WO2019044318A1 - Vital sign detection device - Google Patents

Vital sign detection device Download PDF

Info

Publication number
WO2019044318A1
WO2019044318A1 PCT/JP2018/028419 JP2018028419W WO2019044318A1 WO 2019044318 A1 WO2019044318 A1 WO 2019044318A1 JP 2018028419 W JP2018028419 W JP 2018028419W WO 2019044318 A1 WO2019044318 A1 WO 2019044318A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
piezoelectric sensor
particles
sensor
Prior art date
Application number
PCT/JP2018/028419
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 渉
厚輝 清水
忠優 近藤
陽 加藤
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Publication of WO2019044318A1 publication Critical patent/WO2019044318A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the present invention relates to a biological information detection apparatus including a flexible and stretchable piezoelectric sensor for detecting at least one of a subject's respiration and heart rate.
  • measurement of respiratory condition is useful for detection and treatment of apnea syndrome.
  • measurement of heart rate is useful for measuring sleep quality and detecting heart disease.
  • it has been performed to measure the respiratory state and heart rate of a subject.
  • Patent Document 1 discloses a flexible piezoelectric element having a piezoelectric sheet in which a piezoelectric ceramic powder is mixed in a polymer matrix, and flexible electrodes disposed on both sides thereof, and the flexible sheet.
  • An abnormality monitoring apparatus is disclosed, which comprises: human body information detecting means for detecting human body information such as respiration based on the output voltage of the piezoelectric element.
  • Patent Document 2 includes a piezoelectric cable sensor installed in a bed, and extracts at least two of heartbeat information, body motion information and respiration information from output information of the piezoelectric cable sensor, and A biometric sensor is described that determines the condition.
  • Patent Document 3 describes a biological information measurement panel including a silicone rubber laying plate, and a piezoelectric film sensor that detects a strain of the laying plate that is generated along with the biological activity of a subject.
  • the piezoelectric sensor described in Patent Documents 1 to 3 is a piezoelectric layer in which a piezoelectric ceramic powder such as lead zirconate titanate (PZT) is mixed in a resin such as chlorinated polyethylene or chloroprene, or polyvinylidene fluoride (PVDF) It has a piezoelectric layer made of resin. For this reason, the piezoelectric sensor is flexible but has poor flexibility and stretchability. Therefore, when the piezoelectric sensor is disposed on the bedding and the subject lies on the bedding, it is easy to feel discomfort such as hardness or stiffness. Since the subject is aware of the piezoelectric sensor, there is a possibility that heart rate measurement can not be accurately performed or sleep is disturbed.
  • PZT lead zirconate titanate
  • PVDF polyvinylidene fluoride
  • the discomfort may be reduced if the piezoelectric sensor is placed under cushioned bedding such as a mattress.
  • the conventional piezoelectric sensor can not expand and contract following the movement of the subject or the bedding, if a mattress or the like intervenes between the subject and the piezoelectric sensor, weak vibrations such as respiration and heart beat are generated. It is difficult to detect.
  • a silicone rubber laying plate is disposed under the subject, and the piezoelectric sensor is disposed so as not to overlap the subject.
  • the strain of the floor plate caused by the biological activity of the subject is detected by the piezoelectric sensor.
  • the silicone rubber laying plate has visco-elasticity, the vibration caused by the biological activity of the subject is largely attenuated before being transmitted to the piezoelectric sensor. For this reason, it is difficult to accurately detect weak vibrations such as respiration and heart beats.
  • Patent Document 4 describes a flexible piezoelectric sensor having a piezoelectric layer containing an elastomer, an electrode layer, and a protective layer.
  • a piezoelectric layer containing an elastomer, an electrode layer, and a protective layer.
  • further study is required such as optimizing the shape and size of the piezoelectric sensor.
  • the present invention has been made in view of such circumstances, and it is difficult for a subject to feel discomfort even when placed in bedding, and a biological information detection apparatus capable of accurately detecting at least one of respiration and heartbeat.
  • the challenge is to provide
  • the biological information detection apparatus of the present invention is disposed in bedding, and includes at least one of a piezoelectric layer including an elastomer and piezoelectric particles, an electrode layer disposed to sandwich the piezoelectric layer, and the electrode layer.
  • a protective layer containing an elastomer wherein the width is 5 mm or more and 100 mm or less, the length is 100 mm or more and 1000 mm or less, and the ratio of length to width (length / width) is 2 or more and 200 or less, thickness Has a rectangular thin plate shape of 0.05 mm or more and 5 mm or less, and is provided with a piezoelectric sensor having expansion and contraction flexibility, and in the piezoelectric sensor, the area of the pressure sensitive portion where the electrode layer overlaps in the thickness direction via the piezoelectric layer is And 20% or more of the area of the piezoelectric sensor, and detecting at least one of the respiration and the heartbeat of the subject based on an output signal from the piezoelectric sensor.
  • the biological information detection apparatus of the present invention includes a piezoelectric layer including an elastomer and a protective layer, and includes a piezoelectric sensor having stretch flexibility. For this reason, even if the piezoelectric sensor is disposed on the bedding and the subject lies on top of it, the subject is unlikely to feel discomfort such as hardness or stiffness.
  • the piezoelectric sensor can expand and contract following the movement of the subject and the bedding. For this reason, it is possible to accurately detect respiratory sounds derived from weak vibrations due to respiration and heart beat, respiration and heart beat.
  • the piezoelectric sensor is in the form of a rectangular thin plate having a length (longitudinal length) which is twice or more the width (longitudinal length).
  • the area of the pressure sensitive portion occupying the area of the piezoelectric sensor is 20% or more. Since the piezoelectric sensor has an elongated shape and the area of the pressure sensing unit is large, the pressure sensitive unit is likely to overlap with a part of the body of the subject when the piezoelectric sensor is disposed on the bedding. Therefore, it is possible to detect weak vibrations due to respiration and heart beat without leaking. Piezoelectric sensors are compact compared to large area planar sensors, such as those placed on the entire surface of a mattress. Therefore, the texture of mattresses and sheets is not lost. Further, since the area overlapping with the body of the subject is small, the discomfort is further reduced. Furthermore, it is easy to carry, attach and remove.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 5 is a graph showing a respiration waveform measured by the piezoelectric sensor of Example 1. It is a graph which shows the cardiac-beats waveform measured with the same piezoelectric sensor.
  • FIG. 1 shows a layout of the biological information detection apparatus of this embodiment.
  • FIG. 2 shows a top view of the piezoelectric sensor in the biological information detection apparatus.
  • FIG. 3 shows a III-III cross-sectional view of FIG.
  • the biological information detection apparatus is shown in a transparent manner.
  • the electrode layer and the piezoelectric layer are shown in transmission.
  • the biological information detection apparatus 1 includes a piezoelectric sensor 10, wires 20a and 20b, and a control circuit unit 30.
  • the shoulder width direction of the subject P is defined as the left-right direction
  • the height direction is defined as the front-rear direction in a state where the subject P is lying on his / her back on the mattress.
  • the width of the piezoelectric sensor 10 is the length in the front-rear direction, and the length is the length in the left-right direction.
  • the piezoelectric sensor 10 is fixed to the back of a cover 40 that covers the bed mattress.
  • the mattress cover of the bed is included in the concept of "bedding" in the present invention.
  • the piezoelectric sensor 10 extends in a band shape in the left-right direction. A portion of the piezoelectric sensor 10 is disposed below the chest of the subject P.
  • the piezoelectric sensor 10 has a rectangular thin plate shape with a width of 25 mm, a length of 550 mm, and a thickness of 0.45 mm. The ratio of length to width (length / width) is 22.
  • the piezoelectric sensor 10 has flexibility in expansion and contraction, and includes the piezoelectric layer 11, a pair of electrode layers 12a and 12b, and a pair of protective layers 13a and 13b.
  • the piezoelectric layer 11 contains a carboxyl group-modified hydrogenated nitrile rubber (XH-NBR) and barium titanate particles.
  • the content of barium titanate particles is 48% by volume when the volume of XH-NBR is 100%.
  • the piezoelectric layer 11 has a rectangular thin film shape with a width of 20 mm, a length of 550 mm, and a thickness of 0.06 mm (60 ⁇ m).
  • the piezoelectric layer 11 is subjected to polarization treatment, and the barium titanate particles are polarized in the thickness direction (vertical direction) of the piezoelectric layer 11.
  • the breaking elongation of the piezoelectric layer 11 is 120%.
  • the electrode layer 12a contains acrylic rubber and conductive carbon black.
  • the electrode layer 12a has a rectangular thin film shape with a width of 15 mm, a length of 550 mm, and a thickness of 0.015 mm (15 ⁇ m).
  • the electrode layer 12 a is disposed on the top surface of the piezoelectric layer 11.
  • the wiring 20a is connected to the left end of the electrode layer 12a.
  • the material, shape, and size of the electrode layer 12 b are the same as those of the electrode layer 12 a.
  • the electrode layer 12 b is disposed on the lower surface of the piezoelectric layer 11.
  • the wiring 20b is connected to the left end of the electrode layer 12b.
  • the protective layer 13a is made of a thermoplastic polyester elastomer, and has a rectangular thin film shape with a width of 25 mm, a length of 550 mm, and a thickness T of 0.18 mm (180 ⁇ m).
  • the protective layer 13a is disposed on the upper surface of the electrode layer 12a.
  • the material, shape, and size of the protective layer 13 b are the same as those of the protective layer 13 a.
  • the protective layer 13 b is disposed on the lower surface of the electrode layer 12 b.
  • the breaking elongation of the protective layers 13a and 13b is 480%.
  • the piezoelectric layer 11, the electrode layers 12a and 12b, and the protective layers 13a and 13b have the same length but different widths.
  • a pressure sensitive portion S (a portion where the electrode layers 12a and 12b overlap the piezoelectric layer 11 in the thickness direction) is formed at the center in the width direction of the piezoelectric sensor 10. It is done.
  • the area of the pressure sensing unit S is 60% of the area of the piezoelectric sensor 10.
  • the elastic modulus of the piezoelectric sensor 10 is 46 MPa.
  • the piezoelectric sensor 10 can extend 10% or more in the left-right direction.
  • the tensile load is 23.3 N
  • the sensitivity coefficient in the left-right direction is 220 pC / N.
  • the ratio of the tensile load of Formula (I) mentioned later is 0.5.
  • the electrode layer 12a and the control circuit unit 30 are electrically connected by the wiring 20a.
  • the electrode layer 12 b and the control circuit unit 30 are electrically connected by the wiring 20 b.
  • the base materials of the piezoelectric layer 11 and the electrode layers 12a and 12b constituting the piezoelectric sensor 10 are all elastomers.
  • the protective layers 13a and 13b are also made of an elastomer.
  • the piezoelectric sensor 10 has flexibility in extension and contraction. Therefore, even if the piezoelectric sensor 10 is disposed on the mattress and the subject P lies on the mattress, the subject P is unlikely to feel discomfort such as hardness or stiffness.
  • the piezoelectric sensor 10 can expand and contract following the movement of the subject P and the mattress, so that weak vibrations due to breathing and heartbeat can be detected with high accuracy.
  • the piezoelectric sensor 10 has a band shape, and the pressure sensing unit S overlaps the body of the subject P.
  • the piezoelectric sensor 10 is smaller than a large area planar sensor disposed on the entire surface of the mattress. Thus, the texture of the cover 40 is not impaired. Further, since the area overlapping with the body of the subject P is small, the discomfort is further reduced. Since the piezoelectric sensor 10 is small, it is easy to carry, attach and remove.
  • the biological information detection apparatus of the present invention is not limited to the above embodiment, and can be implemented in various forms with modifications, improvements, etc. which can be made by those skilled in the art without departing from the scope of the present invention. Can.
  • the piezoelectric layer comprises an elastomer and piezoelectric particles.
  • the elastomer one or more types selected from crosslinked rubber and thermoplastic elastomer may be used.
  • a flexible elastomer having a relatively small elastic modulus urethane rubber, silicone rubber, nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene-diene rubber (EPDM) And ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-acrylic acid ester copolymer, butyl rubber, styrene-butadiene rubber, fluororubber, epichlorohydrin rubber and the like.
  • an elastomer modified by introducing a functional group may be used.
  • a hydrogenated nitrile rubber having one or more selected from a carboxyl group, a hydroxyl group and an amino group is preferable.
  • the electromotive field (V / m) generated when a load is applied to the piezoelectric layer is the piezoelectric strain constant (C / N) of the piezoelectric layer, the dielectric constant (F / m), and the applied load (N / m 2 ) It is shown by following Formula (a).
  • EMF piezoelectric distortion constant / dielectric constant ⁇ load (a)
  • an elastomer having a relatively small dielectric constant for example, urethane rubber, silicone rubber, NBR, H-NBR, XH-NBR, etc. are suitable as an elastomer having a relative dielectric constant of 15 or less (measurement frequency: 100 Hz).
  • Piezoelectric particles are particles of a compound having piezoelectricity.
  • a ferroelectric having a perovskite crystal structure is known, and, for example, barium titanate, strontium titanate, potassium niobate, sodium niobate, lithium niobate, potassium sodium niobate And potassium sodium niobate, lead zirconate titanate (PZT), barium strontium titanate (BST), bismuth lanthanum titanate (BLT), bismuth strontium tantalate (SBT), and the like.
  • PZT lead zirconate titanate
  • BST barium strontium titanate
  • BLT bismuth lanthanum titanate
  • SBT bismuth strontium tantalate
  • the particle diameter of the piezoelectric particles is not particularly limited.
  • plural types of piezoelectric particle powders having different average particle diameters it is possible to mix large diameter piezoelectric particles and small diameter piezoelectric particles in the elastomer.
  • small diameter piezoelectric particles enter between large diameter piezoelectric particles, and pressure is easily transmitted to the piezoelectric particles.
  • the piezoelectric strain constant of the piezoelectric layer can be increased, and the electromotive voltage can be increased.
  • the piezoelectric particles may be single particles or an aggregate of a plurality of particles. In the case of including an aggregate of a plurality of piezoelectric particles, it becomes easy to balance the flexibility and the piezoelectricity. For example, if a large amount of piezoelectric particles is added to the elastomer, although the piezoelectricity is improved, the volume fraction of the elastomer is reduced, so the flexibility is reduced. On the other hand, when the compounding amount of the piezoelectric particles is small, the volume ratio of the elastomer becomes large and the flexibility is improved, but the piezoelectricity is reduced.
  • an aggregate in which individual particles are aggregated by electrostatic force or the like, a conjugate in which individual particles are chemically bonded, and the like can be mentioned.
  • the latter combination is preferable from the viewpoint that individual particles are not easily separated and a linked structure of piezoelectric particles is easily formed.
  • the manufacturing method of a coupling body is not specifically limited, For example, after baking the powder which consists of single particle
  • the difference between aggregates and conjugates can be analyzed as follows. First, the piezoelectric layer is heated to remove the elastomeric component.
  • the remaining piezoelectric particles are dispersed in a good solvent and subjected to ultrasonic treatment.
  • the good solvent refers to a polar solvent which hardly precipitates when the piezoelectric particles are dispersed.
  • any solvent may be used as long as it has an SP value (solubility parameter) of 8 or more and 13 or less and can dissolve the elastomer.
  • SP value solubility parameter
  • 2-methoxyethanol is mentioned.
  • An aggregate of a plurality of piezoelectric particles can be defined as particles having a diameter larger than twice the average particle diameter of individual piezoelectric particles.
  • the diameter (d2) of the aggregate the median diameter measured by the laser diffraction / scattering type particle diameter distribution measuring apparatus is adopted.
  • the average particle diameter (d1) of the piezoelectric particles a scanning electron microscope (SEM) photograph of the aggregate is taken, and the average value of the maximum diameters of 100 or more piezoelectric particles arbitrarily selected without deviation is adopted. Do. And, those which satisfy 2d1 ⁇ d2 are an aggregate.
  • the elastomer and the piezoelectric particles may be chemically bonded, for example, by surface treatment of the piezoelectric particles.
  • a method of surface treatment of the piezoelectric particles a method in which a surface treatment agent having a functional group capable of reacting with the elastomer polymer is reacted in advance with the piezoelectric particles, and the piezoelectric particles are mixed with the elastomer polymer. Examples thereof include a method of dissolving in acid, alkali or subcritical water to form a hydroxyl group, and then mixing with an elastomer polymer having a functional group capable of reacting with the hydroxyl group.
  • the piezoelectric particles When the piezoelectric particles are chemically bonded to the elastomer, the piezoelectric particles are less likely to be misaligned even if expansion and contraction are repeated. In addition, since the piezoelectric particles are less likely to be separated from the elastomer, fluctuations in physical properties and output from initial values are reduced. This stabilizes the output and improves the sag resistance of the piezoelectric layer. In addition, since the breaking elongation of the piezoelectric layer becomes large, it is possible to suppress the deterioration of the piezoelectric performance due to the local breakage or the like at the time of elongation. As a result, high piezoelectric performance can be maintained even in the expanded state.
  • the content of the piezoelectric particles may be determined in consideration of the piezoelectric layer, and hence the flexibility of the piezoelectric sensor and the piezoelectric performance of the piezoelectric layer.
  • the content of the piezoelectric particles is increased, the piezoelectric performance of the piezoelectric layer is improved but the flexibility is reduced. Therefore, it is desirable to adjust the content of the piezoelectric particles so that the desired flexibility can be realized in the combination of the elastomer and the piezoelectric particles used.
  • the content of the piezoelectric particles may be 30% by volume or more and 50% by volume or less based on 100% by volume of the elastomer.
  • the piezoelectric layer may contain, in addition to the elastomer and the piezoelectric particles, reinforcing particles having a dielectric constant smaller than that of the piezoelectric particles.
  • the relative permittivity of the reinforcing particles is desirably, for example, 100 or less, and preferably 30 or less, on the condition that the relative permittivity of the reinforcing particles is smaller than that of the piezoelectric particles.
  • the piezoelectric particles having a large relative dielectric constant are connected, the external force is easily transmitted to the piezoelectric particles, and therefore, the improvement of the piezoelectric strain constant of the formula (a) can be expected.
  • the piezoelectric particles having a large relative dielectric constant are connected, the dielectric constant of the entire piezoelectric layer is increased.
  • both the piezoelectric particles and the reinforcing particles are contained in the piezoelectric layer, the connection between the piezoelectric particles having large relative dielectric constants is divided by the presence of the reinforcing particles having a smaller relative dielectric constant. Thereby, the rise in the dielectric constant of the entire piezoelectric layer can be suppressed.
  • the piezoelectric strain constant can be maintained. That is, when reinforcing particles are contained in the piezoelectric layer, the dielectric constant of the entire piezoelectric layer can be made smaller than in the case where only piezoelectric particles are contained while maintaining the piezoelectric strain constant. Therefore, a large electromotive field can be obtained by the above-mentioned equation (a).
  • the reinforcing particles particles having a large electric resistance are desirable.
  • the electrical resistance of the reinforcing particles is large, the dielectric breakdown strength of the piezoelectric layer is increased. Thereby, in polarization processing of the piezoelectric layer described later, a high electric field can be applied to shorten the processing time. In addition, productivity can be improved because the number of piezoelectric sensors broken during the polarization process can be reduced.
  • the reinforcing particles be chemically bonded to the elastomer.
  • a network of reinforcing particles is formed in the elastomer, so that ionized impurity ions such as a crosslinking agent, an additive, and moisture in the air are less likely to move, and the electrical resistance of the piezoelectric layer is increased.
  • Chemical bonding between the reinforcing particles and the elastomer can be realized, for example, by surface-treating the reinforcing particles.
  • a surface treatment agent having a functional group capable of reacting with the elastomeric polymer is reacted in advance with the reinforcing particles, and the reinforcing particles are mixed with the elastomeric polymer.
  • a surface treatment agent having a functional group capable of reacting with the elastomeric polymer is reacted in advance with the reinforcing particles, and the reinforcing particles are mixed with the elastomeric polymer.
  • it may be dissolved in subcritical water to form a hydroxyl group, and then mixed with an elastomeric polymer having a functional group capable of reacting with the hydroxyl group.
  • the reinforcing particles are chemically bonded to the elastomer, the reinforcing particles are less likely to be displaced even after repeated expansion and contraction.
  • the reinforcing particles are less likely to be separated from the elastomer, the fluctuation of the physical properties and the output from the initial value is reduced. This stabilizes the output and improves the sag resistance of the piezoelectric layer.
  • the breaking elongation of the piezoelectric layer becomes large, it is possible to suppress the deterioration of the piezoelectric performance due to the local breakage or the like at the time of elongation. As a result, high piezoelectric performance can be maintained even in the expanded state.
  • the type of reinforcing particles is not particularly limited.
  • particles of oxides such as titanium dioxide, silica, barium titanate, rubber, resin, etc. can be used.
  • the applied load may be attenuated by the resin particles and may not be transmitted to the piezoelectric particles.
  • the reinforcing particles have a modulus of elasticity higher than that of the base material elastomer. It is better to use larger particles.
  • metal oxide particles such as titanium dioxide are preferable because they have a small relative dielectric constant and a large effect of improving the dielectric breakdown resistance.
  • a sol-gel method is preferable because particles having a low crystallinity and a small relative dielectric constant can be obtained.
