WO2019044702A1 - Lithographic printng plate precursor - Google Patents

Lithographic printng plate precursor Download PDF

Info

Publication number
WO2019044702A1
WO2019044702A1 PCT/JP2018/031362 JP2018031362W WO2019044702A1 WO 2019044702 A1 WO2019044702 A1 WO 2019044702A1 JP 2018031362 W JP2018031362 W JP 2018031362W WO 2019044702 A1 WO2019044702 A1 WO 2019044702A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
aluminum
anodized film
lithographic printing
printing plate
Prior art date
Application number
PCT/JP2018/031362
Other languages
French (fr)
Japanese (ja)
Inventor
尚志 佐藤
松浦 睦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019044702A1 publication Critical patent/WO2019044702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Definitions

  • the present invention relates to a lithographic printing plate precursor having a positive-working image recording layer.
  • micropores are formed on the surface of the anodized film, and then treated with an acid or alkaline solution to form a surface layer.
  • an acid or alkaline solution By enlarging the pore diameter of the micropores of the part and further performing anodizing treatment, a micropore consisting of a large diameter pore part of the surface layer part and a small diameter pore part communicating with it and further extending in the depth direction is formed Patents 1 to 3 have been described.
  • Patent Documents 1 and 2 show that a lithographic printing plate prepared using a lithographic printing plate precursor having an aluminum support having such an anodic oxide film exhibits excellent printing durability and storage stain resistance. Have been described.
  • Patent Document 3 describes that a negative photopolymerizable lithographic printing plate precursor having an aluminum support having such an anodic oxide film provides a lithographic printing plate having high sensitivity and excellent printing durability. There is.
  • An object of the present invention is to provide a positive-working lithographic printing plate precursor which can provide a lithographic printing plate which is excellent in printing resistance, leaving-off property and stain resistance.
  • a small diameter hole (ii) in communication with the bottom of the large diameter hole and further extending in the depth direction from the communication position, and the average diameter of the small diameter hole (ii) in the communication position is the anode
  • a polymer containing an acid group selected from a phosphonic acid group, a phosphoric acid group, a sulfonic acid group, and a carboxylic acid group is contained between the aluminum support having the anodized film and the positive type image recording layer.
  • a lithographic printing plate precursor which can provide a positive-working lithographic printing plate which is excellent in printing durability, leaving-to-standability and stain resistance.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a lithographic printing plate precursor according to the present invention.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of an aluminum support having an anodized film. It is a schematic cross section of the aluminum support body which has an anodized film which shows a 1st anodizing treatment process to a 2nd anodizing treatment process in order of a process. It is a schematic cross section of the aluminum support body which has an anodized film which shows a 1st anodizing treatment process to a 2nd anodizing treatment process in order of a process.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • R represents an alkyl group, an aryl group or a heterocyclic group
  • R represents an unsubstituted alkyl group, a substituted alkyl group, an unsubstituted aryl group, a substituted aryl group, an unsubstituted group.
  • R represents an unsubstituted alkyl group, a substituted alkyl group, an unsubstituted aryl group, a substituted aryl group, an unsubstituted group.
  • R represents an unsubstituted alkyl group, a substituted alkyl group, an unsubstituted aryl group, a substituted aryl group, an unsubstituted group.
  • R represents an unsubstituted alkyl group, a substituted alkyl group, an unsubstituted aryl group, a substituted aryl group, an unsubstituted group.
  • R represents an unsubstituted alkyl
  • the lithographic printing plate precursor of the present invention is a lithographic printing plate precursor having an aluminum support having an anodized film and a positive-working image recording layer.
  • a schematic cross-sectional view of an embodiment of a lithographic printing plate precursor according to the present invention is shown in FIG. In FIG. 1, a lithographic printing plate precursor 10 has an aluminum support 12 having an anodized film, an undercoat layer 14 and a positive type image recording layer 16.
  • FIG. 2 A schematic cross-sectional view of an embodiment of an aluminum support having an anodized film is shown in FIG.
  • the aluminum support 12 having the anodized film has an aluminum plate 18 and an anodized film 20 of aluminum (hereinafter, also simply referred to as “anodized film 20”) in this order.
  • the anodized film 20 in the aluminum support 12 is located on the positive image recording layer 16 side of the lithographic printing plate precursor 10 in FIG. That is, the lithographic printing plate precursor 10 has an aluminum plate 18, an anodized film 20, an undercoat layer 14, and a positive type image recording layer 16.
  • the anodized film 20 has micropores 22 extending from the surface thereof toward the aluminum plate 18, and the micropores 22 are constituted of large diameter holes 24 and small diameter holes 26.
  • micropore is a commonly used term that represents the pore in the anodized film, and does not define the size of the pore.
  • the aluminum plate 18 (aluminum support) is made of a dimensionally stable aluminum-based metal, that is, aluminum or an aluminum alloy.
  • the aluminum plate 18 is made of a pure aluminum plate or an alloy plate containing aluminum as a main component and a small amount of different elements.
  • the different elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, titanium and the like.
  • the content of foreign elements in the alloy is 10% by mass or less.
  • a pure aluminum plate is preferable as the aluminum plate 18, completely pure aluminum may contain a slight amount of different elements because it is difficult to manufacture due to smelting technology.
  • the composition of the aluminum plate 18 is not limited, and materials of known and commonly used materials (for example, JIS A 1050, JIS A 1100, JIS A 3103, and JIS A 3005) can be appropriately used.
  • the width of the aluminum plate 18 is preferably about 400 to 2,000 mm, and the thickness is preferably about 0.1 to 0.6 mm.
  • the width or thickness can be appropriately changed according to the size of the printing press, the size of the printing plate, and the user's request.
  • the anodized film 20 is generally prepared on the surface of the aluminum plate 18 by anodizing treatment, and is anodized aluminum film which is substantially perpendicular to the film surface and has extremely fine micropores 22 uniformly distributed. Point to.
  • the micropores 22 extend from the surface of the anodized film along the thickness direction (aluminum plate 18 side).
  • the thickness of the anodized film is 200 to 2,000 nm, preferably 500 to 1,800 nm, and more preferably 750 to 1,500 nm.
  • the micropores 22 in the anodized film 20 communicate with the large diameter hole 24 extending from the surface of the anodized film to a position where the depth (depth A: see FIG. 2) exceeds 60 nm, and the bottom of the large diameter hole 24 And a small diameter hole 26 extending from the communication position to a position of a depth of 200 to 2,000 nm.
  • the large diameter hole 24 and the small diameter hole 26 will be described in detail below.
  • the average diameter (average opening diameter) in the anodic oxide film surface of the large diameter hole part 24 is 100 nm or less larger than 10 nm.
  • the average diameter is more preferably 15 to 60 nm, still more preferably 18 to 40 nm, in that the effect of the present invention is more excellent. If the average diameter is 10 nm or less, the printing durability may be poor. In addition, when the average diameter exceeds 100 nm, there may be cases in which the chargeability on standing is inferior.
  • the average diameter of the large diameter holes 24 is 400 in the obtained four images obtained by observing N of the surface of the anodized film 20 with a field-emission scanning electron microscope (FE-SEM) at a magnification of 150,000.
  • FE-SEM field-emission scanning electron microscope
  • the diameter (diameter) of the micropores (large diameter holes) present in the range of ⁇ 600 nm 2 was measured and averaged.
  • the equivalent circle diameter is used.
  • the “equivalent circle diameter” is the diameter of the circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
  • the bottom of the large diameter hole portion 24 is at a position where the depth (hereinafter also referred to as depth A) from the surface of the anodized film exceeds 60 nm. That is, the large diameter hole portion 24 is a hole portion that extends more than 60 nm in the depth direction (thickness direction) from the surface of the anodized film.
  • the depth A is preferably 65 to 200 nm, and more preferably 70 to 100 nm in that the effect of the present invention is more excellent.
  • the depth A is 60 nm or less, the printing durability is poor.
  • the depth A exceeds 200 nm there are cases in which the chargeability on standing is inferior.
  • the depth from the surface of the anodized film is obtained by observing the cross section of the anodized film 20 with FE-SEM (150,000 times), and measuring the depth of 25 large diameter holes in the obtained image, It is an averaged value.
  • the shape of the large diameter hole portion 24 is not particularly limited.
  • the substantially straight tubular shape substantially cylindrical shape
  • a conical shape whose diameter decreases in the depth direction (thickness direction), and the depth direction (thickness direction)
  • the diameter at the bottom of the large diameter hole may generally be about 1 to 10 nm different from the diameter of the opening.
  • the shape of the bottom of the large diameter hole portion 24 is not particularly limited, and may be curved (concave) or planar.
  • the small diameter hole 26 communicates with the bottom of the large diameter hole 24 and extends in the depth direction (thickness direction) from the communication position.
  • One small diameter hole 26 normally communicates with one large diameter hole 24, but two or more small diameter holes 26 may communicate with the bottom of one large diameter hole 24.
  • the average diameter at the communication position of the small diameter holes 26 is not particularly limited, but is preferably less than 20 nm, more preferably 15 nm or less, still more preferably 13 nm or less, and particularly preferably 10 nm or less.
  • the average diameter is preferably 5 nm or more. In the case where the average diameter is 20 nm or more, there may be a case where the leaving property is inferior.
  • the diameter (diameter) of the pores (small diameter holes) was measured and averaged.
  • the upper part of the anodized film 20 area with the large diameter hole
  • is cut for example, cut with argon gas
  • the anodic oxide film 20 is cut.
  • the surface may be observed by the above-described FE-SEM to determine the average diameter of the small diameter holes.
  • the equivalent circle diameter is used.
  • the “equivalent circle diameter” is the diameter of the circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
  • the bottom of the small diameter hole portion 26 is preferably located at a position further extending 100 to less than 1,940 nm in the depth direction from the communication position with the large diameter hole portion 24 (corresponding to the depth A described above).
  • the depth of the small diameter holes 26 is preferably 100 to less than 1,940 nm.
  • the small diameter hole 26 preferably extends from the communication position to a position 300 to 1600 nm deep from the communication position, and the small diameter hole 26 extends from the communication position to a depth 900 to 1300 nm from the point of more excellent effect of the present invention. Is more preferred.
  • the scratch resistance may be poor.
  • the depth of the small diameter holes was obtained by observing the cross section of the anodized film 20 with FE-SEM (50,000 times), measuring the depth of 25 small diameter holes in the obtained image, and averaging the values. It is.
  • the shape of the small diameter hole portion 26 is not particularly limited.
  • a substantially straight pipe substantially cylindrical shape
  • a conical shape whose diameter decreases in the depth direction
  • a substantially straight tubular shape is preferred.
  • the diameter at the bottom of the small diameter hole portion 26 may normally have a difference of about 1 to 5 nm from the diameter at the communication position.
  • the shape of the bottom of the small diameter hole 26 is not particularly limited, and may be curved (concave) or planar.
  • the average diameter of the small diameter holes at the communication position is smaller than the average diameter of the large diameter holes on the surface of the anodized film.
  • the stain resistance is poor.
  • the ratio that is, the average diameter of the large diameter holes / the average diameter of the small diameter holes is preferably 1.1 to 12.5. 5-10 are more preferred.
  • FIGS. 3A to 3C show schematic cross-sectional views of an aluminum support having an anodized film showing a first anodizing treatment step to a second anodizing treatment step in the order of steps.
  • the surface roughening treatment step is a step of subjecting the surface of the aluminum plate to a surface roughening treatment including electrochemical graining treatment.
  • the surface roughening treatment step is preferably performed before the first anodizing treatment step described later, but may not be performed if the surface of the aluminum plate already has a preferable surface shape.
  • the surface roughening may be performed only by electrochemical surface roughening, but it is performed by combining electrochemical surface roughening with mechanical surface roughening and / or chemical surface roughening. It is also good. When mechanical graining treatment and electrochemical graining treatment are combined, it is preferable to apply electrochemical graining treatment after mechanical graining treatment.
  • the electrochemical graining treatment is preferably performed in an aqueous solution of nitric acid or hydrochloric acid.
  • the mechanical surface roughening treatment is generally applied in order to make the surface of the aluminum plate have a surface roughness Ra of 0.35 to 1.0 ⁇ m.
  • the conditions of the mechanical surface-roughening treatment are not particularly limited, but can be applied, for example, according to the method described in Japanese Patent Publication No. 50-40047.
  • the mechanical graining treatment can be performed by brush graining using pumice stone suspension or in a transfer method.
  • the chemical surface-roughening treatment is also not particularly limited, and can be performed according to known methods.
  • the chemical etching treatment applied after the mechanical surface roughening treatment smoothes the uneven edge portion of the surface of the aluminum plate, prevents the ink from being caught during printing, and improves the stain resistance of the lithographic printing plate In addition, it is performed to remove unnecessary substances such as abrasive particles remaining on the surface.
  • etching with an acid and etching with an alkali are known, but as a method particularly excellent in terms of etching efficiency, chemical etching treatment using an alkali solution (hereinafter, also referred to as “alkali etching treatment”). Can be mentioned.
  • the alkaline agent to be used for the alkaline solution is not particularly limited, but for example, caustic soda, caustic potash, sodium metasilicate, sodium carbonate, sodium aluminate, sodium gluconate and the like are preferably mentioned.
  • the alkali agent may contain an aluminum ion. 0.01 mass% or more is preferable, 3 mass% or more is more preferable, 30 mass% or less is preferable, and, as for the density
  • the temperature of the alkaline solution is preferably room temperature or more, more preferably 30 ° C. or more, and preferably 80 ° C. or less, more preferably 75 ° C. or less.
  • the processing time is preferably 2 seconds to 5 minutes in accordance with the etching amount, and more preferably 2 to 10 seconds from the viewpoint of improving the productivity.
  • alkali etching is performed after mechanical surface roughening
  • chemical etching (hereinafter also referred to as "desmutting") is performed using a low temperature acidic solution in order to remove a product generated by the alkali etching. It is preferable to apply.
  • the acid used for the acidic solution is not particularly limited, and examples thereof include sulfuric acid, nitric acid and hydrochloric acid.
  • the concentration of the acidic solution is preferably 1 to 50% by mass.
  • the temperature of the acidic solution 20 to 80 ° C., is preferable. When the concentration and temperature of the acidic solution are in this range, the stain resistance of the lithographic printing plate is further improved.
  • the above-mentioned surface roughening treatment is a treatment to which electrochemical surface roughening treatment is carried out after mechanical surface roughening treatment and chemical etching treatment, if desired.
  • the chemical etching treatment can be performed using an alkaline aqueous solution such as caustic soda before the electrochemical surface roughening treatment.
  • impurities and the like present in the vicinity of the surface of the aluminum plate can be removed.
  • the electrochemical graining treatment is suitable for making a lithographic printing plate excellent in printability because it is easy to impart fine asperities (pits) to the surface of an aluminum plate.
  • Electrochemical graining treatment is carried out using direct current or alternating current in an aqueous solution mainly comprising nitric acid or hydrochloric acid.
  • the following chemical etching treatment is preferably carried out. Smut and intermetallic compounds are present on the surface of the aluminum plate after electrochemical graining treatment.
  • a chemical etching treatment (alkali etching treatment) using an alkaline solution in order to remove particularly the smut efficiently.
  • the processing temperature is preferably 20 to 80 ° C.
  • the processing time is preferably 1 to 60 seconds. It is preferable to contain aluminum ion in the alkaline solution.
  • the chemical etching process described above can be performed by a dipping method, a shower method, a coating method, or the like, and is not particularly limited.
  • First anodizing treatment step In the first anodizing treatment step, an oxide film of aluminum having micropores extending in the depth direction (thickness direction) on the surface of the aluminum plate by anodizing the aluminum plate subjected to the above-mentioned surface roughening treatment Is a process of forming By this first anodizing treatment, as shown in FIG. 3A, an anodized film 32a of aluminum having micropores 33a is formed on the surface of the aluminum plate 31.
  • the first anodizing treatment can be performed by a method conventionally performed in this field, but the manufacturing conditions are appropriately set so that the above-mentioned micropores can be finally formed.
  • the average diameter (average opening diameter) of the micropores 33a formed in the first anodizing treatment step is usually about 4 to 14 nm, preferably 5 to 10 nm. If it is in the said range, it will be easy to form the micropore which has the predetermined
  • the depth of the micropores 33a is usually about 60 to less than 200 nm, preferably 70 to 100 nm. If it is in the said range, it will be easy to form the micropore which has the predetermined
  • the pore density of the micropores 33a is not particularly limited, but the pore density is preferably 50 to 4000 / ⁇ m 2 , and more preferably 100 to 3000 / ⁇ m 2 . Within the above range, the printing durability and leaving-off properties of the resulting lithographic printing plate, and the developability of the lithographic printing plate precursor are excellent.
  • the thickness of the anodized film obtained by the first anodizing treatment step is preferably 70 to 300 nm, more preferably 80 to 150 nm. If it is in the above-mentioned range, the printing durability, leaving-to-stand property, stain resistance, and developability of the lithographic printing plate precursor obtained from the lithographic printing plate obtained are excellent.
  • the film amount of the anodized film obtained by the first anodizing treatment step is preferably 0.1 to 0.3 g / m 2 , more preferably 0.1 2 to 0.25 g / m 2 . If it is in the above-mentioned range, the printing durability, leaving-to-stand property, stain resistance, and developability of the lithographic printing plate precursor obtained from the lithographic printing plate obtained are excellent.
  • an aqueous solution of sulfuric acid, oxalic acid or the like can be mainly used as an electrolytic bath.
  • an aqueous solution or a non-aqueous solution in which chromic acid, sulfamic acid, benzenesulfonic acid or the like or a combination of two or more of them can be used.
  • An anodized film can be formed on the surface of the aluminum plate by applying direct current or alternating current to the aluminum plate in the above-mentioned electrolytic bath.
  • the electrolytic bath may contain aluminum ions.
  • the content of aluminum ion is not particularly limited, but is preferably 1 to 10 g / L.
  • the conditions of the anodizing treatment are appropriately set depending on the electrolyte to be used, but generally, the concentration of the electrolyte is 1 to 80% by mass (preferably 5 to 20% by mass), the solution temperature is 5 to 70 ° C. 10 to 60 ° C., current density 0.5 to 60 A / dm 2 (preferably 5 to 50 A / dm 2 ), voltage 1 to 100 V (preferably 5 to 50 V), electrolysis time 1 to 100 seconds (preferably) A range of 5 to 60 seconds is appropriate.
  • the pore widening process is a process (pore diameter enlarging process) for enlarging the diameter (pore diameter) of the micropores present in the anodized film formed by the first anodizing process described above.
  • the diameter of the micropores 33a is enlarged, and an anodic oxide film 32b having the micropores 33b having a larger average diameter is formed.
  • the average diameter of the micropores 33b is expanded to the range of 10 to 100 nm (preferably, 15 to 60 nm, more preferably, 18 to 40 nm).
  • the micropores 33b correspond to the large diameter holes 24 (FIG. 2) described above. It is preferable to adjust the depth from the surface of the micropores 33b to the same degree as the depth A (FIG. 2) described above by the pore widening process.
  • the pore-widening process is performed by bringing the aluminum plate obtained by the above-described first anodizing process into contact with an aqueous acid solution or an aqueous alkali solution.
  • the method for contacting is not particularly limited, and examples thereof include a dipping method and a spraying method. Among them, the immersion method is preferred.
  • aqueous alkali solution When using an aqueous alkali solution in the pore-widening step, it is preferable to use at least one aqueous alkali solution selected from sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • concentration of the aqueous alkali solution is preferably 0.1 to 5% by mass.
  • the aluminum plate After adjusting the pH of the aqueous alkaline solution to 11 to 13, the aluminum plate is brought into contact with the aqueous alkaline solution for 1 to 300 seconds (preferably 1 to 50 seconds) under conditions of 10 to 70 ° C. (preferably 20 to 50 ° C.) Is appropriate.
  • the alkali treatment solution may contain metal salts of polyvalent weak acids such as carbonates, borates and phosphates.
  • an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid or a mixture thereof.
  • concentration of the aqueous acid solution is preferably 1 to 80% by mass, more preferably 5 to 50% by mass. It is appropriate to bring the aluminum plate into contact with the aqueous acid solution for 1 to 300 seconds (preferably 1 to 150 seconds) under the conditions of a liquid temperature of 5 to 70 ° C. (preferably 10 to 60 ° C.).
  • the aqueous alkali solution or the aqueous acid solution may contain aluminum ions.
  • the content of aluminum ion is not particularly limited, but is preferably 1 to 10 g / L.
  • the second anodizing treatment step is a step of forming micropores extending in the depth direction (thickness direction) by anodizing the aluminum plate to which the above-described pore-widening treatment has been applied.
  • an anodized film 32c having micropores 33c extending in the depth direction is formed. It communicates with the bottom of the micropores 33b whose average diameter is expanded by the second anodizing treatment step, the average diameter is smaller than the average diameter of the micropores 33b (corresponding to the large diameter holes 24), and the depth direction from the communication position A new hole is formed which extends to the surface.
  • the said hole corresponds to the small diameter hole 26 mentioned above.
  • the average diameter of the newly formed hole is larger than 0 and less than 20 nm, and the depth from the communication position with the large diameter hole 20 is within the above-described predetermined range.
  • the electrolytic bath used for the treatment is the same as the first anodizing treatment step described above, and the treatment conditions are appropriately set according to the material to be used.
  • the conditions of the anodizing treatment are appropriately set depending on the electrolyte to be used, but generally, the concentration of the electrolyte is 1 to 80% by mass (preferably 5 to 20% by mass), the solution temperature is 5 to 70 ° C.
  • the current density is 0.5 to 60 A / dm 2 (preferably 1 to 30 A / dm 2 ), the voltage is 1 to 100 V (preferably 5 to 50 V), and the electrolysis time is 1 to 100 seconds (preferably) A range of 5 to 60 seconds is appropriate.
  • the thickness of the anodized film obtained by the second anodizing treatment step is usually 200 to 2,000 nm, preferably 750 to 1,500 nm. If it is in the said range, it will be excellent in the printing resistance and leaving-to-stand property of the lithographic printing plate obtained.
  • the film amount of the anodized film obtained by the second anodizing treatment step is usually 2.2 to 5.4 g / m 2 , preferably 2.2 to 4.0 g / m 2 . Within the above range, the printing durability and leaving-off properties of the resulting lithographic printing plate, and the developability and scratch resistance of the lithographic printing plate precursor are excellent.
  • Ratio (coating thickness 1 / coating thickness) of the thickness (coating thickness 1) of the anodized film obtained by the first anodizing treatment step and the thickness (coating thickness 2) of the anodized film obtained by the second anodizing treatment step 0.01 to 0.15 is preferable, and 0.02 to 0.10 is more preferable. Within the above range, the scratch resistance of the lithographic printing plate support is excellent.
  • the voltage to be applied may be increased stepwise or continuously during the processing of the second anodizing treatment step. As the voltage to be applied is increased, the diameter of the hole to be formed is increased, and as a result, a shape like the above-described small diameter hole 26 is obtained.
  • the manufacturing method of the aluminum support body which has an anodic oxidation film may have the hydrophilization treatment process which performs a hydrophilization treatment after the 3rd anodizing treatment process mentioned above.
  • the hydrophilization treatment known methods disclosed in paragraphs [0109] to [0114] of JP-A-2005-254638 can be used.
  • hydrophilization treatment it is preferable to perform the hydrophilization treatment by a method of immersing in an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate.
  • Hydrophilization treatment with an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate is described in U.S. Pat. Nos. 2,714,066 and 3,181,461. It can be performed according to the method and procedure.
  • the aluminum support having an anodized film a support obtained by sequentially performing the treatments shown in the following A mode or B mode on the above-mentioned aluminum plate is preferable, and from the viewpoint of printing durability, In particular, the A mode is preferred. It is desirable to wash with water between each of the following treatments. However, in the case where a solution having the same composition is used in two successive steps (treatments), the water washing may be omitted.
  • (1) mechanical surface roughening treatment may be carried out, if necessary. From the viewpoint of printing durability and the like, the treatment of (1) is preferably not included in each embodiment.
  • the mechanical surface-roughening treatment, electrochemical surface-roughening treatment, chemical etching treatment, anodizing treatment and hydrophilization treatment in the above (1) to (12) are the same as the treatment methods and conditions described above. It is preferable to apply the treatment method and conditions described below.
  • the mechanical surface-roughening treatment is preferably performed by mechanical surface-roughening treatment using a rotating nylon brush roll having a hair diameter of 0.2 to 1.6 mm and a slurry solution supplied to the surface of the aluminum plate.
  • a well-known thing can be used as an abrasives, a silica sand, quartz, aluminum hydroxide or these mixtures are preferable.
  • the specific gravity of the slurry is preferably 1.05 to 1.3.
  • a method of spraying a slurry liquid, a method of using a wire brush, or a method of transferring the surface shape of a roughened rolling roll to an aluminum plate may be used.
  • the concentration of the aqueous alkaline solution used for the chemical etching process (first to third alkaline etching processes) in the aqueous alkaline solution is preferably 1 to 30% by mass, and contains 0 to 10% by mass of aluminum and alloy components contained in the aluminum alloy. You may As the alkaline aqueous solution, an aqueous solution mainly comprising caustic soda is particularly preferable.
  • the liquid temperature is preferably room temperature to 95 ° C. for 1 to 120 seconds. After the etching process is completed, it is preferable to perform the liquid removal by the nip roller and the water washing by the spray in order not to bring the processing solution into the next step.
  • Dissolution amount of the aluminum plate in the first alkali etching treatment is preferably 0.5 ⁇ 30g / m 2, more preferably 1.0 ⁇ 20g / m 2, more preferably 3.0 ⁇ 15g / m 2.
  • Dissolution amount of the aluminum plate in the second alkali etching treatment is preferably 0.001 ⁇ 30 g / m 2, more preferably 0.1 ⁇ 4g / m 2, more preferably 0.2 ⁇ 1.5g / m 2.
  • the dissolution amount of the aluminum plate in the third alkali etching treatment is preferably 0.001 to 30 g / m 2 , more preferably 0.01 to 0.8 g / m 2 , and further preferably 0.02 to 0.3 g / m 2. preferable.
  • Phosphoric acid, nitric acid, sulfuric acid, chromic acid, hydrochloric acid or a mixed acid containing two or more of these acids is preferably used in the chemical etching process (first to third desmutting processes) in an acidic aqueous solution.
  • concentration of the acidic aqueous solution is preferably 0.5 to 60% by mass.
  • In the acidic aqueous solution 0 to 5% by mass of alloy components contained in aluminum and aluminum alloy may be dissolved.
  • the solution temperature is from room temperature to 95 ° C., and the treatment time is preferably 1 to 120 seconds. After the desmutting treatment is completed, it is preferable to carry out drainage with a nip roller and washing with a spray in order to prevent the treatment liquid from being carried to the next step.
  • the aqueous solution used for electrochemical graining treatment is described.
  • the aqueous solution mainly composed of nitric acid used in the first electrochemical graining treatment may be an aqueous solution used in electrochemical graining treatment using a conventional direct current or alternating current, and an aqueous solution of 1 to 100 g / L nitric acid And nitrate ion such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ion such as aluminum chloride, sodium chloride and ammonium chloride; and one or more of hydrochloric acid or nitrate compound having 1 etc. to 1 g / L to saturation. be able to.
  • aqueous solution mainly composed of nitric acid metals contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium and silica may be dissolved.
  • metals contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium and silica may be dissolved.
  • a solution obtained by adding aluminum chloride or aluminum nitrate so that the amount of aluminum ions is 3 to 50 g / L in a 0.5 to 2% by mass aqueous solution of nitric acid.
  • the liquid temperature is preferably 10 to 90 ° C., and more preferably 40 to 80 ° C.
  • the aqueous solution mainly composed of hydrochloric acid used in the second electrochemical graining treatment may be an aqueous solution used in electrochemical graining treatment using a conventional direct current or alternating current, and is 1 to 100 g / L hydrochloric acid aqueous solution And nitrate ion such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ion such as aluminum chloride, sodium chloride and ammonium chloride; and one or more of hydrochloric acid or nitrate compound having 1 etc. to 1 g / L to saturation. be able to.
  • a metal contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium, and silica may be dissolved in an aqueous solution containing hydrochloric acid as a main component.
  • the solution temperature is preferably 10 to 60 ° C., and more preferably 20 to 50 ° C. Hypochlorous acid may be added.
  • aqueous solution mainly composed of hydrochloric acid used in electrochemical graining treatment in a hydrochloric acid aqueous solution in B mode an aqueous solution used for electrochemical graining treatment using normal direct current or alternating current can be used, Sulfuric acid can be used by adding 0 to 30 g / L to a 1 to 100 g / L aqueous hydrochloric acid solution.
  • hydrochloric acid or nitrate compound having nitrate ion such as aluminum nitrate, sodium nitrate, ammonium nitrate
  • hydrochloric acid ion such as aluminum chloride, sodium chloride, ammonium chloride etc.
  • a metal contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium, and silica may be dissolved in an aqueous solution containing hydrochloric acid as a main component.
  • the solution temperature is preferably 10 to 60 ° C., and more preferably 20 to 50 ° C. Hypochlorous acid may be added.
  • Sine waves, square waves, trapezoidal waves, triangular waves or the like can be used as the alternating current power source waveform of the electrochemical surface roughening treatment.
  • the frequency is preferably 0.1 to 250 Hz.
  • FIG. 4 A graph showing an example of an alternating waveform current waveform diagram used for electrochemical graining treatment in a method of manufacturing an aluminum support having an anodic oxide film is shown in FIG.
  • ta is the anode reaction time
  • tc is the cathode reaction time
  • tp is the time until the current reaches a peak from
  • Ia is the peak current on the anode cycle side
  • Ic is the peak current on the cathode cycle side It is.
  • the time tp for the current to reach a peak from 0 is preferably 1 to 10 msec.
  • the conditions of one cycle of alternating current used for electrochemical surface roughening are the ratio tc / ta of anode reaction time ta of aluminum plate to cathode reaction time tc of 1 to 20, and the amount of electricity Qc when the aluminum plate is anode
  • the ratio Qc / Qa of the quantity of electricity Qa at this time is in the range of 0.3 to 20, and the anode reaction time ta is in the range of 5 to 1000 msec.
  • the tc / ta is more preferably 2.5-15.
  • Qc / Qa is more preferably 2.5-15.
  • the current density is preferably 10 to 200 A / dm 2 on both the anode cycle side Ia and the cathode cycle side Ic of the current at the peak value of the trapezoidal wave.
  • the Ic / Ia is preferably in the range of 0.3 to 20.
  • the total amount of electricity involved in the anodic reaction of the aluminum plate at the end of the electrochemical surface roughening is preferably 25 to 1000 C / dm 2 .
  • an electrolytic cell used for electrochemical roughening using alternating current an electrolytic cell used for known surface treatment such as vertical type, flat type and radial type can be used, but it is described in JP-A-5-195300. Particularly preferred is a radial type electrolytic cell as described above.
  • FIG. 5 is a side view showing an example of a radial type cell in electrochemical graining treatment using alternating current in the method for producing an aluminum support having an anodized film.
  • 50 is a main electrolytic cell
  • 51 is an AC power supply
  • 52 is a radial drum roller
  • 53a and 53b are main electrodes
  • 54 is an electrolytic solution supply port
  • 55 is an electrolytic solution
  • 56 is a slit
  • 57 is an electrolytic solution passage
  • 58 is an auxiliary anode
  • 60 is an auxiliary anode tank
  • W is an aluminum plate.
  • the electrolytic conditions may be the same or different.
  • the aluminum plate W is wound around a radial drum roller 52 disposed so as to be immersed in the main electrolytic cell 50, and is electrolyzed by the main electrodes 53a and 53b connected to the AC power supply 51 in the transportation process.
  • the electrolytic solution 55 is supplied from the electrolytic solution supply port 54 through the slit 56 to the electrolytic solution passage 57 between the radial drum roller 52 and the main electrodes 53a and 53b.
  • the aluminum plate W treated in the main electrolytic cell 50 is then electrolytically treated in the auxiliary anode cell 60.
  • An auxiliary anode 58 is disposed opposite to the aluminum plate W in the auxiliary anode tank 60, and the electrolyte solution 55 is supplied to flow in the space between the auxiliary anode 58 and the aluminum plate W.
  • the positive-working image recording layer in the lithographic printing plate precursor according to the invention is described.
  • the positive type image recording layer comprises an image recording layer comprising a single layer or a plurality of layers.
  • An infrared absorbing agent is contained in the image recording layer, and a thermal positive type image recording layer capable of imagewise exposure with an infrared laser is preferable, but a conventional positive type image recording layer using ultraviolet light can also be used.
  • the thermal positive type image recording layer (hereinafter also referred to as a thermal positive type heat sensitive layer) preferably contains an alkali-soluble polymer compound and an infrared absorber.
  • the alkali-soluble polymer compound includes homopolymers containing an acidic group in the main chain and / or side chain in the polymer, copolymers thereof, and mixtures thereof. Therefore, the thermal positive type heat sensitive layer has the property of dissolving when it comes in contact with an alkali developer.
  • alkali-soluble polymer compounds those having at least one of the following acidic groups (1) to (6) in the main chain and / or side chain of the polymer are preferred in terms of solubility in an alkaline developer: preferable.
  • Ar represents a divalent aryl group which may have a substituent
  • R represents a hydrocarbon group which may have a substituent
  • an alkali-soluble polymer compound having (1) a phenol group, (2) a sulfonamide group or (3) an active imido group an alkali-soluble polymer compound having (1) a phenol group or (2) a sulfonamide group is particularly preferable from the viewpoint of sufficiently securing the solubility in an alkali developer and the film strength.
  • polymerizable monomer having a phenolic hydroxyl group examples include polymerizable monomers consisting of low molecular weight compounds each having one or more phenolic hydroxyl groups and a polymerizable unsaturated bond, and examples thereof include phenolic Acrylamides having a hydroxyl group, methacrylamides, acrylic acid esters or methacrylic acid esters, hydroxystyrene and the like can be mentioned.
  • the monomer having a phenolic hydroxyl group may be used in combination of two or more.
  • a polymerizable monomer having a sulfonamide group a sulfonamide group (—NH—SO 2 —) in which at least one hydrogen atom is bonded to a nitrogen atom in one molecule, and a polymerizable unsaturated bond
  • the polymerizable monomer which consists of a low molecular weight compound which each has one or more is mentioned, for example, the low molecular weight compound which has an acryloyl group, an allyl group or vinyloxyl group, and a mono-substituted aminosulfonyl group or a substituted sulfonylimino group is preferable.
