WO2019044382A1 - Method for producing aqueous electrode slurry for lithium ion batteries, method for producing electrode for lithium ion batteries, thickening agent powder for lithium ion batteries, aqueous electrode slurry, electrode for lithium ion batteries, and lithium ion battery - Google Patents

Method for producing aqueous electrode slurry for lithium ion batteries, method for producing electrode for lithium ion batteries, thickening agent powder for lithium ion batteries, aqueous electrode slurry, electrode for lithium ion batteries, and lithium ion battery Download PDF

Info

Publication number
WO2019044382A1
WO2019044382A1 PCT/JP2018/029210 JP2018029210W WO2019044382A1 WO 2019044382 A1 WO2019044382 A1 WO 2019044382A1 JP 2018029210 W JP2018029210 W JP 2018029210W WO 2019044382 A1 WO2019044382 A1 WO 2019044382A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
aqueous
electrode
electrode slurry
thickener
Prior art date
Application number
PCT/JP2018/029210
Other languages
French (fr)
Japanese (ja)
Inventor
純平 森田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to CN201880053550.6A priority Critical patent/CN111052459B/en
Priority to JP2019539114A priority patent/JP7161478B2/en
Publication of WO2019044382A1 publication Critical patent/WO2019044382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing aqueous electrode slurry for lithium ion battery, a method for producing electrode for lithium ion battery, thickener powder for lithium ion battery, aqueous electrode slurry, electrode for lithium ion battery and lithium ion battery.
  • An electrode used in a lithium ion battery is generally mainly composed of an electrode active material layer and a current collector.
  • the electrode active material layer is obtained, for example, by applying an aqueous electrode slurry containing an electrode active material, a thickener, an aqueous binder and the like on a current collector surface such as metal foil and drying.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-24550 includes a mixture containing an active material A, a conductive material B, a binder C and a thickener D, and a liquid component E in which the thickener D is dissolved.
  • Preparing a mixture paint comprising a conductive material B comprising at least a carbon material, a thickener D comprising at least a water-soluble polymer, and a liquid component E comprising at least water; And a step a of preparing the combination paint by mixing the composition containing the active material A, the conductive material B and the thickener D in a powder state with the liquid component E,
  • a positive electrode for a non-aqueous secondary battery having a primary kneading step for obtaining a primary kneaded material, and a secondary kneading step for kneading a primary kneaded material with a binder C and an additional liquid component to obtain a secondary kneaded material
  • a method of making the electrode plate is described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-107896 discloses a negative electrode of a non-aqueous secondary battery using a paste constituted by kneading and dispersing a carbon material mainly containing graphite, a thickener, and a binder.
  • an initial kneading step of adding a thickener in powder form to at least graphite and kneading with a dispersion medium and a kneaded material of the initial kneading step are diluted with a dispersion medium and kneaded.
  • the process includes a dilution kneading step and a final kneading step of adding a binder to the kneaded material of the dilution kneading step and preparing a paste by kneading and the shearing force of the kneading in the initial kneading step is the dilution and kneading step.
  • work It describes a method of preparing the negative electrode of the electrode plates of nonaqueous secondary batteries, characterized by at least 2.5 times the shear force of the kneading under kneading step.
  • the aqueous electrode slurry obtained by the production method as described in Patent Documents 1 and 2 has a variation in viscosity per lot, or the viscosity changes during storage. It has become clear that the quality may not be stable. In addition, it has been revealed that aggregates and pinholes are easily generated in an electrode manufactured using a water-based electrode slurry whose quality is not stable. Furthermore, according to the study of the present inventors, when preparing the aqueous electrode slurry, the aqueous electrode slurry obtained by the method of dividing and adding the thickener aqueous solution also has variation in viscosity among lots, It has become clear that the viscosity may change during storage and the quality may not be stable. Furthermore, in the method of producing such aqueous electrode slurry, the thickener aqueous solution is separately prepared, divided into the slurry and added, and there are many production steps, and the production time is long and the productivity is inferior.
  • the present invention has been made in view of the above-mentioned circumstances, and it is possible to obtain an aqueous electrode slurry and a thickener powder for lithium ion battery, which can stably obtain an electrode for lithium ion battery excellent in appearance with good productivity. An excellent electrode for a lithium ion battery and a lithium ion battery using the electrode.
  • the present inventors diligently studied to achieve the above object. As a result, it was found that by using a sieved thickener powder, it is possible to obtain an aqueous electrode slurry capable of stably obtaining an electrode of a lithium ion battery having an excellent appearance and with good productivity, and completing the present invention. It came to
  • a method for producing a water-based electrode slurry for a lithium ion battery comprising: an electrode active material selected from a positive electrode active material and a negative electrode active material; an aqueous binder; a thickener; and an aqueous medium, Obtaining a sieve passing portion (q) of the thickener powder by sieving a thickener powder containing a cellulose-based water-soluble polymer; Preparing an aqueous electrode slurry by mixing an electrode active material, an aqueous binder, the sieve passing portion (q) and an aqueous medium;
  • a method of producing a water-based electrode slurry for a lithium ion battery comprising:
  • Preparing an aqueous electrode slurry by the above method for producing an aqueous electrode slurry for lithium ion batteries Coating the obtained aqueous electrode slurry on a substrate, drying the slurry, and removing the aqueous medium to form an electrode active material layer on the substrate; A method of manufacturing a lithium ion battery electrode is provided.
  • a thickener powder used to thicken an aqueous electrode slurry for lithium ion batteries Contains cellulose-based water-soluble polymers,
  • D 100 [ ⁇ m] the maximum particle diameter of the above-mentioned thickener powder in volume based particle size distribution by laser diffraction scattering type particle size distribution measuring method is D 100 [ ⁇ m]
  • the thickener powder was divided into a sieve residue and a sieve passing fraction by applying the thickener powder to a sieve having an opening of at least D 100 ( ⁇ m) and at least D 100 +5 ( ⁇ m).
  • the ratio of the said residue on a sieve sets the whole quantity of the said thickener powder to 100 mass%
  • the thickener powder for lithium ion batteries which is 0.05 mass% or less is provided.
  • An electrode active material selected from a positive electrode active material and a negative electrode active material; A water-based binder, An adhesive comprising the above-mentioned thickener powder for lithium ion batteries; An electrode for a lithium ion battery is provided.
  • a lithium ion battery comprising at least a positive electrode, an electrolyte and a negative electrode
  • a lithium ion battery in which at least one of the positive electrode and the negative electrode includes the electrode for lithium ion battery described above.
  • an aqueous electrode slurry capable of stably obtaining a lithium ion battery electrode having an excellent appearance with good productivity, a thickener powder for a lithium ion battery, an electrode for a lithium ion battery having an excellent appearance, and A lithium ion battery using the electrode can be provided.
  • an electrode active material selected from a positive electrode active material and a negative electrode active material, an aqueous binder (b), a thickener, and an aqueous medium (c)
  • a method of producing a water-based electrode slurry for a lithium ion battery comprising at least the following steps (A) and (B).
  • the aqueous electrode slurry obtained by the production method as described in Patent Documents 1 and 2 has a variation in viscosity per lot, or the viscosity changes during storage. It has become clear that the quality may not be stable. In addition, it was revealed that aggregates are likely to be generated in an electrode manufactured using a water-based electrode slurry whose quality is not stable. Furthermore, according to the study of the present inventors, when preparing the aqueous electrode slurry, the aqueous electrode slurry obtained by the method of dividing and adding the thickener aqueous solution also has variation in viscosity among lots, It has become clear that the viscosity may change during storage and the quality may not be stable.
  • the thickener aqueous solution is separately prepared, divided into the slurry and added, and there are many production steps, and the production time is long and the productivity is inferior. That is, according to the study of the present inventors, it has become clear that the conventional aqueous electrode slurry has room for improvement from the viewpoint of stably obtaining the electrode for lithium ion battery excellent in appearance with good productivity. .
  • the thickener powder containing the conventional cellulose-based water-soluble polymer contains a water-insoluble component, and when the water-insoluble component is contained in a specific amount, the quality stability of the aqueous electrode slurry obtained decreases. It became clear to do.
  • the method of adding the thickener aqueous solution separately since the thickener aqueous solution is added even after the solidifying step, it has become clear that the quality stability of the aqueous electrode slurry is lowered. Therefore, the present inventors further studied earnestly.
  • an aqueous electrode slurry excellent in quality stability can be stably obtained by using a sieve passing fraction (q) obtained by sieving thickener powder containing a cellulose-based water-soluble polymer.
  • a sieve passing fraction (q) obtained by sieving thickener powder containing a cellulose-based water-soluble polymer.
  • an electrode for lithium ion batteries excellent in the appearance can be stably obtained by using such a water-based electrode slurry.
  • the maximum particle diameter of sieve passing part (q) in volume-based particle size distribution by laser diffraction scattering type particle size distribution measurement method is D 100 [ ⁇ m]
  • the sieve passing portion (q) is obtained by subjecting the sieve passing portion (q) to the sieve residue and the sieve passing portion by subjecting the sieve passing portion (q) to a sieve having an opening of D 100 ( ⁇ m) or more and D 100 +5 ( ⁇ m) or less.
  • the above-mentioned ratio of the residue on the sieve makes the total amount of sieve passing fraction (q) 100% by mass, it is preferably 0.05% by mass or less, more preferably 0.03% by mass or less. More preferably, it is 0.01 mass% or less.
  • the lower limit value of the ratio of the above-mentioned sieve residue is not particularly limited, it is, for example, 0.00% by mass or more.
  • the maximum particle diameter D 100 of the sieve passing fraction (q) can be measured, for example, using a particle size distribution analyzer (manufactured by Malvern Instruments, model name: Mastersizer 2000).
  • the maximum particle diameter D 100 means a particle diameter at which the integrated (accumulated) volume percentage is 100% in the volume-based particle diameter distribution.
  • the ratio of the above-mentioned sieve residue means an index of the amount of the fiber component derived from the cellulose-based water-soluble polymer contained in the sieve passing portion (q). That is, the smaller the ratio of the residue on the sieve, the smaller the amount of the fiber component derived from the cellulose-based water-soluble polymer contained in the sieve passing portion (q).
  • a sieve powder (q) of the thickener powder is obtained by sieving a thickener powder containing a cellulose-based water-soluble polymer.
  • the thickener powder containing the cellulose-based water-soluble polymer can be produced by a known method, but various commercial products can also be used.
  • the sieve is not particularly limited.
  • the maximum particle diameter of the thickener powder before being sieved is D 100 [ ⁇ m] in the volume-based particle size distribution by laser diffraction / scattering type particle size distribution measurement
  • a sieve having an opening in the range of D 100 ( ⁇ m) or more and D 100 +30 ( ⁇ m) or less and a sieve having an opening in the range of D 100 ( ⁇ m) to D 100 +20 ( ⁇ m) or less
  • the aqueous electrode slurry is prepared by mixing the electrode active material (a), the aqueous binder (b), the sieve passing portion (q) and the aqueous medium (c). At this time, the conductive aid (d) may be combined and mixed.
  • Step (B) preferably includes the following steps (B-1) to (B-3).
  • Step (B-1) A step of preparing a mixture containing the electrode active material (a) and the sieve passing portion (q) by dry mixing the electrode active material (a) and the sieve passing portion (q) in powder form
  • Step (B-2) Slurry by wet mixing one or two or more kinds of liquid components selected from aqueous emulsion solution containing aqueous medium (c) and aqueous binder (b) into the above mixture
  • the powder mixture containing the electrode active material (a) and the sieve passing portion (q) is obtained by dry mixing the electrode active material (a) and the sieve passing portion (q) in a powder state. Prepare. At this time, the conductive aid (d) may be combined and powder mixed.
  • the dispersibility of the electrode active material (a) and the thickener can be enhanced, and in the subsequent steps, the formation of the gel component derived from the thickener is carried out. It can be further suppressed. Thereby, generation
  • an aggregate is generated in the lithium ion battery electrode manufactured using the aqueous electrode slurry obtained by the manufacturing method including the step of dry-mixing the electrode active material and the thickener in the powder state. It became clear that it was easy. Therefore, the inventor further studied earnestly. As a result, by using the sieve passing portion (q) of the thickener powder according to the present embodiment, it is possible to suppress the generation of aggregates on the electrode surface, and it is possible to stably obtain the lithium ion battery electrode having an excellent appearance. I found out.
  • a mixer which performs dry mixing it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer.
  • the electrode active material (a) and the sieve passing portion (q) can be sufficiently mixed while suppressing scattering of the electrode active material (a) and the sieve passing portion (q). it can.
  • a planetary motion type mixer means the mixer which has rotation and revolution function as a stirring mechanism.
  • the planetary motion type planetary mixer refers to a mixer having a blade having rotation and revolution functions as a stirring mechanism.
  • step (B-2) one or more liquid components selected from an aqueous emulsion solution containing the aqueous medium (c) and the aqueous binder (b) in the mixture obtained in the step (B-1)
  • the slurry precursor is prepared by adding and wet mixing.
  • the step (B-2) includes an adaptation step (B-2-1) and a solidifying step (B-2-2).
  • the blending step (B-2-1) is a step of blending the powder mixture with one or more liquid components selected from an aqueous emulsion solution containing an aqueous medium (c) and an aqueous binder (b).
  • the powder mixture may rise up to the edge of the mixer during wet mixing, the wetting of the powder mixture may be uneven, and the powder mixture may be splashed during kneading Etc. can be suppressed.
  • the wet mixing speed is set higher than that of the soaking step (B-2-1), and the powder mixture and the liquid component are kneaded to obtain a slurry precursor. Is a process of obtaining
  • a mixer performing wet mixing in the step (B-2) it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer.
  • a mixer performing wet mixing in the step (B-2)
  • the rotation speed of the wet mixing in the blending step (B-2-1) is not particularly limited, but is preferably in the range of 0.10 m / sec or more and 0.50 m / sec or less. If the rotation speed of the wet mixing in the blending step (B-2-1) is within the above range, the powder mixture may rise up to the edge of the mixer during wet mixing, or the wetting of the powder mixture may be uneven. It is possible to make the liquid mixture sufficiently compatible with the powder mixture while suppressing effectively the powder mixture being splashed during kneading and the like.
  • the revolving speed of the above-mentioned wet mixing in the blending step (B-2-1) is not particularly limited, but is preferably in the range of 0.01 m / sec or more and 0.10 m / sec or less. If the revolution speed of the wet mixing in the blending step (B-2-1) is within the above range, the powder mixture may rise up to the edge of the mixer during wet mixing, and the wetting of the powder mixture may be uneven. It is possible to make the liquid mixture sufficiently compatible with the powder mixture while suppressing effectively the powder mixture being splashed during kneading and the like.
  • the mixing time of the wet mixing in the blending step (B-2-1) is not particularly limited, but is preferably, for example, 0.1 minutes or more and 30 minutes or less.
  • the rotation speed of the wet mixing in the solidifying step (B-2-2) is preferably in the range of 0.60 m / sec or more and 10.00 m / sec or less.
  • the rotation speed of the wet mixing in the solidifying step (B-2-2) is in the above range, so the shear force applied to the slurry precursor can be made more appropriate, so the molecular chain of the thickener
  • the gel component derived from the thickener can be easily crushed while suppressing the cleavage of the polymer, and the generation of the gel component derived from the thickener in the obtained aqueous electrode slurry can be further suppressed.
  • the revolution speed of the wet mixing in the solidifying step (B-2-2) is preferably in the range of 0.20 m / sec to 3.00 m / sec. Since the shear force applied to the slurry precursor can be made more appropriate when the revolution speed of the wet mixing in the solidifying step (B-2-2) is within the above range, the molecular chain of the thickener is The gel component derived from the thickener can be easily crushed while suppressing the cleavage of the polymer, and the generation of the gel component derived from the thickener in the obtained aqueous electrode slurry can be further suppressed.
  • the mixing time of the wet mixing in the solidifying step (B-2-2) is not particularly limited, and is, for example, 10 minutes or more and 180 minutes.
  • the solid content concentration of the slurry precursor is preferably adjusted to 30.0% by mass or more and 70.0% by mass or less. Since the shear force added to a slurry precursor can be made more suitable by this, the dispersibility of each material can be improved, suppressing a cutting
  • the solid content concentration of the slurry precursor can be adjusted by adjusting the concentration and the addition amount of the liquid component.
  • step (B-3) at least one selected from an aqueous emulsion solution containing an aqueous medium (c) and an aqueous binder (b) in the above-mentioned slurry precursor obtained in the step (B-2)
  • the aqueous electrode slurry is prepared by further adding a liquid component and wet mixing.
  • a mixer performing wet mixing it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer.
  • a mixer By using such a mixer, sufficient mixing can be performed while stirring at low speed. Therefore, the dispersibility of each material which comprises a water-based electrode slurry can be improved, suppressing the cutting
  • the obtained aqueous electrode slurry is further excellent in dispersibility, the use of such aqueous electrode slurry makes it possible to obtain an even more uniform electrode active material layer. As a result, it is possible to obtain a lithium ion battery having further excellent battery characteristics.
  • At least one of the rotation speed and the rotation speed of the wet mixing in the step (B-3), preferably both the rotation speed and the rotation speed, the rotation speed of the wet mixing in the solidifying step (B-2-2) It is preferable to set it lower than the speed.
  • the mixing time of the wet mixing in the step (B-3) is not particularly limited, and is, for example, 5 minutes or more and 60 minutes or less.
  • the solid content concentration of the aqueous electrode slurry can be adjusted by adjusting the concentration and the addition amount of the liquid component.
  • the method for producing an aqueous electrode slurry according to the present embodiment may further include a step (C): vacuum degassing.
  • a step (C): vacuum degassing Thereby, air bubbles caught in the slurry can be removed, and the coatability of the slurry can be improved.
  • the vacuum degassing may be performed by sealing the container or the shaft of the mixer to remove air bubbles, or by transferring it to another container.
  • the thickener powder (p) for a lithium ion battery is a thickener powder used to thicken an aqueous electrode slurry for a lithium ion battery, and contains a cellulose-based water-soluble polymer, and is a laser diffraction
  • the maximum particle diameter of the thickener powder (p) in the volume-based particle size distribution by scattering type particle size distribution measurement is D 100 [ ⁇ m]
  • the opening is D 100 ( ⁇ m) or more and D 100 +5 ( ⁇ m) or less
  • the thickener powder (p) is divided into a sieve residue and a sieve passing fraction by applying thickener powder (p) to a sieve in a range, the ratio of the sieve residue is thickened
  • the total amount of the agent powder (p) is 100% by mass, it is 0.05% by mass or less, preferably 0.03% by mass or less, and more preferably 0.01% by mass or less.
  • the lower limit value of the ratio of the above-mentioned sieve residue is not particularly limited, it is, for example, 0.00% by mass or more.
  • the maximum particle diameter D 100 of the thickener powder (p) can be measured, for example, using a particle size distribution measurement device (Malvern Instruments, model name: Mastersizer 2000).
  • the maximum particle diameter D 100 means a particle diameter at which the integrated (accumulated) volume percentage is 100% in the volume-based particle diameter distribution.
  • the ratio of the residue on the sieve means an index of the amount of the fiber component derived from the cellulose-based water-soluble polymer contained in the thickener powder (p). That is, it means that the ratio of the fiber component derived from the cellulose-based water-soluble polymer contained in the thickener powder (p) decreases as the ratio of the residue on the sieve decreases.
  • the aqueous electrode slurry obtained by the production method as described in Patent Documents 1 and 2 has a variation in viscosity per lot, or the viscosity changes during storage. It has become clear that the quality may not be stable. In addition, it was revealed that aggregates are likely to be generated in an electrode manufactured using a water-based electrode slurry whose quality is not stable. Furthermore, according to the study of the present inventors, when preparing the aqueous electrode slurry, the aqueous electrode slurry obtained by the method of dividing and adding the thickener aqueous solution also has variation in viscosity among lots, It has become clear that the viscosity may change during storage and the quality may not be stable.
  • the thickener aqueous solution is separately prepared, divided into the slurry and added, and there are many production steps, and the production time is long and the productivity is inferior. That is, according to the study of the present inventors, it has become clear that the conventional aqueous electrode slurry has room for improvement from the viewpoint of stably obtaining the electrode for lithium ion battery excellent in appearance with good productivity. .