  • the piezoelectric layer is manufactured by curing a composition obtained by adding a powder of piezoelectric particles, a crosslinking agent and the like to an elastomeric polymer under predetermined conditions. Thereafter, the piezoelectric layer is subjected to polarization treatment. That is, a voltage is applied to the piezoelectric layer to align the polarization direction of the piezoelectric particles in a predetermined direction.
  • the inventors of the present invention have found that in a thin film piezoelectric sensor, the smaller the cross-sectional area perpendicular to the tensile direction of the piezoelectric layer, the greater the sensitivity to the applied load. Therefore, it is desirable that the piezoelectric layer be thin.
  • the thickness of the piezoelectric layer is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the thickness of the piezoelectric layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the electrode layer is preferably deformable following the piezoelectric layer.
  • the flexible electrode layer can be formed of, for example, a conductive material in which a conductive material is blended with a binder, conductive fibers, or the like.
  • the binder it is desirable to use one or more selected from an elastomer, that is, a crosslinked rubber and a thermoplastic elastomer.
  • the elastomer having a relatively small elastic modulus and being flexible and having good adhesion to the piezoelectric layer include acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluororubber, H-NBR and the like.
  • an elastomer modified by introducing a functional group may be used, such as an epoxy group modified acrylic rubber, a carboxyl group modified hydrogenated nitrile rubber and the like.
  • the type of conductive material is not particularly limited.
  • conductive carbon materials such as metal carbide particles, metal nanowires made of silver, gold, copper, platinum, nickel and the like, carbon black, carbon nanotubes, graphite, thin layer graphite, graphene and the like.
  • metal-coated particles such as silver-coated copper particles may be used.
  • the electrode layer may contain, as other components, a crosslinking agent, a crosslinking accelerator, a dispersing agent, a reinforcing material, a plasticizer, an antiaging agent, a coloring agent, and the like.
  • a conductive material when using an elastomer as a binder, a conductive material, if necessary, an additive is added to a polymer solution in which the polymer of the elastomer component is dissolved in a solvent, and the conductive paint is prepared by stirring and mixing.
  • the electrode may be formed by directly applying the prepared conductive paint on one surface of the piezoelectric layer.
  • a conductive paint may be applied to the release film to form an electrode, and the formed electrode may be transferred to one surface of the piezoelectric layer.
  • the protective layer is laminated to at least one of the electrode layers and comprises an elastomer.
  • the protective layer may be disposed on one or both of the lamination direction outer sides of the laminate of the piezoelectric layer and the electrode layer.
  • a protective layer may be disposed between the electrode layers adjacent in the stacking direction.
  • a shear force acts on the piezoelectric layer by the protective layer extending in the surface direction.
  • a tensile force in the surface direction is applied to the piezoelectric layer, and distortion of the piezoelectric layer is increased.
  • the amount of charge generated in the piezoelectric layer is increased, and the sensitivity of the sensor is improved.
  • the sensitivity improvement effect by the protective layer is more remarkable as the elastic modulus in the tensile direction of the protective layer is smaller.
  • the elastomer of the protective layer at least one selected from crosslinked rubber and thermoplastic elastomer may be used.
  • the elastomer having a relatively small elastic modulus and flexibility and good adhesion to the electrode layer include natural rubber, isoprene rubber, butyl rubber, acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluororubber, NBR and the like.
  • silicone rubber and urethane rubber having good affinity with the living body are desirable, and it is desirable not to contain substances extracted with time, such as plasticizers.
  • the protective layer be excellent in sag resistance.
  • the protective layer plays a role of protecting the piezoelectric sensor from external mechanical stress, it is desirable that the protective layer be excellent in wear durability and tear durability.
  • the breaking elongation of the protective layer be larger than the breaking elongation of the piezoelectric layer.
  • the breaking elongation adopts the value of elongation at break measured by the tensile test specified in JIS K6251: 2010. The tensile test is conducted using a dumbbell-shaped No. 5 test piece at a tensile speed of 100 mm / min.
  • the Poisson's ratio of the elastomer is approximately 0.5.
  • the force applied in the thickness direction acts as the force in the surface direction as it is. Therefore, as the thickness of the protective layer is larger, the strain increase effect of the piezoelectric layer is larger, and the sensitivity improvement effect of the sensor is larger.
  • the thickness per one protective layer may be, for example, 5 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the protective layer in the present specification is the thickness of a portion of one layer of the protective layer to be laminated to the electrode layer, as indicated by a symbol T in FIG.
  • Piezoelectric sensors are placed on the bedding.
  • Beddings are not particularly limited, but include bed mattresses, mattresses, their covers and sheets. For example, it may be disposed on a mattress or the like, or may be disposed only between the mattress or the like and the cover, but it is also possible to sew them, fasten them with a surface fastener or snap button, or adhere them with an adhesive. Good.
  • the piezoelectric sensor is configured so that the pressure sensing unit overlaps with a part of the subject's body when the subject is lying on the bedding. It is desirable to be placed in
  • the piezoelectric sensor has a rectangular thin plate shape.
  • the piezoelectric sensor has a width of 5 mm to 100 mm, a length of 100 mm to 1000 mm, a ratio of length to width (length / width) of 2 to 200, and a thickness of 0.05 mm to 5 mm. is there. If the width is small, the sensitivity is low and it becomes difficult to detect weak vibrations.
  • the preferred width is 10 mm or more. On the other hand, if the width is large, the sensitivity is high, but the subject may easily feel discomfort or there is a possibility that the breathability may be deteriorated and sweat may be easily scratched.
  • the preferred width is 50 mm or less.
  • the longer the length in other words, the larger the ratio to the width, the easier it is for the subject's body to overlap, making it easier to detect weak vibrations due to breathing and heart beats.
  • the preferred length is 300 mm or more.
  • the preferred length is 800 mm or less from the viewpoint of easy installation in bedding. If the thickness is large, the subject is likely to feel discomfort.
  • the preferred thickness is 2 mm or less.
  • the elastic modulus of the piezoelectric sensor is desirably 10 MPa or more and 100 MPa or less.
  • the elastic modulus is a value calculated from a stress-elongation curve obtained by a tensile test defined in JIS K7127: 1999. The tensile test shall be conducted at a tensile speed of 100 mm / min using a test piece of test piece type 2.
  • Piezoelectric sensors have stretch flexibility. For example, if the tensile strain of the piezoelectric sensor is 10% or less, it can be said that it has stretch flexibility.
  • tensile strain is a value measured as follows, and is an indicator of whether or not it has stretch flexibility. First, the length L 0 of the initial state (unloaded state before extension) of the piezoelectric sensor is measured. Next, the piezoelectric sensor is stretched by 20% in the longitudinal direction (length is 1.2 L 0 ), and held for 10 seconds at a temperature of 10 to 30 ° C. as it is. Then, back to the initial state, measuring the length L 1 of the piezoelectric sensor.
  • Tensile strain (%) (L 1 -L 0 ) / L 0 ⁇ 100 (b)
  • the piezoelectric sensor extends 10% or more in the longitudinal direction.
  • the term “10% elongation in the longitudinal direction” means that the length in the longitudinal direction is 1.1 times the length in the unloaded state.
  • it is desirable that the tensile load when the piezoelectric sensor is elongated by 10% in the longitudinal direction is 100 N or less.
  • the preferred tensile load is 75N or less.
  • the tensile load at 10% elongation is subjected to the tensile test specified in JIS K 7127: 1999 as in the case of the elastic modulus (test piece: test piece type 2, tensile speed: 100 mm / min), 10% elongation
  • the piezoelectric sensor is used in a stretched state by the load of the subject. For this reason, it is desirable that it has a sensor capability that can detect respiration and heart rate even in an extended state, and the sensitivity coefficient of the sensor is large. From such a point of view, it is desirable that the sensitivity coefficient in the longitudinal direction when the piezoelectric sensor is elongated by 10% in the longitudinal direction is 50 pC / N or more.
  • the sensitivity factor in the longitudinal direction refers to the amount of charge (C / m 2 ) per unit area generated when a tensile load in the longitudinal direction is applied to the piezoelectric sensor (N / m 2 ) It is the divided value.
  • the piezoelectric sensor satisfy the following equation (I).
  • the tensile load of each layer may be calculated by multiplying the elastic modulus of each layer obtained by the above-described tensile test defined in JIS K 7127: 1999 by the thickness and the width in the non-load state of each layer.
  • the thickness of the electrode layer is the sum of the thicknesses of the two electrode layers sandwiching the piezoelectric layer. If two protective layers are arranged, the thickness of the protective layer is the sum of the thicknesses of the two protective layers. In the case where the elastic modulus and the thickness are different between the two electrode layers, the elastic modulus ⁇ thickness ⁇ width is calculated for each layer, and the sum thereof is used. The same applies to the protective layer.
  • the ratio of the tensile load in the formula (I) is less than 0.1, when stress is applied to the piezoelectric sensor, the stress applied to the piezoelectric layer becomes relatively small, and the sensor sensitivity becomes low.
  • the tensile load ratio in the formula (I) exceeds 2
  • the stress applied to the piezoelectric layer becomes relatively large when the stress is applied to the piezoelectric sensor, so an excessive load is applied to the piezoelectric layer.
  • Durability may be reduced. Since the piezoelectric layer contains piezoelectric particles, the expansion rate varies within the layer, and a locally weak portion is likely to occur. For this reason, the breaking elongation of the piezoelectric layer is relatively small.
  • the piezoelectric layer is likely to be locally broken at the time of expansion.
  • the ratio of the tensile load exceeds 2
  • the displacement of the piezoelectric layer which is easily broken at the time of elongation becomes rate-limiting.
  • durability there exists a possibility that durability may fall.
  • the ratio of the tensile load in Formula (I) is 0.1 or more and 2 or less
  • the protective layer does not contain piezoelectric particles, local fracture is unlikely to occur and the breaking elongation is relatively large. By achieving uniform extension by the protective layer, the durability is enhanced.
  • stress is easily transmitted to the piezoelectric layer, the sensor sensitivity is increased.
  • the pair of electrode layers are spaced apart in the polarization direction of the piezoelectric particles in the piezoelectric layer.
  • the electrode layer may be formed on the entire surface of the piezoelectric layer, or may be formed on only a part of the surface.
  • the portion where the electrode layer overlaps in the thickness direction via the piezoelectric layer is a pressure sensitive portion.
  • the area of the pressure sensitive portion is 20% or more of the area of the piezoelectric sensor. It is preferable that the area of the pressure sensitive portion be 50% or more, and further 60% or more from the viewpoint that the pressure sensitive portion easily overlaps with a part of the body of the subject and detects weak vibrations due to respiration and heart beat without leaking. It is.
  • the piezoelectric sensor may be manufactured by bonding a piezoelectric layer, an electrode layer, and a protective layer by pressure bonding, fusion bonding, or an adhesive.
  • a thermoplastic elastomer used for the protective layer
  • the protective layer can be fused to the electrode layer and the piezoelectric layer by heating and softening.
  • an adhesive layer may be provided between the protective layer and the electrode layer. It is desirable to use a thermoplastic elastomer that softens at a lower temperature than the protective layer as the adhesive layer. In this case, fusion at a lower temperature is possible, and the manufacturing cost can be reduced.
  • the biological information detection apparatus of the present invention may be configured to include a control device for processing an output signal from the piezoelectric sensor, in addition to the piezoelectric sensor.
  • a control device for processing an output signal from the piezoelectric sensor, in addition to the piezoelectric sensor.
  • the control circuit unit receives the power supply and the charge (output signal) generated by the piezoelectric sensor, and the operation unit that processes it.
  • a storage unit that temporarily stores data processed by the unit may be included.
  • a charge amplifier, a recorder, or the like may be used as the control device.
  • piezoelectric layer 1 First, 100 parts by mass of a carboxyl group-modified hydrogenated nitrile rubber polymer ("Terban (registered trademark) XT 8889" manufactured by LANXESS CO., LTD.) As an elastomer was dissolved in acetylacetone to prepare a polymer solution. Next, 512 parts by mass of a powder of barium titanate particles as piezoelectric particles ("BTD-UP" manufactured by Nippon Chemical Industrial Co., Ltd.) was added to the prepared polymer solution and kneaded. Subsequently, the kneaded material was repeatedly passed through a triple roll five times to obtain a slurry.
  • a carboxyl group-modified hydrogenated nitrile rubber polymer (“Terban (registered trademark) XT 8889" manufactured by LANXESS CO., LTD.)
  • BTD-UP barium titanate particles
  • the kneaded material was repeatedly passed through a triple roll five times to obtain
  • Piezoelectric layers 2 and 3 were manufactured in the same manner as the piezoelectric layer 1 except that the compounding amount of the piezoelectric particles to the elastomer was 840 parts by mass in the piezoelectric layer 2 and 200 parts by mass in the piezoelectric layer 3.
  • the elastomer 100% by volume
  • the content of piezoelectric particles in the piezoelectric layer 2 is 58% by volume
  • the content of piezoelectric particles in the piezoelectric layer 3 is 26.5% by volume.
  • the breaking elongation of the piezoelectric layer 2 is 8%
  • the breaking elongation of the piezoelectric layer 3 is 420%.
  • piezoelectric layer 4 A film "KF piezo 40 ⁇ m" made of polyvinylidene fluoride (PVDF) resin manufactured by Kureha Co., Ltd. was used. The breaking elongation of the piezoelectric layer 4 is 70%.
  • Electrode layer 1 100 parts by mass of an epoxy group-containing acrylic rubber polymer (Nippon Zeon Co., Ltd. “Nipol (registered trademark) AR51”) as an elastomer was dissolved in methyl ethyl ketone to prepare a polymer solution.
  • 10 parts by mass of conductive carbon black (“Ketchen black EC600JD” manufactured by Lion Corporation) was added to the prepared polymer solution, and dispersed by a bead mill to prepare a conductive paint.
  • the conductive paint was applied by a bar coating method onto a film made of release-treated polyethylene terephthalate (PET). This was heated at 150 ° C. for 1 hour to produce an electrode layer 1 with a thickness of 0.015 mm (15 ⁇ m).
  • Electrode layer 2 First, three kinds of monomers of ethyl acrylate (EA), acrylonitrile (AN) and allyl glycidyl ether (AGE) were suspension-polymerized to produce a glycidyl ether group-modified acrylic rubber polymer as an elastomer.
  • the blend ratio of the monomers was 96% by mass of EA, 2% by mass of AN, and 2% by mass of AGE.
  • the first pass was performed with a straight type nozzle (nozzle diameter 170 ⁇ m) and a processing pressure of 90 MPa, and the second and subsequent passes were performed with a cross type nozzle (nozzle diameter 170 ⁇ m) and a processing pressure of 130 MPa.
  • the liquid composition after the pulverization treatment was applied by a bar coating method on a release-treated PET film. This was heated at 150 ° C. for 2 hours to produce an electrode layer 2 with a thickness of 0.015 mm (15 ⁇ m).
  • the detail of the used raw material is as follows.
  • Conductive material Thin-layer graphite, "iGurafen- ⁇ " manufactured by ITEC Corporation.
  • Dispersing agent High molecular weight polyester acid amidoamine salt, Kusumoto Chemicals Co., Ltd.
  • Crosslinking agent amino group-terminated butadiene-acrylonitrile copolymer, CVC Thermoset Specialties Ltd. "ATBN 1300 x 16”.
  • Crosslinking accelerator Zinc complex, KING INDUSTRIES, INC "XK-614”.
  • Electrode layer 3 A conductive silver paste ("DW250-H-5" manufactured by Toyobo Co., Ltd.) was applied by a bar coating method on a release-treated PET film. This was heated at 150 ° C. for 1 hour to produce an electrode layer 3 with a thickness of 0.015 mm (15 ⁇ m).
  • Electrode layer 4 A conductive cloth having a thickness of 0.015 mm (15 ⁇ m) (“Sui-10-511M” manufactured by Salen Co., Ltd.) was used as the electrode layer 4.
  • Protective layer 1 A thermoplastic polyester elastomer ("Hytrel (registered trademark) 3046" manufactured by Toray DuPont Co., Ltd.) was molded into a sheet to produce a protective layer 1 having a thickness of 0.18 mm (180 ⁇ m). The breaking elongation of the protective layer 1 is 520%.
  • Protective layer 2 A polyester film having a thickness of 0.1 mm (100 ⁇ m) (“Diafoil (registered trademark)” manufactured by Mitsubishi Chemical Corporation) was used as protective layer 2. The breaking elongation of the protective layer 2 is 80%.
  • Various piezoelectric sensors were manufactured as follows by appropriately combining the manufactured piezoelectric layer, the electrode layer, and the protective layer. First, electrode layers were respectively disposed on two surfaces (upper and lower surfaces) in the thickness direction of the piezoelectric layer, and the piezoelectric layer and the electrode layer were pressure-bonded using a laminator ("LPD 3223" manufactured by Fuji Plastic Co., Ltd.). Next, the protective layer was laminated on both the upper and lower electrode layers, and the surface of the protective layer was ironed to soften the protective layer, thereby fusing the protective layer to the piezoelectric layer and the electrode layer.
  • LPD 3223 manufactured by Fuji Plastic Co., Ltd.
  • a DC power supply is connected to the electrode layer of the obtained protective layer / electrode layer / piezoelectric layer / electrode layer / protective layer, and a polarization process is performed by applying an electric field of 20 V / ⁇ m to the piezoelectric layer for 5 minutes.
  • a rectangular thin plate piezoelectric sensor having a width of 25 mm and a length of 550 mm was manufactured (see FIG. 2 and FIG. 3 mentioned above).
  • the width of the piezoelectric layer is 20 mm
  • the width of the electrode layer is 15 mm
  • the width of the protective layer is 25 mm
  • the length of each layer is all 550 mm.
  • the thickness of the piezoelectric sensor is the sum of the thicknesses of the layers (piezoelectric layer + electrode layer ⁇ 2 + protective layer ⁇ 2).
  • the area of the pressure sensitive portion is 60% of the area of the piezoelectric sensor.
  • various types of piezoelectric sensors having dimensions different from the basic shape can be obtained by changing at least one of the length, width, and thickness of each layer based on the piezoelectric sensor in which the piezoelectric layer 1, the electrode layer 1, and the protective layer 1 are stacked.
  • the lengths of the piezoelectric layer, the electrode layer, and the protective layer are the same. That is, the length of each layer directly becomes the length of the piezoelectric sensor.
  • Tables 1 and 2 show the dimensions, configuration, and physical properties of the manufactured piezoelectric sensor. In the configuration, only dimensions different from the basic shape are shown in parentheses (the unit is mm and the length may be different, but it is omitted because it is the same as the length of the piezoelectric sensor).
  • the measurement method of the sensitivity coefficient at 10% elongation among physical properties is as follows.
  • the piezoelectric sensor was installed in a fatigue endurance tester ("MMT-101N” manufactured by Shimadzu Corporation) in a state where the piezoelectric sensor was elongated by 10% in the longitudinal direction, and loads in the tensile direction of 0.5N, 1N, and 1. in the longitudinal direction. 5N and 2N sin waves (frequency 1 Hz) were sequentially added. The amount of charge generated at that time was measured using a charge amplifier (“NEXUS Charge Amplifier type 2692” manufactured by Brüel & Keer Co., Ltd.) and an oscilloscope (Yokogawa Electric Corporation “DLM 2022”). Then, the amount of generated charge measured for each load was divided by the applied stress, and the average value was calculated to obtain the sensitivity coefficient of the piezoelectric sensor at 10% elongation.
  • MMT-101N manufactured by Shimadzu Corporation
  • the piezoelectric sensor of Comparative Example 1 using the piezoelectric layer 4 made of PVDF did not have stretch flexibility, and the elastic modulus became large.
  • the piezoelectric sensor of Comparative Example 11 using the protective layer 2 made of a polyester film also did not have stretch flexibility, and the elastic modulus became large.
  • the piezoelectric sensor of Comparative Example 10 using the electrode layer 4 made of a conductive cloth has a large tensile strain but does not have stretch flexibility, although the elastic modulus is not large.
  • the manufactured piezoelectric sensor was used to measure the subject's respiration and heart rate, and at the same time, it was examined whether the subject felt discomfort. Moreover, the expansion-contraction durability of a piezoelectric sensor and the ease of installation were evaluated.
  • the evaluation method of the piezoelectric sensor is as follows.
  • the devices for processing the output signal from the piezoelectric sensor include a charge amplifier ("NEXUS Charge Amplifier type 2692" manufactured by Brüel &Ke; r) and a data logger (recorder) ("NR-HA08" manufactured by Keyence Corporation). Using. The measurement was performed for 30 minutes each time, for a total of 5 times. And it is evaluated as good (it shows by * mark in the same table when it can not measure even when it can not measure even when it can not measure in the case (Table 3 and Table 4 which are mentioned later by ⁇ mark) which can be measured all five times. did.
  • a biological information detection apparatus is configured by the piezoelectric sensor, the charge amplifier, and the data logger.
  • Tables 3 and 4 show the evaluation results together with the configuration of the manufactured piezoelectric sensor. Moreover, the measurement result of the respiration measured by the piezoelectric sensor of Example 1 is shown in FIG. FIG. 5 shows the measurement results of the heart rate measured by the same piezoelectric sensor.
  • each piezoelectric sensor of the example was excellent also in terms of expansion and contraction durability and ease of installation.
  • FIGS. 4 and 5 according to the piezoelectric sensor of the embodiment, it was possible to measure respiration and heart rate with high accuracy.
  • the electrode layer 3 of the piezoelectric sensor of Example 10 is made of conductive silver paste. For this reason, the modulus of elasticity and the tensile load at 10% elongation become large as compared with the piezoelectric sensors of the other examples, and some discomfort is generated.
  • the piezoelectric layer 2 of the piezoelectric sensor of Example 11 contains a larger amount of piezoelectric particles than the piezoelectric layers 1 and 3. For this reason, as with the piezoelectric sensor of Example 10, the elastic modulus and the tensile load at 10% elongation become large, and some discomfort is generated.
  • the breaking elongation of the piezoelectric layer 1 is larger than the breaking elongation of the protective layer 2. Therefore, the protective layer 2 may be broken at the time of elongation, and the displacement of the piezoelectric layer 1 which is likely to be locally broken may be limited and the durability may be reduced.
  • the biological information detection apparatus of the present invention can measure respiratory conditions and heart rate with high accuracy without stress, and therefore is useful in the field of medical care, care, health management, training and the like.