  • Examples of such compounds include the compounds represented by the general formulas (I) to (V) described in JP-A-8-123029. Specifically, m-aminosulfonylphenyl methacrylate, N- (p-aminosulfonylphenyl) methacrylamide, N- (p-aminosulfonylphenyl) acrylamide, etc. are suitably used as the polymerizable monomer having a sulfonamide group. be able to.
  • the polymer which has at least 1 sort (s) among the structural unit represented by following formula S-1 and the structural unit represented by following formula S-2 is mentioned preferably .
  • R s1 represents a hydrogen atom or an alkyl group.
  • Z represents -O- or -NR s2 , wherein R s2 represents a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group.
  • Ar 1 and Ar 2 each independently represent an aromatic group, and at least one is a heteroaromatic group.
  • sa and sb each independently represent 0 or 1;
  • R s1 represents a hydrogen atom or an alkyl group, and the alkyl group is a substituted or unsubstituted alkyl group, preferably one having no substituent.
  • the alkyl group represented by R s1 include lower alkyl groups such as methyl group, ethyl group, propyl group and butyl group.
  • R s1 is preferably a hydrogen atom or a methyl group.
  • Z represents -O- or -NR s2- , preferably -NR s2- .
  • R s2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted alkynyl group, preferably a hydrogen atom or an unsubstituted alkyl group, Preferably it is a hydrogen atom.
  • sa and sb each independently represent 0 or 1, and a preferred embodiment is a case where sa is 0 and sb is 1, more preferably a case where both sa and sb are 0, particularly preferably sa. And sb are both 1. More specifically, in the above structural unit, when sa is 0 and sb is 1, Z is preferably O. In addition, when sa and sb are both 1, Z is preferably NR s2 , where R s2 is preferably a hydrogen atom.
  • Ar 1 and Ar 2 each independently represent an aromatic group, and at least one is a heteroaromatic group.
  • Ar 1 is a divalent aromatic group
  • Ar 2 is a monovalent aromatic group.
  • the aromatic group is a substituent formed by replacing one or two of the hydrogen atoms constituting the aromatic ring with a linking group.
  • the aromatic ring and heteroaromatic ring in the aromatic group may be selected from hydrocarbon aromatic rings such as benzene, naphthalene and anthracene, and may be furan, thiophene, pyrrole, imidazole or 1,2,3-triazole 1,2,4-triazole, tetrazole, oxazole, isoxazole, thiazole, isothiazole, thiadiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, 1,2,4-triazine Or a heteroaromatic ring such as 1,2,3-triazine.
  • a plurality of rings may be fused, for example, in the form of a fused ring such as benzofuran, benzothiophene, indole, indazole, benzoxazole, quinoline, quinazoline, benzimidazole or benzotriazole.
  • a fused ring such as benzofuran, benzothiophene, indole, indazole, benzoxazole, quinoline, quinazoline, benzimidazole or benzotriazole.
  • the aromatic group and the heteroaromatic group may further have a substituent, and as the substituent which can be introduced, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, a heteroaryl group Hydroxy group, mercapto group, carboxy group or alkyl ester thereof, sulfonic acid group or alkyl ester thereof, phosphinic acid group or alkyl ester thereof, amino group, sulfonamide group, amido group, nitro group, halogen atom, or the like
  • the substituent etc. which are formed by combining two or more may be mentioned, and the substituent may further have the substituent mentioned here.
  • Ar 2 is preferably a heteroaromatic group which may have a substituent, more preferably pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, 1,2,4-triazine, And heteroaromatic rings containing a nitrogen atom selected from 1,2,3-triazines, tetrazoles, oxazoles, isoxazoles, thiazoles, isothiazoles, thiadiazoles, and oxadiazoles.
  • the content of the constituent unit represented by the formula S-1 or the formula S-2 (but converted as a monomer unit) is preferably 10 mol% to 100 mol% with respect to the total amount of the monomer units in the polymer. 20 mol% to 90 mol% is more preferable, 30 mol% to 80 mol% is more preferable, and 30 mol% to 70 mol% is particularly preferable.
  • the polymer may be a copolymer containing other structural units in addition to the structural units represented by the above-mentioned formula S-1 or formula S-2.
  • a hydrophobic monomer having a substituent such as an alkyl group or an aryl group in the side chain structure of the monomer, or an acid group, an amide group, a hydroxy group or an ethylene oxide group in the side chain structure of the monomer It is important to select the kind of monomer to be copolymerized in the range which does not impair the alkali solubility of the above-mentioned polymer. .
  • copolymerization components include (meth) acrylamide, N-substituted (meth) acrylamide, N-substituted maleimide, (meth) acrylic acid ester, (meth) acrylic acid ester having a polyoxyethylene chain, 2-hydroxyethyl (Meth) acrylate, styrene, styrene sulfonic acid, o-, p-, or m-vinylbenzene acid, vinylpyridine, N-vinylcaprolactam, N-vinylpyrrolidine, (meth) acrylic acid, itaconic acid, maleic acid, glycidyl (Meth) acrylate, hydrolyzed vinyl acetate, vinyl phosphonic acid and the like.
  • N-benzyl (meth) acrylamide, (meth) acrylic acid and the like can be mentioned.
  • the number average molecular weight (Mn) of the polymer having at least one of the constitutional unit represented by the above formula S-1 and the constitutional unit represented by the above formula S-2 is preferably 10,000 to 500,000, 10,000 to 200,000 are more preferable, and 10,000 to 100,000 are particularly preferable.
  • the weight average molecular weight (Mw) is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, and particularly preferably 20,000 to 200,000.
  • polymerizable monomer having an active imide group a compound having an active imide group in the molecule described in JP-A-11-84657 is preferable, and an active imide group can be polymerized in one molecule.
  • polymerizable monomers comprising low molecular weight compounds each having one or more unsaturated bonds.
  • N- (p-toluenesulfonyl) methacrylamide, N- (p-toluenesulfonyl) acrylamide and the like can be suitably used as the polymerizable monomer having an active imide group.
  • the polymeric compound which copolymerized 2 or more types in the polymerizable monomer which has the said phenolic hydroxyl group, the polymerizable monomer which has a sulfonamide group, and the polymerizable monomer which has an active imide group, or these 2 or more types It is preferable to use a polymer compound obtained by copolymerizing the polymerizable monomer with another polymerizable monomer.
  • the blending mass ratio of these components is 50: 50 to 5: It is preferably in the range of 95, and more preferably in the range of 40:60 to 10:90.
  • the alkali-soluble polymer compound is a copolymer of the above-mentioned polymerizable monomer having a phenolic hydroxyl group, a polymerizable monomer having a sulfonamide group, or a polymerizable monomer having an active imido group and another polymerizable monomer
  • the monomer imparting alkali solubility is preferably contained in an amount of 10 mol% or more, preferably 20 mol% or more, based on the total molar amount of monomers used for copolymerization. Is more preferred.
  • the monomer component to be copolymerized with the polymerizable monomer having a phenolic hydroxyl group, the polymerizable monomer having a sulfonamide group, or the polymerizable monomer having an active imide group the compounds listed in the following (m1) to (m12) are exemplified Although it can do, it is not limited to these.
  • (M1) Acrylic acid esters having an aliphatic hydroxyl group such as 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate, and methacrylic acid esters.
  • Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, benzyl acrylate, 2-chloroethyl acrylate, glycidyl acrylate and the like.
  • Alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, 2-chloroethyl methacrylate, glycidyl methacrylate and the like.
  • (M4) Acrylamide, methacrylamide, N-methylol acrylamide, N-ethyl acrylamide, N-hexyl methacrylamide, N-cyclohexyl acrylamide, N-hydroxyethyl acrylamide, N-phenyl acrylamide, N-nitrophenyl acrylamide, N-ethyl- Acrylamide or methacrylamide such as N-phenyl acrylamide.
  • (M5) Vinyl ethers such as ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, octyl vinyl ether, phenyl vinyl ether and the like.
  • (M6) Vinyl esters such as vinyl acetate, vinyl chloroacetate, vinyl butyrate and vinyl benzoate.
  • Styrenes such as styrene, ⁇ -methylstyrene, methylstyrene and chloromethylstyrene.
  • (M8) Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, phenyl vinyl ketone and the like.
  • (M9) Olefins such as ethylene, propylene, isobutylene, butadiene and isoprene.
  • (M11) Unsaturated imides such as maleimide, N-acryloyl acrylamide, N-acetyl methacrylamide, N-propionyl methacrylamide, N- (p-chlorobenzoyl) methacrylamide and the like.
  • (M12) Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride and itaconic acid.
  • the infrared absorber contained in the heat-sensitive layer of the thermal positive type is a substance that absorbs light and generates heat.
  • the infrared absorbing agent can convert exposure energy into heat to efficiently release interaction between the exposed area of the heat sensitive layer.
  • the infrared absorbing agent is preferably a pigment or dye having a light absorbing region in the infrared region of a wavelength of 700 to 1200 nm from the viewpoint of recording sensitivity.
  • pigments commercially available pigments, as well as Color Index (CI) Handbook, "Latest Pigment Handbook” (edited by Japan Pigment Technology Association, published in 1977), “latest pigment applied technology” (CMC publication, published in 1986) and Pigments described in “Printing Ink Technology", CMC Publishing, 1984) can be used.
  • CI Color Index
  • Types of pigments include, for example, black pigments, yellow pigments, orange pigments, brown pigments, red pigments, purple pigments, blue pigments, green pigments, fluorescent pigments, metal powder pigments, polymer-bound dyes.
  • the pigment may be used without surface treatment, or may be used after being subjected to conventionally known surface treatment.
  • the particle size of the pigment is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 1 ⁇ m, and still more preferably 0.1 to 1 ⁇ m. Within the above range, it is preferable in view of the stability of the pigment dispersion in the heat-sensitive layer coating solution, the uniformity of the heat-sensitive layer, and the like.
  • dyes commercially available dyes and known dyes described in the literature (for example, "Dye Handbook” Kodansha (1986), “Dye Handbook” edited by the Society of Synthetic Organic Chemistry, published in 1945) are used. it can. Specifically, azo dyes, metal complex salts azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, azulenium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squalilium dyes, pyrilium salts, metal-metal complexes Dyes such as (for example, dithiol metal complex, metal-containing phthalocyanine) can be used.
  • those absorbing infrared light or near infrared light are particularly preferable in that they are suitable for use of a laser emitting infrared light or near infrared light.
  • phthalocyanine including metal-containing phthalocyanine
  • carbon black are suitably used as a pigment which absorbs such infrared light or near-infrared light.
  • a dye which absorbs infrared light or near infrared light for example, cyanine dyes, merocyanine dyes, iminium dyes, oxonol dyes, pyrylium (including thiopyrylium, selenapyrilium, ternapyrylium) dyes, naphthoquinone dyes, Examples include squarylium dyes, phthalocyanines (including metal-containing phthalocyanines) dyes, organic metal complexes (metal complex compounds with dithiols, diamines and the like, etc.) and the like.
  • a near infrared absorbing dye described as formula (I) or (II) in US Pat. No. 4,756,993 is described in JP-A-2000-267265.
  • An infrared absorbing dye which becomes soluble in an alkaline aqueous solution, an infrared absorbing dye containing a functional group which changes to hydrophilicity by heat as described in JP-A-11-309952, JP-A-2000-160131 The polymethine dyes described in JP-A-2000-330271, JP-A-2001-117216 and JP-A-2001-174980, and the phthalocyanine dyes described in JP-A-2000-352817.
  • the dye as the infrared absorber used in the present invention is not limited to these.
  • the content of the infrared absorber is preferably 0.01 to 50% by mass, more preferably 0.01 to 30% by mass, still more preferably 0.1 to 10% by mass, based on the total solid content of the heat-sensitive layer.
  • dyes particularly preferably 0.5 to 10% by weight
  • pigments particularly preferably 1 to 10% by weight.
  • the heat-sensitive layer of the thermal positive type may further contain other components such as an acid generator, an acid multiplying agent, a development accelerator, a surfactant, a print-out agent / colorant, a plasticizer, a wax agent and the like.
  • an acid generator an acid multiplying agent
  • a development accelerator a surfactant
  • a print-out agent / colorant e
  • the thermal positive type image recording layer may have a two-layer structure consisting of a lower layer close to the aluminum support having the anodized film and an upper layer present thereon.
  • An image recording layer having a two-layer structure is described, for example, in JP-A-11-218914.
  • the upper layer contains an alkali-soluble polymer compound, an infrared absorber, and other components contained in the heat-sensitive layer of the thermal positive type.
  • the lower layer preferably contains an alkali-soluble polymer compound.
  • the lower layer may further contain an infrared absorber and other components.
  • the content of the alkali-soluble polymer compound is preferably 10% by mass to 90% by mass with respect to the total mass of the lower layer and the upper layer. 01% by mass to 50% by mass is preferable, the content of the acid generator is preferably 0% by mass to 30% by mass, the content of the acid multiplying agent is preferably 0% by mass to 20% by mass, and the content of the development accelerator Is preferably 0% by mass to 20% by mass, the content of surfactant is preferably 0% by mass to 5% by mass, and the content of printout agent / coloring agent is preferably 0% by mass to 10% by mass, and the plasticizer The content of is preferably 0% by mass to 10% by mass, and the content of the wax agent is preferably 0% by mass to 10% by mass.
  • the lower layer and the upper layer can be formed by dissolving the above-described components in a solvent and coating.
  • the solvents to be used include ethylene dichloride, cyclohexanone, methyl ethyl ketone, methanol, ethanol, propanol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate, dimethoxyethane, Methyl lactate, ethyl lactate, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylurea, N-methylpyrrolidone, dimethylsulfoxide, sulfolane, ⁇ -butyrolactone, toluene, 1,3-dimethyl-2-imidazolidinone Etc., but are not limited to these.
  • the solvents are used alone or in combination.
  • the content of the alkali-soluble polymer compound in the lower and upper layers is preferably 10% by mass to 90% by mass, more preferably 50% by mass to 88% by mass, and more preferably 60% by mass with respect to the total mass of the contained layer. 85 mass% is more preferable. When the content is in this range, the patternability upon development becomes good.
  • Coating amount after drying of the lower layer components is preferably 0.5 ⁇ 4.0g / m 2, more preferably 0.6 ⁇ 2.5g / m 2. When it is 0.5 g / m 2 or more, the printing durability is excellent, and when it is 4.0 g / m 2 or less, the image reproducibility and the sensitivity are excellent.
  • Coating amount after drying of the upper layer component is preferably 0.05 ⁇ 1.0g / m 2, more preferably 0.08 ⁇ 0.7g / m 2. If it is 0.05 g / m 2 or more, excellent in development latitude and scratch resistance, if it is 1.0 g / m 2 or less, excellent sensitivity.
  • Lower layer and the coating amount after drying of the combined upper layer is preferably 0.6 ⁇ 4.0g / m 2, more preferably 0.7 ⁇ 2.5g / m 2.
  • it is 0.6 g / m 2 or more, the printing durability is excellent, and when it is 4.0 g / m 2 or less, the image reproducibility and the sensitivity are excellent.
  • the lower layer and the upper layer are basically formed by separating two layers.
  • a component contained in the lower layer, and an element contained in the upper layer are included.
  • the method of utilizing the difference in solvent solubility with the components, or the method of rapidly drying and removing the solvent after applying the upper layer, and the like can be mentioned. It is preferable to use the latter method in combination because the separation between layers is further improved.
  • the conventional positive type image recording layer is typically a photosensitive layer containing an alkali-soluble polymer compound and an o-quinonediazide compound.
  • the description in paragraphs [0042] to [0066] of JP-A-2003-1956 can be referred to.
  • a subbing layer can be provided, as required, between the aluminum support having an anodized film and the positive-working image recording layer.
  • the component contained in the undercoat layer is not particularly limited, but various organic compounds described in paragraph [0151] of JP-A-2003-1956 can be used.
  • a polymer compound having an acid group-containing component and an onium group-containing component described in JP-A-2000-105462 is also suitably used.
  • a polymer containing an acid group selected from phosphonic acid group, phosphoric acid group, sulfonic acid group and carboxylic acid group is preferably used. It is preferable that it is a copolymer containing the monomer unit which has the said acidic radical. Moreover, you may also include the monomer unit which has a highly hydrophilic betaine structure at the terminal. Examples of more preferable copolymers include those described in paragraphs [0012] to [0036] of JP-A-2010-284963.
  • the undercoat layer components may be used singly or in combination of two or more.
  • the formation of the undercoat layer can be carried out in the following manner. That is, a method in which a solution obtained by dissolving the undercoat layer component in water or an organic solvent such as methanol, ethanol, methyl ethyl ketone or the like or a mixed solvent thereof is coated on an anodized aluminum support and dried, Alternatively, the aluminum support having the anodized film is immersed in a solution in which the undercoat layer component is dissolved in an organic solvent such as methanol, ethanol, methyl ethyl ketone or the like, or a mixed solvent thereof, and the undercoat layer component is adsorbed.
  • a solution with a concentration of preferably 0.005 to 10% by weight of the primer layer component can be applied by various methods.
  • the concentration of the solution is preferably 0.01 to 20% by mass, more preferably 0.05 to 5% by mass
  • the immersion temperature is preferably 20 to 90 ° C., more preferably 25 to 50 ° C.
  • the immersion time is preferably 0.1 seconds to 20 minutes, more preferably 2 seconds to 1 minute.
  • the solution used in the above method can also be adjusted to a pH range of 1 to 12 with a basic substance such as ammonia, triethylamine or potassium hydroxide, or an acidic substance such as hydrochloric acid or phosphoric acid.
  • a yellow dye may be contained to improve tone reproduction of the lithographic printing plate precursor.
  • the coverage of the undercoat layer, 2 ⁇ 200mg / m 2 is is suitable, preferably 5 ⁇ 100mg / m 2.
  • a backcoat layer may be provided on the back side of the support of the lithographic printing plate precursor.
  • the backcoat layer is formed of a metal oxide obtained by hydrolysis and polycondensation of an organic polymer compound described in JP-A-5-45885 and an organic or inorganic metal compound described in JP-A-6-35174. Is preferably used.
  • alkoxy compounds of silicon such as Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 and Si (OC 4 H 9 ) 4 are inexpensive and easily obtainable, and are obtained from these
  • the metal oxide coating layer is preferable to the developer-resistant solution.
  • the lithographic printing plate precursor of the present invention can produce a lithographic printing plate by performing conventionally known image formation (for example, exposure) and development depending on the type of positive-working image recording layer.
  • the light source of the actinic ray used for image exposure can be selected appropriately according to the type of positive image recording layer. Specifically, the light source described in paragraph [0268] of JP-A-2003-1956 can be used.
  • the thermal type planographic printing plate precursor which is irradiated with a laser beam based on digital data and exposed like a desired image is developed by a method using an alkaline developer.
  • the laser light is efficiently absorbed by the infrared absorber contained in the image recording layer of the exposed portion, and only the image recording layer of the exposed portion is stored due to the accumulation of energy absorbed by exposure.
  • the heat is generated to be alkali-soluble, and the development processing using an alkali developer removes only the image recording layer in the exposed area to form a desired image.
  • the image recording layer is of the conventional positive type, it can be similarly developed using an alkaline developer.
  • the alkaline developing solution used for development is an alkaline aqueous solution, and can be appropriately selected and used from conventionally known alkaline aqueous solutions.
  • an aqueous alkali solution containing an alkali silicate or a nonreducing sugar and a base is suitably mentioned, and in particular, one having a pH of 12.5 to 14.0 is more suitably mentioned.
  • the description of paragraphs [0270] to [0292] in JP-A No. 2003-1956 can be referred to for the above-mentioned alkali developer.
  • Examples 1 to 38 and Comparative Examples 1 to 9 [Production of an aluminum support having an anodized film]
  • Surface treatment A, surface treatment C or surface treatment D of the following aluminum support was applied to an aluminum alloy plate of a material 1S having a thickness of 0.3 mm to produce an aluminum support having an anodized film.
  • the water washing process was performed during all the treatment processes, and the liquid was removed by the nip roller after the water washing process.
  • the median diameter ( ⁇ m) of the abrasive was 30 ⁇ m
  • the number of brushes was four
  • the rotational speed (rpm) of the brush was 250 rpm.
  • the material of the bundle planting brush was 6 ⁇ 10 nylon, and the diameter of the bristles was 0.3 mm and the bristle length was 50 mm.
  • the brush was flocked so as to be dense by drilling a hole in a 300 300 mm stainless steel cylinder.
  • the distance between the two support rollers ( ⁇ 200 mm) at the lower part of the bundle planting brush was 300 mm.
  • the bunching brush was pressed until the load of the drive motor for rotating the brush became 10 kW plus to the load before pressing the bunching brush to the aluminum plate.
  • the rotation direction of the brush was the same as the moving direction of the aluminum plate.
  • Alkali etching treatment An etching treatment was carried out by spraying an aqueous caustic soda solution having a concentration of 26 mass% caustic soda and a concentration of 6.5 mass% aluminum ion onto an aluminum plate at a temperature of 70 ° C with a spray pipe. The amount of dissolved aluminum was 10 g / m 2 .
  • Desmut treatment in acidic aqueous solution Desmut treatment was performed in nitric acid aqueous solution.
  • the nitric acid aqueous solution used for the desmutting treatment the nitric acid waste solution used for the electrochemical graining treatment in the next step was used.
  • the liquid temperature was 35 ° C.
  • the desmut solution was sprayed by spray and desmutted for 3 seconds.
  • Electrochemical surface roughening treatment was performed continuously using an alternating voltage of nitric acid electrolysis 60 Hz.
  • the electrolyte used was an electrolyte prepared by adding aluminum nitrate to an aqueous solution containing 10.4 g / L of nitric acid at a temperature of 35 ° C. to adjust the aluminum ion concentration to 4.5 g / L.
  • the AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1.
  • Electrochemical graining treatment was performed.
  • Ferrite was used for the auxiliary anode.
  • the electrolytic cell shown in FIG. 5 was used.
  • the current density was 30 A / dm 2 at the peak value of the current, and 5% of the current flowing from the power supply was diverted to the auxiliary anode.
  • Amount of electricity (C / dm 2) the aluminum plate was 185C / dm 2 as the total quantity of electricity when the anode.
  • Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a sodium hydroxide concentration of 27% by mass and an aluminum ion concentration of 2.5% by mass onto an aluminum plate at a temperature of 50 ° C with a spray pipe. The amount of dissolved aluminum was 3.5 g / m 2 .
  • Desmut treatment in acidic aqueous solution Desmut treatment was performed in a sulfuric acid aqueous solution.
  • a sulfuric acid aqueous solution used for desmutting treatment a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L was used.
  • the liquid temperature was 30.degree.
  • the desmut solution was sprayed by spray and desmutted for 3 seconds.
  • Electrochemical surface roughening treatment was carried out continuously using an alternating voltage of 60 Hz in hydrochloric acid electrolysis.
  • the electrolyte used was an electrolyte prepared by adding aluminum chloride to an aqueous solution of hydrochloric acid 6.2 g / L at a liquid temperature of 35 ° C. and adjusting the aluminum ion concentration to 4.5 g / L.
  • the AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1.
  • Electrochemical graining treatment was performed.
  • Ferrite was used for the auxiliary anode.
  • the electrolytic cell shown in FIG. 5 was used.
  • the current density was 25A / dm 2 at the peak of electric current amount of hydrochloric acid electrolysis (C / dm 2) the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode.
  • Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass onto an aluminum plate at a temperature of 60 ° C. using a spray pipe. The amount of dissolved aluminum was 0.2 g / m 2 .
  • Desmut treatment was performed in a sulfuric acid aqueous solution.
  • the waste liquid generated in the anodizing treatment step (dissolving aluminum ion 5 g / L in sulfuric acid 170 g / L aqueous solution) was subjected to desmutting treatment at a liquid temperature of 35 ° C. for 4 seconds.
  • Anodizing treatment in the first step was performed using an anodizing device by direct current electrolysis having the structure shown in FIG.
  • the electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
  • the aluminum plate 616 is transported as shown by the arrow in FIG.
  • the aluminum plate 616 is charged to (+) by the feeding electrode 620 in the feeding tank 612 in which the electrolytic solution 618 is stored.
  • the aluminum plate 616 is conveyed upward by the roller 622 in the power supply tank 612 and is turned downward by the nip roller 624, and then conveyed toward the electrolytic treatment tank 614 where the electrolytic solution 626 is stored. Turn to Next, the aluminum plate 616 is charged to ( ⁇ ) by the electrolytic electrode 630 to form an anodic oxide film on the surface thereof, and the aluminum plate 616 leaving the electrolytic treatment tank 614 is transported to a later step.
  • the direction changing means is constituted by the roller 622, the nip roller 624 and the roller 628, and the aluminum plate 616 is formed between the rollers 622, 624 and 628 in the space between the power supply tank 612 and the electrolytic treatment tank 614.
  • the sheet is transported in a mountain shape and a reverse U shape.
  • the feed electrode 620 and the electrolytic electrode 630 are connected to a DC power supply 634.
  • (A-l) Second Step Anodizing Treatment was performed using a direct current electrolytic anodizing apparatus having the structure shown in FIG.
  • the electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
  • ⁇ Surface treatment C> The following treatments (C-a) to (C-k) were performed.
  • Desmut treatment in acidic aqueous solution Desmut treatment was performed in nitric acid aqueous solution.
  • the nitric acid aqueous solution used for the desmutting treatment the nitric acid waste solution used for the electrochemical roughening in the next step was used.
  • the liquid temperature was 35 ° C.
  • the desmut solution was sprayed by spray and desmutted for 3 seconds.
  • Electrochemical surface roughening treatment was carried out continuously using an alternating voltage of nitric acid electrolysis 60 Hz.
  • the electrolyte used was an electrolyte prepared by adding aluminum nitrate to an aqueous solution containing 10.4 g / L of nitric acid at a temperature of 35 ° C. to adjust the aluminum ion concentration to 4.5 g / L.
  • the AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1.
  • An electrochemical roughening treatment was performed.
  • Ferrite was used for the auxiliary anode.
  • the electrolytic cell shown in FIG. 5 was used.
  • the current density was 30 A / dm 2 at the peak value of the current, and 5% of the current flowing from the power supply was diverted to the auxiliary anode.
  • Amount of electricity (C / dm 2) the aluminum plate was 230C / dm 2 as the total quantity of electricity when the anode.
  • (Cd) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a sodium hydroxide concentration of 27% by mass and an aluminum ion concentration of 2.5% by mass at a temperature of 50 ° C. onto an aluminum plate. The amount of dissolved aluminum was 3.5 g / m 2 .
  • (C-e) Desmut treatment in acidic aqueous solution Desmut treatment was performed in a sulfuric acid aqueous solution.
  • a sulfuric acid aqueous solution used for desmutting treatment a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L was used. The solution temperature was 30.degree.
  • the desmut solution was sprayed by spray and desmutted for 3 seconds.
  • Electrochemical surface roughening treatment was continuously performed using an alternating voltage of hydrochloric acid electrolysis 60 Hz.
  • the electrolyte used was an electrolyte prepared by adding aluminum chloride to an aqueous solution of hydrochloric acid 6.2 g / L at a liquid temperature of 35 ° C. and adjusting the aluminum ion concentration to 4.5 g / L.
  • the AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1.
  • An electrochemical roughening treatment was performed.
  • Ferrite was used for the auxiliary anode.
  • the electrolytic cell shown in FIG. 5 was used.
  • the current density was 25A / dm 2 at the peak of electric current amount of hydrochloric acid electrolysis (C / dm 2) the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode.
  • (Cg) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass onto an aluminum plate at a temperature of 60 ° C. using a spray pipe. The amount of dissolved aluminum was 0.2 g / m 2 .
  • Desmut treatment in acidic aqueous solution Desmut treatment was performed in an aqueous sulfuric acid solution.
  • the waste liquid generated in the anodizing treatment step (dissolving aluminum ion 5 g / L in sulfuric acid 170 g / L aqueous solution) was subjected to desmutting treatment at a liquid temperature of 35 ° C. for 4 seconds.
  • Anodizing treatment in the first step was performed using an anodizing device by direct current electrolysis having a structure shown in FIG.
  • the electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
  • the aluminum plate 616 is transported as shown by the arrow in FIG.
  • the aluminum plate 616 is charged to (+) by the feeding electrode 620 in the feeding tank 612 in which the electrolytic solution 618 is stored.
  • the aluminum plate 616 is conveyed upward by the roller 622 in the power supply tank 612 and is turned downward by the nip roller 624, and then conveyed toward the electrolytic treatment tank 614 where the electrolytic solution 626 is stored. Turn to Next, the aluminum plate 616 is charged to ( ⁇ ) by the electrolytic electrode 630 to form an anodic oxide film on the surface thereof, and the aluminum plate 616 leaving the electrolytic treatment tank 614 is transported to a later step.
  • the direction changing means is constituted by the roller 622, the nip roller 624 and the roller 628, and the aluminum plate 616 is formed between the rollers 622, 624 and 628 in the space between the power supply tank 612 and the electrolytic treatment tank 614.
  • the sheet is transported in a mountain shape and a reverse U shape.
  • the feed electrode 620 and the electrolytic electrode 630 are connected to a DC power supply 634.
  • the second step anodizing treatment was performed using a direct current electrolytic anodizing device having the structure shown in FIG.
  • the electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
  • ⁇ Surface treatment D> The following treatments (D-a) to (D-h) were performed.
  • Desmut treatment in acidic aqueous solution (first desmut treatment) Desmut treatment was performed in an acidic aqueous solution.
  • the acidic aqueous solution used for desmutting was an aqueous solution of 150 g / L of sulfuric acid.
  • the liquid temperature was 30.degree.
  • the desmut solution was sprayed by spraying and desmutted for 3 seconds.
  • the amount of electricity was 450 C / dm 2 in total of the amount of electricity that the aluminum plate was subjected to the anode reaction, and the electrolytic treatment was divided into four steps at 125 C / dm 2 every four seconds.
  • a carbon electrode was used as the counter electrode of the aluminum plate.
  • (D-d) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass onto an aluminum plate at a temperature of 45 ° C. using a spray pipe. The amount of aluminum dissolved was 0.2 g / m 2 .
  • Desmut treatment in acidic aqueous solution Desmut treatment in acidic aqueous solution was performed.
  • the acidic aqueous solution used for the desmutting treatment the waste solution generated in the anodizing treatment step (5.0 g / L of aluminum ion dissolved in an aqueous solution of 170 g / L of sulfuric acid) was used.
  • the liquid temperature was 30.degree.
  • the desmut solution was sprayed by spray and desmutted for 3 seconds.
  • Anodizing treatment in the first step was performed using an anodizing device by direct current electrolysis having a structure shown in FIG.
  • the electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
  • the second step anodizing treatment was performed using a direct current electrolytic anodizing device having the structure shown in FIG.
  • the electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
  • the average diameter on the surface of the coating and the average diameter at the communication position of the small diameter holes are shown in Table 2.
  • the depth of the large diameter hole was deep and the diameter of the small diameter hole was difficult to measure, the upper part of the anodized film was cut and then the diameter of the small diameter hole was determined.
  • the depth of the micropore is observed by the cross section of the anodized film by FE-SEM (large diameter hole depth observation: 150,000 times, the small diameter hole depth Observation: 50,000 times) In the obtained image, the depths of 25 micropores were measured and averaged.
  • ⁇ Hydrophilization treatment B> The aluminum support having the anodized film was immersed in a treatment tank of a 1% by mass aqueous solution of sodium silicate No. 3 at a temperature of 30 ° C. for 10 seconds to perform alkali metal silicate treatment (silicate treatment). Thereafter, it was rinsed with a well water spray and dried.
  • undercoat layer> As described in Table 2, the following undercoating solutions for forming undercoat layers A to F were applied to a dry coating amount of 20 mg / m 2 to form undercoat layers A to F.
  • the composition ratio of each constituent unit is mol%, and the molecular weight is a mass average molecular weight.
  • the following coating solutions A to F for forming an image recording layer were applied by a bar coater to form image recording layers A to F.
  • the coating solution for forming an image recording layer is applied so that the dry coating amount is 1.0 g / m 2, and oven drying is performed at 100 ° C. for 60 seconds to form an image recording layer. did.
  • oven drying is performed at 100 ° C.
  • the solution is applied and oven-dried at 120 ° C for 40 seconds, and the first layer and the second layer have a dry coating amount of 0.5 g / m 2 each, and the total of the two layer dry coating amount is 1.0 g / m 2
  • the image recording layer was formed as follows.
  • Coating solution D for forming an image recording layer The composition is the same as the coating solution B for forming an image recording layer except that the copolymer P-1 of the coating solution B for forming an image recording layer is changed to the following copolymer P-2.
  • Coating solution E for forming an image recording layer The composition is the same as that of the coating solution B for forming an image recording layer except that the copolymer P-1 of the coating solution B for forming an image recording layer is changed to the following copolymer P-3.
  • Copolymer P-3 was a sulfonamide group-containing acrylic resin represented by the following formula, and the mass average molecular weight was 66,000. In the following formulas, the numerical value at the lower right of the parentheses represents the content ratio (molar ratio) of the constituent units.
  • lithographic printing plate precursor used in Examples 1 to 38 and Comparative Examples 1 to 12 by combining the aluminum support having the anodized film, the hydrophilization treatment, the undercoat layer, and the image recording layer as shown in Tables 1 to 2 was produced.
  • the lithographic printing plate precursor was exposed with an energy of 80 mJ / cm 2 using a Lotem 400 Quantum imager manufactured by CREO, and a developer Goldstar Premium manufactured by Kodak.
  • Plate Developer pH 13.0
  • development was carried out at 25 ° C. for 30 seconds in an InterPlater 85 HD processor manufactured by Glunz & Jensen, and gumging was performed with Finisher FP2W (1: 1 dilution) manufactured by Fujifilm Corporation.
  • the exposed image included a solid image and 50% halftone dots and 3% halftone dots of TAFFET A20 (FM screen) manufactured by Fuji Film Co., Ltd., and a 7-character blank morning letter chart.
  • Example 36 and Comparative Example 10 a mask film including a solid image, 50% halftone dots and 3% halftone dots of TAFFET A 20 (FM screen), and a 7-point blank letter chart on an image recording layer was formed on the image recording layer.
  • the lithographic printing plate precursor was exposed from a distance of 70 cm with a 3 KW metal halide lamp light, and an 8-fold dilution of DP-4 (manufactured by Fuji Photo Film Co., Ltd.) was used to make the product from Fuji Photo Film Co., Ltd. It was developed at 25 ° C. for 40 seconds by an automatic developing machine (800 U) and gummed with a finisher FP2W (1: 1 dilution) manufactured by Fujifilm Corporation.
  • DP-4 manufactured by Fuji Photo Film Co., Ltd.
  • the printing durability is evaluated using the number of copies as the number of copies when the value obtained by measuring the halftone dot area rate of the 50% halftone screen of the FM screen with a Gretag densitometer is 5% lower than the measured value of the 100th print. did.
  • the number of printed sheets (about 40,000 sheets) of Comparative Example 3 was used as a reference (100%), and the number of printed sheets of the other examples and comparative examples was expressed as an index. The larger the value, the better the printing durability.
  • the lithographic printing plate precursor according to the present invention can achieve desired effects with regard to all of printing durability, leaving-to-stand property and stain resistance.
  • desired effects can be obtained with regard to all of the printing resistance, the release resistance and the stain resistance.
  • the positive-type image recording layer is variously changed to a single-layer or two-layer thermal positive-type image recording layer or a conventional positive-type image recording layer, The desired effect is obtained for all.
  • Comparative Example 1 in which the thickness of the anodized film is less than 200 nm, the stain resistance is inferior.
  • a lithographic printing plate precursor which can provide a positive-working lithographic printing plate which is excellent in printing durability, leaving-to-standability and stain resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

To provide a lithographic printing plate precursor which has an aluminum support having an anodized film and a positive image recording layer. The anodized film has a thickness ranging from 200 nm to 2,000 nm. The anodized film has micropores each extending in the depth direction from the positive image recording layer side surface. Each micropore has a large diameter pore part (i) extending from the anodized film surface to a location exceeding 60 nm in depth and a small diameter pore part (ii) communicating with the bottom of the large diameter pore part and extending further in the depth direction from the communication position. The average diameter of the small diameter pore part (ii) at the communication position is smaller than the average diameter of the large diameter pore part (i) on the anodized film surface.

