weight or less based on the entire solution.
When adding a polymerization accelerator, it is preferable that content of the polymerization accelerator in the solution in S13 is 0.01 weight% or more and 1.50 weight% or less based on the whole solution.
 フィラーを添加した場合は、S13における溶液中のホスト基含有AAモノマーの含有量が溶液全体を基準として4.80重量%以上10.00重量%以下であり、ゲスト基含有AAモノマーの含有量が溶液全体を基準として0.70重量%以上1.50重量%以下であり、AAモノマーの含有量が溶液全体を基準として8.00重量%以上16.30重量%以下であり、水系溶媒の含有量が溶液全体を基準として45.85重量%以上69.21重量%以下であり、フィラーの含有量が溶液全体を基準として15.00重量%以上26.00重量%以下であることが好ましい。
  水系溶媒は水を、溶液全体を基準として14.50重量%以上含むことが好ましい。また、水系溶媒は水よりも沸点が高い親水性溶媒を、溶液全体を基準として0重量%以上50.61重量%以下含むこともできる。
  重合促進剤を添加する場合は、S13における溶液中の重合促進剤の含有量が、溶液全体を基準として0.01重量%以上1.00重量%以下であることが好ましく、0.05重量%以上0.50重量%以下であることがより好ましく、0.09重量%以上0.25重量%以下であることがさらに好ましい。
When the filler is added, the content of the host group-containing AA monomer in the solution in S13 is 4.80% by weight or more and 10.00% by weight or less based on the entire solution, and the content of the guest group-containing AA monomer is 0.70% by weight or more and 1.50% by weight or less based on the whole solution, the content of AA monomer is 8.00% by weight or more and 16.30% by weight or less based on the whole solution, and containing an aqueous solvent Preferably, the amount is 45.85% by weight to 69.21% by weight based on the whole solution, and the content of the filler is 15.00% by weight to 26.00% by weight based on the whole solution.
The aqueous solvent preferably contains water at 14.50% by weight or more based on the entire solution. The aqueous solvent can also contain a hydrophilic solvent having a boiling point higher than that of water in an amount of 0% by weight or more and 50.61% by weight or less based on the entire solution.
When a polymerization accelerator is added, the content of the polymerization accelerator in the solution in S13 is preferably 0.01% by weight or more and 1.00% by weight or less based on the whole solution, 0.05% by weight The content is more preferably 0.50% by weight or less, still more preferably 0.09% by weight or more and 0.25% by weight or less.
 また、S13における溶液中の重合開始剤の濃度は、上記モノマーを適切に重合させることができれば特に限定されないが、溶液全体を基準として0.03重量%以上0.10重量%以下であることが好ましい。
  重合反応の条件は適宜設定することができるが、例えば、溶液を0~80℃、好ましくは5~25℃で撹拌することで行える。重合反応の反応時間は30秒~24時間とすることができ、好ましくは30秒~1時間とすることができる。なお、重合開始剤として、光重合開始剤を用いる場合は、例えば、溶液に波長200~405nmのUV光を照射することにより重合反応を行うことができる。
Further, the concentration of the polymerization initiator in the solution at S13 is not particularly limited as long as the above monomers can be appropriately polymerized, but it is 0.03 wt% or more and 0.10 wt% or less based on the whole solution. preferable.
The conditions of the polymerization reaction can be set as appropriate, for example, by stirring the solution at 0 to 80 ° C., preferably 5 to 25 ° C. The reaction time of the polymerization reaction can be 30 seconds to 24 hours, preferably 30 seconds to 1 hour. When a photopolymerization initiator is used as the polymerization initiator, for example, the polymerization reaction can be performed by irradiating the solution with UV light having a wavelength of 200 to 405 nm.
 なお、S13により得られたゲルは必要に応じて精製や乾燥、養生を行うことができる。 In addition, the gel obtained by S13 can perform refinement | purification, drying, and curing as needed.
 以上S11~S13の工程により本開示の組成物を製造することができるが、以下の浸漬させる工程(以下において、「S14」と表記することがある。)をさらに行ってもよい。 Although the composition of the present disclosure can be produced by the above-described steps S11 to S13, the following immersion step (which may be hereinafter referred to as "S14") may be further performed.
(S14:浸漬させる工程)
 S14では、S13により得られるゲルを浸漬用溶媒に浸漬させる。
  浸漬用溶媒は上記親水性溶媒からなる、或いは上記親水性溶媒及び水を含むことが好ましい。
  浸漬条件は室温下で行うことができる。また、浸漬する際には、ゲルが浸漬用溶媒に完全に浸漬するようにすることが好ましい。
(S14: step of immersing)
In S14, the gel obtained by S13 is immersed in the immersion solvent.
The immersion solvent preferably comprises the above-mentioned hydrophilic solvent, or preferably comprises the above-mentioned hydrophilic solvent and water.
Immersion conditions can be performed at room temperature. In addition, when immersing, it is preferable to completely immerse the gel in the immersion solvent.
 S14におけるゲルの浸漬時間は、製造される組成物を所望の硬さにするために適宜調節することができる。例えば、浸漬時間を0.1時間以上48時間以下とすることができる。これにより、ポリマーゲル中の水の少なくとも一部が上記親水性溶媒に置換され、ポリマーゲルは水及び親水性溶媒を含むようになる。
  なお、肝臓モデルのための組成物を製造する際には浸漬時間を12時間以上48時間以下とし、心臓モデルのための組成物を製造する際には浸漬時間を6時間以上24時間以下とし、皮膚モデルのための組成物を製造する際には浸漬時間を1時間以上6時間以下とすることが好ましい。ただし、これらの好ましい浸漬時間は1つの例であり、造形物の大きさや表面積により適宜変更される。