Abstract

Provided is a vital sign detection device (1) comprising a piezoelectric sensor (10) positioned on bedding (40), said piezoelectric sensor (10) comprising: a piezoelectric layer (11) including an elastomer and piezoelectric particles; electrode layers (12a, 12b); and protective layers (13a, 13b) including elastomers. The piezoelectric sensor (10) is flexible, expandable, and contractible and is formed into a rectangular thin plate, the width thereof being between 5-100mm inclusive, the length thereof being 100-1000mm inclusive, the ratio of length to width (length/width) thereof being 2-200 inclusive, and the thickness thereof being 0.05-5mm inclusive. In the piezoelectric sensor (10), the area of a pressure-sensitive part (S) wherein the electrode layers (12a, 12b) overlap in the thickness direction via the piezoelectric layer (11) is 20% or more of the area of the piezoelectric sensor (10). On the basis of an output signal from the piezoelectric sensor (10), the vital sign detection device (1) detects the respiration and/or the heartbeat of a subject (P).

Description

生体情報検出装置Biological information detection device
 本発明は、柔軟で伸縮可能な圧電センサを備え、被検者の呼吸および心拍の少なくとも一方を検出するための生体情報検出装置に関する。 The present invention relates to a biological information detection apparatus including a flexible and stretchable piezoelectric sensor for detecting at least one of a subject's respiration and heart rate.
 例えば、呼吸状態の測定は、無呼吸症候群の発見および治療などに有用である。また、心拍数の測定は、睡眠の質の測定や、心疾患の発見などに有用である。このように、健康管理や病気の発見、治療を目的として、被検者の呼吸状態や心拍数を測定することが行われている。 For example, measurement of respiratory condition is useful for detection and treatment of apnea syndrome. Also, measurement of heart rate is useful for measuring sleep quality and detecting heart disease. As described above, for the purpose of health management, disease detection, and treatment, it has been performed to measure the respiratory state and heart rate of a subject.
 例えば、特許文献1には、高分子母材中に圧電セラミック粉体を混合した圧電体シートと、その両面に配置された可撓性電極と、を有する可撓性圧電素子と、該可撓性圧電素子の出力電圧に基づいて呼吸などの人体情報を検知する人体情報検知手段と、を備える異常監視装置が記載されている。特許文献2には、ベッドに架設された圧電ケーブルセンサを備え、該圧電ケーブルセンサの出力情報から心拍情報、体動情報および呼吸情報のうちの少なくとも二つを抽出し、被検者の生体の状態を判定する生体センサが記載されている。
特許文献3には、シリコーンゴム製の敷き板と、被検者の生体活動に伴い発生する該敷き板の歪みを検出する圧電フィルムセンサと、を備える生体情報計測用パネルが記載されている。
For example, Patent Document 1 discloses a flexible piezoelectric element having a piezoelectric sheet in which a piezoelectric ceramic powder is mixed in a polymer matrix, and flexible electrodes disposed on both sides thereof, and the flexible sheet. An abnormality monitoring apparatus is disclosed, which comprises: human body information detecting means for detecting human body information such as respiration based on the output voltage of the piezoelectric element. Patent Document 2 includes a piezoelectric cable sensor installed in a bed, and extracts at least two of heartbeat information, body motion information and respiration information from output information of the piezoelectric cable sensor, and A biometric sensor is described that determines the condition.
Patent Document 3 describes a biological information measurement panel including a silicone rubber laying plate, and a piezoelectric film sensor that detects a strain of the laying plate that is generated along with the biological activity of a subject.
特開2002-16301号公報Japanese Patent Application Laid-Open No. 2002-16301 特開2005-95307号公報JP 2005-95307 A 特開2014-124310号公報JP, 2014-124310, A 国際公開第2017/010135号International Publication No. 2017/010135
 特許文献1~3に記載されている圧電センサは、塩素化ポリエチレン、クロロプレンなどの樹脂中にチタン酸ジルコン酸鉛(PZT)などの圧電セラミック粉体が配合された圧電層、あるいは、ポリフッ化ビニリデン(PVDF)樹脂製の圧電層を有する。このため、圧電センサは、可撓性はあるものの、柔軟性および伸縮性に乏しい。したがって、圧電センサを寝具に配置して、その上に被検者が横になった場合に、硬さやごわつきなどの違和感を感じやすい。被検者が圧電センサを意識してしまうため、心拍数の測定が正確にできなかったり、睡眠が妨げられるおそれがある。この場合、圧電センサを、マットレスなどのクッション性を有する寝具の下に配置すれば、違和感は低減されるかもしれない。しかし、従来の圧電センサは、被検者や寝具の動きに追従して伸縮することができないため、被検者と圧電センサとの間にマットレスなどが介在すると、呼吸および心拍といった微弱な振動を検出することは難しい。 The piezoelectric sensor described in Patent Documents 1 to 3 is a piezoelectric layer in which a piezoelectric ceramic powder such as lead zirconate titanate (PZT) is mixed in a resin such as chlorinated polyethylene or chloroprene, or polyvinylidene fluoride (PVDF) It has a piezoelectric layer made of resin. For this reason, the piezoelectric sensor is flexible but has poor flexibility and stretchability. Therefore, when the piezoelectric sensor is disposed on the bedding and the subject lies on the bedding, it is easy to feel discomfort such as hardness or stiffness. Since the subject is aware of the piezoelectric sensor, there is a possibility that heart rate measurement can not be accurately performed or sleep is disturbed. In this case, the discomfort may be reduced if the piezoelectric sensor is placed under cushioned bedding such as a mattress. However, since the conventional piezoelectric sensor can not expand and contract following the movement of the subject or the bedding, if a mattress or the like intervenes between the subject and the piezoelectric sensor, weak vibrations such as respiration and heart beat are generated. It is difficult to detect.
 この点、特許文献3に記載されている生体情報計測用パネルにおいては、シリコーンゴム製の敷き板を被検者の下に配置し、圧電センサを被検者に重ならないように配置して、被検者の生体活動により生じる敷き板の歪みを圧電センサで検出している。しかし、シリコーンゴム製の敷き板は粘弾性を有するため、被検者の生体活動により生じる振動は、圧電センサに伝わるまでの間に大きく減衰する。このため、呼吸および心拍といった微弱な振動を精度良く検出することは難しい。 In this respect, in the biological information measurement panel described in Patent Document 3, a silicone rubber laying plate is disposed under the subject, and the piezoelectric sensor is disposed so as not to overlap the subject. The strain of the floor plate caused by the biological activity of the subject is detected by the piezoelectric sensor. However, since the silicone rubber laying plate has visco-elasticity, the vibration caused by the biological activity of the subject is largely attenuated before being transmitted to the piezoelectric sensor. For this reason, it is difficult to accurately detect weak vibrations such as respiration and heart beats.
 一方、特許文献4には、エラストマーを含む圧電層、電極層、保護層を有する柔軟な圧電センサが記載されている。しかし、寝具に配置して、被検者の呼吸および心拍の少なくとも一方を検出するためには、圧電センサの形状や寸法を最適化するなど、さらに検討が必要である。 On the other hand, Patent Document 4 describes a flexible piezoelectric sensor having a piezoelectric layer containing an elastomer, an electrode layer, and a protective layer. However, in order to detect at least one of the subject's respiration and / or heart rate by placing on bedding, further study is required such as optimizing the shape and size of the piezoelectric sensor.
 本発明は、このような実情に鑑みてなされたものであり、寝具に配置しても被検者が違和感を感じにくく、呼吸および心拍の少なくとも一方を精度良く検出することができる生体情報検出装置を提供することを課題とする。 The present invention has been made in view of such circumstances, and it is difficult for a subject to feel discomfort even when placed in bedding, and a biological information detection apparatus capable of accurately detecting at least one of respiration and heartbeat. The challenge is to provide
 上記課題を解決するため、本発明の生体情報検出装置は、寝具に配置され、エラストマーおよび圧電粒子を含む圧電層と、該圧電層を挟んで配置される電極層と、該電極層の少なくとも一つに積層されエラストマーを含む保護層と、を有し、幅が5mm以上100mm以下、長さが100mm以上1000mm以下、幅に対する長さの比(長さ/幅)が2以上200以下、厚さが0.05mm以上5mm以下の矩形薄板状を呈し、伸縮柔軟性を有する圧電センサを備え、該圧電センサにおいて、該電極層が該圧電層を介して厚さ方向に重なる感圧部の面積は、該圧電センサの面積の20%以上であり、該圧電センサからの出力信号に基づいて、被検者の呼吸および心拍の少なくとも一方を検出することを特徴とする。 In order to solve the above problems, the biological information detection apparatus of the present invention is disposed in bedding, and includes at least one of a piezoelectric layer including an elastomer and piezoelectric particles, an electrode layer disposed to sandwich the piezoelectric layer, and the electrode layer. And a protective layer containing an elastomer, wherein the width is 5 mm or more and 100 mm or less, the length is 100 mm or more and 1000 mm or less, and the ratio of length to width (length / width) is 2 or more and 200 or less, thickness Has a rectangular thin plate shape of 0.05 mm or more and 5 mm or less, and is provided with a piezoelectric sensor having expansion and contraction flexibility, and in the piezoelectric sensor, the area of the pressure sensitive portion where the electrode layer overlaps in the thickness direction via the piezoelectric layer is And 20% or more of the area of the piezoelectric sensor, and detecting at least one of the respiration and the heartbeat of the subject based on an output signal from the piezoelectric sensor.
 本発明の生体情報検出装置は、エラストマーを含む圧電層および保護層を有し、伸縮柔軟性を有する圧電センサを備える。このため、圧電センサを寝具に配置し、その上に被検者が横になっても、被検者は硬さやごわつきなどの違和感を感じにくい。圧電センサは、被検者や寝具の動きに追従して伸縮可能である。このため、呼吸および心拍による微弱な振動、呼吸および心拍動に由来する呼吸音を、精度良く検出することができる。圧電センサは、幅(短手方向の長さ)に対して2倍以上の長さ(長手方向の長さ)を有する矩形薄板状を呈する。そして、圧電センサの面積に占める感圧部の面積は20%以上である。圧電センサが細長い形状を有し、感圧部の面積も大きいため、圧電センサを寝具に配置した場合に、感圧部が被検者の体の一部と重なりやすい。よって、呼吸および心拍による微弱な振動を漏らさず検出することができる。圧電センサは、マットレスの全面に配置するような大面積の面状センサと比較して、小型である。よって、マットレスやシーツなどの質感を損なわない。また、被検者の体と重なる面積が小さいため、違和感がより低減される。さらに、持ち運びや、取付け、取り外しが容易である。 The biological information detection apparatus of the present invention includes a piezoelectric layer including an elastomer and a protective layer, and includes a piezoelectric sensor having stretch flexibility. For this reason, even if the piezoelectric sensor is disposed on the bedding and the subject lies on top of it, the subject is unlikely to feel discomfort such as hardness or stiffness. The piezoelectric sensor can expand and contract following the movement of the subject and the bedding. For this reason, it is possible to accurately detect respiratory sounds derived from weak vibrations due to respiration and heart beat, respiration and heart beat. The piezoelectric sensor is in the form of a rectangular thin plate having a length (longitudinal length) which is twice or more the width (longitudinal length). And the area of the pressure sensitive portion occupying the area of the piezoelectric sensor is 20% or more. Since the piezoelectric sensor has an elongated shape and the area of the pressure sensing unit is large, the pressure sensitive unit is likely to overlap with a part of the body of the subject when the piezoelectric sensor is disposed on the bedding. Therefore, it is possible to detect weak vibrations due to respiration and heart beat without leaking. Piezoelectric sensors are compact compared to large area planar sensors, such as those placed on the entire surface of a mattress. Therefore, the texture of mattresses and sheets is not lost. Further, since the area overlapping with the body of the subject is small, the discomfort is further reduced. Furthermore, it is easy to carry, attach and remove.
本発明の一実施形態である生体情報検出装置の配置図である。It is a layout of a living body information detecting device which is one embodiment of the present invention. 同生体情報検出装置における圧電センサの上面図である。It is a top view of the piezoelectric sensor in the biometric information detection apparatus. 図2のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 実施例1の圧電センサで測定された呼吸波形を示すグラフである。5 is a graph showing a respiration waveform measured by the piezoelectric sensor of Example 1. 同圧電センサで測定された心拍波形を示すグラフである。It is a graph which shows the cardiac-beats waveform measured with the same piezoelectric sensor.
 本発明の生体情報検出装置の一実施形態を図面を用いて説明する。図1に、本実施形態の生体情報検出装置の配置図を示す。図2に、同生体情報検出装置における圧電センサの上面図を示す。図3に、図2のIII-III断面図を示す。図1においては、生体情報検出装置を透過して示す。図2においては、電極層および圧電層を透過して示す。 One embodiment of a living body information detection apparatus of the present invention will be described using the drawings. FIG. 1 shows a layout of the biological information detection apparatus of this embodiment. FIG. 2 shows a top view of the piezoelectric sensor in the biological information detection apparatus. FIG. 3 shows a III-III cross-sectional view of FIG. In FIG. 1, the biological information detection apparatus is shown in a transparent manner. In FIG. 2, the electrode layer and the piezoelectric layer are shown in transmission.
 図1~図3に示すように、生体情報検出装置1は、圧電センサ10と、配線20a、20bと、制御回路部30と、を備えている。本実施形態においては、マットレスの上に被検者Pが仰向けに寝た状態において、被検者Pの肩幅方向を左右方向、身長方向を前後方向と定義する。圧電センサ10の幅は前後方向の長さ、長さは左右方向の長さである。圧電センサ10は、ベッドのマットレスを被覆するカバー40の裏側に固定されている。ベッドのマットレスのカバーは、本発明における「寝具」の概念に含まれる。圧電センサ10は、左右方向に帯状に延在して配置されている。圧電センサ10の一部は、被検者Pの胸部の下に配置されている。圧電センサ10は、幅25mm、長さ550mm、厚さ0.45mmの長方形薄板状を呈している。幅に対する長さの比(長さ/幅)は22である。圧電センサ10は、伸縮柔軟性を有しており、圧電層11と、一対の電極層12a、12bと、一対の保護層13a、13bと、を備えている。 As shown in FIGS. 1 to 3, the biological information detection apparatus 1 includes a piezoelectric sensor 10, wires 20a and 20b, and a control circuit unit 30. In the present embodiment, the shoulder width direction of the subject P is defined as the left-right direction, and the height direction is defined as the front-rear direction in a state where the subject P is lying on his / her back on the mattress. The width of the piezoelectric sensor 10 is the length in the front-rear direction, and the length is the length in the left-right direction. The piezoelectric sensor 10 is fixed to the back of a cover 40 that covers the bed mattress. The mattress cover of the bed is included in the concept of "bedding" in the present invention. The piezoelectric sensor 10 extends in a band shape in the left-right direction. A portion of the piezoelectric sensor 10 is disposed below the chest of the subject P. The piezoelectric sensor 10 has a rectangular thin plate shape with a width of 25 mm, a length of 550 mm, and a thickness of 0.45 mm. The ratio of length to width (length / width) is 22. The piezoelectric sensor 10 has flexibility in expansion and contraction, and includes the piezoelectric layer 11, a pair of electrode layers 12a and 12b, and a pair of protective layers 13a and 13b.
 圧電層11は、カルボキシル基変性水素化ニトリルゴム(XH-NBR)とチタン酸バリウム粒子とを含んでいる。チタン酸バリウム粒子の含有量は、XH-NBRの体積を100%とした場合の48体積%である。圧電層11は、幅20mm、長さ550mm、厚さ0.06mm(60μm)の長方形薄膜状を呈している。圧電層11には分極処理が施されており、チタン酸バリウム粒子は、圧電層11の厚さ方向(上下方向)に分極している。圧電層11の破断伸びは120%である。 The piezoelectric layer 11 contains a carboxyl group-modified hydrogenated nitrile rubber (XH-NBR) and barium titanate particles. The content of barium titanate particles is 48% by volume when the volume of XH-NBR is 100%. The piezoelectric layer 11 has a rectangular thin film shape with a width of 20 mm, a length of 550 mm, and a thickness of 0.06 mm (60 μm). The piezoelectric layer 11 is subjected to polarization treatment, and the barium titanate particles are polarized in the thickness direction (vertical direction) of the piezoelectric layer 11. The breaking elongation of the piezoelectric layer 11 is 120%.
 電極層12aは、アクリルゴムと導電性カーボンブラックとを含んでいる。電極層12aは、幅15mm、長さ550mm、厚さ0.015mm(15μm)の長方形薄膜状を呈している。電極層12aは、圧電層11の上面に配置されている。電極層12aの左端には、配線20aが接続されている。電極層12bの材質、形状、大きさは、電極層12aのそれと同じである。電極層12bは、圧電層11の下面に配置されている。電極層12bの左端には、配線20bが接続されている。 The electrode layer 12a contains acrylic rubber and conductive carbon black. The electrode layer 12a has a rectangular thin film shape with a width of 15 mm, a length of 550 mm, and a thickness of 0.015 mm (15 μm). The electrode layer 12 a is disposed on the top surface of the piezoelectric layer 11. The wiring 20a is connected to the left end of the electrode layer 12a. The material, shape, and size of the electrode layer 12 b are the same as those of the electrode layer 12 a. The electrode layer 12 b is disposed on the lower surface of the piezoelectric layer 11. The wiring 20b is connected to the left end of the electrode layer 12b.
 保護層13aは、熱可塑性ポリエステルエラストマー製であって、幅25mm、長さ550mm、厚さT0.18mm(180μm)の長方形薄膜状を呈している。保護層13aは、電極層12aの上面に配置されている。保護層13bの材質、形状、大きさは、保護層13aのそれと同じである。保護層13bは、電極層12bの下面に配置されている。保護層13a、13bの破断伸びは480%である。 The protective layer 13a is made of a thermoplastic polyester elastomer, and has a rectangular thin film shape with a width of 25 mm, a length of 550 mm, and a thickness T of 0.18 mm (180 μm). The protective layer 13a is disposed on the upper surface of the electrode layer 12a. The material, shape, and size of the protective layer 13 b are the same as those of the protective layer 13 a. The protective layer 13 b is disposed on the lower surface of the electrode layer 12 b. The breaking elongation of the protective layers 13a and 13b is 480%.
 圧電層11、電極層12a、12b、保護層13a、13bは、長さは同じで幅のみが異なる。図2に点線のハッチングで示すように、上方から見て、圧電センサ10の幅方向中央部に感圧部S(電極層12a、12bと圧電層11とが厚さ方向に重なる部分)が形成されている。感圧部Sの面積は、圧電センサ10の面積の60%である。 The piezoelectric layer 11, the electrode layers 12a and 12b, and the protective layers 13a and 13b have the same length but different widths. As shown by dotted hatching in FIG. 2, as viewed from above, a pressure sensitive portion S (a portion where the electrode layers 12a and 12b overlap the piezoelectric layer 11 in the thickness direction) is formed at the center in the width direction of the piezoelectric sensor 10. It is done. The area of the pressure sensing unit S is 60% of the area of the piezoelectric sensor 10.
 圧電センサ10の弾性率は46MPaである。圧電センサ10は、左右方向に10%以上伸長可能である。圧電センサ10を左右方向に10%伸長した時の引張荷重は23.3N、左右方向の感度係数は220pC/Nである。また、後述する式(I)の引張荷重の比(圧電層の引張荷重/(電極層の引張荷重+保護層の引張荷重))は、0.5である。 The elastic modulus of the piezoelectric sensor 10 is 46 MPa. The piezoelectric sensor 10 can extend 10% or more in the left-right direction. When the piezoelectric sensor 10 is stretched by 10% in the left-right direction, the tensile load is 23.3 N, and the sensitivity coefficient in the left-right direction is 220 pC / N. Moreover, the ratio of the tensile load of Formula (I) mentioned later (The tensile load of a piezoelectric layer / (the tensile load of an electrode layer + the tensile load of a protective layer)) is 0.5.
 電極層12aと制御回路部30とは、配線20aにより電気的に接続されている。電極層12bと制御回路部30とは、配線20bにより電気的に接続されている。被検者Pの呼吸および心拍により圧電センサ10に荷重が加わると、圧電層11に電荷が発生する。発生した電荷(出力信号)は、制御回路部30にて電圧や電流の変化として検出される。これに基づいて、被検者の呼吸および心拍が検出される。 The electrode layer 12a and the control circuit unit 30 are electrically connected by the wiring 20a. The electrode layer 12 b and the control circuit unit 30 are electrically connected by the wiring 20 b. When a load is applied to the piezoelectric sensor 10 due to the respiration and heartbeat of the subject P, an electric charge is generated in the piezoelectric layer 11. The generated charge (output signal) is detected by the control circuit unit 30 as a change in voltage or current. Based on this, the subject's respiration and heart beat are detected.
 本実施形態において、圧電センサ10を構成する圧電層11および電極層12a、12bの母材は、いずれもエラストマーである。また、保護層13a、13bもエラストマー製である。このため、圧電センサ10は、伸縮柔軟性を有する。したがって、圧電センサ10をマットレスの上に配置し、その上に被検者Pが横になっても、被検者Pは硬さやごわつきなどの違和感を感じにくい。圧電センサ10は、被検者Pやマットレスの動きに追従して伸縮可能であるため、呼吸および心拍による微弱な振動を、精度良く検出することができる。圧電センサ10は、帯状を呈しており、感圧部Sが被検者Pの体と重なっている。このため、呼吸および心拍による微弱な振動を漏らさず検出することができる。圧電センサ10は、マットレスの全面に配置される大面積の面状センサと比較して、小型である。よって、カバー40の質感を損なわない。また、被検者Pの体と重なる面積が小さいため、違和感がより低減される。圧電センサ10は小型であるため、持ち運びや、取付け、取り外しが容易である。 In the present embodiment, the base materials of the piezoelectric layer 11 and the electrode layers 12a and 12b constituting the piezoelectric sensor 10 are all elastomers. The protective layers 13a and 13b are also made of an elastomer. For this reason, the piezoelectric sensor 10 has flexibility in extension and contraction. Therefore, even if the piezoelectric sensor 10 is disposed on the mattress and the subject P lies on the mattress, the subject P is unlikely to feel discomfort such as hardness or stiffness. The piezoelectric sensor 10 can expand and contract following the movement of the subject P and the mattress, so that weak vibrations due to breathing and heartbeat can be detected with high accuracy. The piezoelectric sensor 10 has a band shape, and the pressure sensing unit S overlaps the body of the subject P. For this reason, it is possible to detect weak vibrations due to breathing and heartbeat without leaking. The piezoelectric sensor 10 is smaller than a large area planar sensor disposed on the entire surface of the mattress. Thus, the texture of the cover 40 is not impaired. Further, since the area overlapping with the body of the subject P is small, the discomfort is further reduced. Since the piezoelectric sensor 10 is small, it is easy to carry, attach and remove.
 以上、本発明の生体情報検出装置の一実施形態を説明した。本発明の生体情報検出装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。 Heretofore, an embodiment of the living body information detection apparatus of the present invention has been described. The biological information detection apparatus of the present invention is not limited to the above embodiment, and can be implemented in various forms with modifications, improvements, etc. which can be made by those skilled in the art without departing from the scope of the present invention. Can.
 <圧電層>
 圧電層は、エラストマーおよび圧電粒子を含む。エラストマーとしては、架橋ゴムおよび熱可塑性エラストマーから選ばれる一種以上を用いればよい。弾性率が比較的小さく柔軟なエラストマーとして、ウレタンゴム、シリコーンゴム、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、アクリルゴム、天然ゴム、イソプレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-アクリル酸エステル共重合体、ブチルゴム、スチレン-ブタジエンゴム、フッ素ゴム、エピクロルヒドリンゴムなどが挙げられる。また、官能基を導入するなどして変性したエラストマーを用いてもよい。変性エラストマーとしては、例えば、カルボキシル基、ヒドロキシル基、アミノ基から選ばれる一つ以上を有する水素化ニトリルゴムが好適である。
<Piezoelectric layer>