Description

平版印刷版原版Lithographic printing plate precursor
 本発明は、ポジ型画像記録層を有する平版印刷版原版に関する。 The present invention relates to a lithographic printing plate precursor having a positive-working image recording layer.
 従来、平版印刷版原版に用いられる陽極酸化皮膜を有するアルミニウム支持体に関しては、陽極酸化皮膜形成後、陽極酸化皮膜表面にマイクロポアを形成し、次に、酸又はアルカリ液で処理することで表層部のマイクロポアのポア径を拡大し、更に、陽極酸化処理を施すことで、表層部の大径孔部と、それに連通し更に深さ方向にのびる小径孔部からなるマイクロポアが形成されることが記載されている(特許文献1~3)。また、特許文献1~2には、このような陽極酸化皮膜を有するアルミニウム支持体を有する平版印刷版原版を用いて作製された平版印刷版が、優れた耐刷性と放置汚れ性を示すと記載されている。特許文献3には、このような陽極酸化皮膜を有するアルミニウム支持体を有するネガ型光重合性平版印刷版原版が、高感度であり、耐刷性に優れた平版印刷版を提供すると記載されている。 Conventionally, with regard to an aluminum support having an anodized film used for a lithographic printing plate precursor, after forming the anodized film, micropores are formed on the surface of the anodized film, and then treated with an acid or alkaline solution to form a surface layer. By enlarging the pore diameter of the micropores of the part and further performing anodizing treatment, a micropore consisting of a large diameter pore part of the surface layer part and a small diameter pore part communicating with it and further extending in the depth direction is formed Patents 1 to 3 have been described. Further, Patent Documents 1 and 2 show that a lithographic printing plate prepared using a lithographic printing plate precursor having an aluminum support having such an anodic oxide film exhibits excellent printing durability and storage stain resistance. Have been described. Patent Document 3 describes that a negative photopolymerizable lithographic printing plate precursor having an aluminum support having such an anodic oxide film provides a lithographic printing plate having high sensitivity and excellent printing durability. There is.
日本国特開2012-179738号公報Japanese Patent Application Laid-Open No. 2012-179738 日本国特開2011-245844号公報Japanese Patent Application Laid-Open No. 2011-245844 日本国特開平11-291657号公報Japanese Patent Application Laid-Open No. 11-291657
 昨今の市場動向として、より生産性に優れ、かつ、印刷特性に優れた平版印刷版を提供するポジ型平版印刷用原版が求められており、耐刷性、放置払い性、現像性、インキ払い性などの諸特性に関する要求レベルが更に高まっている。特に、近年、省エネルギーや製版作業の効率化の観点から、バーニング処理なしでの更なる耐刷性向上が求められている。
 本発明者らは、特許文献1~2に具体的に記載されている2段階の陽極酸化処理を施して得られる平版印刷版用支持体を使用した平版印刷版原版及び平版印刷版について上記諸特性を評価、検討を行ったところ、上記諸特性は必ずしも昨今要求されるレベルを満足していないことが判明した。即ち、耐刷性と耐汚れ性との両立が必ずしも十分でなかった。
As market trends in recent years, positive-working lithographic printing plate precursors providing lithographic printing plates with superior productivity and excellent printing characteristics are required, and printing durability, leaving-to-stand, developability, and ink removal are desired. Demand levels for characteristics such as gender are further increasing. In particular, in recent years, from the viewpoint of energy saving and efficiency improvement of plate making work, further improvement of printing durability without the burning process is required.
The present inventors have described the above-mentioned various lithographic printing plate precursors and lithographic printing plates using the lithographic printing plate support obtained by subjecting the two-step anodizing treatment specifically described in Patent Documents 1 and 2 to the lithographic printing plate support. The characteristics were evaluated and examined, and it was found that the above-mentioned characteristics do not necessarily satisfy the required level recently. That is, coexistence of printing durability and stain resistance was not always sufficient.
 本発明は、耐刷性、放置払い性及び耐汚れ性に優れる平版印刷版を提供し得るポジ型平版印刷版用原版を提供することを目的とする。 An object of the present invention is to provide a positive-working lithographic printing plate precursor which can provide a lithographic printing plate which is excellent in printing resistance, leaving-off property and stain resistance.
 本発明者らは、上記目的を達成すべく鋭意検討した結果、特許文献1~2に記載のない深さを持つ大径孔部を有するマイクロポアを含む陽極酸化皮膜を有するアルミニウム支持体を用いたポジ型画像記録層を有する平版印刷版原版により、上記目的を達成できることを見出し、本発明を完成するに至った。
 上記目的を達成するための手段を以下に記載する。
As a result of intensive studies to achieve the above object, the present inventors used an aluminum support having an anodic oxide film containing micropores having large diameter pores having a depth not shown in Patent Documents 1 and 2. It has been found that the above object can be achieved by a lithographic printing plate precursor having a positive-working image recording layer, and the present invention has been completed.
The means for achieving the above purpose are described below.
(1) 陽極酸化皮膜を有するアルミニウム支持体と、ポジ型画像記録層とを有する平版印刷版原版であって、上記陽極酸化皮膜の厚さは、200nm~2,000nmであり、上記陽極酸化皮膜は、上記ポジ型画像記録層側の表面から深さ方向にのびるマイクロポアを有し、上記マイクロポアが、上記陽極酸化皮膜表面から深さ60nmを超える位置までのびる大径孔部(i)と、上記大径孔部の底部と連通し、連通位置からさらに深さ方向にのびる小径孔部(ii)とを有し、上記連通位置における上記小径孔部(ii)の平均径が、上記陽極酸化皮膜表面における上記大径孔部(i)の平均径よりも小さい平版印刷版原版。
(2) 上記小径孔部(ii)の上記連通位置からの深さが、100nm~1940nm未満である(1)に記載の平版印刷版原版。
(3) 上記陽極酸化皮膜表面における大径孔部(i)の平均径が、10nmより大きく100nm以下である(1)又は(2)に記載の平版印刷版原版。
(4) 上記連通位置における上記小径孔部(ii)の平均径が、15nm以下である(1)~(3)のいずれか1項に記載の平版印刷版原版。
(5) 上記陽極酸化皮膜を有するアルミニウム支持体と上記ポジ型画像記録層との間に、ホスホン酸基、リン酸基、スルホン酸基、カルボン酸基から選ばれる酸基を含むポリマーを含有する下塗り層を有する(1)~(4)のいずれか1項に記載の平版印刷版原版。
(6) 上記ポジ型画像記録層が、赤外線吸収剤を含有する(1)~(5)のいずれか1項に記載の平版印刷版原版。
(7) 上記ポジ型画像記録層が、二層構造を有し、上記陽極酸化皮膜を有するアルミニウム支持体に近い層にアルカリ可溶性高分子化合物を含む(6)に記載の平版印刷版原版。
(1) A lithographic printing plate precursor having an aluminum support having an anodized film and a positive type image recording layer, wherein the thickness of the anodized film is 200 nm to 2,000 nm, and the anodized film And a large-diameter hole (i) having micropores extending in the depth direction from the surface on the positive-type image recording layer side, the micropores extending from the surface of the anodized film to a position exceeding 60 nm in depth A small diameter hole (ii) in communication with the bottom of the large diameter hole and further extending in the depth direction from the communication position, and the average diameter of the small diameter hole (ii) in the communication position is the anode A lithographic printing plate precursor which is smaller than the average diameter of the large diameter holes (i) on the surface of the oxide film.
(2) The lithographic printing plate precursor as described in (1), wherein the depth of the small diameter hole (ii) from the communication position is 100 nm to less than 1940 nm.
(3) The lithographic printing plate precursor as described in (1) or (2), wherein the average diameter of the large diameter pores (i) on the surface of the anodic oxide film is more than 10 nm and not more than 100 nm.
(4) The lithographic printing plate precursor as described in any one of (1) to (3), wherein an average diameter of the small diameter holes (ii) at the communication position is 15 nm or less.
(5) A polymer containing an acid group selected from a phosphonic acid group, a phosphoric acid group, a sulfonic acid group, and a carboxylic acid group is contained between the aluminum support having the anodized film and the positive type image recording layer. The lithographic printing plate precursor as described in any one of (1) to (4), which has a subbing layer.
(6) The lithographic printing plate precursor as described in any one of (1) to (5) above, wherein the positive type image recording layer contains an infrared absorber.
(7) The lithographic printing plate precursor as described in (6) above, wherein the positive type image recording layer has a two-layer structure, and an alkali-soluble polymer compound is contained in a layer close to the aluminum support having the anodic oxide film.
 本発明によれば、耐刷性、放置払い性及び耐汚れ性に優れるポジ型平版印刷版を提供し得る平版印刷版用原版を提供することができる。 According to the present invention, it is possible to provide a lithographic printing plate precursor which can provide a positive-working lithographic printing plate which is excellent in printing durability, leaving-to-standability and stain resistance.
本発明の平版印刷版原版の一実施形態の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of a lithographic printing plate precursor according to the present invention. 陽極酸化皮膜を有するアルミニウム支持体の一実施形態の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of an aluminum support having an anodized film. 第1陽極酸化処理工程から第2陽極酸化処理工程までを工程順に示す陽極酸化皮膜を有するアルミニウム支持体の模式的断面図である。It is a schematic cross section of the aluminum support body which has an anodized film which shows a 1st anodizing treatment process to a 2nd anodizing treatment process in order of a process. 第1陽極酸化処理工程から第2陽極酸化処理工程までを工程順に示す陽極酸化皮膜を有するアルミニウム支持体の模式的断面図である。It is a schematic cross section of the aluminum support body which has an anodized film which shows a 1st anodizing treatment process to a 2nd anodizing treatment process in order of a process. 第1陽極酸化処理工程から第2陽極酸化処理工程までを工程順に示す陽極酸化皮膜を有するアルミニウム支持体の模式的断面図である。It is a schematic cross section of the aluminum support body which has an anodized film which shows a 1st anodizing treatment process to a 2nd anodizing treatment process in order of a process. 陽極酸化皮膜を有するアルミニウム支持体の製造方法における電気化学的粗面化処理に用いられる交番波形電流波形図の一例を示すグラフである。It is a graph which shows an example of an alternating waveform current waveform chart used for the electrochemical roughening process in the manufacturing method of the aluminum support body which has an anodic oxide film. 陽極酸化皮膜を有するアルミニウム支持体の製造方法における交流を用いた電気化学的粗面化処理におけるラジアル型セルの一例を示す側面図である。It is a side view which shows an example of the radial type cell in the electrochemical surface-roughening process using alternating current in the manufacturing method of the aluminum support body which has an anodic oxide film. 陽極酸化皮膜を有するアルミニウム支持体の製造方法における機械的粗面化処理に用いられるブラシグレイニングの工程の概念を示す側面図である。It is a side view which shows the concept of the process of the brush graining used for the mechanical surface-roughening process in the manufacturing method of the aluminum support body which has an anodic oxide film. 陽極酸化皮膜を有するアルミニウム支持体の製造方法における陽極酸化処理に用いられる陽極酸化処理装置の概略図である。It is the schematic of the anodizing treatment apparatus used for the anodizing treatment in the manufacturing method of the aluminum support body which has an anodic oxidation film.
 以下に、発明を実施するための形態を詳細に記載する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、式で表される化合物における基の表記に関して、置換又は無置換を記していない場合、その基がさらに置換基を有することが可能な場合には、他に特に規定がない限り、その基は、無置換の基のみならず、置換基を有する基も包含する。例えば、式において、「Rはアルキル基、アリール基又は複素環基を表す」との記載があれば、「Rは無置換アルキル基、置換アルキル基、無置換アリール基、置換アリール基、無置換複素環基又は置換複素環基を表す」ことを意味する。
Hereinafter, modes for carrying out the invention will be described in detail.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
Further, in the present specification, with regard to the notation of a group in a compound represented by the formula, in the case where substitution or non-substitution is not described, when the group can further have a substituent, other particular definition is Unless otherwise stated, the group includes not only unsubstituted groups but also groups having substituents. For example, in the formula, if "R represents an alkyl group, an aryl group or a heterocyclic group", "R represents an unsubstituted alkyl group, a substituted alkyl group, an unsubstituted aryl group, a substituted aryl group, an unsubstituted group. And "representing a heterocyclic group or a substituted heterocyclic group".
[平版印刷版用原版]
 本発明の平版印刷版原版は、陽極酸化皮膜を有するアルミニウム支持体とポジ型画像記録層とを有する平版印刷版原版である。
 本発明の平版印刷版原版の一実施形態の模式的断面図を図1に示す。図1において、平版印刷版原版10は、陽極酸化皮膜を有するアルミニウム支持体12と、下塗り層14と、ポジ型画像記録層16とを有する。
[Planar printing plate original plate]
The lithographic printing plate precursor of the present invention is a lithographic printing plate precursor having an aluminum support having an anodized film and a positive-working image recording layer.
A schematic cross-sectional view of an embodiment of a lithographic printing plate precursor according to the present invention is shown in FIG. In FIG. 1, a lithographic printing plate precursor 10 has an aluminum support 12 having an anodized film, an undercoat layer 14 and a positive type image recording layer 16.
〔陽極酸化皮膜を有するアルミニウム支持体〕
 本発明の平版印刷版原版における陽極酸化皮膜を有するアルミニウム支持体について記載する。
 陽極酸化皮膜を有するアルミニウム支持体の一実施形態の模式的断面図を図2に示す。図2において、陽極酸化皮膜を有するアルミニウム支持体12は、アルミニウム板18とアルミニウムの陽極酸化皮膜20(以後、単に「陽極酸化皮膜20」とも称する)とをこの順に有する。アルミニウム支持体12中の陽極酸化皮膜20は、図1における平版印刷版原版10のポジ型画像記録層16側に位置する。即ち、平版印刷版原版10は、アルミニウム板18、陽極酸化皮膜20、下塗り層14、および、ポジ型画像記録層16を有する。
[Aluminum support having an anodic oxide film]
An aluminum support having an anodized film in a lithographic printing plate precursor according to the present invention is described.
A schematic cross-sectional view of an embodiment of an aluminum support having an anodized film is shown in FIG. In FIG. 2, the aluminum support 12 having the anodized film has an aluminum plate 18 and an anodized film 20 of aluminum (hereinafter, also simply referred to as “anodized film 20”) in this order. The anodized film 20 in the aluminum support 12 is located on the positive image recording layer 16 side of the lithographic printing plate precursor 10 in FIG. That is, the lithographic printing plate precursor 10 has an aluminum plate 18, an anodized film 20, an undercoat layer 14, and a positive type image recording layer 16.
 図2において、陽極酸化皮膜20は、その表面からアルミニウム板18側に向かってのびるマイクロポア22を有し、マイクロポア22は大径孔部24と小径孔部26とから構成される。ここで、マイクロポアという用語は、陽極酸化皮膜中のポアを表す一般的に使われる用語であり、ポアのサイズを規定するものではない。 In FIG. 2, the anodized film 20 has micropores 22 extending from the surface thereof toward the aluminum plate 18, and the micropores 22 are constituted of large diameter holes 24 and small diameter holes 26. Here, the term "micropore" is a commonly used term that represents the pore in the anodized film, and does not define the size of the pore.
(アルミニウム板)
 アルミニウム板18(アルミニウム支持体)は、寸度的に安定なアルミニウムを主成分とする金属、即ち、アルミニウムまたはアルミニウム合金からなる。アルミニウム板18は、純アルミニウム板またはアルミニウムを主成分とし微量の異元素を含む合金板からなる。
(Aluminum plate)
The aluminum plate 18 (aluminum support) is made of a dimensionally stable aluminum-based metal, that is, aluminum or an aluminum alloy. The aluminum plate 18 is made of a pure aluminum plate or an alloy plate containing aluminum as a main component and a small amount of different elements.
 アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどがある。合金中の異元素の含有量は10質量%以下である。アルミニウム板18としては、純アルミニウム板が好適であるが、完全に純粋なアルミニウムは製錬技術上製造が困難であるので、僅かに異元素を含むものでもよい。アルミニウム板18としては、その組成が限定されるものではなく、公知公用の素材のもの(例えばJIS A 1050、JIS A 1100、JIS A 3103、および、JIS A 3005)を適宜利用することができる。 The different elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, titanium and the like. The content of foreign elements in the alloy is 10% by mass or less. Although a pure aluminum plate is preferable as the aluminum plate 18, completely pure aluminum may contain a slight amount of different elements because it is difficult to manufacture due to smelting technology. The composition of the aluminum plate 18 is not limited, and materials of known and commonly used materials (for example, JIS A 1050, JIS A 1100, JIS A 3103, and JIS A 3005) can be appropriately used.
 アルミニウム板18の幅は400~2,000mm程度、厚さはおよそ0.1~0.6mm程度が好ましい。この幅または厚さは、印刷機の大きさ、印刷版の大きさ、及び、ユーザーの希望により適宜変更できる。 The width of the aluminum plate 18 is preferably about 400 to 2,000 mm, and the thickness is preferably about 0.1 to 0.6 mm. The width or thickness can be appropriately changed according to the size of the printing press, the size of the printing plate, and the user's request.
(陽極酸化皮膜)
 陽極酸化皮膜20は、陽極酸化処理によってアルミニウム板18の表面に一般的に作製される、皮膜表面に略垂直であり、個々が均一に分布した極微細なマイクロポア22を有する陽極酸化アルミニウム皮膜を指す。マイクロポア22は、陽極酸化皮膜表面から厚み方向(アルミニウム板18側)に沿ってのびている。
 陽極酸化皮膜の厚さは、200~2,000nmであり、好ましくは500~1,800nm、より好ましくは750~1,500nmである。
(Anode oxide film)
The anodized film 20 is generally prepared on the surface of the aluminum plate 18 by anodizing treatment, and is anodized aluminum film which is substantially perpendicular to the film surface and has extremely fine micropores 22 uniformly distributed. Point to. The micropores 22 extend from the surface of the anodized film along the thickness direction (aluminum plate 18 side).
The thickness of the anodized film is 200 to 2,000 nm, preferably 500 to 1,800 nm, and more preferably 750 to 1,500 nm.
 陽極酸化皮膜20中のマイクロポア22は、陽極酸化皮膜表面から深さ(深さA:図2参照)が60nmを超える位置までのびる大径孔部24と、大径孔部24の底部と連通し、連通位置からさらに深さ200~2,000nmの位置までのびる小径孔部26とから構成される。
 以下に、大径孔部24と小径孔部26について詳述する。
The micropores 22 in the anodized film 20 communicate with the large diameter hole 24 extending from the surface of the anodized film to a position where the depth (depth A: see FIG. 2) exceeds 60 nm, and the bottom of the large diameter hole 24 And a small diameter hole 26 extending from the communication position to a position of a depth of 200 to 2,000 nm.
The large diameter hole 24 and the small diameter hole 26 will be described in detail below.
(大径孔部)
 大径孔部24の陽極酸化皮膜表面における平均径(平均開口径)は、10nmより大きく100nm以下であることが好ましい。本発明の効果がより優れる点で、平均径は15~60nmがより好ましく、18~40nmが更に好ましい。
 平均径が10nm以下の場合、耐刷性が劣る場合がある。また、平均径が100nmを超える場合、放置払い性が劣る場合がある。
 大径孔部24の平均径は、陽極酸化皮膜20表面を倍率15万倍の電界放出型走査電子顕微鏡(FE-SEM)でN=4枚観察し、得られた4枚の画像において、400×600nmの範囲に存在するマイクロポア(大径孔部)の径(直径)を測定し、平均した値である。
 なお、大径孔部24の形状が円状でない場合は、円相当径を用いる。「円相当径」とは、開口部の形状を、開口部の投影面積と同じ投影面積をもつ円と想定したときの当該円の直径である。
(Large diameter hole)
It is preferable that the average diameter (average opening diameter) in the anodic oxide film surface of the large diameter hole part 24 is 100 nm or less larger than 10 nm. The average diameter is more preferably 15 to 60 nm, still more preferably 18 to 40 nm, in that the effect of the present invention is more excellent.
If the average diameter is 10 nm or less, the printing durability may be poor. In addition, when the average diameter exceeds 100 nm, there may be cases in which the chargeability on standing is inferior.
The average diameter of the large diameter holes 24 is 400 in the obtained four images obtained by observing N of the surface of the anodized film 20 with a field-emission scanning electron microscope (FE-SEM) at a magnification of 150,000. The diameter (diameter) of the micropores (large diameter holes) present in the range of × 600 nm 2 was measured and averaged.
When the shape of the large diameter hole portion 24 is not circular, the equivalent circle diameter is used. The “equivalent circle diameter” is the diameter of the circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
 大径孔部24の底部は、陽極酸化皮膜表面から深さ(以後、深さAとも称する)が60nmを超える位置にある。つまり、大径孔部24は、陽極酸化皮膜表面から深さ方向(厚み方向)に60nmより大きくのびる孔部である。中でも、本発明の効果がより優れる点で、深さAは、65~200nmが好ましく、70~100nmがより好ましい。
 深さAが60nm以下の場合、耐刷性が劣る。深さAが200nmを超える場合、放置払い性が劣る場合がある。
 上記陽極酸化皮膜表面からの深さは、陽極酸化皮膜20の断面をFE-SEMで観察し(15万倍)、得られた画像において、25個の大径孔部の深さを測定し、平均した値である。
The bottom of the large diameter hole portion 24 is at a position where the depth (hereinafter also referred to as depth A) from the surface of the anodized film exceeds 60 nm. That is, the large diameter hole portion 24 is a hole portion that extends more than 60 nm in the depth direction (thickness direction) from the surface of the anodized film. Among them, the depth A is preferably 65 to 200 nm, and more preferably 70 to 100 nm in that the effect of the present invention is more excellent.
When the depth A is 60 nm or less, the printing durability is poor. In the case where the depth A exceeds 200 nm, there are cases in which the chargeability on standing is inferior.
The depth from the surface of the anodized film is obtained by observing the cross section of the anodized film 20 with FE-SEM (150,000 times), and measuring the depth of 25 large diameter holes in the obtained image, It is an averaged value.
 大径孔部24の形状は特に限定されず、例えば、略直管状(略円柱状)、深さ方向(厚み方向)に向かって径が小さくなる円錐状、深さ方向(厚み方向)に向かって径が大きくなる逆円錐状が挙げられ、略直管状が好ましい。大径孔部の底部における径は、通常、開口部の径と1~10nm程度の差があってもよい。大径孔部24の底部の形状は特に限定されず、曲面状(凹状)であっても、平面状であってもよい。 The shape of the large diameter hole portion 24 is not particularly limited. For example, the substantially straight tubular shape (substantially cylindrical shape), a conical shape whose diameter decreases in the depth direction (thickness direction), and the depth direction (thickness direction) There is an inverted conical shape in which the diameter is increased, and a substantially straight tubular shape is preferable. The diameter at the bottom of the large diameter hole may generally be about 1 to 10 nm different from the diameter of the opening. The shape of the bottom of the large diameter hole portion 24 is not particularly limited, and may be curved (concave) or planar.
(小径孔部)
 小径孔部26は、図2に示すように、大径孔部24の底部と連通して、連通位置よりさらに深さ方向(厚み方向)に延びる孔部である。ひとつの小径孔部26は、通常ひとつの大径孔部24と連通するが、2つ以上の小径孔部26がひとつの大径孔部24の底部と連通していてもよい。
 小径孔部26の連通位置における平均径は特に限定されないが、20nm未満であることが好ましく、15nm以下がより好ましく、13nm以下が更に好ましく、10nm以下が特に好ましい。平均径は、5nm以上であることが好ましい。平均径が20nm以上の場合、放置払い性が劣る場合がある。
(Small diameter hole)
As shown in FIG. 2, the small diameter hole 26 communicates with the bottom of the large diameter hole 24 and extends in the depth direction (thickness direction) from the communication position. One small diameter hole 26 normally communicates with one large diameter hole 24, but two or more small diameter holes 26 may communicate with the bottom of one large diameter hole 24.
The average diameter at the communication position of the small diameter holes 26 is not particularly limited, but is preferably less than 20 nm, more preferably 15 nm or less, still more preferably 13 nm or less, and particularly preferably 10 nm or less. The average diameter is preferably 5 nm or more. In the case where the average diameter is 20 nm or more, there may be a case where the leaving property is inferior.
 小径孔部26の平均径は、陽極酸化皮膜20表面を倍率15万倍のFE-SEMでN=4枚観察し、得られた4枚の画像において、400×600nmの範囲に存在するマイクロポア(小径孔部)の径(直径)を測定し、平均した値である。なお、大径孔部の深さが深い場合は、必要に応じて、陽極酸化皮膜20上部(大径孔部のある領域)を切削し(例えば、アルゴンガスによって切削)、その後陽極酸化皮膜20表面を上記FE-SEMで観察して、小径孔部の平均径を求めてもよい。
 なお、小径孔部26の形状が円状でない場合は、円相当径を用いる。「円相当径」とは、開口部の形状を、開口部の投影面積と同じ投影面積をもつ円と想定したときの当該円の直径である。
The average diameter of the small-diameter hole portion 26 is a micro image existing in the range of 400 × 600 nm 2 in four images obtained by observing the surface of the anodized film 20 with N = four sheets by FE-SEM at a magnification of 150,000. The diameter (diameter) of the pores (small diameter holes) was measured and averaged. When the large diameter hole is deep, the upper part of the anodized film 20 (area with the large diameter hole) is cut (for example, cut with argon gas) as necessary, and then the anodic oxide film 20 is cut. The surface may be observed by the above-described FE-SEM to determine the average diameter of the small diameter holes.
When the shape of the small diameter hole 26 is not circular, the equivalent circle diameter is used. The “equivalent circle diameter” is the diameter of the circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
 小径孔部26の底部は、上記の大径孔部24との連通位置(上述した深さAに該当)からさらに深さ方向に100~1,940nm未満のびた場所に位置することが好ましい。言い換えると、小径孔部26の深さは100~1,940nm未満であることが好ましい。中でも、本発明の効果がより優れる点で、小径孔部26は連通位置から深さ300~1600nmの位置までのびることが好ましく、小径孔部26は連通位置から深さ900~1300nmの位置までのびることがより好ましい。
 深さが100nm未満の場合、耐傷性が劣る場合がある。深さが1,940nmを超える場合、処理時間が長期化し、生産性および経済性に劣る場合がある。
 上記小径孔部の深さは、陽極酸化皮膜20の断面をFE-SEMで観察し(5万倍)、得られた画像において、25個の小径孔部の深さを測定し、平均した値である。
The bottom of the small diameter hole portion 26 is preferably located at a position further extending 100 to less than 1,940 nm in the depth direction from the communication position with the large diameter hole portion 24 (corresponding to the depth A described above). In other words, the depth of the small diameter holes 26 is preferably 100 to less than 1,940 nm. Among them, the small diameter hole 26 preferably extends from the communication position to a position 300 to 1600 nm deep from the communication position, and the small diameter hole 26 extends from the communication position to a depth 900 to 1300 nm from the point of more excellent effect of the present invention. Is more preferred.
When the depth is less than 100 nm, the scratch resistance may be poor. When the depth is more than 1,940 nm, the processing time may be prolonged and the productivity and economy may be inferior.
The depth of the small diameter holes was obtained by observing the cross section of the anodized film 20 with FE-SEM (50,000 times), measuring the depth of 25 small diameter holes in the obtained image, and averaging the values. It is.
 小径孔部26の形状は特に限定されず、例えば、略直管状(略円柱状)、深さ方向に向かって径が小さくなる円錐状、深さ方向に向かって枝分かれしていく樹枝状が挙げられ、略直管状が好ましい。小径孔部26の底部における径は、通常、連通位置における径と1~5nm程度の差があってもよい。小径孔部26の底部の形状は特に限定されず、曲面状(凹状)であっても、平面状であってもよい。 The shape of the small diameter hole portion 26 is not particularly limited. For example, a substantially straight pipe (substantially cylindrical shape), a conical shape whose diameter decreases in the depth direction, and a dendritic shape branching in the depth direction And a substantially straight tubular shape is preferred. The diameter at the bottom of the small diameter hole portion 26 may normally have a difference of about 1 to 5 nm from the diameter at the communication position. The shape of the bottom of the small diameter hole 26 is not particularly limited, and may be curved (concave) or planar.
 陽極酸化皮膜を有するアルミニウム支持体は、上記連通位置における上記小径孔部の平均径が、上記陽極酸化皮膜表面における上記大径孔部の平均径よりも小さいことが、重要である。小径孔部の平均径が、大径孔部の平均径と同じあるいは大きい場合には、耐汚れ性が劣る。
 大径孔部の平均径と小径孔部の平均径に関しては、その比率、即ち、大径孔部の平均径/小径孔部の平均径が、1.1~12.5が好ましく、1.5~10がより好ましい。
It is important that in the aluminum support having the anodized film, the average diameter of the small diameter holes at the communication position is smaller than the average diameter of the large diameter holes on the surface of the anodized film. When the average diameter of the small diameter holes is the same as or larger than the average diameter of the large diameter holes, the stain resistance is poor.
With regard to the average diameter of the large diameter holes and the average diameter of the small diameter holes, the ratio, that is, the average diameter of the large diameter holes / the average diameter of the small diameter holes is preferably 1.1 to 12.5. 5-10 are more preferred.
<陽極酸化皮膜を有するアルミニウム支持体の製造方法>
 以下に、本発明の平版印刷版原版における陽極酸化皮膜を有するアルミニウム支持体の製造方法について説明する。
 陽極酸化皮膜を有するアルミニウム支持体の製造方法は特に限定されないが、以下の工程を順番に実施する製造方法が好ましい。(粗面化処理工程)アルミニウム板に粗面化処理を施す工程(第1陽極酸化処理工程)粗面化処理されたアルミニウム板を陽極酸化する工程(ポアワイド処理工程)第1陽極酸化処理工程で得られた陽極酸化皮膜を有するアルミニウム板を、酸水溶液またはアルカリ水溶液に接触させ、陽極酸化皮膜中のマイクロポアの径を拡大させる工程(第2陽極酸化処理工程)ポアワイド処理工程で得られたアルミニウム板を陽極酸化する工程(親水化処理工程)第2陽極酸化処理工程で得られたアルミニウム板に親水化処理を施す工程
 以下に上記各工程について詳述する。なお、粗面化処理工程、親水化処理工程は、必要がなければ実施しなくてもよい。
 第1陽極酸化処理工程から第2陽極酸化処理工程までを工程順に示す陽極酸化皮膜を有するアルミニウム支持体の模式的断面図を、図3A~図3Cに示す。
<Method of producing aluminum support having anodized film>
Hereinafter, a method of producing an aluminum support having an anodized film in the lithographic printing plate precursor according to the present invention will be described.
Although the manufacturing method of the aluminum support body which has an anodic oxide film is not specifically limited, The manufacturing method which implements the following processes in order is preferable. (Roughening treatment step) Step of roughening the aluminum plate (first anodizing treatment step) Step of anodizing the roughened aluminum plate (pore wide treatment step) In the first anodizing treatment step The step of contacting the obtained aluminum plate having an anodic oxide film with an aqueous acid solution or an alkaline aqueous solution to enlarge the diameter of the micropores in the anodic oxide film (second anodizing treatment step) aluminum obtained in the pore wide treatment step Step of Anodizing Plate (Hydrophilizing Treatment Step) Step of Hydrophilizing the Aluminum Plate Obtained in the Second Anodizing Step Below, each of the above steps will be described in detail. The roughening treatment step and the hydrophilization treatment step may not be carried out if not necessary.
FIGS. 3A to 3C show schematic cross-sectional views of an aluminum support having an anodized film showing a first anodizing treatment step to a second anodizing treatment step in the order of steps.
(粗面化処理工程)
 粗面化処理工程は、アルミニウム板の表面に、電気化学的粗面化処理を含む粗面化処理を施す工程である。粗面化処理工程は、後述する第1陽極酸化処理工程の前に実施されることが好ましいが、アルミニウム板の表面がすでに好ましい表面形状を有していれば、特に実施しなくてもよい。
(Roughening treatment process)
The surface roughening treatment step is a step of subjecting the surface of the aluminum plate to a surface roughening treatment including electrochemical graining treatment. The surface roughening treatment step is preferably performed before the first anodizing treatment step described later, but may not be performed if the surface of the aluminum plate already has a preferable surface shape.
 粗面化処理は、電気化学的粗面化処理のみを施してもよいが、電気化学的粗面化処理と機械的粗面化処理および/または化学的粗面化処理とを組み合わせて施してもよい。
 機械的粗面化処理と電気化学的粗面化処理とを組み合わせる場合には、機械的粗面化処理の後に、電気化学的粗面化処理を施すのが好ましい。
The surface roughening may be performed only by electrochemical surface roughening, but it is performed by combining electrochemical surface roughening with mechanical surface roughening and / or chemical surface roughening. It is also good.
When mechanical graining treatment and electrochemical graining treatment are combined, it is preferable to apply electrochemical graining treatment after mechanical graining treatment.
 電気化学的粗面化処理は、硝酸や塩酸の水溶液中で施すのが好ましい。 The electrochemical graining treatment is preferably performed in an aqueous solution of nitric acid or hydrochloric acid.
 機械的粗面化処理は、一般的には、アルミニウム板の表面を表面粗さRa:0.35~1.0μmとする目的で施される。
 機械的粗面化処理の諸条件は特に限定されないが、例えば、特公昭50-40047号公報に記載されている方法に従って施すことができる。機械的粗面化処理は、パミストン懸濁液を使用したブラシグレイン処理により施したり、転写方式で施したりすることができる。
 化学的粗面化処理も特に限定されず、公知の方法に従って施すことができる。
The mechanical surface roughening treatment is generally applied in order to make the surface of the aluminum plate have a surface roughness Ra of 0.35 to 1.0 μm.
The conditions of the mechanical surface-roughening treatment are not particularly limited, but can be applied, for example, according to the method described in Japanese Patent Publication No. 50-40047. The mechanical graining treatment can be performed by brush graining using pumice stone suspension or in a transfer method.
The chemical surface-roughening treatment is also not particularly limited, and can be performed according to known methods.
 機械的粗面化処理の後には、以下の化学エッチング処理を施すことが好ましい。
 機械的粗面化処理の後に施される化学エッチング処理は、アルミニウム板の表面の凹凸形状のエッジ部分をなだらかにし、印刷時のインキの引っかかりを防止し、平版印刷版の耐汚れ性を向上させるとともに、表面に残った研磨材粒子等の不要物を除去するために行われる。
 化学エッチング処理としては、酸によるエッチングやアルカリによるエッチングが知られているが、エッチング効率の点で特に優れている方法として、アルカリ溶液を用いる化学エッチング処理(以下、「アルカリエッチング処理」ともいう。)が挙げられる。
After mechanical graining treatment, the following chemical etching treatment is preferably applied.
The chemical etching treatment applied after the mechanical surface roughening treatment smoothes the uneven edge portion of the surface of the aluminum plate, prevents the ink from being caught during printing, and improves the stain resistance of the lithographic printing plate In addition, it is performed to remove unnecessary substances such as abrasive particles remaining on the surface.
As the chemical etching treatment, etching with an acid and etching with an alkali are known, but as a method particularly excellent in terms of etching efficiency, chemical etching treatment using an alkali solution (hereinafter, also referred to as “alkali etching treatment”). Can be mentioned.
 アルカリ溶液に用いられるアルカリ剤は、特に限定されないが、例えば、カセイソーダ、カセイカリ、メタケイ酸ソーダ、炭酸ソーダ、アルミン酸ソーダ、グルコン酸ソーダ等が好適に挙げられる。
 アルカリ剤は、アルミニウムイオンを含有してもよい。アルカリ溶液の濃度は、0.01質量%以上が好ましく、3質量%以上がより好ましく、また、30質量%以下が好ましく、25質量%以下がより好ましい。
 アルカリ溶液の温度は室温以上が好ましく、30℃以上がより好ましく、また、80℃以下が好ましく、75℃以下がより好ましい。
The alkaline agent to be used for the alkaline solution is not particularly limited, but for example, caustic soda, caustic potash, sodium metasilicate, sodium carbonate, sodium aluminate, sodium gluconate and the like are preferably mentioned.