  • the thickener powder containing the conventional cellulose-based water-soluble polymer contains a water-insoluble component, and when the water-insoluble component is contained in a specific amount, the quality stability of the aqueous electrode slurry obtained decreases. It became clear to do.
  • the method of adding the thickener aqueous solution separately since the thickener aqueous solution is added even after the solidifying step, it has become clear that the quality stability of the aqueous electrode slurry is lowered. Therefore, the present inventors further studied earnestly.
  • the thickener powder (p) preferably contains a cellulose-based water-soluble polymer as a main component.
  • containing a cellulose-based water-soluble polymer as a main component means that the thickener powder (p) contains 50% by mass or more of a cellulose-based water-soluble polymer.
  • the thickener powder (p) contains preferably at least 70% by mass, more preferably at least 90% by mass, particularly preferably at least 99% by mass of a cellulose-based water-soluble polymer.
  • the cellulose-based water-soluble polymer is not particularly limited as long as it improves the coatability of the aqueous electrode slurry.
  • cellulose-based water-soluble polymers examples include cellulose-based polymers such as carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, methylethylhydroxycellulose, methylcellulose and hydroxypropylcellulose, and ammonium salts and alkali metal salts of these cellulose-based polymers It is possible to use one or two or more selected from cellulose-based polymer salts and the like. Among these, it is preferable to include at least one selected from carboxymethylcellulose and carboxymethylcellulose salt, and one or more selected from carboxymethylcellulose, ammonium salt of carboxymethylcellulose, sodium salt of carboxymethylcellulose and potassium salt of carboxymethylcellulose. More preferably,
  • the above-described residue on the sieve is not particularly limited, and, for example, contains a fiber component derived from the above-mentioned cellulose water-soluble polymer.
  • the viscosity calculated under the following condition 1 is preferably 10 mPa ⁇ s or more and 20000 mPa ⁇ s or less, and is 100 mPa ⁇ s or more and 10000 mPa ⁇ s or less
  • the viscosity is more preferably 1000 mPa ⁇ s or more and 8000 mPa ⁇ s or less, and particularly preferably 2000 mPa ⁇ s or more and 4000 mPa ⁇ s or less.
  • Condition 1 The thickener powder (p) is dissolved in water to obtain a thickener aqueous solution having a concentration of 1.3% by mass.
  • the viscosity of the aqueous thickener solution is measured at 25 ° C. and a shear rate of 3.4 s ⁇ 1 . This makes it possible to further improve the coatability of the obtained aqueous electrode slurry.
  • the thickener powder (p) according to the present embodiment can be obtained, for example, by sifting a thickener powder containing a cellulose-based water-soluble polymer.
  • the method of producing the thickener powder (p) for a lithium ion battery according to the present embodiment is not limited to the method of screening.
  • the step of sieving the thickener powder containing the cellulose-based water-soluble polymer can be performed according to the step (A) in the method for producing a water-based electrode slurry for lithium ion batteries described above. The description is omitted.
  • the aqueous electrode slurry according to the present embodiment comprises an electrode active material (a) selected from a positive electrode active material and a negative electrode active material, an aqueous binder (b), and a thickener powder for lithium ion batteries according to the present embodiment ( p) and an aqueous medium (c), wherein the thickener powder (p) for a lithium ion battery is dissolved in the aqueous medium (c).
  • the water-based electrode slurry which concerns on this embodiment further contains a conductive support agent (d) from a viewpoint of improving the electron conductivity of the electrode obtained.
  • the thickener powder (p) for a lithium ion battery is dissolved in the aqueous electrode slurry and is not in a powder state.
  • Electrode active material (a) The electrode active material (a) according to the present embodiment is appropriately selected according to the application. When manufacturing a positive electrode, a positive electrode active material is used, and when manufacturing a negative electrode, a negative electrode active material is used.
  • the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
  • complex oxides of lithium and transition metals such as lithium nickel complex oxide, lithium cobalt complex oxide, lithium manganese complex oxide, lithium-manganese-nickel complex oxide, etc. Transitions such as TiS 2 , FeS, MoS 2 etc. Metal sulfides; transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , and olivine-type lithium phosphorus oxides.
  • the olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
  • olivine-type lithium iron phosphorus oxide, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and lithium-manganese-nickel composite oxide are preferable.
  • These positive electrode active materials have large capacity in addition to high action potential and large energy density.
  • the positive electrode active material may be used singly or in combination of two or more.
  • the negative electrode active material is not particularly limited as long as it is a common negative electrode active material that can be used for the negative electrode of a lithium ion battery.
  • carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metals such as lithium metal and lithium alloy; metals such as silicon and tin; polyacene, polyacetylene, polypyrrole etc Conductive polymers and the like.
  • carbon materials are preferable, and particularly graphitic materials such as natural graphite and artificial graphite are preferable.
  • the negative electrode active material may be used singly or in combination of two or more.
  • the content of the electrode active material (a) is preferably 70 parts by mass or more and 99.97 parts by mass or less, and 85 parts by mass or more and 99.85 parts by mass, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is at most parts by mass.
  • the aqueous binder (b) is not particularly limited as long as it can be electrode-shaped and has sufficient electrochemical stability.
  • polyacrylic acid polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber And polyimide.
  • These aqueous binders (b) may be used alone or in combination of two or more. Among these, styrene butadiene rubber is preferable.
  • the aqueous binder (b) refers to one that can be dispersed in an aqueous medium to form an aqueous emulsion solution.
  • the content of the aqueous binder (b) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and 0.05 parts by mass or more, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is 5.0 parts by mass or less.
  • the content of the aqueous binder (b) is within the above range, the balance of the coating property of the aqueous electrode slurry, the binding property of the binder and the battery characteristics is further excellent.
  • the aqueous binder (b) is used as an aqueous emulsion solution by dispersing a powdery one in an aqueous medium.
  • the aqueous medium in which the aqueous binder (b) is dispersed is not particularly limited as long as it can disperse the aqueous binder (b), but distilled water, ion exchanged water, city water, industrial water, etc. can be used. Among these, distilled water and ion exchange water are preferable.
  • water may be mixed with water such as alcohol and a highly hydrophilic solvent.
  • the thickener powder (p) can be used as the thickener powder (p).
  • the thickener powder (p) may be used alone or in combination of two or more.
  • the content of the thickener powder (p) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the total solid content of the aqueous electrode slurry, and 0.05 parts by mass It is more preferable that it is part or more and 5.0 parts by mass or less.
  • the content of the thickener powder (p) is within the above range, the balance of the coating property of the aqueous electrode slurry, the binding property of the binder and the battery characteristics is further excellent.
  • Water-based medium (c) It does not specifically limit about the aqueous medium (c) which concerns on this embodiment, For example, distilled water, ion-exchange water, municipal water, industrial water etc. can be used. Among these, distilled water and ion exchange water are preferable. In addition, water may be mixed with water such as alcohol and a highly hydrophilic solvent.
  • the aqueous electrode slurry according to the present embodiment preferably further contains a conductive auxiliary (d).
  • the conductive aid (d) has electron conductivity and is not particularly limited as long as it improves the conductivity of the electrode.
  • Examples of the conductive additive (d) according to the present embodiment include carbon materials such as acetylene black, ketjen black, carbon black, carbon nanofibers, and graphite having a particle diameter smaller than that of graphite used as an active material. .
  • These conductive assistants (d) may be used alone or in combination of two or more.
  • the content of the conductive additive (d) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and 0.05 parts by mass or less, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is 5.0 parts by mass or less.
  • the balance of the coating property of a water-based electrode slurry, and the binding property of a binder as the content of a conductive support agent (d) is in the said range is much more excellent.
  • the content of the electrode active material (a) is preferably 70 parts by mass to 99.97 parts by mass, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is 85 parts by mass or more and 99.85 parts by mass or less.
  • the content of the aqueous binder (b) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
  • content of thickener powder (p) becomes like this. Preferably it is 0.01 to 10.0 mass parts, More preferably, it is 0.05 to 5.0 mass parts.
  • content of a conductive support agent (d) becomes like this.
  • it is 0.01 to 10.0 mass parts, More preferably, it is 0.05 to 5.0 mass parts.
  • FIG. 1 is a cross-sectional view showing an example of the structure of a lithium ion battery electrode 100 according to an embodiment of the present invention.
  • An electrode 100 for a lithium ion battery according to this embodiment is an electrode active material (a) selected from a positive electrode active material and a negative electrode active material, an aqueous binder (b), and a thickener powder for lithium ion batteries (p) And an adhesive constituted by
  • the method of manufacturing the lithium ion battery electrode 100 according to the present embodiment includes at least the following two steps (1) and (2). Thereby, an electrode for a lithium ion battery excellent in appearance can be stably obtained.
  • Step of preparing aqueous electrode slurry by the method for producing aqueous electrode slurry for lithium ion batteries according to the present embodiment (2) The obtained aqueous electrode slurry is coated on the substrate 101 and dried, and then the aqueous medium The step of forming the electrode active material layer 103 on the base material 101 by removing the second step
  • the step (1) is the same as the method of producing the aqueous electrode slurry for lithium ion batteries according to the present embodiment described above. Is omitted.
  • the step (2) will be described.
  • the aqueous electrode slurry obtained in the above step (1) is applied onto a substrate 101 such as a current collector and dried to remove the aqueous medium
  • the electrode active material layer 103 is formed on the substrate 101 to obtain the lithium ion battery electrode 100 in which the electrode active material layer 103 is formed on the substrate 101.
  • a method of applying the aqueous electrode slurry on the substrate 101 a generally known method can be used.
  • reverse roll method direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, squeeze method and the like can be mentioned.
  • the aqueous electrode slurry may be coated on only one side of the substrate 101 or on both sides. In the case of coating on both sides of the substrate 101, it may be coated on one side or on both sides simultaneously. In addition, it may be applied to the surface of the base material 101 continuously or intermittently. The thickness, length, and width of the coating layer can be appropriately determined according to the size of the battery.
  • a commonly known method can be used to dry the coated aqueous electrode slurry.
  • hot air, vacuum, infrared, far infrared, electron beam and low temperature air can be used alone or in combination.
  • the drying temperature is, for example, in the range of 30 ° C. or more and 350 ° C. or less.
  • the normal collector which can be used for a lithium ion battery for example can be used.
  • the negative electrode current collector copper, stainless steel, nickel, titanium or an alloy thereof can be used, and among these, copper is particularly preferable.
  • the positive electrode current collector aluminum, stainless steel, nickel, titanium or an alloy thereof can be used. Among these, aluminum is particularly preferable.
  • the shape of the current collector is not particularly limited. For example, a foil-like material having a thickness of 0.001 to 0.5 mm can be used.
  • the lithium ion battery electrode 100 according to the present embodiment may be pressed as necessary.
  • a method of pressing generally known methods can be used.
  • a die press method, a calendar press method, etc. may be mentioned.
  • the pressing pressure is not particularly limited, but is, for example, in the range of 0.2 to 3 t / cm 2 .
  • the thickness and density of the lithium ion battery electrode 100 according to the present embodiment are not particularly limited because they are appropriately determined according to the use and the like of the battery, and can be set according to generally known information.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the lithium ion battery 150 according to the embodiment of the present invention.
  • the lithium ion battery 150 according to the present embodiment includes at least the positive electrode 120, the electrolyte 110, and the negative electrode 130, and at least one of the positive electrode 120 and the negative electrode 130 includes the lithium ion battery electrode 100 according to the present embodiment.
  • the lithium ion battery 150 according to the present embodiment may include a separator, if necessary.
  • the lithium ion battery 150 according to the present embodiment can be manufactured according to a known method.
  • As the electrode for example, a laminate or a wound body can be used.
  • As an exterior body, a metal exterior body and an aluminum laminate exterior body can be used suitably.
  • the shape of the battery may be any shape such as coin type, button type, sheet type, cylindrical type, square type and flat type.
  • any known lithium salt can be used as the electrolyte in the electrolytic solution of the battery, and it may be selected according to the type of active material.
  • LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium lower fatty acid carboxylate and the like can be mentioned.
  • the solvent for dissolving the electrolyte is not particularly limited as long as it is generally used as a liquid component for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), vinylene carbonate (VC) and other carbonates; ⁇ -butyrolactone, ⁇ -valerolactone and other lactones; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, etc.
  • Sulfoxides such as dimethylsulfoxide etc.
  • Oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolanekinds of nitrogen; Nitrogenous compounds such as acetonitrile, nitromethane, formamide, dimethylformamide, etc .; Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate; phosphoric acid triesters and diglymes; Triligmes; sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; and sultones such as 1,3-propane sultone, 1,4-butane sultone and naphtha sultone. These may be used singly or in combination of two or more.
  • a porous separator As a separator, a porous separator is mentioned, for example.
  • the form of the separator includes a membrane, a film, a non-woven fabric and the like.
  • the porous separator include polyolefin-based porous separators such as polypropylene and polyethylene; porous separators formed of polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride hexafluoropropylene copolymer, etc. Can be mentioned.
  • Example 1 ⁇ Preparation of sieve passing part (q)> First, a carboxymethyl cellulose powder (Sun Rose (registered trademark) MAC series by Nippon Paper Industries, maximum particle diameter D 100 : 50 ⁇ m) and a sieve with an opening of 53 ⁇ m (made by As One, material: stainless steel, trade name: stainless steel sieve) The sieve passing portion (q1) was obtained.
  • a carboxymethyl cellulose powder (Sun Rose (registered trademark) MAC series by Nippon Paper Industries, maximum particle diameter D 100 : 50 ⁇ m) and a sieve with an opening of 53 ⁇ m (made by As One, material: stainless steel, trade name: stainless steel sieve)
  • the sieve passing portion (q1) was obtained.
  • ⁇ Fabrication of negative electrode> The obtained aqueous electrode slurry was applied to one side of a copper foil as a current collector using a die coater and dried. Then, the obtained electrode was pressed to obtain a negative electrode.
  • the viscosity of the aqueous thickener solution after holding for 3 days was measured at 25 ° C. and a shear rate of 3.4 s ⁇ 1 using a B-type viscometer. Thereafter, the viscosity change rate was calculated by the following formula, and the storage stability of the aqueous thickener solution was evaluated by the following standard.
  • Viscosity change rate [%] 100 ⁇ (viscosity after holding for 3 days) / (viscosity before holding for 3 days) :: Viscosity change rate is 80% or more and less than 120% ⁇ : Viscosity change rate is 120% or more and less than 150% or 50% or more and less than 80% ⁇ : Viscosity change rate is 150% or more or 10% or more and less than 50%
  • Viscosity change rate [%] 100 ⁇ (viscosity after holding for 3 days) / (viscosity before holding for 3 days) :: Viscosity change rate of 80% or more and less than 120% ⁇ : Viscosity change rate of 120% or more and less than 150% or 50% or more and less than 80% ⁇ : Viscosity change rate of 150% or more or 10% or more and less than 50%
  • Viscosity change rate [%] 100 ⁇ (viscosity after holding for 3 days) / (viscosity before holding for 3 days) :: Viscosity change rate of 80% or more and less than 120% ⁇ : Viscosity change rate of 120% or more and less than 150% or 50% or more and less than 80% ⁇ : Viscosity change rate of 150% or more or 10% or more and less than 50%
  • Table 1 The aqueous electrode slurry separated by the retention test (judged by visual observation) The obtained results are shown in Table 1.
  • Viscosity evaluation of aqueous electrode slurry The viscosity variation of the aqueous electrode slurry was evaluated as follows. First, five aqueous electrode slurries under the same conditions were prepared as samples. Next, the viscosity of the obtained aqueous electrode slurry at 25 ° C. and a shear rate of 3.4 s ⁇ 1 is measured using a B-type viscometer, the maximum variation is calculated by the following equation, and the aqueous electrode slurry is Lot-to-lot variation was evaluated.
  • Maximum variation (mPa ⁇ s) (maximum viscosity of 5 samples)-(minimum viscosity of 5 samples) :: Maximum variation less than 500 mPa ⁇ s ⁇ : Maximum variation less than 500 mPa ⁇ s and less than 1000 mPa ⁇ s ⁇ : Maximum variation less than 1000 mPa ⁇ s
  • Non-defective rate of negative electrode A total of 1,500 negative electrodes (1 cm ⁇ 1 cm) were prepared, and the ratio of non-defective products (non-defective product ratio) was calculated. The obtained negative electrode surface was observed at a magnification of 100 times using an optical microscope to examine the presence or absence of aggregates and pinholes on the negative electrode surface. Then, those in which no aggregates and pinholes were not observed were regarded as good products, and those in which aggregates and pinholes were observed in at least one place were regarded as defects. Next, the ratio of non-defective products was calculated as the non-defective product rate, and evaluated according to the following criteria. :: Non-defective rate 98% or more ⁇ : Non-defective rate 95% to less than 98% ⁇ : Non-defective rate less than 95%
  • the productivity of the negative electrode was evaluated according to the following criteria.
  • the production of the negative electrode is performed for the time taken to obtain the aqueous electrode slurry (hereinafter referred to as the production time of the aqueous electrode slurry).
  • the sex was evaluated.
  • the production time of the aqueous electrode slurry in Comparative Example 2 was set to 100 in the following evaluation criteria. ⁇ : Production time of aqueous electrode slurry less than 70 ⁇ : Production time of aqueous electrode slurry 70 to less than 100 ⁇ : Production time of aqueous electrode slurry 100 or more
  • Example 2 A sieve with an opening of 63 ⁇ m instead of a sieve with an opening of 53 ⁇ m (made by As One Corp., material: stainless steel, trade name: stainless steel sieve) at the time of preparation of sieve passing part (q)
  • a water-based electrode slurry and a negative electrode were produced under the same conditions as in Example 1 except that trade name: stainless steel sieve was used, and each evaluation was performed in the same manner as in Example 1. The obtained results are shown in Table 1.
  • Example 3 A sieve with an opening of 73 ⁇ m instead of a sieve with an opening of 53 ⁇ m (made by As One Corp., material: stainless steel, trade name: stainless steel sieve) at the time of preparation of sieve passing part (q)
  • a water-based electrode slurry and a negative electrode were produced under the same conditions as in Example 1 except that trade name: stainless steel sieve was used, and each evaluation was performed in the same manner as in Example 1. The obtained results are shown in Table 1.
  • Example 1 The same conditions as in Example 1 except that carboxymethyl cellulose powder (MAC series of Sun Rose (registered trademark) made by Nippon Paper Industries Co., Ltd.) was used as it was without sieving, instead of using a sieve passing portion (q1) of carboxymethyl cellulose powder.
  • the aqueous electrode slurry and the negative electrode were prepared in the same manner as in Example 1, and each evaluation was performed. The obtained results are shown in Table 1.
  • the ratio of the residue on the sieve of Comparative Example 1 in Table 1 was determined by the following method.
  • carboxymethylcellulose powder (MAC series of Sunrose (registered trademark) manufactured by Nippon Paper Industries Co., Ltd.) was passed through a sieve (made by As One, material: stainless steel, trade name: stainless steel sieve) having a mesh size of 53 ⁇ m.
  • a sieve made by As One, material: stainless steel, trade name: stainless steel sieve
  • Percent remaining on sieve (mass%) 100 ⁇ x '/ y'
  • y 'in the formula is the mass (g) of the carboxymethylcellulose powder screened.
  • ⁇ Fabrication of negative electrode> The obtained aqueous electrode slurry was applied to one side of a copper foil as a current collector using a die coater and dried. Then, the obtained negative electrode was pressed to obtain a negative electrode.
  • Example 1 Each evaluation was performed similarly to Example 1 about the obtained thickener aqueous solution, water-based electrode slurry, and the negative electrode. The obtained results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This method for producing an aqueous electrode slurry for lithium ion batteries is a production method for an aqueous electrode slurry that contains an electrode active material which is selected from among a positive electrode active material and a negative electrode active material, an aqueous binder, a thickening agent and an aqueous medium; and this method for producing an aqueous electrode slurry for lithium ion batteries comprises a step for obtaining a sieve-passed fraction (q) of a thickening agent powder, which contains a cellulose-based water-soluble polymer, by sieving the thickening agent powder and a step for preparing an aqueous electrode slurry by mixing an electrode active material, an aqueous binder, the sieve-passed fraction (q) and an aqueous medium with each other.

