WO2019044299A1 - Expanded beads and molded foam for producing fiber-reinforced composite, fiber-reinforced composite, and automotive component - Google Patents

Expanded beads and molded foam for producing fiber-reinforced composite, fiber-reinforced composite, and automotive component Download PDF

Info

Publication number
WO2019044299A1
WO2019044299A1 PCT/JP2018/028099 JP2018028099W WO2019044299A1 WO 2019044299 A1 WO2019044299 A1 WO 2019044299A1 JP 2018028099 W JP2018028099 W JP 2018028099W WO 2019044299 A1 WO2019044299 A1 WO 2019044299A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
fiber
reinforced composite
parts
copolymer
Prior art date
Application number
PCT/JP2018/028099
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 ▲桑▼▲原▼
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2019044299A1 publication Critical patent/WO2019044299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Definitions

  • the present invention relates to a foam particle and a foam molded article for producing a fiber-reinforced composite, a fiber-reinforced composite and an automobile part. More particularly, the present invention relates to a foam particle and a foam molded body capable of providing a fiber-reinforced composite with an improved surface aesthetics, a fiber-reinforced composite with an improved surface aesthetics and an automobile part.
  • the foam molded article of Patent Document 1 is made of a styrenic resin having a low glass transition temperature, mechanical properties including heat resistance are not sufficient.
  • a resin other than styrene resin it is conceivable to select a resin other than styrene resin.
  • the inventor of the present invention examined various resins as a core material in order to improve the mechanical properties of the fiber-reinforced composite, and it was found that the copolymer of aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid was used.
  • a base resin containing the united substance A and the aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B By using a base resin containing the united substance A and the aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B, the smoothness of the fiber reinforced surface can be improved along with the improvement of the mechanical properties.
  • the present invention has been achieved by unexpectedly finding things.
  • a group comprising an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B
  • Foamed particles for producing a fiber-reinforced composite are provided, which are composed of a material resin and the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
  • the present invention comprises an aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B.
  • a foam-molded article for producing a fiber-reinforced composite comprising a base resin, wherein the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
  • the present invention comprises an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B.
  • a foam molded article comprising a base resin, wherein the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B, and is integrally laminated on the surface of the foam molded article
  • a fiber reinforced composite having a fiber reinforced plastic layer.
  • an automobile part comprising the above fiber reinforced composite.
  • a foam particle and a foam molded body capable of providing a fiber-reinforced composite having an improved surface appearance, a fiber-reinforced composite having an improved surface appearance, and an automotive part.
  • FIG. 1 It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of Example 1.
  • FIG. 2 It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of Example 2.
  • FIG. 2 It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of Example 3.
  • FIG. 2 It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of the comparative example 1.
  • Foamed particles are used for the production of a foam-molded article in a fiber-reinforced composite having a foam-molded article and a fiber-reinforced plastic layer laminated and integrated on the surface thereof.
  • Base Material Resin Foamed particles are composed of an aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer A (hereinafter, also simply referred to as a copolymer A) and an aromatic vinyl-unsaturated dicarboxylic acid A base resin containing an unsaturated dicarboximide copolymer B (hereinafter, also simply referred to as a copolymer B).
  • the proportion of the total amount of the copolymers A and B in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and 100% by weight.
  • the base resin preferably has a glass transition temperature Tg of 115 to 160.degree. When Tg is lower than 115 ° C., the lamination integration of the fiber reinforced plastic layer on the surface of the foam molded article produced using the foamed particles is insufficient, and the mechanical properties of the fiber reinforced composite are lowered. There is. If the temperature is higher than 160 ° C., the foamability of the foam particles may be reduced, and the heat fusion and integration of the foam particles may be insufficient to reduce the mechanical properties of the fiber-reinforced composite.
  • Tg is, for example, 115 ° C., 120 ° C., 125 ° C., 130 ° C., 135 ° C., 140 ° C., 145 ° C., 150 ° C., 155 ° C., 160 ° C.
  • the more preferable Tg is 120 to 150 ° C.
  • Aromatic Vinyl Aromatic vinyl is an aromatic compound having a substituent consisting of a vinyl group.
  • the number of vinyl groups and the carbon number of the aromatic compound are not particularly limited.
  • Specific aromatic vinyls include styrene-based monofunctional monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene and chlorostyrene.
  • the aromatic vinyl may be used alone or in combination of two or more. Among these, styrene is preferred from the viewpoint of easy availability.
  • (B) (Meth) acrylic acid ester (Meth) acrylic acid ester is not particularly limited, and examples thereof include (meth) acrylic acid alkyl ester.
  • the carbon number of the alkyl group in the (meth) acrylic acid alkyl ester can be 1 to 5.
  • Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and the like.
  • the (meth) acrylic acid esters may be used alone or in combination of two or more. From the viewpoint of improving the mechanical properties of the fiber-reinforced composite, methyl (meth) acrylate is preferable, and methyl methacrylate is more preferable.
  • the unsaturated dicarboxylic acid is not particularly limited, and examples thereof include aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms. Specific unsaturated dicarboxylic acids include maleic acid, itaconic acid, citraconic acid, aconitic acid, anhydrides thereof and the like. The unsaturated dicarboxylic acids may be used alone or in combination of two or more.
  • (D) Ratio of units derived from aromatic vinyl, (meth) acrylic ester, unsaturated dicarboxylic acid A total of units derived from three of aromatic vinyl, (meth) acrylic ester and unsaturated dicarboxylic acid is 100 In terms of parts by weight, 30 to 80 parts by weight of units derived from aromatic vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid It is preferable to include. If the proportion of units derived from aromatic vinyl is less than 30 parts by weight, the foamability of the foam particles is reduced during foam molding, and the heat fusion and integration of the foam particles become insufficient, resulting in a fiber reinforced composite The mechanical properties of may decrease.
  • this proportion is greater than 80 parts by weight, the heat resistance of the fiber-reinforced composite may be reduced.
  • This ratio is, for example, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight is there.
  • the proportion is more preferably 40 to 75 parts by weight, still more preferably 45 to 70 parts by weight.
  • the proportion of the unit derived from the (meth) acrylic acid ester is less than 8 parts by weight, the mechanical properties of the fiber-reinforced composite may be lowered.
  • this ratio is larger than 35 parts by weight, the foamability of the foam particles is reduced during foam molding, and the heat fusion and integration of the foam particles is insufficient to lower the mechanical properties of the fiber reinforced composite.
  • This ratio is, for example, 8 parts by weight, 10 parts by weight, 12 parts by weight, 15 parts by weight, 17 parts by weight, 20 parts by weight, 22 parts by weight, 25 parts by weight, 27 parts by weight, 30 parts by weight, 33 parts by weight, 35 parts by weight.
  • the proportion is more preferably 10 to 33 parts by weight, still more preferably 15 to 30 parts by weight.
  • the heat resistance of the fiber-reinforced composite may decrease.
  • this ratio is greater than 50 parts by weight, the foamability of the foam particles is reduced during foam molding, and the heat fusion and integration of the foam particles is insufficient to lower the mechanical properties of the fiber-reinforced composite.
  • This ratio is, for example, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, and 50 parts by weight.
  • the proportion is more preferably 15 to 40 parts by weight, still more preferably 20 to 35 parts by weight.
  • the amount of the monomer used and the content of the unit derived from the monomer substantially coincide with each other.
  • Each component ratio that is, the ratio of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and further units derived from other monomers and other resins described below, 1 It can be defined by the peak height of H-NMR or the area ratio of FT-IR. Specific measurement methods will be described in the examples.
  • (Ii) copolymer B (A) Aromatic Vinyl
  • the aromatic vinyl is not particularly limited, and examples thereof include the compounds exemplified in the above-mentioned copolymer A (a).
  • the aromatic vinyl may be used alone or in combination of two or more. Among these, styrene is preferred from the viewpoint of easy availability.
  • (B) Unsaturated Dicarboxylic Acid The unsaturated dicarboxylic acid is not particularly limited, but the compounds exemplified in (c) of the above-mentioned copolymer A can be mentioned.
  • the unsaturated dicarboxylic acids may be used alone or in combination of two or more. From the viewpoint of improving the mechanical properties of the foam molded article, maleic anhydride is preferred.
  • the unsaturated dicarboximide is not particularly limited, but maleimide such as maleimide, N-methyl maleimide, N-ethyl maleimide, N-cyclohexyl maleimide, N-phenyl maleimide, N-naphthyl maleimide and the like Examples include system monomers.
  • the unsaturated dicarboximide derivatives may be used alone or in combination of two or more. From the viewpoint of improving the heat resistance of the fiber-reinforced composite, N-phenylmaleimide is preferable.
  • the proportion of units derived from aromatic vinyl is less than 20 parts by weight, the foamability of the foam particles is reduced during foam molding, and heat fusion and integration of the foam particles become insufficient, resulting in a fiber reinforced composite
  • the mechanical properties of may decrease.
  • this proportion is greater than 80 parts by weight, the heat resistance of the foam molded article may be reduced.
  • This ratio is, for example, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, It is 75 parts by weight and 80 parts by weight.
  • the proportion is more preferably 30 to 75 parts by weight, still more preferably 50 to 70 parts by weight.
  • the copolymers A and / or B each have a further coweight with components derived from other monomers within the range not to inhibit the characteristics of the present invention other than the above three monomers. It may be combined.
  • examples of other monomers include (meth) acrylonitrile, dimethyl maleate, diethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, (meth) acrylic acid and the like.
  • the proportion of units derived from other monomers in both copolymers is preferably 30% by weight or less, and may be 0% by weight.
  • the copolymer B may be contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
  • the content of the copolymer B is less than 1% by weight, the effect of improving the beauty of the surface of the fiber-reinforced composite may be low. If it is more than 50% by weight, the brittleness may be high and the foam may be buckled at the time of preparation of the fiber-reinforced composite.
  • the content of copolymer B is, for example, 1 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt% , 50% by weight.
  • the content of the copolymer B is preferably 5 to 40% by weight.
  • (V) Other Resins Other resins may be mixed with the base resin.
  • Other resins include rubber-modified rubbers to which a diene rubber-like polymer such as polyolefin resin such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer are added
  • a diene rubber-like polymer such as polyolefin resin such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer are added
  • a diene rubber-like polymer such as polyolefin resin such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated dien
  • the foamed particles may contain polymethyl methacrylate.
  • polymethyl methacrylate By containing polymethyl methacrylate, the heat-sealing property of the foam particles is improved, and the foam particles are more firmly heat-fused and integrated to form a foam molded article having further excellent mechanical properties. You can get it.
  • the content of poly (methyl methacrylate) in the expanded particles is preferably 10 to 500 parts by weight, more preferably 20 to 450 parts by weight, and particularly preferably 30 to 400 parts by weight with respect to 100 parts by weight of the copolymer.
  • the expanded particles may contain an acrylic resin as a processing aid.
  • the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles is made suitable for foaming, and the open celling of the foamed particles is suppressed, and the foamed particles are foamed. It is possible to improve the property, to strengthen the heat fusion of the foam particles to each other, and to produce a foam molded product having further excellent mechanical properties.
  • the content of the processing aid in the foamed particles is preferably 0.5 to 5 parts by weight, and more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the copolymer.
  • the acrylic resin as a processing aid is not particularly limited, and contains 50% by weight or more of a homopolymer of an acrylic monomer or a copolymer of two or more of these, and an acrylic monomer Examples thereof include copolymers of acrylic monomers and vinyl monomers copolymerizable therewith.
  • acrylic monomers include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like.
  • Examples of the vinyl monomer copolymerizable with the acrylic monomer include ⁇ -methylstyrene, acrylonitrile and the like.
  • the weight average molecular weight of the acrylic resin is preferably 1.5 million to 6 million, more preferably 2 million to 4.5 million, and particularly preferably 2.5 million to 4 million. Even if the weight average molecular weight of the acrylic resin is too low or too high, it is difficult to sufficiently adjust the melt tension (viscoelasticity) at the time of foam molding of the resin constituting the foamed particles to one suitable for foaming, and foaming It may not be possible to improve the foamability of the particles.
  • additives may be contained in addition to the resin, as necessary.
  • Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, cell regulators, fillers, colorants, weathering agents, anti-aging agents, lubricants, anti-fogging agents, perfumes, etc. It can be mentioned.
  • the average particle size of the foamed particles is preferably 500 to 5000 ⁇ m, and more preferably 1000 to 3000 ⁇ m.
  • the average particle size is, for example, 500 ⁇ m, 1000 ⁇ m, 2000 ⁇ m, 3000 ⁇ m, 4000 ⁇ m, 5000 ⁇ m.
  • the outer shape of the foamed particles is not particularly limited as long as the foamed molded article can be produced, and examples thereof include spherical, substantially spherical, cylindrical and the like.
  • the expanded particles preferably have an outer shape represented by an average aspect ratio of 0.8 or more (the upper limit is a true sphere of 1). The aspect ratio is, for example, 0.8, 0.85, 0.9, 0.95, 1.
  • the expanded particles preferably have a bulk multiple of 20 to 1.4 times. If the bulk ratio is more than 20 times, the open cell rate of the foamed particles may be increased, and the foamability of the foamed particles may be reduced at the time of foaming of the foam molding. If it is smaller than 1.4 times, the cells of the foamed particles may become nonuniform, and the foamability of the foamed particles may be insufficient at the time of foam molding.
  • the bulk factor is, for example, 20 times, 18 times, 14 times, 12.5 times, 10 times, 5 times, 2 times, 1.6 times, 1.4 times.
  • the bulk ratio is more preferably 14 to 1.6 times, particularly preferably 12.5 to 2 times.
  • the foamed particles preferably exhibit an open cell ratio of 40% or less.
  • the open cell ratio is higher than 40%, the foaming pressure of the foamed particles may be insufficient at the time of foam molding, and the heat fusion and integration of the foamed particles may be insufficient to reduce the mechanical properties of the fiber reinforced composite. is there.
  • the open cell rate is, for example, 40%, 35%, 30%, 20%, 10%, 5%, 0%.
  • the open cell rate is more preferably 35% or less.
  • the raw material resin is melt-kneaded in an extruder, and the kneaded material is extruded from a nozzle mold attached to the extruder and then cooled to obtain a strand, and the strand is cut at predetermined intervals.
  • the raw material resin is melt-kneaded in an extruder, and the kneaded product is extruded from an annular die or a T-die attached to the extruder to produce a sheet, and the sheet is cut to produce a method.
  • a bubble control agent may be supplied to the extruder.
  • the cell regulator examples include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc.
  • the amount of the cell regulator is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition. When the amount of the cell regulator is less than 0.01 weight, the cells of the foamed particles become coarse, and the appearance of the resulting foam molded article may be deteriorated. When the amount is more than 5 parts by weight, the closed cell rate of the foamed particles may be reduced due to the cell rupture.
  • the amount of the cell regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
  • a method for producing the expandable particles there is mentioned a method of impregnating resin particles with a foaming agent in a gas phase in a container which can be sealed.
  • a foaming agent saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane and hexane, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1 Inorganic gases such as fluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, carbon dioxide and nitrogen.
  • dimethyl ether, propane, normal butane, isobutane and carbon dioxide are preferable, propane, normal butane and isobutane are more preferable, and normal butane and isobutane are particularly preferable.
  • the blowing agents may be used alone or in combination of two or more.
  • the amount of the foaming agent introduced into the container is too small, the foam particles may not be able to foam to a desired expansion ratio.
  • the amount of the foaming agent is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of the raw material resin.
  • a method of producing the foamed particles a method of heating with a heating medium such as water vapor in a sealable container can be mentioned.
  • the heating conditions include, for example, a gauge pressure of 0.3 to 0.5 MPa, a temperature of 120 to 159 ° C., and a time of 10 to 180 seconds.
  • the particle size of the foamed particles can be varied by changing the diameter of the multi-nozzle mold attached to the front end of the extruder.
  • the foamed molded article is composed of a base resin containing the copolymers A and B, and the copolymer B is 1 to 50% by weight with respect to the total of the copolymers A and B. included.
  • the content of copolymer B is, for example, 1 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt% , 50% by weight.
  • the base resin that constitutes the foam molded body is the same as the base resin of the above-described foam particles.
  • the average particle diameter of the fused foamed particles constituting the foamed molded article is preferably 600 to 6000 ⁇ m, and more preferably 1200 to 3600 ⁇ m.
  • the average particle size is, for example, 600 ⁇ m, 1200 ⁇ m, 2000 ⁇ m, 3000 ⁇ m, 3600 ⁇ m, 6000 ⁇ m.
  • the outer shape of the fused foam particles is not particularly limited as long as the foam can be maintained.
  • the foam molding preferably has a multiple of 20 to 1.4. If the ratio is more than 20 times, mechanical properties may be insufficient. If it is less than 1.4 times, the advantage of foaming may be reduced due to the increase in weight.
  • the bulk factor is, for example, 20 times, 18 times, 14 times, 12.5 times, 10 times, 5 times, 2 times, 1.6 times, 1.4 times.
  • the multiple is more preferably 14 to 1.6, and particularly preferably 12.5 to 2.
  • the foam molded body preferably exhibits an open cell rate of 40% or less. If the open cell rate is higher than 40%, the mechanical properties of the fiber reinforced composite may be degraded.
  • the open cell rate is, for example, 40%, 35%, 30%, 20%, 10%, 5%, 0%.