The alkali agent may contain an aluminum ion. 0.01 mass% or more is preferable, 3 mass% or more is more preferable, 30 mass% or less is preferable, and, as for the density | concentration of an alkaline solution, 25 mass% or less is more preferable.
The temperature of the alkaline solution is preferably room temperature or more, more preferably 30 ° C. or more, and preferably 80 ° C. or less, more preferably 75 ° C. or less.
 エッチング量は、0.1g/m以上が好ましく、1g/m以上がより好ましく、また、20g/m以下が好ましく、10g/m以下がより好ましい。
 処理時間は、エッチング量に対応して2秒~5分が好ましく、生産性向上の点から2~10秒がより好ましい。
0.1 g / m 2 or more is preferable, 1 g / m 2 or more is more preferable, 20 g / m 2 or less is preferable, and 10 g / m 2 or less is more preferable.
The processing time is preferably 2 seconds to 5 minutes in accordance with the etching amount, and more preferably 2 to 10 seconds from the viewpoint of improving the productivity.
 機械的粗面化処理後にアルカリエッチング処理を施した場合、アルカリエッチング処理により生じる生成物を除去するために、低温の酸性溶液を用いて化学エッチング処理(以下、「デスマット処理」ともいう。)を施すのが好ましい。
 酸性溶液に用いられる酸は、特に限定されないが、例えば、硫酸、硝酸、塩酸が挙げられる。酸性溶液の濃度は、1~50質量%が好ましい。また、酸性溶液の温度、20~80℃が好ましい。酸性溶液の濃度および温度がこの範囲であると、平版印刷版の耐汚れ性がより向上する。
When alkali etching is performed after mechanical surface roughening, chemical etching (hereinafter also referred to as "desmutting") is performed using a low temperature acidic solution in order to remove a product generated by the alkali etching. It is preferable to apply.
The acid used for the acidic solution is not particularly limited, and examples thereof include sulfuric acid, nitric acid and hydrochloric acid. The concentration of the acidic solution is preferably 1 to 50% by mass. Also, the temperature of the acidic solution, 20 to 80 ° C., is preferable. When the concentration and temperature of the acidic solution are in this range, the stain resistance of the lithographic printing plate is further improved.
 上記粗面化処理は、所望により機械的粗面化処理および化学エッチング処理を施した後に、電気化学的粗面化処理を施す処理であるが、機械的粗面化処理を行わずに電気化学的粗面化処理を施す場合にも、電気化学的粗面化処理の前に、カセイソーダ等のアルカリ水溶液を用いて化学エッチング処理を施すことができる。これにより、アルミニウム板の表面近傍に存在する不純物等を除去することができる。 The above-mentioned surface roughening treatment is a treatment to which electrochemical surface roughening treatment is carried out after mechanical surface roughening treatment and chemical etching treatment, if desired. Even when the surface roughening treatment is performed, the chemical etching treatment can be performed using an alkaline aqueous solution such as caustic soda before the electrochemical surface roughening treatment. Thus, impurities and the like present in the vicinity of the surface of the aluminum plate can be removed.
 電気化学的粗面化処理は、アルミニウム板の表面に微細な凹凸(ピット)を付与することが容易であるため、印刷性の優れた平版印刷版を作るのに適している。
 電気化学的粗面化処理は、硝酸または塩酸を主体とする水溶液中で、直流または交流を用いて行われる。
The electrochemical graining treatment is suitable for making a lithographic printing plate excellent in printability because it is easy to impart fine asperities (pits) to the surface of an aluminum plate.
Electrochemical graining treatment is carried out using direct current or alternating current in an aqueous solution mainly comprising nitric acid or hydrochloric acid.
 電気化学的粗面化処理の後には、以下の化学エッチング処理を行うことが好ましい。電気化学的粗面化処理後のアルミニウム板の表面には、スマットや金属間化合物が存在する。電気化学的粗面化処理の後に行われる化学エッチング処理においては、特にスマットを効率よく除去するため、まず、アルカリ溶液を用いて化学エッチング処理(アルカリエッチング処理)をすることが好ましい。アルカリ溶液を用いた化学エッチング処理の諸条件は、処理温度は20~80℃が好ましく、処理時間は1~60秒が好ましい。アルカリ溶液中にアルミニウムイオンを含有することが好ましい。 After electrochemical graining treatment, the following chemical etching treatment is preferably carried out. Smut and intermetallic compounds are present on the surface of the aluminum plate after electrochemical graining treatment. In the chemical etching treatment performed after the electrochemical surface roughening treatment, it is preferable to first carry out a chemical etching treatment (alkali etching treatment) using an alkaline solution in order to remove particularly the smut efficiently. As conditions for chemical etching using an alkaline solution, the processing temperature is preferably 20 to 80 ° C., and the processing time is preferably 1 to 60 seconds. It is preferable to contain aluminum ion in the alkaline solution.
 電気化学的粗面化処理後にアルカリ溶液を用いる化学エッチング処理を行った後、それにより生じる生成物を除去するために、低温の酸性溶液を用いて化学エッチング処理(デスマット処理)を行うことが好ましい。
 電気化学的粗面化処理後にアルカリエッチング処理を行わない場合においても、スマットを効率よく除去するため、デスマット処理を行うことが好ましい。
After electrochemical graining treatment followed by chemical etching treatment using an alkaline solution, it is preferable to carry out chemical etching treatment (desmutting treatment) using a low temperature acidic solution in order to remove the resulting products .
Even in the case where alkaline etching is not performed after electrochemical graining treatment, desmutting is preferably performed in order to efficiently remove smut.
 上述した化学エッチング処理は、浸せき法、シャワー法、塗布法等により行うことができ、特に限定されない。 The chemical etching process described above can be performed by a dipping method, a shower method, a coating method, or the like, and is not particularly limited.
<第1陽極酸化処理工程>
 第1陽極酸化処理工程は、上述した粗面化処理が施されたアルミニウム板に陽極酸化処理を施すことにより、アルミニウム板表面に深さ方向(厚み方向)にのびるマイクロポアを有するアルミニウムの酸化皮膜を形成する工程である。この第1陽極酸化処理により、図3Aに示されるように、アルミニウム板31の表面に、マイクロポア33aを有するアルミニウムの陽極酸化皮膜32aが形成される。
<First anodizing treatment step>
In the first anodizing treatment step, an oxide film of aluminum having micropores extending in the depth direction (thickness direction) on the surface of the aluminum plate by anodizing the aluminum plate subjected to the above-mentioned surface roughening treatment Is a process of forming By this first anodizing treatment, as shown in FIG. 3A, an anodized film 32a of aluminum having micropores 33a is formed on the surface of the aluminum plate 31.
 第1陽極酸化処理は、この分野で従来から行われている方法で行うことができるが、上述したマイクロポアを最終的に形成できるように適宜製造条件が設定される。
 具体的には、第1陽極酸化処理工程において形成されるマイクロポア33aの平均径(平均開口径)は、通常、4~14nm程度であり、好ましくは5~10nmである。上記範囲内であれば、上述した所定の形状を有するマイクロポアが形成しやすく、得られる平版印刷版原版の性能もより優れる。
 また、マイクロポア33aの深さは、通常、60~200nm未満程度であり、好ましくは70~100nmである。上記範囲内であれば、上述した所定の形状を有するマイクロポアが形成しやすく、得られる平版印刷版原版の性能もより優れる。
The first anodizing treatment can be performed by a method conventionally performed in this field, but the manufacturing conditions are appropriately set so that the above-mentioned micropores can be finally formed.
Specifically, the average diameter (average opening diameter) of the micropores 33a formed in the first anodizing treatment step is usually about 4 to 14 nm, preferably 5 to 10 nm. If it is in the said range, it will be easy to form the micropore which has the predetermined | prescribed shape mentioned above, and the performance of the obtained lithographic printing plate precursor is more excellent.
The depth of the micropores 33a is usually about 60 to less than 200 nm, preferably 70 to 100 nm. If it is in the said range, it will be easy to form the micropore which has the predetermined | prescribed shape mentioned above, and the performance of the obtained lithographic printing plate precursor is more excellent.
 マイクロポア33aのポア密度は特に限定されないが、ポア密度が50~4000個/μmであることが好ましく、100~3000個/μmであることがより好ましい。上記範囲内であれば、得られる平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の現像性に優れる。 The pore density of the micropores 33a is not particularly limited, but the pore density is preferably 50 to 4000 / μm 2 , and more preferably 100 to 3000 / μm 2 . Within the above range, the printing durability and leaving-off properties of the resulting lithographic printing plate, and the developability of the lithographic printing plate precursor are excellent.
 第1陽極酸化処理工程により得られる陽極酸化皮膜の膜厚は、70~300nmが好ましく、より好ましくは80~150nmである。上記範囲内であれば、得られる平版印刷版の耐刷性、放置払い性、耐汚れ性、並びに、平版印刷版原版の現像性に優れる。
 第1陽極酸化処理工程により得られる陽極酸化皮膜の皮膜量は、0.1~0.3g/mが好ましく、より好ましくは0.12~0.25g/mである。上記範囲内であれば、得られる平版印刷版の耐刷性、放置払い性、耐汚れ性、並びに、平版印刷版原版の現像性に優れる。
The thickness of the anodized film obtained by the first anodizing treatment step is preferably 70 to 300 nm, more preferably 80 to 150 nm. If it is in the above-mentioned range, the printing durability, leaving-to-stand property, stain resistance, and developability of the lithographic printing plate precursor obtained from the lithographic printing plate obtained are excellent.
The film amount of the anodized film obtained by the first anodizing treatment step is preferably 0.1 to 0.3 g / m 2 , more preferably 0.1 2 to 0.25 g / m 2 . If it is in the above-mentioned range, the printing durability, leaving-to-stand property, stain resistance, and developability of the lithographic printing plate precursor obtained from the lithographic printing plate obtained are excellent.
 第1陽極酸化処理工程においては、硫酸、シュウ酸、等の水溶液を主に電解浴として用いることができる。場合によっては、クロム酸、スルファミン酸、ベンゼンスルフォン酸等またはこれらの二種以上を組み合わせた水溶液または非水溶液を用いることもできる。上記のような電解浴中でアルミニウム板に直流または交流を流すと、アルミニウム板表面に陽極酸化皮膜を形成することができる。
 電解浴にはアルミニウムイオンが含まれていてもよい。アルミニウムイオンの含有量は特に限定されないが、1~10g/Lが好ましい。
In the first anodizing treatment step, an aqueous solution of sulfuric acid, oxalic acid or the like can be mainly used as an electrolytic bath. In some cases, an aqueous solution or a non-aqueous solution in which chromic acid, sulfamic acid, benzenesulfonic acid or the like or a combination of two or more of them can be used. An anodized film can be formed on the surface of the aluminum plate by applying direct current or alternating current to the aluminum plate in the above-mentioned electrolytic bath.
The electrolytic bath may contain aluminum ions. The content of aluminum ion is not particularly limited, but is preferably 1 to 10 g / L.
 陽極酸化処理の条件は使用される電解液によって適宜設定されるが、一般的には、電解液の濃度が1~80質量%(好ましくは5~20質量%)、液温5~70℃(好ましくは10~60℃)、電流密度0.5~60A/dm(好ましくは5~50A/dm)、電圧1~100V(好ましくは5~50V)、電解時間1~100秒(好ましくは5~60秒)の範囲が適当である。 The conditions of the anodizing treatment are appropriately set depending on the electrolyte to be used, but generally, the concentration of the electrolyte is 1 to 80% by mass (preferably 5 to 20% by mass), the solution temperature is 5 to 70 ° C. 10 to 60 ° C., current density 0.5 to 60 A / dm 2 (preferably 5 to 50 A / dm 2 ), voltage 1 to 100 V (preferably 5 to 50 V), electrolysis time 1 to 100 seconds (preferably) A range of 5 to 60 seconds is appropriate.
 上記陽極酸化処理のうちでも特に、英国特許第1,412,768号明細書に記載されている、硫酸中にて高電流密度で陽極酸化する方法が好ましい。 Among the above anodizing treatments, in particular, the method of anodizing at a high current density in sulfuric acid, which is described in British Patent No. 1,412,768, is preferable.
(ポアワイド処理工程)
 ポアワイド処理工程は、上述した第1陽極酸化処理工程により形成された陽極酸化皮膜に存在するマイクロポアの径(ポア径)を拡大させる処理(孔径拡大処理)である。このポアワイド処理により、図3Bに示されるように、マイクロポア33aの径が拡大され、より大きな平均径を有するマイクロポア33bを有する陽極酸化皮膜32bが形成される。
 ポアワイド処理により、マイクロポア33bの平均径は、10~100nm(好ましくは、15~60nm、より好ましくは、18~40nm)の範囲まで拡大される。マイクロポア33bは、上述した大径孔部24(図2)に該当する部分となる。
 ポアワイド処理により、マイクロポア33bの表面からの深さは、上述した深さA(図2)と同程度となるように調整することが好ましい。
(Pore wide processing process)
The pore widening process is a process (pore diameter enlarging process) for enlarging the diameter (pore diameter) of the micropores present in the anodized film formed by the first anodizing process described above. By this pore-widening process, as shown in FIG. 3B, the diameter of the micropores 33a is enlarged, and an anodic oxide film 32b having the micropores 33b having a larger average diameter is formed.
By the pore-widening process, the average diameter of the micropores 33b is expanded to the range of 10 to 100 nm (preferably, 15 to 60 nm, more preferably, 18 to 40 nm). The micropores 33b correspond to the large diameter holes 24 (FIG. 2) described above.
It is preferable to adjust the depth from the surface of the micropores 33b to the same degree as the depth A (FIG. 2) described above by the pore widening process.
 ポアワイド処理は、上述した第1陽極酸化処理工程により得られたアルミニウム板を、酸水溶液またはアルカリ水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。 The pore-widening process is performed by bringing the aluminum plate obtained by the above-described first anodizing process into contact with an aqueous acid solution or an aqueous alkali solution. The method for contacting is not particularly limited, and examples thereof include a dipping method and a spraying method. Among them, the immersion method is preferred.
 ポアワイド処理工程においてアルカリ水溶液を使用する場合、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムから選ばれる少なくとも一つのアルカリ水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%が好ましい。
 アルカリ水溶液のpHを11~13に調整した後、10~70℃(好ましくは20~50℃)の条件下で、アルミニウム板をアルカリ水溶液に1~300秒(好ましくは1~50秒)接触させることが適当である。
 アルカリ処理液中に炭酸塩、硼酸塩、燐酸塩等の多価弱酸の金属塩を含んでもよい。
When using an aqueous alkali solution in the pore-widening step, it is preferable to use at least one aqueous alkali solution selected from sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the aqueous alkali solution is preferably 0.1 to 5% by mass.
After adjusting the pH of the aqueous alkaline solution to 11 to 13, the aluminum plate is brought into contact with the aqueous alkaline solution for 1 to 300 seconds (preferably 1 to 50 seconds) under conditions of 10 to 70 ° C. (preferably 20 to 50 ° C.) Is appropriate.
The alkali treatment solution may contain metal salts of polyvalent weak acids such as carbonates, borates and phosphates.
 ポアワイド処理工程において酸水溶液を使用する場合、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は、1~80質量%が好ましく、より好ましくは5~50質量%である。
 酸水溶液の液温5~70℃(好ましくは10~60℃)の条件下で、アルミニウム板を酸水溶液に1~300秒(好ましくは1~150秒)接触させることが適当である。
 アルカリ水溶液または酸水溶液中にはアルミニウムイオンが含まれていてもよい。アルミニウムイオンの含有量は特に限定されないが、1~10g/Lが好ましい。
When using an aqueous acid solution in the pore-widening step, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid or a mixture thereof. The concentration of the aqueous acid solution is preferably 1 to 80% by mass, more preferably 5 to 50% by mass.
It is appropriate to bring the aluminum plate into contact with the aqueous acid solution for 1 to 300 seconds (preferably 1 to 150 seconds) under the conditions of a liquid temperature of 5 to 70 ° C. (preferably 10 to 60 ° C.).
The aqueous alkali solution or the aqueous acid solution may contain aluminum ions. The content of aluminum ion is not particularly limited, but is preferably 1 to 10 g / L.
(第2陽極酸化処理工程)
 第2陽極酸化処理工程は、上述したポアワイド処理が施されたアルミニウム板に陽極酸化処理を施すことにより、深さ方向(厚み方向)にのびたマイクロポアを形成する工程である。この第2陽極酸化処理工程により、図3Cに示されるように、深さ方向にのびたマイクロポア33cを有する陽極酸化皮膜32cが形成される。
 第2陽極酸化処理工程によって、平均径が拡大されたマイクロポア33bの底部に連通し、平均径がマイクロポア33b(大径孔部24に該当)の平均径より小さく、連通位置から深さ方向にのびる新たな孔部が形成される。当該孔部が、上述した小径孔部26に該当する。
(Second anodizing process)
The second anodizing treatment step is a step of forming micropores extending in the depth direction (thickness direction) by anodizing the aluminum plate to which the above-described pore-widening treatment has been applied. By this second anodizing treatment step, as shown in FIG. 3C, an anodized film 32c having micropores 33c extending in the depth direction is formed.
It communicates with the bottom of the micropores 33b whose average diameter is expanded by the second anodizing treatment step, the average diameter is smaller than the average diameter of the micropores 33b (corresponding to the large diameter holes 24), and the depth direction from the communication position A new hole is formed which extends to the surface. The said hole corresponds to the small diameter hole 26 mentioned above.
 第2陽極酸化処理工程においては、新たに形成される孔部の平均径が0より大きく20nm未満で、大径孔部20との連通位置からの深さが上述した所定範囲になるように処理が実施される。処理に使用される電解浴は上記の第1陽極酸化処理工程と同じであり、処理条件としては使用される材料に応じて適宜設定される。
 陽極酸化処理の条件は使用される電解液によって適宜設定されるが、一般的には、電解液の濃度が1~80質量%(好ましくは5~20質量%)、液温5~70℃(好ましくは10~60℃)、電流密度0.5~60A/dm(好ましくは1~30A/dm)、電圧1~100V(好ましくは5~50V)、電解時間1~100秒(好ましくは5~60秒)の範囲が適当である。
In the second anodizing treatment step, the average diameter of the newly formed hole is larger than 0 and less than 20 nm, and the depth from the communication position with the large diameter hole 20 is within the above-described predetermined range. Will be implemented. The electrolytic bath used for the treatment is the same as the first anodizing treatment step described above, and the treatment conditions are appropriately set according to the material to be used.
The conditions of the anodizing treatment are appropriately set depending on the electrolyte to be used, but generally, the concentration of the electrolyte is 1 to 80% by mass (preferably 5 to 20% by mass), the solution temperature is 5 to 70 ° C. Preferably, the current density is 0.5 to 60 A / dm 2 (preferably 1 to 30 A / dm 2 ), the voltage is 1 to 100 V (preferably 5 to 50 V), and the electrolysis time is 1 to 100 seconds (preferably) A range of 5 to 60 seconds is appropriate.
 第2陽極酸化処理工程により得られる陽極酸化皮膜の膜厚は、通常、200~2000nmであり、好ましくは750~1500nmである。上記範囲内であれば、得られる平版印刷版の耐刷性および放置払い性に優れる。
 第2陽極酸化処理工程により得られる陽極酸化皮膜の皮膜量は、通常、2.2~5.4g/mであり、好ましくは2.2~4.0g/mである。上記範囲内であれば、得られる平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の現像性、耐傷性に優れる。
The thickness of the anodized film obtained by the second anodizing treatment step is usually 200 to 2,000 nm, preferably 750 to 1,500 nm. If it is in the said range, it will be excellent in the printing resistance and leaving-to-stand property of the lithographic printing plate obtained.
The film amount of the anodized film obtained by the second anodizing treatment step is usually 2.2 to 5.4 g / m 2 , preferably 2.2 to 4.0 g / m 2 . Within the above range, the printing durability and leaving-off properties of the resulting lithographic printing plate, and the developability and scratch resistance of the lithographic printing plate precursor are excellent.
 第1陽極酸化処理工程により得られる陽極酸化皮膜の厚み(皮膜厚み1)と、第2陽極酸化処理工程により得られる陽極酸化皮膜の厚み(皮膜厚み2)との比(皮膜厚み1/皮膜厚み2)は、0.01~0.15が好ましく、0.02~0.10がより好ましい。上記範囲内であれば、平版印刷版用支持体の耐傷性に優れる。 Ratio (coating thickness 1 / coating thickness) of the thickness (coating thickness 1) of the anodized film obtained by the first anodizing treatment step and the thickness (coating thickness 2) of the anodized film obtained by the second anodizing treatment step 0.01 to 0.15 is preferable, and 0.02 to 0.10 is more preferable. Within the above range, the scratch resistance of the lithographic printing plate support is excellent.
 上述した小径孔部26(図2参照)の形状を製造するために、第2陽極酸化処理工程の処理中において、印加する電圧を段階的または連続的に増加させてもよい。印加する電圧が増加することにより、形成される孔部の径が大きくなり、結果として上述した小径孔部26のような形状が得られる。 In order to manufacture the shape of the small diameter holes 26 (see FIG. 2) described above, the voltage to be applied may be increased stepwise or continuously during the processing of the second anodizing treatment step. As the voltage to be applied is increased, the diameter of the hole to be formed is increased, and as a result, a shape like the above-described small diameter hole 26 is obtained.
(親水化処理工程)
 陽極酸化皮膜を有するアルミニウム支持体の製造方法は、上述した第3陽極酸化処理工程の後、親水化処理を施す親水化処理工程を有していてもよい。親水化処理としては、特開2005-254638号公報の段落〔0109〕~〔0114〕に開示される公知の方法が使用できる。
(Hydrophilization treatment process)
The manufacturing method of the aluminum support body which has an anodic oxidation film may have the hydrophilization treatment process which performs a hydrophilization treatment after the 3rd anodizing treatment process mentioned above. As the hydrophilization treatment, known methods disclosed in paragraphs [0109] to [0114] of JP-A-2005-254638 can be used.
 ケイ酸ソーダ、ケイ酸カリ等のアルカリ金属ケイ酸塩の水溶液に浸漬させる方法等により、親水化処理を行うことが好ましい。 It is preferable to perform the hydrophilization treatment by a method of immersing in an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate.
 ケイ酸ソーダ、ケイ酸カリ等のアルカリ金属ケイ酸塩の水溶液による親水化処理は、米国特許第2,714,066号明細書および米国特許第3,181,461号明細書に記載されている方法および手順に従って行うことができる。 Hydrophilization treatment with an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate is described in U.S. Pat. Nos. 2,714,066 and 3,181,461. It can be performed according to the method and procedure.
 陽極酸化皮膜を有するアルミニウム支持体としては、上記アルミニウム板に対して、以下のA態様またはB態様に示す各処理を以下に示す順に施して得られる支持体が好ましく、耐刷性の点から、特にA態様が好ましい。以下の各処理の間に水洗を行うことが望ましい。ただし、連続して行う2つの工程(処理)が同じ組成の液を使用する場合は水洗を省いてもよい。 As the aluminum support having an anodized film, a support obtained by sequentially performing the treatments shown in the following A mode or B mode on the above-mentioned aluminum plate is preferable, and from the viewpoint of printing durability, In particular, the A mode is preferred. It is desirable to wash with water between each of the following treatments. However, in the case where a solution having the same composition is used in two successive steps (treatments), the water washing may be omitted.
<A態様>
 (2)アルカリ水溶液中で化学エッチング処理(第1アルカリエッチング処理)
 (3)酸性水溶液中で化学エッチング処理(第1デスマット処理)
 (4)硝酸を主体とする水溶液中で電気化学的粗面化処理(第1電気化学的粗面化処理)
 (5)アルカリ水溶液中で化学エッチング処理(第2アルカリエッチング処理)
 (6)酸性水溶液中で化学エッチング処理(第2デスマット処理)
 (7)塩酸を主体とする水溶液中で電気化学的粗面化処理(第2電気化学的粗面化処理)
 (8)アルカリ水溶液中で化学エッチング処理(第3アルカリエッチング処理)
 (9)酸性水溶液中で化学エッチング処理(第3デスマット処理)
 (10)陽極酸化処理(第1陽極酸化処理、ポアワイド処理、第2陽極酸化処理)
 (11)親水化処理
<A mode>
(2) Chemical etching process in alkaline aqueous solution (first alkali etching process)
(3) Chemical etching process in acidic aqueous solution (first desmutting process)
(4) Electrochemical graining treatment in an aqueous solution mainly comprising nitric acid (first electrochemical graining treatment)
(5) Chemical etching process in alkaline aqueous solution (second alkali etching process)
(6) Chemical etching process in acidic aqueous solution (second desmutting process)
(7) Electrochemical graining treatment in an aqueous solution mainly composed of hydrochloric acid (second electrochemical graining treatment)
(8) Chemical etching process in alkaline aqueous solution (third alkali etching process)
(9) Chemical etching process in acidic aqueous solution (third desmutting process)
(10) Anodizing treatment (first anodizing treatment, pore widening treatment, second anodizing treatment)
(11) Hydrophilization treatment
<B態様>
 (2)アルカリ水溶液中で化学エッチング処理(第1アルカリエッチング処理)
 (3)酸性水溶液中で化学エッチング処理(第1デスマット処理)
 (12)塩酸を主体とする水溶液中で電気化学的粗面化処理
 (5)アルカリ水溶液中で化学エッチング処理(第2アルカリエッチング処理)
 (6)酸性水溶液中で化学エッチング処理(第2デスマット処理)
 (10)陽極酸化処理(第1陽極酸化処理、ポアワイド処理、第2陽極酸化処理)
 (11)親水化処理
<B mode>
(2) Chemical etching process in alkaline aqueous solution (first alkali etching process)
(3) Chemical etching process in acidic aqueous solution (first desmutting process)
(12) Electrochemical graining treatment in an aqueous solution mainly composed of hydrochloric acid (5) Chemical etching treatment in an aqueous alkali solution (second alkali etching treatment)
(6) Chemical etching process in acidic aqueous solution (second desmutting process)
(10) Anodizing treatment (first anodizing treatment, pore widening treatment, second anodizing treatment)
(11) Hydrophilization treatment
 上記A態様及びB態様の(2)の処理の前に、必要に応じて、(1)機械的粗面化処理を実施してもよい。耐刷性などの観点からは、(1)の処理は各態様に含まれないほうが好ましい。
 ここで、上記(1)~(12)における機械的粗面化処理、電気化学的粗面化処理、化学エッチング処理、陽極酸化処理および親水化処理は、上述した処理方法、条件と同様の方法で行うことができるが、以下に説明する処理方法、条件で施すことが好ましい。
Prior to the treatment of (2) of the above-mentioned A mode and B mode, (1) mechanical surface roughening treatment may be carried out, if necessary. From the viewpoint of printing durability and the like, the treatment of (1) is preferably not included in each embodiment.
Here, the mechanical surface-roughening treatment, electrochemical surface-roughening treatment, chemical etching treatment, anodizing treatment and hydrophilization treatment in the above (1) to (12) are the same as the treatment methods and conditions described above. It is preferable to apply the treatment method and conditions described below.
 機械的粗面化処理は、毛径が0.2~1.61mmの回転するナイロンブラシロールと、アルミニウム板表面に供給されるスラリー液で機械的に粗面化処理することが好ましい。研磨剤としては公知の物が使用できるが、珪砂、石英、水酸化アルミニウムまたはこれらの混合物が好ましい。スラリー液の比重は1.05~1.3が好ましい。勿論、スラリー液を吹き付ける方式、ワイヤーブラシを用いる方式、凹凸を付けた圧延ロールの表面形状をアルミニウム板に転写する方式などを用いてもよい。 The mechanical surface-roughening treatment is preferably performed by mechanical surface-roughening treatment using a rotating nylon brush roll having a hair diameter of 0.2 to 1.6 mm and a slurry solution supplied to the surface of the aluminum plate. Although a well-known thing can be used as an abrasives, a silica sand, quartz, aluminum hydroxide or these mixtures are preferable. The specific gravity of the slurry is preferably 1.05 to 1.3. Of course, a method of spraying a slurry liquid, a method of using a wire brush, or a method of transferring the surface shape of a roughened rolling roll to an aluminum plate may be used.
 アルカリ水溶液中での化学エッチング処理(第1~第3アルカリエッチング処理)に用いるアルカリ水溶液の濃度は1~30質量%が好ましく、アルミニウムおよびアルミニウム合金中に含有する合金成分を0~10質量%含有していてよい。
 アルカリ水溶液としては、特に苛性ソーダを主体とする水溶液が好ましい。液温は常温~95℃で、1~120秒間処理することが好ましい。
 エッチング処理が終了した後には、処理液を次工程に持ち込まないためにニップローラーによる液切りとスプレーによる水洗を行うことが好ましい。
The concentration of the aqueous alkaline solution used for the chemical etching process (first to third alkaline etching processes) in the aqueous alkaline solution is preferably 1 to 30% by mass, and contains 0 to 10% by mass of aluminum and alloy components contained in the aluminum alloy. You may
As the alkaline aqueous solution, an aqueous solution mainly comprising caustic soda is particularly preferable. The liquid temperature is preferably room temperature to 95 ° C. for 1 to 120 seconds.
After the etching process is completed, it is preferable to perform the liquid removal by the nip roller and the water washing by the spray in order not to bring the processing solution into the next step.
 第1アルカリエッチング処理におけるアルミニウム板の溶解量は、0.5~30g/mが好ましく、1.0~20g/mがより好ましく、3.0~15g/mが更に好ましい。
 第2アルカリエッチング処理におけるアルミニウム板の溶解量は、0.001~30g/mが好ましく、0.1~4g/mがより好ましく、0.2~1.5g/mが更に好ましい。
 第3アルカリエッチング処理におけるアルミニウム板の溶解量は、0.001~30g/mが好ましく、0.01~0.8g/mがより好ましく、0.02~0.3g/mが更に好ましい。
Dissolution amount of the aluminum plate in the first alkali etching treatment is preferably 0.5 ~ 30g / m 2, more preferably 1.0 ~ 20g / m 2, more preferably 3.0 ~ 15g / m 2.
Dissolution amount of the aluminum plate in the second alkali etching treatment is preferably 0.001 ~ 30 g / m 2, more preferably 0.1 ~ 4g / m 2, more preferably 0.2 ~ 1.5g / m 2.
The dissolution amount of the aluminum plate in the third alkali etching treatment is preferably 0.001 to 30 g / m 2 , more preferably 0.01 to 0.8 g / m 2 , and further preferably 0.02 to 0.3 g / m 2. preferable.
 酸性水溶液中で化学エッチング処理(第1~第3デスマット処理)では、燐酸、硝酸、硫酸、クロム酸、塩酸、またはこれらの2以上の酸を含む混酸が好適に用いられる。酸性水溶液の濃度は0.5~60質量%が好ましい。酸性水溶液中にはアルミニウムおよびアルミニウム合金中に含有する合金成分が0~5質量%溶解していてもよい。
 液温は常温から95℃で実施され、処理時間は1~120秒が好ましい。デスマット処理が終了した後には、処理液を次工程に持ち込まないためにニップローラーによる液切りとスプレーによる水洗を行うのが好ましい。
Phosphoric acid, nitric acid, sulfuric acid, chromic acid, hydrochloric acid or a mixed acid containing two or more of these acids is preferably used in the chemical etching process (first to third desmutting processes) in an acidic aqueous solution. The concentration of the acidic aqueous solution is preferably 0.5 to 60% by mass. In the acidic aqueous solution, 0 to 5% by mass of alloy components contained in aluminum and aluminum alloy may be dissolved.
The solution temperature is from room temperature to 95 ° C., and the treatment time is preferably 1 to 120 seconds. After the desmutting treatment is completed, it is preferable to carry out drainage with a nip roller and washing with a spray in order to prevent the treatment liquid from being carried to the next step.
 電気化学的粗面化処理に用いられる水溶液について説明する。
 第1電気化学的粗面化処理で用いる硝酸を主体とする水溶液は、通常の直流または交流を用いた電気化学的な粗面化処理に用いる水溶液を使用でき、1~100g/Lの硝酸水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウムなどの硝酸イオン;塩化アルミニウム、塩化ナトリウム、塩化アンモニウムなどの塩酸イオン;等を有する塩酸または硝酸化合物の1つ以上を1g/L~飽和まで添加して使用することができる。
 硝酸を主体とする水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。
 具体的には、硝酸0.5~2質量%水溶液中にアルミニウムイオンが3~50g/Lとなるように塩化アルミニウム、硝酸アルミニウムを添加した液を用いるのが好ましい。
 液温は10~90℃が好ましく、40~80℃がより好ましい。
The aqueous solution used for electrochemical graining treatment is described.
The aqueous solution mainly composed of nitric acid used in the first electrochemical graining treatment may be an aqueous solution used in electrochemical graining treatment using a conventional direct current or alternating current, and an aqueous solution of 1 to 100 g / L nitric acid And nitrate ion such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ion such as aluminum chloride, sodium chloride and ammonium chloride; and one or more of hydrochloric acid or nitrate compound having 1 etc. to 1 g / L to saturation. be able to.
In the aqueous solution mainly composed of nitric acid, metals contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium and silica may be dissolved.
Specifically, it is preferable to use a solution obtained by adding aluminum chloride or aluminum nitrate so that the amount of aluminum ions is 3 to 50 g / L in a 0.5 to 2% by mass aqueous solution of nitric acid.
The liquid temperature is preferably 10 to 90 ° C., and more preferably 40 to 80 ° C.
 第2電気化学的粗面化処理で用いる塩酸を主体とする水溶液は、通常の直流または交流を用いた電気化学的な粗面化処理に用いる水溶液を使用でき、1~100g/Lの塩酸水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウムなどの硝酸イオン;塩化アルミニウム、塩化ナトリウム、塩化アンモニウムなどの塩酸イオン;等を有する塩酸または硝酸化合物の1つ以上を1g/L~飽和まで添加して使用することができる。
 塩酸を主体とする水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。
 具体的には、塩酸0.5~2質量%水溶液中にアルミニウムイオンが3~50g/Lとなるように塩化アルミニウム、硝酸アルミニウムを添加した液を用いるのが好ましい。
 液温は10~60℃が好ましく、20~50℃がより好ましい。なお、次亜塩素酸を添加してもよい。
The aqueous solution mainly composed of hydrochloric acid used in the second electrochemical graining treatment may be an aqueous solution used in electrochemical graining treatment using a conventional direct current or alternating current, and is 1 to 100 g / L hydrochloric acid aqueous solution And nitrate ion such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ion such as aluminum chloride, sodium chloride and ammonium chloride; and one or more of hydrochloric acid or nitrate compound having 1 etc. to 1 g / L to saturation. be able to.
A metal contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium, and silica may be dissolved in an aqueous solution containing hydrochloric acid as a main component.
Specifically, it is preferable to use a solution obtained by adding aluminum chloride or aluminum nitrate so as to have an aluminum ion concentration of 3 to 50 g / L in a 0.5 to 2% by mass aqueous solution of hydrochloric acid.
The solution temperature is preferably 10 to 60 ° C., and more preferably 20 to 50 ° C. Hypochlorous acid may be added.
 一方、B態様における塩酸水溶液中での電気化学的粗面化処理で用いる塩酸を主体とする水溶液は、通常の直流または交流を用いた電気化学的な粗面化処理に用いる水溶液を使用でき、1~100g/Lの塩酸水溶液に、硫酸を0~30g/L添加して使用することができる。この水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウムなどの硝酸イオン;塩化アルミニウム、塩化ナトリウム、塩化アンモニウムなどの塩酸イオン;等を有する塩酸または硝酸化合物の1つ以上を1g/L~飽和まで添加して使用することができる。
 塩酸を主体とする水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。
 具体的には、硝酸0.5~2質量%水溶液中に、アルミニウムイオンが3~50g/Lとなるように塩化アルミニウム、硝酸アルミニウム等を添加した液を用いるのが好ましい。
 液温は10~60℃が好ましく、20~50℃がより好ましい。なお、次亜塩素酸を添加してもよい。
On the other hand, as the aqueous solution mainly composed of hydrochloric acid used in electrochemical graining treatment in a hydrochloric acid aqueous solution in B mode, an aqueous solution used for electrochemical graining treatment using normal direct current or alternating current can be used, Sulfuric acid can be used by adding 0 to 30 g / L to a 1 to 100 g / L aqueous hydrochloric acid solution. To this aqueous solution, add one or more of hydrochloric acid or nitrate compound having nitrate ion such as aluminum nitrate, sodium nitrate, ammonium nitrate; hydrochloric acid ion such as aluminum chloride, sodium chloride, ammonium chloride etc. to 1 g / L to saturation It can be used.
A metal contained in an aluminum alloy such as iron, copper, manganese, nickel, titanium, magnesium, and silica may be dissolved in an aqueous solution containing hydrochloric acid as a main component.
Specifically, it is preferable to use a solution obtained by adding aluminum chloride, aluminum nitrate or the like to an aqueous solution of 0.5 to 2% by mass of nitric acid so that the amount of aluminum ions is 3 to 50 g / L.
The solution temperature is preferably 10 to 60 ° C., and more preferably 20 to 50 ° C. Hypochlorous acid may be added.