Description

リチウムイオン電池用水系電極スラリーの製造方法、リチウムイオン電池用電極の製造方法、リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池Method for producing aqueous electrode slurry for lithium ion battery, method for producing electrode for lithium ion battery, thickener powder for lithium ion battery, aqueous electrode slurry, electrode for lithium ion battery and lithium ion battery
 本発明は、リチウムイオン電池用水系電極スラリーの製造方法、リチウムイオン電池用電極の製造方法、リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池に関する。 The present invention relates to a method for producing aqueous electrode slurry for lithium ion battery, a method for producing electrode for lithium ion battery, thickener powder for lithium ion battery, aqueous electrode slurry, electrode for lithium ion battery and lithium ion battery.
 リチウムイオン電池に用いられる電極は、一般的に、電極活物質層と集電体から主に構成されている。電極活物質層は、例えば、電極活物質、増粘剤および水系バインダー等を含む水系電極スラリーを金属箔等の集電体表面に塗布して乾燥することにより得られる。 An electrode used in a lithium ion battery is generally mainly composed of an electrode active material layer and a current collector. The electrode active material layer is obtained, for example, by applying an aqueous electrode slurry containing an electrode active material, a thickener, an aqueous binder and the like on a current collector surface such as metal foil and drying.
 リチウムイオン電池用電極の製造方法としては、例えば、特許文献1および特許文献2に記載の方法が挙げられる。 As a manufacturing method of the electrode for lithium ion batteries, the method of patent document 1 and patent document 2 is mentioned, for example.
 特許文献1(特開2006-24550号公報)には、活物質A、導電材B、結着材Cおよび増粘剤Dを含む合剤と、増粘剤Dを溶解する液状成分Eとを含み、導電材Bが少なくとも炭素材料からなり、増粘剤Dが少なくとも水溶性高分子からなり、液状成分Eが少なくとも水からなる合剤塗料を調製する工程aと、合剤塗料を集電体上に塗布する工程bとを有し、合剤塗料を調製する工程aが、活物質A、導電材Bおよび粉末状態の増粘剤Dを含む配合物を、液状成分Eとともに混練して、一次混練物を得る一次混練工程と、一次混練物を、結着材Cおよび追加の液状成分とともに混練して、二次混練物を得る二次混練工程とを有する非水系二次電池の正極用電極板の製造法が記載されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-24550) includes a mixture containing an active material A, a conductive material B, a binder C and a thickener D, and a liquid component E in which the thickener D is dissolved. Preparing a mixture paint comprising a conductive material B comprising at least a carbon material, a thickener D comprising at least a water-soluble polymer, and a liquid component E comprising at least water; And a step a of preparing the combination paint by mixing the composition containing the active material A, the conductive material B and the thickener D in a powder state with the liquid component E, A positive electrode for a non-aqueous secondary battery having a primary kneading step for obtaining a primary kneaded material, and a secondary kneading step for kneading a primary kneaded material with a binder C and an additional liquid component to obtain a secondary kneaded material A method of making the electrode plate is described.
 特許文献2(特開2006-107896号公報)には、黒鉛を主剤とする炭素材料、増粘剤、および結着材を混練分散することにより構成されるペーストを用いる非水系二次電池の負極用電極板の製造方法において、黒鉛は鉄の含有量が500ppm以下であり、増粘剤はカルボキシル基を含む水溶性高分子であり、結着材は極性基を有する水分散性高分子であり、負極塗膜形成用のペーストの混練工程は、少なくとも黒鉛に増粘剤を粉末状態で添加し、分散媒と共に混練する初混練工程と、初混練工程の混練物を分散媒で希釈し混練する希釈混練工程と、希釈混練工程の混練物に結着材を添加し、混練することによりペーストを作成する仕上げ混練工程の3つの工程を含み、初混練工程における混練の剪断力が、希釈混練工程および仕上げ混練工程における混練の剪断力の2.5倍以上であることを特徴とする非水系二次電池の負極用電極板の製造方法が記載されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-107896) discloses a negative electrode of a non-aqueous secondary battery using a paste constituted by kneading and dispersing a carbon material mainly containing graphite, a thickener, and a binder. In the method of manufacturing an electrode plate for graphite, the content of iron is 500 ppm or less, the thickener is a water-soluble polymer containing a carboxyl group, the binder is a water-dispersible polymer having a polar group, In the step of kneading the paste for forming the negative electrode coating film, an initial kneading step of adding a thickener in powder form to at least graphite and kneading with a dispersion medium and a kneaded material of the initial kneading step are diluted with a dispersion medium and kneaded. The process includes a dilution kneading step and a final kneading step of adding a binder to the kneaded material of the dilution kneading step and preparing a paste by kneading and the shearing force of the kneading in the initial kneading step is the dilution and kneading step. And work It describes a method of preparing the negative electrode of the electrode plates of nonaqueous secondary batteries, characterized by at least 2.5 times the shear force of the kneading under kneading step.
特開2006-24550号公報Japanese Patent Application Publication No. 2006-24550 特開2006-107896号公報JP, 2006-107896, A
 本発明者らの検討によれば、特許文献1および2に記載されているような製造方法により得られた水系電極スラリーはロットごとに粘度のバラつきがあったり、保存時に粘度が変化したりして、品質が安定しない場合があることが明らかになった。また、このような品質が安定しない水系電極スラリーを用いて作製した電極には凝集物やピンホールが発生しやすいことが明らかになった。
 さらに、本発明者らの検討によれば、水系電極スラリーの調製の際に、増粘剤水溶液を分割して添加する方法により得られた水系電極スラリーもロットごとに粘度のバラつきがあったり、保存時に粘度が変化したりして、品質が安定しない場合があることが明らかになった。さらに、このような水系電極スラリーの製造方法は、増粘剤水溶液を別途調製し、スラリーに分割して添加するため製造工程が多く、かつ、製造時間が長いため生産性に劣っていた。
According to the study of the present inventors, the aqueous electrode slurry obtained by the production method as described in Patent Documents 1 and 2 has a variation in viscosity per lot, or the viscosity changes during storage. It has become clear that the quality may not be stable. In addition, it has been revealed that aggregates and pinholes are easily generated in an electrode manufactured using a water-based electrode slurry whose quality is not stable.
Furthermore, according to the study of the present inventors, when preparing the aqueous electrode slurry, the aqueous electrode slurry obtained by the method of dividing and adding the thickener aqueous solution also has variation in viscosity among lots, It has become clear that the viscosity may change during storage and the quality may not be stable. Furthermore, in the method of producing such aqueous electrode slurry, the thickener aqueous solution is separately prepared, divided into the slurry and added, and there are many production steps, and the production time is long and the productivity is inferior.
 本発明は上記事情に鑑みてなされたものであり、外観に優れたリチウムイオン電池用電極を安定して生産性よく得ることが可能な水系電極スラリー並びにリチウムイオン電池用増粘剤粉末、外観に優れたリチウムイオン電池用電極およびその電極を用いたリチウムイオン電池を提供するものである。 The present invention has been made in view of the above-mentioned circumstances, and it is possible to obtain an aqueous electrode slurry and a thickener powder for lithium ion battery, which can stably obtain an electrode for lithium ion battery excellent in appearance with good productivity. An excellent electrode for a lithium ion battery and a lithium ion battery using the electrode.
 本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、篩にかけた増粘剤粉末を用いることにより、外観に優れたリチウムイオン電池用電極を安定して生産性よく得ることが可能な水系電極スラリーが得られることを見出して本発明を完成するに至った。 The present inventors diligently studied to achieve the above object. As a result, it was found that by using a sieved thickener powder, it is possible to obtain an aqueous electrode slurry capable of stably obtaining an electrode of a lithium ion battery having an excellent appearance and with good productivity, and completing the present invention. It came to
 本発明によれば、
 正極活物質および負極活物質から選択される電極活物質と、水系バインダーと、増粘剤と、水系媒体と、を含むリチウムイオン電池用水系電極スラリーの製造方法であって、
 セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって、上記増粘剤粉末の篩通過分(q)を得る工程と、
 電極活物質、水系バインダー、上記篩通過分(q)および水系媒体を混合することにより水系電極スラリーを調製する工程と、
を含むリチウムイオン電池用水系電極スラリーの製造方法が提供される。
According to the invention
A method for producing a water-based electrode slurry for a lithium ion battery, comprising: an electrode active material selected from a positive electrode active material and a negative electrode active material; an aqueous binder; a thickener; and an aqueous medium,
Obtaining a sieve passing portion (q) of the thickener powder by sieving a thickener powder containing a cellulose-based water-soluble polymer;
Preparing an aqueous electrode slurry by mixing an electrode active material, an aqueous binder, the sieve passing portion (q) and an aqueous medium;
There is provided a method of producing a water-based electrode slurry for a lithium ion battery, comprising:
 また、本発明によれば、
 上記のリチウムイオン電池用水系電極スラリーの製造方法により水系電極スラリーを調製する工程と、
 得られた上記水系電極スラリーを基材上に塗工して乾燥し、上記水系媒体を除去することにより上記基材上に電極活物質層を形成する工程と、
を含むリチウムイオン電池用電極の製造方法が提供される。
Moreover, according to the present invention,
Preparing an aqueous electrode slurry by the above method for producing an aqueous electrode slurry for lithium ion batteries;
Coating the obtained aqueous electrode slurry on a substrate, drying the slurry, and removing the aqueous medium to form an electrode active material layer on the substrate;
A method of manufacturing a lithium ion battery electrode is provided.
 また、本発明によれば、
 リチウムイオン電池用の水系電極スラリーの増粘に用いられる増粘剤粉末であって、
 セルロース系水溶性高分子を含み、
 レーザー回折散乱式粒度分布測定法による体積基準粒度分布における上記増粘剤粉末の最大粒子径をD100[μm]としたとき、
 目開きがD100(μm)以上D100+5(μm)以下の範囲にある篩に上記増粘剤粉末をかけることによって、上記増粘剤粉末を篩上残分と篩通過分とに分けたとき、上記篩上残分の割合が、上記増粘剤粉末の全量を100質量%としたとき、0.05質量%以下であるリチウムイオン電池用増粘剤粉末が提供される。
Moreover, according to the present invention,
A thickener powder used to thicken an aqueous electrode slurry for lithium ion batteries,
Contains cellulose-based water-soluble polymers,
When the maximum particle diameter of the above-mentioned thickener powder in volume based particle size distribution by laser diffraction scattering type particle size distribution measuring method is D 100 [μm],
The thickener powder was divided into a sieve residue and a sieve passing fraction by applying the thickener powder to a sieve having an opening of at least D 100 (μm) and at least D 100 +5 (μm). When the ratio of the said residue on a sieve sets the whole quantity of the said thickener powder to 100 mass%, the thickener powder for lithium ion batteries which is 0.05 mass% or less is provided.
 また、本発明によれば、
 正極活物質および負極活物質から選択される電極活物質と、
 水系バインダーと、
 上記のリチウムイオン電池用増粘剤粉末と、
 水系媒体と、
を含み、
 上記リチウムイオン電池用増粘剤粉末は上記水系媒体に溶解している水系電極スラリーが提供される。
Moreover, according to the present invention,
An electrode active material selected from a positive electrode active material and a negative electrode active material;
A water-based binder,
The above-mentioned thickener powder for lithium ion batteries,
Aqueous medium,
Including
The above-mentioned thickener powder for lithium ion batteries provides an aqueous electrode slurry dissolved in the above aqueous medium.
 また、本発明によれば、
 正極活物質および負極活物質から選択される電極活物質と、
 水系バインダーと、
 上記のリチウムイオン電池用増粘剤粉末により構成された粘着剤と、
を含むリチウムイオン電池用電極が提供される。
Moreover, according to the present invention,
An electrode active material selected from a positive electrode active material and a negative electrode active material;
A water-based binder,
An adhesive comprising the above-mentioned thickener powder for lithium ion batteries;
An electrode for a lithium ion battery is provided.
 また、本発明によれば、
 正極と、電解質と、負極とを少なくとも備えたリチウムイオン電池であって、
 上記正極および上記負極の少なくとも一方が上記のリチウムイオン電池用電極を含むリチウムイオン電池が提供される。
Moreover, according to the present invention,
A lithium ion battery comprising at least a positive electrode, an electrolyte and a negative electrode,
There is provided a lithium ion battery in which at least one of the positive electrode and the negative electrode includes the electrode for lithium ion battery described above.
 本発明によれば、外観に優れたリチウムイオン電池用電極を安定して生産性よく得ることが可能な水系電極スラリー並びにリチウムイオン電池用増粘剤粉末、外観に優れたリチウムイオン電池用電極およびその電極を用いたリチウムイオン電池を提供することができる。 According to the present invention, an aqueous electrode slurry capable of stably obtaining a lithium ion battery electrode having an excellent appearance with good productivity, a thickener powder for a lithium ion battery, an electrode for a lithium ion battery having an excellent appearance, and A lithium ion battery using the electrode can be provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
本発明に係る実施形態のリチウムイオン電池用電極の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the electrode for lithium ion batteries of embodiment which concerns on this invention. 本発明に係る実施形態のリチウムイオン電池の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the lithium ion battery of embodiment which concerns on this invention.
 以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。
 なお、本実施形態では数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
Hereinafter, embodiments of the present invention will be described using the drawings. In all the drawings, similar components are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. Further, in the drawings, each component schematically shows the shape, size and arrangement relationship to the extent that the present invention can be understood, and is different from the actual size.
In the present embodiment, “A to B” in the numerical range indicate A or more and B or less unless otherwise specified.
<リチウムイオン電池用水系電極スラリーの製造方法>
 はじめに、本実施形態に係るリチウムイオン電池用水系電極スラリーの製造方法について説明する。
 本実施形態に係る水系電極スラリーの製造方法は、正極活物質および負極活物質から選択される電極活物質(a)と、水系バインダー(b)と、増粘剤と、水系媒体(c)と、を含むリチウムイオン電池用水系電極スラリーの製造方法であって、以下の工程(A)および工程(B)を少なくとも含む。
 工程(A):セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって、増粘剤粉末の篩通過分(q)を得る工程
 工程(B):電極活物質(a)、水系バインダー(b)、篩通過分(q)および水系媒体(c)を混合することにより水系電極スラリーを調製する工程
<Method of producing aqueous electrode slurry for lithium ion battery>
First, a method of producing a water-based electrode slurry for a lithium ion battery according to the present embodiment will be described.
In the method of producing an aqueous electrode slurry according to the present embodiment, an electrode active material (a) selected from a positive electrode active material and a negative electrode active material, an aqueous binder (b), a thickener, and an aqueous medium (c) A method of producing a water-based electrode slurry for a lithium ion battery, comprising at least the following steps (A) and (B).
Step (A): A step of obtaining a sieve passing portion (q) of the thickener powder by sieving a thickener powder containing a cellulose-based water-soluble polymer Step (B): Electrode active material (a), Step of preparing aqueous electrode slurry by mixing aqueous binder (b), sieve passing fraction (q) and aqueous medium (c)
 本発明者らの検討によれば、特許文献1および2に記載されているような製造方法により得られた水系電極スラリーはロットごとに粘度のバラつきがあったり、保存時に粘度が変化したりして、品質が安定しない場合があることが明らかになった。また、このような品質が安定しない水系電極スラリーを用いて作製した電極には凝集物が発生しやすいことが明らかになった。
 さらに、本発明者らの検討によれば、水系電極スラリーの調製の際に、増粘剤水溶液を分割して添加する方法により得られた水系電極スラリーもロットごとに粘度のバラつきがあったり、保存時に粘度が変化したりして、品質が安定しない場合があることが明らかになった。さらに、このような水系電極スラリーの製造方法は、増粘剤水溶液を別途調製し、スラリーに分割して添加するため製造工程が多く、かつ、製造時間が長いため生産性に劣っていた。
 すなわち、本発明者らの検討によれば、従来の水系電極スラリーは、外観に優れたリチウムイオン電池用電極を安定して生産性よく得るという観点において改善の余地があることが明らかになった。
According to the study of the present inventors, the aqueous electrode slurry obtained by the production method as described in Patent Documents 1 and 2 has a variation in viscosity per lot, or the viscosity changes during storage. It has become clear that the quality may not be stable. In addition, it was revealed that aggregates are likely to be generated in an electrode manufactured using a water-based electrode slurry whose quality is not stable.
Furthermore, according to the study of the present inventors, when preparing the aqueous electrode slurry, the aqueous electrode slurry obtained by the method of dividing and adding the thickener aqueous solution also has variation in viscosity among lots, It has become clear that the viscosity may change during storage and the quality may not be stable. Furthermore, in the method of producing such aqueous electrode slurry, the thickener aqueous solution is separately prepared, divided into the slurry and added, and there are many production steps, and the production time is long and the productivity is inferior.
That is, according to the study of the present inventors, it has become clear that the conventional aqueous electrode slurry has room for improvement from the viewpoint of stably obtaining the electrode for lithium ion battery excellent in appearance with good productivity. .
 本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、従来のセルロース系水溶性高分子を含む増粘剤粉末には水不溶解成分が含まれており、この水不溶解成分を特定量含むと得られる水系電極スラリーの品質安定性が低下することが明らかになった。
 また、増粘剤水溶液を分割して添加する方法では、固練り工程の後にも増粘剤水溶液を添加するため、水系電極スラリーの品質安定性が低下することが明らかになった。
 そこで、本発明者は、さらに鋭意検討した。その結果、セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって得られる篩通過分(q)を用いると、品質安定性に優れた水系電極スラリーを安定的に得ることができることを見出した。そして、このようにして得られた水系電極スラリーを用いると、凝集物の発生が抑制され、外観に優れたリチウムイオン電池用電極を安定的に得ることができることを見出した。
 すなわち、セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって得られる篩通過分(q)を用いることにより、品質安定性に優れた水系電極スラリーを安定的に得ることができる。そして、このような水系電極スラリーを用いることにより、外観に優れたリチウムイオン電池用電極を安定的に得ることができる。
The present inventors diligently studied to achieve the above object. As a result, the thickener powder containing the conventional cellulose-based water-soluble polymer contains a water-insoluble component, and when the water-insoluble component is contained in a specific amount, the quality stability of the aqueous electrode slurry obtained decreases. It became clear to do.
Moreover, in the method of adding the thickener aqueous solution separately, since the thickener aqueous solution is added even after the solidifying step, it has become clear that the quality stability of the aqueous electrode slurry is lowered.
Therefore, the present inventors further studied earnestly. As a result, it is possible to stably obtain an aqueous electrode slurry having excellent quality stability by using a sieve passing fraction (q) obtained by sieving a thickener powder containing a cellulose-based water-soluble polymer. Found out. And when the water-based electrode slurry obtained in this way was used, generation | occurrence | production of an aggregate was suppressed and it discovered that the electrode for lithium ion batteries excellent in the external appearance could be obtained stably.
That is, an aqueous electrode slurry excellent in quality stability can be stably obtained by using a sieve passing fraction (q) obtained by sieving thickener powder containing a cellulose-based water-soluble polymer. . And an electrode for lithium ion batteries excellent in the appearance can be stably obtained by using such a water-based electrode slurry.
 本実施形態に係るリチウムイオン電池用水系電極スラリーの製造方法において、レーザー回折散乱式粒度分布測定法による体積基準粒度分布における篩通過分(q)の最大粒子径をD100[μm]としたとき、目開きがD100(μm)以上D100+5(μm)以下の範囲にある篩に篩通過分(q)をかけることによって、篩通過分(q)を篩上残分と篩通過分とに再度分けたとき、上記篩上残分の割合が、篩通過分(q)の全量を100質量%としたとき、好ましくは0.05質量%以下、より好ましくは0.03質量%以下、さらに好ましくは0.01質量%以下である。上記篩上残分の割合の下限値は特に限定されないが、例えば、0.00質量%以上である。
 篩通過分(q)の最大粒子径D100は、例えば、粒度分布測定装置(Malvern Instruments社製、型名:Mastersizer2000)を用いて測定することができる。上記最大粒子径D100とは、体積基準の粒子径分布において積算(累積)体積百分率が100%となる粒子径を意味する。
 ここで、本実施形態において、上記篩上残分の割合は、篩通過分(q)に含まれるセルロース系水溶性高分子由来の繊維成分の量の指標を意味する。すなわち、上記篩上残分の割合が少ないほど、篩通過分(q)に含まれるセルロース系水溶性高分子由来の繊維成分の量が少ないことを意味している。
In the method for producing a water-based electrode slurry for lithium ion batteries according to the present embodiment, when the maximum particle diameter of sieve passing part (q) in volume-based particle size distribution by laser diffraction scattering type particle size distribution measurement method is D 100 [μm] The sieve passing portion (q) is obtained by subjecting the sieve passing portion (q) to the sieve residue and the sieve passing portion by subjecting the sieve passing portion (q) to a sieve having an opening of D 100 (μm) or more and D 100 +5 (μm) or less. When the above-mentioned ratio of the residue on the sieve makes the total amount of sieve passing fraction (q) 100% by mass, it is preferably 0.05% by mass or less, more preferably 0.03% by mass or less. More preferably, it is 0.01 mass% or less. Although the lower limit value of the ratio of the above-mentioned sieve residue is not particularly limited, it is, for example, 0.00% by mass or more.
The maximum particle diameter D 100 of the sieve passing fraction (q) can be measured, for example, using a particle size distribution analyzer (manufactured by Malvern Instruments, model name: Mastersizer 2000). The maximum particle diameter D 100 means a particle diameter at which the integrated (accumulated) volume percentage is 100% in the volume-based particle diameter distribution.
Here, in the present embodiment, the ratio of the above-mentioned sieve residue means an index of the amount of the fiber component derived from the cellulose-based water-soluble polymer contained in the sieve passing portion (q). That is, the smaller the ratio of the residue on the sieve, the smaller the amount of the fiber component derived from the cellulose-based water-soluble polymer contained in the sieve passing portion (q).
 工程(A)では、セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって、増粘剤粉末の篩通過分(q)を得る。
 ここで、セルロース系水溶性高分子を含む増粘剤粉末は公知の方法で製造することもできるが、種々の市販品を用いることもできる。
 上記篩としては特に限定されないが、例えば、レーザー回折散乱式粒度分布測定法による体積基準粒度分布における、篩にかける前の増粘剤粉末の最大粒子径をD100[μm]としたとき、目開きがD100(μm)以上D100+30(μm)以下の範囲にある篩を用いることが好ましく、目開きがD100(μm)以上D100+20(μm)以下の範囲にある篩を用いることがより好ましく、目開きがD100(μm)以上D100+10(μm)以下の範囲にある篩を用いることがさらに好ましく、目開きがD100(μm)以上D100+5(μm)以下の範囲にある篩を用いることが特に好ましい。これにより増粘剤粉末に含まれるセルロース系水溶性高分子由来の繊維成分を効果的に除去することができ、篩上残分の割合が上記上限値以下の増粘剤粉末の篩通過分(q)を効率的に得ることができる。
In step (A), a sieve powder (q) of the thickener powder is obtained by sieving a thickener powder containing a cellulose-based water-soluble polymer.
Here, the thickener powder containing the cellulose-based water-soluble polymer can be produced by a known method, but various commercial products can also be used.
The sieve is not particularly limited. For example, when the maximum particle diameter of the thickener powder before being sieved is D 100 [μm] in the volume-based particle size distribution by laser diffraction / scattering type particle size distribution measurement, It is preferable to use a sieve having an opening in the range of D 100 (μm) or more and D 100 +30 (μm) or less, and a sieve having an opening in the range of D 100 (μm) to D 100 +20 (μm) or less It is more preferable to use a sieve having an opening of D 100 (μm) or more and D 100 +10 (μm) or less, and an opening of D 100 (μm) or more and D 100 +5 (μm) or less It is particularly preferred to use a sieve which is As a result, the fiber component derived from the cellulose-based water-soluble polymer contained in the thickener powder can be effectively removed, and the sieve passing fraction of the thickener powder with the ratio of the sieve residue remaining below the above-mentioned upper limit q) can be obtained efficiently.