  • the open cell rate is more preferably 35% or less.
  • the heating dimensional change rate at 120 ° C. of the foamed molded article is preferably ⁇ 1 to 1%.
  • the foamed molded article can be suitably used for applications under a high temperature environment because its heating dimensional change rate is -1 to 1%.
  • the heating dimensional change rate is, for example, -1%, -0.07%, -0.05%, 0%, 0.05%, 0.07%, 1%.
  • the flexural modulus per unit density in the foam molded article is preferably 600 MPa / (g / cm 3 ) or more.
  • the flexural modulus is too low, the pressure applied when laminating and integrating a skin material such as fiber reinforced plastic on the surface of the foam molded body may cause deformation of the foam molded body.
  • the bending elastic modulus is, for example, 600, 800, 1000, 1200, 1400 (unit abbreviation).
  • the fiber reinforced composite has a foam molded body and a fiber reinforced plastic layer laminated and integrated on the surface thereof.
  • the foamed molded product is composed of a base resin containing the copolymers A and B, and the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
  • the base resin that constitutes the foam molded body is the same as the base resin of the above-described foam particles.
  • the lamination of fiber reinforced plastic may be determined depending on the application of the reinforced composite. Among them, in consideration of the surface hardness and mechanical strength of the reinforced composite, it is preferable that fiber reinforced plastics be integrally laminated on both surfaces in the thickness direction of the foam molded article.
  • Reinforcing fibers constituting the fiber reinforced plastic include inorganic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, tyranno fiber, basalt fiber, and ceramic fiber; metal fibers such as stainless steel fiber and steel fiber; aramid Organic fibers such as fibers, polyethylene fibers, poly-p-phenylene benzoxador (PBO) fibers, etc .; and boron fibers.
  • the reinforcing fibers may be used alone or in combination of two or more. Among them, carbon fiber, glass fiber and aramid fiber are preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical properties despite being lightweight.
  • the reinforcing fibers are preferably used as a reinforcing fiber base processed into a desired shape.
  • the reinforcing fiber base include woven fabrics, knitted fabrics, non-woven fabrics made of reinforcing fibers, and facing materials made by binding (suture) fiber bundles (strands) in which reinforcing fibers are aligned in one direction with yarn.
  • the weave of the woven fabric includes plain weave, twill weave, satin weave and the like.
  • the yarns include synthetic resin yarns such as polyamide resin yarns and polyester resin yarns, and stitch yarns such as glass fiber yarns.
  • the reinforcing fiber base may be used without laminating only one reinforcing fiber base, or may be used as a laminated reinforcing fiber base by laminating a plurality of reinforcing fiber bases.
  • a laminated reinforcing fiber base in which a plurality of reinforcing fiber bases are laminated (1) a laminated reinforcing fiber base in which only one type of reinforcing fiber base is prepared and these reinforcing fiber bases are laminated, 2) A multi-layered reinforcing fiber base prepared by laminating a plurality of types of reinforcing fiber base, and (3) a fiber bundle (strand) obtained by aligning the reinforcing fibers in one direction is bound with a yarn (y)
  • a plurality of reinforcing fiber substrates formed by stitching are prepared, and these reinforcing fiber substrates are superimposed so that the fiber directions of the fiber bundles are directed in different directions, and the superimposed reinforcing fiber substrates are yarns
  • the fiber reinforced plastic is obtained by impregnating a reinforced fiber with a synthetic resin. Reinforcing fibers are bound and integrated by the impregnated synthetic resin.
  • the method for impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
  • a synthetic resin to be impregnated into the reinforcing fiber any of a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used.
  • thermosetting resin to be impregnated into the reinforcing fiber is not particularly limited, and epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide
  • the resin etc. which carried out the prepolymerization of resin and cyanate ester resin etc. are mentioned, Since it is excellent in heat resistance, impact absorption property, or chemical resistance, an epoxy resin and vinyl ester resin are preferable.
  • the thermosetting resin may contain additives such as a curing agent and a curing accelerator.
  • a thermosetting resin may be used independently and 2 or more types may be used together.
  • thermoplastic resin to be impregnated into the reinforcing fiber is not particularly limited, and an olefin resin, a polyester resin, a thermoplastic epoxy resin, an amide resin, a thermoplastic polyurethane resin, a sulfide resin, an acrylic resin and the like are mentioned. And polyester resins and thermoplastic epoxy resins are preferable because they are excellent in adhesion to a foam molded article or adhesion between reinforcing fibers constituting a fiber reinforced plastic.
  • a thermoplastic resin may be used independently and 2 or more types may be used together.
  • the thermoplastic epoxy resin is a polymer or copolymer of epoxy compounds and has a linear structure, or a copolymer of an epoxy compound and a monomer that can be polymerized with the epoxy compound. Copolymers having a straight chain structure.
  • the thermoplastic epoxy resin for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type resin
  • An epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin etc. are mentioned, A bisphenol A type epoxy resin and a bisphenol fluorene type epoxy resin are preferable.
  • the thermoplastic epoxy resin may be used alone or in combination of two or more.
  • thermoplastic polyurethane resin the polymer which has a linear structure obtained by polymerizing diol and diisocyanate is mentioned.
  • the diol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol and the like.
  • the diols may be used alone or in combination of two or more.
  • the diisocyanate include aromatic diisocyanates, aliphatic diisocyanates and alicyclic diisocyanates.
  • the diisocyanate may be used alone or in combination of two or more.
  • the thermoplastic polyurethane resin may be used alone or in combination of two or more.
  • the content of the synthetic resin in the fiber reinforced plastic is preferably 20 to 70% by weight. If the content is less than 20% by weight, the binding properties between the reinforcing fibers and the adhesion between the fiber reinforced plastic and the foamed molded article become insufficient, and the mechanical properties of the fiber reinforced plastic and the mechanical strength of the fiber reinforced composite May not improve enough. If it is more than 70% by weight, the mechanical properties of the fiber-reinforced plastic may be reduced, and the mechanical strength of the fiber-reinforced composite may not be sufficiently improved.
  • the content is more preferably 30 to 60% by weight.
  • the thickness of the fiber reinforced plastic is preferably 0.02 to 2 mm, more preferably 0.05 to 1 mm. Fiber reinforced plastics having a thickness in this range are excellent in mechanical properties despite being lightweight. Basis weight of the fiber-reinforced plastics, preferably 50 ⁇ 4000g / m 2, more preferably 100 ⁇ 1000g / m 2. Fiber reinforced plastics having a weight per unit area within this range are excellent in mechanical properties despite being lightweight.
  • the method for producing a reinforced composite by laminating and integrating fiber reinforced plastic on the surface of a foam molded article is not particularly limited.
  • (1) fiber reinforced plastic is bonded to the surface of the foam molded body via an adhesive.
  • a fiber-reinforced plastic forming material obtained by impregnating a reinforcing fiber with a thermoplastic resin is laminated on the surface of a foam molded body, and foaming is performed using the thermoplastic resin impregnated in the reinforcing fiber as a binder
  • a method of integrally laminating a fiber reinforced plastic forming material as a fiber reinforced plastic on the surface of a molded body (3) A fiber reinforced plastic forming material in which a reinforcing fiber is impregnated with an uncured thermosetting resin on the surface of a foam molded body Of a fiber-reinforced plastic formed by curing a thermosetting resin using a thermosetting resin impregnated in reinforcing fibers as a binder (4)
  • a fiber reinforced plastic is required by placing the fiber reinforced plastic in a heated and softened state on the surface of the foam molded body and pressing the fiber reinforced plastic against the surface of the foam molded body According to the method, a method of laminating and integrating on the surface
  • Examples of methods used for molding fiber reinforced plastics include autoclave method, hand lay up method, spray up method, PCM (Prepreg Compression Molding) method, RTM (Resin Transfer Molding) method, VaRTM (Vacuum assisted Resin Transfer Molding) Law etc. are mentioned.
  • the fiber-reinforced composite thus obtained is excellent in heat resistance, mechanical strength and lightness, and has a fiber-reinforcing surface with improved aesthetics. Therefore, it can be used in a wide range of applications such as the fields of transportation equipment such as automobiles, aircrafts, railway cars and ships, home appliances, information terminals, and furniture.
  • the fiber reinforced surface with improved aesthetics can be evaluated by its surface smoothness.
  • the surface smoothness is preferably 10% or less.
  • the surface smoothness is, for example, 0%, 1%, 3%, 5%, 7%, 10%.
  • fiber reinforced composites are parts of transportation equipment and parts for transportation equipment construction (especially parts for automobiles) including structural parts that constitute the main body of transportation equipment, wind turbine blades, robot arms, cushioning materials for helmets, It can be suitably used as a transport container such as an agricultural product box, a heat insulation cold storage container, a rotor blade of an industrial helicopter, and a parts packing material.
  • an automotive component comprising the fiber-reinforced composite of the present invention, such as a floor panel, roof, bonnet, fender, undercover, wheel, steering wheel, etc.
  • parts such as containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, doors, and cowls.
  • the present invention will be described in more detail by way of examples, which should not be construed as limiting the invention in any way.
  • evaluation methods of the example and the comparative example will be described.
  • the glass transition temperature was measured by the method described in JIS K 7121: 1987 "Transition temperature measurement method of plastic".
  • the sampling method and temperature conditions were as follows. About 6 mg of a sample was packed using a differential scanning calorimeter DSC2220 (manufactured by SII Nano Technology Inc.) so that the bottom of the aluminum measurement container was not separated. The sample was heated from 30 ° C. to 220 ° C. at a heating rate of 20 ° C./min under a nitrogen gas flow rate of 20 mL / min.
  • the sample After holding for 10 minutes, the sample is taken out immediately and allowed to cool in an environment of 25 ⁇ 10 ° C, and then the DSC curve obtained when the temperature is raised from 30 ° C to 220 ° C at a temperature rising rate of 20 ° C / min.
  • the glass transition temperature (starting point) was calculated. At this time, alumina was used as a reference material. The glass transition start temperature was determined from the standard (9.3 “How to Determine Glass Transition Temperature”).
  • the bulk density was measured in accordance with JIS K 6911: 1995 “Thermosetting plastic general test method”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density based on the following formula.
  • the bulk multiple was a value obtained by integrating the resin density to the reciprocal of the bulk density.
  • the weight (a) and the volume (b) of the test piece (example 75 ⁇ 300 ⁇ 30 mm) cut out from the foam molded article are measured so as to have three or more significant figures, respectively, and the foam is produced by the formula (a) / (b)
  • the density (g / cm 3 ) of the compact was determined.
  • the multiple is a value obtained by integrating the resin density to the reciprocal of the density.
  • the absorbance ratio (D1780 / D698, D1720 / D698) of the base resin was measured in the following manner. An infrared absorption spectrum was obtained by performing surface analysis on each of ten randomly selected resin particles by infrared spectroscopy ATR measurement method. In this analysis, an infrared absorption spectrum in the range of several ⁇ m (about 2 ⁇ m) in depth from the sample surface was obtained. The absorbance ratio (D1780 / D698, D1720 / D698) was calculated from each infrared absorption spectrum, and the arithmetic mean of the calculated absorbance ratio was defined as the absorbance ratio.
  • Absorbance D1780, D1720 and D698 are obtained by connecting “Smart-iTR” manufactured by Thermo SCIENTIFIC as an ATR accessory to a measuring apparatus sold by Thermo SCIENTIFIC under the trade name “Fourier Transform Infrared Spectrophotometer Nicolet iS10”. It was measured. Infrared spectroscopy ATR measurement was performed under the following conditions.
  • Measurement device Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and one-reflection-type horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
  • Measurement method One-time ATR method ⁇ Measurement wave number domain: 4000 cm -1 to 650 cm -1 ⁇ Wavenumber dependence of measurement depth: not corrected ⁇
  • Detector Deuterated triglycine sulfate (DTGS) detector and KBr beam splitter ⁇ Resolution: 4 cm -1 ⁇ Number of integrations: 16 times (same for background measurement)
  • the intensity of the infrared absorption spectrum obtained by measurement changes depending on the degree of adhesion between the sample and the high refractive index crystal, so the degree of adhesion is almost uniform by applying the maximum load applied by "
  • the infrared absorption spectrum obtained under the above conditions was subjected to peak processing as follows to obtain each of D1780, D1720 and D698.
  • Absorbance D1780 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as a baseline, and mean maximum absorbance between 1810 cm -1 and 1745 cm -1.
  • Absorbance D1720 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as a baseline, and mean maximum absorbance between 1745 cm -1 and 1690 cm -1.
  • the absorbance D698 at 698 cm -1 was taken as the absorbance corresponding to the absorption spectrum derived from the out-of-plane bending vibration of CH in the monosubstituted benzene ring in styrene. In this measurement of absorbance, no peak separation was performed even when other absorption spectra overlapped at 698 cm -1 .
  • Absorbance D698 is a straight line connecting the 1510 cm -1 and 810 cm -1 as a baseline, and mean maximum absorbance between 720 cm -1 and 660 cm -1.
  • the styrene, methyl methacrylate and maleic anhydride ratio (% by mass) was calculated from the absorbance ratio (D1780 / D698, D1720 / D698) based on a calibration curve described later.
  • the peak processing method used the method similar to the above-mentioned resin particle.
  • a method of determining the composition ratio of styrene and methyl methacrylate from the absorbance ratio a plurality of types of standard samples were prepared by uniformly mixing a styrene resin and methyl methacrylate resin at a predetermined composition ratio.
  • the monomers obtained by measuring methyl methacrylate and styrene at weight ratios of 0/100, 20/80, 40/60, 50/50 and 60/40, respectively, are placed in a 10 ml screw vial, The monomer was dissolved by adding 10 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) to 100 parts by weight of the monomer.
  • the obtained mixed solution was transferred to a 2 ml sample tube ( ⁇ 7 mm ⁇ 122 mm ⁇ 190 mm), purged with nitrogen and sealed.
  • Methyl methacrylate ⁇ A / ((A + B + D x (B / C))) x 100
  • Styrene ⁇ B / ((A + B + D x (B / C))) x
  • Maleic anhydride ⁇ D x (B / C) / ((A + B + D x (B / C))) x 100
  • the plastic component in the fiber-reinforced plastic forming material is less dropped, and as a result, it is judged that the area in contact with the flat plate mold is large and the beautifulness of the fiber-reinforced surface is high.
  • Example 1 (Resin particle production process) Styrene-Methyl methacrylate-maleic anhydride copolymer A (trade name "DENKA REGISFY R-310" manufactured by Denki Kagaku Kogyo Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight Styrene-maleic anhydride-N-phenylmaleimide copolymer B (manufactured by Denki Kagaku Kogyo K.K., trade name "DENKA IP MS-NIP", styrene: 57 parts by weight, density: 1.15 g / cm 3 ) A resin composition containing 5 parts by weight of maleic anhydride, 38 parts by weight of N-phenylmaleimide, a density of 1.18 g / cm 3 and a glass transition temperature of 180 ° C.) is used in a twin screw extruder of 30 mm diameter.
  • the resin composition was extruded from each nozzle of a multi-nozzle die (12 nozzles with a diameter of 1.0 mm were arranged in a circle) attached to the front end of a twin-screw extruder.
  • the extruded resin was immediately cooled in a cooling water bath. Then, after sufficiently draining the cooled strand resin, it was cut into small particles using a pelletizer to produce resin particles.
  • the obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
  • the above impregnated material was foamed with steam in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 146 ° C. using steam. After foaming, the particles were removed from the high-pressure foaming tank, calcium carbonate was removed with an aqueous solution of hydrogen chloride, and drying was carried out with a flash dryer to obtain foamed particles. The bulk ratio of the expanded particles was 10 times.
  • a fiber-reinforced plastic former (thickness 0.23 mm, fabric weight: 200 g / g) in which 40% by weight of uncured epoxy resin (glass transition temperature 128 ° C.) is impregnated in a reinforcing fiber base made of twill woven of carbon fibers.
  • the two fiber-reinforced plastic formers were superposed such that the crossing angle between the longitudinal directions of the warps of the reinforcing fiber base was 90 °.
  • a portion where two fiber reinforced plastic forming materials overlap one another is cut out into a planar rectangular shape of 300 mm long ⁇ 400 mm wide to prepare a laminated fiber reinforced plastic forming material.
  • Another laminated fiber reinforced plastic former was produced in the same manner.
  • a laminated fiber reinforced plastic forming material was laminated on each of both sides orthogonal to the thickness direction of the foam molded article to prepare a laminate having a thickness of about 31 mm.
  • the laminate is disposed between flat plate molds, and press molding is performed by clamping a flat plate mold on which a spacer of 30 mm thickness is disposed, thereby thermally bonding the fiber reinforced plastic to the foam molded article.
  • a fiber reinforced composite was made.
  • the laminate was brought to 135 ° C. and held for 8 minutes to cure the resin contained in the fiber reinforced plastic.
  • the fibers of the fiber reinforced plastic were bound and fixed with the cured epoxy resin, and the fiber reinforced plastic was laminated and integrated on both sides of the foam molded body to produce a fiber reinforced composite.
  • the flat plate mold was opened to take out a fiber reinforced composite having a thickness of 30 mm.
  • Example 2 In the resin particle production process, 85 parts by weight of styrene-methyl methacrylate-maleic anhydride copolymer A and 15 parts by weight of styrene-maleic anhydride-N-phenylmaleimide copolymer B, and a molding process In the same manner as in Example 1 except that heating was carried out with steam of 0.43 MPa for 60 seconds, foam particles, a foam molded article, and a fiber reinforced composite were obtained.
  • Example 3 In the resin particle production process, 90 parts by weight of styrene-methyl methacrylate-maleic anhydride copolymer A and 10 parts by weight of styrene-maleic anhydride-N-phenylmaleimide copolymer B, and a foaming step In the case of using a steam at a foaming temperature of 143 ° C. for 150 seconds while stirring, using a steam at a high pressure in a foaming tank, and in the forming process, performing heating for 60 seconds with steam of 0.40 MPa. In the same manner as in Example 1, foamed particles, a foamed molded article, and a fiber reinforced composite were obtained.
  • copolymer A copolymer A
  • copolymer B ST styrene MAM: methyl methacrylate
  • MAH maleic anhydride
  • NPM N-phenylmaleimide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Expanded beads for producing a fiber-reinforced composite which comprise a base resin comprising an aromatic vinyl compound/(meth)acrylic acid ester/unsaturated dicarboxylic acid copolymer A and an aromatic vinyl compound/unsaturated dicarboxylic acid/unsaturated dicarboximide copolymer B, the copolymer B being contained in an amount of 1-50 wt% with respect to the sum of the copolymers A and B.