 電気化学的粗面化処理の交流電源波形は、サイン波、矩形波、台形波、三角波などを用いることができる。周波数は0.1~250Hzが好ましい。 Sine waves, square waves, trapezoidal waves, triangular waves or the like can be used as the alternating current power source waveform of the electrochemical surface roughening treatment. The frequency is preferably 0.1 to 250 Hz.
 陽極酸化皮膜を有するアルミニウム支持体の製造方法における電気化学的粗面化処理に用いられる交番波形電流波形図の一例を示すグラフを図4に示す。
 図4において、taはアノード反応時間、tcはカソード反応時間、tpは電流が0からピークに達するまでの時間、Iaはアノードサイクル側のピーク時の電流、Icはカソードサイクル側のピーク時の電流である。台形波において、電流が0からピークに達するまでの時間tpは1~10msecが好ましい。電源回路のインピーダンスの影響のため、tpが1未満であると電流波形の立ち上がり時に大きな電源電圧が必要となり、電源の設備コストが高くなる。10msecより大きくなると、電解液中の微量成分の影響を受けやすくなり均一な粗面化が行われにくくなる。電気化学的な粗面化に用いる交流の1サイクルの条件は、アルミニウム板のアノード反応時間taとカソード反応時間tcの比tc/taが1~20、アルミニウム板がアノード時の電気量Qcとアノード時の電気量Qaの比Qc/Qaが0.3~20、アノード反応時間taが5~1000msec、の範囲にあるのが好ましい。tc/taは2.5~15がより好ましい。Qc/Qaは2.5~15がより好ましい。電流密度は台形波のピーク値で電流のアノードサイクル側Ia、カソードサイクル側Icともに10~200A/dmが好ましい。Ic/Iaは0.3~20の範囲にあることが好ましい。電気化学的な粗面化が終了した時点でのアルミニウム板のアノード反応にあずかる電気量の総和は25~1000C/dmが好ましい。
A graph showing an example of an alternating waveform current waveform diagram used for electrochemical graining treatment in a method of manufacturing an aluminum support having an anodic oxide film is shown in FIG.
In FIG. 4, ta is the anode reaction time, tc is the cathode reaction time, tp is the time until the current reaches a peak from 0, Ia is the peak current on the anode cycle side, and Ic is the peak current on the cathode cycle side It is. In the trapezoidal wave, the time tp for the current to reach a peak from 0 is preferably 1 to 10 msec. Due to the influence of the impedance of the power supply circuit, if tp is less than 1, a large power supply voltage is required at the rise of the current waveform, and the facility cost of the power supply becomes high. When it becomes larger than 10 msec, it becomes easy to receive to the influence of the trace component in electrolyte solution, and it becomes difficult to perform uniform roughening. The conditions of one cycle of alternating current used for electrochemical surface roughening are the ratio tc / ta of anode reaction time ta of aluminum plate to cathode reaction time tc of 1 to 20, and the amount of electricity Qc when the aluminum plate is anode Preferably, the ratio Qc / Qa of the quantity of electricity Qa at this time is in the range of 0.3 to 20, and the anode reaction time ta is in the range of 5 to 1000 msec. The tc / ta is more preferably 2.5-15. Qc / Qa is more preferably 2.5-15. The current density is preferably 10 to 200 A / dm 2 on both the anode cycle side Ia and the cathode cycle side Ic of the current at the peak value of the trapezoidal wave. The Ic / Ia is preferably in the range of 0.3 to 20. The total amount of electricity involved in the anodic reaction of the aluminum plate at the end of the electrochemical surface roughening is preferably 25 to 1000 C / dm 2 .
 交流を用いた電気化学的な粗面化に用いる電解槽は、縦型、フラット型、ラジアル型など公知の表面処理に用いる電解槽が使用可能であるが、特開平5-195300号公報に記載されているようなラジアル型電解槽が特に好ましい。 As an electrolytic cell used for electrochemical roughening using alternating current, an electrolytic cell used for known surface treatment such as vertical type, flat type and radial type can be used, but it is described in JP-A-5-195300. Particularly preferred is a radial type electrolytic cell as described above.
 交流を用いた電気化学的な粗面化には図5に示した装置を用いることができる。図5は、陽極酸化皮膜を有するアルミニウム支持体の製造方法における交流を用いた電気化学的粗面化処理におけるラジアル型セルの一例を示す側面図である。
 図5において、50は主電解槽、51は交流電源、52はラジアルドラムローラ、53a,53bは主極、54は電解液供給口、55は電解液、56はスリット、57は電解液通路、58は補助陽極、60は補助陽極槽、Wはアルミニウム板である。電解槽を2つ以上用いるときには、電解条件は同じでもよいし、異なっていてもよい。
 アルミニウム板Wは主電解槽50中に浸漬して配置されたラジアルドラムローラ52に巻装され、搬送過程で交流電源51に接続する主極53a、53bにより電解処理される。電解液55は電解液供給口54からスリット56を通じてラジアルドラムローラ52と主極53a、53bとの間の電解液通路57に供給される。主電解槽50で処理されたアルミニウム板Wは次いで補助陽極槽60で電解処理される。補助陽極槽60には補助陽極58がアルミニウム板Wと対向配置されており、電解液55が補助陽極58とアルミニウム板Wとの間の空間を流れるように供給される。
The apparatus shown in FIG. 5 can be used for electrochemical roughening using alternating current. FIG. 5 is a side view showing an example of a radial type cell in electrochemical graining treatment using alternating current in the method for producing an aluminum support having an anodized film.
In FIG. 5, 50 is a main electrolytic cell, 51 is an AC power supply, 52 is a radial drum roller, 53a and 53b are main electrodes, 54 is an electrolytic solution supply port, 55 is an electrolytic solution, 56 is a slit, 57 is an electrolytic solution passage, 58 is an auxiliary anode, 60 is an auxiliary anode tank, and W is an aluminum plate. When two or more electrolytic cells are used, the electrolytic conditions may be the same or different.
The aluminum plate W is wound around a radial drum roller 52 disposed so as to be immersed in the main electrolytic cell 50, and is electrolyzed by the main electrodes 53a and 53b connected to the AC power supply 51 in the transportation process. The electrolytic solution 55 is supplied from the electrolytic solution supply port 54 through the slit 56 to the electrolytic solution passage 57 between the radial drum roller 52 and the main electrodes 53a and 53b. The aluminum plate W treated in the main electrolytic cell 50 is then electrolytically treated in the auxiliary anode cell 60. An auxiliary anode 58 is disposed opposite to the aluminum plate W in the auxiliary anode tank 60, and the electrolyte solution 55 is supplied to flow in the space between the auxiliary anode 58 and the aluminum plate W.
〔ポジ型画像記録層〕
 本発明の平版印刷版原版におけるポジ型画像記録層について記載する。
 ポジ型画像記録層は、単層または複数の層からなる画像記録層からなる。画像記録層中に赤外線吸収剤を含有し、赤外線レーザーによる像様露光が可能なサーマルポジタイプの画像記録層が好ましいが、紫外光を用いたコンベンショナルポジタイプの画像記録層も用いることができる。
[Positive image recording layer]
The positive-working image recording layer in the lithographic printing plate precursor according to the invention is described.
The positive type image recording layer comprises an image recording layer comprising a single layer or a plurality of layers. An infrared absorbing agent is contained in the image recording layer, and a thermal positive type image recording layer capable of imagewise exposure with an infrared laser is preferable, but a conventional positive type image recording layer using ultraviolet light can also be used.
<サーマルポジタイプの画像記録層>
 サーマルポジタイプの画像記録層(以下、サーマルポジタイプの感熱層とも称する)は、アルカリ可溶性高分子化合物と赤外線吸収剤とを含有することが好ましい。ここで、アルカリ可溶性高分子化合物は、高分子中の主鎖および/または側鎖に酸性基を含有する単独重合体、これらの共重合体、およびこれらの混合物を包含する。したがって、サーマルポジタイプの感熱層は、アルカリ現像液に接触すると溶解する特性を有する。アルカリ可溶性高分子化合物としては、下記(1)~(6)の酸性基のうち少なくとも一つを高分子の主鎖および/または側鎖中に有するものが、アルカリ現像液に対する溶解性の点で好ましい。
<Thermal positive type image recording layer>
The thermal positive type image recording layer (hereinafter also referred to as a thermal positive type heat sensitive layer) preferably contains an alkali-soluble polymer compound and an infrared absorber. Here, the alkali-soluble polymer compound includes homopolymers containing an acidic group in the main chain and / or side chain in the polymer, copolymers thereof, and mixtures thereof. Therefore, the thermal positive type heat sensitive layer has the property of dissolving when it comes in contact with an alkali developer. Among alkali-soluble polymer compounds, those having at least one of the following acidic groups (1) to (6) in the main chain and / or side chain of the polymer are preferred in terms of solubility in an alkaline developer: preferable.
(1)フェノール性ヒドロキシル基(-Ar-OH)
(2)スルホンアミド基(-SONH-R)
(3)置換スルホンアミド系酸基(-SONHCOR、-SONHSOR、-CONHSOR)(以下「活性イミド基」という。)
(4)カルボキシル基(-COH)
(5)スルホ基(-SOH)
(6)リン酸基(-OPO
(1) phenolic hydroxyl group (-Ar-OH)
(2) Sulfonamide group (-SO 2 NH-R)
(3) Substituted sulfonamide group acid group (-SO 2 NHCOR, -SO 2 NHSO 2 R, -CONHSO 2 R) (hereinafter referred to as "active imide group")
(4) Carboxyl group (-CO 2 H)
(5) Sulfo group (-SO 3 H)
(6) Phosphoric acid group (-OPO 3 H 2 )
 上記(1)~(6)中、Arは、置換基を有していてもよい2価のアリール基を表し、Rは、置換基を有していてもよい炭化水素基を表す。 In the above (1) to (6), Ar represents a divalent aryl group which may have a substituent, and R represents a hydrocarbon group which may have a substituent.
 上記(1)~(6)より選ばれる酸性基を有するアルカリ可溶性高分子化合物の中でも、(1)フェノール基、(2)スルホンアミド基又は(3)活性イミド基を有するアルカリ可溶性高分子化合物が好ましく、(1)フェノール基又は(2)スルホンアミド基を有するアルカリ可溶性高分子化合物が、アルカリ現像液に対する溶解性、膜強度を十分に確保する点から特に好ましい。 Among the alkali-soluble polymer compounds having an acid group selected from the above (1) to (6), an alkali-soluble polymer compound having (1) a phenol group, (2) a sulfonamide group or (3) an active imido group An alkali-soluble polymer compound having (1) a phenol group or (2) a sulfonamide group is particularly preferable from the viewpoint of sufficiently securing the solubility in an alkali developer and the film strength.
 アルカリ可溶性高分子化合物における重合成分の代表的な例について述べる。
 (1)フェノール性ヒドロキシル基を有する重合性モノマーとしては、フェノール性ヒドロキシル基と、重合可能な不飽和結合とをそれぞれ一つ以上有する低分子化合物からなる重合性モノマーが挙げられ、例えば、フェノール性ヒドロキシル基を有するアクリルアミド類、メタクリルアミド類、アクリル酸エステル又はメタクリル酸エステル、ヒドロキシスチレン等が挙げられる。
 フェノール性ヒドロキシル基を有するモノマーは、2種以上を組み合わせて使用してもよい。
Representative examples of the polymerization component in the alkali-soluble polymer compound will be described.
(1) Examples of the polymerizable monomer having a phenolic hydroxyl group include polymerizable monomers consisting of low molecular weight compounds each having one or more phenolic hydroxyl groups and a polymerizable unsaturated bond, and examples thereof include phenolic Acrylamides having a hydroxyl group, methacrylamides, acrylic acid esters or methacrylic acid esters, hydroxystyrene and the like can be mentioned.
The monomer having a phenolic hydroxyl group may be used in combination of two or more.
 (2)スルホンアミド基を有する重合性モノマーとしては、1分子中、窒素原子に少なくとも一つの水素原子が結合したスルホンアミド基(-NH-SO-)と、重合可能な不飽和結合とをそれぞれ一つ以上有する低分子化合物からなる重合性モノマーが挙げられ、例えば、アクリロイル基、アリル基またはビニロキシル基と、モノ置換アミノスルホニル基または置換スルホニルイミノ基とを有する低分子化合物が好ましい。このような化合物としては、例えば、特開平8-123029号公報に記載されている一般式(I)~(V)で示される化合物が挙げられる。スルホンアミド基を有する重合性モノマーとして、具体的には、m-アミノスルホニルフェニルメタクリレート、N-(p-アミノスルホニルフェニル)メタクリルアミド、N-(p-アミノスルホニルフェニル)アクリルアミド等を好適に使用することができる。 (2) As a polymerizable monomer having a sulfonamide group, a sulfonamide group (—NH—SO 2 —) in which at least one hydrogen atom is bonded to a nitrogen atom in one molecule, and a polymerizable unsaturated bond The polymerizable monomer which consists of a low molecular weight compound which each has one or more is mentioned, For example, the low molecular weight compound which has an acryloyl group, an allyl group or vinyloxyl group, and a mono-substituted aminosulfonyl group or a substituted sulfonylimino group is preferable. Examples of such compounds include the compounds represented by the general formulas (I) to (V) described in JP-A-8-123029. Specifically, m-aminosulfonylphenyl methacrylate, N- (p-aminosulfonylphenyl) methacrylamide, N- (p-aminosulfonylphenyl) acrylamide, etc. are suitably used as the polymerizable monomer having a sulfonamide group. be able to.
 スルホンアミド基を有する重合性モノマーから得られるポリマーとしては、下記式S-1で表される構成単位及び下記式S-2で表される構成単位のうち少なくとも1種を有するポリマーが好ましく挙げられる。 As a polymer obtained from the polymerizable monomer which has a sulfonamide group, the polymer which has at least 1 sort (s) among the structural unit represented by following formula S-1 and the structural unit represented by following formula S-2 is mentioned preferably .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式S-1及び式S-2中、Rs1は水素原子又はアルキル基を表す。Zは-O-又は-NRs2を表し、ここでRs2は、水素原子、アルキル基、アルケニル基、又はアルキニル基を表す。Ar及びArはそれぞれ独立に、芳香族基を表し、少なくとも1方はヘテロ芳香族基である。sa及びsbはそれぞれ独立に、0又は1を表す。 In formulas S-1 and S-2, R s1 represents a hydrogen atom or an alkyl group. Z represents -O- or -NR s2 , wherein R s2 represents a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group. Ar 1 and Ar 2 each independently represent an aromatic group, and at least one is a heteroaromatic group. sa and sb each independently represent 0 or 1;
 式S-1中、Rs1は水素原子又はアルキル基を表すが、アルキル基は、置換若しくは非置換のアルキル基であり、置換基を有しないものが好ましい。Rs1で表されるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基などの低級アルキル基が挙げられる。Rs1は好ましくは水素原子又はメチル基である。
 Zは-O-又は-NRs2-を表し、好ましくは、-NRs2-を表す。ここでRs2は、水素原子、置換若しくは非置換のアルキル基、置換若しくは非置換のアルケニル基、又は置換若しくは非置換のアルキニル基を表し、好ましくは水素原子又は非置換のアルキル基であり、より好ましくは水素原子である。
 sa及びsbはそれぞれ独立に、0又は1を表し、好ましい態様は、saが0で且つsbが1である場合であり、更に好ましくはsa及びsbがともに0の場合であり、特に好ましくはsa及びsbがともに1の場合である。
 更に詳細には、上記構成単位において、saが0で且つsbが1である場合、Zは好ましくはOである。また、sa及びsbがいずれも1である場合、Zは好ましくはNRs2であり、ここでRs2は、水素原子であることが好ましい。
In the formula S-1, R s1 represents a hydrogen atom or an alkyl group, and the alkyl group is a substituted or unsubstituted alkyl group, preferably one having no substituent. Examples of the alkyl group represented by R s1 include lower alkyl groups such as methyl group, ethyl group, propyl group and butyl group. R s1 is preferably a hydrogen atom or a methyl group.
Z represents -O- or -NR s2- , preferably -NR s2- . Here, R s2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted alkynyl group, preferably a hydrogen atom or an unsubstituted alkyl group, Preferably it is a hydrogen atom.
sa and sb each independently represent 0 or 1, and a preferred embodiment is a case where sa is 0 and sb is 1, more preferably a case where both sa and sb are 0, particularly preferably sa. And sb are both 1.
More specifically, in the above structural unit, when sa is 0 and sb is 1, Z is preferably O. In addition, when sa and sb are both 1, Z is preferably NR s2 , where R s2 is preferably a hydrogen atom.
 Ar及びArはそれぞれ独立に、芳香族基を表し、少なくとも1方はヘテロ芳香族基である。Arは2価の芳香族基であり、Arは1価の芳香族基である。芳香族基は、芳香環を構成する水素原子の1つ又は2つが連結基と置き換わって形成された置換基である。
 芳香族基における芳香環及び複素芳香環としては、ベンゼン、ナフタレン、アントラセンなどの炭化水素芳香環から選択されるものであってもよく、フラン、チオフェン、ピロール、イミダゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、テトラゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、チアジアゾール、オキサジアゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、1,3,5-トリアジン、1,2,4-トリアジン、1,2,3-トリアジンなどの複素芳香環から選択されるものであってもよい。
 複数の環が縮合して、例えば、ベンゾフラン、ベンゾチオフェン、インドール、インダゾール、ベンゾオキサゾール、キノリン、キナゾリン、ベンゾイミダゾール、又は、ベンゾトリアゾールのような縮合環の態様をとるものであってもよい。
Ar 1 and Ar 2 each independently represent an aromatic group, and at least one is a heteroaromatic group. Ar 1 is a divalent aromatic group, and Ar 2 is a monovalent aromatic group. The aromatic group is a substituent formed by replacing one or two of the hydrogen atoms constituting the aromatic ring with a linking group.
The aromatic ring and heteroaromatic ring in the aromatic group may be selected from hydrocarbon aromatic rings such as benzene, naphthalene and anthracene, and may be furan, thiophene, pyrrole, imidazole or 1,2,3-triazole 1,2,4-triazole, tetrazole, oxazole, isoxazole, thiazole, isothiazole, thiadiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, 1,2,4-triazine Or a heteroaromatic ring such as 1,2,3-triazine.
A plurality of rings may be fused, for example, in the form of a fused ring such as benzofuran, benzothiophene, indole, indazole, benzoxazole, quinoline, quinazoline, benzimidazole or benzotriazole.
 芳香族基、ヘテロ芳香族基は、更に置換基を有するものであってもよく、導入可能な置換基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、ヘテロアリール基、ヒドロキシ基、メルカプト基、カルボキシ基又はそのアルキルエステル、スルホン酸基又はそのアルキルエステル、ホスフィン酸基又はそのアルキルエステル、アミノ基、スルホンアミド基、アミド基、ニトロ基、ハロゲン原子、あるいは、これらが複数結合してなる置換基などが挙げられ、置換基が、更にここに挙げた置換基を有するものであってもよい。 The aromatic group and the heteroaromatic group may further have a substituent, and as the substituent which can be introduced, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, a heteroaryl group Hydroxy group, mercapto group, carboxy group or alkyl ester thereof, sulfonic acid group or alkyl ester thereof, phosphinic acid group or alkyl ester thereof, amino group, sulfonamide group, amido group, nitro group, halogen atom, or the like The substituent etc. which are formed by combining two or more may be mentioned, and the substituent may further have the substituent mentioned here.
 Arは好ましくは、置換基を有していてもよい複素芳香族基であり、より好ましくは、ピリジン、ピリダジン、ピリミジン、ピラジン、1,3,5-トリアジン、1,2、4-トリアジン、1,2,3-トリアジン、テトラゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、チアジアゾール、及び、オキサジアゾールから選択される窒素原子を含む複素芳香環が挙げられる。 Ar 2 is preferably a heteroaromatic group which may have a substituent, more preferably pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, 1,2,4-triazine, And heteroaromatic rings containing a nitrogen atom selected from 1,2,3-triazines, tetrazoles, oxazoles, isoxazoles, thiazoles, isothiazoles, thiadiazoles, and oxadiazoles.
 式S-1又は式S-2で表される構成単位(ただし、モノマー単位として換算する。)の含有量は、上記ポリマーにおけるモノマー単位の全量に対し、10モル%~100モル%が好ましく、20モル%~90モル%がより好ましく、30モル%~80モル%が更に好ましく、30モル%~70モル%が特に好ましい。 The content of the constituent unit represented by the formula S-1 or the formula S-2 (but converted as a monomer unit) is preferably 10 mol% to 100 mol% with respect to the total amount of the monomer units in the polymer. 20 mol% to 90 mol% is more preferable, 30 mol% to 80 mol% is more preferable, and 30 mol% to 70 mol% is particularly preferable.
 上記ポリマーは、上記式S-1又は式S-2で表される構成単位以外に、他の構成単位を含む共重合体であってもよい。
 他の構成単位としては、モノマーの側鎖構造に、アルキル基、アリール基などの置換基を有する疎水性のモノマーや、モノマーの側鎖構造に、酸性基、アミド基、ヒドロキシ基又はエチレンオキシド基などを有する親水性のモノマーなどが挙げられ、これらより目的に応じて適宜選択することができるが、共重合させるモノマー種の選択は、上記ポリマーのアルカリ可溶性を損なわない範囲で行うことが肝要である。
The polymer may be a copolymer containing other structural units in addition to the structural units represented by the above-mentioned formula S-1 or formula S-2.
As another structural unit, a hydrophobic monomer having a substituent such as an alkyl group or an aryl group in the side chain structure of the monomer, or an acid group, an amide group, a hydroxy group or an ethylene oxide group in the side chain structure of the monomer It is important to select the kind of monomer to be copolymerized in the range which does not impair the alkali solubility of the above-mentioned polymer. .
 他の共重合成分としては、(メタ)アクリルアミド、N-置換(メタ)アクリルアミド、N-置換マレイミド、(メタ)アクリル酸エステル、ポリオキシエチレン鎖を有する(メタ)アクリル酸エステル、2-ヒドロキシエチル(メタ)アクリレート、スチレン、スチレンスルホン酸、o-、p-、又はm-ビニルベンゼン酸、ビニルピリジン、N-ビニルカプロラクタム、N-ビニルピロリジン、(メタ)アクリル酸、イタコン酸、マレイン酸、グリシジル(メタ)アクリレート、加水分解ビニルアセテート、ビニルホスホン酸などが挙げられる。好ましい共重合成分としては、N-ベンジル(メタ)アクリルアミド、(メタ)アクリル酸などが挙げられる。 Other copolymerization components include (meth) acrylamide, N-substituted (meth) acrylamide, N-substituted maleimide, (meth) acrylic acid ester, (meth) acrylic acid ester having a polyoxyethylene chain, 2-hydroxyethyl (Meth) acrylate, styrene, styrene sulfonic acid, o-, p-, or m-vinylbenzene acid, vinylpyridine, N-vinylcaprolactam, N-vinylpyrrolidine, (meth) acrylic acid, itaconic acid, maleic acid, glycidyl (Meth) acrylate, hydrolyzed vinyl acetate, vinyl phosphonic acid and the like. As preferable copolymerization components, N-benzyl (meth) acrylamide, (meth) acrylic acid and the like can be mentioned.
 上記式S-1で表される構成単位及び上記式S-2で表される構成単位のうち少なくとも1種を有するポリマーの数平均分子量(Mn)は、10,000~500,000が好ましく、10,000~200,000がより好ましく、10,000~100,000が特に好ましい。また、重量平均分子量(Mw)は、10,000~1,000,000が好ましく、20,000~500,000がより好ましく、20,000~200,000が特に好ましい。 The number average molecular weight (Mn) of the polymer having at least one of the constitutional unit represented by the above formula S-1 and the constitutional unit represented by the above formula S-2 is preferably 10,000 to 500,000, 10,000 to 200,000 are more preferable, and 10,000 to 100,000 are particularly preferable. The weight average molecular weight (Mw) is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, and particularly preferably 20,000 to 200,000.
 (3)活性イミド基を有する重合性モノマーとしては、特開平11-84657号公報に記載されている活性イミド基を分子内に有する化合物が好ましく、1分子中に、活性イミド基と、重合可能な不飽和結合とをそれぞれ一つ以上有する低分子化合物からなる重合性モノマーが挙げられる。活性イミド基を有する重合性モノマーとしては、具体的には、N-(p-トルエンスルホニル)メタクリルアミド、N-(p-トルエンスルホニル)アクリルアミド等を好適に使用することができる。 (3) As the polymerizable monomer having an active imide group, a compound having an active imide group in the molecule described in JP-A-11-84657 is preferable, and an active imide group can be polymerized in one molecule. And polymerizable monomers comprising low molecular weight compounds each having one or more unsaturated bonds. Specifically, N- (p-toluenesulfonyl) methacrylamide, N- (p-toluenesulfonyl) acrylamide and the like can be suitably used as the polymerizable monomer having an active imide group.
 上記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、及び、活性イミド基を有する重合性モノマーのうちの2種以上を共重合させた高分子化合物、あるいはこれら2種以上の重合性モノマーに他の重合性モノマーを共重合させて得られる高分子化合物を使用することが好ましい。フェノール性水酸基を有する重合性モノマーに、スルホンアミド基を有する重合性モノマー及び/又は活性イミド基を有する重合性モノマーを共重合させる場合には、これら成分の配合質量比は50:50から5:95の範囲にあることが好ましく、40:60から10:90の範囲にあることがより好ましい。 The polymeric compound which copolymerized 2 or more types in the polymerizable monomer which has the said phenolic hydroxyl group, the polymerizable monomer which has a sulfonamide group, and the polymerizable monomer which has an active imide group, or these 2 or more types It is preferable to use a polymer compound obtained by copolymerizing the polymerizable monomer with another polymerizable monomer. When the polymerizable monomer having a phenolic hydroxyl group is copolymerized with a polymerizable monomer having a sulfonamide group and / or a polymerizable monomer having an active imido group, the blending mass ratio of these components is 50: 50 to 5: It is preferably in the range of 95, and more preferably in the range of 40:60 to 10:90.
 アルカリ可溶性高分子化合物が上記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、又は、活性イミド基を有する重合性モノマーと、他の重合性モノマーとの共重合体である場合には、アルカリ可溶性及び現像ラチチュードの向上効果の観点から、アルカリ可溶性を付与するモノマーは、共重合に使用するモノマーの全モル量に対し、10モル%以上含むことが好ましく、20モル%以上含むものがより好ましい。 When the alkali-soluble polymer compound is a copolymer of the above-mentioned polymerizable monomer having a phenolic hydroxyl group, a polymerizable monomer having a sulfonamide group, or a polymerizable monomer having an active imido group and another polymerizable monomer In view of the effect of improving alkali solubility and development latitude, the monomer imparting alkali solubility is preferably contained in an amount of 10 mol% or more, preferably 20 mol% or more, based on the total molar amount of monomers used for copolymerization. Is more preferred.
 上記フェノール性水酸基を有する重合性モノマー、スルホンアミド基を有する重合性モノマー、又は活性イミド基を有する重合性モノマーと共重合させるモノマー成分としては、下記(m1)~(m12)に挙げる化合物を例示することができるが、これらに限定されるものではない。
 (m1)2-ヒドロキシエチルアクリレート又は2-ヒドロキシエチルメタクリレート等の脂肪族水酸基を有するアクリル酸エステル類、及び、メタクリル酸エステル類。
 (m2)アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸アミル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ベンジル、アクリル酸-2-クロロエチル、グリシジルアクリレート等のアルキルアクリレート。
 (m3)メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸アミル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸-2-クロロエチル、グリシジルメタクリレート等のアルキルメタクリレート。
 (m4)アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-エチルアクリルアミド、N-ヘキシルメタクリルアミド、N-シクロヘキシルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-ニトロフェニルアクリルアミド、N-エチル-N-フェニルアクリルアミド等のアクリルアミド又はメタクリルアミド。
As the monomer component to be copolymerized with the polymerizable monomer having a phenolic hydroxyl group, the polymerizable monomer having a sulfonamide group, or the polymerizable monomer having an active imide group, the compounds listed in the following (m1) to (m12) are exemplified Although it can do, it is not limited to these.
(M1) Acrylic acid esters having an aliphatic hydroxyl group such as 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate, and methacrylic acid esters.
(M2) Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, octyl acrylate, benzyl acrylate, 2-chloroethyl acrylate, glycidyl acrylate and the like.
(M3) Alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, 2-chloroethyl methacrylate, glycidyl methacrylate and the like.
(M4) Acrylamide, methacrylamide, N-methylol acrylamide, N-ethyl acrylamide, N-hexyl methacrylamide, N-cyclohexyl acrylamide, N-hydroxyethyl acrylamide, N-phenyl acrylamide, N-nitrophenyl acrylamide, N-ethyl- Acrylamide or methacrylamide such as N-phenyl acrylamide.
 (m5)エチルビニルエーテル、2-クロロエチルビニルエーテル、ヒドロキシエチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、オクチルビニルエーテル、フェニルビニルエーテル等のビニルエーテル類。
 (m6)ビニルアセテート、ビニルクロロアセテート、ビニルブチレート、安息香酸ビニル等のビニルエステル類。
 (m7)スチレン、α-メチルスチレン、メチルスチレン、クロロメチルスチレン等のスチレン類。
 (m8)メチルビニルケトン、エチルビニルケトン、プロピルビニルケトン、フェニルビニルケトン等のビニルケトン類。
 (m9)エチレン、プロピレン、イソブチレン、ブタジエン、イソプレン等のオレフィン類。
 (m10)N-ビニルピロリドン、アクリロニトリル、メタクリロニトリル等。
 (m11)マレイミド、N-アクリロイルアクリルアミド、N-アセチルメタクリルアミド、N-プロピオニルメタクリルアミド、N-(p-クロロベンゾイル)メタクリルアミド等の不飽和イミド。
 (m12)アクリル酸、メタクリル酸、無水マレイン酸、イタコン酸等の不飽和カルボン酸。
(M5) Vinyl ethers such as ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, octyl vinyl ether, phenyl vinyl ether and the like.
(M6) Vinyl esters such as vinyl acetate, vinyl chloroacetate, vinyl butyrate and vinyl benzoate.
(M7) Styrenes such as styrene, α-methylstyrene, methylstyrene and chloromethylstyrene.
(M8) Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, phenyl vinyl ketone and the like.
(M9) Olefins such as ethylene, propylene, isobutylene, butadiene and isoprene.
(M10) N-vinylpyrrolidone, acrylonitrile, methacrylonitrile and the like.
(M11) Unsaturated imides such as maleimide, N-acryloyl acrylamide, N-acetyl methacrylamide, N-propionyl methacrylamide, N- (p-chlorobenzoyl) methacrylamide and the like.
(M12) Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride and itaconic acid.
 サーマルポジタイプの感熱層に含有される赤外線吸収剤は、光を吸収して発熱する物質である。赤外線吸収剤は、露光エネルギーを熱に変換して感熱層の露光部領域の相互作用解除を効率よく行うことを可能とする。赤外線吸収剤は、記録感度の観点から、波長700~1200nmの赤外域に光吸収域がある顔料または染料が好ましい。 The infrared absorber contained in the heat-sensitive layer of the thermal positive type is a substance that absorbs light and generates heat. The infrared absorbing agent can convert exposure energy into heat to efficiently release interaction between the exposed area of the heat sensitive layer. The infrared absorbing agent is preferably a pigment or dye having a light absorbing region in the infrared region of a wavelength of 700 to 1200 nm from the viewpoint of recording sensitivity.
 顔料としては、市販の顔料、ならびに、カラーインデックス(C.I.)便覧、「最新顔料便覧」(日本顔料技術協会編、1977年刊)、「最新顔料応用技術」(CMC出版、1986年刊)および「印刷インキ技術」CMC出版、1984年刊)に記載されている顔料を利用することができる。 As pigments, commercially available pigments, as well as Color Index (CI) Handbook, "Latest Pigment Handbook" (edited by Japan Pigment Technology Association, published in 1977), "latest pigment applied technology" (CMC publication, published in 1986) and Pigments described in "Printing Ink Technology", CMC Publishing, 1984) can be used.
 顔料の種類としては、例えば、黒色顔料、黄色顔料、オレンジ色顔料、褐色顔料、赤色顔料、紫色顔料、青色顔料、緑色顔料、蛍光顔料、金属粉顔料、ポリマー結合色素が挙げられる。具体的には、不溶性アゾ顔料、アゾレーキ顔料、縮合アゾ顔料、キレートアゾ顔料、フタロシアニン系顔料、アントラキノン系顔料、ペリレンおよびペリノン系顔料、チオインジゴ系顔料、キナクリドン系顔料、ジオキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、染付けレーキ顔料、アジン顔料、ニトロソ顔料、ニトロ顔料、天然顔料、蛍光顔料、無機顔料、カーボンブラックを用いることができる。 Types of pigments include, for example, black pigments, yellow pigments, orange pigments, brown pigments, red pigments, purple pigments, blue pigments, green pigments, fluorescent pigments, metal powder pigments, polymer-bound dyes. Specifically, insoluble azo pigments, azo lake pigments, condensed azo pigments, chelate azo pigments, phthalocyanine pigments, anthraquinone pigments, perylene and perinone pigments, thioindigo pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments Quinophthalone pigments, dyed lake pigments, azine pigments, nitroso pigments, nitro pigments, natural pigments, fluorescent pigments, inorganic pigments, carbon black can be used.
 顔料は表面処理をせずに用いてもよく、従来公知の表面処理を施して用いてもよい。 The pigment may be used without surface treatment, or may be used after being subjected to conventionally known surface treatment.
 顔料の粒径は、0.01~10μmが好ましく、0.05~1μmがより好ましく、0.1~1μmが更に好ましい。上記範囲であると、顔料の分散物の感熱層塗布液中での安定性、感熱層の均一性等の点で好ましい。 The particle size of the pigment is preferably 0.01 to 10 μm, more preferably 0.05 to 1 μm, and still more preferably 0.1 to 1 μm. Within the above range, it is preferable in view of the stability of the pigment dispersion in the heat-sensitive layer coating solution, the uniformity of the heat-sensitive layer, and the like.
 顔料を分散する方法としては、例えば、「最新顔料応用技術」(CMC出版、1986年刊)等に記載されているインキ製造やトナー製造等に用いられる公知の分散技術が使用できる。 As a method of dispersing the pigment, for example, known dispersion techniques used for ink production and toner production described in "Latest Pigment Application Technology" (CMC Publishing, 1986) etc. can be used.
 染料としては、市販の染料および文献(例えば、「色素ハンドブック」(株)講談社刊(1986年)、「染料便覧」有機合成化学協会編集、昭和45年刊)に記載されている公知のものが利用できる。具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、アズレニウム染料、キノンイミン染料、メチン染料、シアニン染料、スクワリリウム色素、ピリリウム塩、金属金属錯体(例えば、ジチオール金属錯体、含金属フタロシアニン)等の染料を用いることができる。 As dyes, commercially available dyes and known dyes described in the literature (for example, "Dye Handbook" Kodansha (1986), "Dye Handbook" edited by the Society of Synthetic Organic Chemistry, published in 1945) are used. it can. Specifically, azo dyes, metal complex salts azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, azulenium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squalilium dyes, pyrilium salts, metal-metal complexes Dyes such as (for example, dithiol metal complex, metal-containing phthalocyanine) can be used.
 これら顔料または染料の中でも、赤外光または近赤外光を吸収するものが、赤外光または近赤外光を発光するレーザの利用に適する点で特に好ましい。 Among these pigments or dyes, those absorbing infrared light or near infrared light are particularly preferable in that they are suitable for use of a laser emitting infrared light or near infrared light.
 そのような赤外光または近赤外光を吸収する顔料としては、フタロシアニン(含金属フタロシアニンを含む。)、カーボンブラックが好適に用いられる。また、赤外光または近赤外光を吸収する染料としては、例えば、シアニン染料、メロシアニン染料、イミニウム染料、オキソノール染料、ピリリウム(チオピリリウム、セレナピリリウム、テルナピリリウムを含む。)系染料、ナフトキノン染料、スクワリリウム染料、フタロシアニン(含金属フタロシアニンを含む。)染料、有機金属錯体(ジチオール、ジアミン等との金属錯体化合物等)等が挙げられる。具体的には、例えば、特開平7-285275号公報の段落番号[0020]~[0021]に記載されている化合物、および、「エレクトロニクス関連色素-現状と将来展望-」第16章(株)シーエムシー(1998年刊)等の公知資料に記載されている化合物が挙げられる。 As a pigment which absorbs such infrared light or near-infrared light, phthalocyanine (including metal-containing phthalocyanine) and carbon black are suitably used. Moreover, as a dye which absorbs infrared light or near infrared light, for example, cyanine dyes, merocyanine dyes, iminium dyes, oxonol dyes, pyrylium (including thiopyrylium, selenapyrilium, ternapyrylium) dyes, naphthoquinone dyes, Examples include squarylium dyes, phthalocyanines (including metal-containing phthalocyanines) dyes, organic metal complexes (metal complex compounds with dithiols, diamines and the like, etc.) and the like. Specifically, for example, compounds described in paragraph Nos. [0020] to [0021] of JP-A-7-285275, and “Electronics related dyes-present state and future prospects-” Chapter 16 Examples thereof include compounds described in known materials such as CMC (1998).
 染料として好ましい別の例として、米国特許第4,756,993号明細書中に式(I)または(II)として記載されている近赤外吸収染料、特開2000-267265号公報に記載されているアルカリ性水溶液に可溶となる赤外吸収色素、特開平11-309952号公報に記載されている熱によって親水性に変化する官能基を含有する赤外吸収色素、特開2000-160131号公報、同2000-330271号公報、同2001-117216号公報および同2001-174980号公報に記載されているポリメチン色素、特開2000-352817号公報に記載されているフタロシアニン色素が挙げられる。ただし、本発明において用いられる赤外線吸収剤としての色素は、これらに限定されるものではない。 As another preferred example of the dye, a near infrared absorbing dye described as formula (I) or (II) in US Pat. No. 4,756,993 is described in JP-A-2000-267265. An infrared absorbing dye which becomes soluble in an alkaline aqueous solution, an infrared absorbing dye containing a functional group which changes to hydrophilicity by heat as described in JP-A-11-309952, JP-A-2000-160131 The polymethine dyes described in JP-A-2000-330271, JP-A-2001-117216 and JP-A-2001-174980, and the phthalocyanine dyes described in JP-A-2000-352817. However, the dye as the infrared absorber used in the present invention is not limited to these.
 赤外線吸収剤の含有量は、感熱層の全固形分に対して、好ましくは0.01~50質量%、より好ましくは0.01~30質量%、更に好ましくは0.1~10質量%、染料の場合、特に好ましくは0.5~10質量%、顔料の場合、特に好ましくは1~10質量%である。赤外線吸収剤の含有量が0.01質量%未満であると感度が低くなる場合があり、また、50質量%を超えると感熱層の均一性が失われ、感熱層の耐久性が悪くなる場合がある。 The content of the infrared absorber is preferably 0.01 to 50% by mass, more preferably 0.01 to 30% by mass, still more preferably 0.1 to 10% by mass, based on the total solid content of the heat-sensitive layer. In the case of dyes, particularly preferably 0.5 to 10% by weight, in the case of pigments particularly preferably 1 to 10% by weight. When the content of the infrared absorbing agent is less than 0.01% by mass, the sensitivity may be lowered, and when it exceeds 50% by mass, the uniformity of the heat-sensitive layer is lost and the durability of the heat-sensitive layer is deteriorated. There is.