 工程(B)では、電極活物質(a)、水系バインダー(b)、篩通過分(q)および水系媒体(c)を混合することにより水系電極スラリーを調製する。このとき、導電助剤(d)を合わせて混合してもよい。 In the step (B), the aqueous electrode slurry is prepared by mixing the electrode active material (a), the aqueous binder (b), the sieve passing portion (q) and the aqueous medium (c). At this time, the conductive aid (d) may be combined and mixed.
 また、工程(B)では、以下の工程(B-1)~(B-3)を含むことが好ましい。これにより品質安定性に優れた水系電極スラリーをより一層安定的に得ることができる。
 工程(B-1):電極活物質(a)および篩通過分(q)を紛体状態で乾式混合することにより、電極活物質(a)および篩通過分(q)を含む混合物を調製する工程
 工程(B-2):上記混合物中に、水系媒体(c)および水系バインダー(b)を含むエマルジョン水溶液から選択される一種または二種以上の液体成分を添加して湿式混合することにより、スラリー前駆体を調製する工程
 工程(B-3):上記スラリー前駆体中に、水系媒体(c)および水系バインダー(b)を含むエマルジョン水溶液から選択される一種または二種以上の液体成分をさらに添加して湿式混合することにより上記水系電極スラリーを調製する工程
Further, the step (B) preferably includes the following steps (B-1) to (B-3). Thus, the aqueous electrode slurry excellent in quality stability can be obtained more stably.
Step (B-1): A step of preparing a mixture containing the electrode active material (a) and the sieve passing portion (q) by dry mixing the electrode active material (a) and the sieve passing portion (q) in powder form Step (B-2): Slurry by wet mixing one or two or more kinds of liquid components selected from aqueous emulsion solution containing aqueous medium (c) and aqueous binder (b) into the above mixture Step of Preparing a Precursor Step (B-3): One or Two or More Liquid Components Selected from an Aqueous Emulsion Solution Containing an Aqueous Medium (c) and an Aqueous Binder (b) are further Added to the Slurry Precursor Of preparing the aqueous electrode slurry by mixing and wet mixing
 工程(B-1)では、電極活物質(a)および篩通過分(q)を紛体状態で乾式混合することにより、電極活物質(a)および篩通過分(q)を含む粉体の混合物を調製する。このとき、導電助剤(d)を合わせて紛体混合してもよい。
 本実施形態において、工程(B-1)をおこなうことにより、電極活物質(a)および増粘剤の分散性を高めることができ、その後の工程において、増粘剤由来のゲル成分の生成をより一層抑制できる。これにより、得られる水系電極スラリー中の増粘剤由来のゲル成分の発生を抑制することができる。
In the step (B-1), the powder mixture containing the electrode active material (a) and the sieve passing portion (q) is obtained by dry mixing the electrode active material (a) and the sieve passing portion (q) in a powder state. Prepare. At this time, the conductive aid (d) may be combined and powder mixed.
In the present embodiment, by performing the step (B-1), the dispersibility of the electrode active material (a) and the thickener can be enhanced, and in the subsequent steps, the formation of the gel component derived from the thickener is carried out. It can be further suppressed. Thereby, generation | occurrence | production of the gel component derived from the thickener in the water-based electrode slurry obtained can be suppressed.
 本発明者の検討により、電極活物質および増粘剤を紛体状態で乾式混合する工程を含む製造方法で得られた水系電極スラリーを用いて作製したリチウムイオン電池用電極には凝集物が発生しやすいことが明らかになった。
 そこで、本発明者はさらに鋭意検討した。その結果、本実施形態に係る増粘剤粉末の篩通過分(q)を用いることにより、電極表面の凝集物の発生を抑制でき、外観に優れたリチウムイオン電池用電極を安定的に得られることを見出した。
According to the study of the present inventor, an aggregate is generated in the lithium ion battery electrode manufactured using the aqueous electrode slurry obtained by the manufacturing method including the step of dry-mixing the electrode active material and the thickener in the powder state. It became clear that it was easy.
Therefore, the inventor further studied earnestly. As a result, by using the sieve passing portion (q) of the thickener powder according to the present embodiment, it is possible to suppress the generation of aggregates on the electrode surface, and it is possible to stably obtain the lithium ion battery electrode having an excellent appearance. I found out.
 乾式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、電極活物質(a)および篩通過分(q)の飛散を抑制しながら、電極活物質(a)および篩通過分(q)を十分に混合することができる。なお、遊星運動型ミキサーは、攪拌機構として自転と公転機能を有しているミキサーのことをいう。遊星運動型プラネタリーミキサーとは、攪拌機構として自転と公転機能を有するブレードをもつミキサーをいう。 As a mixer which performs dry mixing, it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer. By using such a mixer, the electrode active material (a) and the sieve passing portion (q) can be sufficiently mixed while suppressing scattering of the electrode active material (a) and the sieve passing portion (q). it can. In addition, a planetary motion type mixer means the mixer which has rotation and revolution function as a stirring mechanism. The planetary motion type planetary mixer refers to a mixer having a blade having rotation and revolution functions as a stirring mechanism.
 工程(B-2)では、工程(B-1)により得られた上記混合物中に、水系媒体(c)および水系バインダー(b)を含むエマルジョン水溶液から選択される一種または二種以上の液体成分を添加して湿式混合することにより、スラリー前駆体を調製する。 In the step (B-2), one or more liquid components selected from an aqueous emulsion solution containing the aqueous medium (c) and the aqueous binder (b) in the mixture obtained in the step (B-1) The slurry precursor is prepared by adding and wet mixing.
 工程(B-2)は、なじませ工程(B-2―1)と、固練り工程(B-2―2)とを含むことが好ましい。なじませ工程(B-2―1)は、紛体混合物に水系媒体(c)および水系バインダー(b)を含むエマルジョン水溶液から選択される一種または二種以上の液体成分をなじませる工程である。なじませ工程(B-2―1)を含むことにより、紛体混合物が湿式混合時に混合機のふちにせり上がってくることや、紛体混合物の濡れが偏ってしまうこと、紛体混合物が混練時に飛び散ること等を抑制できる。
 また、固練り工程(B-2―2)は、なじませ工程(B-2―1)よりも湿式混合の速度を高く設定し、上記紛体混合物と上記液体成分とを混練し、スラリー前駆体を得る工程である。
It is preferable that the step (B-2) includes an adaptation step (B-2-1) and a solidifying step (B-2-2). The blending step (B-2-1) is a step of blending the powder mixture with one or more liquid components selected from an aqueous emulsion solution containing an aqueous medium (c) and an aqueous binder (b). By including the blending step (B-2-1), the powder mixture may rise up to the edge of the mixer during wet mixing, the wetting of the powder mixture may be uneven, and the powder mixture may be splashed during kneading Etc. can be suppressed.
Also, in the solidifying step (B-2-2), the wet mixing speed is set higher than that of the soaking step (B-2-1), and the powder mixture and the liquid component are kneaded to obtain a slurry precursor. Is a process of obtaining
 工程(B-2)における湿式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、水系電極スラリーを構成する各材料の飛散を抑制しながら、各材料の分散性を高めることができる。 As a mixer performing wet mixing in the step (B-2), it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer. By using such a mixer, the dispersibility of each material can be enhanced while suppressing the scattering of each material constituting the aqueous electrode slurry.
 なじませ工程(B-2―1)における上記湿式混合の自転速度は特に限定されないが、0.10m/sec以上0.50m/sec以下の範囲内であることが好ましい。
 なじませ工程(B-2―1)における上記湿式混合の自転速度が上記範囲内であると、紛体混合物が湿式混合時に混合機のふちにせり上がってくることや、紛体混合物の濡れが偏ってしまうこと、紛体混合物が混練時に飛び散ること等をより効果的に抑制しながら、紛体混合物に液体成分を十分になじませることができる。
The rotation speed of the wet mixing in the blending step (B-2-1) is not particularly limited, but is preferably in the range of 0.10 m / sec or more and 0.50 m / sec or less.
If the rotation speed of the wet mixing in the blending step (B-2-1) is within the above range, the powder mixture may rise up to the edge of the mixer during wet mixing, or the wetting of the powder mixture may be uneven. It is possible to make the liquid mixture sufficiently compatible with the powder mixture while suppressing effectively the powder mixture being splashed during kneading and the like.
 また、なじませ工程(B-2―1)における上記湿式混合の公転速度は特に限定されないが、0.01m/sec以上0.10m/sec以下の範囲内であることが好ましい。
 なじませ工程(B-2―1)における上記湿式混合の公転速度が上記範囲内であると、紛体混合物が湿式混合時に混合機のふちにせり上がってくることや、紛体混合物の濡れが偏ってしまうこと、紛体混合物が混練時に飛び散ること等をより効果的に抑制しながら、紛体混合物に液体成分を十分になじませることができる。
Further, the revolving speed of the above-mentioned wet mixing in the blending step (B-2-1) is not particularly limited, but is preferably in the range of 0.01 m / sec or more and 0.10 m / sec or less.
If the revolution speed of the wet mixing in the blending step (B-2-1) is within the above range, the powder mixture may rise up to the edge of the mixer during wet mixing, and the wetting of the powder mixture may be uneven. It is possible to make the liquid mixture sufficiently compatible with the powder mixture while suppressing effectively the powder mixture being splashed during kneading and the like.
 なじませ工程(B-2―1)における上記湿式混合の混合時間は、特に限定されないが、例えば、0.1分以上30分以下であることが好ましい。 The mixing time of the wet mixing in the blending step (B-2-1) is not particularly limited, but is preferably, for example, 0.1 minutes or more and 30 minutes or less.
 固練り工程(B-2―2)における上記湿式混合の自転速度は、0.60m/sec以上10.00m/sec以下の範囲内であることが好ましい。
 固練り工程(B-2―2)における上記湿式混合の自転速度が上記範囲内であると、スラリー前駆体に加わるせん断力をより適度なものとすることができるため、増粘剤の分子鎖の切断を抑制しつつ、増粘剤由来のゲル成分をより容易に解砕することができ、得られる水系電極スラリー中の増粘剤由来のゲル成分の発生をより一層抑制することができる。
The rotation speed of the wet mixing in the solidifying step (B-2-2) is preferably in the range of 0.60 m / sec or more and 10.00 m / sec or less.
When the rotation speed of the wet mixing in the solidifying step (B-2-2) is in the above range, the shear force applied to the slurry precursor can be made more appropriate, so the molecular chain of the thickener The gel component derived from the thickener can be easily crushed while suppressing the cleavage of the polymer, and the generation of the gel component derived from the thickener in the obtained aqueous electrode slurry can be further suppressed.
 また、固練り工程(B-2―2)における上記湿式混合の公転速度は、0.20m/sec以上3.00m/sec以下の範囲内であることが好ましい。
 固練り工程(B-2―2)における上記湿式混合の公転速度が上記範囲内であると、スラリー前駆体に加わるせん断力をより適度なものとすることができるため、増粘剤の分子鎖の切断を抑制しつつ、増粘剤由来のゲル成分をより容易に解砕することができ、得られる水系電極スラリー中の増粘剤由来のゲル成分の発生をより一層抑制することができる。
In addition, the revolution speed of the wet mixing in the solidifying step (B-2-2) is preferably in the range of 0.20 m / sec to 3.00 m / sec.
Since the shear force applied to the slurry precursor can be made more appropriate when the revolution speed of the wet mixing in the solidifying step (B-2-2) is within the above range, the molecular chain of the thickener is The gel component derived from the thickener can be easily crushed while suppressing the cleavage of the polymer, and the generation of the gel component derived from the thickener in the obtained aqueous electrode slurry can be further suppressed.
 固練り工程(B-2―2)における上記湿式混合の混合時間は特に限定されないが、例えば、10分以上180分である。 The mixing time of the wet mixing in the solidifying step (B-2-2) is not particularly limited, and is, for example, 10 minutes or more and 180 minutes.
 工程(B-2)において、スラリー前駆体の固形分濃度を好ましくは30.0質量%以上70.0質量%以下に調整することが好ましい。これにより、スラリー前駆体に加わるせん断力をより適度なものとすることができるため、増粘剤の分子鎖の切断を抑制しつつ、各材料の分散性を高めることができる。
 スラリー前駆体の固形分濃度は、上記液体成分の濃度や添加量を調整することにより調整することができる。
In the step (B-2), the solid content concentration of the slurry precursor is preferably adjusted to 30.0% by mass or more and 70.0% by mass or less. Since the shear force added to a slurry precursor can be made more suitable by this, the dispersibility of each material can be improved, suppressing a cutting | disconnection of the molecular chain of a thickener.
The solid content concentration of the slurry precursor can be adjusted by adjusting the concentration and the addition amount of the liquid component.
 工程(B-3)では、工程(B-2)により得られた上記スラリー前駆体中に、水系媒体(c)および水系バインダー(b)を含むエマルジョン水溶液から選択される一種または二種以上の液体成分をさらに添加して湿式混合することにより、上記水系電極スラリーを調製する。 In the step (B-3), at least one selected from an aqueous emulsion solution containing an aqueous medium (c) and an aqueous binder (b) in the above-mentioned slurry precursor obtained in the step (B-2) The aqueous electrode slurry is prepared by further adding a liquid component and wet mixing.
 湿式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、低速で攪拌しながら、十分に混合することができる。そのため、攪拌混合による増粘剤の分子鎖の切断を抑制し、かつ、水系バインダー(b)同士の凝集を抑制しながら、水系電極スラリーを構成する各材料の分散性を高めることができる。そして、その結果として、品質安定性により一層優れた水系電極スラリーを得ることができる。
 また、得られる水系電極スラリーは分散性がより一層優れるため、このような水系電極スラリーを用いると、より一層均一な電極活物質層を得ることができる。その結果、より一層電池特性に優れたリチウムイオン電池を得ることができる。
As a mixer performing wet mixing, it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer. By using such a mixer, sufficient mixing can be performed while stirring at low speed. Therefore, the dispersibility of each material which comprises a water-based electrode slurry can be improved, suppressing the cutting | disconnection of the molecular chain of the thickener by stirring and mixing, and suppressing aggregation of water-based binders (b). As a result, it is possible to obtain an aqueous electrode slurry having more excellent quality stability.
In addition, since the obtained aqueous electrode slurry is further excellent in dispersibility, the use of such aqueous electrode slurry makes it possible to obtain an even more uniform electrode active material layer. As a result, it is possible to obtain a lithium ion battery having further excellent battery characteristics.
 本実施形態において、工程(B-3)における湿式混合の自転速度および公転速度の少なくとも一方、好ましくは自転速度および公転速度の両方を、固練り工程(B-2―2)における湿式混合の自転速度よりも低く設定することが好ましい。これにより、攪拌混合による水系バインダー(b)同士の凝集をより一層抑制しながら、水系電極スラリーを構成する各材料の分散性を高めることができる。 In the present embodiment, at least one of the rotation speed and the rotation speed of the wet mixing in the step (B-3), preferably both the rotation speed and the rotation speed, the rotation speed of the wet mixing in the solidifying step (B-2-2) It is preferable to set it lower than the speed. Thereby, the dispersibility of each material which comprises a water-system electrode slurry can be improved, suppressing aggregation of water-system binders (b) by stirring mixing still more.
 工程(B-3)における上記湿式混合の混合時間は、特に限定されないが、例えば、5分以上60分以下である。 The mixing time of the wet mixing in the step (B-3) is not particularly limited, and is, for example, 5 minutes or more and 60 minutes or less.
 なお、水系電極スラリーの固形分濃度は、上記液体成分の濃度や添加量を調整することにより調整することができる。 The solid content concentration of the aqueous electrode slurry can be adjusted by adjusting the concentration and the addition amount of the liquid component.
 本実施形態に係る水系電極スラリーの製造方法は、工程(C):真空脱泡する工程をさらにおこなってもよい。これにより、スラリー中に巻き込んだ気泡を取り除くことができ、スラリーの塗工性を向上させることができる。
 真空脱泡は混合機の容器や軸部にシール処理を施して気泡を除去しても良いし、別の容器に移してから行ってもよい。
The method for producing an aqueous electrode slurry according to the present embodiment may further include a step (C): vacuum degassing. Thereby, air bubbles caught in the slurry can be removed, and the coatability of the slurry can be improved.
The vacuum degassing may be performed by sealing the container or the shaft of the mixer to remove air bubbles, or by transferring it to another container.
<リチウムイオン電池用増粘剤粉末(p)>
 本実施形態に係るリチウムイオン電池用増粘剤粉末(p)はリチウムイオン電池用の水系電極スラリーの増粘に用いられる増粘剤粉末であって、セルロース系水溶性高分子を含み、レーザー回折散乱式粒度分布測定法による体積基準粒度分布における増粘剤粉末(p)の最大粒子径をD100[μm]としたとき、目開きがD100(μm)以上D100+5(μm)以下の範囲にある篩に増粘剤粉末(p)をかけることによって、増粘剤粉末(p)を篩上残分と篩通過分とに分けたとき、上記篩上残分の割合が、増粘剤粉末(p)の全量を100質量%としたとき、0.05質量%以下、好ましくは0.03質量%以下、より好ましくは0.01質量%以下である。上記篩上残分の割合の下限値は特に限定されないが、例えば、0.00質量%以上である。
 増粘剤粉末(p)の最大粒子径D100は、例えば、粒度分布測定装置(Malvern Instruments社製、型名:Mastersizer2000)を用いて測定することができる。上記最大粒子径D100とは、体積基準の粒子径分布において積算(累積)体積百分率が100%となる粒子径を意味する。
 ここで、本実施形態において、上記篩上残分の割合は、増粘剤粉末(p)に含まれるセルロース系水溶性高分子由来の繊維成分の量の指標を意味する。すなわち、上記篩上残分の割合が少ないほど、増粘剤粉末(p)に含まれるセルロース系水溶性高分子由来の繊維成分の割合が少ないことを意味している。
<Thickener powder for lithium ion battery (p)>
The thickener powder (p) for a lithium ion battery according to the present embodiment is a thickener powder used to thicken an aqueous electrode slurry for a lithium ion battery, and contains a cellulose-based water-soluble polymer, and is a laser diffraction When the maximum particle diameter of the thickener powder (p) in the volume-based particle size distribution by scattering type particle size distribution measurement is D 100 [μm], the opening is D 100 (μm) or more and D 100 +5 (μm) or less When the thickener powder (p) is divided into a sieve residue and a sieve passing fraction by applying thickener powder (p) to a sieve in a range, the ratio of the sieve residue is thickened When the total amount of the agent powder (p) is 100% by mass, it is 0.05% by mass or less, preferably 0.03% by mass or less, and more preferably 0.01% by mass or less. Although the lower limit value of the ratio of the above-mentioned sieve residue is not particularly limited, it is, for example, 0.00% by mass or more.
The maximum particle diameter D 100 of the thickener powder (p) can be measured, for example, using a particle size distribution measurement device (Malvern Instruments, model name: Mastersizer 2000). The maximum particle diameter D 100 means a particle diameter at which the integrated (accumulated) volume percentage is 100% in the volume-based particle diameter distribution.
Here, in the present embodiment, the ratio of the residue on the sieve means an index of the amount of the fiber component derived from the cellulose-based water-soluble polymer contained in the thickener powder (p). That is, it means that the ratio of the fiber component derived from the cellulose-based water-soluble polymer contained in the thickener powder (p) decreases as the ratio of the residue on the sieve decreases.
 本発明者らの検討によれば、特許文献1および2に記載されているような製造方法により得られた水系電極スラリーはロットごとに粘度のバラつきがあったり、保存時に粘度が変化したりして、品質が安定しない場合があることが明らかになった。また、このような品質が安定しない水系電極スラリーを用いて作製した電極には凝集物が発生しやすいことが明らかになった。
 さらに、本発明者らの検討によれば、水系電極スラリーの調製の際に、増粘剤水溶液を分割して添加する方法により得られた水系電極スラリーもロットごとに粘度のバラつきがあったり、保存時に粘度が変化したりして、品質が安定しない場合があることが明らかになった。さらに、このような水系電極スラリーの製造方法は、増粘剤水溶液を別途調製し、スラリーに分割して添加するため製造工程が多く、かつ、製造時間が長いため生産性に劣っていた。
 すなわち、本発明者らの検討によれば、従来の水系電極スラリーは、外観に優れたリチウムイオン電池用電極を安定して生産性よく得るという観点において改善の余地があることが明らかになった。
According to the study of the present inventors, the aqueous electrode slurry obtained by the production method as described in Patent Documents 1 and 2 has a variation in viscosity per lot, or the viscosity changes during storage. It has become clear that the quality may not be stable. In addition, it was revealed that aggregates are likely to be generated in an electrode manufactured using a water-based electrode slurry whose quality is not stable.
Furthermore, according to the study of the present inventors, when preparing the aqueous electrode slurry, the aqueous electrode slurry obtained by the method of dividing and adding the thickener aqueous solution also has variation in viscosity among lots, It has become clear that the viscosity may change during storage and the quality may not be stable. Furthermore, in the method of producing such aqueous electrode slurry, the thickener aqueous solution is separately prepared, divided into the slurry and added, and there are many production steps, and the production time is long and the productivity is inferior.
That is, according to the study of the present inventors, it has become clear that the conventional aqueous electrode slurry has room for improvement from the viewpoint of stably obtaining the electrode for lithium ion battery excellent in appearance with good productivity. .
 本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、従来のセルロース系水溶性高分子を含む増粘剤粉末には水不溶解成分が含まれており、この水不溶解成分を特定量含むと得られる水系電極スラリーの品質安定性が低下することが明らかになった。
 また、増粘剤水溶液を分割して添加する方法では、固練り工程の後にも増粘剤水溶液を添加するため、水系電極スラリーの品質安定性が低下することが明らかになった。
 そこで、本発明者は、さらに鋭意検討した。その結果、上記篩上残分の割合が上限値以下である増粘剤粉末(p)を用いると、品質安定性に優れた水系電極スラリーを安定的に得ることができることを見出した。そして、このようにして得られた水系電極スラリーを用いると、凝集物やピンホールの発生が抑制され、外観に優れたリチウムイオン電池用電極を安定的に得ることができることを見出した。
 すなわち、上記篩上残分の割合が上限値以下である増粘剤粉末(p)を用いることにより、品質安定性に優れた水系電極スラリーを安定的に得ることができる。そして、このような水系電極スラリーを用いることにより、外観に優れたリチウムイオン電池用電極を安定的に得ることができる。
The present inventors diligently studied to achieve the above object. As a result, the thickener powder containing the conventional cellulose-based water-soluble polymer contains a water-insoluble component, and when the water-insoluble component is contained in a specific amount, the quality stability of the aqueous electrode slurry obtained decreases. It became clear to do.
Moreover, in the method of adding the thickener aqueous solution separately, since the thickener aqueous solution is added even after the solidifying step, it has become clear that the quality stability of the aqueous electrode slurry is lowered.
Therefore, the present inventors further studied earnestly. As a result, it has been found that using a thickener powder (p) in which the ratio of the residue on the sieve is less than or equal to the upper limit can stably obtain an aqueous electrode slurry excellent in quality stability. And when the water-based electrode slurry obtained in this way was used, generation | occurrence | production of an aggregate or a pinhole was suppressed and it discovered that the electrode for lithium ion batteries excellent in the external appearance could be obtained stably.
That is, the aqueous electrode slurry excellent in quality stability can be stably obtained by using the thickener powder (p) in which the ratio of the residue on the sieve is the upper limit value or less. And an electrode for lithium ion batteries excellent in the appearance can be stably obtained by using such a water-based electrode slurry.
 増粘剤粉末(p)はセルロース系水溶性高分子を主成分として含むことが好ましい。ここで、セルロース系水溶性高分子を主成分として含むとは、増粘剤粉末(p)がセルロース系水溶性高分子を50質量%以上含むことを意味する。増粘剤粉末(p)はセルロース系水溶性高分子を好ましくは70質量%以上、より好ましくは90質量%以上、特に好ましくは99質量%以上含む。
 セルロース系水溶性高分子としては水系電極スラリーの塗工性を向上させるものであれば特に限定されない。セルロース系水溶性高分子としては、例えば、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、メチルエチルヒドロキシセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー、およびこれらのセルロース系ポリマーのアンモニウム塩並びにアルカリ金属塩等のセルロース系ポリマー塩等から選択される一種または二種以上を用いることができる。
 これらの中でもカルボキシメチルセルロースおよびカルボキシメチルセルロース塩から選択される少なくとも一種を含むことが好ましく、カルボキシメチルセルロース、カルボキシメチルセルロースのアンモニウム塩、カルボキシメチルセルロースのナトリウム塩およびカルボキシメチルセルロースのカリウム塩から選択される一種または二種以上を含むことがより好ましい。
The thickener powder (p) preferably contains a cellulose-based water-soluble polymer as a main component. Here, containing a cellulose-based water-soluble polymer as a main component means that the thickener powder (p) contains 50% by mass or more of a cellulose-based water-soluble polymer. The thickener powder (p) contains preferably at least 70% by mass, more preferably at least 90% by mass, particularly preferably at least 99% by mass of a cellulose-based water-soluble polymer.