The piezoelectric layer comprises an elastomer and piezoelectric particles. As the elastomer, one or more types selected from crosslinked rubber and thermoplastic elastomer may be used. As a flexible elastomer having a relatively small elastic modulus, urethane rubber, silicone rubber, nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), acrylic rubber, natural rubber, isoprene rubber, ethylene-propylene-diene rubber (EPDM) And ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-acrylic acid ester copolymer, butyl rubber, styrene-butadiene rubber, fluororubber, epichlorohydrin rubber and the like. Alternatively, an elastomer modified by introducing a functional group may be used. As the modified elastomer, for example, a hydrogenated nitrile rubber having one or more selected from a carboxyl group, a hydroxyl group and an amino group is preferable.
 圧電層に荷重が加わった時に発生する起電界(V/m)は、圧電層の圧電歪み定数(C/N)、誘電率(F/m)、および加わった荷重(N/m)により、次式(a)で示される。
起電界=圧電歪み定数/誘電率×荷重 ・・・(a)
起電界を大きくするという点においては、圧電層の誘電率は小さい方が望ましい。この場合、比誘電率が比較的小さいエラストマーを採用することが望ましい。例えば、比誘電率が15以下(測定周波数100Hz)のエラストマーとして、ウレタンゴム、シリコーンゴム、NBR、H-NBR、XH-NBRなどが好適である。
The electromotive field (V / m) generated when a load is applied to the piezoelectric layer is the piezoelectric strain constant (C / N) of the piezoelectric layer, the dielectric constant (F / m), and the applied load (N / m 2 ) It is shown by following Formula (a).
EMF = piezoelectric distortion constant / dielectric constant × load (a)
From the viewpoint of increasing the electromotive field, it is desirable that the dielectric constant of the piezoelectric layer be small. In this case, it is desirable to use an elastomer having a relatively small dielectric constant. For example, urethane rubber, silicone rubber, NBR, H-NBR, XH-NBR, etc. are suitable as an elastomer having a relative dielectric constant of 15 or less (measurement frequency: 100 Hz).
 圧電粒子は、圧電性を有する化合物の粒子である。圧電性を有する化合物としては、ペロブスカイト型の結晶構造を有する強誘電体が知られており、例えば、チタン酸バリウム、チタン酸ストロンチウム、ニオブ酸カリウム、ニオブ酸ナトリウム、ニオブ酸リチウム、ニオブ酸カリウムナトリウム、ニオブ酸カリウムナトリウムリチウム、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウムストロンチウム(BST)、チタン酸ビスマスランタン(BLT)、タンタル酸ビスマスストロンチウム(SBT)などが挙げられる。圧電粒子としては、これらのうちの一種類あるいは二種類以上を用いればよい。 Piezoelectric particles are particles of a compound having piezoelectricity. As a compound having piezoelectricity, a ferroelectric having a perovskite crystal structure is known, and, for example, barium titanate, strontium titanate, potassium niobate, sodium niobate, lithium niobate, potassium sodium niobate And potassium sodium niobate, lead zirconate titanate (PZT), barium strontium titanate (BST), bismuth lanthanum titanate (BLT), bismuth strontium tantalate (SBT), and the like. As the piezoelectric particles, one or two or more of them may be used.
 圧電粒子の粒子径は、特に限定されない。例えば、平均粒子径が異なる複数種の圧電粒子粉末を用いると、エラストマー中に大粒径の圧電粒子と小粒径の圧電粒子とを混在させることができる。この場合、大粒径の圧電粒子の間に小粒径の圧電粒子が入り込み、圧電粒子に圧力が伝わりやすくなる。これにより、圧電層の圧電歪み定数が大きくなり、起電圧を大きくすることができる。 The particle diameter of the piezoelectric particles is not particularly limited. For example, when plural types of piezoelectric particle powders having different average particle diameters are used, it is possible to mix large diameter piezoelectric particles and small diameter piezoelectric particles in the elastomer. In this case, small diameter piezoelectric particles enter between large diameter piezoelectric particles, and pressure is easily transmitted to the piezoelectric particles. As a result, the piezoelectric strain constant of the piezoelectric layer can be increased, and the electromotive voltage can be increased.
 圧電粒子は、単粒子でも複数の粒子が集合した集合体であってもよい。複数の圧電粒子からなる集合体を含む場合には、柔軟性と圧電性とのバランスが取りやすくなる。例えば、エラストマーに圧電粒子を多量に配合すると、圧電性は向上するが、エラストマーの体積割合が小さくなるため柔軟性は低下する。反対に、圧電粒子の配合量が少ないと、エラストマーの体積割合が大きくなるため柔軟性は向上するが、圧電性は低下する。本発明者の検討によると、圧電層の柔軟性、具体的には破断伸びが大きくなることにより、伸縮を繰り返しても起電圧の変化が小さくなる、すなわち伸縮耐久性が向上することが確認されている。このため、圧電粒子の配合量をできるだけ少なくして所望の圧電性を確保することが望ましい。 The piezoelectric particles may be single particles or an aggregate of a plurality of particles. In the case of including an aggregate of a plurality of piezoelectric particles, it becomes easy to balance the flexibility and the piezoelectricity. For example, if a large amount of piezoelectric particles is added to the elastomer, although the piezoelectricity is improved, the volume fraction of the elastomer is reduced, so the flexibility is reduced. On the other hand, when the compounding amount of the piezoelectric particles is small, the volume ratio of the elastomer becomes large and the flexibility is improved, but the piezoelectricity is reduced. According to the study of the present inventor, it is confirmed that, by increasing the flexibility of the piezoelectric layer, specifically, the breaking elongation, the change in electromotive voltage is reduced even if the expansion and contraction are repeated, that is, the expansion and contraction durability is improved. ing. For this reason, it is desirable to reduce the compounding amount of the piezoelectric particles as much as possible to secure desired piezoelectricity.
 複数の圧電粒子が集合した集合体としては、個々の粒子が静電力などにより凝集した凝集体、個々の粒子が化学結合した結合体などが挙げられる。個々の粒子が分離しにくく圧電粒子の連結構造を構築しやすいという観点から、後者の結合体が好適である。結合体の製造方法は特に限定されないが、例えば、単粒子からなる粉末を焼成した後、粉砕して製造することができる。凝集体と結合体との違いは、次のようにして分析することができる。まず、圧電層を加熱してエラストマー成分を取り除く。次に、残った圧電粒子を良溶媒に分散させて、超音波処理する。その結果、個々の粒子に分離したら凝集体、分離しなければ結合体と判断する。ここで、良溶媒とは、圧電粒子を分散させた場合に沈降しにくい極性溶媒をいう。具体的には、SP値(溶解度パラメータ)が8以上13以下であり、かつエラストマーを溶解できる溶剤であればよい。例えば、2-メトキシエタノールが挙げられる。 As an assembly in which a plurality of piezoelectric particles are aggregated, an aggregate in which individual particles are aggregated by electrostatic force or the like, a conjugate in which individual particles are chemically bonded, and the like can be mentioned. The latter combination is preferable from the viewpoint that individual particles are not easily separated and a linked structure of piezoelectric particles is easily formed. Although the manufacturing method of a coupling body is not specifically limited, For example, after baking the powder which consists of single particle | grains, it can grind | pulverize and manufacture. The difference between aggregates and conjugates can be analyzed as follows. First, the piezoelectric layer is heated to remove the elastomeric component. Next, the remaining piezoelectric particles are dispersed in a good solvent and subjected to ultrasonic treatment. As a result, if it is separated into individual particles, it is judged as an aggregate, and if it is not separated, it is a binder. Here, the good solvent refers to a polar solvent which hardly precipitates when the piezoelectric particles are dispersed. Specifically, any solvent may be used as long as it has an SP value (solubility parameter) of 8 or more and 13 or less and can dissolve the elastomer. For example, 2-methoxyethanol is mentioned.
 複数の圧電粒子が集合した集合体は、個々の圧電粒子の平均粒子径の2倍より大きい直径を有する粒子として定義することができる。ここで、集合体の直径(d2)としては、レーザー回折・散乱式の粒子径分布測定装置において測定したメディアン径を採用する。圧電粒子の平均粒子径(d1)としては、集合体の走査型電子顕微鏡(SEM)写真を撮影し、偏りがないよう任意に選出された100個以上の圧電粒子の最大径の平均値を採用する。そして、2d1<d2を満たすものが集合体である。 An aggregate of a plurality of piezoelectric particles can be defined as particles having a diameter larger than twice the average particle diameter of individual piezoelectric particles. Here, as the diameter (d2) of the aggregate, the median diameter measured by the laser diffraction / scattering type particle diameter distribution measuring apparatus is adopted. As the average particle diameter (d1) of the piezoelectric particles, a scanning electron microscope (SEM) photograph of the aggregate is taken, and the average value of the maximum diameters of 100 or more piezoelectric particles arbitrarily selected without deviation is adopted. Do. And, those which satisfy 2d1 <d2 are an aggregate.
 圧電粒子を表面処理するなどして、エラストマーと圧電粒子とを化学結合させてもよい。圧電粒子を表面処理する方法としては、エラストマーポリマーと反応可能な官能基を有する表面処理剤を圧電粒子に予め反応させておき、当該圧電粒子をエラストマーポリマーと混合する方法や、圧電粒子の表面を酸、アルカリまたは亜臨界水で溶解して水酸基を生成させた後、水酸基と反応可能な官能基を有するエラストマーポリマーと混合する方法などが挙げられる。圧電粒子がエラストマーに化学結合していると、伸縮を繰り返しても圧電粒子が位置ずれしにくい。また、エラストマーから圧電粒子が剥離しにくいため、物性や出力の初期値からの変動が少なくなる。このため、出力が安定すると共に、圧電層の耐へたり性が向上する。また、圧電層の破断伸びが大きくなるため、伸長時に局所破壊などによる圧電性能の低下を抑制することができる。その結果、伸長した状態においても高い圧電性能を維持することができる。 The elastomer and the piezoelectric particles may be chemically bonded, for example, by surface treatment of the piezoelectric particles. As a method of surface treatment of the piezoelectric particles, a method in which a surface treatment agent having a functional group capable of reacting with the elastomer polymer is reacted in advance with the piezoelectric particles, and the piezoelectric particles are mixed with the elastomer polymer. Examples thereof include a method of dissolving in acid, alkali or subcritical water to form a hydroxyl group, and then mixing with an elastomer polymer having a functional group capable of reacting with the hydroxyl group. When the piezoelectric particles are chemically bonded to the elastomer, the piezoelectric particles are less likely to be misaligned even if expansion and contraction are repeated. In addition, since the piezoelectric particles are less likely to be separated from the elastomer, fluctuations in physical properties and output from initial values are reduced. This stabilizes the output and improves the sag resistance of the piezoelectric layer. In addition, since the breaking elongation of the piezoelectric layer becomes large, it is possible to suppress the deterioration of the piezoelectric performance due to the local breakage or the like at the time of elongation. As a result, high piezoelectric performance can be maintained even in the expanded state.
 圧電粒子の含有量は、圧電層、ひいては圧電センサの柔軟性と、圧電層の圧電性能と、を考量して決定すればよい。圧電粒子の含有量が多くなると、圧電層の圧電性能は向上するが柔軟性は低下する。したがって、使用するエラストマーと圧電粒子との組み合わせにおいて、所望の柔軟性を実現できるよう、圧電粒子の含有量を調整することが望ましい。例えば、圧電粒子の含有量は、エラストマーを100体積%とした場合の30体積%以上50体積%以下であるとよい。 The content of the piezoelectric particles may be determined in consideration of the piezoelectric layer, and hence the flexibility of the piezoelectric sensor and the piezoelectric performance of the piezoelectric layer. When the content of the piezoelectric particles is increased, the piezoelectric performance of the piezoelectric layer is improved but the flexibility is reduced. Therefore, it is desirable to adjust the content of the piezoelectric particles so that the desired flexibility can be realized in the combination of the elastomer and the piezoelectric particles used. For example, the content of the piezoelectric particles may be 30% by volume or more and 50% by volume or less based on 100% by volume of the elastomer.
 圧電層は、エラストマーおよび圧電粒子に加えて、圧電粒子よりも比誘電率が小さい補強粒子を含んでいてもよい。補強粒子の比誘電率は、圧電粒子の比誘電率よりも小さいことを条件として、例えば100以下、さらには30以下であることが望ましい。 The piezoelectric layer may contain, in addition to the elastomer and the piezoelectric particles, reinforcing particles having a dielectric constant smaller than that of the piezoelectric particles. The relative permittivity of the reinforcing particles is desirably, for example, 100 or less, and preferably 30 or less, on the condition that the relative permittivity of the reinforcing particles is smaller than that of the piezoelectric particles.
 比誘電率が大きい圧電粒子が連結した構造は、外力が圧電粒子に伝わりやすいため、前述した式(a)の圧電歪み定数の向上が期待できる。しかしながら、比誘電率が大きい圧電粒子が連結することで、圧電層全体としての誘電率が上昇してしまう。これに対して、圧電層に圧電粒子と補強粒子との両方が含まれる場合、比誘電率が大きい圧電粒子同士の繋がりが、それよりも比誘電率が小さい補強粒子の介在により分断される。これにより、圧電層全体としての誘電率の上昇を抑制することができる。一方、補強粒子と圧電粒子とにより粒子の連結構造は維持されているため、圧電歪み定数を維持することができる。すなわち、圧電層に補強粒子が含まれる場合には、圧電歪み定数を維持したまま、圧電粒子のみが含まれる場合よりも圧電層全体の誘電率を小さくすることができる。よって、前述した式(a)により、大きな起電界を得ることができる。 In the structure in which the piezoelectric particles having a large relative dielectric constant are connected, the external force is easily transmitted to the piezoelectric particles, and therefore, the improvement of the piezoelectric strain constant of the formula (a) can be expected. However, when the piezoelectric particles having a large relative dielectric constant are connected, the dielectric constant of the entire piezoelectric layer is increased. On the other hand, when both the piezoelectric particles and the reinforcing particles are contained in the piezoelectric layer, the connection between the piezoelectric particles having large relative dielectric constants is divided by the presence of the reinforcing particles having a smaller relative dielectric constant. Thereby, the rise in the dielectric constant of the entire piezoelectric layer can be suppressed. On the other hand, since the connection structure of the particles is maintained by the reinforcing particles and the piezoelectric particles, the piezoelectric strain constant can be maintained. That is, when reinforcing particles are contained in the piezoelectric layer, the dielectric constant of the entire piezoelectric layer can be made smaller than in the case where only piezoelectric particles are contained while maintaining the piezoelectric strain constant. Therefore, a large electromotive field can be obtained by the above-mentioned equation (a).
 補強粒子としては、電気抵抗が大きい粒子が望ましい。補強粒子の電気抵抗が大きいと、圧電層の絶縁破壊強度が大きくなる。これにより、後述する圧電層の分極処理において、高い電界を印加して処理時間を短くすることができる。加えて、分極処理中に破壊する圧電センサの数を減らすことができるため、生産性が向上する。 As the reinforcing particles, particles having a large electric resistance are desirable. When the electrical resistance of the reinforcing particles is large, the dielectric breakdown strength of the piezoelectric layer is increased. Thereby, in polarization processing of the piezoelectric layer described later, a high electric field can be applied to shorten the processing time. In addition, productivity can be improved because the number of piezoelectric sensors broken during the polarization process can be reduced.
 また、補強粒子は、エラストマーに化学結合していることが望ましい。この場合、エラストマー中に補強粒子のネットワークが形成されるため、架橋剤、添加剤、空気中の水分などがイオン化した不純物イオンが動きにくくなり、圧電層の電気抵抗が増加する。補強粒子とエラストマーとの化学結合は、例えば、補強粒子を表面処理するなどして実現することができる。表面処理の方法としては、エラストマーポリマーと反応可能な官能基を有する表面処理剤を補強粒子に予め反応させておき、当該補強粒子をエラストマーポリマーと混合する方法や、補強粒子の表面を酸、アルカリまたは亜臨界水で溶解して水酸基を生成させた後、水酸基と反応可能な官能基を有するエラストマーポリマーと混合する方法などが挙げられる。補強粒子がエラストマーに化学結合していると、伸縮を繰り返しても補強粒子が位置ずれしにくい。また、エラストマーから補強粒子が剥離しにくいため、物性や出力の初期値からの変動が少なくなる。このため、出力が安定すると共に、圧電層の耐へたり性が向上する。また、圧電層の破断伸びが大きくなるため、伸長時に局所破壊などによる圧電性能の低下を抑制することができる。その結果、伸長した状態においても高い圧電性能を維持することができる。 Also, it is desirable that the reinforcing particles be chemically bonded to the elastomer. In this case, a network of reinforcing particles is formed in the elastomer, so that ionized impurity ions such as a crosslinking agent, an additive, and moisture in the air are less likely to move, and the electrical resistance of the piezoelectric layer is increased. Chemical bonding between the reinforcing particles and the elastomer can be realized, for example, by surface-treating the reinforcing particles. As a method of surface treatment, there is a method in which a surface treatment agent having a functional group capable of reacting with the elastomeric polymer is reacted in advance with the reinforcing particles, and the reinforcing particles are mixed with the elastomeric polymer. Alternatively, it may be dissolved in subcritical water to form a hydroxyl group, and then mixed with an elastomeric polymer having a functional group capable of reacting with the hydroxyl group. When the reinforcing particles are chemically bonded to the elastomer, the reinforcing particles are less likely to be displaced even after repeated expansion and contraction. In addition, since the reinforcing particles are less likely to be separated from the elastomer, the fluctuation of the physical properties and the output from the initial value is reduced. This stabilizes the output and improves the sag resistance of the piezoelectric layer. In addition, since the breaking elongation of the piezoelectric layer becomes large, it is possible to suppress the deterioration of the piezoelectric performance due to the local breakage or the like at the time of elongation. As a result, high piezoelectric performance can be maintained even in the expanded state.
 補強粒子の種類は特に限定されない。例えば、二酸化チタン、シリカ、チタン酸バリウムなどの酸化物、ゴム、樹脂などの粒子を用いることができる。但し、ゴム粒子などの比較的柔らかい粒子を含む場合には、加わった荷重が樹脂粒子にて減衰し、圧電粒子に伝わりにくくなるおそれがある。圧電粒子に力を伝達しやすくして、前述した式(a)における圧電層の圧電歪み定数を大きくし、起電界を大きくするという観点から、補強粒子としては、母材のエラストマーよりも弾性率が大きい粒子を採用する方がよい。例えば、比誘電率が小さく、耐絶縁破壊性の向上効果が大きいなどの理由から、二酸化チタンなどの金属酸化物粒子が好適である。金属酸化物粒子の製造方法としては、結晶性が低く比誘電率が小さい粒子が得られるという理由から、ゾルゲル法が好適である。 The type of reinforcing particles is not particularly limited. For example, particles of oxides such as titanium dioxide, silica, barium titanate, rubber, resin, etc. can be used. However, when relatively soft particles such as rubber particles are included, the applied load may be attenuated by the resin particles and may not be transmitted to the piezoelectric particles. From the viewpoint of facilitating the transfer of force to the piezoelectric particles to increase the piezoelectric strain constant of the piezoelectric layer in the above-mentioned formula (a) and increasing the electromotive field, the reinforcing particles have a modulus of elasticity higher than that of the base material elastomer. It is better to use larger particles. For example, metal oxide particles such as titanium dioxide are preferable because they have a small relative dielectric constant and a large effect of improving the dielectric breakdown resistance. As a method of producing metal oxide particles, a sol-gel method is preferable because particles having a low crystallinity and a small relative dielectric constant can be obtained.
 圧電層は、エラストマーポリマーに圧電粒子の粉末や架橋剤などを加えた組成物を、所定の条件下で硬化させて製造される。その後、圧電層には分極処理が施される。すなわち、圧電層に電圧を印加して、圧電粒子の分極方向を所定の方向に揃える。 The piezoelectric layer is manufactured by curing a composition obtained by adding a powder of piezoelectric particles, a crosslinking agent and the like to an elastomeric polymer under predetermined conditions. Thereafter, the piezoelectric layer is subjected to polarization treatment. That is, a voltage is applied to the piezoelectric layer to align the polarization direction of the piezoelectric particles in a predetermined direction.
 本発明者が検討したところ、薄膜状の圧電センサにおいては、圧電層の引張方向に垂直な断面積が小さい方が、加えられた荷重に対する感度が大きいことが確認された。よって、圧電層は薄い方が望ましい。例えば、圧電層の厚さは200μm以下、さらには100μm以下が望ましい。一方、薄過ぎると分極処理時に絶縁破壊しやすくなる。このため、圧電層の厚さは、10μm以上、さらには20μm以上が望ましい。 The inventors of the present invention have found that in a thin film piezoelectric sensor, the smaller the cross-sectional area perpendicular to the tensile direction of the piezoelectric layer, the greater the sensitivity to the applied load. Therefore, it is desirable that the piezoelectric layer be thin. For example, the thickness of the piezoelectric layer is preferably 200 μm or less, and more preferably 100 μm or less. On the other hand, if it is too thin, dielectric breakdown is likely to occur at the time of polarization treatment. Therefore, the thickness of the piezoelectric layer is preferably 10 μm or more, and more preferably 20 μm or more.
 <電極層>
 電極層は、圧電層に追従して変形可能であることが望ましい。柔軟性を有する電極層としては、例えば、バインダーに導電材を配合した導電材料、導電性繊維などから形成することができる。バインダーとしては、エラストマー、すなわち架橋ゴムおよび熱可塑性エラストマーから選ばれる一種以上を用いることが望ましい。弾性率が比較的小さく柔軟であり、圧電層に対する粘着性が良好なエラストマーとして、アクリルゴム、シリコーンゴム、ウレタンゴム、ウレアゴム、フッ素ゴム、H-NBRなどが挙げられる。また、エポキシ基変性アクリルゴム、カルボキシル基変性水素化ニトリルゴムなどのように、官能基を導入するなどして変性したエラストマーを用いてもよい。
<Electrode layer>
The electrode layer is preferably deformable following the piezoelectric layer. The flexible electrode layer can be formed of, for example, a conductive material in which a conductive material is blended with a binder, conductive fibers, or the like. As the binder, it is desirable to use one or more selected from an elastomer, that is, a crosslinked rubber and a thermoplastic elastomer. Examples of the elastomer having a relatively small elastic modulus and being flexible and having good adhesion to the piezoelectric layer include acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluororubber, H-NBR and the like. Further, an elastomer modified by introducing a functional group may be used, such as an epoxy group modified acrylic rubber, a carboxyl group modified hydrogenated nitrile rubber and the like.
 導電材の種類は、特に限定されない。例えば、銀、金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、およびこれらの合金などからなる金属粒子、酸化亜鉛、酸化チタンなどからなる金属酸化物粒子、チタンカーボネートなどからなる金属炭化物粒子、銀、金、銅、白金、およびニッケルなどからなる金属ナノワイヤ、カーボンブラック、カーボンナノチューブ、黒鉛、薄層黒鉛、グラフェンなどの導電性炭素材料の中から、適宜選択すればよい。また、銀被覆銅粒子など、金属で被覆された粒子を用いてもよい。導電材としては、これらの一種を単独で、あるいは二種以上を混合して用いることができる。なお、電極層は、その他の成分として、架橋剤、架橋促進剤、分散剤、補強材、可塑剤、老化防止剤、着色剤などを含んでいてもよい。 The type of conductive material is not particularly limited. For example, metal particles made of silver, gold, copper, nickel, rhodium, palladium, chromium, titanium, platinum, iron, and alloys thereof, metal oxide particles made of zinc oxide, titanium oxide, etc., titanium carbonate, etc. It may be suitably selected from conductive carbon materials such as metal carbide particles, metal nanowires made of silver, gold, copper, platinum, nickel and the like, carbon black, carbon nanotubes, graphite, thin layer graphite, graphene and the like. Also, metal-coated particles such as silver-coated copper particles may be used. As the conductive material, one of these may be used alone, or two or more of these may be mixed and used. The electrode layer may contain, as other components, a crosslinking agent, a crosslinking accelerator, a dispersing agent, a reinforcing material, a plasticizer, an antiaging agent, a coloring agent, and the like.