 サーマルポジタイプの感熱層は、更に、酸発生剤、酸増殖剤、現像促進剤、界面活性剤、焼き出し剤/着色剤、可塑剤、ワックス剤などのその他の成分を含有してもよい。これらの成分については、特開2003-1956号公報の段落〔0119〕~〔0147〕の記載を参照することができる。 The heat-sensitive layer of the thermal positive type may further contain other components such as an acid generator, an acid multiplying agent, a development accelerator, a surfactant, a print-out agent / colorant, a plasticizer, a wax agent and the like. With regard to these components, the description in paragraphs [0119] to [0147] of JP-A-2003-1956 can be referred to.
 サーマルポジタイプの画像記録層は、陽極酸化皮膜を有するアルミニウム支持体に近い下層とその上に存在する上層とからなる二層構造を有していてもよい。二層構造を有する画像記録層については、例えば、特開平11-218914号公報に記載されている。
 上層は、上記サーマルポジタイプの感熱層に含有されるアルカリ可溶性高分子化合物、赤外線吸収剤、その他の成分を含有する。
 下層はアルカリ可溶性高分子化合物を含有することが好ましい。下層は、更に、赤外線吸収剤、その他の成分を含んでいてもよい。
The thermal positive type image recording layer may have a two-layer structure consisting of a lower layer close to the aluminum support having the anodized film and an upper layer present thereon. An image recording layer having a two-layer structure is described, for example, in JP-A-11-218914.
The upper layer contains an alkali-soluble polymer compound, an infrared absorber, and other components contained in the heat-sensitive layer of the thermal positive type.
The lower layer preferably contains an alkali-soluble polymer compound. The lower layer may further contain an infrared absorber and other components.
 下層及び上層における各成分の組成比に関しては、下層及び上層の全質量に対して、アルカリ可溶性高分子化合物の含有量は10質量%~90質量%が好ましく、赤外線吸収剤の含有量は0.01質量%~50質量%が好ましく、酸発生剤の含有量は0質量%~30質量%が好ましく、酸増殖剤の含有量は0質量%~20質量%が好ましく、現像促進剤の含有量は0質量%~20質量%が好ましく、界面活性剤の含有量は0質量%~5質量%が好ましく、焼き出し剤/着色剤の含有量は0質量%~10質量%が好ましく、可塑剤の含有量は0質量%~10質量%でが好ましく、ワックス剤の含有量は0質量%~10質量%が好ましい。 With respect to the composition ratio of each component in the lower layer and the upper layer, the content of the alkali-soluble polymer compound is preferably 10% by mass to 90% by mass with respect to the total mass of the lower layer and the upper layer. 01% by mass to 50% by mass is preferable, the content of the acid generator is preferably 0% by mass to 30% by mass, the content of the acid multiplying agent is preferably 0% by mass to 20% by mass, and the content of the development accelerator Is preferably 0% by mass to 20% by mass, the content of surfactant is preferably 0% by mass to 5% by mass, and the content of printout agent / coloring agent is preferably 0% by mass to 10% by mass, and the plasticizer The content of is preferably 0% by mass to 10% by mass, and the content of the wax agent is preferably 0% by mass to 10% by mass.
 下層及び上層は、上記各成分を溶剤に溶かして、塗布することにより形成することができる。使用する溶剤としては、エチレンジクロライド、シクロヘキサノン、メチルエチルケトン、メタノール、エタノール、プロパノール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、2-メトキシエチルアセテート、1-メトキシ-2-プロピルアセテート、ジメトキシエタン、乳酸メチル、乳酸エチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、テトラメチルウレア、N-メチルピロリドン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、トルエン、1,3-ジメチルー2-イミダゾリジノン等を挙げることができるが、これらに限定されるものではない。溶剤は、単独又は混合して使用される。 The lower layer and the upper layer can be formed by dissolving the above-described components in a solvent and coating. The solvents to be used include ethylene dichloride, cyclohexanone, methyl ethyl ketone, methanol, ethanol, propanol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate, dimethoxyethane, Methyl lactate, ethyl lactate, N, N-dimethylacetamide, N, N-dimethylformamide, tetramethylurea, N-methylpyrrolidone, dimethylsulfoxide, sulfolane, γ-butyrolactone, toluene, 1,3-dimethyl-2-imidazolidinone Etc., but are not limited to these. The solvents are used alone or in combination.
 下層及び上層におけるアルカリ可溶性高分子化合物の含有量は、含有される層の全質量に対して、10質量%~90質量%が好ましく、50質量%~88質量%がより好ましく、60質量%~85質量%が更に好ましい。含有量がこの範囲であると、現像した際のパターン形成性が良好となる。 The content of the alkali-soluble polymer compound in the lower and upper layers is preferably 10% by mass to 90% by mass, more preferably 50% by mass to 88% by mass, and more preferably 60% by mass with respect to the total mass of the contained layer. 85 mass% is more preferable. When the content is in this range, the patternability upon development becomes good.
 下層成分の乾燥後の塗布量は、0.5~4.0g/mが好ましく、0.6~2.5g/mがより好ましい。0.5g/m以上であると、耐刷性に優れ、4.0g/m以下であると、画像再現性及び感度に優れる。
 上層成分の乾燥後の塗布量は、0.05~1.0g/mが好ましく、0.08~0.7g/mがより好ましい。0.05g/m以上であると、現像ラチチュード及び耐傷性に優れ、1.0g/m以下であると、感度に優れる。
 下層及び上層を合わせた乾燥後の塗布量は、0.6~4.0g/mが好ましく、0.7~2.5g/mがより好ましい。0.6g/m以上であると、耐刷性に優れ、4.0g/m以下であると、画像再現性及び感度に優れる。
Coating amount after drying of the lower layer components is preferably 0.5 ~ 4.0g / m 2, more preferably 0.6 ~ 2.5g / m 2. When it is 0.5 g / m 2 or more, the printing durability is excellent, and when it is 4.0 g / m 2 or less, the image reproducibility and the sensitivity are excellent.
Coating amount after drying of the upper layer component is preferably 0.05 ~ 1.0g / m 2, more preferably 0.08 ~ 0.7g / m 2. If it is 0.05 g / m 2 or more, excellent in development latitude and scratch resistance, if it is 1.0 g / m 2 or less, excellent sensitivity.
Lower layer and the coating amount after drying of the combined upper layer is preferably 0.6 ~ 4.0g / m 2, more preferably 0.7 ~ 2.5g / m 2. When it is 0.6 g / m 2 or more, the printing durability is excellent, and when it is 4.0 g / m 2 or less, the image reproducibility and the sensitivity are excellent.
 下層及び上層は、原則的に2つの層を分離して形成することが好ましい。
 2つの層を分離して形成する方法としては、例えば、特開2011-209343号公報の段落〔0068〕~〔0069〕に記載されているように、下層に含まれる成分と、上層に含まれる成分との溶剤溶解性の差を利用する方法、又は、上層を塗布した後、急速に溶剤を乾燥、除去する方法等が挙げられる。後者の方法を併用することにより、層間の分離が一層良好に行われることになるため好ましい。
It is preferable that the lower layer and the upper layer are basically formed by separating two layers.
As a method for forming two layers separately, for example, as described in paragraphs [0068] to [0069] of JP 2011-209343 A, a component contained in the lower layer, and an element contained in the upper layer are included. The method of utilizing the difference in solvent solubility with the components, or the method of rapidly drying and removing the solvent after applying the upper layer, and the like can be mentioned. It is preferable to use the latter method in combination because the separation between layers is further improved.
<コンベンショナルポジタイプの画像記録層>
 コンベンショナルポジタイプの画像記録層は、アルカリ可溶性高分子化合物とo-キノンジアジド化合物を含有する感光層が代表的である。コンベンショナルポジタイプの画像記録層に関しては、特開2003-1956号公報の段落〔0042〕~〔0066〕の記載を参照することができる。
<Conventional positive type image recording layer>
The conventional positive type image recording layer is typically a photosensitive layer containing an alkali-soluble polymer compound and an o-quinonediazide compound. With respect to the conventional positive type image recording layer, the description in paragraphs [0042] to [0066] of JP-A-2003-1956 can be referred to.
<下塗層>
 本発明の平版印刷版原版は、必要に応じて、陽極酸化皮膜を有するアルミニウム支持体とポジ型画像記録層との間に、下塗り層を設けることができる。
 下塗層に含有される成分としては特に限定されないが、特開2003-1956号公報の段落〔0151〕に記載された種々の有機化合物を使用できる。あるいは、特開2000-105462号公報に記載されている、酸基を有する構成成分とオニウム基を有する構成成分とを有する高分子化合物も好適に用いられる。この下塗り層を設けると、十分なアルカリ現像性を有し、印刷時の耐汚れ性および画像強度の低下を生じることなく、鮮明な画像の印刷物を多数枚得ることができるようになる。
Subbing layer
In the lithographic printing plate precursor of the invention, a subbing layer can be provided, as required, between the aluminum support having an anodized film and the positive-working image recording layer.
The component contained in the undercoat layer is not particularly limited, but various organic compounds described in paragraph [0151] of JP-A-2003-1956 can be used. Alternatively, a polymer compound having an acid group-containing component and an onium group-containing component described in JP-A-2000-105462 is also suitably used. When this subbing layer is provided, it has sufficient alkali developability, and a large number of prints of clear images can be obtained without causing a decrease in stain resistance and image strength at the time of printing.
 より親水性の高い下塗層成分としては、ホスホン酸基、リン酸基、スルホン酸基、カルボン酸基から選ばれる酸基を含むポリマーが好ましく用いられる。上記酸基を有するモノマー単位を含む共重合体であることが好ましい。また、親水性の高いベタイン構造を末端に有するモノマー単位を含んでもよい。より好ましい共重合体の例として、特開2010-284963号公報の段落〔0012〕~〔0036〕に記載された共重合体が挙げられる。 As the undercoat layer component having higher hydrophilicity, a polymer containing an acid group selected from phosphonic acid group, phosphoric acid group, sulfonic acid group and carboxylic acid group is preferably used. It is preferable that it is a copolymer containing the monomer unit which has the said acidic radical. Moreover, you may also include the monomer unit which has a highly hydrophilic betaine structure at the terminal. Examples of more preferable copolymers include those described in paragraphs [0012] to [0036] of JP-A-2010-284963.
 下塗層成分は、1種単独で用いても、2種以上混合して用いてもよい。
 下塗り層の形成は次のような方法で行うことができる。即ち、水もしくはメタノール、エタノール、メチルエチルケトン等の有機溶剤またはそれらの混合溶剤に下塗層成分を溶解させた溶液を陽極酸化皮膜を有するアルミニウム支持体上に塗布し乾燥させて形成する方法と、水もしくはメタノール、エタノール、メチルエチルケトン等の有機溶剤またはそれらの混合溶剤に下塗層成分を溶解させた溶液に、陽極酸化皮膜を有するアルミニウム支持体を浸せきさせて上記下塗層成分を吸着させ、その後水等によって洗浄し乾燥させて形成する方法である。前者の方法では、下塗層成分の好ましくは0.005~10質量%の濃度の溶液を種々の方法で塗布することができる。後者の方法では、溶液の濃度は好ましくは0.01~20質量%、より好ましくは0.05~5質量%であり、浸せき温度は好ましくは20~90℃、より好ましくは25~50℃であり、浸せき時間は好ましくは0.1秒~20分、より好ましくは2秒~1分である。上記方法に用いる溶液は、アンモニア、トリエチルアミン、水酸化カリウム等の塩基性物質や、塩酸、リン酸等の酸性物質により、pH1~12の範囲に調整することもできる。また、平版印刷版原版の調子再現性改良のために黄色染料を含有することもできる。下塗層の被覆量は、2~200mg/mが適当であり、5~100mg/mが好ましい。
The undercoat layer components may be used singly or in combination of two or more.
The formation of the undercoat layer can be carried out in the following manner. That is, a method in which a solution obtained by dissolving the undercoat layer component in water or an organic solvent such as methanol, ethanol, methyl ethyl ketone or the like or a mixed solvent thereof is coated on an anodized aluminum support and dried, Alternatively, the aluminum support having the anodized film is immersed in a solution in which the undercoat layer component is dissolved in an organic solvent such as methanol, ethanol, methyl ethyl ketone or the like, or a mixed solvent thereof, and the undercoat layer component is adsorbed. It is a method of forming by washing and drying by the like. In the former method, a solution with a concentration of preferably 0.005 to 10% by weight of the primer layer component can be applied by various methods. In the latter method, the concentration of the solution is preferably 0.01 to 20% by mass, more preferably 0.05 to 5% by mass, and the immersion temperature is preferably 20 to 90 ° C., more preferably 25 to 50 ° C. The immersion time is preferably 0.1 seconds to 20 minutes, more preferably 2 seconds to 1 minute. The solution used in the above method can also be adjusted to a pH range of 1 to 12 with a basic substance such as ammonia, triethylamine or potassium hydroxide, or an acidic substance such as hydrochloric acid or phosphoric acid. In addition, a yellow dye may be contained to improve tone reproduction of the lithographic printing plate precursor. The coverage of the undercoat layer, 2 ~ 200mg / m 2 is is suitable, preferably 5 ~ 100mg / m 2.
<バックコート層>
 平版印刷版原版の支持体裏面には、必要に応じてバックコート層を設けてもよい。バックコート層としては、特開平5-45885号公報に記載の有機高分子化合物及び特開平6-35174号公報に記載の有機又は無機金属化合物を加水分解及び重縮合させて得られる金属酸化物からなる被覆層が好ましく用いられる。特に、Si(OCH、Si(OC、Si(OC、Si(OCなどのケイ素のアルコキシ化合物が安価で入手し易く、これから得られる金属酸化物の被覆層が耐現像液に優れており好ましい。
<Back coat layer>
If necessary, a backcoat layer may be provided on the back side of the support of the lithographic printing plate precursor. The backcoat layer is formed of a metal oxide obtained by hydrolysis and polycondensation of an organic polymer compound described in JP-A-5-45885 and an organic or inorganic metal compound described in JP-A-6-35174. Is preferably used. In particular, alkoxy compounds of silicon such as Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 and Si (OC 4 H 9 ) 4 are inexpensive and easily obtainable, and are obtained from these The metal oxide coating layer is preferable to the developer-resistant solution.
<平版印刷版の作製方法>
 本発明の平版印刷版原版は、ポジ型画像記録層の種類に応じて、従来公知の画像形成(例えば、露光)および現像処理を行うことにより平版印刷版を作製することができる。像露光に用いられる活性光線の光源は、ポジ型画像記録層の種類に応じて適時選定することができる。具体的には、特開2003-1956号公報の段落〔0268〕に記載された光源を使用できる。
<Method of preparing lithographic printing plate>
The lithographic printing plate precursor of the present invention can produce a lithographic printing plate by performing conventionally known image formation (for example, exposure) and development depending on the type of positive-working image recording layer. The light source of the actinic ray used for image exposure can be selected appropriately according to the type of positive image recording layer. Specifically, the light source described in paragraph [0268] of JP-A-2003-1956 can be used.
 デジタルデータに基づきレーザ光を照射して所望の画像様に露光した、サーマルタイプの平版印刷版原版は、アルカリ現像液を用いる方法で現像処理を行うのが好ましい。このようにして、露光および現像処理を行うと、露光部の画像記録層に含有される赤外線吸収剤によりレーザ光が効率よく吸収され、露光による吸収エネルギーの蓄積により露光部の画像記録層のみが発熱してアルカリ可溶性となり、アルカリ現像液を用いた現像処理により、露光部の画像記録層のみが除去されて所望の画像が形成される。
 画像記録層がコンベンショナルポジタイプである場合も、同様に、アルカリ現像液を用いて現像することができる。
It is preferable that the thermal type planographic printing plate precursor which is irradiated with a laser beam based on digital data and exposed like a desired image is developed by a method using an alkaline developer. In this way, when exposure and development processing is performed, the laser light is efficiently absorbed by the infrared absorber contained in the image recording layer of the exposed portion, and only the image recording layer of the exposed portion is stored due to the accumulation of energy absorbed by exposure. The heat is generated to be alkali-soluble, and the development processing using an alkali developer removes only the image recording layer in the exposed area to form a desired image.
When the image recording layer is of the conventional positive type, it can be similarly developed using an alkaline developer.
 現像処理に用いられるアルカリ現像液はアルカリ性水溶液であり、従来公知のアルカリ水溶液の中から適宜選択して用いることができる。例えば、ケイ酸アルカリまたは非還元糖と、塩基とを含有するアルカリ水溶液が好適に挙げられ、特にpH12.5~14.0のものがより好適に挙げられる。上記アルカリ現像液については、特開2003-1956号公報の段落〔0270〕~〔0292〕の記載を参照することができる。 The alkaline developing solution used for development is an alkaline aqueous solution, and can be appropriately selected and used from conventionally known alkaline aqueous solutions. For example, an aqueous alkali solution containing an alkali silicate or a nonreducing sugar and a base is suitably mentioned, and in particular, one having a pH of 12.5 to 14.0 is more suitably mentioned. The description of paragraphs [0270] to [0292] in JP-A No. 2003-1956 can be referred to for the above-mentioned alkali developer.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
[実施例1~38及び比較例1~9]
〔陽極酸化皮膜を有するアルミニウム支持体の製造〕
 厚さ0.3mmの材質1Sのアルミニウム合金板に対し、下記アルミニウム支持体の表面処理A、表面処理C又は表面処理Dを施し、陽極酸化皮膜を有するアルミニウム支持体を製造した。なお、全ての処理工程の間には水洗処理を施し、水洗処理の後にはニップローラーで液切りを行った。
[Examples 1 to 38 and Comparative Examples 1 to 9]
[Production of an aluminum support having an anodized film]
Surface treatment A, surface treatment C or surface treatment D of the following aluminum support was applied to an aluminum alloy plate of a material 1S having a thickness of 0.3 mm to produce an aluminum support having an anodized film. In addition, the water washing process was performed during all the treatment processes, and the liquid was removed by the nip roller after the water washing process.
<表面処理A>
 以下の(A-a)~(A-l)の処理を行った。
 (A-a)機械的粗面化処理(ブラシグレイン法)
 図6に示したような装置を使って、パミスの懸濁液(比重1.1g/cm3)を研磨スラリー液としてアルミニウム板の表面に供給しながら、回転する束植ブラシにより機械的粗面化処理を行った。図6において、1はアルミニウム板、2および4はローラ状ブラシ(本実施例において、束植ブラシ)、3は研磨スラリー液、5、6、7および8は支持ローラである。
 機械的粗面化処理は、研磨材のメジアン径(μm)を30μm、ブラシ本数を4本、ブラシの回転数(rpm)を250rpmとした。束植ブラシの材質は6・10ナイロンで、ブラシ毛の直径0.3mm、毛長50mmであった。ブラシは、φ300mmのステンレス製の筒に穴をあけて密になるように植毛した。束植ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。束植ブラシはブラシを回転させる駆動モータの負荷が、束植ブラシをアルミニウム板に押さえつける前の負荷に対して10kWプラスになるまで押さえつけた。ブラシの回転方向はアルミニウム板の移動方向と同じであった。
<Surface treatment A>
The following treatments (A-a) to (A-l) were performed.
(Aa) Mechanical roughening treatment (brush grain method)
Using a device as shown in FIG. 6, mechanical roughening is carried out by rotating bunching brushes while supplying a suspension of pumice (specific gravity: 1.1 g / cm 3) to the surface of the aluminum plate as a polishing slurry liquid. I did the processing. In FIG. 6, 1 is an aluminum plate, 2 and 4 are roller brushes (in this embodiment, bundle brushes), 3 is an abrasive slurry, and 5, 6, 7 and 8 are support rollers.
In the mechanical surface roughening treatment, the median diameter (μm) of the abrasive was 30 μm, the number of brushes was four, and the rotational speed (rpm) of the brush was 250 rpm. The material of the bundle planting brush was 6 · 10 nylon, and the diameter of the bristles was 0.3 mm and the bristle length was 50 mm. The brush was flocked so as to be dense by drilling a hole in a 300 300 mm stainless steel cylinder. The distance between the two support rollers (φ 200 mm) at the lower part of the bundle planting brush was 300 mm. The bunching brush was pressed until the load of the drive motor for rotating the brush became 10 kW plus to the load before pressing the bunching brush to the aluminum plate. The rotation direction of the brush was the same as the moving direction of the aluminum plate.
 (A-b)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、10g/mであった。
(A-b) Alkali etching treatment An etching treatment was carried out by spraying an aqueous caustic soda solution having a concentration of 26 mass% caustic soda and a concentration of 6.5 mass% aluminum ion onto an aluminum plate at a temperature of 70 ° C with a spray pipe. The amount of dissolved aluminum was 10 g / m 2 .
 (A-c)酸性水溶液中でのデスマット処理
 硝酸水溶液中でデスマット処理を行った。デスマット処理に用いる硝酸水溶液は、次工程の電気化学的粗面化処理に用いた硝酸の廃液を用いた。液温は35℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(A-c) Desmut treatment in acidic aqueous solution Desmut treatment was performed in nitric acid aqueous solution. As the nitric acid aqueous solution used for the desmutting treatment, the nitric acid waste solution used for the electrochemical graining treatment in the next step was used. The liquid temperature was 35 ° C. The desmut solution was sprayed by spray and desmutted for 3 seconds.
 (A-d)電気化学的粗面化処理
 硝酸電解60Hzの交流電圧を用いて連続的に電気化学的粗面化処理を行った。電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図4に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図5に示すものを使用した。電流密度は電流のピーク値で30A/dm、補助陽極には電源から流れる電流の5%を分流させた。電気量(C/dm)はアルミニウム板が陽極時の電気量の総和で185C/dmであった。
(A-d) Electrochemical surface roughening treatment Electrochemical surface roughening treatment was performed continuously using an alternating voltage of nitric acid electrolysis 60 Hz. The electrolyte used was an electrolyte prepared by adding aluminum nitrate to an aqueous solution containing 10.4 g / L of nitric acid at a temperature of 35 ° C. to adjust the aluminum ion concentration to 4.5 g / L. The AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1. Electrochemical graining treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 5 was used. The current density was 30 A / dm 2 at the peak value of the current, and 5% of the current flowing from the power supply was diverted to the auxiliary anode. Amount of electricity (C / dm 2) the aluminum plate was 185C / dm 2 as the total quantity of electricity when the anode.
 (A-e)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度27質量%、アルミニウムイオン濃度2.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、3.5g/mであった。
(Ae) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a sodium hydroxide concentration of 27% by mass and an aluminum ion concentration of 2.5% by mass onto an aluminum plate at a temperature of 50 ° C with a spray pipe. The amount of dissolved aluminum was 3.5 g / m 2 .
 (A-f)酸性水溶液中でのデスマット処理
 硫酸水溶液中でデスマット処理を行った。デスマット処理に用いる硫酸水溶液は、硫酸濃度170g/L、アルミニウムイオン濃度5g/Lの液を用いた。液温は30℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(A-f) Desmut treatment in acidic aqueous solution Desmut treatment was performed in a sulfuric acid aqueous solution. As a sulfuric acid aqueous solution used for desmutting treatment, a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L was used. The liquid temperature was 30.degree. The desmut solution was sprayed by spray and desmutted for 3 seconds.
 (A-g)電気化学的粗面化処理
 塩酸電解60Hzの交流電圧を用いて連続的に電気化学的粗面化処理を行った。電解液は、液温35℃、塩酸6.2g/Lの水溶液に塩化アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図4に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図5に示すものを使用した。
 電流密度は電流のピーク値で25A/dmであり、塩酸電解における電気量(C/dm)はアルミニウム板が陽極時の電気量の総和で63C/dmであった。
(Ag) Electrochemical Surface Roughening Treatment Electrochemical surface roughening treatment was carried out continuously using an alternating voltage of 60 Hz in hydrochloric acid electrolysis. The electrolyte used was an electrolyte prepared by adding aluminum chloride to an aqueous solution of hydrochloric acid 6.2 g / L at a liquid temperature of 35 ° C. and adjusting the aluminum ion concentration to 4.5 g / L. The AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1. Electrochemical graining treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 5 was used.
The current density was 25A / dm 2 at the peak of electric current amount of hydrochloric acid electrolysis (C / dm 2) the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode.
 (A-h)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度60℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、0.2g/mであった。
(Ah) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass onto an aluminum plate at a temperature of 60 ° C. using a spray pipe. The amount of dissolved aluminum was 0.2 g / m 2 .
 (A-i)酸性水溶液中でのデスマット処理
 硫酸水溶液中でデスマット処理を行った。陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5g/Lを溶解)を用い、液温35℃で4秒間デスマット処理を行った。
(Ai) Desmut Treatment in Acidic Aqueous Solution Desmut treatment was performed in a sulfuric acid aqueous solution. The waste liquid generated in the anodizing treatment step (dissolving aluminum ion 5 g / L in sulfuric acid 170 g / L aqueous solution) was subjected to desmutting treatment at a liquid temperature of 35 ° C. for 4 seconds.
 (A-j)第1段階の陽極酸化処理
 図7に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。電解液は硫酸170g/L水溶液を用い、表1に示す条件にて陽極酸化処理を行った。
 陽極酸化処理装置610において、アルミニウム板616は、図7中矢印で示すように搬送される。電解液618が貯溜された給電槽612にてアルミニウム板616は給電電極620によって(+)に荷電される。アルミニウム板616は、給電槽612においてローラ622によって上方に搬送され、ニップローラ624によって下方に方向変換された後、電解液626が貯溜された電解処理槽614に向けて搬送され、ローラ628によって水平方向に方向転換される。ついで、アルミニウム板616は、電解電極630によって(-)に荷電されることにより、その表面に陽極酸化皮膜が形成され、電解処理槽614を出たアルミニウム板616は後工程に搬送される。陽極酸化処理装置610において、ローラ622、ニップローラ624およびローラ628によって方向転換手段が構成され、アルミニウム板616は、給電槽612と電解処理槽614との槽間部において、上記ローラ622、624および628により、山型および逆U字型に搬送される。給電電極620と電解電極630とは、直流電源634に接続されている。
(A-j) Anodizing Treatment in the First Step Anodizing treatment in the first step was performed using an anodizing device by direct current electrolysis having the structure shown in FIG. The electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
In the anodizing apparatus 610, the aluminum plate 616 is transported as shown by the arrow in FIG. The aluminum plate 616 is charged to (+) by the feeding electrode 620 in the feeding tank 612 in which the electrolytic solution 618 is stored. The aluminum plate 616 is conveyed upward by the roller 622 in the power supply tank 612 and is turned downward by the nip roller 624, and then conveyed toward the electrolytic treatment tank 614 where the electrolytic solution 626 is stored. Turn to Next, the aluminum plate 616 is charged to (−) by the electrolytic electrode 630 to form an anodic oxide film on the surface thereof, and the aluminum plate 616 leaving the electrolytic treatment tank 614 is transported to a later step. In the anodizing apparatus 610, the direction changing means is constituted by the roller 622, the nip roller 624 and the roller 628, and the aluminum plate 616 is formed between the rollers 622, 624 and 628 in the space between the power supply tank 612 and the electrolytic treatment tank 614. The sheet is transported in a mountain shape and a reverse U shape. The feed electrode 620 and the electrolytic electrode 630 are connected to a DC power supply 634.
 (A-k)ポアワイド処理
 アルミニウム板を、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。
(A-k) Pore-Wide Treatment An aluminum plate was immersed in an aqueous caustic soda solution having a sodium hydroxide concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass under the conditions shown in Table 1 to perform pore-wide treatment.
 (A-l)第2段階の陽極酸化処理
 図7に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。電解液は硫酸170g/L水溶液を用い、表1に示す条件にて陽極酸化処理を行った。
(A-l) Second Step Anodizing Treatment The second step anodizing treatment was performed using a direct current electrolytic anodizing apparatus having the structure shown in FIG. The electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
<表面処理C>
 以下の(C-a)~(C-k)の処理を行った。
 (C-a)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、5g/mであった。
<Surface treatment C>
The following treatments (C-a) to (C-k) were performed.
(C-a) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a sodium hydroxide concentration of 26% by mass and an aluminum ion concentration of 6.5% by mass onto an aluminum plate at a temperature of 70 ° C with a spray pipe. The amount of dissolved aluminum was 5 g / m 2 .
 (C-b)酸性水溶液中でのデスマット処理
 硝酸水溶液中でデスマット処理を行った。デスマット処理に用いる硝酸水溶液は、次工程の電気化学的粗面化に用いた硝酸の廃液を用いた。液温は35℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Cb) Desmut treatment in acidic aqueous solution Desmut treatment was performed in nitric acid aqueous solution. As the nitric acid aqueous solution used for the desmutting treatment, the nitric acid waste solution used for the electrochemical roughening in the next step was used. The liquid temperature was 35 ° C. The desmut solution was sprayed by spray and desmutted for 3 seconds.
 (C-c)電気化学的粗面化処理
 硝酸電解60Hzの交流電圧を用いて連続的に電気化学的粗面化処理を行った。電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図4に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図5に示すものを使用した。電流密度は電流のピーク値で30A/dm、補助陽極には電源から流れる電流の5%を分流させた。電気量(C/dm)はアルミニウム板が陽極時の電気量の総和で230C/dmであった。
(C-c) Electrochemical surface roughening treatment Electrochemical surface roughening treatment was carried out continuously using an alternating voltage of nitric acid electrolysis 60 Hz. The electrolyte used was an electrolyte prepared by adding aluminum nitrate to an aqueous solution containing 10.4 g / L of nitric acid at a temperature of 35 ° C. to adjust the aluminum ion concentration to 4.5 g / L. The AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 5 was used. The current density was 30 A / dm 2 at the peak value of the current, and 5% of the current flowing from the power supply was diverted to the auxiliary anode. Amount of electricity (C / dm 2) the aluminum plate was 230C / dm 2 as the total quantity of electricity when the anode.
 (C-d)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度27質量%、アルミニウムイオン濃度2.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、3.5g/mであった。
(Cd) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a sodium hydroxide concentration of 27% by mass and an aluminum ion concentration of 2.5% by mass at a temperature of 50 ° C. onto an aluminum plate. The amount of dissolved aluminum was 3.5 g / m 2 .
 (C-e)酸性水溶液中でのデスマット処理
 硫酸水溶液中でデスマット処理を行った。デスマット処理に用いる硫酸水溶液は、硫酸濃度170g/L、アルミニウムイオン濃度5g/Lの液を用いた。液温は、30℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(C-e) Desmut treatment in acidic aqueous solution Desmut treatment was performed in a sulfuric acid aqueous solution. As a sulfuric acid aqueous solution used for desmutting treatment, a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L was used. The solution temperature was 30.degree. The desmut solution was sprayed by spray and desmutted for 3 seconds.
 (C-f)電気化学的粗面化処理
 塩酸電解60Hzの交流電圧を用いて連続的に電気化学的粗面化処理を行った。電解液は、液温35℃、塩酸6.2g/Lの水溶液に塩化アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図4に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図5に示すものを使用した。
 電流密度は電流のピーク値で25A/dmであり、塩酸電解における電気量(C/dm)はアルミニウム板が陽極時の電気量の総和で63C/dmであった。
(Cf) Electrochemical surface roughening treatment Electrochemical surface roughening treatment was continuously performed using an alternating voltage of hydrochloric acid electrolysis 60 Hz. The electrolyte used was an electrolyte prepared by adding aluminum chloride to an aqueous solution of hydrochloric acid 6.2 g / L at a liquid temperature of 35 ° C. and adjusting the aluminum ion concentration to 4.5 g / L. The AC power supply waveform is the waveform shown in FIG. 4, and a carbon electrode is used as a counter electrode by using a trapezoidal rectangular wave AC with a time tp of 0.8 msec for a current value to reach a peak and a duty ratio of 1: 1. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 5 was used.
The current density was 25A / dm 2 at the peak of electric current amount of hydrochloric acid electrolysis (C / dm 2) the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode.
 (C-g)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度60℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、0.2g/mであった。
(Cg) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass onto an aluminum plate at a temperature of 60 ° C. using a spray pipe. The amount of dissolved aluminum was 0.2 g / m 2 .
 (C-h)酸性水溶液中でのデスマット処理
 硫酸水溶液中でデスマット処理を行った。陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5g/Lを溶解)を用い、液温35℃で4秒間デスマット処理を行った。
(C-h) Desmut treatment in acidic aqueous solution Desmut treatment was performed in an aqueous sulfuric acid solution. The waste liquid generated in the anodizing treatment step (dissolving aluminum ion 5 g / L in sulfuric acid 170 g / L aqueous solution) was subjected to desmutting treatment at a liquid temperature of 35 ° C. for 4 seconds.
 (C-i)第1段階の陽極酸化処理
 図7に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。電解液は硫酸170g/L水溶液を用い、表1に示す条件にて陽極酸化処理を行った。
 陽極酸化処理装置610において、アルミニウム板616は、図6中矢印で示すように搬送される。電解液618が貯溜された給電槽612にてアルミニウム板616は給電電極620によって(+)に荷電される。アルミニウム板616は、給電槽612においてローラ622によって上方に搬送され、ニップローラ624によって下方に方向変換された後、電解液626が貯溜された電解処理槽614に向けて搬送され、ローラ628によって水平方向に方向転換される。ついで、アルミニウム板616は、電解電極630によって(-)に荷電されることにより、その表面に陽極酸化皮膜が形成され、電解処理槽614を出たアルミニウム板616は後工程に搬送される。陽極酸化処理装置610において、ローラ622、ニップローラ624およびローラ628によって方向転換手段が構成され、アルミニウム板616は、給電槽612と電解処理槽614との槽間部において、上記ローラ622、624および628により、山型および逆U字型に搬送される。給電電極620と電解電極630とは、直流電源634に接続されている。
(Ci) Anodizing Treatment in the First Step Anodizing treatment in the first step was performed using an anodizing device by direct current electrolysis having a structure shown in FIG. The electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
In the anodizing apparatus 610, the aluminum plate 616 is transported as shown by the arrow in FIG. The aluminum plate 616 is charged to (+) by the feeding electrode 620 in the feeding tank 612 in which the electrolytic solution 618 is stored. The aluminum plate 616 is conveyed upward by the roller 622 in the power supply tank 612 and is turned downward by the nip roller 624, and then conveyed toward the electrolytic treatment tank 614 where the electrolytic solution 626 is stored. Turn to Next, the aluminum plate 616 is charged to (−) by the electrolytic electrode 630 to form an anodic oxide film on the surface thereof, and the aluminum plate 616 leaving the electrolytic treatment tank 614 is transported to a later step. In the anodizing apparatus 610, the direction changing means is constituted by the roller 622, the nip roller 624 and the roller 628, and the aluminum plate 616 is formed between the rollers 622, 624 and 628 in the space between the power supply tank 612 and the electrolytic treatment tank 614. The sheet is transported in a mountain shape and a reverse U shape. The feed electrode 620 and the electrolytic electrode 630 are connected to a DC power supply 634.