The immersion time of the gel in S14 can be suitably adjusted in order to make the composition to be manufactured into a desired hardness. For example, the immersion time can be 0.1 hours or more and 48 hours or less. As a result, at least a portion of the water in the polymer gel is replaced by the hydrophilic solvent, and the polymer gel contains water and the hydrophilic solvent.
The immersion time is 12 hours or more and 48 hours or less when producing the composition for the liver model, and the immersion time is 6 hours or more and 24 hours or less when the composition for the heart model is produced, When manufacturing the composition for skin model, it is preferable to make immersion time into 1 to 6 hours. However, these preferable immersion times are one example, and are suitably changed according to the size and surface area of a shaped article.
 また、浸漬用溶媒における親水性溶媒の濃度によっても、組成物の硬さが調整される。例えば、浸漬用溶媒における親水性溶媒の好ましい濃度としては、20重量%以上100重量%以下の範囲を挙げることができる。 The hardness of the composition is also adjusted by the concentration of the hydrophilic solvent in the immersion solvent. For example, as a preferable density | concentration of the hydrophilic solvent in the solvent for immersion, the range of 20 weight% or more and 100 weight% or less can be mentioned.
 以上、製造方法10により本開示の組成物が得られる。また、モデルとする器官を模した型内で製造方法10を行うことにより、複雑な形状であっても3次元的に精巧なモデルを容易に造形することができる。 As mentioned above, the composition of this indication is obtained by the manufacturing method 10. In addition, by performing the manufacturing method 10 in a mold imitating a model organ, it is possible to easily form a three-dimensionally sophisticated model even if it has a complicated shape.
 以下に実施例について説明するが、本開示の組成物及びその製造方法はこれに限定されない。 Examples will be described below, but the composition of the present disclosure and the method for producing the same are not limited thereto.
 実施例において用いたモノマーは次のとおりである。
・ホスト基含有アクリルアミド系モノマー(ホスト基含有AAモノマー):モノ‐6‐デオキシ‐6‐(アクリルアミド)‐β‐シクロデキストリン(国際公開2012/036069号に基づいて作製、純度88%)を用いた。これが重合されると、上記式(1)において、R、Rが水素であり、Rがβ‐シクロデキストリン(6位のヒドロキシ基で結合)である構造単位になる。
・ゲスト基含有アクリルアミド系モノマー(ゲスト基含有AAモノマー):N‐(1‐アダマンチル)アクリルアミド(国際公開2012/036069号に基づいて作製、純度99%以上)を用いた。これが重合されると、上記式(2)において、R、Rが水素であり、Rがアダマンチル基(1位で結合)である構造単位になる。
・アクリルアミド系モノマー(AAモノマー):アクリルアミド(製造元:和光純薬工業株式会社、純度98%以上)を用いた。これが重合されると、上記式(3)において、R、R、Rが水素である構造単位になる。
The monomers used in the examples are as follows.
Host group-containing acrylamide monomer (host group-containing AA monomer): mono-6-deoxy-6- (acrylamide) -β-cyclodextrin (prepared according to WO 2012/036069, purity 88%) . When this is polymerized, it becomes a structural unit in which R 1 and R 2 are hydrogen and R H is β-cyclodextrin (bonded at the 6-position hydroxy group) in the above-mentioned formula (1).
Guest group-containing acrylamide-based monomer (guest group-containing AA monomer): N- (1-adamantyl) acrylamide (prepared according to WO 2012/036069, purity of 99% or more) was used. When this is polymerized, it becomes a structural unit in which R 3 and R 4 are hydrogen and R G is an adamantyl group (bonded at the 1-position) in the above formula (2).
Acrylamide-based monomer (AA monomer): Acrylamide (manufactured by Wako Pure Chemical Industries, Ltd., purity 98% or more) was used. When this is polymerized, structural units in which R 5 , R 6 and R 7 are hydrogen in the above formula (3) become.
(実施例1~4、8~13、比較例1、2、5~8)
 サンプル管(3ml)に、ホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、及び水を入れ、混合した。そして、この混合液に超音波を照射しながら5分間撹拌し、モノマーを完全に溶解させた。次いで、溶液に重合開始剤であるAPS(和光純薬工業株式会社製)と重合促進剤であるTEMED(和光純薬工業株式会社製)を添加し、得られた溶液を重合反応条件(室温に1時間放置)に供した。この状態において室温下(25℃)、湿潤状態(Rh80±5%)で12時間静置した。これにより実施例1~4、8~13、比較例1、2、5~8に係る組成物(ポリマーゲル)を得た。
  なお、重合開始時の溶液の成分は表1、3~5のとおりである。
(Examples 1 to 4 and 8 to 13; Comparative Examples 1 and 2 and 5 to 8)
In a sample tube (3 ml), host group-containing AA monomer, guest group-containing AA monomer, AA monomer, and water were placed and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer. Subsequently, APS (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization initiator and TEMED (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization accelerator are added to a solution, and the obtained solution is subjected to polymerization reaction conditions (room temperature) Left for 1 hour). In this state, it was allowed to stand for 12 hours in a wet state (Rh 80 ± 5%) at room temperature (25 ° C.). As a result, compositions (polymer gels) according to Examples 1 to 4 and 8 to 13 and Comparative Examples 1 and 2 to 5 were obtained.
The components of the solution at the start of polymerization are as shown in Tables 1 and 3 to 5.
(実施例5)
