WO2019044315A1 - Adhesion strengthening treatment apparatus and adhesion strengthening treatment method - Google Patents

Adhesion strengthening treatment apparatus and adhesion strengthening treatment method Download PDF

Info

Publication number
WO2019044315A1
WO2019044315A1 PCT/JP2018/028338 JP2018028338W WO2019044315A1 WO 2019044315 A1 WO2019044315 A1 WO 2019044315A1 JP 2018028338 W JP2018028338 W JP 2018028338W WO 2019044315 A1 WO2019044315 A1 WO 2019044315A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing space
gas
adhesion
value
pressure
Prior art date
Application number
PCT/JP2018/028338
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 和食
元規 福井
小野 和也
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2019044315A1 publication Critical patent/WO2019044315A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to an adhesion strengthening processing apparatus for performing adhesion strengthening processing on a substrate and an adhesion strengthening processing method.
  • a resist pattern is formed on a surface to be processed of a substrate, and then exposure processing and development processing are performed to form a resist pattern.
  • an adhesion enhancer such as HMDS (hexamethyldisilazane) is applied to the treated surface of the substrate before forming the resist film.
  • a chamber space is formed by the chamber body and the sealing lid. While the substrate is accommodated in the chamber space, the chamber space is evacuated. When the pressure in the chamber space drops to a predetermined vacuum pressure, HMDS is supplied to the chamber space through the supply line provided in the hermetic lid. JP 2005-93952A
  • the adhesion enhancer may be intensively applied to a part of the processing surface of the substrate.
  • An object of the present invention is to provide an adhesion strengthening treatment apparatus and an adhesion strengthening treatment method capable of uniformly applying an adhesion strengthening agent to a treated surface of a substrate.
  • An adhesion strengthening processing apparatus includes a chamber forming a processing space in which a substrate is accommodated, a decompression unit that reduces the pressure in the processing space by discharging a gas from the processing space, and a processing space And an inert gas supply unit for supplying an inert gas to the processing space while the gas is being discharged by the pressure reduction unit so that the first pressure is lower than the atmospheric pressure, and the inert gas supply unit After the inert gas is supplied to the processing space, the adhesion reducing agent is contained in the processing space in a state where the gas is discharged by the decompression unit so that the pressure of the processing space becomes a second value lower than the atmospheric pressure. And an adhesion enhancing gas supply unit for supplying an adhesion enhancing gas.
  • the inert gas is supplied to the processing space while the gas is discharged from the processing space, so that the pressure drop in the processing space is suppressed. Since the adhesion strengthening gas is supplied to the processing space in that state, the flow rate of the adhesion strengthening gas in the processing space is prevented from rising, and the adhesion strengthening gas is gradually spread in the processing space. This prevents the contact intensifying gas from being in intensive contact with a part of the processing surface of the substrate. As a result, the adhesion enhancer can be applied uniformly over the entire treated surface of the substrate.
  • the adhesion strengthening gas supply unit may start supply of the adhesion strengthening gas to the processing space when the supply of the inert gas to the processing space by the inert gas supply unit is stopped.
  • the decrease in the concentration of the intensified gas in the processing space is suppressed.
  • the application amount of the adhesion enhancer on the surface to be processed of the substrate can be controlled with high accuracy.
  • the inert gas supply unit supplies the inert gas to the processing space at a first flow rate, and the adhesion strengthening gas supply unit processes the adhesion strengthening gas at a second flow rate smaller than the first flow rate It may be supplied to
  • the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
  • the decompression unit reduces the pressure in the processing space to a third value lower than the first value and lower than the second value
  • the inert gas supply unit reduces the pressure in the processing space by the decompression unit.
  • the inert gas may be supplied to the processing space such that the pressure of the processing space rises from the third value to the first value after decreasing to the third value.
  • the inert gas by supplying the inert gas after the pressure in the processing space is sufficiently reduced, impurities such as liquid remaining in the processing space are efficiently removed. Thereby, the inert gas can be quickly replaced with the adhesion enhancing gas at the time of supply of the adhesion enhancing gas. In addition, since the impurities are prevented from being mixed into the adhesion enhancing gas, the processing accuracy of the substrate is further enhanced.
  • the second value is lower than the first value, and the adhesion strengthening gas supply unit supplies the adhesion strengthening gas to the processing space so that the pressure in the processing space is reduced from the first value to the second value.
  • the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
  • the adhesion strengthening processing method includes the steps of: housing a substrate in a processing space formed by a chamber; and processing the pressure of the processing space to a first value lower than atmospheric pressure. After the steps of supplying the inert gas to the processing space while discharging the gas from the space and the steps of supplying the inert gas, the processing space has a second value that is lower than the atmospheric pressure. And supplying an adhesion enhancing gas containing an adhesion enhancing agent to the processing space while discharging the gas from the chamber.
  • the inert gas is supplied to the processing space while the gas is discharged from the processing space, the decrease in pressure in the processing space is suppressed. Since the adhesion strengthening gas is supplied to the processing space in that state, the flow rate of the adhesion strengthening gas in the processing space is prevented from rising, and the adhesion strengthening gas is gradually spread in the processing space. This prevents the contact intensifying gas from being in intensive contact with a part of the processing surface of the substrate. As a result, the adhesion enhancer can be applied uniformly over the entire treated surface of the substrate.
  • the step of supplying the adhesion enhancing gas may include starting supply of the adhesion enhancing gas to the processing space when the supply of the inert gas to the processing space is stopped.
  • the decrease in the concentration of the intensified gas in the processing space is suppressed.
  • the application amount of the adhesion enhancer on the surface to be processed of the substrate can be controlled with high accuracy.
  • the step of supplying the inert gas includes supplying the inert gas to the processing space at the first flow rate, and the step of supplying the adhesion strengthening gas is smaller than the first flow rate of the adhesion strengthening gas It may include supplying the processing space at a second flow rate.
  • the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
  • the adhesion strengthening processing method further includes, before the step of supplying the inert gas, reducing the pressure of the processing space to a third value lower than the first value and lower than the second value.
  • the step of supplying the inert gas may include supplying the inert gas to the processing space such that the pressure of the processing space is increased from the third value to the first value.
  • the inert gas by supplying the inert gas after the pressure in the processing space is sufficiently reduced, impurities such as liquid remaining in the processing space are efficiently removed. Thereby, the inert gas can be quickly replaced with the adhesion enhancing gas at the time of supply of the adhesion enhancing gas. In addition, since the impurities are prevented from being mixed into the adhesion enhancing gas, the processing accuracy of the substrate is further enhanced.
  • the second value is lower than the first value, and in the step of supplying the adhesion strengthening gas, the adhesion strengthening gas in the processing space is reduced such that the pressure in the processing space is reduced from the first value to the second value. May be included.
  • the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
  • the adhesion enhancer can be uniformly applied to the treated surface of the substrate.
  • FIG. 1 is a schematic cross-sectional view showing a specific configuration example of the adhesion strengthening processing apparatus.
  • FIG. 2 is a block diagram for explaining a control system of the adhesion strengthening processing apparatus.
  • FIG. 3 is a flowchart showing an outline of the adhesion strengthening processing in the adhesion strengthening processing device.
  • FIG. 4 is a diagram for explaining changes in pressure in the processing space.
  • FIG. 5 is a view for explaining a comparative example of the present invention.
  • the substrate refers to a substrate for an FPD (Flat Panel Display) such as a semiconductor substrate, a liquid crystal display device or an organic EL (Electro Luminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, and a substrate for a magneto-optical disk.
  • FPD Fluorescence Panel Display
  • FIG. 1 is a schematic cross-sectional view showing a specific configuration example of the adhesion strengthening processing apparatus 100 according to the present embodiment.
  • the adhesion strengthening processing apparatus 100 of FIG. 1 includes a chamber 201, a cover lifting and lowering mechanism 209, a pressure sensor 210, a plurality of support pins 243, a support pin lifting and lowering mechanism 247, and an exhaust device 256.
  • the chamber 201 includes a plate 205 and a cover 207.
  • a plurality of (eg, three) proximity balls 241 are provided on the upper surface of the plate 205.
  • the substrate W is mounted on the plurality of proximity balls 241 in a horizontal posture. In this case, the processed surface of the substrate W is directed upward.
  • the cover 207 is provided to cover the upper side of the substrate W to be mounted.
  • the cover 207 is connected to the cover lifting and lowering mechanism 209.
  • the cover lifting and lowering mechanism 209 is, for example, an air cylinder, and lifts and lowers the cover 207 between the upper position and the lower position. In FIG. 1, the cover 207 is in the lower position. When the cover 207 is in the lower position, an airtight processing space PS in which the substrate W is accommodated is formed between the cover 207 and the plate 205.
  • the pressure sensor 210 detects the pressure in the processing space PS.
  • the cover 207 is provided with a gas flow channel 213.
  • the gas flow channel 213 has an open end 213 a at the center of the lower surface of the cover 207.
  • the open end 213 a faces the central portion of the substrate W placed on the plate 205.
  • An inert gas supply unit Q1 and a close contact gas supply unit Q2 are connected to the gas flow channel 213 via the gas supply pipe 261, respectively.
  • the inert gas supply unit Q1 supplies the inert gas to the processing space PS through the gas supply pipe 261 and the gas flow channel 213.
  • the inert gas is, for example, nitrogen gas.
  • the adhesion enhancing gas supply unit Q2 supplies the adhesion enhancing gas to the processing space PS through the gas supply pipe 261 and the gas flow channel 213.
  • the adhesion enhancing gas comprises an adhesion enhancing agent.
  • the adhesion enhancer is, for example, HMDS (hexamethyldisilazane).
  • Each of the inert gas supply unit Q1 and the adhesion enhancing gas supply unit Q2 includes, for example, a valve, and the supply timing of the inert gas and the adhesion enhancing gas can be controlled by controlling the opening / closing timing of the valve.
  • a plurality of (for example, three) through holes 245 are provided so as to vertically penetrate the plate 205.
  • a plurality of (for example, three) support pins 243 are respectively inserted into the through holes 245 of the plate 205.
  • the lower end portion of each support pin 243 is connected to the support pin lifting mechanism 247 below the plate 205.
  • the support pin raising and lowering mechanism 247 raises and lowers the plurality of support pins 243.
  • a sealing portion 243 a on the disc is attached to the upper end portion of each support pin 243.
  • a concave portion 245a capable of accommodating the sealing portion 243a is formed.
  • a temperature control unit 249 for adjusting the temperature of the substrate W is provided inside the plate 205.
  • the temperature control unit 249 is, for example, a heater.
  • the temperature control unit 249 performs heat treatment on the substrate W placed on the plate 205 by adjusting the temperature of the plate 205.
  • An exhaust slit 251 is formed on the plate 205 so as to extend in the circumferential direction outward of the region on which the substrate W is to be mounted. Further, a plurality of exhaust ports 253 are formed to communicate with the exhaust slits 251, respectively.
  • An exhaust pipe 255 is connected to the plurality of exhaust ports 253.
  • An exhaust device 256 is interposed in the exhaust pipe 255.
  • the exhaust device 256 includes, for example, a pump, and exhausts the gas from the processing space PS through the exhaust pipe 255. Thereby, the processing space PS is decompressed. In this example, the operating state of the exhaust system 256 can be switched between the strong state and the weak state.
  • the pressure of the processing space PS can be adjusted lower than in the case of operating the exhaust system 256 in the weak state.
  • an ejector may be used which discharges the gas from the processing space PS by an entrainment action by the compressed gas.
  • FIG. 2 is a block diagram for explaining a control system of the adhesion strengthening processing apparatus 100.
  • the adhesion strengthening processing apparatus 100 includes a control unit 150.
  • Control unit 150 includes a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), a storage device, and the like.
  • the control unit 150 includes a cover lift control unit 51, a support pin lift control unit 52, a pressure reduction control unit 53, an inert gas supply control unit 54, a close contact gas supply control unit 55, a temperature control control unit 56 and a time control unit 57. Including.
  • the functions of these components (51 to 57) are realized by the CPU executing a computer program stored in a storage medium such as a ROM or a storage device.
  • the pressure sensor 210 provides the pressure reduction control unit 53 and the inert gas supply control unit 54 with a value representing the detected pressure (hereinafter referred to as a detected pressure value).
  • the cover lift control unit 51 controls the cover lift mechanism 209 to control the lift of the cover 207 in FIG. 1.
  • the support pin elevation control unit 52 controls the elevation of the plurality of support pins 243 in FIG. 1 by controlling the support pin elevation mechanism 247.
  • the pressure reduction control unit 53 controls the exhaust device 256 to control the exhaust of the processing space PS.
  • the inert gas supply control unit 54 controls the supply of the inert gas to the processing space PS by controlling the inert gas supply unit Q1.
  • the adhesion strengthening gas supply control unit 55 controls the supply of the adhesion strengthening gas to the processing space PS by controlling the adhesion strengthening gas supply unit Q2.
  • the temperature adjustment control unit 56 adjusts the temperature adjustment of the substrate W by controlling the temperature adjustment unit 249.