Description

繊維強化複合体製造用の発泡粒子及び発泡成形体、繊維強化複合体及び自動車用部品Expanded particles and foams for producing fiber reinforced composites, fiber reinforced composites and automotive parts
 本発明は、繊維強化複合体製造用の発泡粒子及び発泡成形体、繊維強化複合体及び自動車用部品に関する。更に詳しくは、本発明は、表面の美麗性が向上した繊維強化複合体を与え得る発泡粒子及び発泡成形体、表面の美麗性が向上した繊維強化複合体及び自動車用部品に関する。 The present invention relates to a foam particle and a foam molded article for producing a fiber-reinforced composite, a fiber-reinforced composite and an automobile part. More particularly, the present invention relates to a foam particle and a foam molded body capable of providing a fiber-reinforced composite with an improved surface aesthetics, a fiber-reinforced composite with an improved surface aesthetics and an automobile part.
 近年、航空機、自動車、船舶等の乗り物は、地球環境への負荷低減のために燃費向上が必要とされており、これらの乗り物を構成する金属材料を樹脂材料へ転換し、大きな軽量化を図る流れが強くなってきている。これらの樹脂材料としては、繊維強化プラスチックが挙げられる。また、更なる軽量化や高剛性化を図ることを目的として、繊維強化プラスチックとコア材を積層した繊維強化複合体も提案されている。例えば、コア材として、高い圧縮強度を有するポリスチレン発泡成形体が検討されている(特開2012-214751号公報:特許文献1)。 In recent years, vehicles such as aircraft, automobiles, and ships are required to improve fuel efficiency to reduce the load on the global environment, and the metal materials that make up these vehicles are converted to resin materials to achieve large weight reduction. The flow is getting stronger. Fiber-reinforced plastics are mentioned as these resin materials. In addition, a fiber reinforced composite in which a fiber reinforced plastic and a core material are laminated has also been proposed for the purpose of further reducing the weight and increasing the rigidity. For example, as a core material, polystyrene foam molded articles having high compressive strength have been studied (Japanese Patent Application Laid-Open No. 2012-214751: Patent Document 1).
特開2012-214751号公報JP 2012-214751 A
 しかしながら、特許文献1の発泡成形体は、ガラス転移温度が低いスチレン系樹脂製であるため、耐熱性を含む機械的物性が十分でなかった。機械的物性を向上させるために、スチレン系樹脂以外の樹脂を選択することが考えられる。
 ところで、繊維強化複合体を構成する繊維強化プラスチックは、その繊維強化面の美麗性を向上させる観点から、平滑性を向上させることが望まれている。
However, since the foam molded article of Patent Document 1 is made of a styrenic resin having a low glass transition temperature, mechanical properties including heat resistance are not sufficient. In order to improve mechanical properties, it is conceivable to select a resin other than styrene resin.
By the way, from the viewpoint of improving the aesthetics of the fiber reinforced surface of the fiber reinforced plastic constituting the fiber reinforced composite, it is desired to improve the smoothness.
 本発明の発明者は、繊維強化複合体の機械的物性を向上させるために種々の樹脂をコア材として検討したところ、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸との共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂を使用すれば、機械的物性の向上と共に、繊維強化面の平滑性を向上し得ることを意外にも見い出すことで本発明に至った。 The inventor of the present invention examined various resins as a core material in order to improve the mechanical properties of the fiber-reinforced composite, and it was found that the copolymer of aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid was used. By using a base resin containing the united substance A and the aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B, the smoothness of the fiber reinforced surface can be improved along with the improvement of the mechanical properties. The present invention has been achieved by unexpectedly finding things.
 かくして本発明によれば、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂から構成され、前記共重合体Bが、前記共重合体AとBの合計に対して、1~50重量%含まれる繊維強化複合体製造用の発泡粒子が提供される。 Thus, according to the present invention, a group comprising an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B Foamed particles for producing a fiber-reinforced composite are provided, which are composed of a material resin and the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
 また、本発明によれば、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂から構成され、前記共重合体Bが、前記共重合体AとBの合計に対して、1~50重量%含まれる繊維強化複合体製造用の発泡成形体が提供される。 Further, according to the present invention, it comprises an aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B. There is provided a foam-molded article for producing a fiber-reinforced composite, comprising a base resin, wherein the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
 更に、本発明によれば、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂から構成され、前記共重合体Bが、前記共重合体AとBの合計に対して、1~50重量%含まれる発泡成形体と、前記発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体が提供される。
 また、本発明によれば、上記繊維強化複合体から構成される自動車用部品が提供される。
Further, according to the present invention, it comprises an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B. A foam molded article comprising a base resin, wherein the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B, and is integrally laminated on the surface of the foam molded article There is provided a fiber reinforced composite having a fiber reinforced plastic layer.
Further, according to the present invention, there is provided an automobile part comprising the above fiber reinforced composite.
 本発明によれば、表面の美麗性が向上した繊維強化複合体を与え得る発泡粒子及び発泡成形体、表面の美麗性が向上した繊維強化複合体及び自動車用部品を提供できる。 According to the present invention, it is possible to provide a foam particle and a foam molded body capable of providing a fiber-reinforced composite having an improved surface appearance, a fiber-reinforced composite having an improved surface appearance, and an automotive part.
実施例1の繊維強化複合体の繊維強化面の写真(a)及び線図(b)である。It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of Example 1. FIG. 実施例2の繊維強化複合体の繊維強化面の写真(a)及び線図(b)である。It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of Example 2. FIG. 実施例3の繊維強化複合体の繊維強化面の写真(a)及び線図(b)である。It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of Example 3. FIG. 比較例1の繊維強化複合体の繊維強化面の写真(a)及び線図(b)である。It is a photograph (a) and the diagram (b) of the fiber reinforced surface of the fiber reinforced composite of the comparative example 1. FIG.
(発泡粒子)
 発泡粒子は、発泡成形体とその表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体における発泡成形体の製造に使用される。
 (1)基材樹脂
 発泡粒子は、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体A(以下、単に共重合体Aとも称する)と、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体B(以下、単に共重合体Bとも称する)とを含む基材樹脂から構成される。基材樹脂中に共重合体A及びBの合計量が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。基材樹脂は115~160℃のガラス転移温度Tgを有していることが好ましい。Tgが115℃より低い場合、発泡粒子を用いて製造された発泡成形体の表面への繊維強化プラスチック層の積層一体化が不十分となって、繊維強化複合体の機械的物性が低下することがある。160℃より高い場合、発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって繊維強化複合体の機械的物性が低下することがある。Tgは、例えば、115℃、120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃である。より好ましいTgは120~150℃である。
(Foamed particles)
Foamed particles are used for the production of a foam-molded article in a fiber-reinforced composite having a foam-molded article and a fiber-reinforced plastic layer laminated and integrated on the surface thereof.
(1) Base Material Resin Foamed particles are composed of an aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer A (hereinafter, also simply referred to as a copolymer A) and an aromatic vinyl-unsaturated dicarboxylic acid A base resin containing an unsaturated dicarboximide copolymer B (hereinafter, also simply referred to as a copolymer B). The proportion of the total amount of the copolymers A and B in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and 100% by weight. The base resin preferably has a glass transition temperature Tg of 115 to 160.degree. When Tg is lower than 115 ° C., the lamination integration of the fiber reinforced plastic layer on the surface of the foam molded article produced using the foamed particles is insufficient, and the mechanical properties of the fiber reinforced composite are lowered. There is. If the temperature is higher than 160 ° C., the foamability of the foam particles may be reduced, and the heat fusion and integration of the foam particles may be insufficient to reduce the mechanical properties of the fiber-reinforced composite. Tg is, for example, 115 ° C., 120 ° C., 125 ° C., 130 ° C., 135 ° C., 140 ° C., 145 ° C., 150 ° C., 155 ° C., 160 ° C. The more preferable Tg is 120 to 150 ° C.
  (i)共重合体A
   (a)芳香族ビニル
 芳香族ビニルは、ビニル基からなる置換基を備えた芳香族化合物である。ビニル基の数及び芳香族化合物の炭素数は特に限定されない。具体的な芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン等のスチレン系単官能単量体、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート、ビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレート等が挙げられる。芳香族ビニルは、単独で用いられても二種以上が併用されてもよい。この内、入手容易性の観点から、スチレンが好ましい。
(I) Copolymer A
(A) Aromatic Vinyl Aromatic vinyl is an aromatic compound having a substituent consisting of a vinyl group. The number of vinyl groups and the carbon number of the aromatic compound are not particularly limited. Specific aromatic vinyls include styrene-based monofunctional monomers such as styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene and chlorostyrene. Divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene, bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, Ethylene oxide adduct of bisphenol A di (meth) acrylate, propylene oxide adduct of bisphenol A di (meth) acrylate, etc. may be mentioned. The aromatic vinyl may be used alone or in combination of two or more. Among these, styrene is preferred from the viewpoint of easy availability.
   (b)(メタ)アクリル酸エステル
 (メタ)アクリル酸エステルとしては、特に限定されないが、例えば、(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステル中のアルキル基の炭素数は1~5とすることができる。具体的な(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。(メタ)アクリル酸エステルは、単独で用いられても二種以上が併用されてもよい。繊維強化複合体の機械的物性を向上させる観点から、(メタ)アクリル酸メチルが好ましく、メタクリル酸メチルがより好ましい。
(B) (Meth) acrylic acid ester (Meth) acrylic acid ester is not particularly limited, and examples thereof include (meth) acrylic acid alkyl ester. The carbon number of the alkyl group in the (meth) acrylic acid alkyl ester can be 1 to 5. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and the like. The (meth) acrylic acid esters may be used alone or in combination of two or more. From the viewpoint of improving the mechanical properties of the fiber-reinforced composite, methyl (meth) acrylate is preferable, and methyl methacrylate is more preferable.
   (c)不飽和ジカルボン酸
 不飽和ジカルボン酸は、特に限定されないが、炭素数2~6の脂肪族不飽和ジカルボン酸が挙げられる。具体的な不飽和ジカルボン酸としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、これらの無水物等が挙げられる。不飽和ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。
(C) Unsaturated Dicarboxylic Acid The unsaturated dicarboxylic acid is not particularly limited, and examples thereof include aliphatic unsaturated dicarboxylic acids having 2 to 6 carbon atoms. Specific unsaturated dicarboxylic acids include maleic acid, itaconic acid, citraconic acid, aconitic acid, anhydrides thereof and the like. The unsaturated dicarboxylic acids may be used alone or in combination of two or more.
   (d)芳香族ビニル、(メタ)アクリル酸エステル、不飽和ジカルボン酸に由来する単位の割合
 芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30~80重量部、(メタ)アクリル酸エステルに由来する単位を8~35重量部、不飽和ジカルボン酸に由来する単位を10~50重量部含むことが好ましい。
 芳香族ビニルに由来する単位が占める割合が30重量部未満の場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって繊維強化複合体の機械的物性が低下することがある。この割合が80重量部より大きい場合、繊維強化複合体の耐熱性が低下することがある。この割合は、例えば、30重量部、35重量部、40重量部、45重量部、50重量部、55重量部、60重量部、65重量部、70重量部、75重量部、80重量部である。この割合は40~75重量部であることがより好ましく、45~70重量部であることが更に好ましい。
(D) Ratio of units derived from aromatic vinyl, (meth) acrylic ester, unsaturated dicarboxylic acid A total of units derived from three of aromatic vinyl, (meth) acrylic ester and unsaturated dicarboxylic acid is 100 In terms of parts by weight, 30 to 80 parts by weight of units derived from aromatic vinyl, 8 to 35 parts by weight of units derived from (meth) acrylic acid ester, and 10 to 50 parts by weight of units derived from unsaturated dicarboxylic acid It is preferable to include.
If the proportion of units derived from aromatic vinyl is less than 30 parts by weight, the foamability of the foam particles is reduced during foam molding, and the heat fusion and integration of the foam particles become insufficient, resulting in a fiber reinforced composite The mechanical properties of may decrease. If this proportion is greater than 80 parts by weight, the heat resistance of the fiber-reinforced composite may be reduced. This ratio is, for example, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight is there. The proportion is more preferably 40 to 75 parts by weight, still more preferably 45 to 70 parts by weight.
 (メタ)アクリル酸エステルに由来する単位が占める割合が8重量部未満の場合、繊維強化複合体の機械的物性が低下することがある。この割合が35重量部より大きい場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって繊維強化複合体の機械的物性が低下することがある。この割合は、例えば、8重量部、10重量部、12重量部、15重量部、17重量部、20重量部、22重量部、25重量部、27重量部、30重量部、33重量部、35重量部である。この割合は10~33重量部であることがより好ましく、15~30重量部であることが更に好ましい。
 不飽和ジカルボン酸に由来する単位が占める割合が10重量部未満の場合、繊維強化複合体の耐熱性が低下することがある。この割合が50重量部より大きい場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって繊維強化複合体の機械的物性が低下することがある。この割合は、例えば、10重量部、15重量部、20重量部、25重量部、30重量部、35重量部、40重量部、50重量部である。この割合は15~40重量部であることがより好ましく、20~35重量部であることが更に好ましい。
 なお、単量体の使用量とその単量体に由来する単位の含有量とはほぼ一致している。
If the proportion of the unit derived from the (meth) acrylic acid ester is less than 8 parts by weight, the mechanical properties of the fiber-reinforced composite may be lowered. When this ratio is larger than 35 parts by weight, the foamability of the foam particles is reduced during foam molding, and the heat fusion and integration of the foam particles is insufficient to lower the mechanical properties of the fiber reinforced composite. There is. This ratio is, for example, 8 parts by weight, 10 parts by weight, 12 parts by weight, 15 parts by weight, 17 parts by weight, 20 parts by weight, 22 parts by weight, 25 parts by weight, 27 parts by weight, 30 parts by weight, 33 parts by weight, 35 parts by weight. The proportion is more preferably 10 to 33 parts by weight, still more preferably 15 to 30 parts by weight.
If the proportion of units derived from unsaturated dicarboxylic acids is less than 10 parts by weight, the heat resistance of the fiber-reinforced composite may decrease. When this ratio is greater than 50 parts by weight, the foamability of the foam particles is reduced during foam molding, and the heat fusion and integration of the foam particles is insufficient to lower the mechanical properties of the fiber-reinforced composite. There is. This ratio is, for example, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, and 50 parts by weight. The proportion is more preferably 15 to 40 parts by weight, still more preferably 20 to 35 parts by weight.
The amount of the monomer used and the content of the unit derived from the monomer substantially coincide with each other.
 各成分比、すなわち、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸に由来する単位、更には以下に説明する他の単量体及び他の樹脂に由来する単位の割合は、1H-NMRのピーク高さ又はFT-IRの面積比で規定できる。具体的な測定方法については、実施例において説明する。 Each component ratio, that is, the ratio of units derived from aromatic vinyl, (meth) acrylic acid ester and unsaturated dicarboxylic acid, and further units derived from other monomers and other resins described below, 1 It can be defined by the peak height of H-NMR or the area ratio of FT-IR. Specific measurement methods will be described in the examples.
  (ii)共重合体B
   (a)芳香族ビニル
 芳香族ビニルとしては、特に限定されないが、上記の共重合体Aの(a)に例示の化合物が挙げられる。芳香族ビニルは、単独で用いられても二種以上が併用されてもよい。この内、入手容易性の観点から、スチレンが好ましい。
   (b)不飽和ジカルボン酸
 不飽和ジカルボン酸としては、特に限定されないが、上記の共重合体Aの(c)に例示の化合物が挙げられる。不飽和ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。発泡成形体の機械的物性を向上させる観点から、無水マレイン酸が好ましい。
(Ii) copolymer B
(A) Aromatic Vinyl The aromatic vinyl is not particularly limited, and examples thereof include the compounds exemplified in the above-mentioned copolymer A (a). The aromatic vinyl may be used alone or in combination of two or more. Among these, styrene is preferred from the viewpoint of easy availability.
(B) Unsaturated Dicarboxylic Acid The unsaturated dicarboxylic acid is not particularly limited, but the compounds exemplified in (c) of the above-mentioned copolymer A can be mentioned. The unsaturated dicarboxylic acids may be used alone or in combination of two or more. From the viewpoint of improving the mechanical properties of the foam molded article, maleic anhydride is preferred.
   (c)不飽和ジカルボン酸イミド
 不飽和ジカルボン酸イミドとしては、特に限定されないが、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ナフチルマレイミド等のマレイミド系単量体等が挙げられる。不飽和ジカルボン酸イミド誘導体は、単独で用いられても二種以上が併用されてもよい。繊維強化複合体の耐熱性を向上させる観点から、N-フェニルマレイミドが好ましい。
(C) Unsaturated Dicarboximide The unsaturated dicarboximide is not particularly limited, but maleimide such as maleimide, N-methyl maleimide, N-ethyl maleimide, N-cyclohexyl maleimide, N-phenyl maleimide, N-naphthyl maleimide and the like Examples include system monomers. The unsaturated dicarboximide derivatives may be used alone or in combination of two or more. From the viewpoint of improving the heat resistance of the fiber-reinforced composite, N-phenylmaleimide is preferable.
   (d)芳香族ビニル、不飽和ジカルボン酸、不飽和ジカルボン酸イミドに由来する単位の割合
 芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドの3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を20~80重量部、不飽和ジカルボン酸に由来する単位を2~30重量部、不飽和ジカルボン酸イミドに由来する単位を20~80重量部含むことが好ましい。
 芳香族ビニルに由来する単位が占める割合が20重量部未満の場合、発泡成形時に発泡粒子の発泡性が低下して、発泡粒子同士の熱融着一体化が不十分となって繊維強化複合体の機械的物性が低下することがある。この割合が80重量部より大きい場合、発泡成形体の耐熱性が低下することがある。この割合は、例えば、20重量部、25重量部、30重量部、35重量部、40重量部、45重量部、50重量部、55重量部、60重量部、65重量部、70重量部、75重量部、80重量部である。この割合は30~75重量部であることがより好ましく、50~70重量部であることが更に好ましい。
(D) Proportion of units derived from aromatic vinyl, unsaturated dicarboxylic acid, unsaturated dicarboximide 100 parts by weight of the total of units derived from aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboximide Assuming that 20-80 parts by weight of a unit derived from aromatic vinyl, 2-30 parts by weight of a unit derived from unsaturated dicarboxylic acid, and 20-80 parts by weight of a unit derived from unsaturated dicarboxylic acid imide preferable.
If the proportion of units derived from aromatic vinyl is less than 20 parts by weight, the foamability of the foam particles is reduced during foam molding, and heat fusion and integration of the foam particles become insufficient, resulting in a fiber reinforced composite The mechanical properties of may decrease. If this proportion is greater than 80 parts by weight, the heat resistance of the foam molded article may be reduced. This ratio is, for example, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight, 70 parts by weight, It is 75 parts by weight and 80 parts by weight. The proportion is more preferably 30 to 75 parts by weight, still more preferably 50 to 70 parts by weight.
  (iii)他の単量体
 共重合体A及び/又はBは、それぞれ上記3つの単量体以外に本発明の特性を阻害しない範囲で他の単量体由来の成分との更なる共重合体であってもよい。他の単量体としては例えば、(メタ)アクリロニトリル、ジメチルマレエート、ジエチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレート、(メタ)アクリル酸等が挙げられる。
 両共重合体中に他の単量体由来の単位が占める割合は、30重量%以下であることが好ましく、0重量%であってもよい。
(Iii) Other Monomers The copolymers A and / or B each have a further coweight with components derived from other monomers within the range not to inhibit the characteristics of the present invention other than the above three monomers. It may be combined. Examples of other monomers include (meth) acrylonitrile, dimethyl maleate, diethyl maleate, dimethyl fumarate, diethyl fumarate, ethyl fumarate, (meth) acrylic acid and the like.
The proportion of units derived from other monomers in both copolymers is preferably 30% by weight or less, and may be 0% by weight.
  (iv)共重合体AとBの含有割合
 共重合体Bは、共重合体AとBの合計に対して、1~50重量%含み得る。共重合体Bの含有量が1重量%未満の場合、繊維強化複合体の表面の美麗性の向上効果が低いことがある。50重量%より多い場合、脆性が高くなり繊維強化複合体作製時に発泡体が座屈することがある。共重合体Bの含有量は、例えば、1重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%である。共重合体Bの含有量は、5~40重量%であることが好ましい。
(Iv) Content Ratio of Copolymers A and B The copolymer B may be contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B. When the content of the copolymer B is less than 1% by weight, the effect of improving the beauty of the surface of the fiber-reinforced composite may be low. If it is more than 50% by weight, the brittleness may be high and the foam may be buckled at the time of preparation of the fiber-reinforced composite. The content of copolymer B is, for example, 1 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt% , 50% by weight. The content of the copolymer B is preferably 5 to 40% by weight.
  (v)他の樹脂
 基材樹脂には他の樹脂が混合されていてもよい。他の樹脂としてはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体等のジエン系のゴム状重合体を添加したゴム変性耐衝撃性ポリスチレン系樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリフェニレンエーテル、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリメタクリル酸メチル等、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸エステル共重合体、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体等が挙げられる。
(V) Other Resins Other resins may be mixed with the base resin. Other resins include rubber-modified rubbers to which a diene rubber-like polymer such as polyolefin resin such as polyethylene and polypropylene, polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer are added Impact-resistant polystyrene resin, polycarbonate resin, polyester resin, polyamide resin, polyphenylene ether, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polymethyl methacrylate etc., styrene- (meth) acrylic acid copolymer And styrene- (meth) acrylic acid ester copolymers, aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymers, and the like.
 上記他の樹脂の内、発泡粒子には、ポリメタクリル酸メチルが含有されていてもよい。ポリメタクリル酸メチルが含有されていることによって、発泡粒子の熱融着性が向上し、発泡粒子同士をより強固に熱融着一体化させて、更に優れた機械的物性を有する発泡成形体を得ることができる。発泡粒子中におけるポリメタクリル酸メチルの含有量は、共重合体100重量部に対して10~500重量部が好ましく、20~450重量部がより好ましく、30~400重量部が特に好ましい。 Among the above-mentioned other resins, the foamed particles may contain polymethyl methacrylate. By containing polymethyl methacrylate, the heat-sealing property of the foam particles is improved, and the foam particles are more firmly heat-fused and integrated to form a foam molded article having further excellent mechanical properties. You can get it. The content of poly (methyl methacrylate) in the expanded particles is preferably 10 to 500 parts by weight, more preferably 20 to 450 parts by weight, and particularly preferably 30 to 400 parts by weight with respect to 100 parts by weight of the copolymer.
 発泡粒子には加工助剤としてのアクリル系樹脂が含有されていてもよい。加工助剤を含有していることによって、発泡粒子を構成している樹脂の発泡時における溶融張力(粘弾性)を発泡に適したものとして発泡粒子の連続気泡化を抑制し、発泡粒子の発泡性を向上させて、発泡粒子同士の熱融着をより強固なものとし、更に優れた機械的物性を有する発泡成形体を製造できる。発泡粒子中における加工助剤の含有量は、共重合体100重量部に対して0.5~5重量部が好ましく、0.5~3重量部がより好ましい。 The expanded particles may contain an acrylic resin as a processing aid. By containing the processing aid, the melt tension (viscoelasticity) at the time of foaming of the resin constituting the foamed particles is made suitable for foaming, and the open celling of the foamed particles is suppressed, and the foamed particles are foamed. It is possible to improve the property, to strengthen the heat fusion of the foam particles to each other, and to produce a foam molded product having further excellent mechanical properties. The content of the processing aid in the foamed particles is preferably 0.5 to 5 parts by weight, and more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the copolymer.
 加工助剤としてのアクリル系樹脂としては、特に限定されず、アクリル系単量体の単独重合体又はこれらの二種以上からなる共重合体、アクリル系単量体を50重量%以上含有し且つアクリル系単量体とこれと共重合可能なビニルモノマーとの共重合体等が挙げられる。アクリル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等が挙げられる。アクリル系単量体と共重合可能なビニルモノマーとしては、α-メチルスチレン、アクリロニトリル等が挙げられる。アクリル系樹脂の重量平均分子量は、150万~600万が好ましく、200万~450万がより好ましく、250万~400万が特に好ましい。アクリル系樹脂の重量平均分子量が低すぎても高すぎても、発泡粒子を構成している樹脂の発泡成形時における溶融張力(粘弾性)を発泡に適したものに十分に調整し難く、発泡粒子の発泡性を向上できないことがある。 The acrylic resin as a processing aid is not particularly limited, and contains 50% by weight or more of a homopolymer of an acrylic monomer or a copolymer of two or more of these, and an acrylic monomer Examples thereof include copolymers of acrylic monomers and vinyl monomers copolymerizable therewith. Examples of acrylic monomers include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate and the like. Examples of the vinyl monomer copolymerizable with the acrylic monomer include α-methylstyrene, acrylonitrile and the like. The weight average molecular weight of the acrylic resin is preferably 1.5 million to 6 million, more preferably 2 million to 4.5 million, and particularly preferably 2.5 million to 4 million. Even if the weight average molecular weight of the acrylic resin is too low or too high, it is difficult to sufficiently adjust the melt tension (viscoelasticity) at the time of foam molding of the resin constituting the foamed particles to one suitable for foaming, and foaming It may not be possible to improve the foamability of the particles.
  (vi)添加剤
 基材樹脂には必要に応じて、樹脂以外に添加剤が含まれていてもよい。添加剤としては、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充填剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料等が挙げられる。
(Vi) Additives In the base resin, additives may be contained in addition to the resin, as necessary. Additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, cell regulators, fillers, colorants, weathering agents, anti-aging agents, lubricants, anti-fogging agents, perfumes, etc. It can be mentioned.
 (2)構成
 発泡粒子の平均粒子径は、500~5000μmであることが好ましく、1000~3000μmであることがより好ましい。平均粒子径は、例えば、500μm、1000μm、2000μm、3000μm、4000μm、5000μmである。
 発泡粒子の外形は、発泡成形体を製造できさえすれば特に限定されず、例えば、球状、略球状、円筒形等が挙げられる。発泡粒子は、0.8以上の平均のアスペクト比で示される外形を有していることが好ましい(上限は1の真球状)。アスペクト比は、例えば、0.8、0.85、0.9、0.95、1である。
(2) Configuration The average particle size of the foamed particles is preferably 500 to 5000 μm, and more preferably 1000 to 3000 μm. The average particle size is, for example, 500 μm, 1000 μm, 2000 μm, 3000 μm, 4000 μm, 5000 μm.
The outer shape of the foamed particles is not particularly limited as long as the foamed molded article can be produced, and examples thereof include spherical, substantially spherical, cylindrical and the like. The expanded particles preferably have an outer shape represented by an average aspect ratio of 0.8 or more (the upper limit is a true sphere of 1). The aspect ratio is, for example, 0.8, 0.85, 0.9, 0.95, 1.
 発泡粒子は、20~1.4倍の嵩倍数を有することが好ましい。嵩倍数が20倍より大きい場合、発泡粒子の連続気泡率が上昇して、発泡成形の発泡時に発泡粒子の発泡性が低下することがある。1.4倍より小さい場合、発泡粒子の気泡が不均一となって、発泡成形時における発泡粒子の発泡性が不充分となることがある。嵩倍数は、例えば、20倍、18倍、14倍、12.5倍、10倍、5倍、2倍、1.6倍、1.4倍である。嵩倍数は、14~1.6倍がより好ましく、12.5~2倍が特に好ましい。
 発泡粒子は、40%以下の連続気泡率を示すことが好ましい。連続気泡率が40%より高い場合、発泡成形時に発泡粒子の発泡圧が不足し、発泡粒子同士の熱融着一体化が不十分となって繊維強化複合体の機械的物性が低下することがある。連続気泡率は、例えば、40%、35%、30%、20%、10%、5%、0%である。連続気泡率は35%以下がより好ましい。
The expanded particles preferably have a bulk multiple of 20 to 1.4 times. If the bulk ratio is more than 20 times, the open cell rate of the foamed particles may be increased, and the foamability of the foamed particles may be reduced at the time of foaming of the foam molding. If it is smaller than 1.4 times, the cells of the foamed particles may become nonuniform, and the foamability of the foamed particles may be insufficient at the time of foam molding. The bulk factor is, for example, 20 times, 18 times, 14 times, 12.5 times, 10 times, 5 times, 2 times, 1.6 times, 1.4 times. The bulk ratio is more preferably 14 to 1.6 times, particularly preferably 12.5 to 2 times.
The foamed particles preferably exhibit an open cell ratio of 40% or less. If the open cell ratio is higher than 40%, the foaming pressure of the foamed particles may be insufficient at the time of foam molding, and the heat fusion and integration of the foamed particles may be insufficient to reduce the mechanical properties of the fiber reinforced composite. is there. The open cell rate is, for example, 40%, 35%, 30%, 20%, 10%, 5%, 0%. The open cell rate is more preferably 35% or less.
 (3)製造方法
 発泡粒子の製造方法としては、樹脂粒子に発泡剤を気相含浸させて発泡性粒子を得、発泡性粒子を発泡させる方法が挙げられる。
 まず、樹脂粒子の製造方法としては、
(i)原料樹脂(基材樹脂の構成樹脂の混合物)を押出機内で溶融混練し、混練物を押出機に取り付けたノズル金型から押出しながら切断した後に冷却することで製造する方法、
(ii)原料樹脂を押出機内で溶融混練し、混練物を押出機に取り付けたノズル金型から押出した後、冷却してストランドを得、このストランドを所定間隔毎に切断することで製造する方法、
(iii)原料樹脂を押出機内で溶融混練し、混練物を押出機に取り付けた環状ダイ又はTダイから押出してシートを製造し、このシートを切断することで製造する方法
等が挙げられる。なお、押出機には気泡調整剤が供給されていてもよい。気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルク等が挙げられる。気泡調整剤の量は、樹脂組成物100重量部に対して0.01~5重量部が好ましい。気泡調整剤の量が0.01重量未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5重量部より多い場合、破泡により発泡粒子の独立気泡率が低下することがある。気泡調整剤の量は、0.05~3重量部がより好ましく、0.1~2重量部が特に好ましい。
(3) Manufacturing Method As a method of manufacturing the foamed particles, there is a method of impregnating resin particles with a foaming agent in the gas phase to obtain expandable particles, and expanding the expandable particles.
First, as a method of producing resin particles,
(I) A method of manufacturing by melting and kneading a raw material resin (a mixture of constituent resins of a base resin) in an extruder, cutting the kneaded material out while extruding it from a nozzle mold attached to the extruder, and cooling it.
(Ii) The raw material resin is melt-kneaded in an extruder, and the kneaded material is extruded from a nozzle mold attached to the extruder and then cooled to obtain a strand, and the strand is cut at predetermined intervals. ,
(Iii) The raw material resin is melt-kneaded in an extruder, and the kneaded product is extruded from an annular die or a T-die attached to the extruder to produce a sheet, and the sheet is cut to produce a method. In addition, a bubble control agent may be supplied to the extruder. Examples of the cell regulator include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc. The amount of the cell regulator is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the resin composition. When the amount of the cell regulator is less than 0.01 weight, the cells of the foamed particles become coarse, and the appearance of the resulting foam molded article may be deteriorated. When the amount is more than 5 parts by weight, the closed cell rate of the foamed particles may be reduced due to the cell rupture. The amount of the cell regulator is more preferably 0.05 to 3 parts by weight, and particularly preferably 0.1 to 2 parts by weight.
 次に、発泡性粒子の製造方法としては、密閉し得る容器中で、発泡剤を樹脂粒子に気相含浸させる方法が挙げられる。発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテルのようなエーテル類、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等の無機ガスが挙げられる。中でも、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタンがより好ましく、ノルマルブタン、イソブタンが特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。 Next, as a method for producing the expandable particles, there is mentioned a method of impregnating resin particles with a foaming agent in a gas phase in a container which can be sealed. As the foaming agent, saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane and hexane, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1 Inorganic gases such as fluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, carbon dioxide and nitrogen. Among them, dimethyl ether, propane, normal butane, isobutane and carbon dioxide are preferable, propane, normal butane and isobutane are more preferable, and normal butane and isobutane are particularly preferable. The blowing agents may be used alone or in combination of two or more.
 容器に投入される発泡剤量は、少なすぎると、発泡粒子を所望発泡倍率まで発泡できないことがある。発泡剤量は、多すぎると、発泡剤が可塑剤として作用することから基材樹脂の粘弾性が低下し過ぎて発泡性が低下し良好な発泡粒子を得ることができないことがある。従って、発泡剤量は、原料樹脂100重量部に対して0.1~5重量部が好ましく、0.2~4重量部がより好ましく、0.3~3重量部が特に好ましい。
 更に、発泡粒子の製造方法としては、密閉し得る容器中で、水蒸気のような加熱媒体で加熱する方法が挙げられる。加熱条件としては、例えば、0.3~0.5MPaのゲージ圧、120~159℃の温度、10~180秒の時間が挙げられる。
 発泡粒子の粒径は押出機の前端に取り付けたマルチノズル金型の径を変えること等によって変動させることができる。
If the amount of the blowing agent introduced into the container is too small, the foam particles may not be able to foam to a desired expansion ratio. When the amount of the foaming agent is too large, since the foaming agent acts as a plasticizer, the visco-elasticity of the base resin is excessively lowered, the foaming property may be lowered, and good foamed particles may not be obtained. Accordingly, the amount of the foaming agent is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of the raw material resin.
Furthermore, as a method of producing the foamed particles, a method of heating with a heating medium such as water vapor in a sealable container can be mentioned. The heating conditions include, for example, a gauge pressure of 0.3 to 0.5 MPa, a temperature of 120 to 159 ° C., and a time of 10 to 180 seconds.
The particle size of the foamed particles can be varied by changing the diameter of the multi-nozzle mold attached to the front end of the extruder.
(発泡成形体)
 (1)基材樹脂
 発泡成形体は、共重合体AとBとを含む基材樹脂から構成され、共重合体Bが、共重合体AとBの合計に対して、1~50重量%含まれる。共重合体Bの含有量は、例えば、1重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%である。発泡成形体を構成する基材樹脂は、上記発泡粒子の基材樹脂と同様である。
 (2)物性
 発泡成形体を構成する融着した発泡粒子の平均粒子径は、600~6000μmであることが好ましく、1200~3600μmであることがより好ましい。平均粒子径は、例えば、600μm、1200μm、2000μm、3000μm、3600μm、6000μmである。
 融着した発泡粒子の外形は、発泡成形体を維持できさえすれば特に限定されない。
(Foam molded body)
(1) Base resin The foamed molded article is composed of a base resin containing the copolymers A and B, and the copolymer B is 1 to 50% by weight with respect to the total of the copolymers A and B. included. The content of copolymer B is, for example, 1 wt%, 5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt% , 50% by weight. The base resin that constitutes the foam molded body is the same as the base resin of the above-described foam particles.
(2) Physical Properties The average particle diameter of the fused foamed particles constituting the foamed molded article is preferably 600 to 6000 μm, and more preferably 1200 to 3600 μm. The average particle size is, for example, 600 μm, 1200 μm, 2000 μm, 3000 μm, 3600 μm, 6000 μm.
The outer shape of the fused foam particles is not particularly limited as long as the foam can be maintained.
 発泡成形体は、20~1.4倍の倍数を有することが好ましい。倍数が20倍より大きい場合、機械的物性が不十分となることがある。1.4倍より小さい場合、重量が増えるため発泡の利点が小さくなることがある。嵩倍数は、例えば、20倍、18倍、14倍、12.5倍、10倍、5倍、2倍、1.6倍、1.4倍である。倍数は、14~1.6倍がより好ましく、12.5~2倍が特に好ましい。
 発泡成形体は、40%以下の連続気泡率を示すことが好ましい。連続気泡率が40%より高い場合、繊維強化複合体の機械的物性が低下することがある。連続気泡率は、例えば、40%、35%、30%、20%、10%、5%、0%である。連続気泡率は35%以下がより好ましい。
 発泡成形体の120℃における加熱寸法変化率は-1~1%であることが好ましい。発泡成形体は、その加熱寸法変化率が-1~1%であることによって高温環境下における用途にも好適に用いることができる。加熱寸法変化率は、例えば、-1%、-0.07%、-0.05%、0%、0.05%、0.07%、1%である。
 発泡成形体における単位密度当たりの曲げ弾性率は、600MPa/(g/cm3)以上が好ましい。曲げ弾性率が小さすぎると、発泡成形体の表面に繊維強化プラスチックのような表皮材を積層一体化する際に加えられる圧力によって発泡成形体が変形することがある。曲げ弾性率は、例えば、600、800、1000、1200、1400である(単位略)。
The foam molding preferably has a multiple of 20 to 1.4. If the ratio is more than 20 times, mechanical properties may be insufficient. If it is less than 1.4 times, the advantage of foaming may be reduced due to the increase in weight. The bulk factor is, for example, 20 times, 18 times, 14 times, 12.5 times, 10 times, 5 times, 2 times, 1.6 times, 1.4 times. The multiple is more preferably 14 to 1.6, and particularly preferably 12.5 to 2.
The foam molded body preferably exhibits an open cell rate of 40% or less. If the open cell rate is higher than 40%, the mechanical properties of the fiber reinforced composite may be degraded. The open cell rate is, for example, 40%, 35%, 30%, 20%, 10%, 5%, 0%. The open cell rate is more preferably 35% or less.
The heating dimensional change rate at 120 ° C. of the foamed molded article is preferably −1 to 1%. The foamed molded article can be suitably used for applications under a high temperature environment because its heating dimensional change rate is -1 to 1%. The heating dimensional change rate is, for example, -1%, -0.07%, -0.05%, 0%, 0.05%, 0.07%, 1%.
The flexural modulus per unit density in the foam molded article is preferably 600 MPa / (g / cm 3 ) or more. If the flexural modulus is too low, the pressure applied when laminating and integrating a skin material such as fiber reinforced plastic on the surface of the foam molded body may cause deformation of the foam molded body. The bending elastic modulus is, for example, 600, 800, 1000, 1200, 1400 (unit abbreviation).
 (3)製造方法
 発泡成形体の製造方法としては、発泡粒子を金型のキャビティ内に充填し、キャビティ内に加熱媒体を供給して、発泡粒子を加熱して再発泡させ、再発泡させた発泡粒子同士をこれらの発泡圧力によって互いに熱融着一体化させることによって発泡成形体を得る方法が挙げられる。加熱媒体としては、例えば、水蒸気、熱風、温水等が挙げられ、水蒸気が好ましい。
(3) Manufacturing Method As a method of manufacturing a foam molded article, foam particles were filled in a cavity of a mold, a heating medium was supplied into the cavity, and the foam particles were heated to refoam and refoam. There is a method of obtaining a foam molded article by thermally fusing and integrating foam particles with each other by the foaming pressure. As a heating medium, water vapor | steam, a hot air, warm water etc. are mentioned, for example, Water vapor | steam is preferable.
(繊維強化複合体)
 繊維強化複合体は、発泡成形体と、その表面に積層一体化された繊維強化プラスチック層とを有する。発泡成形体は、共重合体AとBとを含む基材樹脂から構成され、共重合体Bが、共重合体AとBの合計に対して、1~50重量%含まれる。発泡成形体を構成する基材樹脂は、上記発泡粒子の基材樹脂と同様である。
 発泡成形体が発泡シートである場合、発泡成形体の両面に積層一体化されている必要はなく、発泡成形体の両面のうち少なくとも一方の面に繊維強化プラスチックが積層一体化されていればよい。繊維強化プラスチックの積層は、強化複合体の用途に応じて決定すればよい。なかでも、強化複合体の表面硬度や機械的強度を考慮すると、発泡成形体の厚み方向における両面のそれぞれに繊維強化プラスチックが積層一体化されていることが好ましい。
(Fiber-reinforced composite)
The fiber reinforced composite has a foam molded body and a fiber reinforced plastic layer laminated and integrated on the surface thereof. The foamed molded product is composed of a base resin containing the copolymers A and B, and the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B. The base resin that constitutes the foam molded body is the same as the base resin of the above-described foam particles.
When the foam molded body is a foam sheet, it is not necessary to laminate and integrate on both sides of the foam molded body, as long as fiber reinforced plastic is laminated and integrate on at least one surface of both sides of the foam molded body. . The lamination of fiber reinforced plastic may be determined depending on the application of the reinforced composite. Among them, in consideration of the surface hardness and mechanical strength of the reinforced composite, it is preferable that fiber reinforced plastics be integrally laminated on both surfaces in the thickness direction of the foam molded article.
 繊維強化プラスチックを構成している強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維等の無機繊維;ステンレス繊維、スチール繊維等の金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維等の有機繊維;ボロン繊維が挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維及びアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的物性を有している。 Reinforcing fibers constituting the fiber reinforced plastic include inorganic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, tyranno fiber, basalt fiber, and ceramic fiber; metal fibers such as stainless steel fiber and steel fiber; aramid Organic fibers such as fibers, polyethylene fibers, poly-p-phenylene benzoxador (PBO) fibers, etc .; and boron fibers. The reinforcing fibers may be used alone or in combination of two or more. Among them, carbon fiber, glass fiber and aramid fiber are preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical properties despite being lightweight.
 強化繊維は、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物、編物、不織布、及び強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。また、糸としては、ポリアミド樹脂糸、ポリエステル樹脂糸等の合成樹脂糸、及びガラス繊維糸のようなステッチ糸が挙げられる。
 強化繊維基材は、一枚の強化繊維基材のみを積層せずに用いてもよく、複数枚の強化繊維基材を積層して積層強化繊維基材として用いてもよい。複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材等が用いられる。
The reinforcing fibers are preferably used as a reinforcing fiber base processed into a desired shape. Examples of the reinforcing fiber base include woven fabrics, knitted fabrics, non-woven fabrics made of reinforcing fibers, and facing materials made by binding (suture) fiber bundles (strands) in which reinforcing fibers are aligned in one direction with yarn. . The weave of the woven fabric includes plain weave, twill weave, satin weave and the like. The yarns include synthetic resin yarns such as polyamide resin yarns and polyester resin yarns, and stitch yarns such as glass fiber yarns.
The reinforcing fiber base may be used without laminating only one reinforcing fiber base, or may be used as a laminated reinforcing fiber base by laminating a plurality of reinforcing fiber bases. As a laminated reinforcing fiber base in which a plurality of reinforcing fiber bases are laminated, (1) a laminated reinforcing fiber base in which only one type of reinforcing fiber base is prepared and these reinforcing fiber bases are laminated, 2) A multi-layered reinforcing fiber base prepared by laminating a plurality of types of reinforcing fiber base, and (3) a fiber bundle (strand) obtained by aligning the reinforcing fibers in one direction is bound with a yarn (y) A plurality of reinforcing fiber substrates formed by stitching are prepared, and these reinforcing fiber substrates are superimposed so that the fiber directions of the fiber bundles are directed in different directions, and the superimposed reinforcing fiber substrates are yarns The laminated reinforcing fiber base material etc. which are united (sutured) are used.
 繊維強化プラスチックは強化繊維に合成樹脂が含浸されてなるものである。含浸させた合成樹脂によって強化繊維同士を結着一体化させている。
 強化繊維に合成樹脂を含浸させる方法としては、特に限定されず、例えば、(1)強化繊維を合成樹脂中に浸漬する方法、(2)強化繊維に合成樹脂を塗布する方法等が挙げられる。
 強化繊維に含浸させる合成樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれも用いることができ、熱硬化性樹脂が好ましく用いられる。強化繊維に含浸させる熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂とを予備重合した樹脂等が挙げられ、耐熱性、衝撃吸収性又は耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
The fiber reinforced plastic is obtained by impregnating a reinforced fiber with a synthetic resin. Reinforcing fibers are bound and integrated by the impregnated synthetic resin.
The method for impregnating the reinforcing fiber with the synthetic resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the synthetic resin, and (2) a method of applying the synthetic resin to the reinforcing fiber.
As a synthetic resin to be impregnated into the reinforcing fiber, any of a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used. The thermosetting resin to be impregnated into the reinforcing fiber is not particularly limited, and epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide The resin etc. which carried out the prepolymerization of resin and cyanate ester resin etc. are mentioned, Since it is excellent in heat resistance, impact absorption property, or chemical resistance, an epoxy resin and vinyl ester resin are preferable. The thermosetting resin may contain additives such as a curing agent and a curing accelerator. In addition, a thermosetting resin may be used independently and 2 or more types may be used together.
 また、強化繊維に含浸させる熱可塑性樹脂としては、特に限定されず、オレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、アミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂等が挙げられ、発泡成形体との接着性又は繊維強化プラスチックを構成している強化繊維同士の接着性に優れていることから、ポリエステル系樹脂、熱可塑性エポキシ樹脂が好ましい。なお、熱可塑性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
 熱可塑性エポキシ樹脂としては、エポキシ化合物同士の重合体又は共重合体であって直鎖構造を有する重合体や、エポキシ化合物と、このエポキシ化合物と重合し得る単量体との共重合体であって直鎖構造を有する共重合体が挙げられる。具体的には、熱可塑性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられ、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。なお、熱可塑性エポキシ樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
Further, the thermoplastic resin to be impregnated into the reinforcing fiber is not particularly limited, and an olefin resin, a polyester resin, a thermoplastic epoxy resin, an amide resin, a thermoplastic polyurethane resin, a sulfide resin, an acrylic resin and the like are mentioned. And polyester resins and thermoplastic epoxy resins are preferable because they are excellent in adhesion to a foam molded article or adhesion between reinforcing fibers constituting a fiber reinforced plastic. In addition, a thermoplastic resin may be used independently and 2 or more types may be used together.
The thermoplastic epoxy resin is a polymer or copolymer of epoxy compounds and has a linear structure, or a copolymer of an epoxy compound and a monomer that can be polymerized with the epoxy compound. Copolymers having a straight chain structure. Specifically, as the thermoplastic epoxy resin, for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, cyclic aliphatic type epoxy resin, long chain aliphatic type resin An epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin etc. are mentioned, A bisphenol A type epoxy resin and a bisphenol fluorene type epoxy resin are preferable. The thermoplastic epoxy resin may be used alone or in combination of two or more.
 熱可塑性ポリウレタン樹脂としては、ジオールとジイソシアネートとを重合させて得られる直鎖構造を有する重合体が挙げられる。ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が挙げられる。ジオールは、単独で用いられても二種以上が併用されてもよい。ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネートが挙げられる。ジイソシアネートは、単独で用いられても二種以上が併用されてもよい。なお、熱可塑性ポリウレタン樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
 繊維強化プラスチック中における合成樹脂の含有量は、20~70重量%が好ましい。含有量が20重量%未満の場合、強化繊維同士の結着性や繊維強化プラスチックと発泡成形体との接着性が不十分となり、繊維強化プラスチックの機械的物性や繊維強化複合体の機械的強度を十分に向上できないことがある。70重量%より多い場合、繊維強化プラスチックの機械的物性が低下して、繊維強化複合体の機械的強度を十分に向上できないことがある。含有量は30~60重量%がより好ましい。
As a thermoplastic polyurethane resin, the polymer which has a linear structure obtained by polymerizing diol and diisocyanate is mentioned. Examples of the diol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol and the like. The diols may be used alone or in combination of two or more. Examples of the diisocyanate include aromatic diisocyanates, aliphatic diisocyanates and alicyclic diisocyanates. The diisocyanate may be used alone or in combination of two or more. The thermoplastic polyurethane resin may be used alone or in combination of two or more.
The content of the synthetic resin in the fiber reinforced plastic is preferably 20 to 70% by weight. If the content is less than 20% by weight, the binding properties between the reinforcing fibers and the adhesion between the fiber reinforced plastic and the foamed molded article become insufficient, and the mechanical properties of the fiber reinforced plastic and the mechanical strength of the fiber reinforced composite May not improve enough. If it is more than 70% by weight, the mechanical properties of the fiber-reinforced plastic may be reduced, and the mechanical strength of the fiber-reinforced composite may not be sufficiently improved. The content is more preferably 30 to 60% by weight.
 繊維強化プラスチックの厚みは、0.02~2mmが好ましく、0.05~1mmがより好ましい。厚みがこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
 繊維強化プラスチックの目付は、50~4000g/m2が好ましく、100~1000g/m2がより好ましい。目付がこの範囲内である繊維強化プラスチックは、軽量であるにも関わらず機械的物性に優れている。
The thickness of the fiber reinforced plastic is preferably 0.02 to 2 mm, more preferably 0.05 to 1 mm. Fiber reinforced plastics having a thickness in this range are excellent in mechanical properties despite being lightweight.
Basis weight of the fiber-reinforced plastics, preferably 50 ~ 4000g / m 2, more preferably 100 ~ 1000g / m 2. Fiber reinforced plastics having a weight per unit area within this range are excellent in mechanical properties despite being lightweight.
 次に、強化複合体の製造方法を説明する。発泡成形体の表面に繊維強化プラスチックを積層一体化させて強化複合体を製造する方法としては、特に限定されず、例えば、(1)発泡成形体の表面に接着剤を介して繊維強化プラスチックを積層一体化する方法、(2)発泡成形体の表面に、強化繊維に熱可塑性樹脂が含浸されてなる繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱可塑性樹脂をバインダーとして発泡成形体の表面に繊維強化プラスチック形成材を繊維強化プラスチックとして積層一体化する方法、(3)発泡成形体の表面に、強化繊維に未硬化の熱硬化性樹脂が含浸された繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱硬化性樹脂をバインダーとして、熱硬化性樹脂を硬化させて形成された繊維強化プラスチックを発泡成形体の表面に積層一体化する方法、(4)発泡成形体の表面に、加熱されて軟化状態の繊維強化プラスチックを配設し、発泡成形体の表面に繊維強化プラスチックを押圧させることによって繊維強化プラスチックを必要に応じて発泡成形体の表面に沿って変形させながら発泡成形体の表面に積層一体化させる方法、(5)繊維強化プラスチックの成形で一般的に適用される方法等が挙げられる。 Next, a method of producing a reinforced composite will be described. The method for producing a reinforced composite by laminating and integrating fiber reinforced plastic on the surface of a foam molded article is not particularly limited. For example, (1) fiber reinforced plastic is bonded to the surface of the foam molded body via an adhesive. Method of laminating and integrating (2) A fiber-reinforced plastic forming material obtained by impregnating a reinforcing fiber with a thermoplastic resin is laminated on the surface of a foam molded body, and foaming is performed using the thermoplastic resin impregnated in the reinforcing fiber as a binder A method of integrally laminating a fiber reinforced plastic forming material as a fiber reinforced plastic on the surface of a molded body, (3) A fiber reinforced plastic forming material in which a reinforcing fiber is impregnated with an uncured thermosetting resin on the surface of a foam molded body Of a fiber-reinforced plastic formed by curing a thermosetting resin using a thermosetting resin impregnated in reinforcing fibers as a binder (4) A fiber reinforced plastic is required by placing the fiber reinforced plastic in a heated and softened state on the surface of the foam molded body and pressing the fiber reinforced plastic against the surface of the foam molded body According to the method, a method of laminating and integrating on the surface of the foam molded body while being deformed along the surface of the foam molded body, (5) a method generally applied in the molding of fiber reinforced plastic, and the like can be mentioned.
 繊維強化プラスチックの成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。 Examples of methods used for molding fiber reinforced plastics include autoclave method, hand lay up method, spray up method, PCM (Prepreg Compression Molding) method, RTM (Resin Transfer Molding) method, VaRTM (Vacuum assisted Resin Transfer Molding) Law etc. are mentioned.
 このようにして得られた繊維強化複合体は、耐熱性、機械的強度及び軽量性に優れ、且つ美麗性の向上した繊維強化面を有している。そのため、自動車、航空機、鉄道車輛、船舶等の輸送機器分野、家電分野、情報端末分野、家具の分野等の広範な用途に用いることができる。ここで、美麗性の向上した繊維強化面は、その表面平滑率により評価できる。表面平滑率は、10%以下であることが好ましい。表面平滑率は、例えば、0%、1%、3%、5%、7%、10%である。
 例えば、繊維強化複合体は、輸送機器の部品、及び、輸送機器の本体を構成する構造部品を含めた輸送機器構成用部品(特に自動車用部品)、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材として好適に用いることができる。
The fiber-reinforced composite thus obtained is excellent in heat resistance, mechanical strength and lightness, and has a fiber-reinforcing surface with improved aesthetics. Therefore, it can be used in a wide range of applications such as the fields of transportation equipment such as automobiles, aircrafts, railway cars and ships, home appliances, information terminals, and furniture. Here, the fiber reinforced surface with improved aesthetics can be evaluated by its surface smoothness. The surface smoothness is preferably 10% or less. The surface smoothness is, for example, 0%, 1%, 3%, 5%, 7%, 10%.
For example, fiber reinforced composites are parts of transportation equipment and parts for transportation equipment construction (especially parts for automobiles) including structural parts that constitute the main body of transportation equipment, wind turbine blades, robot arms, cushioning materials for helmets, It can be suitably used as a transport container such as an agricultural product box, a heat insulation cold storage container, a rotor blade of an industrial helicopter, and a parts packing material.
 本発明によれば、本発明の繊維強化複合体から構成される自動車用部品が提供され、その自動車用部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。 According to the present invention, there is provided an automotive component comprising the fiber-reinforced composite of the present invention, such as a floor panel, roof, bonnet, fender, undercover, wheel, steering wheel, etc. Examples include parts such as containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, doors, and cowls.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本実施例に何ら限定されるものでない。まず、実施例及び比較例の評価方法について説明する。
 (ガラス転移温度)
 ガラス転移温度は、JIS K7121:1987「プラスチックの転移温度測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。
 示差走査熱量計装置 DSC6220型(エスアイアイナノテクノロジー社製)を用いアルミニウム製測定容器の底にすきまのないよう試料を約6mg充てんした。試料を、窒素ガス流量20mL/minの下、20℃/minの昇温速度で30℃から220℃まで昇温した。10分間保持後速やかに試料を取出し、25±10℃の環境下にて放冷させた後、20℃/minの昇温速度で30℃から220℃まで昇温した時に得られたDSC曲線よりガラス転移温度(開始点)を算出した。この時に基準物質としてアルミナを用いた。このガラス転移開始温度は規格(9.3「ガラス転移温度の求め方」)より求めた。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention in any way. First, evaluation methods of the example and the comparative example will be described.
(Glass-transition temperature)
The glass transition temperature was measured by the method described in JIS K 7121: 1987 "Transition temperature measurement method of plastic". However, the sampling method and temperature conditions were as follows.
About 6 mg of a sample was packed using a differential scanning calorimeter DSC2220 (manufactured by SII Nano Technology Inc.) so that the bottom of the aluminum measurement container was not separated. The sample was heated from 30 ° C. to 220 ° C. at a heating rate of 20 ° C./min under a nitrogen gas flow rate of 20 mL / min. After holding for 10 minutes, the sample is taken out immediately and allowed to cool in an environment of 25 ± 10 ° C, and then the DSC curve obtained when the temperature is raised from 30 ° C to 220 ° C at a temperature rising rate of 20 ° C / min. The glass transition temperature (starting point) was calculated. At this time, alumina was used as a reference material. The glass transition start temperature was determined from the standard (9.3 “How to Determine Glass Transition Temperature”).
 (嵩密度及び嵩倍数)
 嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定した。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいて嵩密度を測定した。
 発泡粒子の嵩密度(g/cm3)=〔試料を入れたメスシリンダーの重量(g)-メスシリンダーの重量(g)〕/〔メスシリンダーの容量(cm3)〕
 嵩倍数は、嵩密度の逆数に樹脂の密度を積算した値とした。
(Bulk density and bulk multiple)
The bulk density was measured in accordance with JIS K 6911: 1995 “Thermosetting plastic general test method”. That is, it measured using the apparent density measuring device based on JISK6911, and measured the bulk density based on the following formula.
Bulk density of foamed particles (g / cm 3 ) = [weight of measuring cylinder containing sample (g) -weight of measuring cylinder (g)] / [volume of measuring cylinder (cm 3 )]
The bulk multiple was a value obtained by integrating the resin density to the reciprocal of the bulk density.
 (密度及び倍数)
 発泡成形体から切り出した試験片(例75×300×30mm)の重量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm3)を求めた。
 倍数は、密度の逆数に樹脂の密度を積算した値とした。
(Density and multiples)
The weight (a) and the volume (b) of the test piece (example 75 × 300 × 30 mm) cut out from the foam molded article are measured so as to have three or more significant figures, respectively, and the foam is produced by the formula (a) / (b) The density (g / cm 3 ) of the compact was determined.
The multiple is a value obtained by integrating the resin density to the reciprocal of the density.
 (FT-IR)
 基材樹脂の吸光度比(D1780/D698、D1720/D698)を次の要領で測定した。
 無作為に選択した10個の各樹脂粒子について、赤外分光分析ATR測定法により表面分析を行って赤外吸収スペクトルを得た。この分析では、試料表面から数μm(約2μm)までの深さの範囲の赤外吸収スペクトルが得られた。各赤外吸収スペクトルから吸光度比(D1780/D698、D1720/D698)を算出し、算出した吸光度比の相加平均を吸光度比とした。
 吸光度D1780、D1720及びD698は、Thermo SCIENTIFIC社から商品名「フーリエ変換赤外分光光度計 Nicolet iS10」で販売されている測定装置に、ATRアクセサリーとしてThermo SCIENTIFIC社製「Smart-iTR」を接続して測定した。以下の条件にて赤外分光分析ATR測定を行った。
(FT-IR)
The absorbance ratio (D1780 / D698, D1720 / D698) of the base resin was measured in the following manner.
An infrared absorption spectrum was obtained by performing surface analysis on each of ten randomly selected resin particles by infrared spectroscopy ATR measurement method. In this analysis, an infrared absorption spectrum in the range of several μm (about 2 μm) in depth from the sample surface was obtained. The absorbance ratio (D1780 / D698, D1720 / D698) was calculated from each infrared absorption spectrum, and the arithmetic mean of the calculated absorbance ratio was defined as the absorbance ratio.
Absorbance D1780, D1720 and D698 are obtained by connecting “Smart-iTR” manufactured by Thermo SCIENTIFIC as an ATR accessory to a measuring apparatus sold by Thermo SCIENTIFIC under the trade name “Fourier Transform Infrared Spectrophotometer Nicolet iS10”. It was measured. Infrared spectroscopy ATR measurement was performed under the following conditions.
 <測定条件>
・測定装置:フーリエ変換赤外分光光度計 Nicolet iS10(Thermo SCIENTIFIC社製)及び一回反射型水平状ATR Smart-iTR(Thermo SCIENTIFIC社製)
・ATRクリスタル:Diamond with ZnSe lens、角度=42°
・測定法:一回ATR法
・測定波数領域:4000cm-1~650cm-1
・測定深度の波数依存性:補正せず
・検出器:重水素化硫酸トリグリシン(DTGS)検出器及びKBrビームスプリッター・分解能:4cm-1
・積算回数:16回(バックグランド測定時も同様)
 ATR法では、試料と高屈折率結晶の密着度合によって測定で得られる赤外吸収スペクトルの強度が変化するため、ATRアクセサリーの「Smart-iTR」で掛けられる最大荷重を掛けて密着度合をほぼ均一にして測定を行なった。
<Measurement conditions>
Measurement device: Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and one-reflection-type horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
ATR crystal: Diamond with ZnSe lens, angle = 42 °
・ Measurement method: One-time ATR method ・ Measurement wave number domain: 4000 cm -1 to 650 cm -1
・ Wavenumber dependence of measurement depth: not corrected ・ Detector: Deuterated triglycine sulfate (DTGS) detector and KBr beam splitter ・ Resolution: 4 cm -1
・ Number of integrations: 16 times (same for background measurement)
In the ATR method, the intensity of the infrared absorption spectrum obtained by measurement changes depending on the degree of adhesion between the sample and the high refractive index crystal, so the degree of adhesion is almost uniform by applying the maximum load applied by "Smart-iTR" of the ATR accessory The measurement was performed.
 以上の条件で得られた赤外線吸収スペクトルは、次のようにピーク処理をしてそれぞれのD1780、D1720及びD698を求めた。
 赤外吸収スペクトルから得られる1780cm-1での吸光度D1780は、無水マレイン酸中の2つのカルボニル基のC=Oによる逆対称の伸縮振動に由来する吸収スペクトルに対応する吸光度とした。
 この吸光度の測定では、1780cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D1780は、1920cm-1と1620cm-1を結ぶ直線をベースラインとして、1810cm-1と1745cm-1間の最大吸光度を意味した。
The infrared absorption spectrum obtained under the above conditions was subjected to peak processing as follows to obtain each of D1780, D1720 and D698.
The absorbance D1780 at 1780 cm -1 obtained from the infrared absorption spectrum was the absorbance corresponding to the absorption spectrum derived from the antisymmetric stretching vibration by C = O of the two carbonyl groups in maleic anhydride.
In this measurement of absorbance, no peak separation was performed even when other absorption spectra overlapped at 1780 cm -1 . Absorbance D1780 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as a baseline, and mean maximum absorbance between 1810 cm -1 and 1745 cm -1.
 また、1720cm-1での吸光度D1720は、メタクリル酸メチル中に含まれるカルボニル基C=Oによる逆対称の伸縮振動に由来する吸収スペクトルに対応する吸光度とした。
 この吸光度の測定では、1720cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D1720は、1920cm-1と1620cm-1を結ぶ直線をベースラインとして、1745cm-1と1690cm-1間の最大吸光度を意味した。
Further, the absorbance D1720 at 1720 cm -1 was an absorbance corresponding to the absorption spectrum derived from the anti-symmetrical stretching vibration by the carbonyl group C = O contained in methyl methacrylate.
In this measurement of absorbance, no peak separation was performed even when other absorption spectra overlapped at 1720 cm -1 . Absorbance D1720 is a straight line connecting the 1920Cm -1 and 1620 cm -1 as a baseline, and mean maximum absorbance between 1745 cm -1 and 1690 cm -1.
 698cm-1での吸光度D698は、スチレン中の1置換ベンゼン環中のC-Hの面外変角振動に由来する吸収スペクトルに対応する吸光度とした。
 この吸光度の測定では、698cm-1で他の吸収スペクトルが重なっている場合でもピーク分離を実施しなかった。吸光度D698は、1510cm-1と810cm-1を結ぶ直線をベースラインとして、720cm-1と660cm-1間の最大吸光度を意味した。
The absorbance D698 at 698 cm -1 was taken as the absorbance corresponding to the absorption spectrum derived from the out-of-plane bending vibration of CH in the monosubstituted benzene ring in styrene.
In this measurement of absorbance, no peak separation was performed even when other absorption spectra overlapped at 698 cm -1 . Absorbance D698 is a straight line connecting the 1510 cm -1 and 810 cm -1 as a baseline, and mean maximum absorbance between 720 cm -1 and 660 cm -1.
 スチレン、メタクリル酸メチル、無水マレイン酸比率(質量%)を、後述の検量線に基づいて、吸光度比(D1780/D698、D1720/D698)から算出した。なお、ピーク処理方法は前述の樹脂粒子と同様の方法を用いた。
 吸光度比からスチレンとメタクリル酸メチルの組成割合を求める方法としては、スチレン樹脂とメタクリル酸メチル樹脂とを所定の組成割合に均一に混合してなる複数種類の標準試料を作製した。
 具体的には、メタクリル酸メチルとスチレンとをそれぞれ0/100、20/80、40/60、50/50及び60/40の重量割合で計量した単量体を10mlのスクリューバイアルに入れ、ここに単量体100重量部に対して10重量部の2,2’-アゾビス(2,4-ジメチルバレロニトリル)を加えて単量体を溶解させた。得られた混合液を2ml試料管(φ7mm×122mm×190mm)に移し入れ、窒素パージした後に封管した。次にこれを65℃に設定したウォーターバスに入れ、10時間加熱して重合を完了させ、アンプルから取り出した重合体を標準試料とした。
 各標準試料について赤外分光分析ATR法により赤外線吸収スペクトルを得た後に吸光度比(D1780/D698)を算出した。そして、縦軸に組成割合(標準試料中のスチレン樹脂比率=質量%)を、横軸に吸光度比(D1780/D698)をとることで検量線を描いた。この検量線に基づいて、スチレン樹脂とメタクリル酸メチル樹脂の組成割合を求めた。
The styrene, methyl methacrylate and maleic anhydride ratio (% by mass) was calculated from the absorbance ratio (D1780 / D698, D1720 / D698) based on a calibration curve described later. In addition, the peak processing method used the method similar to the above-mentioned resin particle.
As a method of determining the composition ratio of styrene and methyl methacrylate from the absorbance ratio, a plurality of types of standard samples were prepared by uniformly mixing a styrene resin and methyl methacrylate resin at a predetermined composition ratio.
Specifically, the monomers obtained by measuring methyl methacrylate and styrene at weight ratios of 0/100, 20/80, 40/60, 50/50 and 60/40, respectively, are placed in a 10 ml screw vial, The monomer was dissolved by adding 10 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) to 100 parts by weight of the monomer. The obtained mixed solution was transferred to a 2 ml sample tube (φ 7 mm × 122 mm × 190 mm), purged with nitrogen and sealed. Next, this was placed in a water bath set at 65 ° C., and heating was carried out for 10 hours to complete the polymerization, and the polymer taken out from the ampoule was used as a standard sample.
For each standard sample, an infrared absorption spectrum was obtained by infrared spectroscopy ATR method, and then an absorbance ratio (D1780 / D698) was calculated. Then, a calibration curve is drawn by taking the composition ratio (styrene resin ratio in standard sample = mass%) on the vertical axis and the absorbance ratio (D1780 / D698) on the horizontal axis. Based on this calibration curve, the composition ratio of the styrene resin and the methyl methacrylate resin was determined.
 また、スチレン樹脂と無水マレイン酸樹脂の標準試料としては、スチレンと無水マレイン酸の1/1共重合体(商品名SMA1000(P)CRAY VALLEY社製)及びスチレンと無水マレイン酸の3/1共重合体(SMA3000(P)CRAY VALLEY社製)を用いた。
 各標準試料について赤外分光分析ATR法により赤外線吸収スペクトルを得た後に吸光度比(D1720/D698)を算出した。そして、縦軸に組成割合(標準試料中のスチレン樹脂比率=質量%)を、横軸に吸光度比(D1720/D698)をとることで検量線を描いた。この検量線に基づいて、スチレン樹脂と無水マレイン酸樹脂の組成割合を求めた。
Also, as a standard sample of styrene resin and maleic anhydride resin, a 1/1 copolymer of styrene and maleic anhydride (trade name SMA 1000 (P) made by CRAY VALLEY Co., Ltd.) and 3/1 co-polymer of styrene and maleic anhydride A polymer (SMA 3000 (P) CRAY VALLEY) was used.
For each standard sample, an infrared absorption spectrum was obtained by infrared spectroscopy ATR method, and then an absorbance ratio (D1720 / D698) was calculated. Then, a calibration curve is drawn by taking the composition ratio (styrene resin ratio in standard sample = mass%) on the vertical axis and the absorbance ratio (D1720 / D698) on the horizontal axis. Based on this calibration curve, the composition ratio of styrene resin and maleic anhydride resin was determined.
 検量線からスチレンとメタクリル酸メチル及びスチレンと無水マレイン酸の組成割合を求めた。それぞれの組成割合から、樹脂中のスチレン、メタクリル酸メチル、無水マレイン酸の3成分の組成割合を以下の手順で求めた。
 ここで、各標準試料の割合を以下のように設定した。
   メタクリル酸メチル:スチレン=A:B   [1]
   スチレン:無水マレイン酸  =C:D   [2]
 スチレンが共通項なので、[2]のスチレン割合Cを[1]のスチレン割合Bに合わせた。
 [2]より
   スチレン   :無水マレイン酸
  =C      :D
  =C×(B/C):D×(B/C)
  =B      :D×(B/C)   [3]
 [3]より、スチレンの割合が[1]と等しくなるので、[1]、[3]よりメタクリル酸メチル、スチレン、無水マレイン酸の存在比は以下のようになった。
   メタクリル酸メチル:スチレン:無水マレイン酸
  =A        :B   :D×(B/C)   [4]
 [4]の存在比より、各成分の割合は以下のようになった。
   メタクリル酸メチル={A/((A+B+D×(B/C))}×100
   スチレン     ={B/((A+B+D×(B/C))}×100
   無水マレイン酸  ={D×(B/C)/((A+B+D×(B/C))}×100
From the calibration curve, the composition ratio of styrene and methyl methacrylate and styrene and maleic anhydride was determined. From the respective compositional proportions, the compositional proportions of the three components of styrene, methyl methacrylate and maleic anhydride in the resin were determined by the following procedure.
Here, the ratio of each standard sample was set as follows.
Methyl methacrylate: Styrene = A: B [1]
Styrene: maleic anhydride = C: D [2]
Since styrene is a common term, the styrene proportion C of [2] was adjusted to the styrene proportion B of [1].
From [2] Styrene: maleic anhydride = C: D
= C x (B / C): D x (B / C)
= B: D x (B / C) [3]
From [3], since the ratio of styrene is equal to [1], the presence ratio of methyl methacrylate, styrene and maleic anhydride is as follows from [1] and [3].
Methyl methacrylate: styrene: maleic anhydride = A: B: D x (B / C) [4]
From the abundance ratio of [4], the ratio of each component was as follows.
Methyl methacrylate = {A / ((A + B + D x (B / C))) x 100
Styrene = {B / ((A + B + D x (B / C))) x 100
Maleic anhydride = {D x (B / C) / ((A + B + D x (B / C))) x 100
 (繊維強化複合体の表面平滑率)
 繊維強化複合体の繊維強化面の20倍の拡大写真をデジタルマイクロスコープ(KEYENCE社製「VHX-1000」、レンズ:VH-Z 20R)を用いて撮影した。得られた拡大写真をA4サイズの紙面に印刷した。得られた紙面において、25cm×20cmの任意の領域を選択した。その任意の領域中、平板金型に接していない領域と接している領域の境界に目視で線を記入した線図を得た。線図を用いて、接していない領域が全領域に占める割合を算出した。この割合を表面平滑率とした。表面平滑率が小さいと、繊維強化プラスチック形成材中のプラスチック成分の抜けが少なくなり、その結果、平板金型に接している領域が多く、繊維強化面の美麗性が高いと判断した。
(Surface smoothness of fiber reinforced composite)
A 20 × magnified image of the fiber reinforced surface of the fiber reinforced composite was taken using a digital microscope (“VHX-1000” manufactured by KEYENCE, lens: VH-Z 20R). The obtained enlarged photograph was printed on A4 size paper. In the paper surface obtained, an arbitrary area of 25 cm × 20 cm was selected. In the arbitrary area | region, the diagram which drew the line visually by the boundary of the area | region which is in contact with the area | region which is not in contact with the flat plate metal mold was obtained. Using a diagram, the ratio of non-contacting area to the whole area was calculated. This ratio was taken as the surface smoothness. When the surface smoothness ratio is small, the plastic component in the fiber-reinforced plastic forming material is less dropped, and as a result, it is judged that the area in contact with the flat plate mold is large and the beautifulness of the fiber-reinforced surface is high.
 (実施例1)
 (樹脂粒子製造工程)
 スチレン-メタクリル酸メチル-無水マレイン酸共重合体A(電気化学工業社製 商品名「DENKA RESISFY R-310」、スチレン:62重量部、メタクリル酸メチル:12重量部、無水マレイン酸:26重量部、密度1.15g/cm3)を80重量部、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体B(電気化学工業社製 商品名「DENKA IP MS-NIP」、スチレン:57重量部、無水マレイン酸:5重量部、N-フェニルマレイミド:38重量部、密度1.18g/cm3、ガラス転移温度Tg186℃)を20重量部を含む樹脂組成物を口径が30mmの二軸押出機に供給して260℃で溶融混練した。続いて、二軸押出機の前端に取り付けたマルチノズル金型〔円状に、直径1.0mmのノズルが12個、配置されたもの〕の各ノズルから樹脂組成物を押出した。押出した樹脂を、直ちに冷却水槽で冷却した。そして、冷却されたストランド状の樹脂を十分に水切りしたのち、ペレタイザーを用いて小粒状に切断して樹脂粒子を製造した。得られた樹脂粒子は、粒子の長さLが1.3~1.8mmで、粒子の径Dが1.0~1.2mmであった。
Example 1
(Resin particle production process)
Styrene-Methyl methacrylate-maleic anhydride copolymer A (trade name "DENKA REGISFY R-310" manufactured by Denki Kagaku Kogyo Co., Ltd., styrene: 62 parts by weight, methyl methacrylate: 12 parts by weight, maleic anhydride: 26 parts by weight Styrene-maleic anhydride-N-phenylmaleimide copolymer B (manufactured by Denki Kagaku Kogyo K.K., trade name "DENKA IP MS-NIP", styrene: 57 parts by weight, density: 1.15 g / cm 3 ) A resin composition containing 5 parts by weight of maleic anhydride, 38 parts by weight of N-phenylmaleimide, a density of 1.18 g / cm 3 and a glass transition temperature of 180 ° C.) is used in a twin screw extruder of 30 mm diameter. It supplied and melt-kneaded at 260 degreeC. Subsequently, the resin composition was extruded from each nozzle of a multi-nozzle die (12 nozzles with a diameter of 1.0 mm were arranged in a circle) attached to the front end of a twin-screw extruder. The extruded resin was immediately cooled in a cooling water bath. Then, after sufficiently draining the cooled strand resin, it was cut into small particles using a pelletizer to produce resin particles. The obtained resin particles had a particle length L of 1.3 to 1.8 mm and a particle diameter D of 1.0 to 1.2 mm.
 (含浸工程)
 上記樹脂粒子100重量部を圧力容器中に密閉し、圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧0.5MPaまで圧入した。20℃の環境下に静置し、含浸時間24時間が経過した後、5分間かけて圧力容器内をゆっくりと除圧した。このようにして、樹脂粒子に炭酸ガスを含浸させて、発泡性粒子を得た。
 (発泡工程)
 上記含浸工程における除圧の後直ぐに、圧力容器から発泡性粒子を取り出した後、炭酸カルシウム0.08重量部を添加し、混合した。その後、水蒸気を用いて、発泡温度146℃で150秒撹拌しながら、高圧の発泡槽で、上記含浸物を水蒸気により発泡させた。発泡後に、高圧の発泡槽から粒子を取り出して、塩化水素水溶液で炭酸カルシウムを除去した後に、気流乾燥機にて乾燥を行い、発泡粒子を得た。発泡粒子の嵩倍数は、10倍であった。
(Impregnation process)
100 parts by weight of the above resin particles were sealed in a pressure vessel, and the inside of the pressure vessel was replaced with carbon dioxide gas, and then carbon dioxide gas was pressed in to an impregnation pressure of 0.5 MPa. It was left to stand in a 20 ° C. environment, and after 24 hours of impregnation time, the pressure vessel was slowly depressurized for 5 minutes. In this manner, resin particles were impregnated with carbon dioxide gas to obtain expandable particles.
(Foaming process)
Immediately after the depressurization in the impregnation step, the expandable particles were taken out from the pressure vessel, and then 0.08 parts by weight of calcium carbonate was added and mixed. Thereafter, the above impregnated material was foamed with steam in a high-pressure foaming tank while stirring for 150 seconds at a foaming temperature of 146 ° C. using steam. After foaming, the particles were removed from the high-pressure foaming tank, calcium carbonate was removed with an aqueous solution of hydrogen chloride, and drying was carried out with a flash dryer to obtain foamed particles. The bulk ratio of the expanded particles was 10 times.
 (成形工程)
 得られた発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉した。圧力容器内を炭酸ガスで置換した後、炭酸ガスを、含浸圧(ゲージ圧)0.4MPaまで圧入した。20℃の環境下に静置し、加圧養生を8時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充填し、0.45MPaの水蒸気にて60秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、厚み30mm×縦300mm×横400mmの発泡成形体を得た。発泡成形体の倍数は、10倍であった。
(Molding process)
The resulting expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day and then sealed in a pressure vessel. After the inside of the pressure vessel was replaced with carbon dioxide gas, carbon dioxide gas was introduced to an impregnation pressure (gauge pressure) of 0.4 MPa. It was left to stand under an environment of 20 ° C. and pressurized curing was carried out for 8 hours. After taking it out, it is filled in a molding die of 30 mm × 300 mm × 400 mm, heated for 60 seconds with steam of 0.45 MPa, and then cooled until the maximum surface pressure of the foam molded body drops to 0.01 MPa. Thus, a foamed molded product of thickness 30 mm × length 300 mm × width 400 mm was obtained. The multiple of the foamed molded product was 10 times.
 (繊維強化工程)
 炭素繊維からなる綾織の織物からなる強化繊維基材に、未硬化のエポキシ樹脂(ガラス転移温度128℃)が40重量%含浸されている繊維強化プラスチック形成材(厚み0.23mm、目付:200g/m2、三菱レイヨン社製「パイロフィルプリプレグ TR3523-395GMP」)を4枚用意した。
 2枚の繊維強化プラスチック形成材を、強化繊維基材の経糸の長さ方向同士の交差角度が90°となるように重ね合わせた。次いで、2枚の繊維強化プラスチック形成材が重なり合っている部分を縦300mm×横400mmの平面長方形状に切り出して積層繊維強化プラスチック形成材を作製した。同様の要領でもう一枚の積層繊維強化プラスチック形成材を作製した。
 発泡成形体の厚み方向に直交する両面のそれぞれに積層繊維強化プラスチック形成材を積層して厚み約31mmの積層体を作製した。
 続いて、上記積層体を平板金型間に配設し、厚み30mmのスペーサーを配置した平板金型を型締めすることによって、プレス成形し、繊維強化プラスチックを発泡成形体に熱接着させることで繊維強化複合体を作製した。
 なお、プレス成形時には、積層体が135℃となるようにし、8分保持することによって、繊維強化樹プラスチックに含有されている樹脂を硬化させた。この硬化により、繊維強化プラスチックの繊維どうしを硬化したエポキシ樹脂で結着、固定して繊維強化プラスチックを発泡成形体の両面に積層一体化させて繊維強化複合体を製造した。
 繊維強化複合体を30℃以下に冷却した後、平板金型を開いて厚み30mmの繊維強化複合体を取り出した。
(Fiber strengthening process)
A fiber-reinforced plastic former (thickness 0.23 mm, fabric weight: 200 g / g) in which 40% by weight of uncured epoxy resin (glass transition temperature 128 ° C.) is impregnated in a reinforcing fiber base made of twill woven of carbon fibers. There were prepared m 2 pieces of “Pyrofill Prepreg TR 3523-395 GMP” manufactured by Mitsubishi Rayon Co., Ltd.).
The two fiber-reinforced plastic formers were superposed such that the crossing angle between the longitudinal directions of the warps of the reinforcing fiber base was 90 °. Next, a portion where two fiber reinforced plastic forming materials overlap one another is cut out into a planar rectangular shape of 300 mm long × 400 mm wide to prepare a laminated fiber reinforced plastic forming material. Another laminated fiber reinforced plastic former was produced in the same manner.
A laminated fiber reinforced plastic forming material was laminated on each of both sides orthogonal to the thickness direction of the foam molded article to prepare a laminate having a thickness of about 31 mm.
Subsequently, the laminate is disposed between flat plate molds, and press molding is performed by clamping a flat plate mold on which a spacer of 30 mm thickness is disposed, thereby thermally bonding the fiber reinforced plastic to the foam molded article. A fiber reinforced composite was made.
In addition, at the time of press molding, the laminate was brought to 135 ° C. and held for 8 minutes to cure the resin contained in the fiber reinforced plastic. By this curing, the fibers of the fiber reinforced plastic were bound and fixed with the cured epoxy resin, and the fiber reinforced plastic was laminated and integrated on both sides of the foam molded body to produce a fiber reinforced composite.
After cooling the fiber reinforced composite to 30 ° C. or less, the flat plate mold was opened to take out a fiber reinforced composite having a thickness of 30 mm.
 (実施例2)
 樹脂粒子製造工程において、スチレン-メタクリル酸メチル-無水マレイン酸共重合体Aを85重量部とし、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体Bを15重量部としたことと、成形工程において、0.43MPaの水蒸気にて60秒間加熱を行ったこと以外は実施例1と同様にして、発泡粒子、発泡成形体、繊維強化複合体を得た。
(Example 2)
In the resin particle production process, 85 parts by weight of styrene-methyl methacrylate-maleic anhydride copolymer A and 15 parts by weight of styrene-maleic anhydride-N-phenylmaleimide copolymer B, and a molding process In the same manner as in Example 1 except that heating was carried out with steam of 0.43 MPa for 60 seconds, foam particles, a foam molded article, and a fiber reinforced composite were obtained.
 (実施例3)
 樹脂粒子製造工程において、スチレン-メタクリル酸メチル-無水マレイン酸共重合体Aを90重量部とし、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体Bを10重量部としたことと、発泡工程において、水蒸気を用いて、発泡温度143℃で150秒撹拌しながら、高圧の発泡槽で発泡させたことと、成形工程において、0.40MPaの水蒸気にて60秒間加熱を行ったこと以外は実施例1と同様にして、発泡粒子、発泡成形体、繊維強化複合体を得た。
(Example 3)
In the resin particle production process, 90 parts by weight of styrene-methyl methacrylate-maleic anhydride copolymer A and 10 parts by weight of styrene-maleic anhydride-N-phenylmaleimide copolymer B, and a foaming step In the case of using a steam at a foaming temperature of 143 ° C. for 150 seconds while stirring, using a steam at a high pressure in a foaming tank, and in the forming process, performing heating for 60 seconds with steam of 0.40 MPa. In the same manner as in Example 1, foamed particles, a foamed molded article, and a fiber reinforced composite were obtained.
 (比較例1)
 樹脂粒子製造工程において、スチレン-無水マレイン酸-N-フェニルマレイミド共重合体を使用しないことと、発泡工程において、水蒸気を用いて、発泡温度142℃で150秒撹拌しながら、高圧の発泡槽で発泡させたことと、成形工程において、0.38MPaの水蒸気にて60秒間加熱を行ったこと以外は実施例1と同様にして、発泡粒子、発泡成形体、繊維強化複合体を得た。
(Comparative example 1)
In the resin particle production process, not using styrene-maleic anhydride-N-phenyl maleimide copolymer, and in the foaming process, using a steam at a foaming temperature of high pressure while stirring at a foaming temperature of 142 ° C. for 150 seconds Foamed particles, a foam molded article, and a fiber-reinforced composite were obtained in the same manner as in Example 1 except that foaming was performed and heating was performed with steam of 0.38 MPa for 60 seconds in the forming step.
 実施例1~3及び比較例1の基材樹脂の内容、発泡粒子の嵩倍数、発泡成形体の倍数、繊維強化複合体の表面平滑率を表1にまとめて示す。また、実施例1~3及び比較例1の繊維強化複合体の繊維強化面の写真及び対応する線図を図1~4に示す。これら図中、(a)は写真、(b)は線図である。 The contents of the base resin of Examples 1 to 3 and Comparative Example 1, the bulk multiple of the foamed particles, the multiple of the foamed molded product, and the surface smoothness of the fiber reinforced composite are shown in Table 1. Further, photographs and corresponding diagrams of the fiber-reinforced surface of the fiber-reinforced composites of Examples 1 to 3 and Comparative Example 1 are shown in FIGS. 1 to 4. In these figures, (a) is a photograph and (b) is a diagram.
Figure JPOXMLDOC01-appb-T000001
 A:共重合体A
 B:共重合体B
 ST:スチレン
 MAM:メタクリル酸メチル
 MAH:無水マレイン酸
 NPM:N-フェニルマレイミド
Figure JPOXMLDOC01-appb-T000001
A: copolymer A
B: copolymer B
ST: styrene MAM: methyl methacrylate MAH: maleic anhydride NPM: N-phenylmaleimide
 表1から、実施例1~3の発泡粒子は、表面の美麗性が向上した繊維強化複合体を与え得ることが分かる。また、図1~4から、実施例1~3の繊維強化複合体は、表面が美麗であることが確認できる。 It can be seen from Table 1 that the foamed particles of Examples 1 to 3 can give a fiber-reinforced composite with improved surface aesthetics. Further, it can be confirmed from FIGS. 1 to 4 that the fiber-reinforced composites of Examples 1 to 3 have a beautiful surface.

Claims (9)

  1.  芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂から構成され、前記共重合体Bが、前記共重合体AとBの合計に対して、1~50重量%含まれる繊維強化複合体製造用の発泡粒子。 A base resin comprising an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B, Expanded particles for producing a fiber-reinforced composite, wherein the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
  2.  前記基材樹脂が、115~160℃のガラス転移温度Tgを有する請求項1に記載の繊維強化複合体製造用の発泡粒子。 The expanded particles for producing a fiber-reinforced composite according to claim 1, wherein the base resin has a glass transition temperature Tg of 115 to 160 属 C.
  3.  前記芳香族ビニルが、スチレン、α-メチルスチレン、ビニルトルエン、エチルスチレン、i-プロピルスチレン、t-ブチルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(ビニルフェニル)ブタン、ジビニルナフタレン、ジビニルアントラセン、ジビニルビフェニル、ビスフェノールAのエチレンオキシド付加物ジ(メタ)アクリレート及びビスフェノールAのプロピレンオキシド付加物ジ(メタ)アクリレートから選択され、
     前記(メタ)アクリル酸エステルが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル及び(メタ)アクリル酸ブチルから選択され、
     前記不飽和ジカルボン酸が、マレイン酸、イタコン酸、シトラコン酸、アコニット酸及びこれらの無水物から選択され、
     前記不飽和ジカルボン酸イミドが、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド及びN-ナフチルマレイミドから選択される請求項1に記載の繊維強化複合体製造用の発泡粒子。
    The aromatic vinyl is styrene, α-methylstyrene, vinyltoluene, ethylstyrene, i-propylstyrene, t-butylstyrene, dimethylstyrene, bromostyrene, chlorostyrene, divinylbenzene, trivinylbenzene, divinyltoluene, divinylxylene , Bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, bis (vinylphenyl) butane, divinylnaphthalene, divinylanthracene, divinylbiphenyl, ethylene oxide adduct of bisphenol A, di (meth) acrylate and It is selected from propylene oxide adduct di (meth) acrylate of bisphenol A,
    The (meth) acrylic ester is selected from methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and butyl (meth) acrylate,
    The unsaturated dicarboxylic acid is selected from maleic acid, itaconic acid, citraconic acid, aconitic acid and their anhydrides,
    The fiber-reinforced composite according to claim 1, wherein the unsaturated dicarboximide is selected from maleimide, N-methyl maleimide, N-ethyl maleimide, N-cyclohexyl maleimide, N-phenyl maleimide and N-naphthyl maleimide. Foam particles.
  4.  前記共重合体Aが、芳香族ビニルと(メタ)アクリル酸エステルと不飽和ジカルボン酸の3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を30~80重量部、(メタ)アクリル酸エステルに由来する単位を8~35重量部、不飽和ジカルボン酸に由来する単位を10~50重量部含み、
     前記共重合体Bが、芳香族ビニルと不飽和ジカルボン酸と不飽和ジカルボン酸イミドの3つに由来する単位の合計を100重量部とすると、芳香族ビニルに由来する単位を20~80重量部、不飽和ジカルボン酸に由来する単位を2~30重量部、不飽和ジカルボン酸イミドに由来する単位を20~80重量部含む請求項1に記載の繊維強化複合体製造用の発泡粒子。
    When the copolymer A has a total of 100 parts by weight of units derived from three of an aromatic vinyl, a (meth) acrylate and an unsaturated dicarboxylic acid, 30 to 80 parts of a unit derived from an aromatic vinyl Part, containing 8 to 35 parts by weight of a unit derived from (meth) acrylic acid ester and 10 to 50 parts by weight of a unit derived from unsaturated dicarboxylic acid,
    When the copolymer B has a total of 100 parts by weight of units derived from aromatic vinyl, unsaturated dicarboxylic acid and unsaturated dicarboximide, 20 to 80 parts by weight of units derived from aromatic vinyl An expanded particle for producing a fiber-reinforced composite according to claim 1, comprising 2 to 30 parts by weight of a unit derived from unsaturated dicarboxylic acid and 20 to 80 parts by weight of a unit derived from unsaturated dicarboxylic acid imide.
  5.  芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂から構成され、前記共重合体Bが、前記共重合体AとBの合計に対して、1~50重量%含まれる繊維強化複合体製造用の発泡成形体。 A base resin comprising an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B, A foam-molded article for producing a fiber-reinforced composite, wherein the copolymer B is contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B.
  6.  芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体Aと、芳香族ビニル-不飽和ジカルボン酸-不飽和ジカルボン酸イミド共重合体Bとを含む基材樹脂から構成され、前記共重合体Bが、前記共重合体AとBの合計に対して、1~50重量%含まれる発泡成形体と、前記発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体。 A base resin comprising an aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer A and an aromatic vinyl-unsaturated dicarboxylic acid-unsaturated dicarboximide copolymer B, The copolymer B has a foam-molded article contained in an amount of 1 to 50% by weight based on the total of the copolymers A and B, and a fiber reinforced plastic layer laminated and integrated on the surface of the foam molded article. Fiber reinforced composite.
  7.  前記繊維強化複合体が、風車翼、ロボットアーム又は自動車用部品に用いられる請求項6に記載の繊維強化複合体。 The fiber reinforced composite according to claim 6, wherein the fiber reinforced composite is used for a wind turbine blade, a robot arm or an automotive part.
  8.  前記繊維強化複合体が、10%以下の表面平滑率を有する請求項6に記載の繊維強化複合体。 The fiber reinforced composite according to claim 6, wherein the fiber reinforced composite has a surface smoothness of 10% or less.
  9.  請求項6に記載の繊維強化複合体から構成される自動車用部品。 An automobile part comprising the fiber reinforced composite according to claim 6.
PCT/JP2018/028099 2017-08-30 2018-07-26 Expanded beads and molded foam for producing fiber-reinforced composite, fiber-reinforced composite, and automotive component WO2019044299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166021A JP6449953B1 (en) 2017-08-30 2017-08-30 Foamed particles and foamed moldings for the production of fiber reinforced composites, fiber reinforced composites and automotive parts
JP2017-166021 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019044299A1 true WO2019044299A1 (en) 2019-03-07

Family

ID=64960367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028099 WO2019044299A1 (en) 2017-08-30 2018-07-26 Expanded beads and molded foam for producing fiber-reinforced composite, fiber-reinforced composite, and automotive component

Country Status (3)

Country Link
JP (1) JP6449953B1 (en)
TW (1) TWI663199B (en)
WO (1) WO2019044299A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307760A (en) * 2003-04-10 2004-11-04 Denki Kagaku Kogyo Kk Method for producing heat-resistant thermoplastic resin and heat-resistant thermoplastic resin produced by the method
JP2008156468A (en) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk Heat-resistant extrusion foam board and production method thereof
JP2010229205A (en) * 2009-03-26 2010-10-14 Sekisui Plastics Co Ltd Expandable thermoplastic resin particle, process for producing the same, prefoamed particle and foam molded product
JP2015193723A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Foamed particle for in-mold foam molding, in-mold foam-molded body and fiber-reinforced composite body
JP2016037522A (en) * 2014-08-06 2016-03-22 デンカ株式会社 Styrene-based copolymer for foam molded article
WO2018061263A1 (en) * 2016-09-27 2018-04-05 積水化成品工業株式会社 Expanded beads, molded foam, fiber-reinforced composite, and automotive component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092727B2 (en) * 2007-08-27 2012-01-10 Dow Global Technologies Llc Method of forming extruded polystyrene foams and the products made therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307760A (en) * 2003-04-10 2004-11-04 Denki Kagaku Kogyo Kk Method for producing heat-resistant thermoplastic resin and heat-resistant thermoplastic resin produced by the method
JP2008156468A (en) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk Heat-resistant extrusion foam board and production method thereof
JP2010229205A (en) * 2009-03-26 2010-10-14 Sekisui Plastics Co Ltd Expandable thermoplastic resin particle, process for producing the same, prefoamed particle and foam molded product
JP2015193723A (en) * 2014-03-31 2015-11-05 積水化成品工業株式会社 Foamed particle for in-mold foam molding, in-mold foam-molded body and fiber-reinforced composite body
JP2016037522A (en) * 2014-08-06 2016-03-22 デンカ株式会社 Styrene-based copolymer for foam molded article
WO2018061263A1 (en) * 2016-09-27 2018-04-05 積水化成品工業株式会社 Expanded beads, molded foam, fiber-reinforced composite, and automotive component

Also Published As

Publication number Publication date
JP2019044014A (en) 2019-03-22
JP6449953B1 (en) 2019-01-09
TWI663199B (en) 2019-06-21
TW201920404A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6161563B2 (en) Fiber reinforced composite
JP6043677B2 (en) Thermoplastic polyester resin extruded foam sheet, molded product using the same, method for producing thermoplastic polyester resin extruded foam sheet, and fiber reinforced composite
TWI615434B (en) Foamed particle and foamed molded body, fiber reinforced composite and parts for automobiles
WO2019189635A1 (en) Expanded beads, molded foam, fiber-reinforced composite, and automotive component
JP6395896B2 (en) Foamed particles for in-mold foam molding, in-mold foam molded body and fiber reinforced composite
JP2019044105A (en) Foamed particle, foamed molding, fiber-reinforced composite body, method for producing the same, and automobile parts
JP6484206B2 (en) Foamed particles, foamed molded products, fiber reinforced composites, and automotive parts
JP2020033484A (en) Foam particle, foam molding, fiber-reinforced composite body and component for automobile
JP6200861B2 (en) Resin foam for forming composite and method for producing fiber-reinforced composite
WO2019044299A1 (en) Expanded beads and molded foam for producing fiber-reinforced composite, fiber-reinforced composite, and automotive component
JP6050730B2 (en) In-mold foam molded article, fiber reinforced composite, and method for producing in-mold foam molded article
WO2019188052A1 (en) Foam particles, foam molded article, fiber-reinforced composite article and automobile parts
JP7262273B2 (en) Foamed particles and foamed moldings
JP2020050786A (en) Foam particle, foam molded body, fiber reinforced composite, and automobile component
JP2020050785A (en) Foam particle, foam molded body, fiber reinforced composite, and automobile component
JP6668433B1 (en) Expanded particles, expanded molded article, method for producing the same, and fiber-reinforced composite
JP2022057468A (en) Thermoplastic resin foamed particle, thermoplastic resin foamed particle molding, foamed resin composite body, method for producing thermoplastic resin foamed particle, and method for producing thermoplastic resin foamed particle molding
JP2019183093A (en) Foam particle, foam molded body, fiber reinforced composite and automobile component
JP2019183099A (en) Foam particle, foam molded body, fiber reinforced composite and automobile component
JP7262266B2 (en) Foamed particles and foamed moldings
US20230295420A1 (en) Thermoplastic resin foam, thermoplastic resin foam sheet, fiber-reinforced resin composite, method for manufacturing thermoplastic resin foam, thermoplastic resin foam molded article, method for manufacturing thermoplastic resin foam molded article, and foamed resin composite
JP2022129943A (en) Foam particle, foam molding and composite structure member
JP2019001980A (en) Aromatic vinyl resin composition for the production of foamed particle and use therefor
JP2019001981A (en) Polylactic acid resin composition for the production of foamed particle and use therefor
WO2020065485A1 (en) Expanded particles and expanded molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851632

Country of ref document: EP

Kind code of ref document: A1