 サンプル管(3ml)に、ホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、及び水を入れ、混合した。そして、この混合液に超音波を照射しながら5分間撹拌し、モノマーを完全に溶解させた。次いで、溶液に重合開始剤であるAPS(和光純薬工業株式会社製)と重合促進剤であるTEMED(和光純薬工業株式会社製)を添加し、得られた溶液を重合反応条件(室温に1時間放置)に供した。そして、得られたゲルを100mlビーカに移し、ゲルが完全に浸漬するまでグリセリンを注いだ。この状態において室温下(25℃)、12時間静置した。これにより実施例5に係る組成物(ポリマーゲル)を得た。
  なお、重合開始時の溶液の成分は表2のとおりである。
(Example 5)
In a sample tube (3 ml), host group-containing AA monomer, guest group-containing AA monomer, AA monomer, and water were placed and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer. Subsequently, APS (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization initiator and TEMED (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization accelerator are added to a solution, and the obtained solution is subjected to polymerization reaction conditions (room temperature) Left for 1 hour). The resulting gel was then transferred to a 100 ml beaker and glycerin was poured until the gel was completely immersed. In this state, it was allowed to stand at room temperature (25 ° C.) for 12 hours. Thus, a composition (polymer gel) according to Example 5 was obtained.
The components of the solution at the start of polymerization are as shown in Table 2.
(実施例6、7、14~19、比較例3、4、9)
  サンプル管(3ml)に、ホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、水、及びグリセリン(阪本薬品工業株式会社製)を入れ、混合した。そして、この混合液に超音波を照射しながら5分間撹拌し、モノマーを完全に溶解させた。次いで、溶液に重合開始剤であるAPS(和光純薬工業株式会社製)と重合促進剤であるTEMED(和光純薬工業株式会社製)を添加し、得られた溶液を重合反応条件(室温に1時間放置)に供した。これにより実施例6、7、14~19、比較例3、4、9に係る組成物(ポリマーゲル)を得た。
  なお、重合開始時の溶液の成分は表2、3、5、6のとおりである。
(Examples 6, 7, 14 to 19, Comparative Examples 3, 4, 9)
In a sample tube (3 ml), a host group-containing AA monomer, a guest group-containing AA monomer, an AA monomer, water, and glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) were placed and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer. Subsequently, APS (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization initiator and TEMED (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization accelerator are added to a solution, and the obtained solution is subjected to polymerization reaction conditions (room temperature) Left for 1 hour). As a result, compositions (polymer gels) according to Examples 6, 7 and 14 to 19 and Comparative Examples 3 and 4 and 9 were obtained.
The components of the solution at the start of polymerization are as shown in Tables 2, 3, 5, and 6.
(実施例20~25、比較例10~13)
  まず、アクリルアミド(和光純薬工業株式会社製)200mg、水3000mg、TEMED(和光純薬工業株式会社製)17mg、APS(和光純薬工業株式会社製)34mgを混合し、室温で1時間放置して、重合物を得た。次いで、得られた重合物を乳鉢ですりつぶし、フィラー(アクリル酸アミド重合物)を調製した。
  次に、サンプル管(3ml)に、ホスト基含有AAモノマー、ゲスト基含有AAモノマー、AAモノマー、水、グリセリン(阪本薬品工業株式会社製)、及び上記のフィラーを入れ、混合した。そして、この混合液に超音波を照射しながら5分間撹拌し、モノマーを完全に溶解させた。次いで、溶液に重合開始剤であるAPS(和光純薬工業株式会社製)と重合促進剤であるTEMED(和光純薬工業株式会社製)を添加し、得られた溶液を重合反応条件(室温に1時間放置)に供した。これにより実施例20~25、比較例10~13に係る組成物(ポリマーゲル)を得た。
  なお、重合開始時の溶液の成分は表6のとおりである。
(Examples 20 to 25, Comparative Examples 10 to 13)
First, 200 mg of acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.), 3000 mg of water, 17 mg of TEMED (manufactured by Wako Pure Chemical Industries, Ltd.), 34 mg of APS (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed, and left at room temperature for 1 hour. The polymer was obtained. Next, the obtained polymer was ground with a mortar to prepare a filler (polymer of acrylic acid amide).
Next, host group-containing AA monomer, guest group-containing AA monomer, AA monomer, water, glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), and the above-mentioned filler were placed in a sample tube (3 ml) and mixed. Then, the mixture was stirred for 5 minutes while being irradiated with ultrasonic waves to completely dissolve the monomer. Subsequently, APS (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization initiator and TEMED (made by Wako Pure Chemical Industries, Ltd.) which is a polymerization accelerator are added to a solution, and the obtained solution is subjected to polymerization reaction conditions (room temperature) Left for 1 hour). Thus, compositions (polymer gels) according to Examples 20 to 25 and Comparative Examples 10 to 13 were obtained.
The components of the solution at the start of polymerization are as shown in Table 6.
(状態評価)
 上記により作製された組成物の状態について目視及び指触(指でさわる)で評価した。組成物の形状が維持されており、かつ、3次元外科治療研修モデル用組成物として適した外観及び質感を有している組成物は「○」で、それ以外の組成物は「×」で評価した。なお、比較例6、11、12はゲル化しなかったため、指触評価を行わず、「×」とした。  また、評価が「○」の組成物に関しては括弧書きで組成物の色を記載した。評価が「×」の組成物に関しては括弧書きで組成物の状態を記載した。結果を表1~6に示した。
(Status evaluation)