  • the time control unit 57 controls the start and end timings of the operations of the pressure reduction control unit 53, the inert gas supply control unit 54, the close contact gas supply control unit 55, and the temperature control control unit 56.
  • FIG. 3 is a flowchart showing an outline of the adhesion strengthening processing in the adhesion strengthening processing apparatus 100.
  • the cover lift control unit 51 moves the cover 207 to the upper position (step S1).
  • a transfer device (not shown) transfers the substrate W above the plate 205.
  • the support pin elevation control unit 52 raises the plurality of support pins 243 (step S2).
  • the substrate is transferred from the transfer device (not shown) to the plurality of support pins 243.
  • the support pin elevation control unit 52 lowers the plurality of support pins 243 (step S3).
  • the substrate W is placed on the plurality of proximity balls 241.
  • the cover lift control unit 51 moves the cover 207 to the lower position (step S4). Thereby, the airtight processing space PS which accommodates the board
  • the pressure reduction control unit 53 starts the operation of the exhaust device 256 (step S5). In this case, the pressure reduction control unit 53 sets the operation state of the exhaust device 256 to a weak state. Further, the temperature control unit 56 starts temperature control of the substrate W (step S6).
  • the pressure reduction control unit 53 determines whether the detected pressure value from the pressure sensor 210 is equal to or less than a predetermined low vacuum value P1 (step S7). The pressure reduction control unit 53 repeats step S7 until the detected pressure value becomes equal to or less than the low vacuum value P1. When the detected pressure value becomes equal to or less than the low vacuum value P1, the pressure reduction control unit 53 switches the operating state of the exhaust device 256 to the strong state (step S8).
  • the inert gas supply control unit 54 determines whether the detected pressure value from the pressure sensor 210 has become equal to or less than a predetermined high vacuum value P2 (step S9). The inert gas supply control unit 54 repeats step S9 until the detected pressure value becomes equal to or less than the high vacuum value P2. When the detected pressure value becomes equal to or less than the high vacuum value P2, the inert gas supply control unit 54 starts the supply of the inert gas to the processing space PS (step S10).
  • the inert gas supply control unit 54 stops the supply of the inert gas to the processing space PS (step S11).
  • the adhesion enhancing gas supply control unit 55 starts the supply of the adhesion enhancing gas to the processing space PS (step S12).
  • the inert gas in the processing space PS is replaced with the adhesion enhancing gas.
  • the adhesion enhancing gas supply control unit 55 stops the supply of the adhesion enhancing gas to the processing space PS (step S12) S13). Further, the pressure reduction control unit 53 switches the operation state of the exhaust device 256 to the weak state (step S14).
  • step S14 After the operation state of the exhaust device 256 is switched in step S14 and a predetermined maintenance time has elapsed, the inert gas supply control unit 54 starts supply of inert gas to the processing space PS (step S15). . Further, the pressure reduction control unit 53 switches the operation state of the exhaust device 256 to the strong state (step S16).
  • the decompression control unit 53 switches the operating state of the exhaust system 256 to the weak state (step S17).
  • the pressure reduction control unit 53 determines whether the detected pressure value from the pressure sensor 210 has become equal to or more than a predetermined low vacuum value P3 (step S18).
  • the low vacuum value P3 is a value close to the low vacuum value P1 described above and slightly lower than the low vacuum value P1.
  • the pressure reduction control unit 53 repeats step S18 until the detected pressure value becomes equal to or higher than the low vacuum value P3.
  • the pressure reduction control unit 53 stops the operation of the exhaust device 256 (step S19).
  • the inert gas supply control unit 54 stops the supply of the inert gas to the processing space PS (step S20).
  • the temperature control unit 56 stops the temperature control of the substrate W (step S21).
  • the cover lift control unit 51 moves the cover 207 to the upper position (step S22). Further, the support pin elevation control unit 52 raises the plurality of support pins 243 (step S23). Thereby, the substrate W is passed from the plurality of proximity balls 241 to the plurality of support pins 243. In this state, a transfer device (not shown) receives the substrate W from the plurality of support pins 243, and carries the substrate W out of the adhesion strengthening processing apparatus 100. Thus, a series of operations of the adhesion strengthening processing apparatus 100 are completed.
  • FIG. 4 is a diagram for describing a change in pressure of the processing space PS.
  • FIG. 4 shows the change in the operating state of the exhaust device 256 and the supply timing of the inert gas and the adhesion enhancing gas, along with the change in pressure in the processing space PS.
  • the horizontal axis represents time
  • the vertical axis represents the pressure of the processing space PS and the flow rates of the inert gas and the adhesion enhancing gas.
  • time t1 is after the airtight processing space PS is formed and the pressure of the processing space PS is lowered to the low vacuum value P1 (Yes in step S7 of FIG. 3) .
  • the low vacuum value P1 is, for example, a value in the range of -4 kPa or more and -1 kPa or less, and is, for example, -2 kPa.
  • the operating state of the exhaust system 256 is switched to the strong state (step S8 in FIG. 3).
  • the pressure in the processing space PS further decreases, and the pressure in the processing space PS becomes the high vacuum value P2 at time t2 (Yes in step S9 in FIG. 3).
  • the high vacuum value P2 is an example of a third value.
  • the high vacuum value P2 is, for example, a value in the range of -25 kPa to -18 kPa, and is, for example, -20 kPa.
  • the supply of the inert gas to the processing space PS is started (step S10 in FIG. 3).
  • the pressure of the processing space PS is increased by the supply of the inert gas.
  • the exhaust amount by the exhaust device 256 and the supply amount of the inert gas are balanced, the pressure of the processing space PS converges to the intermediate value P4.
  • the intermediate value P4 is lower than the low vacuum value P1 and higher than the high vacuum value P2.
  • the intermediate value P4 is an example of a first value.
  • the intermediate value P4 is, for example, a value in the range of -10 kPa to -5 kPa, and is, for example, -7 kPa.
  • the supply of the inert gas is stopped and the supply of the adhesion strengthening gas is started (steps S11 and S12 in FIG. 3).
  • the flow rate of the adhesion strengthening gas is smaller than the flow rate of the inert gas. Therefore, the pressure in the processing space PS drops from the intermediate value P4.
  • the pressure of the processing space PS converges to the intermediate value P5.
  • Intermediate value P5 is higher than high vacuum value P2 and lower than intermediate value P4.
  • the intermediate value P5 is an example of a second value.
  • the intermediate value P5 is, for example, a value in the range of -20 kPa or more and -10 kPa or less, and is, for example, -15 kPa.
  • the supply of the intensified gas is stopped, and the operating state of the exhaust device 256 is switched to the weak state (steps S13 and S14 in FIG. 3).
  • the pressure of the processing space PS is maintained at the intermediate value P5 while the processing space PS is filled with the adhesion enhancing gas.
  • the adhesion enhancer is applied to the surface to be processed of the substrate W in a period from time t3 to time t4. Thereby, the hydrophobicity of the treated surface of the substrate W is enhanced.
  • a treatment film (for example, a resist film) is formed on the surface to be treated of the substrate W in a later step. The adhesion between the surface to be treated of the substrate W and the treatment film is secured by the application of the adhesion enhancer.
  • the supply of the inert gas is started and the operating state of the exhaust device 256 is switched to the strong state (steps S15 and S16 in FIG. 3).
  • the pressure in the processing space PS rises again and converges to the intermediate value P4.
  • the flow rate of the inert gas in the period from time t5 to time t7 is equal to the flow rate of the inert gas in the period from time t2 to time t3, but the inert gas in the period from time t5 to time t7 May be different from the flow rate of the inert gas in the period from time t3 to time t4.
  • the operating state of the exhaust device 256 is switched to the weak state (step S17 in FIG. 3).
  • the pressure in the processing space PS further increases.
  • the operation of the exhaust device 256 is stopped (step S19 in FIG. 3) and the supply of inert gas is stopped (step S20 in FIG. 3). ).
  • the pressure of the processing space PS is increased to the intermediate value P4 by supplying the inert gas to the processing space PS. Do. In this state, the supply of the inert gas is stopped and the supply of the intensified gas is started, so that the pressure of the processing space PS decreases from the intermediate value P4 to the intermediate value P5.
  • FIG. 5 is a view for explaining a comparative example of the present invention. Similar to FIG. 4, FIG. 5 shows changes in the operating state of the exhaust device 256 and supply timings of the inert gas and the adhesion enhancing gas with changes in the pressure of the processing space PS.
  • the comparative example of FIG. 5 differs from the example of FIG. 4 in that the inert gas is not supplied before the supply of the adhesion strengthening gas.
  • the time point t11 is a time point after the pressure of the processing space PS is reduced to the low vacuum value P1 after the airtight processing space PS is formed as in the time t1 of FIG. 4.
  • the pressure of the processing space PS is reduced from the low vacuum value P1 to the high vacuum value P2 in a period from time point t11 to time point t12.
  • the adhesion enhancing gas is supplied to the processing space PS from time t12 to time t13, and the pressure of the processing space PS is maintained at the intermediate value P5 from time t13 to time t14.
  • the inert gas is supplied to the processing space PS from time t14 to time t15, and the pressure of the processing space PS rises from the intermediate value P4 to the low vacuum value P3 in the period from time t15 to time 16.
  • the supply of the adhesion strengthening gas is started in a state where the pressure of the processing space PS is the high vacuum value P2.
  • the adhesion strengthening gas introduced into the processing space PS moves at high speed from the gas flow channel 213 located above the central portion of the substrate W in FIG. 1 toward the exhaust slit 251 located outside the substrate W. Do. Therefore, the adhesion strengthening gas is likely to contact the peripheral portion of the substrate W intensively.
  • the coating amount of the adhesion enhancer per unit area in the peripheral portion of the substrate W becomes larger than the application amount of the adhesion enhancer per unit area in the central portion of the substrate W. Thereby, the hydrophobicity of the treated surface of the substrate W varies.
  • the supply of the adhesion enhancing gas is started in a state where the pressure of the processing space PS is adjusted to a relatively high intermediate value P4.
  • the increase in the flow velocity of the adhesion enhancing gas in the processing space PS is suppressed.
  • the adhesion strengthening gas is gradually spread from the opening end 213a of the gas flow channel 213 to the entire processing space PS. Therefore, the adhesion strengthening gas uniformly contacts the entire treated surface of the substrate W. Therefore, the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate W. Thereby, the hydrophobicity of the to-be-processed surface of the board
  • substrate W can be adjusted uniformly.
  • the inert gas is supplied to the processing space PS after the pressure in the processing space PS is reduced to the high vacuum value P2.
  • impurities such as liquid remaining in the processing space PS are efficiently removed.
  • the inert gas can be quickly replaced with the adhesion enhancing gas at the time of supply of the adhesion enhancing gas.
  • the impurity is prevented from mixing into the adhesion strengthening gas, the processing accuracy of the substrate W by the adhesion strengthening processing apparatus 100 is further enhanced.
  • the flow rate of the adhesion strengthening gas is smaller than the flow rate of the inert gas, and the pressure of the processing space PS at the time of supply of the inert gas (intermediate value P4) Pressure (intermediate value P5) is low.
  • adherence strengthening gas can be reduced.
  • the increase in the flow velocity of the adhesion enhancing gas can be more reliably suppressed, the uniformity of the application of the adhesion enhancing agent to the entire treated surface of the substrate W can be further enhanced.
  • the supply of the inert gas is started after the pressure of the processing space PS is reduced to the high vacuum value P2 by the exhaust device 256, but the present invention is limited thereto Absent.
  • the operating state of the exhaust device 256 may be switched to the strong state and the supply of the inert gas may be started. In this case, the pressure in the processing space PS drops from the low vacuum value P1 to the intermediate value P4.
  • the inert gas is supplied such that the pressure of the processing space PS becomes the intermediate value P4
  • the adhesion strengthening gas is supplied such that the pressure of the processing space PS becomes the intermediate value P5 lower than the intermediate value P4.
  • the present invention is not limited to this.
  • the flow rates of the inert gas and the adhesion enhancing gas may be set such that the pressure of the processing space PS at the time of supplying the inert gas and the pressure of the processing space PS at the time of supplying the adhesion enhancing gas are equal.
  • the flow rates of the inert gas and the adhesion enhancing gas may be set such that the pressure of the processing space PS at the time of supply of the adhesion enhancing gas is higher than the pressure of the processing space PS at the time of supplying the inert gas.
  • the operating state of the exhaust device 256 is before supply of the inert gas (period from time t1 to time t2 in FIG. 4) and at time of supply of inert gas (time t2 to time t3 in FIG. 4). 4 and the supply of the adhesion strengthening gas (the period from time t3 to time t4 in FIG. 4), the operating state of the exhaust device 256 may be switched during these periods.
  • the operating state of the exhaust device 256 may be switched to the weak state at least one of the supply of the inert gas and the supply of the adhesion strengthening gas.
  • the operating state of the exhaust device 256 may be switchable to three or more stages.
  • the adhesion enhancing agent made of HMDS is used as the organic material, but if the hydrophobicity of the substrate W can be enhanced, the adhesion enhancing made of another organic material such as TMSDMA (trimethylsilyldimethylamine) Agents may be used. Further, in the above embodiment, nitrogen gas is used as the inert gas, but other inert gas that does not affect the adhesion enhancer may be used.
  • the adhesion strengthening processing apparatus 100 is an example of the adhesion strengthening processing apparatus
  • the chamber 201 is an example of a chamber
  • the processing space PS is an example of a processing space
  • the exhaust device 256 is an example of a pressure reducing unit.
  • the inert gas supply unit Q1 is an example of the inert gas supply unit
  • the adhesion strengthening gas supply unit Q2 is an example of the adhesion strengthening gas supply unit
  • the intermediate value P4 is an example of the first value
  • the intermediate value P5 is an example of a second value
  • the high vacuum value P2 is an example of a third value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