 例えば、バインダーとしてエラストマーを用いる場合、当該エラストマー分のポリマーを溶剤に溶解したポリマー溶液に、導電材、必要に応じて添加剤を添加して、攪拌、混合することにより、導電塗料を調製することができる。調製した導電塗料を、圧電層の一面に直接塗布することにより、電極を形成すればよい。あるいは、離型性フィルムに導電塗料を塗布して電極を形成し、形成した電極を、圧電層の一面に転写してもよい。 For example, when using an elastomer as a binder, a conductive material, if necessary, an additive is added to a polymer solution in which the polymer of the elastomer component is dissolved in a solvent, and the conductive paint is prepared by stirring and mixing. Can. The electrode may be formed by directly applying the prepared conductive paint on one surface of the piezoelectric layer. Alternatively, a conductive paint may be applied to the release film to form an electrode, and the formed electrode may be transferred to one surface of the piezoelectric layer.
 <保護層>
 保護層は、電極層の少なくとも一つに積層され、エラストマーを含む。例えば、圧電層および電極層の積層体の積層方向外側の一方または両方に、保護層を配置すればよい。また、一対の電極層間に圧電層が介装されたユニットを複数積層する場合には、積層方向に隣接する電極層間に保護層を配置してもよい。保護層を配置することにより、圧電センサの絶縁性を確保し、外部からの機械的応力による圧電センサの破壊を抑制することができる。また、保護層が伸長することにより圧電層の歪みを増加させて、センサの感度を向上させることができる。
<Protective layer>
The protective layer is laminated to at least one of the electrode layers and comprises an elastomer. For example, the protective layer may be disposed on one or both of the lamination direction outer sides of the laminate of the piezoelectric layer and the electrode layer. Further, in the case where a plurality of units in which a piezoelectric layer is interposed between a pair of electrode layers are stacked, a protective layer may be disposed between the electrode layers adjacent in the stacking direction. By arranging the protective layer, the insulation of the piezoelectric sensor can be secured, and the destruction of the piezoelectric sensor due to the mechanical stress from the outside can be suppressed. Further, the strain of the piezoelectric layer can be increased by the extension of the protective layer, and the sensitivity of the sensor can be improved.
 例えば、圧電センサの積層方向に力を加えた場合(圧電センサを圧縮した場合)、保護層が面方向に伸長することにより、圧電層にせん断力が作用する。これにより、圧電層には、積層方向の押圧力に加えて面方向の引張力が加わることになり、圧電層の歪みが増大する。その結果、圧電層で発生する電荷量が増大し、センサの感度が向上する。保護層による感度向上効果は、保護層の引張方向における弾性率が小さい程顕著である。 For example, when a force is applied in the stacking direction of the piezoelectric sensor (when the piezoelectric sensor is compressed), a shear force acts on the piezoelectric layer by the protective layer extending in the surface direction. As a result, in addition to the pressing force in the stacking direction, a tensile force in the surface direction is applied to the piezoelectric layer, and distortion of the piezoelectric layer is increased. As a result, the amount of charge generated in the piezoelectric layer is increased, and the sensitivity of the sensor is improved. The sensitivity improvement effect by the protective layer is more remarkable as the elastic modulus in the tensile direction of the protective layer is smaller.
 保護層のエラストマーとしても、架橋ゴムおよび熱可塑性エラストマーから選ばれる一種以上を用いればよい。弾性率が比較的小さく柔軟であり、電極層に対する粘着性が良好なエラストマーとして、天然ゴム、イソプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、ウレタンゴム、ウレアゴム、フッ素ゴム、NBRなどが挙げられる。特に、人の生体情報を測定するという観点から、生体との親和性が良好なシリコーンゴム、ウレタンゴムが望ましく、可塑剤などの経時的に抽出される物質を含まないことが望ましい。 As the elastomer of the protective layer, at least one selected from crosslinked rubber and thermoplastic elastomer may be used. Examples of the elastomer having a relatively small elastic modulus and flexibility and good adhesion to the electrode layer include natural rubber, isoprene rubber, butyl rubber, acrylic rubber, silicone rubber, urethane rubber, urea rubber, fluororubber, NBR and the like. In particular, from the viewpoint of measuring human biological information, silicone rubber and urethane rubber having good affinity with the living body are desirable, and it is desirable not to contain substances extracted with time, such as plasticizers.
 繰り返し使用した場合にセンサの感度の変化を小さくするためには、保護層は耐へたり性に優れることが望ましい。また、保護層は、外部の機械的応力から圧電センサを保護する役割を果たすため、摩耗耐久性や引き裂き耐久性に優れることが望ましい。また、伸長時に保護層が破断して圧電センサが破壊することを防ぐため、保護層の破断伸びは圧電層の破断伸びよりも大きいことが望ましい。本明細書において、破断伸びは、JIS K6251:2010に規定される引張試験により測定される切断時伸びの値を採用する。引張試験は、ダンベル状5号形の試験片を用い、引張速度を100mm/minとして行うものとする。 In order to reduce the change in sensitivity of the sensor after repeated use, it is desirable that the protective layer be excellent in sag resistance. In addition, since the protective layer plays a role of protecting the piezoelectric sensor from external mechanical stress, it is desirable that the protective layer be excellent in wear durability and tear durability. In addition, in order to prevent the protective layer from being broken at the time of elongation and the piezoelectric sensor from being broken, it is desirable that the breaking elongation of the protective layer be larger than the breaking elongation of the piezoelectric layer. In the present specification, the breaking elongation adopts the value of elongation at break measured by the tensile test specified in JIS K6251: 2010. The tensile test is conducted using a dumbbell-shaped No. 5 test piece at a tensile speed of 100 mm / min.
 エラストマーのポアソン比は略0.5である。このため、エラストマー製の保護層においては、厚さ方向に加えられた力がそのまま面方向の力として作用する。このため、保護層の厚さが大きいほど、圧電層の歪み増大効果が大きく、センサの感度向上効果が大きくなる。一方、保護層の厚さが大きくなると、圧電センサが厚くなり、被検者が違和感を感じやすくなる。このため、保護層一層あたりの厚さは、例えば、5μm以上1000μm以下にするとよい。本明細書における保護層の厚さとは、前出図3に符号Tで示すように、保護層の一層における電極層に積層される部分の厚さである。 The Poisson's ratio of the elastomer is approximately 0.5. For this reason, in the protective layer made of an elastomer, the force applied in the thickness direction acts as the force in the surface direction as it is. Therefore, as the thickness of the protective layer is larger, the strain increase effect of the piezoelectric layer is larger, and the sensitivity improvement effect of the sensor is larger. On the other hand, when the thickness of the protective layer is increased, the piezoelectric sensor is thickened, and the subject is likely to feel discomfort. Therefore, the thickness per one protective layer may be, for example, 5 μm or more and 1000 μm or less. The thickness of the protective layer in the present specification is the thickness of a portion of one layer of the protective layer to be laminated to the electrode layer, as indicated by a symbol T in FIG.
 <圧電センサ>
 圧電センサは寝具に配置される。寝具は特に限定されないが、ベッドのマットレス、敷き布団、これらのカバーやシーツなどが挙げられる。例えば、マットレスなどの上に配置する、あるいは、マットレスなどとカバーとの間に配置するだけでもよいが、これらに縫い付けたり、面ファスナーやスナップボタンなどで留めたり、接着剤で接着してもよい。呼吸および心拍による微弱な振動を精度良く検出するという観点から、圧電センサは、被検者が寝具の上に横になった状態において、感圧部が被検者の体の一部と重なるように配置されることが望ましい。
<Piezoelectric sensor>
Piezoelectric sensors are placed on the bedding. Beddings are not particularly limited, but include bed mattresses, mattresses, their covers and sheets. For example, it may be disposed on a mattress or the like, or may be disposed only between the mattress or the like and the cover, but it is also possible to sew them, fasten them with a surface fastener or snap button, or adhere them with an adhesive. Good. From the viewpoint of accurately detecting weak vibrations caused by respiration and heart rate, the piezoelectric sensor is configured so that the pressure sensing unit overlaps with a part of the subject's body when the subject is lying on the bedding. It is desirable to be placed in
 圧電センサは矩形薄板状を呈する。圧電センサの大きさは、幅が5mm以上100mm以下、長さが100mm以上1000mm以下、幅に対する長さの比(長さ/幅)が2以上200以下、厚さが0.05mm以上5mm以下である。幅が小さいと、感度が低くなり微弱な振動を検出しにくくなる。好適な幅は10mm以上である。反対に、幅が大きいと感度は高くなるが、被検者が違和感を感じやすくなったり、通気性が悪くなり汗をかきやすくなるおそれがある。好適な幅は50mm以下である。長さは長いほど、換言すると、幅に対する比が大きいほど、被検者の体に重なりやすいため、呼吸および心拍による微弱な振動を検出しやすくなる。好適な長さは300mm以上である。一方、寝具に設置しやすいという観点から、好適な長さは800mm以下である。厚さが大きいと、被検者が違和感を感じやすくなる。好適な厚さは2mm以下である。 The piezoelectric sensor has a rectangular thin plate shape. The piezoelectric sensor has a width of 5 mm to 100 mm, a length of 100 mm to 1000 mm, a ratio of length to width (length / width) of 2 to 200, and a thickness of 0.05 mm to 5 mm. is there. If the width is small, the sensitivity is low and it becomes difficult to detect weak vibrations. The preferred width is 10 mm or more. On the other hand, if the width is large, the sensitivity is high, but the subject may easily feel discomfort or there is a possibility that the breathability may be deteriorated and sweat may be easily scratched. The preferred width is 50 mm or less. The longer the length, in other words, the larger the ratio to the width, the easier it is for the subject's body to overlap, making it easier to detect weak vibrations due to breathing and heart beats. The preferred length is 300 mm or more. On the other hand, the preferred length is 800 mm or less from the viewpoint of easy installation in bedding. If the thickness is large, the subject is likely to feel discomfort. The preferred thickness is 2 mm or less.
 圧電センサの弾性率が大きいと、被検者が硬さやごわつきなどの違和感を感じやすくなり、睡眠の妨げや不快感につながる。反対に弾性率が小さいと、取り扱いにくくなると共に、荷重に対する伸長変位が大きくなり耐久性が低下する。このため、圧電センサの弾性率は、10MPa以上100MPa以下であることが望ましい。本明細書において、弾性率は、JIS K7127:1999に規定される引張試験により得られる応力-伸び曲線から算出した値である。引張試験は、試験片タイプ2の試験片を用い、引張速度を100mm/minとして行うものとする。 When the elastic modulus of the piezoelectric sensor is large, the subject is likely to feel discomfort such as hardness or stiffness, which leads to disturbing sleep and discomfort. On the other hand, when the elastic modulus is small, it becomes difficult to handle, and the extension displacement with respect to the load becomes large and the durability is lowered. Therefore, the elastic modulus of the piezoelectric sensor is desirably 10 MPa or more and 100 MPa or less. In the present specification, the elastic modulus is a value calculated from a stress-elongation curve obtained by a tensile test defined in JIS K7127: 1999. The tensile test shall be conducted at a tensile speed of 100 mm / min using a test piece of test piece type 2.
 圧電センサは、伸縮柔軟性を有する。例えば、圧電センサの引張歪みが10%以下であれば、伸縮柔軟性を有するといえる。本明細書において、引張歪みは、次のようにして測定した値であり、伸縮柔軟性を有するか否かの指標になる。まず、圧電センサの初期状態(伸長前の無荷重状態)の長さLを測定する。次に、圧電センサを長手方向に20%伸長し(長さは1.2L)、その状態のまま10~30℃の温度下で10秒間保持する。その後、初期状態に戻して、圧電センサの長さLを測定する。そして、次式(b)により算出された、初期状態に対する伸び率を引張歪みと定義する。
引張歪み(%)=(L-L)/L×100 ・・・(b)
 圧電センサは、長手方向に10%以上伸長する。長手方向に10%伸長するとは、長手方向における長さが無荷重状態の長さの1.1倍になることを意味する。例えば、圧電センサを長手方向に10%伸長した時の引張荷重は、100N以下であることが望ましい。引張荷重が100Nを超えると、被検者が硬さやごわつきなどの違和感を感じやすくなり、睡眠の妨げや不快感につながる。好適な引張荷重は75N以下である。10%伸長した時の引張荷重は、弾性率の場合と同様に、JIS K7127:1999に規定される引張試験を行い(試験片:試験片タイプ2、引張速度:100mm/min)、10%伸長した時の荷重を測定すればよい。
Piezoelectric sensors have stretch flexibility. For example, if the tensile strain of the piezoelectric sensor is 10% or less, it can be said that it has stretch flexibility. In the present specification, tensile strain is a value measured as follows, and is an indicator of whether or not it has stretch flexibility. First, the length L 0 of the initial state (unloaded state before extension) of the piezoelectric sensor is measured. Next, the piezoelectric sensor is stretched by 20% in the longitudinal direction (length is 1.2 L 0 ), and held for 10 seconds at a temperature of 10 to 30 ° C. as it is. Then, back to the initial state, measuring the length L 1 of the piezoelectric sensor. And the elongation rate with respect to the initial state calculated by following Formula (b) is defined as tensile strain.
Tensile strain (%) = (L 1 -L 0 ) / L 0 × 100 (b)
The piezoelectric sensor extends 10% or more in the longitudinal direction. The term “10% elongation in the longitudinal direction” means that the length in the longitudinal direction is 1.1 times the length in the unloaded state. For example, it is desirable that the tensile load when the piezoelectric sensor is elongated by 10% in the longitudinal direction is 100 N or less. When the tensile load exceeds 100 N, the subject is likely to feel discomfort such as hardness or stiffness, which leads to disturbing sleep and discomfort. The preferred tensile load is 75N or less. The tensile load at 10% elongation is subjected to the tensile test specified in JIS K 7127: 1999 as in the case of the elastic modulus (test piece: test piece type 2, tensile speed: 100 mm / min), 10% elongation The load at the time of
 圧電センサは、被検者の荷重により伸長した状態で使用される。このため、伸長した状態でも呼吸や心拍を検出できるセンサ能を有し、センサの感度係数が大きいことが望ましい。このような観点から、圧電センサを長手方向に10%伸長した状態における長手方向の感度係数は、50pC/N以上であることが望ましい。長手方向の感度係数とは、圧電センサに長手方向の引張荷重を加えた時に発生する単位面積あたりの電荷量(C/m)を、加えた単位面積あたりの荷重(N/m)で除した値である。 The piezoelectric sensor is used in a stretched state by the load of the subject. For this reason, it is desirable that it has a sensor capability that can detect respiration and heart rate even in an extended state, and the sensitivity coefficient of the sensor is large. From such a point of view, it is desirable that the sensitivity coefficient in the longitudinal direction when the piezoelectric sensor is elongated by 10% in the longitudinal direction is 50 pC / N or more. The sensitivity factor in the longitudinal direction refers to the amount of charge (C / m 2 ) per unit area generated when a tensile load in the longitudinal direction is applied to the piezoelectric sensor (N / m 2 ) It is the divided value.
 圧電センサの耐久性を確保する観点から、圧電センサは、次式(I)を満たすことが望ましい。
0.1≦圧電層の引張荷重/(電極層の引張荷重+保護層の引張荷重)≦2・・・(I)
各層の引張荷重は、上述したJIS K7127:1999に規定される引張試験により得られる各層の弾性率に、各層の無荷重状態の厚さと幅を乗じて算出すればよい。電極層の厚さは、圧電層を挟む二つの電極層の厚さの合計である。保護層が二つ配置される場合、保護層の厚さは、二つの保護層の厚さの合計である。なお、二つの電極層において、弾性率や厚さなどが異なる場合には、各層ごとに弾性率×厚さ×幅を計算して、それらの和を使用する。保護層についても同様である。
From the viewpoint of securing the durability of the piezoelectric sensor, it is desirable that the piezoelectric sensor satisfy the following equation (I).
0.1 ≦ tension load of piezoelectric layer / (tension load of electrode layer + tension load of protective layer) ≦ 2 (I)
The tensile load of each layer may be calculated by multiplying the elastic modulus of each layer obtained by the above-described tensile test defined in JIS K 7127: 1999 by the thickness and the width in the non-load state of each layer. The thickness of the electrode layer is the sum of the thicknesses of the two electrode layers sandwiching the piezoelectric layer. If two protective layers are arranged, the thickness of the protective layer is the sum of the thicknesses of the two protective layers. In the case where the elastic modulus and the thickness are different between the two electrode layers, the elastic modulus × thickness × width is calculated for each layer, and the sum thereof is used. The same applies to the protective layer.
 式(I)における引張荷重の比が0.1未満の場合には、圧電センサに応力を加えた場合に、圧電層に加わる応力が相対的に小さくなるため、センサ感度が低くなる。一方、式(I)における引張荷重の比が2を超える場合には、圧電センサに応力を加えた場合に、圧電層に加わる応力が相対的に大きくなるため、圧電層に過度の負荷が加わり、耐久性が低下するおそれがある。圧電層は圧電粒子を含むため、層内で伸長率のばらつきがあり、局所的に弱い部分が生じやすい。このため、圧電層の破断伸びは比較的小さくなる。つまり、圧電層は伸長時に局所破壊しやすい。ここで、引張荷重の比が2を超える場合には、伸長時に破壊しやすい圧電層の変位が律速になる。このため、耐久性が低下するおそれがある。これに対して、式(I)における引張荷重の比が0.1以上2以下の場合には、センサ感度と耐久性とのバランスがとれる。保護層は圧電粒子を含まないため、局所破壊が生じにくく、破断伸びが比較的大きい。保護層による均一な伸長が実現されることにより、耐久性が高くなる。また、圧電層にも応力が伝わりやすいため、センサ感度が高くなる。 When the ratio of the tensile load in the formula (I) is less than 0.1, when stress is applied to the piezoelectric sensor, the stress applied to the piezoelectric layer becomes relatively small, and the sensor sensitivity becomes low. On the other hand, when the tensile load ratio in the formula (I) exceeds 2, the stress applied to the piezoelectric layer becomes relatively large when the stress is applied to the piezoelectric sensor, so an excessive load is applied to the piezoelectric layer. , Durability may be reduced. Since the piezoelectric layer contains piezoelectric particles, the expansion rate varies within the layer, and a locally weak portion is likely to occur. For this reason, the breaking elongation of the piezoelectric layer is relatively small. That is, the piezoelectric layer is likely to be locally broken at the time of expansion. Here, when the ratio of the tensile load exceeds 2, the displacement of the piezoelectric layer which is easily broken at the time of elongation becomes rate-limiting. For this reason, there exists a possibility that durability may fall. On the other hand, when the ratio of the tensile load in Formula (I) is 0.1 or more and 2 or less, a balance between sensor sensitivity and durability can be maintained. Since the protective layer does not contain piezoelectric particles, local fracture is unlikely to occur and the breaking elongation is relatively large. By achieving uniform extension by the protective layer, the durability is enhanced. Moreover, since stress is easily transmitted to the piezoelectric layer, the sensor sensitivity is increased.
 圧電センサにおいて、一対の電極層は、圧電層中の圧電粒子の分極方向に離間して配置される。電極層は、圧電層の表面全体に形成してもよく、一部のみに形成してもよい。電極層が圧電層を介して厚さ方向に重なる部分が感圧部になる。感圧部の面積は、圧電センサの面積の20%以上である。感圧部が被検者の体の一部と重なりやすく、呼吸および心拍による微弱な振動を漏らさず検出するという観点から、感圧部の面積を50%以上、さらには60%以上にすると好適である。 In the piezoelectric sensor, the pair of electrode layers are spaced apart in the polarization direction of the piezoelectric particles in the piezoelectric layer. The electrode layer may be formed on the entire surface of the piezoelectric layer, or may be formed on only a part of the surface. The portion where the electrode layer overlaps in the thickness direction via the piezoelectric layer is a pressure sensitive portion. The area of the pressure sensitive portion is 20% or more of the area of the piezoelectric sensor. It is preferable that the area of the pressure sensitive portion be 50% or more, and further 60% or more from the viewpoint that the pressure sensitive portion easily overlaps with a part of the body of the subject and detects weak vibrations due to respiration and heart beat without leaking. It is.
 圧電センサは、圧電層、電極層、保護層を、圧着、融着、あるいは接着剤により接着して製造すればよい。例えば、保護層に熱可塑性エラストマーを用いた場合には、保護層を加熱して軟化させることにより、電極層および圧電層に融着させることができる。また、保護層と電極層との間に接着層を設けてもよい。接着層としては、保護層よりも低温で軟化する熱可塑性エラストマーを用いることが望ましい。この場合、より低温での融着が可能になり、製造コストを低減することができる。 The piezoelectric sensor may be manufactured by bonding a piezoelectric layer, an electrode layer, and a protective layer by pressure bonding, fusion bonding, or an adhesive. For example, when a thermoplastic elastomer is used for the protective layer, the protective layer can be fused to the electrode layer and the piezoelectric layer by heating and softening. In addition, an adhesive layer may be provided between the protective layer and the electrode layer. It is desirable to use a thermoplastic elastomer that softens at a lower temperature than the protective layer as the adhesive layer. In this case, fusion at a lower temperature is possible, and the manufacturing cost can be reduced.
 <生体情報検出装置>
 本発明の生体情報検出装置は、圧電センサの他に、圧電センサからの出力信号を処理するための制御装置を備えて構成すればよい。例えば、上記実施形態のように、制御装置として制御回路部を備える場合、制御回路部は、電源と、圧電センサで発生した電荷(出力信号)が入力され、それを処理する演算部と、演算部で処理されたデータを一時的に格納する記憶部と、などから構成すればよい。また、制御装置として、チャージアンプ、記録計などを用いてもよい。
<Biometric information detector>
The biological information detection apparatus of the present invention may be configured to include a control device for processing an output signal from the piezoelectric sensor, in addition to the piezoelectric sensor. For example, as in the above embodiment, when the control circuit unit is provided as the control device, the control circuit unit receives the power supply and the charge (output signal) generated by the piezoelectric sensor, and the operation unit that processes it. A storage unit that temporarily stores data processed by the unit may be included. In addition, a charge amplifier, a recorder, or the like may be used as the control device.
 次に、実施例を挙げて本発明をより具体的に説明する。 Next, the present invention will be more specifically described by way of examples.
 <圧電層の製造>
 [圧電層1]
 まず、エラストマーとしてのカルボキシル基変性水素化ニトリルゴムポリマー(ランクセス社製「テルバン(登録商標)XT8889」)100質量部をアセチルアセトンに溶解して、ポリマー溶液を調製した。次に、調製したポリマー溶液に、圧電粒子としてのチタン酸バリウム粒子の結合体の粉末(日本化学工業(株)製「BTD-UP」)512質量部を加えて混練した。続いて、混練物を三本ロールに五回繰り返し通して、スラリーを得た。そして、得られたスラリーに、架橋剤のテトラキス(2-エチルヘキシルオキシ)チタン5質量部を加えてエア攪拌機で混練した後、スラリーをバーコート法により基材上に塗布した。これを150℃で1時間加熱して、厚さ0.06mm(60μm)の圧電層1を製造した。圧電層1における圧電粒子の含有量は、エラストマーを100体積%とした場合の48体積%である。圧電層1の破断伸びは120%である。
<Manufacturing of piezoelectric layer>
[Piezoelectric layer 1]
First, 100 parts by mass of a carboxyl group-modified hydrogenated nitrile rubber polymer ("Terban (registered trademark) XT 8889" manufactured by LANXESS CO., LTD.) As an elastomer was dissolved in acetylacetone to prepare a polymer solution. Next, 512 parts by mass of a powder of barium titanate particles as piezoelectric particles ("BTD-UP" manufactured by Nippon Chemical Industrial Co., Ltd.) was added to the prepared polymer solution and kneaded. Subsequently, the kneaded material was repeatedly passed through a triple roll five times to obtain a slurry. Then, 5 parts by mass of tetrakis (2-ethylhexyloxy) titanium as a crosslinking agent was added to the obtained slurry, and the mixture was kneaded with an air stirrer, and then the slurry was applied onto a substrate by a bar coating method. This was heated at 150 ° C. for 1 hour to produce a piezoelectric layer 1 having a thickness of 0.06 mm (60 μm). The content of piezoelectric particles in the piezoelectric layer 1 is 48% by volume based on 100% by volume of the elastomer. The breaking elongation of the piezoelectric layer 1 is 120%.
 [圧電層2、3]
 エラストマーに対する圧電粒子の配合量を、圧電層2においては840質量部、圧電層3においては200質量部にした点以外は、圧電層1と同様にして圧電層2、3を製造した。エラストマーを100体積%とした場合、圧電層2における圧電粒子の含有量は58体積%、圧電層3における圧電粒子の含有量は26.5体積%である。圧電層2の破断伸びは8%、圧電層3の破断伸びは420%である。
[Piezoelectric layer 2, 3]
Piezoelectric layers 2 and 3 were manufactured in the same manner as the piezoelectric layer 1 except that the compounding amount of the piezoelectric particles to the elastomer was 840 parts by mass in the piezoelectric layer 2 and 200 parts by mass in the piezoelectric layer 3. When the elastomer is 100% by volume, the content of piezoelectric particles in the piezoelectric layer 2 is 58% by volume, and the content of piezoelectric particles in the piezoelectric layer 3 is 26.5% by volume. The breaking elongation of the piezoelectric layer 2 is 8%, and the breaking elongation of the piezoelectric layer 3 is 420%.
 [圧電層4]
 (株)クレハ製のポリフッ化ビニリデン(PVDF)樹脂製フィルム「KFピエゾ40μm」を用いた。圧電層4の破断伸びは70%である。
[Piezoelectric layer 4]
A film "KF piezo 40 μm" made of polyvinylidene fluoride (PVDF) resin manufactured by Kureha Co., Ltd. was used. The breaking elongation of the piezoelectric layer 4 is 70%.
 <電極層の製造>
 [電極層1]
 まず、エラストマーとしてのエポキシ基含有アクリルゴムポリマー(日本ゼオン(株)製「Nipol(登録商標)AR51」)100質量部を、メチルエチルケトンに溶解して、ポリマー溶液を調製した。次に、調製したポリマー溶液に、導電性カーボンブラック(ライオン(株)製「ケッチェンブラックEC600JD」)10質量部を添加して、ビーズミルにて分散させて導電塗料を調製した。続いて、導電塗料を離型処理されたポリエチレンテレフタレート(PET)製のフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ0.015mm(15μm)の電極層1を製造した。
<Production of electrode layer>
[Electrode layer 1]
First, 100 parts by mass of an epoxy group-containing acrylic rubber polymer (Nippon Zeon Co., Ltd. “Nipol (registered trademark) AR51”) as an elastomer was dissolved in methyl ethyl ketone to prepare a polymer solution. Next, 10 parts by mass of conductive carbon black ("Ketchen black EC600JD" manufactured by Lion Corporation) was added to the prepared polymer solution, and dispersed by a bead mill to prepare a conductive paint. Subsequently, the conductive paint was applied by a bar coating method onto a film made of release-treated polyethylene terephthalate (PET). This was heated at 150 ° C. for 1 hour to produce an electrode layer 1 with a thickness of 0.015 mm (15 μm).
 [電極層2]
 まず、エチルアクリレート(EA)、アクリロニトリル(AN)、およびアリルグリシジルエーテル(AGE)という三種類のモノマーを懸濁重合して、エラストマーとしてのグリシジルエーテル基変性アクリルゴムポリマーを製造した。モノマーの配合割合は、EAを96質量%、ANを2質量%、AGEを2質量%とした。次に、グリシジルエーテル基変性アクリルゴムポリマー68質量部を、ブチルセロソロブアセテートに溶解し、このポリマー溶液に、導電材35質量部、分散剤25質量部、架橋剤6質量部、および架橋促進剤1質量部を添加して液状組成物を調製した。続いて、液状組成物を、湿式ジェットミル(吉田機械興業(株)製「ナノヴェイタ(登録商標)」)により粉砕処理した。粉砕処理は、パス運転により、合計6回行った(6パス処理)。1パス目は、ストレート型ノズル(ノズル径170μm)、処理圧力90MPaで行い、2パス目以降は、クロス型ノズル(ノズル径170μm)、処理圧力130MPaで行った。粉砕処理後の液状組成物を離型処理されたPET製のフィルム上にバーコート法により塗布した。これを150℃で2時間加熱して、厚さ0.015mm(15μm)の電極層2を製造した。使用した原料の詳細は以下の通りである。
導電材:薄層黒鉛、(株)アイテック製「iGurafen-α」。
分散剤:高分子量ポリエステル酸アミドアミン塩、楠本化成(株)「ディスパロン(登録商標)DA7301」。
架橋剤:アミノ基末端ブタジエン-アクリロニトリル共重合体、CVC Thermoset Specialties Ltd.「ATBN1300×16」。
架橋促進剤:亜鉛錯体、KING INDUSTRIES, INC「XK-614」。
[Electrode layer 2]
First, three kinds of monomers of ethyl acrylate (EA), acrylonitrile (AN) and allyl glycidyl ether (AGE) were suspension-polymerized to produce a glycidyl ether group-modified acrylic rubber polymer as an elastomer. The blend ratio of the monomers was 96% by mass of EA, 2% by mass of AN, and 2% by mass of AGE. Next, 68 parts by mass of a glycidyl ether group-modified acrylic rubber polymer is dissolved in butyl cellosolve acetate, and in this polymer solution, 35 parts by mass of a conductive material, 25 parts by mass of a dispersing agent, 6 parts by mass of a crosslinking agent, and crosslinking acceleration A liquid composition was prepared by adding 1 part by mass of the agent. Subsequently, the liquid composition was ground using a wet jet mill (“Nanoveita (registered trademark)” manufactured by Yoshida Kikko Co., Ltd.). The grinding process was performed a total of six times by pass operation (6 pass process). The first pass was performed with a straight type nozzle (nozzle diameter 170 μm) and a processing pressure of 90 MPa, and the second and subsequent passes were performed with a cross type nozzle (nozzle diameter 170 μm) and a processing pressure of 130 MPa. The liquid composition after the pulverization treatment was applied by a bar coating method on a release-treated PET film. This was heated at 150 ° C. for 2 hours to produce an electrode layer 2 with a thickness of 0.015 mm (15 μm). The detail of the used raw material is as follows.
Conductive material: Thin-layer graphite, "iGurafen-α" manufactured by ITEC Corporation.
Dispersing agent: High molecular weight polyester acid amidoamine salt, Kusumoto Chemicals Co., Ltd. "Disparon (registered trademark) DA7301".
Crosslinking agent: amino group-terminated butadiene-acrylonitrile copolymer, CVC Thermoset Specialties Ltd. "ATBN 1300 x 16".
Crosslinking accelerator: Zinc complex, KING INDUSTRIES, INC "XK-614".
 [電極層3]
 導電性銀ペースト(東洋紡(株)製「DW250-H-5」)を、離型処理されたPET製のフィルム上にバーコート法により塗布した。これを150℃で1時間加熱して、厚さ0.015mm(15μm)の電極層3を製造した。
[Electrode layer 3]
A conductive silver paste ("DW250-H-5" manufactured by Toyobo Co., Ltd.) was applied by a bar coating method on a release-treated PET film. This was heated at 150 ° C. for 1 hour to produce an electrode layer 3 with a thickness of 0.015 mm (15 μm).
 [電極層4]
 厚さ0.015mm(15μm)の導電布(セーレン(株)製「Sui-10-511M」)を、電極層4とした。
[Electrode layer 4]
A conductive cloth having a thickness of 0.015 mm (15 μm) (“Sui-10-511M” manufactured by Salen Co., Ltd.) was used as the electrode layer 4.
 <保護層の製造>
 [保護層1]
 熱可塑性ポリエステルエラストマー(東レ・デュポン(株)製「ハイトレル(登録商標)3046」)をシート状に成形して、厚さ0.18mm(180μm)の保護層1を製造した。保護層1の破断伸びは520%である。
<Production of Protective Layer>
[Protective layer 1]
A thermoplastic polyester elastomer ("Hytrel (registered trademark) 3046" manufactured by Toray DuPont Co., Ltd.) was molded into a sheet to produce a protective layer 1 having a thickness of 0.18 mm (180 μm). The breaking elongation of the protective layer 1 is 520%.
 [保護層2]
 厚さ0.1mm(100μm)のポリエステルフィルム(三菱ケミカル(株)製「ダイアホイル(登録商標)」)を、保護層2とした。保護層2の破断伸びは80%である。
[Protective layer 2]
A polyester film having a thickness of 0.1 mm (100 μm) (“Diafoil (registered trademark)” manufactured by Mitsubishi Chemical Corporation) was used as protective layer 2. The breaking elongation of the protective layer 2 is 80%.
 <圧電センサの製造>
 製造した圧電層、電極層、保護層を適宜組み合わせて、次のようにして種々の圧電センサを製造した。まず、圧電層の厚さ方向の二面(上面および下面)に各々電極層を配置して、ラミネーター(フジプラ(株)製「LPD3223」)を用いて圧電層と電極層とを圧着した。次に、保護層を上下両方の電極層に積層し、保護層の表面にアイロンをあて、保護層を軟化させることにより、圧電層および電極層に保護層を融着させた。得られた保護層/電極層/圧電層/電極層/保護層からなる積層体の電極層に直流電源を接続し、圧電層に20V/μmの電界を5分間印加して、分極処理を行った。このようにして、幅25mm、長さ550mmの長方形薄板状の圧電センサを製造した(前出の図2、図3参照)。この時の圧電層の幅は20mm、電極層の幅は15mm、保護層の幅は25mmであり、各層の長さは全て550mmである。圧電センサの厚さは、各層の厚さの合計(圧電層+電極層×2+保護層×2)である。感圧部の面積は、圧電センサの面積の60%である。
<Manufacture of Piezoelectric Sensor>
Various piezoelectric sensors were manufactured as follows by appropriately combining the manufactured piezoelectric layer, the electrode layer, and the protective layer. First, electrode layers were respectively disposed on two surfaces (upper and lower surfaces) in the thickness direction of the piezoelectric layer, and the piezoelectric layer and the electrode layer were pressure-bonded using a laminator ("LPD 3223" manufactured by Fuji Plastic Co., Ltd.). Next, the protective layer was laminated on both the upper and lower electrode layers, and the surface of the protective layer was ironed to soften the protective layer, thereby fusing the protective layer to the piezoelectric layer and the electrode layer. A DC power supply is connected to the electrode layer of the obtained protective layer / electrode layer / piezoelectric layer / electrode layer / protective layer, and a polarization process is performed by applying an electric field of 20 V / μm to the piezoelectric layer for 5 minutes. The Thus, a rectangular thin plate piezoelectric sensor having a width of 25 mm and a length of 550 mm was manufactured (see FIG. 2 and FIG. 3 mentioned above). At this time, the width of the piezoelectric layer is 20 mm, the width of the electrode layer is 15 mm, the width of the protective layer is 25 mm, and the length of each layer is all 550 mm. The thickness of the piezoelectric sensor is the sum of the thicknesses of the layers (piezoelectric layer + electrode layer × 2 + protective layer × 2). The area of the pressure sensitive portion is 60% of the area of the piezoelectric sensor.
 また、圧電層1、電極層1、保護層1を積層した圧電センサを基本形として、各層の長さ、幅、厚さの少なくとも一つを変更して、基本形とは異なる寸法の種々の圧電センサを製造した。なお、一つの圧電センサにおいて、圧電層、電極層、保護層の長さは同じである。つまり、各層の長さがそのまま圧電センサの長さになる。 In addition, various types of piezoelectric sensors having dimensions different from the basic shape can be obtained by changing at least one of the length, width, and thickness of each layer based on the piezoelectric sensor in which the piezoelectric layer 1, the electrode layer 1, and the protective layer 1 are stacked. Manufactured. In one piezoelectric sensor, the lengths of the piezoelectric layer, the electrode layer, and the protective layer are the same. That is, the length of each layer directly becomes the length of the piezoelectric sensor.
 表1、表2に、製造した圧電センサの寸法、構成、および物性を示す。構成において、基本形と異なる寸法のみかっこ書きで示した(単位はmm、長さが異なる場合もあるが、圧電センサの長さと同じであるため省略)。物性のうち10%伸長時の感度係数の測定方法は次の通りである。 Tables 1 and 2 show the dimensions, configuration, and physical properties of the manufactured piezoelectric sensor. In the configuration, only dimensions different from the basic shape are shown in parentheses (the unit is mm and the length may be different, but it is omitted because it is the same as the length of the piezoelectric sensor). The measurement method of the sensitivity coefficient at 10% elongation among physical properties is as follows.
 [10%伸長時の感度係数]
 圧電センサを長手方向に10%伸長した状態で、疲労耐久試験機((株)島津製作所製「MMT-101N」)に設置して、長手方向に引張方向の荷重0.5N、1N、1.5N、2Nのsin波(周波数1Hz)を順に加えた。その時の発生電荷量を、チャージアンプ(ブリュエル・ケアー社製「NEXUS Charge Amplifier type2692」)とオシロスコープ(横河電機(株)「DLM2022」)とを用いて測定した。そして、各々の荷重ごとに測定された発生電荷量を加えた応力で除し、その平均値を算出して、圧電センサの10%伸長時の感度係数とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[Sensitivity factor at 10% extension]
The piezoelectric sensor was installed in a fatigue endurance tester ("MMT-101N" manufactured by Shimadzu Corporation) in a state where the piezoelectric sensor was elongated by 10% in the longitudinal direction, and loads in the tensile direction of 0.5N, 1N, and 1. in the longitudinal direction. 5N and 2N sin waves (frequency 1 Hz) were sequentially added. The amount of charge generated at that time was measured using a charge amplifier (“NEXUS Charge Amplifier type 2692” manufactured by Brüel & Keer Co., Ltd.) and an oscilloscope (Yokogawa Electric Corporation “DLM 2022”). Then, the amount of generated charge measured for each load was divided by the applied stress, and the average value was calculated to obtain the sensitivity coefficient of the piezoelectric sensor at 10% elongation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、圧電粒子の配合量が少ない圧電層3を用いた実施例3の圧電センサ、および圧電層の厚さが薄い実施例4の圧電センサにおいては、10%伸長時の感度係数が小さくなった。 As shown in Table 1, in the piezoelectric sensor of Example 3 using the piezoelectric layer 3 in which the compounding amount of the piezoelectric particles is small, and in the piezoelectric sensor of Example 4 in which the thickness of the piezoelectric layer is thin, the sensitivity at 10% elongation The coefficient has become smaller.
 表2に示すように、PVDFからなる圧電層4を用いた比較例1の圧電センサは、伸縮柔軟性を有さず、弾性率が大きくなった。同様に、ポリエステルフィルムからなる保護層2を用いた比較例11の圧電センサも、伸縮柔軟性を有さず、弾性率が大きくなった。また、導電布からなる電極層4を用いた比較例10の圧電センサは、弾性率は大きくないが、引張歪みが大きく伸縮柔軟性を有さなかった。 As shown in Table 2, the piezoelectric sensor of Comparative Example 1 using the piezoelectric layer 4 made of PVDF did not have stretch flexibility, and the elastic modulus became large. Similarly, the piezoelectric sensor of Comparative Example 11 using the protective layer 2 made of a polyester film also did not have stretch flexibility, and the elastic modulus became large. Further, the piezoelectric sensor of Comparative Example 10 using the electrode layer 4 made of a conductive cloth has a large tensile strain but does not have stretch flexibility, although the elastic modulus is not large.
 <評価方法>
 製造した圧電センサを用いて、被検者の呼吸および心拍を測定すると共に、測定時に被検者が違和感を感じるか否かを調べた。また、圧電センサの伸縮耐久性、設置のしやすさを評価した。圧電センサの評価方法は、次の通りである。
<Evaluation method>
The manufactured piezoelectric sensor was used to measure the subject's respiration and heart rate, and at the same time, it was examined whether the subject felt discomfort. Moreover, the expansion-contraction durability of a piezoelectric sensor and the ease of installation were evaluated. The evaluation method of the piezoelectric sensor is as follows.
 [呼吸および心拍の測定]
 まず、マットレス(タンスのゲン(株)製「コイルキラー」)の上に、マットレスパッド((株)エアウィーヴ製「スマート025」、幅約1000mm、長さ約1950mm、厚さ約35mm)を配置し、その上に圧電センサを配置した。圧電センサは、その長辺とマットレスパッドの短辺(被検者の肩幅方向に延びる辺)とが平行になるように配置した。そして、マットレスパッドの上に被検者が仰向けに寝た状態において、圧電センサの感圧部が、被検者の心臓の下に位置するようにした。次に、被検者がマットレスパッドの上に仰向けに横になり、呼吸および心拍の測定を開始した。圧電センサからの出力信号を処理するための装置には、チャージアンプ(ブリュエル・ケアー社製「NEXUS Charge Amplifier type2692」)およびデータロガー(記録計)((株)キーエンス製「NR-HA08」)を用いた。測定は、1回あたり30分間とし、合計5回行った。そして、5回とも測定できた場合を良好(後出の表3、表4中、〇印で示す)、1回でも測定できなかった場合を不良(同表中、×印で示す)と評価した。本実施例においては、圧電センサと、チャージアンプと、データロガーと、により生体情報検出装置が構成されている。
[Measurement of respiration and heart rate]
First, place a mattress pad (“Smart 025” manufactured by Airweave, approximately 1000 mm wide, approximately 1950 mm long, approximately 35 mm thick) on a mattress (“Coil Killer” manufactured by Gen of Tance Co., Ltd.) The piezoelectric sensor was placed on top of it. The piezoelectric sensor was disposed such that its long side and the short side of the mattress pad (the side extending in the shoulder width direction of the subject) were parallel. Then, with the subject lying on his / her back on the mattress pad, the pressure sensitive portion of the piezoelectric sensor was positioned under the subject's heart. Next, the subject lay supine on the mattress pad and began to measure respiration and heart rate. The devices for processing the output signal from the piezoelectric sensor include a charge amplifier ("NEXUS Charge Amplifier type 2692" manufactured by Brüel &Ke; r) and a data logger (recorder) ("NR-HA08" manufactured by Keyence Corporation). Using. The measurement was performed for 30 minutes each time, for a total of 5 times. And it is evaluated as good (it shows by * mark in the same table when it can not measure even when it can not measure even when it can not measure in the case (Table 3 and Table 4 which are mentioned later by 印 mark) which can be measured all five times. did. In the present embodiment, a biological information detection apparatus is configured by the piezoelectric sensor, the charge amplifier, and the data logger.
 [違和感の評価]
 呼吸および心拍を測定する際、被検者がマットレスパッドの上に仰向けに横になった時に、違和感を全く感じなかった場合を違和感なし(同表中、〇印で示す)、少し違和感を感じた場合をやや違和感あり(同表中、△印で示す)、かなり違和感を感じた場合を違和感あり(同表中、×印で示す)と評価した。
[Evaluation of discomfort]
When measuring the respiration and heart rate, when the subject lies on the mattress pad lying on his / her back, there is no sense of incongruity (indicated by a 印 in the same table) and a slight sense of incongruity. It was evaluated that there was a sense of incongruity (indicated by Δ in the table) and a degree of incongruity as indicated by a × in the table.
 [伸縮耐久性の評価]
 圧電センサを疲労耐久試験機(同上)に設置し、長手方向に引張変位10%のsin波(周波数1Hz)を20万回加えて、その時の発生電荷量をチャージアンプ(同上)およびオシロスコープ(同上)を用いて測定した。20万回後の発生電荷量が初期の発生電荷量に対して60%以上であれば、伸縮耐久性良好(同表中、〇印で示す)、60%未満であれば伸縮耐久性不良(同表中、×印で示す)と評価した。
[Evaluation of stretch durability]
A piezoelectric sensor is installed in a fatigue endurance tester (same as above), and a sine wave (frequency: 1 Hz) with a tensile displacement of 10% is applied 200,000 times in the longitudinal direction, and the charge generated at that time is as charge amplifier (same as above) ) Was used. Stretch durability is good (shown by a circle in the table) if the amount of generated charge after 200,000 times is 60% or more with respect to the amount of initial generated charge, and stretch durability is poor if it is less than 60% In the same table, it was evaluated as x).
 [設置のしやすさ]
 圧電センサがマットレスパッドの上に収まるように簡単に配置できた場合を可(同表中、〇印で示す)、そのように配置できなかった場合を不可(同表中、×印で示す)と評価した。
[Ease of installation]
The case where the piezoelectric sensor can be easily arranged to fit on the mattress pad can be shown (indicated by 印 in the same table), and the case where it can not be arranged as such can not be indicated (indicated by the × symbol in the same table) It was evaluated.
 <評価結果>
 表3、表4に、製造した圧電センサの構成と共に評価結果を示す。また、図4に、実施例1の圧電センサで測定した呼吸の測定結果を示す。図5に、同圧電センサで測定した心拍の測定結果を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<Evaluation result>
Tables 3 and 4 show the evaluation results together with the configuration of the manufactured piezoelectric sensor. Moreover, the measurement result of the respiration measured by the piezoelectric sensor of Example 1 is shown in FIG. FIG. 5 shows the measurement results of the heart rate measured by the same piezoelectric sensor.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、実施例の圧電センサによると、被検者がほとんど違和感を感じることなく、呼吸および心拍を測定することができた。また、実施例の各圧電センサは、伸縮耐久性および設置のしやすさという点においても優れていた。図4、図5に一例を示すように、実施例の圧電センサによると、呼吸および心拍を精度良く測定することができた。実施例10の圧電センサの電極層3は、導電性銀ペーストからなる。このため、他の実施例の圧電センサと比較して、弾性率および10%伸長時の引張荷重が大きくなり、若干の違和感が生じてしまった。実施例11の圧電センサの圧電層2は、圧電層1、3と比較して圧電粒子の配合量が多い。このため、実施例10の圧電センサと同様に、弾性率および10%伸長時の引張荷重が大きくなり、若干の違和感が生じてしまった。 As shown in Table 3, according to the piezoelectric sensor of the example, it was possible to measure the respiration and the heartbeat without the subject feeling a sense of incongruity. Moreover, each piezoelectric sensor of the example was excellent also in terms of expansion and contraction durability and ease of installation. As shown in FIGS. 4 and 5, according to the piezoelectric sensor of the embodiment, it was possible to measure respiration and heart rate with high accuracy. The electrode layer 3 of the piezoelectric sensor of Example 10 is made of conductive silver paste. For this reason, the modulus of elasticity and the tensile load at 10% elongation become large as compared with the piezoelectric sensors of the other examples, and some discomfort is generated. The piezoelectric layer 2 of the piezoelectric sensor of Example 11 contains a larger amount of piezoelectric particles than the piezoelectric layers 1 and 3. For this reason, as with the piezoelectric sensor of Example 10, the elastic modulus and the tensile load at 10% elongation become large, and some discomfort is generated.
 一方、表4に示すように、実施例の圧電センサとは大きさや感圧部の面積が異なる比較例2~9の圧電センサにおいては、呼吸および心拍が測定できなかったり、被検者が違和感を感じるなどの不具合があった。また、PVDFからなる圧電層4を有する比較例1の圧電センサ、導電布からなる電極層4を有する比較例10の圧電センサ、ポリエステルフィルムからなる保護層2を有する比較例11の圧電センサは、いずれも伸縮柔軟性に乏しい。このため、これらの圧電センサを用いると、被検者は硬さやごわつきなどの違和感を感じてしまった。なお、比較例11の圧電センサにおいては、保護層2の破断伸びよりも、圧電層1の破断伸びの方が大きい。よって、伸長時に保護層2が破断して、局所破壊しやすい圧電層1の変位が律速になり耐久性が低下するおそれがある。 On the other hand, as shown in Table 4, in the piezoelectric sensors of Comparative Examples 2 to 9 in which the size and the area of the pressure sensitive portion are different from the piezoelectric sensor of the example, respiration and heartbeat can not be measured, or the subject feels uncomfortable There was a problem such as feeling. The piezoelectric sensor of Comparative Example 1 having the piezoelectric layer 4 made of PVDF, the piezoelectric sensor of Comparative Example 10 having the electrode layer 4 made of conductive cloth, and the piezoelectric sensor of Comparative Example 11 having the protective layer 2 made of polyester film Both have poor flexibility. Therefore, when using these piezoelectric sensors, the subject felt discomfort such as hardness and stiffness. In the piezoelectric sensor of Comparative Example 11, the breaking elongation of the piezoelectric layer 1 is larger than the breaking elongation of the protective layer 2. Therefore, the protective layer 2 may be broken at the time of elongation, and the displacement of the piezoelectric layer 1 which is likely to be locally broken may be limited and the durability may be reduced.
 本発明の生体情報検出装置は、呼吸状態や心拍数をストレスなく高精度に測定することができるため、医療、介護、健康管理、トレーニングなどの現場で有用である。 The biological information detection apparatus of the present invention can measure respiratory conditions and heart rate with high accuracy without stress, and therefore is useful in the field of medical care, care, health management, training and the like.
1:生体情報検出装置、10:圧電センサ、11:圧電層、12a、12b:電極層、13a、13b:保護層、20a、20b:配線、30:制御回路部、40:カバー、P:被検者、S:感圧部。 1: living body information detection device, 10: piezoelectric sensor, 11: piezoelectric layer, 12a, 12b: electrode layer, 13a, 13b: protective layer, 20a, 20b: wiring, 30: control circuit unit, 40: cover, P: covered Examiner, S: Pressure-sensitive part.

Claims (8)

  1.  寝具に配置され、
     エラストマーおよび圧電粒子を含む圧電層と、該圧電層を挟んで配置される電極層と、該電極層の少なくとも一つに積層されエラストマーを含む保護層と、を有し、幅が5mm以上100mm以下、長さが100mm以上1000mm以下、幅に対する長さの比(長さ/幅)が2以上200以下、厚さが0.05mm以上5mm以下の矩形薄板状を呈し、伸縮柔軟性を有する圧電センサを備え、
     該圧電センサにおいて、該電極層が該圧電層を介して厚さ方向に重なる感圧部の面積は、該圧電センサの面積の20%以上であり、
     該圧電センサからの出力信号に基づいて、被検者の呼吸および心拍の少なくとも一方を検出する生体情報検出装置。
    Placed in the bedding,
    A piezoelectric layer containing an elastomer and piezoelectric particles, an electrode layer disposed sandwiching the piezoelectric layer, and a protective layer laminated on at least one of the electrode layers and containing an elastomer, and having a width of 5 mm or more and 100 mm or less , A rectangular thin plate with a length to width ratio of 100 mm to 1000 mm, a length to width ratio (length / width) of 2 to 200, and a thickness of 0.05 mm to 5 mm, and a piezoelectric sensor having stretch flexibility Equipped with
    In the piezoelectric sensor, the area of the pressure sensitive portion in which the electrode layer overlaps in the thickness direction via the piezoelectric layer is 20% or more of the area of the piezoelectric sensor,
    A biological information detection apparatus for detecting at least one of a subject's respiration and heart rate based on an output signal from the piezoelectric sensor.
  2.  前記被検者が前記寝具の上に横になった状態において、前記感圧部は該被検者の体の一部と重なるように配置される請求項1に記載の生体情報検出装置。 The biological information detection apparatus according to claim 1, wherein the pressure sensitive unit is disposed so as to overlap with a part of the body of the subject in a state where the subject is lying on the bedding.
  3.  前記圧電センサの弾性率は、10MPa以上100MPa以下であり、
     該圧電センサは、長手方向に10%以上伸長する請求項1または請求項2に記載の生体情報検出装置。
    The elastic modulus of the piezoelectric sensor is 10 MPa or more and 100 MPa or less,
    The biological information detection apparatus according to claim 1, wherein the piezoelectric sensor extends 10% or more in the longitudinal direction.
  4.  前記圧電センサは、長手方向に10%伸長した時の引張荷重が100N以下、かつ、10%伸長した状態における長手方向の感度係数が50pC/N以上である請求項1ないし請求項3のいずれかに記載の生体情報検出装置。 The piezoelectric sensor according to any one of claims 1 to 3, wherein a tensile load is 100 N or less when it is elongated by 10% in the longitudinal direction, and a sensitivity coefficient in the longitudinal direction is 50 pC / N or more when it is elongated by 10%. The biological information detection apparatus according to claim 1.
  5.  前記圧電センサは、次式(I)を満たす請求項1ないし請求項4のいずれかに記載の生体情報検出装置。
    0.1≦圧電層の引張荷重/(電極層の引張荷重+保護層の引張荷重)≦2・・・(I)
    The biological information detection apparatus according to any one of claims 1 to 4, wherein the piezoelectric sensor satisfies the following formula (I).
    0.1 ≦ tension load of piezoelectric layer / (tension load of electrode layer + tension load of protective layer) ≦ 2 (I)
  6.  前記保護層の破断伸びは、前記圧電層の破断伸びよりも大きい請求項1ないし請求項5のいずれかに記載の生体情報検出装置。 The biological information detection apparatus according to any one of claims 1 to 5, wherein the breaking elongation of the protective layer is larger than the breaking elongation of the piezoelectric layer.
  7.  前記圧電層の前記エラストマーは、カルボキシル基、ヒドロキシル基、アミノ基から選ばれる一つ以上を有する水素化ニトリルゴムである請求項1ないし請求項6のいずれかに記載の生体情報検出装置。 The biological information detection apparatus according to any one of claims 1 to 6, wherein the elastomer of the piezoelectric layer is a hydrogenated nitrile rubber having one or more selected from a carboxyl group, a hydroxyl group, and an amino group.
  8.  前記圧電層における前記圧電粒子の含有量は、前記エラストマーを100体積%とした場合の30体積%以上50体積%以下である請求項1ないし請求項7のいずれかに記載の生体情報検出装置。 The biological information detection apparatus according to any one of claims 1 to 7, wherein a content of the piezoelectric particles in the piezoelectric layer is 30% by volume or more and 50% by volume or less based on 100% by volume of the elastomer.
PCT/JP2018/028419 2017-08-29 2018-07-30 Vital sign detection device WO2019044318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-163836 2017-08-29
JP2017163836A JP6487507B2 (en) 2017-08-29 2017-08-29 Biological information detection device

Publications (1)

Publication Number Publication Date
WO2019044318A1 true WO2019044318A1 (en) 2019-03-07

Family

ID=65525428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028419 WO2019044318A1 (en) 2017-08-29 2018-07-30 Vital sign detection device

Country Status (2)

Country Link
JP (1) JP6487507B2 (en)
WO (1) WO2019044318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087515A (en) * 2019-12-02 2021-06-10 住友理工株式会社 Cardiac failure diagnostic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630007B1 (en) * 2019-01-31 2020-01-15 住友理工株式会社 Piezoelectric sensor and method of manufacturing the same
JP7301681B2 (en) * 2019-09-05 2023-07-03 住友理工株式会社 Sleep state estimation method and sleep state estimation device
JP2021053169A (en) * 2019-09-30 2021-04-08 住友理工株式会社 Piezoelectric sensor and biological information acquisition garment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295695A (en) * 1997-04-30 1998-11-10 Mitsubishi Chem Corp Apnea detector
JP2001525706A (en) * 1997-05-16 2001-12-11 レスメッド・リミテッド Respiratory analysis system
JP2006043445A (en) * 2004-07-07 2006-02-16 Showa Denko Kk Panel and mat for measuring biological information, and device and method for measuring biological information
JP2012205803A (en) * 2011-03-30 2012-10-25 Showa Denko Kk Bio-information measurement sensor
JP2014124310A (en) * 2012-12-26 2014-07-07 Showa Denko Kk Panel for biological information measurement
WO2017010135A1 (en) * 2015-07-16 2017-01-19 住友理工株式会社 Piezoelectric sensor
JP2018056287A (en) * 2016-09-28 2018-04-05 住友理工株式会社 Transducer arranged by use of flexible piezoelectric material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111906B (en) * 2000-04-06 2003-10-15 Emfitech Oy Sensor apparatus for monitoring the condition of the patient and the method for its preparation
WO2017034534A1 (en) * 2015-08-23 2017-03-02 Paul Newham Modular systems for monitoring the presence of a person using a variety of sensing and connection devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295695A (en) * 1997-04-30 1998-11-10 Mitsubishi Chem Corp Apnea detector
JP2001525706A (en) * 1997-05-16 2001-12-11 レスメッド・リミテッド Respiratory analysis system
JP2006043445A (en) * 2004-07-07 2006-02-16 Showa Denko Kk Panel and mat for measuring biological information, and device and method for measuring biological information
JP2012205803A (en) * 2011-03-30 2012-10-25 Showa Denko Kk Bio-information measurement sensor
JP2014124310A (en) * 2012-12-26 2014-07-07 Showa Denko Kk Panel for biological information measurement
WO2017010135A1 (en) * 2015-07-16 2017-01-19 住友理工株式会社 Piezoelectric sensor
JP2018056287A (en) * 2016-09-28 2018-04-05 住友理工株式会社 Transducer arranged by use of flexible piezoelectric material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087515A (en) * 2019-12-02 2021-06-10 住友理工株式会社 Cardiac failure diagnostic device
WO2021111680A1 (en) * 2019-12-02 2021-06-10 住友理工株式会社 Heart failure diagnosis device

Also Published As

Publication number Publication date
JP2019037672A (en) 2019-03-14
JP6487507B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6696885B2 (en) Piezoelectric sensor
WO2019044318A1 (en) Vital sign detection device
JP6886266B2 (en) Transducer using flexible piezoelectric material
CN110031145B (en) Sensing device
TWI520389B (en) Piezoelectric actuators, piezoelectric vibrators and mobile terminals
CN112284239A (en) Method of using electrostatic capacitance type sensor chip
JP6249852B2 (en) Dielectric film manufacturing method
US20200268307A1 (en) Swallowing movement measuring device and method for measuring a swallowing movement
WO2021065085A1 (en) Piezoelectric sensor and bioinformation acquisition garment
JP7060847B2 (en) Elastic capacitors, deformation sensors, displacement sensors, respiratory state sensing methods and sensing wear
JP6630007B1 (en) Piezoelectric sensor and method of manufacturing the same
TWI520390B (en) Piezoelectric actuators, piezoelectric vibrators and mobile terminals
JP7159038B2 (en) Swallowing motion measuring method and swallowing motion measuring device
WO2019150850A1 (en) Transducer and power-generating system using same
JP7079704B2 (en) Piezoelectric sensor
JP6666958B2 (en) Capacitance type extension sensor system
JP6034543B1 (en) Piezoelectric sensor
WO2020111073A1 (en) Sensor body and sensor devie
JP2021159221A (en) Non-powered weak current device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849741

Country of ref document: EP

Kind code of ref document: A1