The state of the composition prepared as described above was evaluated visually and with a finger. The composition which maintains the shape of the composition and has the appearance and texture suitable as a composition for three-dimensional surgical treatment training model is "○", and the other compositions are "×" evaluated. In addition, since Comparative Examples 6, 11 and 12 did not gel, no finger touch evaluation was performed, and it was set as "x". Moreover, the color of the composition was described in parenthesis about the composition of evaluation "(circle)". The composition states were described in parenthesis with respect to the compositions evaluated as "x". The results are shown in Tables 1 to 6.
(自己修復性評価)
 上記により作製された組成物の自己修復性について評価した。自己修復性を有している組成物は「○」で、自己修復性を有していない組成物は「×」で評価した。結果を表1~6に示した。
  評価方法は次のとおりである。
  組成物を切断し、次いで切断界面同士を接触させ、温度23℃、湿度50%の環境下で10分間静置した後、上記切断界面同士が接着したか否かを確認した。接着した場合は、自己修復性を有していると判断した。
(Self-healing evaluation)
The self repairability of the composition prepared above was evaluated. The composition having self-repairing property was evaluated as "o", and the composition having no self-repairing property was evaluated as "x". The results are shown in Tables 1 to 6.
The evaluation method is as follows.
The composition was cut, and then the cut interfaces were brought into contact with each other and allowed to stand for 10 minutes under an environment of temperature 23 ° C. and humidity 50%, and then it was confirmed whether or not the cut interfaces adhered. When it adhered, it judged that it had self-repairing property.
(硬さの評価)
 アスカーゴム硬度計CSC2型(高分子計器株式会社製)を用い、日本工業規格(JIS K6253-3)に倣い、上記により作製された組成物の硬さ(換算値)を測定した。換算値はゴム硬度計のスプリング荷重から算出した。表1~6に結果を示した。
(Evaluation of hardness)
The hardness (converted value) of the composition prepared above was measured according to Japanese Industrial Standard (JIS K6253-3) using an Asker rubber hardness meter CSC2 (manufactured by Kobunshi Keiki Co., Ltd.) according to Japanese Industrial Standard (JIS K6253-3). The converted value was calculated from the spring load of the rubber hardness tester. The results are shown in Tables 1 to 6.
(タック性)
 上記により作製された組成物のタック性を指触(指でさわる)で評価した。組成物が指に付着しない場合を「○」で、付着する場合を「×」で評価した。
(Tackiness)
The tackiness of the composition prepared above was evaluated by finger touch. The case where the composition did not adhere to the finger was evaluated as "o", and the case where it adhered was evaluated as "x".
(加工性)
 上記により作製された組成物の加工性について、裁断機(コクヨ株式会社製、PAPER CUTTER DN-1)用いて組成物を裁断し、破断面を目視で評価した。評価方法は次のとおりである。
  厚さ3mm、面積50mm×50mmのシート形状に成型した組成物(ポリマーゲル)を、一定の荷重で裁断した際に、抵抗なく切断でき、かつ、組成物の破断面が平滑な場合を「○」、裁断時に組成物が刃物に挟まり刃物が動かない、又は裁断時の抵抗が強く、組成物の破断面が荒い場合を「×」として評価した。
(Processability)
With respect to the processability of the composition prepared as described above, the composition was cut using a cutter (PAPER CUTTER DN-1 manufactured by KOKUYO CO., LTD.), And the fractured surface was visually evaluated. The evaluation method is as follows.
When a composition (polymer gel) formed into a sheet shape having a thickness of 3 mm and an area of 50 mm × 50 mm is cut with a constant load, it can be cut without resistance and the broken surface of the composition is smooth. The case where the composition was caught by the blade at the time of cutting and the blade did not move or the resistance at the time of cutting was strong and the broken surface of the composition was rough was evaluated as “X”.
 ここで、表1~6についてそれぞれ簡単に説明する。
  表1:モノマーの配合量と組成物の硬さとの関係。
  表2:浸漬させる工程の有無と組成物の硬さとの関係。
  表3:水の含有量と組成物の硬さとの関係。
  表4:TEMEDの含有量と組成物の硬さとの関係。
  表5:水及びグリセリンの含有量と組成物の硬さとの関係。
  表6:フィラーの有無と組成物の硬さ、タック性、及び加工性との関係。
Here, each of Tables 1 to 6 will be briefly described.
Table 1: Relationship between the blending amount of monomers and the hardness of the composition.
Table 2: Relationship between the presence or absence of the immersion step and the hardness of the composition.
Table 3: Relationship between water content and hardness of the composition.
Table 4: Relationship between TEMED content and hardness of the composition.
Table 5: Relationship between water and glycerin content and hardness of the composition.
Table 6: Relationship between the presence or absence of the filler and the hardness, tackiness and processability of the composition.
 表1~6において、「溶液中のモノマー濃度」とは重合開始時の溶液中のモノマー全体を基準としたときの各モノマーのモル濃度を表しており、「モノマー濃度(mol/kg)」とは、溶液全体の重量当たりの全モノマーの合計モル数を表しており、「溶液中の各成分の含有量(重量%)」とは重合開始時の溶液全体を基準としたときの各成分の含有量を表している。
  また、表1~6において空欄は、空欄に係る成分が含まれていないことや、空欄に係る方法及び評価を行えないことを表している。
In Tables 1 to 6, "the concentration of monomers in the solution" represents the molar concentration of each monomer based on the entire monomers in the solution at the start of the polymerization, and "the concentration of the monomers (mol / kg)" Represents the total number of moles of all monomers per weight of the whole solution, and the “content of each component in the solution (% by weight)” means the content of each component based on the whole solution at the start of the polymerization It represents the content.
Further, in Tables 1 to 6, the blanks indicate that the component relating to the blanks is not included, and that the method and evaluation relating to the blanks can not be performed.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(結果)
 実施例に係る製造方法により作製された全ての組成物は、人体のいずれかの器官、特に肝臓、心臓、皮膚の質感及び硬さを実現していた。下記の表7に組成物の硬さと各器官のモデルに適した実施例をまとめた。表中の数値は実施例番号を表している。
(result)
All the compositions produced by the manufacturing method according to the examples have realized the texture and hardness of any organ of the human body, particularly the liver, heart, skin. Table 7 below summarizes the hardness of the composition and examples suitable for models of each organ. The numerical values in the table represent example numbers.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表7より、肝臓モデルに適した組成物は実施例1、6~8、12~16、22~24であり、フィラーを添加していない場合は特に実施例13の組成物が、フィラーを添加した場合はタック性や加工性を考慮して特に実施例24の組成物が肝臓に非常に近い質感であった。硬さについてはいずれも本物の肝臓に類似した範囲である。同様に、心臓モデルに適した組成物は実施例2、3、17、18、25であり、フィラーを添加していない場合は特に実施例17の組成物が、フィラーを添加した場合はタック性や加工性を考慮して特に実施例25の組成物が心臓に非常に近い質感を有していた。硬さについてはいずれも本物の心臓に類似した範囲である。皮膚モデルに適した組成物は実施例2~6、9~12、15~25であり、これらを単一或いは複数組み合わせることにより皮膚に非常に近い質感及び硬さ再現できる。特に実施例16、18、19の組成物が皮膚に非常に近い質感、硬さを有していた。 From Table 7, the compositions suitable for the liver model are Examples 1, 6-8, 12-16, 22-24, and the composition of Example 13 added the filler particularly when the filler is not added. In this case, the composition of Example 24 had a texture very close to that of the liver, in consideration of tackiness and processability. The hardness is in a range similar to that of a real liver. Similarly, compositions suitable for cardiac models are Examples 2, 3, 17, 18, 25 and the composition of Example 17 is tacky, particularly when no filler is added, and when filler is added. In particular, the composition of Example 25 had a texture very close to the heart in consideration of moldability and processability. The hardness is in the same range as the real heart. The compositions suitable for the skin model are Examples 2 to 6, 9 to 12, and 15 to 25. By combining one or more of them, the texture and hardness very similar to those of the skin can be reproduced. In particular, the composition of Examples 16, 18 and 19 had texture and hardness very close to the skin.
 一方、比較例に係る製造方法では次の理由から3次元外科治療研修モデル用組成物の製造方法としては不適であった。
  比較例1では、作製された組成物がスライム状となり、組成物の形状が維持できていなかった。比較例2では、作製された組成物が脆かった。また、自己修復性にも乏しかった。比較例3、4では、モノマーが溶液に溶解せず、組成物を作製することができなかった。比較例5では、作製された組成物がスライム状となり、組成物の形状が維持できていなかった。比較例6では、重合反応が進まず、ゲル化しなった。比較例7では、作製された組成物は所定の硬さよりも柔らかくポリマーゲルの形状を維持できなかった。比較例8では、作製された組成物がスライム状となり、組成物の形状が維持できていなかった。比較例9では、モノマー濃度(mol/kg)が高く、重合反応時に反応熱により溶液が突沸し、組成物の内部に無数の発泡が生じた。そのため、3次元外科治療研修モデル用組成物としては不適であった。比較例10、13では、作製された組成物の自己修復性が乏しかった。比較例11、12では、作製された組成物がゲル化しなかった。
On the other hand, the manufacturing method according to the comparative example is not suitable as a method for manufacturing a three-dimensional surgical treatment training model composition for the following reason.
In Comparative Example 1, the produced composition was slime-like, and the shape of the composition could not be maintained. In Comparative Example 2, the produced composition was brittle. In addition, he was also poor in self-healing ability. In Comparative Examples 3 and 4, the monomer did not dissolve in the solution, and the composition could not be prepared. In Comparative Example 5, the produced composition was slime-like, and the shape of the composition could not be maintained. In Comparative Example 6, the polymerization reaction did not proceed and gelation occurred. In Comparative Example 7, the produced composition was softer than a predetermined hardness and could not maintain the shape of the polymer gel. In Comparative Example 8, the produced composition became slime-like, and the shape of the composition could not be maintained. In Comparative Example 9, the monomer concentration (mol / kg) was high, and the solution bumped due to the heat of reaction during the polymerization reaction, resulting in numerous bubbles in the composition. Therefore, it was unsuitable as a composition for a three-dimensional surgical treatment training model. In Comparative Examples 10 and 13, the self-repairing property of the produced composition was poor. In Comparative Examples 11 and 12, the composition produced did not gel.

Claims (14)

  1.  自己修復性を有するポリマーゲルを含む3次元外科治療研修モデル用組成物。 A composition for a three-dimensional surgical treatment training model, comprising a polymer gel having self-repairing properties.
  2.  前記ポリマーゲルがホスト-ゲスト相互作用の原理を利用して自己修復する重合体を備えることを特徴とする、請求項1に記載の組成物。 The composition according to claim 1, characterized in that the polymer gel comprises a polymer that self-heals using the principle of host-guest interaction.
  3.  前記重合体がホスト基含有アクリルアミド系モノマー由来の構造単位を1モル%以上8モル%以下、ゲスト基含有アクリルアミド系モノマー由来の構造単位を1モル%以上8モル%以下、アクリルアミド系モノマー由来の構造単位を84モル%以上98モル%以下含有し、
    前記ポリマーゲルは前記重合体の網目構造の間隙に水系溶媒を含み、
    前記組成物の硬さが換算値で931mN以上4264mN以下である、請求項2に記載の組成物。
    The polymer comprises 1 mol% to 8 mol% of structural units derived from a host group-containing acrylamide monomer, 1 mol% to 8 mol% of structural units derived from a guest group-containing acrylamide monomer, a structure derived from an acrylamide monomer Contains 84 mol% or more and 98 mol% or less of the unit,
    The polymer gel comprises an aqueous solvent in the interstices of the polymer network,
    The composition according to claim 2, wherein the hardness of the composition is 931 mN or more and 4264 mN or less in a converted value.
  4.  前記ホスト基含有アクリルアミド系モノマー由来の構造単位が下記一般式(1)であり、前記ゲスト基含有アクリルアミド系モノマー由来の構造単位が下記一般式(2)であり、前記アクリルアミド系モノマー由来の構造単位が下記一般式(3)である、請求項3に記載の組成物。
    Figure JPOXMLDOC01-appb-C000001


    Figure JPOXMLDOC01-appb-C000002


    Figure JPOXMLDOC01-appb-C000003


    (R~Rは水素又はメチル基を表している。Rはホスト基を表しており、α-シクロデキストリン、β-シクロデキストリン、又はγ-シクロデキストリンのいずれかである。Rはゲスト基を表しており、n-ブチル基、n-ドデシル基、t-ブチル基、イソボルニル基又はアダマンチル基のいずれかである。)
    The structural unit derived from the host group-containing acrylamide monomer is the following general formula (1), the structural unit derived from the guest group-containing acrylamide monomer is the following general formula (2), and the structural unit derived from the acrylamide monomer The composition according to claim 3, wherein is a group represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000001


    Figure JPOXMLDOC01-appb-C000002


    Figure JPOXMLDOC01-appb-C000003


    (R 1 to R 7 each represents hydrogen or a methyl group. R H represents a host group, which may be α-cyclodextrin, β-cyclodextrin, or γ-cyclodextrin. R G is Represents a guest group, which may be n-butyl, n-dodecyl, t-butyl, isobornyl or adamantyl).
  5.  前記水系溶媒が水からなる、或いは水及び水よりも沸点の高い親水性溶媒を含む、請求項3又は4に記載の組成物。 The composition according to claim 3 or 4, wherein the aqueous solvent comprises water, or water and a hydrophilic solvent having a boiling point higher than that of water.
  6.  前記親水性溶媒がエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン及びジエチレングリコールモノエチルエーテルからなる群から選ばれる少なくとも1種を含む、請求項5に記載の組成物。 The composition according to claim 5, wherein the hydrophilic solvent comprises at least one selected from the group consisting of ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, glycerin and diethylene glycol monoethyl ether.
  7.  前記水系溶媒の含有量が前記ポリマーゲルを基準として49.45重量%以上85.45重量%以下であり、前記水系溶媒中の水の含有量が前記ポリマーゲルを基準として15.40重量%以上である、請求項3~6のいずれか1項に記載の組成物。 The content of the aqueous solvent is 49.45 wt% or more and 85.45 wt% or less based on the polymer gel, and the content of water in the aqueous solvent is 15.40 wt% or more based on the polymer gel The composition according to any one of claims 3 to 6, which is
  8.  前記ポリマーゲルがフィラーを含む、請求項3~6のいずれか1項に記載の組成物。 The composition according to any one of claims 3 to 6, wherein the polymer gel comprises a filler.
  9.  前記フィラーは有機系フィラーである、請求項8に記載の組成物。 The composition according to claim 8, wherein the filler is an organic filler.
  10.  前記水系溶媒の含有量が前記ポリマーゲルを基準として45.85重量%以上69.21重量%以下であり、前記水系溶媒中の水の含有量が前記ポリマーゲルを基準として14.50重量%以上であり、
    前記フィラーの含有量が前記ポリマーゲルを基準として15.00重量%以上26.00重量%以下である、請求項8又は9に記載の組成物。
    The content of the aqueous solvent is 45.85 wt% or more and 69.21 wt% or less based on the polymer gel, and the content of water in the aqueous solvent is 14.50 wt% or more based on the polymer gel And
    The composition according to claim 8 or 9, wherein the content of the filler is 15.00% by weight or more and 26.00% by weight or less based on the polymer gel.
  11.  請求項3~7のいずれか1項に記載の組成物を製造する方法であって、
    前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、及び前記水系溶媒を混合する工程と、
    前記混合する工程により得られる溶液に重合開始剤を添加する工程と、
    前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、及び前記アクリルアミド系モノマーを重合させる工程と、を備え、
    前記重合させる工程における溶液中の前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、及び前記水系溶媒の含有量を調整することで、前記組成物の硬さを調整する、
    3次元外科治療研修モデル用組成物の製造方法。
    A method of producing the composition according to any one of claims 3 to 7, comprising
    Mixing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, and the aqueous solvent;
    Adding a polymerization initiator to the solution obtained by the mixing step;
    And D. polymerizing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, and the acrylamide monomer.
    The hardness of the composition is adjusted by adjusting the content of the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, and the aqueous solvent in the solution in the polymerization step. Do,
    Method for producing a composition for a three-dimensional surgical treatment training model.
  12.  請求項8~10のいずれか1項に記載の組成物を製造する方法であって、
    前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、前記水系溶媒、及び前記フィラーを混合する工程と、
    前記混合する工程により得られる溶液に重合開始剤を添加する工程と、
    前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、及び前記アクリルアミド系モノマーを重合させる工程と、を備え、
    前記重合させる工程における溶液中の前記ホスト基含有アクリルアミド系モノマー、前記ゲスト基含有アクリルアミド系モノマー、前記アクリルアミド系モノマー、前記水系溶媒、及び前記フィラーの含有量を調整することで、前記組成物の硬さを調整する、
    3次元外科治療研修モデル用組成物の製造方法。
    A method of producing the composition according to any one of claims 8 to 10, wherein
    Mixing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, the aqueous solvent, and the filler;
    Adding a polymerization initiator to the solution obtained by the mixing step;
    And D. polymerizing the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, and the acrylamide monomer.
    Hardening the composition by adjusting the content of the host group-containing acrylamide monomer, the guest group-containing acrylamide monomer, the acrylamide monomer, the aqueous solvent, and the filler in the solution in the polymerization step. Adjust the
    Method for producing a composition for a three-dimensional surgical treatment training model.
  13.  前記混合する工程及び添加する工程のうち少なくとも一方において重合促進剤を添加し、前記重合させる工程における溶液中の前記重合促進剤の含有量を調整することにより前記組成物の硬さを調整する、請求項11又は12に記載の製造方法。 The hardness of the composition is adjusted by adding a polymerization accelerator in at least one of the mixing step and the adding step, and adjusting the content of the polymerization accelerator in the solution in the polymerization step. A manufacturing method according to claim 11 or 12.
  14.  前記重合させる工程により得られるゲルを浸漬用溶媒に浸漬させる工程をさらに備え、前記浸漬用溶媒は前記親水性溶媒からなり、或いは前記親水性溶媒及び水を含み、前記ゲルの浸漬時間及び前記浸漬用溶媒における前記親水性溶媒の濃度のうち少なくとも一方を調整することにより前記組成物の硬さを調整する、請求項11~13のいずれか1項に記載の製造方法。 The method further includes a step of immersing the gel obtained by the step of polymerizing in a solvent for immersion, the solvent for immersion comprising the hydrophilic solvent, or containing the hydrophilic solvent and water, the immersion time of the gel and the immersion The method according to any one of claims 11 to 13, wherein the hardness of the composition is adjusted by adjusting at least one of the concentration of the hydrophilic solvent in the solvent.
PCT/JP2018/031807 2017-08-29 2018-08-28 Composition for three-dimensional surgical procedure training model and method for producing said composition WO2019044848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019539544A JPWO2019044848A1 (en) 2017-08-29 2018-08-28 Composition for 3D surgical treatment training model and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-164555 2017-08-29
JP2017164555 2017-08-29
JP2017-236391 2017-12-08
JP2017236391 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019044848A1 true WO2019044848A1 (en) 2019-03-07

Family

ID=65527345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031807 WO2019044848A1 (en) 2017-08-29 2018-08-28 Composition for three-dimensional surgical procedure training model and method for producing said composition

Country Status (2)

Country Link
JP (1) JPWO2019044848A1 (en)
WO (1) WO2019044848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070768A (en) * 2019-10-31 2021-05-06 国立大学法人大阪大学 Polymer composite material, polymerizable monomer composition and production method of polymer composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115082635B (en) * 2022-08-19 2022-12-02 北京山维科技股份有限公司 Method and system for realizing multiple states of geographic entity based on cutting inclination model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162019A1 (en) * 2012-04-27 2013-10-31 国立大学法人大阪大学 Gel with self-restorability and shape-memory property and process for producing same
WO2016006413A1 (en) * 2014-07-08 2016-01-14 国立大学法人大阪大学 Self-restoring macromolecular material and production method for same
WO2017030145A1 (en) * 2015-08-19 2017-02-23 デンカ株式会社 Resin composition for organ models
JP2017071710A (en) * 2015-10-08 2017-04-13 国立大学法人大阪大学 Self-repairing material and production method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162019A1 (en) * 2012-04-27 2013-10-31 国立大学法人大阪大学 Gel with self-restorability and shape-memory property and process for producing same
WO2016006413A1 (en) * 2014-07-08 2016-01-14 国立大学法人大阪大学 Self-restoring macromolecular material and production method for same
WO2017030145A1 (en) * 2015-08-19 2017-02-23 デンカ株式会社 Resin composition for organ models
JP2017071710A (en) * 2015-10-08 2017-04-13 国立大学法人大阪大学 Self-repairing material and production method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070768A (en) * 2019-10-31 2021-05-06 国立大学法人大阪大学 Polymer composite material, polymerizable monomer composition and production method of polymer composite material
JP7337377B2 (en) 2019-10-31 2023-09-04 国立大学法人大阪大学 Polymer composite material, polymerizable monomer composition, and method for producing polymer composite material

Also Published As

Publication number Publication date
JPWO2019044848A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
Peak et al. Printing therapeutic proteins in 3D using nanoengineered bioink to control and direct cell migration
Yu et al. Improved toughness and stability of κ-carrageenan/polyacrylamide double-network hydrogels by dual cross-linking of the first network
JP6663150B2 (en) Catechol-containing adhesive hydrogel, composition for producing adhesive hydrogel, and composition to which the adhesive hydrogel is applied
Gao et al. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion
Bootsma et al. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties
Jia et al. Unconventional tough double-network hydrogels with rapid mechanical recovery, self-healing, and self-gluing properties
DE102013221204B4 (en) Silicone-free hydrogel, process for its preparation, molded part thereof, and uses
Liu et al. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax
WO2019044848A1 (en) Composition for three-dimensional surgical procedure training model and method for producing said composition
JP2020513461A (en) Polymers with a certain level of bio-based carbon
BR112019011780A2 (en) polymer comprising certain carbon level of biological material
BRPI0821249B1 (en) hardening composition
Chen et al. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds
CN106749982A (en) Bio-ink
Wang et al. Mechanically robust, biocompatible, and durable PHEMA-based hydrogels enabled by the synergic effect of strong intermolecular interaction and suppressed phase separation
Zhang et al. Ultra-stretchable, antifatigue, adhesive, and self-healing hydrogels based on the amino acid derivative and ionic liquid for flexible strain sensors
JPWO2017164003A1 (en) Method for producing organic-inorganic composite hydrogel
TW200524964A (en) Screen printable hydrogel for medical applications
JP2019085435A (en) Organic inorganic composite hydrogel precursor composition, organic inorganic composite hydrogel, and manufacturing method therefor
EP3828225A1 (en) Gel material
DE102013221209A1 (en) Silicone hydrogel, process for its preparation, molded part thereof and uses
Stojkov et al. Relationship between structure and rheology of hydrogels for various applications. Gels 2021, 7, 255
Chen et al. Highly Flexible Magnesium–Calcium Alginate Dense Hydrogel Manufactured by Soft Spray for Drug Loading
KR20240064428A (en) Hydrogel forming composition for artificial organ and hydrogel for artificial organ prepared therefrom
WO2019009025A1 (en) Method for producing organic-inorganic hybrid hydrogel

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019539544

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851441

Country of ref document: EP

Kind code of ref document: A1