An adhesion strengthening treatment apparatus includes a chamber, a decompression section, an inactive gas supply section, and an adhesion strengthening gas supply section. The chamber forms a treatment space in which a substrate is housed. The decompression section reduces the pressure in the treatment space by discharging the gas from the treatment space. The inactive gas supply section supplies an inactive gas to the treatment space in a state where the gas is discharged by the decompression section, so that the pressure in the treatment space becomes a first value lower than the atmospheric pressure. After the inactive gas has been supplied to the treatment space by the inactive gas supply section, the adhesion strengthening gas supply section supplies an adhesion strengthening gas containing an adhesion strengthening agent to the treatment space in a state where the gas is discharged by the decompression section, so that the pressure in the treatment space becomes a second value lower than the atmospheric pressure.

Description

密着強化処理装置および密着強化処理方法Adhesion strengthening processing apparatus and adhesion strengthening processing method
 本発明は、基板に密着強化処理を行う密着強化処理装置および密着強化処理方法に関する。 The present invention relates to an adhesion strengthening processing apparatus for performing adhesion strengthening processing on a substrate and an adhesion strengthening processing method.
 半導体デバイス等の製造におけるリソグラフィ工程では、基板の被処理面上にレジスト膜が形成された後、露光処理および現像処理が行われることにより、レジストパターンが形成される。通常、基板の被処理面とレジスト膜との密着性を高めるため、レジスト膜の形成前に、基板の被処理面にHMDS(ヘキサメチルジシラザン)等の密着強化剤が塗布される。 In a lithography process in the manufacture of semiconductor devices and the like, a resist pattern is formed on a surface to be processed of a substrate, and then exposure processing and development processing are performed to form a resist pattern. Usually, in order to enhance the adhesion between the treated surface of the substrate and the resist film, an adhesion enhancer such as HMDS (hexamethyldisilazane) is applied to the treated surface of the substrate before forming the resist film.
 特許文献1記載の密着強化装置においては、チャンバー本体および密閉蓋によりチャンバー空間が形成される。チャンバー空間に基板が収容された状態で、チャンバー空間の真空引きが行われる。チャンバー空間の圧力が所定の真空圧に降下すると、密閉蓋に設けられた供給管路を通してチャンバー空間にHMDSが供給される。
特開2005-93952号公報
In the adhesion strengthening device described in Patent Document 1, a chamber space is formed by the chamber body and the sealing lid. While the substrate is accommodated in the chamber space, the chamber space is evacuated. When the pressure in the chamber space drops to a predetermined vacuum pressure, HMDS is supplied to the chamber space through the supply line provided in the hermetic lid.
JP 2005-93952A
 上記のようにして減圧状態のチャンバー空間に密着強化剤が供給されると、チャンバー空間での密着強化剤の流速が高くなる。この場合、基板の被処理面の一部に集中的に密着強化剤が塗布されることがある。 When the adhesion enhancing agent is supplied to the chamber space in a reduced pressure state as described above, the flow rate of the adhesion enhancing agent in the chamber space increases. In this case, the adhesion enhancer may be intensively applied to a part of the processing surface of the substrate.
 本発明の目的は、基板の被処理面に均一に密着強化剤を塗布することが可能な密着強化処理装置および密着強化処理方法を提供することである。 An object of the present invention is to provide an adhesion strengthening treatment apparatus and an adhesion strengthening treatment method capable of uniformly applying an adhesion strengthening agent to a treated surface of a substrate.
 (1)本発明の一局面に従う密着強化処理装置は、基板が収容される処理空間を形成するチャンバと、処理空間から気体を排出することにより処理空間の圧力を低下させる減圧部と、処理空間の圧力が大気圧よりも低い第1の値となるように、減圧部により気体が排出されている状態で処理空間に不活性ガスを供給する不活性ガス供給部と、不活性ガス供給部により処理空間に不活性ガスが供給された後に、処理空間の圧力が大気圧よりも低い第2の値となるように、減圧部により気体が排出されている状態で処理空間に密着強化剤を含む密着強化ガスを供給する密着強化ガス供給部とを備える。 (1) An adhesion strengthening processing apparatus according to one aspect of the present invention includes a chamber forming a processing space in which a substrate is accommodated, a decompression unit that reduces the pressure in the processing space by discharging a gas from the processing space, and a processing space And an inert gas supply unit for supplying an inert gas to the processing space while the gas is being discharged by the pressure reduction unit so that the first pressure is lower than the atmospheric pressure, and the inert gas supply unit After the inert gas is supplied to the processing space, the adhesion reducing agent is contained in the processing space in a state where the gas is discharged by the decompression unit so that the pressure of the processing space becomes a second value lower than the atmospheric pressure. And an adhesion enhancing gas supply unit for supplying an adhesion enhancing gas.
 この密着強化処理装置においては、処理空間から気体が排出されつつ処理空間に不活性ガスが供給されるので、処理空間の圧力の低下が抑制される。その状態で処理空間に密着強化ガスが供給されるため、処理空間における密着強化ガスの流速の上昇が抑制され、処理空間で密着強化ガスが緩やかに拡がる。これにより、基板の被処理面の一部に密着強化ガスが集中的に接触することが防止される。その結果、基板の被処理面の全体に均一に密着強化剤を塗布することができる。 In this adhesion enhancement processing apparatus, the inert gas is supplied to the processing space while the gas is discharged from the processing space, so that the pressure drop in the processing space is suppressed. Since the adhesion strengthening gas is supplied to the processing space in that state, the flow rate of the adhesion strengthening gas in the processing space is prevented from rising, and the adhesion strengthening gas is gradually spread in the processing space. This prevents the contact intensifying gas from being in intensive contact with a part of the processing surface of the substrate. As a result, the adhesion enhancer can be applied uniformly over the entire treated surface of the substrate.
 (2)密着強化ガス供給部は、不活性ガス供給部による処理空間への不活性ガスの供給が停止された時点で処理空間への密着強化ガスの供給を開始してもよい。 (2) The adhesion strengthening gas supply unit may start supply of the adhesion strengthening gas to the processing space when the supply of the inert gas to the processing space by the inert gas supply unit is stopped.
 この場合、処理空間における密着強化ガスの濃度の低下が抑制される。それにより、基板の被処理面への密着強化剤の塗布量を精度良く制御することができる。 In this case, the decrease in the concentration of the intensified gas in the processing space is suppressed. Thereby, the application amount of the adhesion enhancer on the surface to be processed of the substrate can be controlled with high accuracy.
 (3)不活性ガス供給部は、不活性ガスを第1の流量で処理空間に供給し、密着強化ガス供給部は、密着強化ガスを第1の流量よりも小さい第2の流量で処理空間に供給してもよい。 (3) The inert gas supply unit supplies the inert gas to the processing space at a first flow rate, and the adhesion strengthening gas supply unit processes the adhesion strengthening gas at a second flow rate smaller than the first flow rate It may be supplied to
 この場合、密着強化ガスの使用量を低減しつつ基板の被処理面の全体に均一に密着強化剤を塗布することができる。 In this case, the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
 (4)減圧部は、処理空間の圧力を第1の値よりも低くかつ第2の値よりも低い第3の値に低下させ、不活性ガス供給部は、減圧部により処理空間の圧力が第3の値に低下した後に処理空間の圧力が第3の値から第1の値に上昇するように処理空間に不活性ガスを供給してもよい。 (4) The decompression unit reduces the pressure in the processing space to a third value lower than the first value and lower than the second value, and the inert gas supply unit reduces the pressure in the processing space by the decompression unit. The inert gas may be supplied to the processing space such that the pressure of the processing space rises from the third value to the first value after decreasing to the third value.
 この場合、処理空間の圧力が十分に低下された後に不活性ガスが供給されることにより、処理空間に残留する液体等の不純物が効率良く除去される。それにより、密着強化ガスの供給時に、不活性ガスを密着強化ガスで迅速に置換することができる。また、密着強化ガスに不純物が混入することが防止されるので、基板の処理精度がより高くなる。 In this case, by supplying the inert gas after the pressure in the processing space is sufficiently reduced, impurities such as liquid remaining in the processing space are efficiently removed. Thereby, the inert gas can be quickly replaced with the adhesion enhancing gas at the time of supply of the adhesion enhancing gas. In addition, since the impurities are prevented from being mixed into the adhesion enhancing gas, the processing accuracy of the substrate is further enhanced.
 (5)第2の値は第1の値よりも低く、密着強化ガス供給部は、処理空間の圧力が第1の値から第2の値に低下するように処理空間に密着強化ガスを供給してもよい。 (5) The second value is lower than the first value, and the adhesion strengthening gas supply unit supplies the adhesion strengthening gas to the processing space so that the pressure in the processing space is reduced from the first value to the second value. You may
 この場合、密着強化ガスの使用量を低減しつつ基板の被処理面の全体に均一に密着強化剤を塗布することができる。 In this case, the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
 (6)本発明の他の局面に従う密着強化処理方法は、チャンバが形成する処理空間に基板を収容するステップと、処理空間の圧力が大気圧よりも低い第1の値となるように、処理空間から気体を排出しつつ処理空間に不活性ガスを供給するステップと、不活性ガスを供給するステップの後に、処理空間の圧力が大気圧よりも低い第2の値となるように、処理空間から気体を排出しつつ処理空間に密着強化剤を含む密着強化ガスを供給するステップとを含む。 (6) The adhesion strengthening processing method according to another aspect of the present invention includes the steps of: housing a substrate in a processing space formed by a chamber; and processing the pressure of the processing space to a first value lower than atmospheric pressure. After the steps of supplying the inert gas to the processing space while discharging the gas from the space and the steps of supplying the inert gas, the processing space has a second value that is lower than the atmospheric pressure. And supplying an adhesion enhancing gas containing an adhesion enhancing agent to the processing space while discharging the gas from the chamber.
 この方法によれば、処理空間から気体が排出されつつ処理空間に不活性ガスが供給されるので、処理空間の圧力の低下が抑制される。その状態で処理空間に密着強化ガスが供給されるため、処理空間における密着強化ガスの流速の上昇が抑制され、処理空間で密着強化ガスが緩やかに拡がる。これにより、基板の被処理面の一部に密着強化ガスが集中的に接触することが防止される。その結果、基板の被処理面の全体に均一に密着強化剤を塗布することができる。 According to this method, since the inert gas is supplied to the processing space while the gas is discharged from the processing space, the decrease in pressure in the processing space is suppressed. Since the adhesion strengthening gas is supplied to the processing space in that state, the flow rate of the adhesion strengthening gas in the processing space is prevented from rising, and the adhesion strengthening gas is gradually spread in the processing space. This prevents the contact intensifying gas from being in intensive contact with a part of the processing surface of the substrate. As a result, the adhesion enhancer can be applied uniformly over the entire treated surface of the substrate.
 (7)密着強化ガスを供給するステップは、処理空間への不活性ガスの供給が停止された時点で処理空間への密着強化ガスの供給を開始することを含んでもよい。 (7) The step of supplying the adhesion enhancing gas may include starting supply of the adhesion enhancing gas to the processing space when the supply of the inert gas to the processing space is stopped.
 この場合、処理空間における密着強化ガスの濃度の低下が抑制される。それにより、基板の被処理面への密着強化剤の塗布量を精度良く制御することができる。 In this case, the decrease in the concentration of the intensified gas in the processing space is suppressed. Thereby, the application amount of the adhesion enhancer on the surface to be processed of the substrate can be controlled with high accuracy.
 (8)不活性ガスを供給するステップは、不活性ガスを第1の流量で処理空間に供給することを含み、密着強化ガスを供給するステップは、密着強化ガスを第1の流量よりも小さい第2の流量で処理空間に供給することを含んでもよい。 (8) The step of supplying the inert gas includes supplying the inert gas to the processing space at the first flow rate, and the step of supplying the adhesion strengthening gas is smaller than the first flow rate of the adhesion strengthening gas It may include supplying the processing space at a second flow rate.
 この場合、密着強化ガスの使用量を低減しつつ基板の被処理面の全体に均一に密着強化剤を塗布することができる。 In this case, the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
 (9)密着強化処理方法は、不活性ガスを供給するステップの前に、処理空間の圧力を第1の値よりも低くかつ第2の値よりも低い第3の値に低下させるステップをさらに含み、不活性ガスを供給するステップは、処理空間の圧力が第3の値から第1の値に上昇するように処理空間に不活性ガスを供給することを含んでもよい。 (9) The adhesion strengthening processing method further includes, before the step of supplying the inert gas, reducing the pressure of the processing space to a third value lower than the first value and lower than the second value. Inclusion, the step of supplying the inert gas may include supplying the inert gas to the processing space such that the pressure of the processing space is increased from the third value to the first value.
 この場合、処理空間の圧力が十分に低下された後に不活性ガスが供給されることにより、処理空間に残留する液体等の不純物が効率良く除去される。それにより、密着強化ガスの供給時に、不活性ガスを密着強化ガスで迅速に置換することができる。また、密着強化ガスに不純物が混入することが防止されるので、基板の処理精度がより高くなる。 In this case, by supplying the inert gas after the pressure in the processing space is sufficiently reduced, impurities such as liquid remaining in the processing space are efficiently removed. Thereby, the inert gas can be quickly replaced with the adhesion enhancing gas at the time of supply of the adhesion enhancing gas. In addition, since the impurities are prevented from being mixed into the adhesion enhancing gas, the processing accuracy of the substrate is further enhanced.