 (C-j)ポアワイド処理
 アルミニウム板を、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。
(C-j) Pore-Wide Treatment An aluminum plate was immersed in an aqueous caustic soda solution having a sodium hydroxide concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass under the conditions shown in Table 1 to perform pore-wide treatment.
 (C-k)第2段階の陽極酸化処理
 図7に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。電解液は硫酸170g/L水溶液を用い、表1に示す条件にて陽極酸化処理を行った。
(CK) Second Step Anodizing Treatment The second step anodizing treatment was performed using a direct current electrolytic anodizing device having the structure shown in FIG. The electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
<表面処理D>
 以下の(D-a)~(D-h)の処理を行った。
 (D-a)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウム溶解量は、1.0g/mであった。
<Surface treatment D>
The following treatments (D-a) to (D-h) were performed.
(D-a) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a concentration of 26 mass% caustic soda and 6.5 mass% aluminum ion onto an aluminum plate at a temperature of 70 ° C with a spray pipe. The amount of dissolved aluminum was 1.0 g / m 2 .
 (D-b)酸性水溶液中でのデスマット処理(第1デスマット処理)
 酸性水溶液中でデスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸150g/Lの水溶液を用いた。液温は30℃であった。デスマット液はスプレーにより吹き付けて、3秒間デスマット処理した。
(D-b) Desmut treatment in acidic aqueous solution (first desmut treatment)
Desmut treatment was performed in an acidic aqueous solution. The acidic aqueous solution used for desmutting was an aqueous solution of 150 g / L of sulfuric acid. The liquid temperature was 30.degree. The desmut solution was sprayed by spraying and desmutted for 3 seconds.
 (D-c)塩酸水溶液中での電気化学的粗面化処理
 塩酸濃度14g/L、アルミニウムイオン濃度13g/L、硫酸濃度3g/Lの電解液を用い、交流電流を用いて電気化学的粗面化処理を行った。電解液の液温は30℃であった。アルミニウムイオン濃度は塩化アルミニウムを添加して調整した。 交流電流の波形は正と負の波形が対称な正弦波であり、周波数は50Hz、交流電流1周期におけるアノード反応時間とカソード反応時間は1:1、電流密度は交流電流波形のピーク電流値で75A/dmであった。また、電気量はアルミニウム板がアノード反応に預かる電気量の総和で450C/dmであり、電解処理は125C/dmずつ4秒間の通電間隔を開けて4回に分けて行った。アルミニウム板の対極にはカーボン電極を用いた。
(D-c) Electrochemical surface roughening treatment in hydrochloric acid aqueous solution Using an electrolytic solution having a hydrochloric acid concentration of 14 g / L, an aluminum ion concentration of 13 g / L, and a sulfuric acid concentration of 3 g / L, electrochemical roughening using an alternating current The flattening process was performed. The temperature of the electrolytic solution was 30.degree. The aluminum ion concentration was adjusted by adding aluminum chloride. The alternating current waveform is a sine wave with a positive and negative waveform symmetrical, the frequency is 50 Hz, the anodic reaction time and the cathodic reaction time in one alternating current cycle are 1: 1, and the current density is the peak current value of the alternating current waveform. It was 75 A / dm 2 . Further, the amount of electricity was 450 C / dm 2 in total of the amount of electricity that the aluminum plate was subjected to the anode reaction, and the electrolytic treatment was divided into four steps at 125 C / dm 2 every four seconds. A carbon electrode was used as the counter electrode of the aluminum plate.
 (D-d)アルカリエッチング処理
 アルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度45℃でスプレー管により吹き付けてエッチング処理を行った。アルミニウムの溶解量は0.2g/mであった。
(D-d) Alkali etching treatment An etching treatment was carried out by spraying a caustic soda aqueous solution having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass onto an aluminum plate at a temperature of 45 ° C. using a spray pipe. The amount of aluminum dissolved was 0.2 g / m 2 .
 (D-e)酸性水溶液中でのデスマット処理
 酸性水溶液中でのデスマット処理を行った。デスマット処理に用いる酸性水溶液は、陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5.0g/L溶解)を用いた。液温は30℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(D-e) Desmut treatment in acidic aqueous solution Desmut treatment in acidic aqueous solution was performed. As the acidic aqueous solution used for the desmutting treatment, the waste solution generated in the anodizing treatment step (5.0 g / L of aluminum ion dissolved in an aqueous solution of 170 g / L of sulfuric acid) was used. The liquid temperature was 30.degree. The desmut solution was sprayed by spray and desmutted for 3 seconds.
 (D-f)第1段階の陽極酸化処理
 図7に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。電解液は硫酸170g/L水溶液を用い、表1に示す条件にて陽極酸化処理を行った。
(D-f) Anodizing Treatment in the First Step Anodizing treatment in the first step was performed using an anodizing device by direct current electrolysis having a structure shown in FIG. The electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
 (D-g)ポアワイド処理
 アルミニウム板を、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。
(D-g) Pore-Wide Treatment An aluminum plate was immersed in an aqueous caustic soda solution having a sodium hydroxide concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass under the conditions shown in Table 1 to perform pore-wide treatment.
 (D-h)第2段階の陽極酸化処理
 図7に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。電解液は硫酸170g/L水溶液を用い、表1に示す条件にて陽極酸化処理を行った。
(Dh) Second Step Anodizing Treatment The second step anodizing treatment was performed using a direct current electrolytic anodizing device having the structure shown in FIG. The electrolytic solution was anodized under the conditions shown in Table 1 using a 170 g / L aqueous solution of sulfuric acid.
 上記表面処理A、表面処理C又は表面処理Dを施して製造された陽極酸化皮膜を有するアルミニウム支持体について、陽極酸化皮膜の厚さ、大径孔部の深さ、大径孔部の陽極酸化皮膜表面における平均径、及び小径孔部の連通位置における平均径を、表2に示す。
 マイクロポアの平均径(大径孔部および小径孔部の平均径)は、大径孔部表面および小径孔部表面を倍率15万倍のFE-SEMでN=4枚観察し、得られた4枚の画像において、400×600nm2の範囲に存在するマイクロポア(大径孔部および小径孔部)の径を測定し、平均した値である。なお、大径孔部の深さが深く、小径孔部の径が測定しづらい場合は、陽極酸化皮膜上部を切削し、その後小径孔部の径を求めた。
 マイクロポアの深さ(大径孔部および小径孔部の深さ)は、陽極酸化皮膜の断面をFE-SEMで観察し(大径孔部深さ観察:15万倍、小径孔部深さ観察:5万倍)、得られた画像において、マイクロポア25個の深さを測定し、平均した値である。
With respect to an aluminum support having an anodized film produced by applying the above surface treatment A, surface treatment C or surface treatment D, the thickness of the anodized film, the depth of the large diameter hole, the anodization of the large diameter hole The average diameter on the surface of the coating and the average diameter at the communication position of the small diameter holes are shown in Table 2.
The average diameter of the micropores (average diameter of the large diameter hole portion and the small diameter hole portion) was obtained by observing the surface of the large diameter hole portion and the surface of the small diameter hole portion with N = 4 sheets by FE-SEM at 150,000 magnification. In the four images, the diameters of the micropores (large diameter holes and small diameter holes) present in the range of 400 × 600 nm 2 were measured and averaged. When the depth of the large diameter hole was deep and the diameter of the small diameter hole was difficult to measure, the upper part of the anodized film was cut and then the diameter of the small diameter hole was determined.
The depth of the micropore (the depth of the large diameter hole and the small diameter hole) is observed by the cross section of the anodized film by FE-SEM (large diameter hole depth observation: 150,000 times, the small diameter hole depth Observation: 50,000 times) In the obtained image, the depths of 25 micropores were measured and averaged.
<親水化処理>
 表2に記載のように、下記親水化処理A~Bを行った。
<Hydrophilization treatment>
As described in Table 2, the following hydrophilization treatments A to B were performed.
<親水化処理 A>
 陽極酸化皮膜を有するアルミニウム支持体を、4g/Lのポリビニルホスホン酸を含有する40℃の水溶液(pH=1.9)に10秒間浸漬し、20℃のカルシウムイオンを含む脱塩水で2秒間洗浄し、乾燥した。処理後支持体上のP量及びCa量はそれぞれ、25mg/m及び1.9mg/mであった。
<Hydrophilization treatment A>
The aluminum support having the anodized film is immersed in an aqueous solution at 40 ° C. (pH = 1.9) containing 4 g / L of polyvinylphosphonic acid for 10 seconds, and washed with desalted water containing calcium ions at 20 ° C. for 2 seconds And dried. After treatment, the amounts of P and Ca on the support were 25 mg / m 2 and 1.9 mg / m 2 , respectively.
<親水化処理 B>
 陽極酸化皮膜を有するアルミニウム支持体を、温度30℃の3号ケイ酸ソーダの1質量%水溶液の処理槽中へ10秒間浸漬してアルカリ金属ケイ酸塩処理(シリケート処理)を行った。その後、井水を用いたスプレーによる水洗を行い、乾燥した。
<Hydrophilization treatment B>
The aluminum support having the anodized film was immersed in a treatment tank of a 1% by mass aqueous solution of sodium silicate No. 3 at a temperature of 30 ° C. for 10 seconds to perform alkali metal silicate treatment (silicate treatment). Thereafter, it was rinsed with a well water spray and dried.
<下塗り層の形成>
 表2に記載のように、下記下塗り層形成用塗布液A~Fを乾燥塗布量が20mg/mになるよう塗布して、下塗り層A~Fを形成した。
<Formation of undercoat layer>
As described in Table 2, the following undercoating solutions for forming undercoat layers A to F were applied to a dry coating amount of 20 mg / m 2 to form undercoat layers A to F.
(下塗り層形成用塗布液A)
・下記共重合体UP-1:0.3g
・メタノール:100g
・水:1g
(Coating solution A for forming undercoat layer)
・ Following copolymer UP-1: 0.3 g
・ Methanol: 100 g
Water: 1 g
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(下塗り層形成用塗布液B)
・下記共重合体UP-2:0.3g
・メタノール:100g
・水:1g
(Coating solution B for forming undercoat layer)
・ Following copolymer UP-2: 0.3 g
・ Methanol: 100 g
Water: 1 g
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(下塗り層形成用塗布液C)
・下記共重合体UP-3:0.3g
・メタノール:10g
・水:90g
(Coating solution for forming undercoat layer C)
・ Following copolymer UP-3: 0.3 g
・ Methanol: 10 g
Water: 90 g
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(下塗り層形成用塗布液D)
・下記共重合体UP-4:0.3g
・メタノール:10g
・水:90g
(Coating liquid for forming undercoat layer D)
・ Following copolymer UP-4: 0.3 g
・ Methanol: 10 g
Water: 90 g
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(下塗り層形成用塗布液E)
・下記共重合体UP-5:0.3g
・メタノール:10g
・水:90g
(Coating solution E for forming undercoat layer)
・ The following copolymer UP-5: 0.3 g
・ Methanol: 10 g
Water: 90 g
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(下塗り層形成用塗布液F)
・β-アラニン:0.3g
・メタノール:100g
・水:1g
(Coating solution F for forming undercoat layer)
・ Β-alanine: 0.3 g
・ Methanol: 100 g
Water: 1 g
 上記下塗り層形成用塗布液A~Eに含まれる共重合体UP-1~共重合体UP-5において、各構成単位の組成比は、モル%であり、分子量は、質量平均分子量である。 In the copolymers UP-1 to UP-5 contained in the undercoat layer-forming coating solutions A to E, the composition ratio of each constituent unit is mol%, and the molecular weight is a mass average molecular weight.
<画像記録層の形成>
 表2に記載のように、下記画像記録層形成層用塗布液A~Fをバーコーター塗布し、画像記録層A~Fを形成した。
 画像記録層が1層の場合は、乾燥塗布量が1.0g/mとなるように画像記録層形成層用塗布液を塗布し、100℃で60秒間オーブン乾燥し、画像記録層を形成した。
 画像記録層が2層の場合は、1層目の画像記録層形成層用塗布液を塗布した後、100℃で60秒間オーブン乾燥し、続いて、2層目の画像記録層形成層用塗布液を塗布し、120℃で40秒間オーブン乾燥し、1層目および2層目の乾燥塗布量が各々0.5g/m、2層の乾燥塗布量の合計が1.0g/mとなるように画像記録層を形成した。
<Formation of image recording layer>
As described in Table 2, the following coating solutions A to F for forming an image recording layer were applied by a bar coater to form image recording layers A to F.
When the image recording layer is a single layer, the coating solution for forming an image recording layer is applied so that the dry coating amount is 1.0 g / m 2, and oven drying is performed at 100 ° C. for 60 seconds to form an image recording layer. did.
When the image recording layer is two layers, after applying the coating solution for forming the first image recording layer, oven drying at 100 ° C. for 60 seconds, and then, coating for the second image recording layer The solution is applied and oven-dried at 120 ° C for 40 seconds, and the first layer and the second layer have a dry coating amount of 0.5 g / m 2 each, and the total of the two layer dry coating amount is 1.0 g / m 2 The image recording layer was formed as follows.
(画像記録層形成用塗布液A)
・m、p-クレゾールノボラック樹脂(m/p比=6/4、 1.12g
 質量平均分子量5,000)
・下記IR色素(1)                  0.03g
・下記ジアゾニウム塩1                 0.015g
・テトラヒドロ無水フタル酸               0.04g
・ビス-p-ヒドロキシフェニルスルホン         0.03g
・エチルバイオレットの対イオンをクロライドアニオン   0.02g
 に変換した染料
・フッ素系界面活性剤(メガファックF-780、     0.01g
 DIC(株)製)
・メチルエチルケトン                  13g
(Coating solution A for forming an image recording layer)
M, p-cresol novolac resin (m / p ratio = 6/4, 1.12 g
Mass average molecular weight 5,000)
-The following IR dye (1) 0.03 g
-0.015 g of the following diazonium salt 1
Tetrahydrophthalic anhydride 0.04 g
・ 0.03 g of bis-p-hydroxyphenyl sulfone
・ 0.02 g of chloride ion of ethyl violet counter ion
Dye-fluorinated surfactant (Megafuck F-780, 0.01 g)
DIC Corporation)
・ 13 g of methyl ethyl ketone
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(画像記録層形成用塗布液B)
・共重合体P-1                     0.3g
 N-(p-アミノスルホニルフェニル)メタクリルアミド/メタクリル酸メチル/アクリロニトリル=35/35/30(モル比)共重合体(質量平均分子量6.5万)
・m、p-クレゾールノボラック樹脂(m/p比=6/4、  0.1g
 質量平均分子量5,000)
・上記IR色素(1)                   0.03g
・エチルバイオレットの対イオンを6-ヒドロキシナフタレン 0.02g
 スルホン酸アニオンに変換した染料
・ビス-p-ヒドロキシフェニルスルホン          0.02g
・p-トルエンスルホン酸                0.003g
・フッ素系界面活性剤(メガファックF-780、
 DIC(株)製)                   0.005g
・メチルエチルケトン                  30g
・1-メトキシ-2-プロパノール            15g
・γ-ブチロラクトン                  15g
(Coating solution B for forming an image recording layer)
・ 0.3 g of copolymer P-1
N- (p-aminosulfonylphenyl) methacrylamide / methyl methacrylate / acrylonitrile = 35/35/30 (molar ratio) copolymer (mass average molecular weight 65,000)
・ M, p-cresol novolak resin (m / p ratio = 6/4, 0.1 g
Mass average molecular weight 5,000)
・ The above IR dye (1) 0.03 g
・ 0.02 g of 6-hydroxynaphthalene counter ion of ethyl violet
Dye, bis-p-hydroxyphenyl sulfone converted to sulfonate anion, 0.02 g
・ 0.003 g of p-toluenesulfonic acid
・ Fluorinated surfactant (Megafuck F-780,
DIC (manufactured by DIC Corporation) 0.005 g
・ 30 g of methyl ethyl ketone
・ 15 g of 1-methoxy-2-propanol
・ 15 g of γ-butyrolactone
(画像記録層形成用塗布液C)
・フッ素系界面活性剤(メガファックF-780、      0.01g
 DIC(株)製)
・上記IR色素(1)                  0.013g
・クリスタルバイオレットの対イオンをヒドロキシナフタレン 0.05g
 スルホン酸アニオンに変換した染料
・m、p-クレゾールノボラック樹脂(m/p比=6/4、  0.6g
 質量平均分子量5,000)
・メチルエチルケトン                  15.0g
・1-メトキシ-2-プロパノール            30.0g
(Coating solution C for forming an image recording layer)
・ Fluorinated surfactant (Megafuck F-780, 0.01 g
DIC Corporation)
・ The above IR dye (1) 0.013 g
・ 0.05g of hydroxynaphthalene counter ion of crystal violet
Dye, m, p-cresol novolak resin (m / p ratio = 6/4, 0.6 g) converted to sulfonate anion
Mass average molecular weight 5,000)
・ 15.0 g of methyl ethyl ketone
・ 30.0 g of 1-methoxy-2-propanol
(画像記録層形成用塗布液D)
 上記画像記録層形成用塗布液Bの共重合体P-1を、下記の共重合体P-2に変更する以外は、画像記録層形成用塗布液Bと同じ組成である。
 共重合体P-2
 N-フェニルマレイミド/N-メチルフェニルマレイミド/アクリロニトリル/N-ヒドロキシフェニルマレイミド=30/20/20/30(モル比)共重合体(質量平均分子量6.1万)
(Coating solution D for forming an image recording layer)
The composition is the same as the coating solution B for forming an image recording layer except that the copolymer P-1 of the coating solution B for forming an image recording layer is changed to the following copolymer P-2.
Copolymer P-2
N-phenylmaleimide / N-methylphenylmaleimide / acrylonitrile / N-hydroxyphenylmaleimide = 30/20/20/30 (molar ratio) copolymer (mass average molecular weight 61,000)
(画像記録層形成用塗布液E)
 上記画像記録層形成用塗布液Bの共重合体P-1を、下記の共重合体P-3に変更する以外は、画像記録層形成用塗布液Bと同じ組成である。
(Coating solution E for forming an image recording layer)
The composition is the same as that of the coating solution B for forming an image recording layer except that the copolymer P-1 of the coating solution B for forming an image recording layer is changed to the following copolymer P-3.
<共重合体P-3の合成>
 まず、Hofmann et al., Makromolekulare Chemie、第177巻、P1791―1813(1976年)に記載の方法により、下記モノマーを合成した。
<Synthesis of Copolymer P-3>
First, Hofmann et al. The following monomers were synthesized by the method described in K., Makromolekulare Chemie, Volume 177, P1791-1813 (1976).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ついで、250mlの反応容器中に、160ミリモルのスルホンアミド基を有する上記モノマー、20.6g(132ミリモル)のベンジルアセトアミド、2.31g(32ミリモル)のアクリル酸及び104gのγ-ブチロラクトンを加え、200rpmで撹拌しながら混合物を140℃に加熱した。この反応は窒素環流下で行った。固形物が溶解した後、反応容器を100℃まで降温した。トリゴノックス DC50(AKZO NOBEL社製)0.37mlとトリゴノックス 141(AKZO NOBEL社製)1.48mlを各々ブチロラクトン3.66mlに溶解した溶液を順次加えた。反応が開始したのち、反応容器温度を143℃とし、2時間以上かけてトリゴノックス DC50 1.87mlを加えた。反応混合物を400rpmで撹拌しつつ、140℃で2時間反応させた。反応混合物を120℃に降温し、撹拌条件を500rpmに上昇させた。1-メチル-2-プロパノール86.8mlを加え、温度を室温まで降温し、目的のポリマーを得た。
 ポリマーの構造は、H-NMRスペクトログラフィーとサイズエクスクルージョンクロマトグラフィーにより、ジメチルアセトアミド/0.21%LiClを標章とし、混合カラムにてポリスチレン換算で確認した。
 共重合体P-3は、下記式で示すスルホンアミド基含有アクリル樹脂であり、質量平均分子量は、66,000であった。下記式において、括弧の右下の数値は構成単位の含有比(モル比)を表す。
Then, in a 250 ml reaction vessel, add the above monomer having 160 mmol of sulfonamide group, 20.6 g (132 mmol) of benzylacetamide, 2.31 g (32 mmol) of acrylic acid and 104 g of γ-butyrolactone, The mixture was heated to 140 ° C. while stirring at 200 rpm. The reaction was carried out under nitrogen reflux. After the solids dissolved, the reaction vessel was cooled to 100 ° C. A solution of 0.37 ml of Trigonox DC50 (manufactured by AKZO NOBEL) and 1.48 ml of Trigonox 141 (manufactured by AKZO NOBEL) in 3.66 ml of butyrolactone was sequentially added. After the reaction started, the reaction vessel temperature was raised to 143 ° C., and 1.87 ml of Trigonox DC50 was added over 2 hours. The reaction mixture was allowed to react at 140 ° C. for 2 hours while stirring at 400 rpm. The reaction mixture was cooled to 120 ° C. and the stirring conditions were raised to 500 rpm. 86.8 ml of 1-methyl-2-propanol was added, and the temperature was lowered to room temperature to obtain the desired polymer.
The structure of the polymer was confirmed by 1 H-NMR spectrography and size exclusion chromatography using dimethylacetamide / 0.21% LiCl as a mark and using a mixed column in terms of polystyrene.
Copolymer P-3 was a sulfonamide group-containing acrylic resin represented by the following formula, and the mass average molecular weight was 66,000. In the following formulas, the numerical value at the lower right of the parentheses represents the content ratio (molar ratio) of the constituent units.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(画像記録層形成用塗布液F)
・ナフトキノン-1,2-ジアジド-5-スルホニルクロ   0.90g
 ライドとピロガロール-アセテート樹脂とのエステル化合物(注1)
・クレゾール-ホルムアルデヒド樹脂            2.00g
・t-ブチルフェノール-ホルムアルデヒド樹脂(注2)   0.05g
・アイゼン・スピロン・イエロー(Aizen Spilon  0.04g
 Yellow)GRH(保土谷化学工業(株)製)
・ナフトキノン-1,2-ジアジド-4-スルホン酸クロライド
                             0.03g
・オイルブルー#603(オリエント化学工業(株)製)   0.05g
・メチルエチルケトン                   8g
・メチルセロソルブアセテート              15g
 注1:米国特許3,635,709号明細書、実施例1に記載されているエステル化合物
 注2:米国特許4,123,279号明細書に記載されている樹脂
(Coating solution F for forming an image recording layer)
・ Naphthoquinone-1,2-diazide-5-sulfonyl black 0.90 g
Ester compound of Ryde and pyrogallol-acetate resin (Note 1)
・ Cresol-formaldehyde resin 2.00 g
-0.05 g of t-butylphenol-formaldehyde resin (Note 2)
・ Aisen ・ spirone ・ Yellow (Aizen Spilon 0.04g
Yellow) GRH (manufactured by Hodogaya Chemical Industry Co., Ltd.)
・ Naphthoquinone-1,2-diazide-4-sulfonic acid chloride 0.03 g
-Oil Blue # 603 (manufactured by Orient Chemical Industry Co., Ltd.) 0.05 g
・ Methyl ethyl ketone 8 g
・ Methyl cellosolve acetate 15 g
Note 1: Ester compounds described in US Pat. No. 3,635,709, Example 1 Note 2: Resins described in US Pat. No. 4,123,279
<平版印刷版原版の作製>
 上記陽極酸化皮膜を有するアルミニウム支持体、親水化処理、下塗り層、画像記録層を表1~表2に示すように組み合わせて、実施例1~38及び比較例1~12で用いる平版印刷版原版を作製した。
<Preparation of a lithographic printing plate precursor>
The lithographic printing plate precursor used in Examples 1 to 38 and Comparative Examples 1 to 12 by combining the aluminum support having the anodized film, the hydrophilization treatment, the undercoat layer, and the image recording layer as shown in Tables 1 to 2 Was produced.
 実施例36及び比較例10以外の実施例及び比較例については、平版印刷版原版をCREO社製のLotem 400 Quantumイメージャーにより80mJ/cmのエネルギーで露光し、Kodak社製の現像液Goldstar Premium Plate Developer(pH13.0)を使用し、Glunz&Jensen社製のInterPlater 85HDプロセッサー内において25℃で30秒間現像し、富士フイルム(株)製のフィニッシャーFP2W(1:1希釈)でガム引きを行った。
 露光画像には、ベタ画像及び富士フイルム(株)製のTAFFETA20(FMスクリーン)の50%網点及び3%網点、並びに明朝7ポイントの抜き文字チャートを含むようにした。
For Examples and Comparative Examples other than Example 36 and Comparative Example 10, the lithographic printing plate precursor was exposed with an energy of 80 mJ / cm 2 using a Lotem 400 Quantum imager manufactured by CREO, and a developer Goldstar Premium manufactured by Kodak. Using Plate Developer (pH 13.0), development was carried out at 25 ° C. for 30 seconds in an InterPlater 85 HD processor manufactured by Glunz & Jensen, and gumging was performed with Finisher FP2W (1: 1 dilution) manufactured by Fujifilm Corporation.
The exposed image included a solid image and 50% halftone dots and 3% halftone dots of TAFFET A20 (FM screen) manufactured by Fuji Film Co., Ltd., and a 7-character blank morning letter chart.
 実施例36及び比較例10については、ベタ画像、TAFFETA20(FMスクリーン)の50%網点及び3%網点、並びに明朝7ポイントの抜き文字チャートを含むマスクフィルムを、画像記録層の上に設置した後、平版印刷版原版を3KWのメタルハライドランプ灯で70cmの距離から露光し、DP-4(富士写真フイルム(株)製)の8倍希釈液を用いて、富士写真フイルム(株)製自動現像機(800U)により、25℃で40秒間現像し、富士フイルム(株)製フィニッシャーFP2W(1:1希釈)でガム引きを行なった。
 かくして、実施例1~38及び比較例1~12における平版印刷版を作製した。
For Example 36 and Comparative Example 10, a mask film including a solid image, 50% halftone dots and 3% halftone dots of TAFFET A 20 (FM screen), and a 7-point blank letter chart on an image recording layer was formed on the image recording layer. After installation, the lithographic printing plate precursor was exposed from a distance of 70 cm with a 3 KW metal halide lamp light, and an 8-fold dilution of DP-4 (manufactured by Fuji Photo Film Co., Ltd.) was used to make the product from Fuji Photo Film Co., Ltd. It was developed at 25 ° C. for 40 seconds by an automatic developing machine (800 U) and gummed with a finisher FP2W (1: 1 dilution) manufactured by Fujifilm Corporation.
Thus, the lithographic printing plates in Examples 1 to 38 and Comparative Examples 1 to 12 were produced.
<平版印刷版原版の評価>
(耐刷性)
 上記の露光・現像によって得られた平版印刷版を、(株)小森コーポレーション製印刷機LITHRONE26の版胴に取り付けた。Ecolity-2(富士フイルム(株)製)/水道水=2/98(容量比)の湿し水とValues-G(N)墨インキ(大日本インキ化学工業(株)製)とを用い、LITHRNE26の標準自動印刷スタート方法で湿し水とインキとを供給して、印刷を開始し、毎時10,000枚の印刷速度で、特菱アート(連量76.5kg)紙に印刷を行った。
 印刷枚数を増やしていくと徐々に画像記録層が磨耗するため印刷物上のインキ濃度が低下した。印刷物におけるFMスクリーン50%網点の網点面積率をグレタグ濃度計で計測した値が、印刷100枚目の計測値よりも5%低下したときの印刷部数を刷了枚数として耐刷性を評価した。比較例3の刷了枚数(約40,000枚)を基準(100%)とし、他の実施例及び比較例の刷了枚数を指数で表した。数値が大きい程、耐刷性が優れている。
<Evaluation of lithographic printing plate precursor>
(Printing durability)
The lithographic printing plate obtained by the above exposure and development was attached to a plate cylinder of a printing machine LITHRONE 26 manufactured by Komori Corporation. Using dampening water of Ecolity-2 (Fuji Film Co., Ltd.) / Tap water = 2/98 (volume ratio) and Values-G (N) ink ink (Dainippon Ink Chemical Co., Ltd.), The dampening water and the ink were supplied by the standard automatic printing start method of LITHRNE 26, printing was started, and printing was performed on Tokiwa Art (76.5 kg unit weight) paper at a printing speed of 10,000 sheets per hour. .
As the number of printed sheets increased, the image recording layer was gradually worn away, and the ink density on the printed matter decreased. The printing durability is evaluated using the number of copies as the number of copies when the value obtained by measuring the halftone dot area rate of the 50% halftone screen of the FM screen with a Gretag densitometer is 5% lower than the measured value of the 100th print. did. The number of printed sheets (about 40,000 sheets) of Comparative Example 3 was used as a reference (100%), and the number of printed sheets of the other examples and comparative examples was expressed as an index. The larger the value, the better the printing durability.
(放置払い性)
 上記の露光・現像によって得られた平版印刷版を、(株)小森コーポレーション製印刷機LITHRONE26の版胴に取り付けた。Ecolity-2(富士フイルム(株)製)/水道水=2/98(容量比)の湿し水とValues-G(N)墨インキ(大日本インキ化学工業(株)製)とを用い、LITHRNE26の標準自動印刷スタート方法で湿し水とインキとを供給して、特菱アート(連量76.5kg)紙に100枚以上印刷し、良好な印刷物が得られるようになったことを確認した後に、印刷を一旦停止し、温度25℃、湿度50%の部屋において、印刷機上で4時間放置した。その後、印刷を再開した時に、汚れのない良好な印刷物が得られるまでに要した印刷用紙の枚数を計測し、放置払い性を評価した。汚れのない良好な印刷物が得られるまでに要した印刷用紙(損紙)の枚数が少ない方(即ち、放置払い性のよい方)から順に、下記の基準に従い10点~1点と評価した。放置払い性は、6点以上が許容範囲である。
10点:損紙30枚以下
9点:損紙31枚~50枚以下
8点:損紙51枚~75枚以下
7点:損紙76枚~100枚以下
6点:損紙101枚~125枚以下
5点:損紙126枚~150枚以下
4点:損紙151枚~175枚以下
3点:損紙176枚~200枚以下
2点:損紙200枚~250枚以下
1点:損紙301枚以上
(Never pay)
The lithographic printing plate obtained by the above exposure and development was attached to a plate cylinder of a printing machine LITHRONE 26 manufactured by Komori Corporation. Using dampening water of Ecolity-2 (Fuji Film Co., Ltd.) / Tap water = 2/98 (volume ratio) and Values-G (N) ink ink (Dainippon Ink Chemical Co., Ltd.), We supply dampening water and ink by LITHRNE26's standard automatic printing start method, and print over 100 sheets on Tokishi art (continuous mass 76.5 kg) paper, and confirm that good printed materials can be obtained After printing, the printing was temporarily stopped, and left on a printing press for 4 hours in a room at a temperature of 25 ° C. and a humidity of 50%. After that, when printing was resumed, the number of printing sheets required until a good printed product without stains was obtained was measured, and the free-standing property was evaluated. According to the following criteria, it was evaluated as 10 points to 1 point in order from the smaller number of printing paper (damaged paper) required for obtaining a good printed product without stains (that is, the one with better leaving-to-stand). Six points or more are acceptable ranges for the free payment.
10 points: 30 broken sheets or less 9 points: broken sheets 31 to 50 sheets 8 points: broken sheets 51 to 75 sheets or less 7 points: broken sheets 76 to 100 sheets 6 points: broken sheets 101 to 125 5 sheets or less: broken sheet 126 sheets to 150 sheets or less 4 points: broken sheets 151 sheets to 175 sheets or less 3 points: broken sheets 176 sheets to 200 sheets or less 2 points: broken sheets 200 sheets to 250 sheets or less 1 point: loss More than 301 sheets of paper
(耐汚れ性)
 上記の露光、現像によって得られた平版印刷版に対して、温度25℃、湿度70%の環境下において引っかき試験機を用いてキズを付けた。引っかき試験機は、新東科学(株)製Heidon Scratching Intensity Tester HEIDEN-18を使用し、0.1mmのサファイア針を用いて、引っ掻き荷重は50(g)とした。キズ付け後の平版印刷版を用いて、上記耐刷性の評価と同様にして印刷し、キズ付け部が印刷汚れとなるかどうかを評価した。耐汚れ性は3点以上が許容範囲である。
5点:印刷汚れが認められない
4点:目視では判別できないわずかな印刷汚れが認められる
3点:目視によりわずかな印刷汚れが認められるが許容範囲である
1点:印刷汚れがはっきり認められる
(Stain resistance)
The lithographic printing plate obtained by the above exposure and development was scratched using a scratch tester under the environment of temperature 25 ° C. and humidity 70%. The scratch tester used was a Heidon Scratching Intensity Tester HEIDEN-18 manufactured by Shinto Scientific Co., Ltd., and a 0.1 mm sapphire needle was used, and the scratching load was 50 (g). Using the lithographic printing plate after scratching, printing was carried out in the same manner as in the above evaluation of printing durability, and it was evaluated whether the scratched part would be a printing stain. Three or more points are acceptable for stain resistance.
5 points: no print stains 4 points: slight print stains not visually discernable 3 points: slight print stains visually recognized but acceptable range 1 point: print stains clearly recognized
 以上の評価結果を表2に示す。表1及び表2の「支持体表面処理」欄において比較例3の「D(D-fまで)」との記載は、アルミニウム板の表面処理を<処理D>に従って(D-f)第1段階の陽極酸化処理工程までを実施し、それ以降の工程は行わなかったことを意味する。比較例11の「A(A-jまで)」及び比較例12の「C(C-iまで)」についても同様である。
 また、「画像記録層」欄において「/」を含む記載は、画像記録層が2層構成を有することを表し、/の左側が下層の画像記録層、/の右側が上層の画像記録層を示す。例えば、実施例32における「B/C」との表示は、下層の画像記録層が画像記録層Bであり、上層の画像記録層が画像記録層Cであることを意味する。
The above evaluation results are shown in Table 2. The description of "D (to D-f)" of Comparative Example 3 in the "support surface treatment" column of Tables 1 and 2 is the surface treatment of the aluminum plate according to <D-process> (D-f) It means that the steps up to the anodizing treatment step were performed, and the subsequent steps were not performed. The same applies to “A (to A−j)” of Comparative Example 11 and “C (to C−i)” of Comparative Example 12.
In the "image recording layer" column, the description including "/" indicates that the image recording layer has a two-layer structure, the left side of / indicates the lower image recording layer, and the right side indicates the upper image recording layer. Show. For example, the display of “B / C” in Example 32 means that the lower image recording layer is the image recording layer B and the upper image recording layer is the image recording layer C.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表1~2に示すように、本発明の平版印刷版原版では、耐刷性、放置払い性及び耐汚れ性の全てに関して所望の効果が得られる。
 また、親水化処理や下塗り層を種々変更した場合でも、上記耐刷性、放置払い性及び耐汚れ性の全てに関して所望の効果が得られる。
 更に、ポジ型画像記録層を、1層又は2層のサーマルポジタイプの画像記録層やコンベンショナルポジタイプの画像記録層に種々変更した場合でも、上記耐刷性、放置払い性及び耐汚れ性の全てに関して所望の効果が得られる。
 これに対して、陽極酸化皮膜の厚さが200nm未満である比較例1では、耐汚れ性が劣る。また、大径孔部の深さが60nm以下である比較例3及び4では、耐刷性が劣る。更に、小径孔部の平均径が、大径孔部の平均径よりも小さくない比較例5~9でも耐刷性が劣る。このように、所定の要件を満たさない比較例においては、耐刷性、放置払い性及び耐汚れ性の全てに関して所望の効果を得ることができない。
As shown in Tables 1 and 2 above, the lithographic printing plate precursor according to the present invention can achieve desired effects with regard to all of printing durability, leaving-to-stand property and stain resistance.
In addition, even when the hydrophilization treatment and the undercoat layer are variously changed, desired effects can be obtained with regard to all of the printing resistance, the release resistance and the stain resistance.
Furthermore, even when the positive-type image recording layer is variously changed to a single-layer or two-layer thermal positive-type image recording layer or a conventional positive-type image recording layer, The desired effect is obtained for all.
On the other hand, in Comparative Example 1 in which the thickness of the anodized film is less than 200 nm, the stain resistance is inferior. Moreover, in Comparative Examples 3 and 4 in which the depth of the large diameter hole portion is 60 nm or less, the printing durability is poor. Furthermore, the printing durability is poor even in Comparative Examples 5 to 9 in which the average diameter of the small diameter holes is not smaller than the average diameter of the large diameter holes. Thus, in the comparative example which does not satisfy the predetermined requirements, the desired effects can not be obtained with respect to all of the printing durability, leaving-to-stand and dirt resistance.
 本発明によれば、耐刷性、放置払い性及び耐汚れ性に優れるポジ型平版印刷版を提供し得る平版印刷版用原版を提供することができる。 According to the present invention, it is possible to provide a lithographic printing plate precursor which can provide a positive-working lithographic printing plate which is excellent in printing durability, leaving-to-standability and stain resistance.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2017年8月31日出願の日本特許出願(特願2017-167856)に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application (Application No. 2017-167856) filed on Aug. 31, 2017, the contents of which are incorporated herein by reference.
 1 アルミニウム板
 2 ローラ状ブラシ(本実施例において、束植ブラシ)
 3 研磨スラリー液
 4 ローラ状ブラシ(本実施例において、束植ブラシ)
 5 支持ローラ
 6 支持ローラ
 7 支持ローラ
 8 支持ローラ
 10 平版印刷版原版
 12 陽極酸化皮膜を有するアルミニウム支持体
 14 下塗り層
 16 ポジ型画像記録層
 18 アルミニウム板
 20 アルミニウムの陽極酸化皮膜
 22 マイクロポア
 24 大径孔部
 26 小径孔部
 31 アルミニウム板
 32a アルミニウムの陽極酸化皮膜
 32b 陽極酸化皮膜
 32c 陽極酸化皮膜
 33a マイクロポア
 33b マイクロポア
 33c マイクロポア
 50 主電解槽
 51 交流電源
 52 ラジアルドラムローラ
 53a 主極
 53b 主極
 54 電解液供給口
 55 電解液
 56 スリット
 57 電解液通路
 58 補助陽極
 60 補助陽極槽
 W アルミニウム板
 610 陽極酸化処理装置
 612 給電槽
 614 電解処理槽
 616 アルミニウム板
 618 電解液
 620 給電電極
 622 ローラ
 624 ニップローラ
 626 電解液
 628 ローラ
 630 電解電極
 632 槽壁
 634 直流電源
 