The cellulose-based water-soluble polymer is not particularly limited as long as it improves the coatability of the aqueous electrode slurry. Examples of cellulose-based water-soluble polymers include cellulose-based polymers such as carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, methylethylhydroxycellulose, methylcellulose and hydroxypropylcellulose, and ammonium salts and alkali metal salts of these cellulose-based polymers It is possible to use one or two or more selected from cellulose-based polymer salts and the like.
Among these, it is preferable to include at least one selected from carboxymethylcellulose and carboxymethylcellulose salt, and one or more selected from carboxymethylcellulose, ammonium salt of carboxymethylcellulose, sodium salt of carboxymethylcellulose and potassium salt of carboxymethylcellulose. More preferably,
 本実施形態に係るリチウムイオン電池用増粘剤粉末(p)において、上記篩上残分は特に限定されないが、例えば、上記セルロース系水溶性高分子由来の繊維成分を含んでいる。 In the thickener powder (p) for a lithium ion battery according to the present embodiment, the above-described residue on the sieve is not particularly limited, and, for example, contains a fiber component derived from the above-mentioned cellulose water-soluble polymer.
 本実施形態に係るリチウムイオン電池用増粘剤粉末(p)において、下記条件1により算出される粘度が10mPa・s以上20000mPa・s以下であることが好ましく、100mPa・s以上10000mPa・s以下であることがより好ましく、1000mPa・s以上8000mPa・s以下であることがさらに好ましく、2000mPa・s以上4000mPa・s以下であることが特に好ましい。
 条件1:増粘剤粉末(p)を水に溶解させ、濃度1.3質量%の増粘剤水溶液を得る。次いで、B型粘度計を用いて、25℃、せん断速度3.4s-1の条件で増粘剤水溶液の粘度を測る。
 これにより、得られる水系電極スラリーの塗工性をより一層向上させることができる。
In the thickener powder (p) for a lithium ion battery according to this embodiment, the viscosity calculated under the following condition 1 is preferably 10 mPa · s or more and 20000 mPa · s or less, and is 100 mPa · s or more and 10000 mPa · s or less The viscosity is more preferably 1000 mPa · s or more and 8000 mPa · s or less, and particularly preferably 2000 mPa · s or more and 4000 mPa · s or less.
Condition 1: The thickener powder (p) is dissolved in water to obtain a thickener aqueous solution having a concentration of 1.3% by mass. Next, using a B-type viscometer, the viscosity of the aqueous thickener solution is measured at 25 ° C. and a shear rate of 3.4 s −1 .
This makes it possible to further improve the coatability of the obtained aqueous electrode slurry.
<増粘剤粉末(p)の製造方法>
 次に、本実施形態に係るリチウムイオン電池用増粘剤粉末(p)の製造方法を説明する。
 本実施形態に係る増粘剤粉末(p)は、例えば、セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって得ることができる。ただし、本実施形態に係るリチウムイオン電池用増粘剤粉末(p)の製造方法は、篩をかける方法に限定されない。
 ここで、セルロース系水溶性高分子を含む増粘剤粉末を篩にかける工程は、前述したリチウムイオン電池用水系電極スラリーの製造方法における工程(A)に準じておこなうことができるため、ここでは説明は省略する。
<Method of producing thickener powder (p)>
Next, the manufacturing method of the thickener powder (p) for lithium ion batteries which concerns on this embodiment is demonstrated.
The thickener powder (p) according to the present embodiment can be obtained, for example, by sifting a thickener powder containing a cellulose-based water-soluble polymer. However, the method of producing the thickener powder (p) for a lithium ion battery according to the present embodiment is not limited to the method of screening.
Here, the step of sieving the thickener powder containing the cellulose-based water-soluble polymer can be performed according to the step (A) in the method for producing a water-based electrode slurry for lithium ion batteries described above. The description is omitted.
<水系電極スラリー>
 次に、本実施形態に係る水系電極スラリーについて説明する。
 本実施形態に係る水系電極スラリーは、正極活物質および負極活物質から選択される電極活物質(a)と、水系バインダー(b)と、本実施形態に係るリチウムイオン電池用増粘剤粉末(p)と、水系媒体(c)と、を含み、リチウムイオン電池用増粘剤粉末(p)は水系媒体(c)に溶解している。また、本実施形態に係る水系電極スラリーは、得られる電極の電子伝導性を向上させる観点から、導電助剤(d)をさらに含むことが好ましい。
 ここで、本実施形態に係る水系電極スラリーにおいて、リチウムイオン電池用増粘剤粉末(p)は水系電極スラリー中に溶解しており、粉末状態ではない。
<Water based electrode slurry>
Next, the water-based electrode slurry according to the present embodiment will be described.
The aqueous electrode slurry according to the present embodiment comprises an electrode active material (a) selected from a positive electrode active material and a negative electrode active material, an aqueous binder (b), and a thickener powder for lithium ion batteries according to the present embodiment ( p) and an aqueous medium (c), wherein the thickener powder (p) for a lithium ion battery is dissolved in the aqueous medium (c). Moreover, it is preferable that the water-based electrode slurry which concerns on this embodiment further contains a conductive support agent (d) from a viewpoint of improving the electron conductivity of the electrode obtained.
Here, in the aqueous electrode slurry according to the present embodiment, the thickener powder (p) for a lithium ion battery is dissolved in the aqueous electrode slurry and is not in a powder state.
(電極活物質(a))
 本実施形態に係る電極活物質(a)は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。
(Electrode active material (a))
The electrode active material (a) according to the present embodiment is appropriately selected according to the application. When manufacturing a positive electrode, a positive electrode active material is used, and when manufacturing a negative electrode, a negative electrode active material is used.
 正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウム-マンガン-ニッケル複合酸化物等のリチウムと遷移金属との複合酸化物;TiS、FeS、MoS等の遷移金属硫化物;MnO、V、V13、TiO等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
 オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
The positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery. For example, complex oxides of lithium and transition metals such as lithium nickel complex oxide, lithium cobalt complex oxide, lithium manganese complex oxide, lithium-manganese-nickel complex oxide, etc. Transitions such as TiS 2 , FeS, MoS 2 etc. Metal sulfides; transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , and olivine-type lithium phosphorus oxides.
The olivine-type lithium phosphorus oxide is, for example, at least one member of the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus and oxygen. These compounds may be obtained by partially replacing some elements with other elements in order to improve their properties.
 これらの中でも、オリビン型リチウム鉄リン酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウム-マンガン-ニッケル複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
 正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Among these, olivine-type lithium iron phosphorus oxide, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and lithium-manganese-nickel composite oxide are preferable. These positive electrode active materials have large capacity in addition to high action potential and large energy density.
The positive electrode active material may be used singly or in combination of two or more.
 負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属;シリコン、スズ等の金属;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
 負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The negative electrode active material is not particularly limited as long as it is a common negative electrode active material that can be used for the negative electrode of a lithium ion battery. For example, carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metals such as lithium metal and lithium alloy; metals such as silicon and tin; polyacene, polyacetylene, polypyrrole etc Conductive polymers and the like. Among these, carbon materials are preferable, and particularly graphitic materials such as natural graphite and artificial graphite are preferable.
The negative electrode active material may be used singly or in combination of two or more.
 電極活物質(a)の含有量は、水系電極スラリーの固形分の全量を100質量部としたとき、70質量部以上99.97質量部以下であることが好ましく、85質量部以上99.85質量部以下であることがより好ましい。 The content of the electrode active material (a) is preferably 70 parts by mass or more and 99.97 parts by mass or less, and 85 parts by mass or more and 99.85 parts by mass, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is at most parts by mass.
(水系バインダー(b))
 水系バインダー(b)は、電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ポリアクリル酸、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリイミド等が挙げられる。これらの水系バインダー(b)は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、スチレンブタジエンゴムが好ましい。
 なお、本実施形態において、水系バインダー(b)とは、水系媒体に分散し、エマルジョン水溶液を形成できるものをいう。
(Water-based binder (b))
The aqueous binder (b) is not particularly limited as long as it can be electrode-shaped and has sufficient electrochemical stability. For example, polyacrylic acid, polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber And polyimide. These aqueous binders (b) may be used alone or in combination of two or more. Among these, styrene butadiene rubber is preferable.
In the present embodiment, the aqueous binder (b) refers to one that can be dispersed in an aqueous medium to form an aqueous emulsion solution.
 水系バインダー(b)の含有量は、水系電極スラリーの固形分の全量を100質量部としたとき、0.01質量部以上10.0質量部以下であることが好ましく、0.05質量部以上5.0質量部以下であることがより好ましい。水系バインダー(b)の含有量が上記範囲内であると、水系電極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。 The content of the aqueous binder (b) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and 0.05 parts by mass or more, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is 5.0 parts by mass or less. When the content of the aqueous binder (b) is within the above range, the balance of the coating property of the aqueous electrode slurry, the binding property of the binder and the battery characteristics is further excellent.
 水系バインダー(b)は、粉末状のものを水系媒体に分散させてエマルジョン水溶液として用いる。これにより、電極活物質(a)間や導電助剤(d)間、電極活物質(a)と導電助剤(d)との間との接触を阻害せず、水系バインダー(b)の分散性を向上させることができる。
 水系バインダー(b)を分散させる水系媒体については、水系バインダー(b)を分散できるものであれば特に限定されないが、蒸留水、イオン交換水、市水、工業用水等を使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコール等の水と親水性の高い溶媒を混合させてもよい。
The aqueous binder (b) is used as an aqueous emulsion solution by dispersing a powdery one in an aqueous medium. As a result, the contact between the electrode active material (a), between the conductive aid (d) and between the electrode active material (a) and the conductive aid (d) is not inhibited, and the dispersion of the aqueous binder (b) is carried out. It is possible to improve the quality.
The aqueous medium in which the aqueous binder (b) is dispersed is not particularly limited as long as it can disperse the aqueous binder (b), but distilled water, ion exchanged water, city water, industrial water, etc. can be used. Among these, distilled water and ion exchange water are preferable. In addition, water may be mixed with water such as alcohol and a highly hydrophilic solvent.
(増粘剤粉末(p))
 増粘剤粉末(p)は、本実施形態に係る増粘剤粉末(p)を用いることができる。
 増粘剤粉末(p)は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。増粘剤粉末(p)の含有量は、水系電極スラリーの固形分の全量を100質量部としたとき、0.01質量部以上10.0質量部以下であることが好ましく、0.05質量部以上5.0質量部以下であることがより好ましい。増粘剤粉末(p)の含有量が上記範囲内であると、水系電極スラリーの塗工性、バインダーの結着性および電池特性のバランスがより一層優れる。
(Thickener powder (p))
The thickener powder (p) according to the present embodiment can be used as the thickener powder (p).
The thickener powder (p) may be used alone or in combination of two or more. The content of the thickener powder (p) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the total solid content of the aqueous electrode slurry, and 0.05 parts by mass It is more preferable that it is part or more and 5.0 parts by mass or less. When the content of the thickener powder (p) is within the above range, the balance of the coating property of the aqueous electrode slurry, the binding property of the binder and the battery characteristics is further excellent.
(水系媒体(c))
 本実施形態に係る水系媒体(c)については特に限定されず、例えば、蒸留水、イオン交換水、市水、工業用水等を使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコール等の水と親水性の高い溶媒を混合させてもよい。
(Water-based medium (c))
It does not specifically limit about the aqueous medium (c) which concerns on this embodiment, For example, distilled water, ion-exchange water, municipal water, industrial water etc. can be used. Among these, distilled water and ion exchange water are preferable. In addition, water may be mixed with water such as alcohol and a highly hydrophilic solvent.
(導電助剤(d))
 本実施形態に係る水系電極スラリーは、得られる電極の電子伝導性を向上させる観点から、導電助剤(d)をさらに含むことが好ましい。
 導電助剤(d)は、電子伝導性を有しており、電極の導電性を向上させるものであれば特に限定されない。本実施形態に係る導電助剤(d)として、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、カーボンナノファイバー、活物質として使用される黒鉛よりも粒子径の小さい黒鉛等の炭素材料が挙げられる。これらの導電助剤(d)は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(Conductive assistant (d))
From the viewpoint of improving the electron conductivity of the obtained electrode, the aqueous electrode slurry according to the present embodiment preferably further contains a conductive auxiliary (d).
The conductive aid (d) has electron conductivity and is not particularly limited as long as it improves the conductivity of the electrode. Examples of the conductive additive (d) according to the present embodiment include carbon materials such as acetylene black, ketjen black, carbon black, carbon nanofibers, and graphite having a particle diameter smaller than that of graphite used as an active material. . These conductive assistants (d) may be used alone or in combination of two or more.
 導電助剤(d)の含有量は、水系電極スラリーの固形分の全量を100質量部としたとき、0.01質量部以上10.0質量部以下であることが好ましく、0.05質量部以上5.0質量部以下であることがより好ましい。
 導電助剤(d)の含有量が上記範囲内であると、水系電極スラリーの塗工性およびバインダーの結着性のバランスがより一層優れる。
The content of the conductive additive (d) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and 0.05 parts by mass or less, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is 5.0 parts by mass or less.
The balance of the coating property of a water-based electrode slurry, and the binding property of a binder as the content of a conductive support agent (d) is in the said range is much more excellent.
 本実施形態の水系電極スラリーは、水系電極スラリーの固形分の全量を100質量部としたとき、電極活物質(a)の含有量は好ましくは70質量部以上99.97質量部以下であり、より好ましくは85質量部以上99.85質量部以下である。また、水系バインダー(b)の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。また、増粘剤粉末(p)の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。また、導電助剤(d)の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。
 水系電極スラリーを構成する各成分の含有量が上記範囲内であると、水系電極スラリーの品質安定性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
In the aqueous electrode slurry of the present embodiment, the content of the electrode active material (a) is preferably 70 parts by mass to 99.97 parts by mass, based on 100 parts by mass of the total solid content of the aqueous electrode slurry. More preferably, it is 85 parts by mass or more and 99.85 parts by mass or less. The content of the aqueous binder (b) is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and more preferably 0.05 parts by mass or more and 5.0 parts by mass or less. Moreover, content of thickener powder (p) becomes like this. Preferably it is 0.01 to 10.0 mass parts, More preferably, it is 0.05 to 5.0 mass parts. Moreover, content of a conductive support agent (d) becomes like this. Preferably it is 0.01 to 10.0 mass parts, More preferably, it is 0.05 to 5.0 mass parts.
When the content of each component constituting the aqueous electrode slurry is in the above range, the balance between the quality stability of the aqueous electrode slurry and the battery characteristics of the obtained lithium ion battery is particularly excellent.
<リチウムイオン電池用電極>
 図1は、本発明に係る実施形態のリチウムイオン電池用電極100の構造の一例を示す断面図である。本実施形態に係るリチウムイオン電池用電極100は、正極活物質および負極活物質から選択される電極活物質(a)と、水系バインダー(b)と、リチウムイオン電池用増粘剤粉末(p)により構成された粘着剤と、を含む。
<Electrode for lithium ion battery>
FIG. 1 is a cross-sectional view showing an example of the structure of a lithium ion battery electrode 100 according to an embodiment of the present invention. An electrode 100 for a lithium ion battery according to this embodiment is an electrode active material (a) selected from a positive electrode active material and a negative electrode active material, an aqueous binder (b), and a thickener powder for lithium ion batteries (p) And an adhesive constituted by
<リチウムイオン電池用電極の製造方法>
 次に、本実施形態に係るリチウムイオン電池用電極100の製造方法について説明する。
 本実施形態に係るリチウムイオン電池用電極100の製造方法は、以下の(1)および(2)の2つの工程を少なくとも含む。これにより外観に優れたリチウムイオン電池用電極を安定的に得ることができる。
 (1)本実施形態に係るリチウムイオン電池用水系電極スラリーの製造方法により水系電極スラリーを調製する工程
 (2)得られた水系電極スラリーを基材101上に塗工して乾燥し、水系媒体を除去することにより基材101上に電極活物質層103を形成する工程
 工程(1)は、前述した本実施形態に係るリチウムイオン電池用水系電極スラリーの製造方法と同様のため、ここでは説明は省略する。以下、工程(2)について説明する。
<Method of Manufacturing Electrode for Lithium Ion Battery>
Next, a method of manufacturing the lithium ion battery electrode 100 according to the present embodiment will be described.
The method of manufacturing the lithium ion battery electrode 100 according to the present embodiment includes at least the following two steps (1) and (2). Thereby, an electrode for a lithium ion battery excellent in appearance can be stably obtained.
(1) Step of preparing aqueous electrode slurry by the method for producing aqueous electrode slurry for lithium ion batteries according to the present embodiment (2) The obtained aqueous electrode slurry is coated on the substrate 101 and dried, and then the aqueous medium The step of forming the electrode active material layer 103 on the base material 101 by removing the second step The step (1) is the same as the method of producing the aqueous electrode slurry for lithium ion batteries according to the present embodiment described above. Is omitted. Hereinafter, the step (2) will be described.
 (2)電極活物質層を形成する工程では、例えば、上記工程(1)により得られた水系電極スラリーを集電体等の基材101上に塗布して乾燥し、水系媒体を除去することにより基材101上に電極活物質層103を形成することにより、基材101上に電極活物質層103が形成されたリチウムイオン電池用電極100を得る。 (2) In the step of forming an electrode active material layer, for example, the aqueous electrode slurry obtained in the above step (1) is applied onto a substrate 101 such as a current collector and dried to remove the aqueous medium Thus, the electrode active material layer 103 is formed on the substrate 101 to obtain the lithium ion battery electrode 100 in which the electrode active material layer 103 is formed on the substrate 101.
 水系電極スラリーを基材101上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等を挙げることができる。 As a method of applying the aqueous electrode slurry on the substrate 101, a generally known method can be used. For example, reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, squeeze method and the like can be mentioned.
 水系電極スラリーは、基材101の片面のみに塗布しても両面に塗布してもよい。基材101の両面に塗布する場合は、片面ずつ逐次でも、両面同時に塗布してもよい。また、基材101の表面に連続で、あるいは、間欠で塗布してもよい。塗布層の厚さや長さ、幅は、電池の大きさに応じて、適宜決定することができる。 The aqueous electrode slurry may be coated on only one side of the substrate 101 or on both sides. In the case of coating on both sides of the substrate 101, it may be coated on one side or on both sides simultaneously. In addition, it may be applied to the surface of the base material 101 continuously or intermittently. The thickness, length, and width of the coating layer can be appropriately determined according to the size of the battery.
 塗布した水系電極スラリーの乾燥方法は、一般的に公知の方法を用いることができる。例えば、熱風、真空、赤外線、遠赤外線、電子線および低温風を単独あるいは組み合わせて用いることができる。乾燥温度は、例えば、30℃以上350℃以下の範囲である。 A commonly known method can be used to dry the coated aqueous electrode slurry. For example, hot air, vacuum, infrared, far infrared, electron beam and low temperature air can be used alone or in combination. The drying temperature is, for example, in the range of 30 ° C. or more and 350 ° C. or less.
 本実施形態に係るリチウムイオン電池用電極100の製造に用いられる基材101としては、例えば、リチウムイオン電池に使用可能な通常の集電体を用いることができる。
 負極集電体としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができ、これらの中でも銅が特に好ましい。
 正極集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができ、これらの中でもアルミニウムが特に好ましい。
 集電体の形状については特に限定されないが、例えば、厚さが0.001~0.5mmの範囲で箔状のものを用いることができる。
As the base material 101 used for manufacture of the electrode 100 for lithium ion batteries which concerns on this embodiment, the normal collector which can be used for a lithium ion battery, for example can be used.
As the negative electrode current collector, copper, stainless steel, nickel, titanium or an alloy thereof can be used, and among these, copper is particularly preferable.
As the positive electrode current collector, aluminum, stainless steel, nickel, titanium or an alloy thereof can be used. Among these, aluminum is particularly preferable.
The shape of the current collector is not particularly limited. For example, a foil-like material having a thickness of 0.001 to 0.5 mm can be used.
 本実施形態に係るリチウムイオン電池用電極100は、必要に応じてプレスしてもよい。プレスの方法としては、一般的に公知の方法を用いることができる。例えば、金型プレス法やカレンダープレス法等が挙げられる。プレス圧は特に限定されないが、例えば、0.2~3t/cmの範囲である。 The lithium ion battery electrode 100 according to the present embodiment may be pressed as necessary. As a method of pressing, generally known methods can be used. For example, a die press method, a calendar press method, etc. may be mentioned. The pressing pressure is not particularly limited, but is, for example, in the range of 0.2 to 3 t / cm 2 .
 本実施形態に係るリチウムイオン電池用電極100の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。 The thickness and density of the lithium ion battery electrode 100 according to the present embodiment are not particularly limited because they are appropriately determined according to the use and the like of the battery, and can be set according to generally known information.
<リチウムイオン電池>
 つづいて、本実施形態に係るリチウムイオン電池150について説明する。図2は、本発明に係る実施形態のリチウムイオン電池150の構造の一例を示す断面図である。
 本実施形態に係るリチウムイオン電池150は、正極120と、電解質110と、負極130とを少なくとも備え、正極120および負極130の少なくとも一方が本実施形態に係るリチウムイオン電池用電極100を含む。また、本実施形態に係るリチウムイオン電池150は、必要に応じてセパレーターを含んでもよい。
 本実施形態に係るリチウムイオン電池150は公知の方法に準じて作製することができる。
 電極は、例えば、積層体や捲回体を使用できる。外装体としては、金属外装体やアルミラミネート外装体を適宜使用できる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等いずれの形状であってもよい。
Lithium-ion battery
Subsequently, the lithium ion battery 150 according to the present embodiment will be described. FIG. 2 is a cross-sectional view showing an example of the structure of the lithium ion battery 150 according to the embodiment of the present invention.
The lithium ion battery 150 according to the present embodiment includes at least the positive electrode 120, the electrolyte 110, and the negative electrode 130, and at least one of the positive electrode 120 and the negative electrode 130 includes the lithium ion battery electrode 100 according to the present embodiment. In addition, the lithium ion battery 150 according to the present embodiment may include a separator, if necessary.
The lithium ion battery 150 according to the present embodiment can be manufactured according to a known method.
As the electrode, for example, a laminate or a wound body can be used. As an exterior body, a metal exterior body and an aluminum laminate exterior body can be used suitably. The shape of the battery may be any shape such as coin type, button type, sheet type, cylindrical type, square type and flat type.
 電池の電解液中の電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CH SOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。 Any known lithium salt can be used as the electrolyte in the electrolytic solution of the battery, and it may be selected according to the type of active material. For example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lithium lower fatty acid carboxylate and the like can be mentioned.
 電解質を溶解する溶媒としては、電解質を溶解させる液体成分として通常用いられるものであれば特に限定されるものではなく、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 The solvent for dissolving the electrolyte is not particularly limited as long as it is generally used as a liquid component for dissolving the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), vinylene carbonate (VC) and other carbonates; γ-butyrolactone, γ-valerolactone and other lactones; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, etc. Sulfoxides such as dimethylsulfoxide etc. Oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane Kinds of nitrogen; Nitrogenous compounds such as acetonitrile, nitromethane, formamide, dimethylformamide, etc .; Organic acid esters such as methyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate; phosphoric acid triesters and diglymes; Triligmes; sulfolanes such as sulfolane and methyl sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; and sultones such as 1,3-propane sultone, 1,4-butane sultone and naphtha sultone. These may be used singly or in combination of two or more.
 セパレーターとしては、例えば、多孔性セパレーターが挙げられる。セパレーターの形態は、膜、フィルム、不織布等が挙げられる。
 多孔性セパレーターとしては、例えば、ポリプロピレン系、ポリエチレン系等のポリオレフィン系多孔性セパレーター;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体等により形成された多孔性セパレーターが挙げられる。
As a separator, a porous separator is mentioned, for example. The form of the separator includes a membrane, a film, a non-woven fabric and the like.
Examples of the porous separator include polyolefin-based porous separators such as polypropylene and polyethylene; porous separators formed of polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride hexafluoropropylene copolymer, etc. Can be mentioned.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
As mentioned above, although embodiment of this invention was described, these are the illustrations of this invention, and various structures other than the above can also be employ | adopted.
Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described by way of Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1)
<篩通過分(q)の作製>
 はじめに、カルボキシメチルセルロース粉末(日本製紙社製サンローズ(登録商標)のMACシリーズ、最大粒子径D100:50μm)を目開きが53μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)にかけ、篩通過分(q1)を得た。
Example 1
<Preparation of sieve passing part (q)>
First, a carboxymethyl cellulose powder (Sun Rose (registered trademark) MAC series by Nippon Paper Industries, maximum particle diameter D 100 : 50 μm) and a sieve with an opening of 53 μm (made by As One, material: stainless steel, trade name: stainless steel sieve) The sieve passing portion (q1) was obtained.
 <水系電極スラリーの作製>
(1)工程(B-1)
 遊星運動型プラネタリーミキサーに、負極活物質である黒鉛960gと、上記で得られたカルボキシメチルセルロース粉末の篩通過分(q1)10gと、導電助剤であるカーボンブラック10gと、を投入した。
 次いで、20℃で60分間乾式混合をおこない、粉体混合物を得た。
<Preparation of aqueous electrode slurry>
(1) Process (B-1)
Into a planetary motion type planetary mixer, 960 g of graphite as a negative electrode active material, 10 g of a sieve passing portion (q1) of the carboxymethyl cellulose powder obtained above, and 10 g of carbon black as a conductive additive were charged.
Next, dry mixing was performed at 20 ° C. for 60 minutes to obtain a powder mixture.
(2)なじませ工程(B-2―1)
 次いで、上記工程(B-1)が終了した遊星運動型プラネタリーミキサーに水を添加した。その後、自転速度:0.15m/sec、公転速度:0.04m/sec、温度:20℃の条件下で2分間湿式混合をおこない、粉体混合物に水をなじませた。
(3)固練り工程(B-2―2)
 次いで、自転速度:4.50m/sec、公転速度:1.50m/sec、温度:20℃の条件下で40分間湿式混合をおこない、スラリー前駆体を得た。
(4)工程(B-3)
 次いで、スチレンブタジエンゴム(SBR)を水に分散した固形分濃度40質量%のSBR水溶液を調製した。得られたSBR水溶液50gを、固練り工程(B-2―2)が終了した遊星運動型プラネタリーミキサーに添加した。
 その後、自転速度:0.25m/sec、公転速度:0.08m/sec、温度:20℃の条件下で10分間湿式混合をおこなった。
(5)工程(C)
 次いで、真空脱泡を行い、水系電極スラリーを得た。
 なお、水系電極スラリーの固形分濃度は、なじませ工程(B-2―1)で添加する水の量を調整することにより50質量%に調整した。
(2) familiarization process (B-2-1)
Subsequently, water was added to the planetary motion type planetary mixer on which the above step (B-1) was completed. Thereafter, wet mixing was performed for 2 minutes under the conditions of a rotation speed of 0.15 m / sec, a rotation speed of 0.04 m / sec, and a temperature of 20 ° C., and the powder mixture was made to have water.
(3) Hard kneading process (B-2-2)
Next, wet mixing was performed for 40 minutes under the conditions of a rotation speed of 4.50 m / sec, a rotation speed of 1.50 m / sec, and a temperature of 20 ° C. to obtain a slurry precursor.
(4) Process (B-3)
Next, an SBR aqueous solution having a solid content concentration of 40% by mass, in which styrene butadiene rubber (SBR) was dispersed in water, was prepared. 50 g of the obtained SBR aqueous solution was added to the planetary motion type planetary mixer on which the solidifying step (B-2-2) was completed.
Thereafter, wet mixing was performed for 10 minutes under the conditions of a rotation speed of 0.25 m / sec, a rotation speed of 0.08 m / sec, and a temperature of 20 ° C.
(5) Process (C)
Next, vacuum degassing was performed to obtain an aqueous electrode slurry.
The solid content concentration of the aqueous electrode slurry was adjusted to 50% by mass by adjusting the amount of water added in the soaking step (B-2-1).
 <負極の作製>
 得られた水系電極スラリーを集電体である銅箔の片面にダイコータを用いて塗布し、乾燥した。次いで、得られた電極をプレスして、負極を得た。
<Fabrication of negative electrode>
The obtained aqueous electrode slurry was applied to one side of a copper foil as a current collector using a die coater and dried. Then, the obtained electrode was pressed to obtain a negative electrode.
<評価>
(篩上残分の割合の測定)
 上記で得られた篩通過分(q1)(最大粒子径D100:50μm)を目開きが53μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)にかけ、篩通過分(q1)を篩上残分と篩通過分とに再度分けた。次いで、篩を通過せずに篩上に残された篩上残分の質量x(g)を測定し、篩通過分(q1)中の篩上残分の割合を次式により算出した。
 篩上残分の割合(質量%)=100×x/y
 ここで、式中のyは、篩にかけたカルボキシメチルセルロース粉末の篩通過分(q1)の質量(g)である。
<Evaluation>
(Measurement of the ratio of the residue on the sieve)
The sieve passing part (q1) (maximum particle diameter D 100 : 50 μm) obtained above is passed through a sieve with an aperture of 53 μm (made by As One, material: stainless steel, trade name: stainless steel sieve), and the sieve passing part (q1) Was again divided into a sieved residue and a sieved fraction. Next, the mass x (g) of the sieve residue remaining on the sieve without passing through the sieve was measured, and the ratio of the sieve residue in the sieve passing portion (q1) was calculated by the following equation.
Percent remaining on sieve (mass%) = 100 × x / y
Here, y in the formula is the mass (g) of the sieve passing part (q1) of the sieved carboxymethylcellulose powder.
(増粘剤水溶液の保存安定性評価)
 カルボキシメチルセルロース粉末の篩通過分(q1)を水に25℃、10分間、200rpmの条件で溶解させ、濃度1.3質量%の増粘剤水溶液を得た。この増粘剤水溶液の粘度を、B型粘度計を用いて、25℃、せん断速度3.4s-1の条件で測定したところ、粘度は3000mPa・sであった。
 次いで、得られた増粘剤水溶液100gを蓋付きのプラスチック容器に入れ、蓋を閉めた状態で温度25℃の条件下で3日間保持した。
 次いで、3日間保持後の増粘剤水溶液について、B型粘度計を用いて、25℃、せん断速度3.4s-1における粘度を測定した。その後、下記式により粘度変化率を算出し、下記基準により増粘剤水溶液の保存安定性の評価をおこなった。
  粘度変化率[%]=100×(3日間保持後の粘度)/(3日間保持前の粘度)
 ◎ : 粘度変化率が80%以上120%未満
 〇 : 粘度変化率が120%以上150%未満または50%以上80%未満
 × : 粘度変化率が150%以上または10%以上50%未満
(Evaluation of storage stability of thickener solution)
The fraction (q1) of the carboxymethyl cellulose powder passing through the sieve was dissolved in water at 25 ° C. for 10 minutes at 200 rpm to obtain a thickener aqueous solution with a concentration of 1.3 mass%. The viscosity of the aqueous thickener solution was measured using a B-type viscometer at 25 ° C. and a shear rate of 3.4 s −1 to find that the viscosity was 3000 mPa · s.
Next, 100 g of the obtained aqueous thickener solution was placed in a plastic container with a lid, and kept in a closed state for 3 days under the condition of a temperature of 25 ° C.
Next, the viscosity of the aqueous thickener solution after holding for 3 days was measured at 25 ° C. and a shear rate of 3.4 s −1 using a B-type viscometer. Thereafter, the viscosity change rate was calculated by the following formula, and the storage stability of the aqueous thickener solution was evaluated by the following standard.
Viscosity change rate [%] = 100 × (viscosity after holding for 3 days) / (viscosity before holding for 3 days)
:: Viscosity change rate is 80% or more and less than 120% ○: Viscosity change rate is 120% or more and less than 150% or 50% or more and less than 80% ×: Viscosity change rate is 150% or more or 10% or more and less than 50%
(水系電極スラリーの保存安定性評価)
 得られた水系電極スラリー100gを蓋付きのプラスチック容器に入れ、蓋を閉めた状態で温度25℃の条件下で3日間保持した。
 次いで、保持前と保持後の水系電極スラリーについて、B型粘度計を用いて、25℃、せん断速度3.4s-1における粘度を測定した。その後、下記式により粘度変化率を算出し、下記基準により水系電極スラリーの保存安定性の評価をおこなった。
  粘度変化率[%]=100×(3日間保持後の粘度)/(3日間保持前の粘度)
 ◎ : 粘度変化率が80%以上120%未満
 〇 : 粘度変化率が120%以上150%未満または50%以上80%未満
 △ : 粘度変化率が150%以上または10%以上50%未満
 × : 上記保持試験により、水系電極スラリーが分離した(目視により判断)
 得られた結果を表1に示す。
(Evaluation of storage stability of aqueous electrode slurry)
100 g of the obtained aqueous electrode slurry was placed in a plastic container with a lid, and the lid was kept closed for 3 days under the condition of a temperature of 25 ° C.
Next, the viscosity of the aqueous electrode slurry before and after holding was measured at 25 ° C. and a shear rate of 3.4 s −1 using a B-type viscometer. Thereafter, the viscosity change rate was calculated by the following formula, and the storage stability of the aqueous electrode slurry was evaluated by the following standard.
Viscosity change rate [%] = 100 × (viscosity after holding for 3 days) / (viscosity before holding for 3 days)
:: Viscosity change rate of 80% or more and less than 120% ○: Viscosity change rate of 120% or more and less than 150% or 50% or more and less than 80% Δ: Viscosity change rate of 150% or more or 10% or more and less than 50% The aqueous electrode slurry separated by the retention test (judged by visual observation)
The obtained results are shown in Table 1.
(水系電極スラリーの粘度バラツキ評価)
 水系電極スラリーの粘度バラツキを次のように評価した。まず、同条件の水系電極スラリーをサンプルとして5個調製した。次いで、得られた水系電極スラリーについて、B型粘度計を用いて、25℃、せん断速度3.4s-1における粘度を測定し、下記式により最大バラツキ量を算出し、下記基準により水系電極スラリーのロットごとのバラツキを評価した。
  最大バラツキ量(mPa・s)=(5個のサンプルの中での最大の粘度)-(5個のサンプルの中での最小の粘度)
 ◎ : 最大バラツキ量が500mPa・s未満
 〇 : 最大バラツキ量が500mPa・s以上1000mPa・s未満
 × : 最大バラツキ量が1000mPa・s以上
(Viscosity evaluation of aqueous electrode slurry)
The viscosity variation of the aqueous electrode slurry was evaluated as follows. First, five aqueous electrode slurries under the same conditions were prepared as samples. Next, the viscosity of the obtained aqueous electrode slurry at 25 ° C. and a shear rate of 3.4 s −1 is measured using a B-type viscometer, the maximum variation is calculated by the following equation, and the aqueous electrode slurry is Lot-to-lot variation was evaluated.
Maximum variation (mPa · s) = (maximum viscosity of 5 samples)-(minimum viscosity of 5 samples)
:: Maximum variation less than 500 mPa · s 〇: Maximum variation less than 500 mPa · s and less than 1000 mPa · s ×: Maximum variation less than 1000 mPa · s
(負極の良品率評価)
 負極(1cm×1cm)を合計1500枚作製し、良品の割合(良品率)を算出した。
 得られた負極表面について光学顕微鏡を用いて100倍の倍率で観察し、負極表面の凝集物やピンホールの有無を調べた。次いで、凝集物やピンホールが観察されなかったものを良品とし、少なくとも1か所において凝集物やピンホールが観察されたものを不良とした。次いで、良品の割合を良品率として算出し、以下の基準で評価した。
 ◎:良品率が98%以上
 〇:良品率が95%以上98%未満
 ×:良品率が95%未満
(Evaluation of non-defective rate of negative electrode)
A total of 1,500 negative electrodes (1 cm × 1 cm) were prepared, and the ratio of non-defective products (non-defective product ratio) was calculated.
The obtained negative electrode surface was observed at a magnification of 100 times using an optical microscope to examine the presence or absence of aggregates and pinholes on the negative electrode surface. Then, those in which no aggregates and pinholes were not observed were regarded as good products, and those in which aggregates and pinholes were observed in at least one place were regarded as defects. Next, the ratio of non-defective products was calculated as the non-defective product rate, and evaluated according to the following criteria.
:: Non-defective rate 98% or more ○: Non-defective rate 95% to less than 98% ×: Non-defective rate less than 95%
(負極の生産性評価)
 以下の基準により負極の生産性を評価した。なお、各実施例および比較例において、水系電極スラリーを得た後の工程は同じため、水系電極スラリーを得るまでにかかった時間(以下、水系電極スラリーの製造時間と呼ぶ。)により負極の生産性を評価した。ここで、以下の評価基準では比較例2における水系電極スラリーの製造時間を100とした。
 ◎:水系電極スラリーの製造時間が70未満
 〇:水系電極スラリーの製造時間が70以上100未満
 ×:水系電極スラリーの製造時間が100以上
(Productivity evaluation of negative electrode)
The productivity of the negative electrode was evaluated according to the following criteria. In each of the Examples and Comparative Examples, since the steps after obtaining the aqueous electrode slurry are the same, the production of the negative electrode is performed for the time taken to obtain the aqueous electrode slurry (hereinafter referred to as the production time of the aqueous electrode slurry). The sex was evaluated. Here, the production time of the aqueous electrode slurry in Comparative Example 2 was set to 100 in the following evaluation criteria.
◎: Production time of aqueous electrode slurry less than 70 ○: Production time of aqueous electrode slurry 70 to less than 100 ×: Production time of aqueous electrode slurry 100 or more
(実施例2)
 篩通過分(q)の作製の際に目開きが53μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)の代わりに目開きが63μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)を用いた以外は実施例1と同様の条件で水系電極スラリーおよび負極を作製し、実施例1と同様に各評価をおこなった。得られた結果を表1に示す。
(Example 2)
A sieve with an opening of 63 μm instead of a sieve with an opening of 53 μm (made by As One Corp., material: stainless steel, trade name: stainless steel sieve) at the time of preparation of sieve passing part (q) A water-based electrode slurry and a negative electrode were produced under the same conditions as in Example 1 except that trade name: stainless steel sieve was used, and each evaluation was performed in the same manner as in Example 1. The obtained results are shown in Table 1.
(実施例3)
 篩通過分(q)の作製の際に目開きが53μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)の代わりに目開きが73μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)を用いた以外は実施例1と同様の条件で水系電極スラリーおよび負極を作製し、実施例1と同様に各評価をおこなった。得られた結果を表1に示す。
(Example 3)
A sieve with an opening of 73 μm instead of a sieve with an opening of 53 μm (made by As One Corp., material: stainless steel, trade name: stainless steel sieve) at the time of preparation of sieve passing part (q) A water-based electrode slurry and a negative electrode were produced under the same conditions as in Example 1 except that trade name: stainless steel sieve was used, and each evaluation was performed in the same manner as in Example 1. The obtained results are shown in Table 1.
(比較例1)
 カルボキシメチルセルロース粉末の篩通過分(q1)を用いる代わりに、カルボキシメチルセルロース粉末(日本製紙社製サンローズ(登録商標)のMACシリーズ)を篩にかけずにそのまま用いた以外は実施例1と同様の条件で水系電極スラリーおよび負極を作製し、実施例1と同様に各評価をおこなった。得られた結果を表1に示す。
 ここで、表1における比較例1の篩上残分の割合は以下の方法により求めた。
 まず、カルボキシメチルセルロース粉末(日本製紙社製サンローズ(登録商標)のMACシリーズ)を目開きが53μmの篩(アズワン社製、材質:ステンレス、商品名:ステンレスふるい)にかけた。次いで、篩を通過せずに篩上に残された篩上残分の質量x’(g)を測定し、カルボキシメチルセルロース粉末中の篩上残分の割合を次式により算出した。
 篩上残分の割合(質量%)=100×x’/y’
 ここで、式中のy’は、篩にかけたカルボキシメチルセルロース粉末の質量(g)である。
(Comparative example 1)
The same conditions as in Example 1 except that carboxymethyl cellulose powder (MAC series of Sun Rose (registered trademark) made by Nippon Paper Industries Co., Ltd.) was used as it was without sieving, instead of using a sieve passing portion (q1) of carboxymethyl cellulose powder. The aqueous electrode slurry and the negative electrode were prepared in the same manner as in Example 1, and each evaluation was performed. The obtained results are shown in Table 1.
Here, the ratio of the residue on the sieve of Comparative Example 1 in Table 1 was determined by the following method.
First, carboxymethylcellulose powder (MAC series of Sunrose (registered trademark) manufactured by Nippon Paper Industries Co., Ltd.) was passed through a sieve (made by As One, material: stainless steel, trade name: stainless steel sieve) having a mesh size of 53 μm. Next, the mass x ′ (g) of the residue on the sieve left on the sieve without passing through the sieve was measured, and the ratio of the residue on the sieve in the carboxymethylcellulose powder was calculated by the following equation.
Percent remaining on sieve (mass%) = 100 × x '/ y'
Here, y 'in the formula is the mass (g) of the carboxymethylcellulose powder screened.
(比較例2)
<増粘剤水溶液Bの調製>
 はじめに、カルボキシメチルセルロース粉末(日本製紙社製サンローズ(登録商標)のMACシリーズ)を20℃のイオン交換水に溶解させることにより、濃度1.3質量%の増粘剤水溶液Aを得た。次いで、得られた増粘剤水溶液を平均孔径1μmのフィルターでろ過し、増粘剤水溶液Bを得た。
(Comparative example 2)
<Preparation of Thickener Aqueous Solution B>
First, carboxymethyl cellulose powder (MAC series of Sun Rose (registered trademark) manufactured by Nippon Paper Industries Co., Ltd.) was dissolved in ion exchange water at 20 ° C. to obtain a thickener aqueous solution A having a concentration of 1.3 mass%. Next, the obtained aqueous thickener solution was filtered through a filter with an average pore diameter of 1 μm to obtain a aqueous thickener solution B.
<水系電極スラリーの作製>
(1)工程1
 遊星運動型プラネタリーミキサーに、負極活物質である黒鉛960gと、導電助剤であるカーボンブラック10gと、を投入した。
 次いで、20℃で60分間乾式混合をおこない、粉体混合物を得た。
<Preparation of aqueous electrode slurry>
(1) Process 1
Into a planetary motion type planetary mixer, 960 g of graphite as a negative electrode active material and 10 g of carbon black as a conductive additive were charged.
Next, dry mixing was performed at 20 ° C. for 60 minutes to obtain a powder mixture.
(2)工程2
 次いで、上記工程1が終了した遊星運動型プラネタリーミキサーに水および増粘剤水溶液Bを添加した。その後、自転速度:0.15m/sec、公転速度:0.04m/sec、温度:20℃の条件下で2分間湿式混合をおこない、粉体混合物に水をなじませた。
(2) Process 2
Next, water and an aqueous thickener solution B were added to the planetary motion type planetary mixer on which Step 1 above was completed. Thereafter, wet mixing was performed for 2 minutes under the conditions of a rotation speed of 0.15 m / sec, a rotation speed of 0.04 m / sec, and a temperature of 20 ° C., and the powder mixture was made to have water.
(3)工程3
 次いで、上記工程2が終了した遊星運動型プラネタリーミキサーに水および増粘剤水溶液Bを添加した。次いで、自転速度:4.50m/sec、公転速度:1.50m/sec、温度:20℃の条件下で40分間湿式混合をおこない、スラリー前駆体を得た。
(3) Process 3
Next, water and an aqueous thickener solution B were added to the planetary motion type planetary mixer on which Step 2 above was completed. Next, wet mixing was performed for 40 minutes under the conditions of a rotation speed of 4.50 m / sec, a rotation speed of 1.50 m / sec, and a temperature of 20 ° C. to obtain a slurry precursor.
(4)工程4
 次いで、スチレンブタジエンゴム(SBR)を水に分散した固形分濃度40質量%のSBR水溶液を調製した。得られたSBR水溶液50gおよび増粘剤水溶液Bを、工程3が終了した遊星運動型プラネタリーミキサーに添加した。工程2~4で用いる増粘剤水溶液Bに含まれた増粘剤粉末の合計は10gとなるようにした。
 その後、自転速度:0.25m/sec、公転速度:0.08m/sec、温度:20℃の条件下で10分間湿式混合をおこなった。
(5)工程5
 次いで、真空脱泡を行い、水系電極スラリーを得た。
 なお、水系電極スラリーの固形分濃度は、各工程で添加する水の量を調整することにより50質量%に調整した。
(4) Process 4
Next, an SBR aqueous solution having a solid content concentration of 40% by mass, in which styrene butadiene rubber (SBR) was dispersed in water, was prepared. 50 g of the obtained aqueous solution of SBR and an aqueous solution of thickener B were added to the planetary-type planetary mixer on which Step 3 was completed. The total of the thickener powder contained in the thickener aqueous solution B used in steps 2 to 4 was adjusted to 10 g.
Thereafter, wet mixing was performed for 10 minutes under the conditions of a rotation speed of 0.25 m / sec, a rotation speed of 0.08 m / sec, and a temperature of 20 ° C.
(5) Process 5
Next, vacuum degassing was performed to obtain an aqueous electrode slurry.
The solid content concentration of the aqueous electrode slurry was adjusted to 50% by mass by adjusting the amount of water added in each step.
 <負極の作製>
 得られた水系電極スラリーを集電体である銅箔の片面にダイコータを用いて塗布し、乾燥した。次いで、得られた負極をプレスして、負極を得た。
<Fabrication of negative electrode>
The obtained aqueous electrode slurry was applied to one side of a copper foil as a current collector using a die coater and dried. Then, the obtained negative electrode was pressed to obtain a negative electrode.
 得られた増粘剤水溶液、水系電極スラリーおよび負極について、実施例1と同様に各評価をおこなった。得られた結果を表1に示す。 Each evaluation was performed similarly to Example 1 about the obtained thickener aqueous solution, water-based electrode slurry, and the negative electrode. The obtained results are shown in Table 1.
(比較例3)
 増粘剤水溶液Bの代わりに、上記増粘剤水溶液Aを用いた以外は比較例2と同様にして水系電極スラリーおよび負極を作製し、実施例1と同様に各評価をおこなった。得られた結果を表1に示す。
(Comparative example 3)
An aqueous electrode slurry and a negative electrode were produced in the same manner as in Comparative Example 2 except that the above-mentioned aqueous thickener solution A was used instead of the aqueous thickener solution B, and each evaluation was performed in the same manner as in Example 1. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この出願は、2017年9月1日に出願された日本出願特願2017-168273号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-168273 filed on Sep. 1, 2017, the entire disclosure of which is incorporated herein.

Claims (12)

  1.  正極活物質および負極活物質から選択される電極活物質と、水系バインダーと、増粘剤と、水系媒体と、を含むリチウムイオン電池用水系電極スラリーの製造方法であって、
     セルロース系水溶性高分子を含む増粘剤粉末を篩にかけることによって、前記増粘剤粉末の篩通過分(q)を得る工程と、
     電極活物質、水系バインダー、前記篩通過分(q)および水系媒体を混合することにより水系電極スラリーを調製する工程と、
    を含むリチウムイオン電池用水系電極スラリーの製造方法。
    A method for producing a water-based electrode slurry for a lithium ion battery, comprising: an electrode active material selected from a positive electrode active material and a negative electrode active material; an aqueous binder; a thickener; and an aqueous medium,
    Obtaining a sieve passing fraction (q) of the thickener powder by sieving a thickener powder containing a cellulose-based water-soluble polymer;
    Preparing an aqueous electrode slurry by mixing an electrode active material, an aqueous binder, the sieve passing portion (q) and an aqueous medium;
    A method for producing a water-based electrode slurry for a lithium ion battery, comprising:
  2.  請求項1に記載のリチウムイオン電池用水系電極スラリーの製造方法において、
     レーザー回折散乱式粒度分布測定法による体積基準粒度分布における前記篩通過分(q)の最大粒子径をD100[μm]としたとき、
     目開きがD100(μm)以上D100+5(μm)以下の範囲にある篩に前記篩通過分(q)をかけることによって、前記篩通過分(q)を篩上残分と篩通過分とに再度分けたとき、前記篩上残分の割合が、前記篩通過分(q)の全量を100質量%としたとき、0.05質量%以下であるリチウムイオン電池用水系電極スラリーの製造方法。
    In the method for producing a water-based electrode slurry for a lithium ion battery according to claim 1,
    When the maximum particle diameter of the sieve passing portion (q) in a volume-based particle size distribution by a laser diffraction / scattering particle size distribution measurement method is D 100 [μm],
    By applying the sieve passing portion (q) to a sieve having an opening in the range of D 100 (μm) or more and D 100 +5 (μm) or less, the sieve passing portion (q) is obtained as a sieve residue and a sieve passing portion Manufacturing the aqueous electrode slurry for a lithium ion battery, wherein the ratio of the remaining on the sieve is 0.05% by mass or less when the total amount of the sieve passing part (q) is 100% by mass. Method.
  3.  請求項1または2に記載のリチウムイオン電池用水系電極スラリーの製造方法において、
     前記水系電極スラリーを調製する工程は、
      前記電極活物質および前記篩通過分(q)を紛体状態で乾式混合することにより、前記電極活物質および前記篩通過分(q)を含む混合物を調製する工程を含むリチウムイオン電池用水系電極スラリーの製造方法。
    In the manufacturing method of the water-based electrode slurry for lithium ion batteries of Claim 1 or 2,
    The step of preparing the aqueous electrode slurry comprises
    An aqueous electrode slurry for a lithium ion battery, comprising a step of preparing a mixture containing the electrode active material and the sieve passing portion (q) by dry-mixing the electrode active material and the sieve passing portion (q) in a powder state. Manufacturing method.
  4.  請求項3に記載のリチウムイオン電池用水系電極スラリーの製造方法において、
     前記水系電極スラリーを調製する工程は、
      前記電極活物質および前記篩通過分(q)を含む前記混合物中に、前記水系媒体および前記水系バインダーを含むエマルジョン水溶液から選択される一種または二種以上の液体成分を添加して湿式混合することにより、スラリー前駆体を調製する工程と、
      前記スラリー前駆体中に、前記水系媒体および前記水系バインダーを含むエマルジョン水溶液から選択される一種または二種以上の液体成分をさらに添加して湿式混合することにより前記水系電極スラリーを調製する工程と、
    をさらに含むリチウムイオン電池用水系電極スラリーの製造方法。
    In the manufacturing method of the aqueous electrode slurry for lithium ion batteries of Claim 3,
    The step of preparing the aqueous electrode slurry comprises
    Wet mixing with one or two or more types of liquid components selected from the aqueous medium and the aqueous emulsion solution containing the aqueous binder added to the mixture containing the electrode active material and the sieve passing portion (q) Preparing a slurry precursor by
    Preparing the aqueous electrode slurry by further adding one or two or more types of liquid components selected from the aqueous medium and the aqueous emulsion solution containing the aqueous binder into the slurry precursor and wet mixing;
    A method of producing a water-based electrode slurry for lithium ion batteries, further comprising
  5.  請求項1乃至4のいずれか一項に記載のリチウムイオン電池用水系電極スラリーの製造方法により水系電極スラリーを調製する工程と、
     得られた前記水系電極スラリーを基材上に塗工して乾燥し、前記水系媒体を除去することにより前記基材上に電極活物質層を形成する工程と、
    を含むリチウムイオン電池用電極の製造方法。
    A step of preparing a water-based electrode slurry by the method of producing a water-based electrode slurry for a lithium ion battery according to any one of claims 1 to 4.
    The step of forming an electrode active material layer on the substrate by coating the obtained aqueous electrode slurry on a substrate and drying it, and removing the aqueous medium.
    A method of producing an electrode for a lithium ion battery, comprising:
  6.  リチウムイオン電池用の水系電極スラリーの増粘に用いられる増粘剤粉末であって、
     セルロース系水溶性高分子を含み、
     レーザー回折散乱式粒度分布測定法による体積基準粒度分布における前記増粘剤粉末の最大粒子径をD100[μm]としたとき、
     目開きがD100(μm)以上D100+5(μm)以下の範囲にある篩に前記増粘剤粉末をかけることによって、前記増粘剤粉末を篩上残分と篩通過分とに分けたとき、前記篩上残分の割合が、前記増粘剤粉末の全量を100質量%としたとき、0.05質量%以下であるリチウムイオン電池用増粘剤粉末。
    A thickener powder used to thicken an aqueous electrode slurry for lithium ion batteries,
    Contains cellulose-based water-soluble polymers,
    Assuming that the maximum particle diameter of the thickener powder in a volume-based particle size distribution by a laser diffraction / scattering particle size distribution measurement method is D 100 [μm],
    The thickener powder was divided into a sieve residue and a sieve passing fraction by applying the thickener powder to a sieve having an opening of at least D 100 (μm) and at least D 100 +5 (μm). When the ratio of the said residue on a sieve is 0.05 mass% or less when the whole quantity of the said thickener powder is made into 100 mass%, the thickener powder for lithium ion batteries.
  7.  請求項6に記載のリチウムイオン電池用増粘剤粉末において、
     前記セルロース系水溶性高分子がカルボキシメチルセルロースおよびカルボキシメチルセルロース塩から選択される少なくとも一種を含むリチウムイオン電池用増粘剤粉末。
    In the thickener powder for a lithium ion battery according to claim 6,
    A thickener powder for a lithium ion battery, wherein the cellulose-based water soluble polymer comprises at least one selected from carboxymethylcellulose and carboxymethylcellulose salt.
  8.  請求項6または7に記載のリチウムイオン電池用増粘剤粉末において、
     下記条件1により算出される粘度が10mPa・s以上20000mPa・s以下であるリチウムイオン電池用増粘剤粉末。
    (条件1:当該増粘剤粉末を水に溶解させ、濃度1.3質量%の増粘剤水溶液を得る。次いで、B型粘度計を用いて、25℃、せん断速度3.4s-1の条件で前記増粘剤水溶液の粘度を測る。)
    In the thickener powder for a lithium ion battery according to claim 6 or 7,
    The thickener powder for lithium ion batteries whose viscosity calculated by the following condition 1 is 10 mPa * s or more and 20000 mPa * s or less.
    (Condition 1: The thickener powder is dissolved in water to obtain an aqueous thickener solution having a concentration of 1.3% by mass Then, using a B-type viscometer, the shear rate is 3.4 s -1 at 25 ° C. Measure the viscosity of the aqueous thickener solution under the conditions.)
  9.  請求項6乃至8のいずれか一項に記載のリチウムイオン電池用増粘剤粉末において、
     前記篩上残分は前記セルロース系水溶性高分子由来の繊維成分を含むリチウムイオン電池用増粘剤粉末。
    The thickener powder for a lithium ion battery according to any one of claims 6 to 8,
    The said sieving residue is a thickener powder for lithium ion batteries containing the fiber component derived from the said cellulose water soluble polymer.
  10.  正極活物質および負極活物質から選択される電極活物質と、
     水系バインダーと、
     請求項6乃至9のいずれか一項に記載のリチウムイオン電池用増粘剤粉末と、
     水系媒体と、
    を含み、
     前記リチウムイオン電池用増粘剤粉末は前記水系媒体に溶解している水系電極スラリー。
    An electrode active material selected from a positive electrode active material and a negative electrode active material;
    A water-based binder,
    The thickener powder for a lithium ion battery according to any one of claims 6 to 9,
    Aqueous medium,
    Including
    An aqueous electrode slurry, wherein the thickener powder for lithium ion batteries is dissolved in the aqueous medium.
  11.  正極活物質および負極活物質から選択される電極活物質と、
     水系バインダーと、
     請求項6乃至9のいずれか一項に記載のリチウムイオン電池用増粘剤粉末により構成された粘着剤と、
    を含むリチウムイオン電池用電極。
    An electrode active material selected from a positive electrode active material and a negative electrode active material;
    A water-based binder,
    An adhesive comprising the thickener powder for a lithium ion battery according to any one of claims 6 to 9,
    Electrodes for lithium ion batteries, including:
  12.  正極と、電解質と、負極とを少なくとも備えたリチウムイオン電池であって、
     前記正極および前記負極の少なくとも一方が請求項11に記載のリチウムイオン電池用電極を含むリチウムイオン電池。
    A lithium ion battery comprising at least a positive electrode, an electrolyte and a negative electrode,
    A lithium ion battery including at least one of the positive electrode and the negative electrode according to claim 11.
PCT/JP2018/029210 2017-09-01 2018-08-03 Method for producing aqueous electrode slurry for lithium ion batteries, method for producing electrode for lithium ion batteries, thickening agent powder for lithium ion batteries, aqueous electrode slurry, electrode for lithium ion batteries, and lithium ion battery WO2019044382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880053550.6A CN111052459B (en) 2017-09-01 2018-08-03 Aqueous electrode paste and method for producing same, electrode for lithium ion battery and method for producing same, thickener powder for lithium ion battery, and lithium ion battery
JP2019539114A JP7161478B2 (en) 2017-09-01 2018-08-03 Method for producing aqueous electrode slurry for lithium ion battery, method for producing electrode for lithium ion battery, thickener powder for lithium ion battery, aqueous electrode slurry, electrode for lithium ion battery, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-168273 2017-09-01
JP2017168273 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019044382A1 true WO2019044382A1 (en) 2019-03-07

Family

ID=65525320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029210 WO2019044382A1 (en) 2017-09-01 2018-08-03 Method for producing aqueous electrode slurry for lithium ion batteries, method for producing electrode for lithium ion batteries, thickening agent powder for lithium ion batteries, aqueous electrode slurry, electrode for lithium ion batteries, and lithium ion battery

Country Status (3)

Country Link
JP (1) JP7161478B2 (en)
CN (1) CN111052459B (en)
WO (1) WO2019044382A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047349A (en) * 2000-08-01 2002-02-12 Dai Ichi Kogyo Seiyaku Co Ltd Powdered sodium carboxymethyl cellulose contains less fibrous material and its manufacturing method
JP2011063673A (en) * 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd Aqueous paste and method for producing the same
WO2013076996A1 (en) * 2011-11-25 2013-05-30 パナソニック株式会社 Negative electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2015008070A (en) * 2013-06-25 2015-01-15 株式会社豊田自動織機 Method and device for manufacturing slurry for electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232254A (en) 2008-11-26 2011-11-02 日本制纸化学株式会社 Carboxymethylcellulose for electrode in rechargeable battery with nonaqueous electrolyte, salt thereof, and aqueous solution thereof
JP2011034962A (en) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd Method for manufacturing electrode of lithium ion secondary battery,and lithium ion secondary battery
JP6017432B2 (en) * 2011-09-20 2016-11-02 日産化学工業株式会社 Slurry composition for forming lithium secondary battery electrode containing cellulose fiber as binder and electrode for lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047349A (en) * 2000-08-01 2002-02-12 Dai Ichi Kogyo Seiyaku Co Ltd Powdered sodium carboxymethyl cellulose contains less fibrous material and its manufacturing method
JP2011063673A (en) * 2009-09-16 2011-03-31 Daicel Chemical Industries Ltd Aqueous paste and method for producing the same
WO2013076996A1 (en) * 2011-11-25 2013-05-30 パナソニック株式会社 Negative electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2015008070A (en) * 2013-06-25 2015-01-15 株式会社豊田自動織機 Method and device for manufacturing slurry for electrode

Also Published As

Publication number Publication date
JPWO2019044382A1 (en) 2020-10-01
CN111052459A (en) 2020-04-21
JP7161478B2 (en) 2022-10-26
CN111052459B (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP6993960B2 (en) A method for manufacturing a thickener powder for a lithium ion battery, an aqueous electrode slurry, an electrode for a lithium ion battery, a lithium ion battery, an aqueous electrode slurry for a lithium ion battery, and a method for manufacturing an electrode for a lithium ion battery.
JP6304774B2 (en) Method for producing paste for negative electrode production, method for producing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10700356B2 (en) Method for producing paste for production of negative electrodes, method for producing negative electrode for lithium ion secondary batteries, negative electrode for lithium secondary batteries, and lithium ion secondary battery
KR20140082975A (en) Slurry composition for use in forming lithium-ion secondary battery electrode, containing cellulose fiber as binder, and lithium-ion secondary battery electrode
JP2020074311A (en) Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
JP5614578B2 (en) Method for producing aqueous composition
DE112012000825T5 (en) Electrode for a lithium accumulator and lithium accumulator
CN105612634A (en) Method for preparing cathode material for lithium secondary battery, cathode material for lithium secondary battery, and lithium secondary battery containing same
WO2019107054A1 (en) Method for producing paste for negative electrode production, negative electrode for batteries, battery, and method for producing negative electrode for batteries
JP2014182873A (en) Nonaqueous secondary battery electrode-forming material, nonaqueous secondary battery electrode, and nonaqueous secondary battery
JP4852836B2 (en) Method for producing electrode plate for negative electrode of non-aqueous secondary battery
JP5157051B2 (en) Lithium secondary battery
JP2016021391A (en) Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
WO2019082587A1 (en) Water-based electrode slurry, electrode for lithium ion battery, lithium ion battery, and manufacturing method of electrode for lithium ion battery
JP7161478B2 (en) Method for producing aqueous electrode slurry for lithium ion battery, method for producing electrode for lithium ion battery, thickener powder for lithium ion battery, aqueous electrode slurry, electrode for lithium ion battery, and lithium ion battery
JP7274265B2 (en) Method for producing paste for producing electrode for lithium ion secondary battery, method for producing electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2006092760A (en) Method of manufacturing negative electrode plate for nonaqueous secondary battery
JP2012049151A (en) Lithium secondary battery
JP2023525786A (en) Electrodes for lithium-ion batteries and methods for their preparation
JP2013073816A (en) Negative electrode active material, production method therefor, and lithium ion secondary battery using negative electrode active material
JP2012004131A (en) Lithium secondary battery
WO2019065883A1 (en) Binder for electrochemical elements
JP7457227B1 (en) Secondary battery electrode composite
WO2024053488A1 (en) Battery electrode graphite dispersion
WO2022181151A1 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing cnt-si paste, method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851838

Country of ref document: EP

Kind code of ref document: A1