 (10)第2の値は第1の値よりも低く、密着強化ガスを供給するステップは、処理空間の圧力が第1の値から第2の値に低下するように処理空間に密着強化ガスを供給することを含んでもよい。 (10) The second value is lower than the first value, and in the step of supplying the adhesion strengthening gas, the adhesion strengthening gas in the processing space is reduced such that the pressure in the processing space is reduced from the first value to the second value. May be included.
 この場合、密着強化ガスの使用量を低減しつつ基板の被処理面の全体に均一に密着強化剤を塗布することができる。 In this case, the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate while reducing the amount of adhesion strengthening gas used.
 本発明によれば、基板の被処理面に均一に密着強化剤を塗布することができる。 According to the present invention, the adhesion enhancer can be uniformly applied to the treated surface of the substrate.
図1は密着強化処理装置の具体的な構成例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a specific configuration example of the adhesion strengthening processing apparatus. 図2は密着強化処理装置の制御系について説明するためのブロック図である。FIG. 2 is a block diagram for explaining a control system of the adhesion strengthening processing apparatus. 図3は密着強化処理装置における密着強化処理の概要を示すフローチャートである。FIG. 3 is a flowchart showing an outline of the adhesion strengthening processing in the adhesion strengthening processing device. 図4は処理空間の圧力の変化について説明するための図である。FIG. 4 is a diagram for explaining changes in pressure in the processing space. 図5は本発明の比較例について説明するための図である。FIG. 5 is a view for explaining a comparative example of the present invention.
 以下、本発明の実施の形態に係る密着強化処理装置および密着強化処理方法について図面を参照しながら説明する。なお、以下の説明において、基板とは、半導体基板、液晶表示装置もしくは有機EL(Electro Luminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板または太陽電池用基板等をいう。 Hereinafter, an adhesion strengthening processing device and an adhesion strengthening processing method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the substrate refers to a substrate for an FPD (Flat Panel Display) such as a semiconductor substrate, a liquid crystal display device or an organic EL (Electro Luminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, and a substrate for a magneto-optical disk. A substrate, a photomask substrate, a solar cell substrate or the like.
 [1]構成
 図1は、本実施の形態に係る密着強化処理装置100の具体的な構成例を示す模式的断面図である。図1の密着強化処理装置100は、チャンバ201、カバー昇降機構209、圧力センサ210、複数の支持ピン243、支持ピン昇降機構247および排気装置256を備える。
[1] Configuration FIG. 1 is a schematic cross-sectional view showing a specific configuration example of the adhesion strengthening processing apparatus 100 according to the present embodiment. The adhesion strengthening processing apparatus 100 of FIG. 1 includes a chamber 201, a cover lifting and lowering mechanism 209, a pressure sensor 210, a plurality of support pins 243, a support pin lifting and lowering mechanism 247, and an exhaust device 256.
 チャンバ201は、プレート205およびカバー207を含む。プレート205の上面には、複数(例えば3つ)のプロキシミティボール241が設けられる。複数のプロキシミティボール241上に、基板Wが水平姿勢で載置される。この場合、基板Wの被処理面が上方に向けられる。カバー207は、載置される基板Wの上方を覆うように設けられる。カバー207は、カバー昇降機構209に接続されている。カバー昇降機構209は、例えばエアシリンダであり、カバー207を上方位置と下方位置との間で昇降させる。図1においては、カバー207が下方位置にある。カバー207が下方位置にあるときに、カバー207とプレート205との間に、基板Wが収容される気密な処理空間PSが形成される。圧力センサ210は、処理空間PSの圧力を検出する。 The chamber 201 includes a plate 205 and a cover 207. A plurality of (eg, three) proximity balls 241 are provided on the upper surface of the plate 205. The substrate W is mounted on the plurality of proximity balls 241 in a horizontal posture. In this case, the processed surface of the substrate W is directed upward. The cover 207 is provided to cover the upper side of the substrate W to be mounted. The cover 207 is connected to the cover lifting and lowering mechanism 209. The cover lifting and lowering mechanism 209 is, for example, an air cylinder, and lifts and lowers the cover 207 between the upper position and the lower position. In FIG. 1, the cover 207 is in the lower position. When the cover 207 is in the lower position, an airtight processing space PS in which the substrate W is accommodated is formed between the cover 207 and the plate 205. The pressure sensor 210 detects the pressure in the processing space PS.
 カバー207には、ガス流路213が設けられる。ガス流路213は、カバー207の下面の中心部に開口端213aを有する。開口端213aは、プレート205上に載置される基板Wの中心部に対向する。ガス流路213には、ガス供給管261を介して、不活性ガス供給部Q1および密着強化ガス供給部Q2がそれぞれ接続される。不活性ガス供給部Q1は、ガス供給管261およびガス流路213を通して処理空間PSに不活性ガスを供給する。不活性ガスは、例えば窒素ガスである。密着強化ガス供給部Q2は、ガス供給管261およびガス流路213を通して処理空間PSに密着強化ガスを供給する。密着強化ガスは、密着強化剤を含む。密着強化剤は、例えばHMDS(ヘキサメチルジシラザン)である。不活性ガス供給部Q1および密着強化ガス供給部Q2の各々は、例えばバルブを含み、バルブの開閉タイミングを制御することによって不活性ガスおよび密着強化ガスの供給タイミングを制御することができる。 The cover 207 is provided with a gas flow channel 213. The gas flow channel 213 has an open end 213 a at the center of the lower surface of the cover 207. The open end 213 a faces the central portion of the substrate W placed on the plate 205. An inert gas supply unit Q1 and a close contact gas supply unit Q2 are connected to the gas flow channel 213 via the gas supply pipe 261, respectively. The inert gas supply unit Q1 supplies the inert gas to the processing space PS through the gas supply pipe 261 and the gas flow channel 213. The inert gas is, for example, nitrogen gas. The adhesion enhancing gas supply unit Q2 supplies the adhesion enhancing gas to the processing space PS through the gas supply pipe 261 and the gas flow channel 213. The adhesion enhancing gas comprises an adhesion enhancing agent. The adhesion enhancer is, for example, HMDS (hexamethyldisilazane). Each of the inert gas supply unit Q1 and the adhesion enhancing gas supply unit Q2 includes, for example, a valve, and the supply timing of the inert gas and the adhesion enhancing gas can be controlled by controlling the opening / closing timing of the valve.
 プレート205を上下方向に貫通するように、複数(例えば3つ)の貫通孔245が設けられる。複数(例えば3つ)の支持ピン243は、それぞれプレート205の貫通孔245に挿入される。プレート205の下方において、各支持ピン243の下端部が、支持ピン昇降機構247に接続されている。支持ピン昇降機構247は、複数の支持ピン243を昇降させる。各支持ピン243の上端部には、円板上の封止部243aが取り付けられている。プレート205の各貫通孔245の上端部には、封止部243aを収容可能な凹部245aが形成されている。封止部243aの下面の周縁部が凹部245aの底面と密着することにより、処理空間PSの気密性が確保される。 A plurality of (for example, three) through holes 245 are provided so as to vertically penetrate the plate 205. A plurality of (for example, three) support pins 243 are respectively inserted into the through holes 245 of the plate 205. The lower end portion of each support pin 243 is connected to the support pin lifting mechanism 247 below the plate 205. The support pin raising and lowering mechanism 247 raises and lowers the plurality of support pins 243. A sealing portion 243 a on the disc is attached to the upper end portion of each support pin 243. At the upper end portion of each through hole 245 of the plate 205, a concave portion 245a capable of accommodating the sealing portion 243a is formed. When the peripheral portion of the lower surface of the sealing portion 243a is in close contact with the bottom surface of the recess 245a, the airtightness of the processing space PS is secured.
 プレート205の内部には、基板Wの温度を調整する温調部249が設けられている。温調部249は、例えばヒータである。温調部249は、プレート205の温度を調整することにより、プレート205に載置された基板Wに熱処理を施す。 Inside the plate 205, a temperature control unit 249 for adjusting the temperature of the substrate W is provided. The temperature control unit 249 is, for example, a heater. The temperature control unit 249 performs heat treatment on the substrate W placed on the plate 205 by adjusting the temperature of the plate 205.
 プレート205には、基板Wが載置される領域の外方で周方向に延びるように、排気スリット251が形成されている。また、排気スリット251にそれぞれ連通するように複数の排気ポート253が形成されている。複数の排気ポート253には、排気管255が接続されている。排気管255には、排気装置256が介挿される。排気装置256は、例えばポンプを含み、処理空間PSから排気管255を通して気体を排出する。これにより、処理空間PSが減圧される。本例では、排気装置256の動作状態を強状態と弱状態とに切替可能である。排気装置256を強状態で動作させることにより、排気装置256を弱状態で動作させる場合よりも処理空間PSの圧力をより低く調整することができる。排気装置256として、圧縮気体による巻き込み作用によって処理空間PSから気体を排出するエジェクタが用いられてもよい。 An exhaust slit 251 is formed on the plate 205 so as to extend in the circumferential direction outward of the region on which the substrate W is to be mounted. Further, a plurality of exhaust ports 253 are formed to communicate with the exhaust slits 251, respectively. An exhaust pipe 255 is connected to the plurality of exhaust ports 253. An exhaust device 256 is interposed in the exhaust pipe 255. The exhaust device 256 includes, for example, a pump, and exhausts the gas from the processing space PS through the exhaust pipe 255. Thereby, the processing space PS is decompressed. In this example, the operating state of the exhaust system 256 can be switched between the strong state and the weak state. By operating the exhaust system 256 in the strong state, the pressure of the processing space PS can be adjusted lower than in the case of operating the exhaust system 256 in the weak state. As the exhaust device 256, an ejector may be used which discharges the gas from the processing space PS by an entrainment action by the compressed gas.
 図2は、密着強化処理装置100の制御系について説明するためのブロック図である。図2に示すように、密着強化処理装置100は、制御部150を含む。制御部150は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)および記憶装置等を含む。 FIG. 2 is a block diagram for explaining a control system of the adhesion strengthening processing apparatus 100. As shown in FIG. As shown in FIG. 2, the adhesion strengthening processing apparatus 100 includes a control unit 150. Control unit 150 includes a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), a storage device, and the like.
 制御部150は、カバー昇降制御部51、支持ピン昇降制御部52、減圧制御部53、不活性ガス供給制御部54、密着強化ガス供給制御部55、温調制御部56および時間制御部57を含む。これらの構成要素(51~57)の機能は、CPUがROMまたは記憶装置等の記憶媒体に記憶されたコンピュータプログラムを実行することにより実現される。圧力センサ210は、検出された圧力を表す値(以下、検出圧力値と呼ぶ)を減圧制御部53および不活性ガス供給制御部54に与える。 The control unit 150 includes a cover lift control unit 51, a support pin lift control unit 52, a pressure reduction control unit 53, an inert gas supply control unit 54, a close contact gas supply control unit 55, a temperature control control unit 56 and a time control unit 57. Including. The functions of these components (51 to 57) are realized by the CPU executing a computer program stored in a storage medium such as a ROM or a storage device. The pressure sensor 210 provides the pressure reduction control unit 53 and the inert gas supply control unit 54 with a value representing the detected pressure (hereinafter referred to as a detected pressure value).
 カバー昇降制御部51は、カバー昇降機構209を制御することにより、図1のカバー207の昇降を制御する。支持ピン昇降制御部52は、支持ピン昇降機構247を制御することにより、図1の複数の支持ピン243の昇降を制御する。減圧制御部53は、排気装置256を制御することにより、処理空間PSの排気を制御する。不活性ガス供給制御部54は、不活性ガス供給部Q1を制御することにより、処理空間PSへの不活性ガスの供給を制御する。密着強化ガス供給制御部55は、密着強化ガス供給部Q2を制御することにより、処理空間PSへの密着強化ガスの供給を制御する。温調制御部56は、温調部249を制御することにより、基板Wの温調を調整する。時間制御部57は、減圧制御部53、不活性ガス供給制御部54、密着強化ガス供給制御部55および温調制御部56の動作の開始および終了のタイミングを制御する。 The cover lift control unit 51 controls the cover lift mechanism 209 to control the lift of the cover 207 in FIG. 1. The support pin elevation control unit 52 controls the elevation of the plurality of support pins 243 in FIG. 1 by controlling the support pin elevation mechanism 247. The pressure reduction control unit 53 controls the exhaust device 256 to control the exhaust of the processing space PS. The inert gas supply control unit 54 controls the supply of the inert gas to the processing space PS by controlling the inert gas supply unit Q1. The adhesion strengthening gas supply control unit 55 controls the supply of the adhesion strengthening gas to the processing space PS by controlling the adhesion strengthening gas supply unit Q2. The temperature adjustment control unit 56 adjusts the temperature adjustment of the substrate W by controlling the temperature adjustment unit 249. The time control unit 57 controls the start and end timings of the operations of the pressure reduction control unit 53, the inert gas supply control unit 54, the close contact gas supply control unit 55, and the temperature control control unit 56.
 [2]動作
 図3は、密着強化処理装置100における密着強化処理の概要を示すフローチャートである。まず、カバー昇降制御部51がカバー207を上方位置に移動させる(ステップS1)。その状態で、図示しない搬送装置がプレート205の上方に基板Wを搬送する。次に、支持ピン昇降制御部52が、複数の支持ピン243を上昇させる(ステップS2)。これにより、図示しない搬送装置から複数の支持ピン243に基板が渡される。次に、支持ピン昇降制御部52が、複数の支持ピン243を下降させる(ステップS3)。これにより、複数のプロキシミティボール241上に基板Wが載置される。
[2] Operation FIG. 3 is a flowchart showing an outline of the adhesion strengthening processing in the adhesion strengthening processing apparatus 100. First, the cover lift control unit 51 moves the cover 207 to the upper position (step S1). In that state, a transfer device (not shown) transfers the substrate W above the plate 205. Next, the support pin elevation control unit 52 raises the plurality of support pins 243 (step S2). Thus, the substrate is transferred from the transfer device (not shown) to the plurality of support pins 243. Next, the support pin elevation control unit 52 lowers the plurality of support pins 243 (step S3). Thus, the substrate W is placed on the plurality of proximity balls 241.
 次に、カバー昇降制御部51が、カバー207を下方位置に移動させる(ステップS4)。これにより、基板Wを収容する気密な処理空間PSが形成される。次に、減圧制御部53が、排気装置256の動作を開始させる(ステップS5)。この場合、減圧制御部53は、排気装置256の動作状態を弱状態に設定する。また、温調制御部56が、基板Wの温調を開始する(ステップS6)。次に、減圧制御部53が、圧力センサ210からの検出圧力値が、予め定められた低真空値P1以下になったか否かを判定する(ステップS7)。減圧制御部53は、検出圧力値が低真空値P1以下になるまでステップS7を繰り返す。検出圧力値が低真空値P1以下になると、減圧制御部53は、排気装置256の動作状態を強状態に切り替える(ステップS8)。 Next, the cover lift control unit 51 moves the cover 207 to the lower position (step S4). Thereby, the airtight processing space PS which accommodates the board | substrate W is formed. Next, the pressure reduction control unit 53 starts the operation of the exhaust device 256 (step S5). In this case, the pressure reduction control unit 53 sets the operation state of the exhaust device 256 to a weak state. Further, the temperature control unit 56 starts temperature control of the substrate W (step S6). Next, the pressure reduction control unit 53 determines whether the detected pressure value from the pressure sensor 210 is equal to or less than a predetermined low vacuum value P1 (step S7). The pressure reduction control unit 53 repeats step S7 until the detected pressure value becomes equal to or less than the low vacuum value P1. When the detected pressure value becomes equal to or less than the low vacuum value P1, the pressure reduction control unit 53 switches the operating state of the exhaust device 256 to the strong state (step S8).
 次に、不活性ガス供給制御部54は、圧力センサ210からの検出圧力値が、予め定められた高真空値P2以下になったか否かを判定する(ステップS9)。検出圧力値が高真空値P2以下になるまで、不活性ガス供給制御部54はステップS9を繰り返す。検出圧力値が高真空値P2以下になると、不活性ガス供給制御部54は、処理空間PSへの不活性ガスの供給を開始する(ステップS10)。 Next, the inert gas supply control unit 54 determines whether the detected pressure value from the pressure sensor 210 has become equal to or less than a predetermined high vacuum value P2 (step S9). The inert gas supply control unit 54 repeats step S9 until the detected pressure value becomes equal to or less than the high vacuum value P2. When the detected pressure value becomes equal to or less than the high vacuum value P2, the inert gas supply control unit 54 starts the supply of the inert gas to the processing space PS (step S10).
 ステップS10で不活性ガスの供給が開始されてから予め定められた第1の供給時間が経過すると、不活性ガス供給制御部54は、処理空間PSへの不活性ガスの供給を停止する(ステップS11)。同時に、密着強化ガス供給制御部55が、処理空間PSへの密着強化ガスの供給を開始する(ステップS12)。これにより、処理空間PS内の不活性ガスが密着強化ガスで置換される。 When the supply of the inert gas is started in step S10 and a predetermined first supply time elapses, the inert gas supply control unit 54 stops the supply of the inert gas to the processing space PS (step S11). At the same time, the adhesion enhancing gas supply control unit 55 starts the supply of the adhesion enhancing gas to the processing space PS (step S12). Thus, the inert gas in the processing space PS is replaced with the adhesion enhancing gas.
 ステップS12で密着強化ガスの供給が開始されてから予め定められた第2の供給時間が経過すると、密着強化ガス供給制御部55が、処理空間PSへの密着強化ガスの供給を停止する(ステップS13)。また、減圧制御部53が、排気装置256の動作状態を弱状態に切り替える(ステップS14)。 When a predetermined second supply time has elapsed since the supply of the adhesion enhancing gas is started in step S12, the adhesion enhancing gas supply control unit 55 stops the supply of the adhesion enhancing gas to the processing space PS (step S12) S13). Further, the pressure reduction control unit 53 switches the operation state of the exhaust device 256 to the weak state (step S14).
 ステップS14で排気装置256の動作状態が切り替えられてから予め定められた維持時間が経過すると、不活性ガス供給制御部54が、処理空間PSへの不活性ガスの供給を開始する(ステップS15)。また、減圧制御部53が、排気装置256の動作状態を強状態に切り替える(ステップS16)。 After the operation state of the exhaust device 256 is switched in step S14 and a predetermined maintenance time has elapsed, the inert gas supply control unit 54 starts supply of inert gas to the processing space PS (step S15). . Further, the pressure reduction control unit 53 switches the operation state of the exhaust device 256 to the strong state (step S16).
 ステップS16で排気装置256の動作状態が切り替えられてから予め定められた第3の供給時間が経過すると、減圧制御部53が、排気装置256の動作状態を弱状態に切り替える(ステップS17)。次に、減圧制御部53は、圧力センサ210からの検出圧力値が、予め定められた低真空値P3以上になったか否かを判定する(ステップS18)。低真空値P3は、上記の低真空値P1と近似する値であってかつ低真空値P1より僅かに低い。検出圧力値が低真空値P3以上になるまで、減圧制御部53は、ステップS18を繰り返す。検出圧力値が低真空値P3以上になると、減圧制御部53は、排気装置256の動作を停止する(ステップS19)。また、不活性ガス供給制御部54が、処理空間PSへの不活性ガスの供給を停止する(ステップS20)。また、温調制御部56が、基板Wの温調を停止する(ステップS21)。 When the predetermined third supply time elapses after the operating state of the exhaust system 256 is switched in step S16, the decompression control unit 53 switches the operating state of the exhaust system 256 to the weak state (step S17). Next, the pressure reduction control unit 53 determines whether the detected pressure value from the pressure sensor 210 has become equal to or more than a predetermined low vacuum value P3 (step S18). The low vacuum value P3 is a value close to the low vacuum value P1 described above and slightly lower than the low vacuum value P1. The pressure reduction control unit 53 repeats step S18 until the detected pressure value becomes equal to or higher than the low vacuum value P3. When the detected pressure value becomes equal to or more than the low vacuum value P3, the pressure reduction control unit 53 stops the operation of the exhaust device 256 (step S19). Further, the inert gas supply control unit 54 stops the supply of the inert gas to the processing space PS (step S20). Further, the temperature control unit 56 stops the temperature control of the substrate W (step S21).
 処理空間PSの圧力が大気圧と等しくなると、カバー昇降制御部51がカバー207を上方位置に移動させる(ステップS22)。また、支持ピン昇降制御部52が、複数の支持ピン243を上昇させる(ステップS23)。これにより、複数のプロキシミティボール241から複数の支持ピン243に基板Wが渡される。その状態で、図示しない搬送装置が、複数の支持ピン243から基板Wを受け取り、密着強化処理装置100から基板Wを搬出する。これにより、密着強化処理装置100の一連の動作が終了する。 When the pressure in the processing space PS becomes equal to the atmospheric pressure, the cover lift control unit 51 moves the cover 207 to the upper position (step S22). Further, the support pin elevation control unit 52 raises the plurality of support pins 243 (step S23). Thereby, the substrate W is passed from the plurality of proximity balls 241 to the plurality of support pins 243. In this state, a transfer device (not shown) receives the substrate W from the plurality of support pins 243, and carries the substrate W out of the adhesion strengthening processing apparatus 100. Thus, a series of operations of the adhesion strengthening processing apparatus 100 are completed.
 [3]処理空間の圧力の変化
 図4は、処理空間PSの圧力の変化について説明するための図である。図4には、処理空間PSの圧力の変化とともに、排気装置256の動作状態の変化、ならびに不活性ガスおよび密着強化ガスの供給タイミングが示される。図4において、横軸は時間を表し、縦軸は処理空間PSの圧力ならびに不活性ガスおよび密着強化ガスの流量を表す。
[3] Change in Pressure of Processing Space FIG. 4 is a diagram for describing a change in pressure of the processing space PS. FIG. 4 shows the change in the operating state of the exhaust device 256 and the supply timing of the inert gas and the adhesion enhancing gas, along with the change in pressure in the processing space PS. In FIG. 4, the horizontal axis represents time, and the vertical axis represents the pressure of the processing space PS and the flow rates of the inert gas and the adhesion enhancing gas.
 図4の例において、時点t1は、気密な処理空間PSが形成された後であって、処理空間PSの圧力が低真空値P1まで低下された時点である(図3のステップS7でYes)。低真空値P1は、例えば、-4kPa以上-1kPa以下の範囲にある値であり、例えば-2kPaである。時点t1で排気装置256の動作状態が強状態に切り替えられる(図3のステップS8)。これにより、処理空間PSの圧力がさらに低下し、時点t2で処理空間PSの圧力が高真空値P2になる(図3のステップS9でYes)。高真空値P2は、第3の値の例である。高真空値P2は、例えば、-25kPa以上-18kPa以下の範囲にある値であり、例えば-20kPaである。 In the example of FIG. 4, time t1 is after the airtight processing space PS is formed and the pressure of the processing space PS is lowered to the low vacuum value P1 (Yes in step S7 of FIG. 3) . The low vacuum value P1 is, for example, a value in the range of -4 kPa or more and -1 kPa or less, and is, for example, -2 kPa. At time t1, the operating state of the exhaust system 256 is switched to the strong state (step S8 in FIG. 3). As a result, the pressure in the processing space PS further decreases, and the pressure in the processing space PS becomes the high vacuum value P2 at time t2 (Yes in step S9 in FIG. 3). The high vacuum value P2 is an example of a third value. The high vacuum value P2 is, for example, a value in the range of -25 kPa to -18 kPa, and is, for example, -20 kPa.
 時点t2で処理空間PSの圧力が高真空値P2になると、処理空間PSへの不活性ガスの供給が開始される(図3のステップS10)。この場合、不活性ガスの供給によって処理空間PSの圧力が上昇する。排気装置256による排気量と不活性ガスの供給量とが均衡すると、処理空間PSの圧力が中間値P4に収束する。中間値P4は、低真空値P1よりも低くかつ高真空値P2よりも高い。中間値P4は、第1の値の例である。中間値P4は、例えば、-10kPa以上-5kPa以下の範囲にある値であり、例えば、-7kPaである。 When the pressure of the processing space PS reaches the high vacuum value P2 at time t2, the supply of the inert gas to the processing space PS is started (step S10 in FIG. 3). In this case, the pressure of the processing space PS is increased by the supply of the inert gas. When the exhaust amount by the exhaust device 256 and the supply amount of the inert gas are balanced, the pressure of the processing space PS converges to the intermediate value P4. The intermediate value P4 is lower than the low vacuum value P1 and higher than the high vacuum value P2. The intermediate value P4 is an example of a first value. The intermediate value P4 is, for example, a value in the range of -10 kPa to -5 kPa, and is, for example, -7 kPa.
 時点t3で不活性ガスの供給が停止されるとともに密着強化ガスの供給が開始される(図3のステップS11,S12)。本例において、密着強化ガスの流量は、不活性ガスの流量より小さい。そのため、処理空間PSの圧力が中間値P4から低下する。排気装置256による排気量と密着強化ガスの供給量とが均衡すると、処理空間PSの圧力が中間値P5に収束する。中間値P5は、高真空値P2よりも高くかつ中間値P4よりも低い。中間値P5は、第2の値の例である。中間値P5は、例えば、-20kPa以上-10kPa以下の範囲にある値であり、例えば、-15kPaである。 At time t3, the supply of the inert gas is stopped and the supply of the adhesion strengthening gas is started (steps S11 and S12 in FIG. 3). In the present example, the flow rate of the adhesion strengthening gas is smaller than the flow rate of the inert gas. Therefore, the pressure in the processing space PS drops from the intermediate value P4. When the exhaust amount by the exhaust device 256 and the supply amount of the adhesion enhancing gas are balanced, the pressure of the processing space PS converges to the intermediate value P5. Intermediate value P5 is higher than high vacuum value P2 and lower than intermediate value P4. The intermediate value P5 is an example of a second value. The intermediate value P5 is, for example, a value in the range of -20 kPa or more and -10 kPa or less, and is, for example, -15 kPa.
 時点t4で密着強化ガスの供給が停止されるとともに排気装置256の動作状態が弱状態に切り替えられる(図3のステップS13,S14)。この場合、処理空間PSが密着強化ガスで満たされた状態で処理空間PSの圧力は中間値P5に維持される。時点t3から時点t4までの期間に、基板Wの被処理面に密着強化剤が塗布される。これにより、基板Wの被処理面の疎水性が高まる。後の工程で、基板Wの被処理面に処理膜(例えばレジスト膜)が形成される。密着強化剤の塗布により、基板Wの被処理面と処理膜との密着性が確保される。 At time t4, the supply of the intensified gas is stopped, and the operating state of the exhaust device 256 is switched to the weak state (steps S13 and S14 in FIG. 3). In this case, the pressure of the processing space PS is maintained at the intermediate value P5 while the processing space PS is filled with the adhesion enhancing gas. The adhesion enhancer is applied to the surface to be processed of the substrate W in a period from time t3 to time t4. Thereby, the hydrophobicity of the treated surface of the substrate W is enhanced. A treatment film (for example, a resist film) is formed on the surface to be treated of the substrate W in a later step. The adhesion between the surface to be treated of the substrate W and the treatment film is secured by the application of the adhesion enhancer.
 時点t5で不活性ガスの供給が開始されるとともに排気装置256の動作状態が強状態に切り替えられる(図3のステップS15,S16)。これにより、処理空間PSの圧力が再度上昇し、中間値P4に収束する。本例では、時点t5から時点t7までの期間における不活性ガスの流量が、時点t2から時点t3までの期間における不活性ガスの流量と等しいが、時点t5から時点t7までの期間における不活性ガスの流量が、時点t3から時点t4までの期間における不活性ガスの流量と異なっていてもよい。 At time t5, the supply of the inert gas is started and the operating state of the exhaust device 256 is switched to the strong state (steps S15 and S16 in FIG. 3). As a result, the pressure in the processing space PS rises again and converges to the intermediate value P4. In this example, the flow rate of the inert gas in the period from time t5 to time t7 is equal to the flow rate of the inert gas in the period from time t2 to time t3, but the inert gas in the period from time t5 to time t7 May be different from the flow rate of the inert gas in the period from time t3 to time t4.
 時点t6で排気装置256の動作状態が弱状態に切り替えられる(図3のステップS17)。これにより、処理空間PSの圧力がさらに上昇する。時点t7で処理空間PSの圧力が低真空値P3に達すると、排気装置256の動作が停止されるとともに(図3のステップS19)、不活性ガスの供給が停止される(図3のステップS20)。 At time t6, the operating state of the exhaust device 256 is switched to the weak state (step S17 in FIG. 3). As a result, the pressure in the processing space PS further increases. When the pressure in the processing space PS reaches the low vacuum value P3 at time t7, the operation of the exhaust device 256 is stopped (step S19 in FIG. 3) and the supply of inert gas is stopped (step S20 in FIG. 3). ).
 このように、本実施の形態では、処理空間PSの圧力が高真空値P2まで低下された後、処理空間PSに不活性ガスが供給されることによって処理空間PSの圧力が中間値P4まで上昇する。その状態で、不活性ガスの供給が停止されるとともに密着強化ガスの供給が開始されることにより、処理空間PSの圧力が中間値P4から中間値P5まで低下する。 As described above, in the present embodiment, after the pressure of the processing space PS is reduced to the high vacuum value P2, the pressure of the processing space PS is increased to the intermediate value P4 by supplying the inert gas to the processing space PS. Do. In this state, the supply of the inert gas is stopped and the supply of the intensified gas is started, so that the pressure of the processing space PS decreases from the intermediate value P4 to the intermediate value P5.
 図5は、本発明の比較例について説明するための図である。図5には、図4と同様に、処理空間PSの圧力の変化とともに、排気装置256の動作状態の変化、ならびに不活性ガスおよび密着強化ガスの供給タイミングが示される。 FIG. 5 is a view for explaining a comparative example of the present invention. Similar to FIG. 4, FIG. 5 shows changes in the operating state of the exhaust device 256 and supply timings of the inert gas and the adhesion enhancing gas with changes in the pressure of the processing space PS.
 図5の比較例が図4の例と異なる点は、密着強化ガスの供給前に不活性ガスが供給されない点である。具体的には、時点t11は、図4の時点t1と同様に、気密な処理空間PSが形成された後であって、処理空間PSの圧力が低真空値P1まで低下された時点である。時点t11から時点t12までの期間に処理空間PSの圧力が低真空値P1から高真空値P2まで低下される。時点t12から時点t13まで処理空間PSに密着強化ガスが供給され、時点t13から時点t14まで処理空間PSの圧力が中間値P5に維持される。時点t14から時点t15まで処理空間PSに不活性ガスが供給され、時点t15から時点16までの期間に処理空間PSの圧力が中間値P4から低真空値P3まで上昇する。 The comparative example of FIG. 5 differs from the example of FIG. 4 in that the inert gas is not supplied before the supply of the adhesion strengthening gas. Specifically, the time point t11 is a time point after the pressure of the processing space PS is reduced to the low vacuum value P1 after the airtight processing space PS is formed as in the time t1 of FIG. 4. The pressure of the processing space PS is reduced from the low vacuum value P1 to the high vacuum value P2 in a period from time point t11 to time point t12. The adhesion enhancing gas is supplied to the processing space PS from time t12 to time t13, and the pressure of the processing space PS is maintained at the intermediate value P5 from time t13 to time t14. The inert gas is supplied to the processing space PS from time t14 to time t15, and the pressure of the processing space PS rises from the intermediate value P4 to the low vacuum value P3 in the period from time t15 to time 16.
 図5の比較例では、処理空間PSの圧力が高真空値P2である状態で、密着強化ガスの供給が開始される。この場合、処理空間PSに導入された密着強化ガスが、図1の基板Wの中心部の上方に位置するガス流路213から基板Wの外方に位置する排気スリット251に向かって高速で移動する。そのため、密着強化ガスが基板Wの周縁部に集中的に接触しやすい。これにより、基板Wの中心部における単位面積当たりの密着強化剤の塗布量より、基板Wの周縁部における単位面積当たりの密着強化剤の塗布量が大きくなる。これにより、基板Wの被処理面の疎水性にばらつきが生じる。 In the comparative example of FIG. 5, the supply of the adhesion strengthening gas is started in a state where the pressure of the processing space PS is the high vacuum value P2. In this case, the adhesion strengthening gas introduced into the processing space PS moves at high speed from the gas flow channel 213 located above the central portion of the substrate W in FIG. 1 toward the exhaust slit 251 located outside the substrate W. Do. Therefore, the adhesion strengthening gas is likely to contact the peripheral portion of the substrate W intensively. As a result, the coating amount of the adhesion enhancer per unit area in the peripheral portion of the substrate W becomes larger than the application amount of the adhesion enhancer per unit area in the central portion of the substrate W. Thereby, the hydrophobicity of the treated surface of the substrate W varies.
 また、処理空間PSの圧力が低い状態で密着強化ガスの供給が開始されると、処理空間PSの圧力にばらつきが生じやすい。そのため、処理空間PSにおける密着強化ガスの流れが安定せず、基板Wへの密着強化剤の塗布量を制御することが困難となる。 In addition, when the supply of the intensified gas is started in a state where the pressure in the processing space PS is low, the pressure in the processing space PS is likely to vary. Therefore, the flow of the adhesion strengthening gas in the processing space PS is not stable, and it becomes difficult to control the amount of the adhesion strengthening agent applied to the substrate W.
 それに対して、本実施の形態では、処理空間PSの圧力が比較的高い中間値P4に調整された状態で、密着強化ガスの供給が開始される。それにより、処理空間PSにおける密着強化ガスの流速の上昇が抑制される。これにより、密着強化ガスがガス流路213の開口端213aから処理空間PSの全体に緩やかに拡がる。そのため、密着強化ガスが基板Wの被処理面の全体に均一に接触する。したがって、基板Wの被処理面の全体に均一に密着強化剤を塗布することができる。これにより、基板Wの被処理面の疎水性を均一に調整することができる。 On the other hand, in the present embodiment, the supply of the adhesion enhancing gas is started in a state where the pressure of the processing space PS is adjusted to a relatively high intermediate value P4. As a result, the increase in the flow velocity of the adhesion enhancing gas in the processing space PS is suppressed. As a result, the adhesion strengthening gas is gradually spread from the opening end 213a of the gas flow channel 213 to the entire processing space PS. Therefore, the adhesion strengthening gas uniformly contacts the entire treated surface of the substrate W. Therefore, the adhesion enhancer can be uniformly applied to the entire treated surface of the substrate W. Thereby, the hydrophobicity of the to-be-processed surface of the board | substrate W can be adjusted uniformly.
 また、密着強化ガスの供給時における処理空間PSの圧力のばらつきが抑制される。それにより、密着強化ガスの流動が安定し、基板Wへの密着強化剤の塗布量を適切に制御することができる。 Further, variation in pressure of the processing space PS at the time of supply of the intensified gas is suppressed. As a result, the flow of the adhesion enhancing gas is stabilized, and the amount of the adhesion enhancing agent applied to the substrate W can be appropriately controlled.
 また、本実施の形態では、処理空間PSの圧力が高真空値P2まで低下された後に処理空間PSに不活性ガスが供給される。この場合、処理空間PSに残留する液体等の不純物が効率良く除去される。それにより、密着強化ガスの供給時に、不活性ガスを密着強化ガスで迅速に置換することができる。また、密着強化ガスに不純物が混入することが防止されるので、密着強化処理装置100による基板Wの処理精度がより高くなる。 Further, in the present embodiment, the inert gas is supplied to the processing space PS after the pressure in the processing space PS is reduced to the high vacuum value P2. In this case, impurities such as liquid remaining in the processing space PS are efficiently removed. Thereby, the inert gas can be quickly replaced with the adhesion enhancing gas at the time of supply of the adhesion enhancing gas. In addition, since the impurity is prevented from mixing into the adhesion strengthening gas, the processing accuracy of the substrate W by the adhesion strengthening processing apparatus 100 is further enhanced.
 また、本実施の形態では、不活性ガスの流量より密着強化ガスの流量が小さく、不活性ガスの供給時における処理空間PSの圧力(中間値P4)より密着強化ガスの供給時における処理空間PSの圧力(中間値P5)が低い。これにより、密着強化ガスの使用量を低減することができる。また、密着強化ガスの流速の上昇をより確実に抑制することができるので、基板Wの被処理面の全体に対する密着強化剤の塗布の均一性をより高めることができる。 Further, in the present embodiment, the flow rate of the adhesion strengthening gas is smaller than the flow rate of the inert gas, and the pressure of the processing space PS at the time of supply of the inert gas (intermediate value P4) Pressure (intermediate value P5) is low. Thereby, the usage-amount of close_contact | adherence strengthening gas can be reduced. In addition, since the increase in the flow velocity of the adhesion enhancing gas can be more reliably suppressed, the uniformity of the application of the adhesion enhancing agent to the entire treated surface of the substrate W can be further enhanced.
 [4]他の実施の形態
 上記実施の形態では、排気装置256によって処理空間PSの圧力が高真空値P2まで低下された後に不活性ガスの供給が開始されるが、本発明はこれに限らない。例えば、図4の時点t1で排気装置256の動作状態が強状態に切り替えられるとともに不活性ガスの供給が開始されてもよい。この場合、処理空間PSの圧力が低真空値P1から中間値P4に低下する。
[4] Other Embodiments In the above embodiment, the supply of the inert gas is started after the pressure of the processing space PS is reduced to the high vacuum value P2 by the exhaust device 256, but the present invention is limited thereto Absent. For example, at time t1 in FIG. 4, the operating state of the exhaust device 256 may be switched to the strong state and the supply of the inert gas may be started. In this case, the pressure in the processing space PS drops from the low vacuum value P1 to the intermediate value P4.
 上記実施の形態では、処理空間PSの圧力が中間値P4となるように不活性ガスが供給され、処理空間PSの圧力が中間値P4より低い中間値P5となるように密着強化ガスが供給されるが、本発明はこれに限らない。例えば、不活性ガスの供給時における処理空間PSの圧力と密着強化ガスの供給時における処理空間PSの圧力とが等しくなるように、不活性ガスおよび密着強化ガスの流量が設定されてもよい。また、不活性ガスの供給時における処理空間PSの圧力より密着強化ガスの供給時における処理空間PSの圧力が高くなるように、不活性ガスおよび密着強化ガスの流量が設定されてもよい。 In the above embodiment, the inert gas is supplied such that the pressure of the processing space PS becomes the intermediate value P4, and the adhesion strengthening gas is supplied such that the pressure of the processing space PS becomes the intermediate value P5 lower than the intermediate value P4. However, the present invention is not limited to this. For example, the flow rates of the inert gas and the adhesion enhancing gas may be set such that the pressure of the processing space PS at the time of supplying the inert gas and the pressure of the processing space PS at the time of supplying the adhesion enhancing gas are equal. In addition, the flow rates of the inert gas and the adhesion enhancing gas may be set such that the pressure of the processing space PS at the time of supply of the adhesion enhancing gas is higher than the pressure of the processing space PS at the time of supplying the inert gas.
 上記実施の形態では、排気装置256の動作状態が、不活性ガスの供給前(図4の時点t1から時点t2までの期間)、不活性ガスの供給時(図4の時点t2から時点t3までの期間)、および密着強化ガスの供給時(図4の時点t3から時点t4までの期間)において一定に維持されるが、これらの期間に排気装置256の動作状態が切り替えられてもよい。例えば、不活性ガスの供給時および密着強化ガスの供給時の少なくとも一方で排気装置256の動作状態が弱状態に切り替えられてもよい。あるいは、排気装置256の動作状態が、3段階以上に切り替え可能であってもよい。 In the above embodiment, the operating state of the exhaust device 256 is before supply of the inert gas (period from time t1 to time t2 in FIG. 4) and at time of supply of inert gas (time t2 to time t3 in FIG. 4). 4 and the supply of the adhesion strengthening gas (the period from time t3 to time t4 in FIG. 4), the operating state of the exhaust device 256 may be switched during these periods. For example, the operating state of the exhaust device 256 may be switched to the weak state at least one of the supply of the inert gas and the supply of the adhesion strengthening gas. Alternatively, the operating state of the exhaust device 256 may be switchable to three or more stages.
 上記実施の形態では、有機材料としてHMDSからなる密着強化剤が用いられるが、基板Wの疎水性を高めることが可能であれば、TMSDMA(トリメチルシリルジメチルアミン)等の他の有機材料からなる密着強化剤が用いられてもよい。また、上記実施の形態では、不活性ガスとして窒素ガスが用いられるが、密着強化剤に影響を与えない他の不活性ガスが用いられてもよい。 In the above embodiment, the adhesion enhancing agent made of HMDS is used as the organic material, but if the hydrophobicity of the substrate W can be enhanced, the adhesion enhancing made of another organic material such as TMSDMA (trimethylsilyldimethylamine) Agents may be used. Further, in the above embodiment, nitrogen gas is used as the inert gas, but other inert gas that does not affect the adhesion enhancer may be used.
 [5]請求項の各構成要素と実施の形態の各要素との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
[5] Correspondence Between Each Component of the Claim and Each Element of the Embodiment Hereinafter, an example of the correspondence between each component of the claim and each element of the embodiment will be described. It is not limited to the example.
 上記の実施の形態では、密着強化処理装置100が密着強化処理装置の例であり、チャンバ201がチャンバの例であり、処理空間PSが処理空間の例であり、排気装置256が減圧部の例であり、不活性ガス供給部Q1が不活性ガス供給部の例であり、密着強化ガス供給部Q2が密着強化ガス供給部の例であり、中間値P4が第1の値の例であり、中間値P5が第2の値の例であり、高真空値P2が第3の値の例である。 In the above embodiment, the adhesion strengthening processing apparatus 100 is an example of the adhesion strengthening processing apparatus, the chamber 201 is an example of a chamber, the processing space PS is an example of a processing space, and the exhaust device 256 is an example of a pressure reducing unit. The inert gas supply unit Q1 is an example of the inert gas supply unit, the adhesion strengthening gas supply unit Q2 is an example of the adhesion strengthening gas supply unit, and the intermediate value P4 is an example of the first value, The intermediate value P5 is an example of a second value, and the high vacuum value P2 is an example of a third value.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As each component of a claim, other various elements having the configuration or function described in the claim can also be used.

Claims (10)

  1. 基板が収容される処理空間を形成するチャンバと、
     前記処理空間から気体を排出することにより前記処理空間の圧力を低下させる減圧部と、
     前記処理空間の圧力が大気圧よりも低い第1の値となるように、前記減圧部により気体が排出されている状態で前記処理空間に不活性ガスを供給する不活性ガス供給部と、
     前記不活性ガス供給部により前記処理空間に不活性ガスが供給された後に、前記処理空間の圧力が大気圧よりも低い第2の値となるように、前記減圧部により気体が排出されている状態で前記処理空間に密着強化剤を含む密着強化ガスを供給する密着強化ガス供給部とを備える、密着強化処理装置。
    A chamber forming a processing space in which the substrate is accommodated;
    A pressure reduction unit that reduces the pressure of the processing space by discharging a gas from the processing space;
    An inert gas supply unit for supplying an inert gas to the processing space while the gas is being discharged by the depressurizing unit such that the pressure in the processing space is a first value lower than atmospheric pressure;
    After the inert gas is supplied to the processing space by the inert gas supply unit, a gas is discharged by the pressure reducing unit such that the pressure of the processing space becomes a second value lower than the atmospheric pressure. An adhesion strengthening processing device comprising: an adhesion strengthening gas supply unit that supplies an adhesion strengthening gas containing an adhesion strengthening agent to the processing space in a state.
  2. 前記密着強化ガス供給部は、前記不活性ガス供給部による前記処理空間への不活性ガスの供給が停止された時点で前記処理空間への密着強化ガスの供給を開始する、請求項1記載の密着強化処理装置。 The adhesion enhancement gas supply unit starts supply of the adhesion enhancement gas to the processing space when supply of the inert gas to the processing space by the inert gas supply unit is stopped. Adhesion strengthening processing device.
  3. 前記不活性ガス供給部は、不活性ガスを第1の流量で前記処理空間に供給し、
     前記密着強化ガス供給部は、密着強化ガスを前記第1の流量よりも小さい第2の流量で前記処理空間に供給する、請求項1または2記載の密着強化処理装置。
    The inert gas supply unit supplies an inert gas to the processing space at a first flow rate,
    The adhesion reinforcement processing apparatus according to claim 1, wherein the adhesion reinforcement gas supply unit supplies the adhesion reinforcement gas to the processing space at a second flow rate smaller than the first flow rate.
  4. 前記減圧部は、前記処理空間の圧力を前記第1の値よりも低くかつ前記第2の値よりも低い第3の値に低下させ、
     前記不活性ガス供給部は、前記減圧部により前記処理空間の圧力が前記第3の値に低下した後に前記処理空間の圧力が前記第3の値から前記第1の値に上昇するように前記処理空間に不活性ガスを供給する、請求項1~3のいずれか一項に記載の密着強化処理装置。
    The pressure reducing unit reduces the pressure of the processing space to a third value lower than the first value and lower than the second value.
    The inert gas supply unit is configured to increase the pressure in the processing space from the third value to the first value after the pressure in the processing space is reduced to the third value by the pressure reducing unit. The adhesion strengthening processing apparatus according to any one of claims 1 to 3, wherein an inert gas is supplied to the processing space.
  5. 前記第2の値は前記第1の値よりも低く、
     前記密着強化ガス供給部は、前記処理空間の圧力が前記第1の値から前記第2の値に低下するように前記処理空間に密着強化ガスを供給する、請求項4記載の密着強化処理装置。
    The second value is lower than the first value,
    The adhesion reinforcing processing apparatus according to claim 4, wherein the adhesion reinforcing gas supply unit supplies the adhesion reinforcing gas to the processing space such that the pressure of the processing space is reduced from the first value to the second value. .
  6. チャンバが形成する処理空間に基板を収容するステップと、
     前記処理空間の圧力が大気圧よりも低い第1の値となるように、前記処理空間から気体を排出しつつ前記処理空間に不活性ガスを供給するステップと、
     前記不活性ガスを供給するステップの後に、前記処理空間の圧力が大気圧よりも低い第2の値となるように、前記処理空間から気体を排出しつつ前記処理空間に密着強化剤を含む密着強化ガスを供給するステップとを含む、密着強化処理方法。
    Housing the substrate in a processing space formed by the chamber;
    Supplying an inert gas to the processing space while exhausting a gas from the processing space such that the pressure of the processing space is a first value lower than atmospheric pressure;
    An adhesion including an adhesion enhancer in the processing space while discharging the gas from the processing space so that the pressure of the processing space becomes a second value lower than the atmospheric pressure after the step of supplying the inert gas. And c. Supplying a strengthening gas.
  7. 前記密着強化ガスを供給するステップは、前記処理空間への不活性ガスの供給が停止された時点で前記処理空間への密着強化ガスの供給を開始することを含む、請求項6記載の密着強化処理方法。 The adhesion enhancing method according to claim 6, wherein the step of supplying the adhesion enhancing gas includes starting the supply of the adhesion enhancing gas to the processing space when the supply of the inert gas to the processing space is stopped. Processing method.
  8. 前記不活性ガスを供給するステップは、不活性ガスを第1の流量で前記処理空間に供給することを含み、
     前記密着強化ガスを供給するステップは、密着強化ガスを前記第1の流量よりも小さい第2の流量で前記処理空間に供給することを含む、請求項6または7記載の密着強化処理方法。
    The step of supplying the inert gas includes supplying the inert gas to the processing space at a first flow rate,
    The adhesion strengthening processing method according to claim 6, wherein the step of supplying the adhesion strengthening gas includes supplying the adhesion strengthening gas to the processing space at a second flow rate smaller than the first flow rate.
  9. 前記不活性ガスを供給するステップの前に、前記処理空間の圧力を前記第1の値よりも低くかつ前記第2の値よりも低い第3の値に低下させるステップをさらに含み、
     前記不活性ガスを供給するステップは、前記処理空間の圧力が前記第3の値から前記第1の値に上昇するように前記処理空間に不活性ガスを供給することを含む、請求項6~8のいずれか一項に記載の密着強化処理方法。
    The method further includes the step of reducing the pressure of the processing space to a third value lower than the first value and lower than the second value prior to the step of supplying the inert gas.
    The step of supplying the inert gas may include supplying the inert gas to the processing space such that the pressure of the processing space is increased from the third value to the first value. The adhesion strengthening treatment method according to any one of 8.
  10. 前記第2の値は前記第1の値よりも低く、
     前記密着強化ガスを供給するステップは、前記処理空間の圧力が前記第1の値から前記第2の値に低下するように前記処理空間に密着強化ガスを供給することを含む、請求項9記載の密着強化処理方法。
    The second value is lower than the first value,
    10. The method according to claim 9, wherein the step of supplying the intensifying gas includes supplying the intensifying gas to the processing space such that the pressure in the processing space is reduced from the first value to the second value. Adhesion strengthening treatment method.
PCT/JP2018/028338 2017-08-31 2018-07-27 Adhesion strengthening treatment apparatus and adhesion strengthening treatment method WO2019044315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-166579 2017-08-31
JP2017166579A JP6923396B2 (en) 2017-08-31 2017-08-31 Adhesion strengthening treatment device and adhesion strengthening treatment method

Publications (1)

Publication Number Publication Date
WO2019044315A1 true WO2019044315A1 (en) 2019-03-07

Family

ID=65525437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028338 WO2019044315A1 (en) 2017-08-31 2018-07-27 Adhesion strengthening treatment apparatus and adhesion strengthening treatment method

Country Status (3)

Country Link
JP (1) JP6923396B2 (en)
TW (1) TWI690011B (en)
WO (1) WO2019044315A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107958A (en) * 2020-08-26 2022-03-01 圆益Ips股份有限公司 Substrate processing method, substrate processing apparatus, and semiconductor device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093952A (en) * 2003-09-19 2005-04-07 Dainippon Screen Mfg Co Ltd Device and method for enhancing adhesion
JP2009194239A (en) * 2008-02-15 2009-08-27 Tokyo Electron Ltd Hydrophobic treatment method, hydrophobic treatment device, coating, development apparatus, and storage medium
JP2012038868A (en) * 2010-08-05 2012-02-23 Tokyo Electron Ltd Vaporizer, substrate processing apparatus, coating development apparatus and substrate processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060133262A (en) * 2005-06-20 2006-12-26 삼성전자주식회사 Semiconductor manufacturing equipment capable of auto-purging gas supplying line to wafer
JP5385002B2 (en) * 2008-06-16 2014-01-08 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP6078335B2 (en) * 2012-12-27 2017-02-08 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, vaporization system, vaporizer, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093952A (en) * 2003-09-19 2005-04-07 Dainippon Screen Mfg Co Ltd Device and method for enhancing adhesion
JP2009194239A (en) * 2008-02-15 2009-08-27 Tokyo Electron Ltd Hydrophobic treatment method, hydrophobic treatment device, coating, development apparatus, and storage medium
JP2012038868A (en) * 2010-08-05 2012-02-23 Tokyo Electron Ltd Vaporizer, substrate processing apparatus, coating development apparatus and substrate processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107958A (en) * 2020-08-26 2022-03-01 圆益Ips股份有限公司 Substrate processing method, substrate processing apparatus, and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2019046896A (en) 2019-03-22
JP6923396B2 (en) 2021-08-18
TWI690011B (en) 2020-04-01
TW201913856A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
JP3902583B2 (en) Purge system and purge method inside portable airtight container
US20100022093A1 (en) Vacuum processing apparatus, method of operating same and storage medium
KR101939584B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
WO2018037739A1 (en) Etching method and method for manufacturing dram capacitor
KR102350148B1 (en) Plasma processing method
JP2009016382A (en) Vacuum processing device and vacuum processing method, and storage medium
KR101057118B1 (en) Substrate Processing Apparatus and Method
JPH09283498A (en) Vacuum treatment device
JP2018200925A (en) Etching method and etching device
US9418866B2 (en) Gas treatment method
WO2019044315A1 (en) Adhesion strengthening treatment apparatus and adhesion strengthening treatment method
JP2023554113A (en) Substrate processing method and substrate processing apparatus
US11538665B2 (en) Gas supply system, substrate processing apparatus, and control method for gas supply system
JP2003068711A (en) Vacuum processor and vacuum processing method
KR20220013573A (en) Substrate processing method and substrate processing apparatus
US20230148026A1 (en) Substrate treating method and substrate treating apparatus
JP2005142461A (en) Semiconductor manufacturing apparatus and method therefor
TWI717451B (en) Decompression drying device
JPWO2005055298A1 (en) Plasma processing apparatus and multi-chamber system
JP2009266888A (en) Etching apparatus
JP2006071185A (en) Vacuum dryer
KR102437146B1 (en) Apparatus and method for treating substrate and chuck
JP2005093952A (en) Device and method for enhancing adhesion
WO2023219030A1 (en) Heat processing device, heat processing method, and computer storage medium
TWI853108B (en) Gas supply system, substrate processing apparatus, and control method for gas supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849836

Country of ref document: EP

Kind code of ref document: A1