 
1 aluminum plate 2 roller-like brush (in this embodiment, bunching brush)
3 Abrasive Slurry Liquid 4 Roller Brush (In this Example, Bundled Brush)
5 support roller 6 support roller 7 support roller 8 support roller 10 planographic printing plate precursor 12 aluminum support with anodized film 14 undercoat layer 16 positive type image recording layer 18 aluminum plate 20 anodized film of aluminum 22 micropore 24 large diameter Holes 26 Small-diameter holes 31 Aluminum plate 32a Anodized film 32b Anodized film 32c Anodized film 32c Anodized film 33a Micropore 33b Micropore 33c Micropore 50 Main electrolytic cell 51 AC power supply 52 Radial drum roller 53a Main pole 53b Main pole 54 Electrolyte solution supply port 55 Electrolyte solution 56 Slit 57 Electrolyte passage 58 Auxiliary anode 60 Auxiliary anode tank W Aluminum plate 610 Anodizing treatment apparatus 612 Power feed tank 614 Electrolytic treatment tank 616 Aluminum plate 618 Electrolyte solution 62 Feeding electrode 622 roller 624 nip roller 626 electrolyte 628 roller 630 electrolytic electrode 632 tank wall 634 a DC power source

Claims (7)

  1.  陽極酸化皮膜を有するアルミニウム支持体と、ポジ型画像記録層とを有する平版印刷版原版であって、前記陽極酸化皮膜の厚さは、200nm~2,000nmであり、前記陽極酸化皮膜は、前記ポジ型画像記録層側の表面から深さ方向にのびるマイクロポアを有し、前記マイクロポアが、前記陽極酸化皮膜表面から深さ60nmを超える位置までのびる大径孔部(i)と、前記大径孔部の底部と連通し、連通位置からさらに深さ方向にのびる小径孔部(ii)とを有し、前記連通位置における前記小径孔部(ii)の平均径が、前記陽極酸化皮膜表面における前記大径孔部(i)の平均径よりも小さい平版印刷版原版。 A lithographic printing plate precursor comprising: an aluminum support having an anodized film; and a positive-working image recording layer, wherein the anodized film has a thickness of 200 nm to 2,000 nm, and the anodized film comprises A large-diameter hole (i) having micropores extending in the depth direction from the surface on the positive-type image recording layer side, the micropores extending from the surface of the anodized film to a position exceeding 60 nm in depth; It has a small diameter hole (ii) communicating with the bottom of the diameter hole and extending further in the depth direction from the communication position, and the average diameter of the small diameter hole (ii) at the communication position is the surface of the anodic oxide film A lithographic printing plate precursor which is smaller than the average diameter of the large diameter holes (i) in.
  2.  前記小径孔部(ii)の前記連通位置からの深さが、100nm~1940nm未満である請求項1に記載の平版印刷版原版。 The lithographic printing plate precursor as claimed in claim 1, wherein the depth of the small diameter holes (ii) from the communication position is 100 nm to less than 1940 nm.
  3.  前記陽極酸化皮膜表面における大径孔部(i)の平均径が、10nmより大きく100nm以下である請求項1又は2に記載の平版印刷版原版。 The lithographic printing plate precursor as claimed in claim 1 or 2, wherein the mean diameter of the large diameter pores (i) on the surface of the anodized film is more than 10 nm and not more than 100 nm.
  4.  前記連通位置における前記小径孔部(ii)の平均径が、15nm以下である請求項1~3のいずれか1項に記載の平版印刷版原版。 The lithographic printing plate precursor as claimed in any one of claims 1 to 3, wherein an average diameter of the small diameter holes (ii) at the communication position is 15 nm or less.
  5.  前記陽極酸化皮膜を有するアルミニウム支持体と前記ポジ型画像記録層との間に、ホスホン酸基、リン酸基、スルホン酸基、カルボン酸基から選ばれる酸基を含むポリマーを含有する下塗り層を有する請求項1~4のいずれか1項に記載の平版印刷版原版。 A subbing layer containing a polymer containing an acid group selected from a phosphonic acid group, a phosphoric acid group, a sulfonic acid group, and a carboxylic acid group, between the aluminum support having the anodized film and the positive type image recording layer The lithographic printing plate precursor according to any one of claims 1 to 4, which has
  6.  前記ポジ型画像記録層が、赤外線吸収剤を含有する請求項1~5のいずれか1項に記載の平版印刷版原版。 The lithographic printing plate precursor as claimed in any one of claims 1 to 5, wherein the positive-working image recording layer contains an infrared absorber.
  7.  前記ポジ型画像記録層が、二層構造を有し、前記陽極酸化皮膜を有するアルミニウム支持体に近い層にアルカリ可溶性高分子化合物を含む請求項6に記載の平版印刷版原版。
     
    The lithographic printing plate precursor as claimed in claim 6, wherein the positive-working image recording layer has a two-layer structure, and an alkali-soluble polymer compound is contained in a layer close to the aluminum support having the anodized film.
PCT/JP2018/031362 2017-08-31 2018-08-24 Lithographic printng plate precursor WO2019044702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017167856 2017-08-31
JP2017-167856 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044702A1 true WO2019044702A1 (en) 2019-03-07

Family

ID=65527364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031362 WO2019044702A1 (en) 2017-08-31 2018-08-24 Lithographic printng plate precursor

Country Status (1)

Country Link
WO (1) WO2019044702A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052589A1 (en) * 2011-08-31 2013-02-28 Koji Hayashi Lithographic printing plate precursors for on-press development
JP2013218315A (en) * 2012-03-13 2013-10-24 Fujifilm Corp Original plate for lithographic printing plate and lithographic printing plate production method
JP2014198453A (en) * 2012-07-27 2014-10-23 富士フイルム株式会社 Support medium for lithographic printing plate, method for manufacturing the same, and lithographic printing plate master
JP2015189021A (en) * 2014-03-27 2015-11-02 富士フイルム株式会社 Support for lithographic printing plate and manufacturing method therefor and lithographic printing original plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052589A1 (en) * 2011-08-31 2013-02-28 Koji Hayashi Lithographic printing plate precursors for on-press development
JP2013218315A (en) * 2012-03-13 2013-10-24 Fujifilm Corp Original plate for lithographic printing plate and lithographic printing plate production method
JP2014198453A (en) * 2012-07-27 2014-10-23 富士フイルム株式会社 Support medium for lithographic printing plate, method for manufacturing the same, and lithographic printing plate master
JP2015189021A (en) * 2014-03-27 2015-11-02 富士フイルム株式会社 Support for lithographic printing plate and manufacturing method therefor and lithographic printing original plate

Similar Documents

Publication Publication Date Title
JP5498403B2 (en) Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor
WO2019044087A1 (en) Planographic printing plate original plate, method for manufacturing planographic printing plate, and printing method
JP5813063B2 (en) Lithographic printing plate support, method for producing the same, and lithographic printing plate precursor
US8789464B2 (en) Lithographic printing plate support and presensitized plate
WO2011081064A1 (en) Support for planographic printing plate, method for producing support for planographic printing plate, and planographic printing original plate
JP7113732B2 (en) Lithographic printing plate precursor, method for producing lithographic printing plate, method for printing, and method for producing aluminum support
JP5266175B2 (en) Planographic printing plate precursor
JP4210039B2 (en) Positive image forming material
JP6454828B1 (en) Planographic printing plate precursor, lithographic printing plate manufacturing method, printing method
JP5498905B2 (en) Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor
JP4199632B2 (en) Planographic printing plate precursor
JP2005099284A (en) Photosensitive composition and planographic printing original plate
WO2019044702A1 (en) Lithographic printng plate precursor
WO2019150998A1 (en) Positive lithographic printing plate precursor and method for manufacturing lithographic printing plate
JP6454059B1 (en) Lithographic printing plate precursor, lithographic printing plate production method, printing method, and aluminum support production method
WO2019064694A1 (en) Printing plate precursor, method for manufacturing printing plate, and printing method
JP2006292957A (en) Image forming material
JP2001318458A (en) Original plate of planographic printing plate
JP2003015307A (en) Photosensitive lithographic printing plate
JP2005092039A (en) Lithographic printing plate original form
JP2002036743A (en) Supporting body for lithographic printing plate and original plate for lithographic printing plate
JP4349736B2 (en) Master for lithographic printing plate
JP2000071635A (en) Master for lithographic printing plate
JP2006091766A (en) Lithographic printing original plate
JP2002082427A (en) Planographic printing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP