JP2022057468A - Thermoplastic resin foamed particle, thermoplastic resin foamed particle molding, foamed resin composite body, method for producing thermoplastic resin foamed particle, and method for producing thermoplastic resin foamed particle molding - Google Patents

Thermoplastic resin foamed particle, thermoplastic resin foamed particle molding, foamed resin composite body, method for producing thermoplastic resin foamed particle, and method for producing thermoplastic resin foamed particle molding Download PDF

Info

Publication number
JP2022057468A
JP2022057468A JP2020165746A JP2020165746A JP2022057468A JP 2022057468 A JP2022057468 A JP 2022057468A JP 2020165746 A JP2020165746 A JP 2020165746A JP 2020165746 A JP2020165746 A JP 2020165746A JP 2022057468 A JP2022057468 A JP 2022057468A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
foamed
particle molded
foamed particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020165746A
Other languages
Japanese (ja)
Other versions
JP7524018B2 (en
Inventor
哲朗 田井
Tetsuro Tai
皓平 田積
Kohei Tazumi
佑輔 ▲桑▼▲原▼
Yusuke KUWABARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2020165746A priority Critical patent/JP7524018B2/en
Priority to PCT/JP2021/028416 priority patent/WO2022025274A1/en
Priority to US18/018,678 priority patent/US20230295420A1/en
Priority to EP21851301.8A priority patent/EP4190533A4/en
Publication of JP2022057468A publication Critical patent/JP2022057468A/en
Application granted granted Critical
Publication of JP7524018B2 publication Critical patent/JP7524018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide thermoplastic resin foamed particles which are excellent in a heat-resistant strength, in consideration of a softened foamed particle molding after a temperature has risen.SOLUTION: Thermoplastic resin foamed particles contain a thermoplastic resin, in which the thermoplastic resin contains a polyester-based resin and a polyimide-based resin, and a glass transition temperature is single. The glass transition temperature of the thermoplastic resin is preferably 80-130°C, and an absolute value in a difference between an endotherm and an exotherm determined by heat flux scanning differential calorimetry at a heating rate of 10°C/min is preferably 3-35 J/g.SELECTED DRAWING: None

Description

本発明は、熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法に関する。 The present invention relates to a method for producing a thermoplastic resin foamed particle, a thermoplastic resin foamed particle molded body, a foamed resin composite, a thermoplastic resin foamed particle, and a method for producing a thermoplastic resin foamed particle molded body.

熱可塑性樹脂を含む発泡粒子(熱可塑性樹脂発泡粒子)の成形体(熱可塑性樹脂発泡粒子成形体)は、軽量で、断熱性、緩衝性及び機械的強度に優れている。このため、熱可塑性樹脂発泡粒子成形体(単に「発泡粒子成形体」ということがある)は、自動車、航空機、鉄道車両等への適用が検討されている。
熱可塑性樹脂の中でも、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂は、剛性及び耐熱性に優れた発泡粒子成形体となり得るため、ポリエスエル系樹脂を用いた発泡粒子成形体の検討が進められている。
The molded body (thermoplastic resin foamed particle molded body) of the foamed particles (thermoplastic resin foamed particles) containing the thermoplastic resin is lightweight and has excellent heat insulating properties, cushioning properties, and mechanical strength. Therefore, the application of the thermoplastic resin foamed particle molded product (sometimes referred to simply as “foamed particle molded product”) to automobiles, aircrafts, railroad vehicles, and the like is being studied.
Among the thermoplastic resins, polyester-based resins such as polyethylene terephthalate (PET) can be foamed particle molded bodies having excellent rigidity and heat resistance, and therefore, studies on foamed particle molded bodies using polysell-based resins are underway. ..

発泡粒子成形体の製造方法として、型内発泡成形が挙げられる。型内発泡成形について、説明する。熱可塑性樹脂発泡粒子(単に、「発泡粒子」ということがある)を金型のキャビティ内に充填する。キャビティ内の発泡粒子を熱水や水蒸気等の加熱媒体によって加熱して発泡させて二次発泡粒子としつつ、発泡粒子の発泡圧によって二次発泡粒子同士を熱融着一体化させて、所望形状の発泡粒子成形体を得る。 Examples of the method for producing a foamed particle molded product include in-mold foam molding. In-mold foam molding will be described. Thermoplastic foam particles (sometimes referred to simply as "foam particles") are filled into the mold cavity. The foamed particles in the cavity are heated by a heating medium such as hot water or steam to foam them into secondary foamed particles, and the secondary foamed particles are heat-fused and integrated by the foaming pressure of the foamed particles to form a desired shape. To obtain the foamed particle molded body of.

例えば、特許文献1では、低結晶化度のポリエチレンテレフタレート(PET)の予備発泡粒子を金型内に充填し、金型表面の温度をPETのガラス転移温度Tgよりも高い温度に加熱して型内発泡成形を行い、次いで所定の時間をかけて金型の表面温度がガラス転移温度Tgよりも低くならないように冷却する発泡粒子成形体の製造方法が開示されている。特許文献1の発明によれば、型内発泡成形のための加熱終了後に、その成形体を金型から取り出さずに金型の表面温度がTgよりも低くならないように冷却することで、発泡粒子成形体の結晶化を促進して、加熱寸法安定性の向上を図っている。しかし、特許文献1の発明は、結晶化を促進するための冷却工程を要するため、成形時間が長くなるといった問題を有している。なお、「加熱寸法安定性」とは、発泡粒子成形体の温度が高められた際に、伸長又は収縮を生じにくい性質を意味する。 For example, in Patent Document 1, prefoamed particles of polyethylene terephthalate (PET) having a low degree of crystallization are filled in a mold, and the temperature of the mold surface is heated to a temperature higher than the glass transition temperature Tg of PET. Disclosed is a method for producing a foamed particle molded product, which is subjected to internal foam molding and then cooled over a predetermined time so that the surface temperature of the mold does not become lower than the glass transition temperature Tg. According to the invention of Patent Document 1, after the heating for in-mold foam molding is completed, the molded product is cooled without being taken out from the mold so that the surface temperature of the mold does not become lower than Tg. The crystallization of the molded product is promoted to improve the heating dimensional stability. However, the invention of Patent Document 1 has a problem that the molding time becomes long because a cooling step for promoting crystallization is required. The "heated dimensional stability" means a property that expansion or contraction is unlikely to occur when the temperature of the foamed particle molded product is increased.

こうした問題に対して、特許文献2には、結晶性ポリエステル系樹脂と、特定のガラス転移温度Tgの非晶性ポリエステル系樹脂とを特定の割合で含有する発泡粒子の製造方法が提案されている。特許文献2の発明によれば、結晶性ポリエステル系樹脂よりも高いガラス転移温度Tgを有する非晶性熱可塑性ポリエステル系樹脂を含有していることから、この熱可塑性ポリエステル系樹脂発泡粒子を用いて型内発泡成形して得られる発泡粒子成形体は、結晶化度を上昇させるための工程を要することなく優れた加熱寸法安定性を有する。 To solve such a problem, Patent Document 2 proposes a method for producing foamed particles containing a crystalline polyester resin and an amorphous polyester resin having a specific glass transition temperature Tg in a specific ratio. .. According to the invention of Patent Document 2, since it contains an amorphous thermoplastic polyester resin having a glass transition temperature Tg higher than that of the crystalline polyester resin, the thermoplastic polyester resin foamed particles are used. The foamed particle molded body obtained by in-mold foam molding has excellent thermal dimensional stability without requiring a step for increasing the crystallinity.

国際公開第2000/035650号International Publication No. 2000/03565 特開2014-070153号公報Japanese Unexamined Patent Publication No. 2014-070153

しかしながら、特許文献2の発明は、加熱寸法安定に優れるものの、加熱されると軟弱になる(耐熱強度が低い)。このため、温度が上昇すると、剛性が低下するおそれがある。
そこで、本発明は、耐熱強度に優れる熱可塑性樹脂発泡粒子を提供することを目的とする。
However, although the invention of Patent Document 2 is excellent in heat dimensional stability, it becomes soft when heated (heat resistance strength is low). Therefore, when the temperature rises, the rigidity may decrease.
Therefore, an object of the present invention is to provide thermoplastic resin foamed particles having excellent heat resistance.

本発明者らが鋭意検討した結果、結晶性ポリエステル系樹脂と非晶性ポリエステル系樹脂との混合物は充分に相溶していないため、2種のポリエステル系樹脂の内の低い方のガラス転移温度に達すると、軟化して変形を生じるとの知見を得た。この知見を基に、相溶性の高い2種の樹脂を含ませることで、耐熱強度を高められることを見出し、本発明を完成するに至った。 As a result of diligent studies by the present inventors, the mixture of the crystalline polyester resin and the amorphous polyester resin is not sufficiently compatible with each other, so that the glass transition temperature of the lower of the two polyester resins is lower. It was found that when it reaches, it softens and deforms. Based on this finding, it was found that the heat resistance can be increased by including two kinds of highly compatible resins, and the present invention has been completed.

即ち、本発明は、以下の態様を有する。
<1>
熱可塑性樹脂を含み、
前記熱可塑性樹脂は、ポリエステル系樹脂とポリイミド系樹脂とを含み、
ガラス転移温度Tgが単一である、熱可塑性樹脂発泡粒子。
<2>
前記ガラス転移温度Tgは、80~130℃である、<1>に記載の熱可塑性樹脂発泡粒子。
<3>
加熱速度10℃/分における熱流束示差走査熱量測定によって求められる吸熱量と発熱量との差の絶対値が3~35J/gである、<1>又は<2>に記載の熱可塑性樹脂発泡粒子。
<4>
前記熱可塑性樹脂の総質量に対する前記ポリエステル系樹脂の含有割合は、40~95質量%であり、
前記熱可塑性樹脂の総質量に対する前記ポリイミド系樹脂の含有割合は、5~60質量%である、
<1>~<3>のいずれかに記載の熱可塑性樹脂発泡粒子。
<5>
加熱速度5℃/分、周波数1Hzでの固体粘弾性測定における損失正接tanδが最大となる温度は、120~230℃である、<1>~<4>のいずれかに記載の熱可塑性樹脂発泡粒子。
<6>
前記ポリイミド系樹脂がポリエーテルイミド系樹脂である、<1>~<5>のいずれかに記載の熱可塑性樹脂発泡粒子。
<7>
前記ポリエステル系樹脂が、植物由来のポリエステル系樹脂を含む、<1>~<6>のいずれかに記載の熱可塑性樹脂発泡粒子。
<8>
前記熱可塑性樹脂が、リサイクル原料を含む、<1>~<7>のいずれかに記載の熱可塑性樹脂発泡粒子。
That is, the present invention has the following aspects.
<1>
Contains thermoplastic resin
The thermoplastic resin contains a polyester-based resin and a polyimide-based resin.
Thermoplastic resin foamed particles having a single glass transition temperature Tg.
<2>
The thermoplastic resin foamed particles according to <1>, wherein the glass transition temperature Tg is 80 to 130 ° C.
<3>
The thermoplastic resin foam according to <1> or <2>, wherein the absolute value of the difference between the heat absorption amount and the calorific value obtained by the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min is 3 to 35 J / g. particle.
<4>
The content ratio of the polyester resin to the total mass of the thermoplastic resin is 40 to 95% by mass.
The content ratio of the polyimide resin to the total mass of the thermoplastic resin is 5 to 60% by mass.
The thermoplastic resin foamed particles according to any one of <1> to <3>.
<5>
The thermoplastic resin foaming according to any one of <1> to <4>, wherein the temperature at which the loss tangent tan δ is maximized in the solid viscoelasticity measurement at a heating rate of 5 ° C./min and a frequency of 1 Hz is 120 to 230 ° C. particle.
<6>
The thermoplastic resin foamed particles according to any one of <1> to <5>, wherein the polyimide-based resin is a polyetherimide-based resin.
<7>
The thermoplastic resin foamed particles according to any one of <1> to <6>, wherein the polyester-based resin contains a plant-derived polyester-based resin.
<8>
The thermoplastic resin foamed particles according to any one of <1> to <7>, wherein the thermoplastic resin contains a recycled raw material.

<9>
前記熱可塑性樹脂と発泡剤とを含む熱可塑性樹脂組成物を押し出し、発泡して、熱可塑性樹脂発泡粒子を得る工程を有する、<1>~<8>のいずれかに記載の熱可塑性樹脂発泡粒子の製造方法。
<10>
前記熱可塑性樹脂組成物は、架橋剤をさらに含む、<9>に記載の熱可塑性樹脂発泡粒子の製造方法。
<9>
The thermoplastic resin foaming according to any one of <1> to <8>, which comprises a step of extruding and foaming the thermoplastic resin composition containing the thermoplastic resin and a foaming agent to obtain thermoplastic resin foamed particles. How to make particles.
<10>
The method for producing thermoplastic resin foamed particles according to <9>, wherein the thermoplastic resin composition further contains a cross-linking agent.

<11>
熱可塑性樹脂を含み、
前記熱可塑性樹脂は、ポリエステル系樹脂とポリイミド系樹脂とを含み、
ガラス転移温度Tgが単一である、熱可塑性樹脂発泡粒子成形体。
<12>
前記ガラス転移温度Tgは、80~130℃以下である、<11>に記載の熱可塑性樹脂発泡粒子成形体。
<13>
加熱速度10℃/分における熱流束示差走査熱量測定によって求められる吸熱量と発熱量との差の絶対値は、3~35J/gである、<11>又は<12>に記載の熱可塑性樹脂発泡粒子成形体。
<14>
前記熱可塑性樹脂の総質量に対する前記ポリエステル系樹脂の含有割合は、40~95質量%であり、
前記熱可塑性樹脂の総質量に対する前記ポリイミド系樹脂の含有割合は、5~60質量%である、
<11>~<13>のいずれかに記載の熱可塑性樹脂発泡粒子成形体。
<15>
加熱速度5℃/分、周波数1Hzでの固体粘弾性測定における損失正接tanδが最大となる温度は、120~230℃である、<11>~<14>のいずれかに記載の熱可塑性樹脂発泡粒子成形体。
<16>
前記ポリイミド系樹脂がポリエーテルイミド系樹脂である、<11>~<15>のいずれかに記載の熱可塑性樹脂発泡粒子成形体。
<17>
前記ポリエステル系樹脂が、植物由来のポリエステル系樹脂を含む、<11>~<16>のいずれかに記載の熱可塑性樹脂発泡粒子成形体。
<18>
前記熱可塑性樹脂が、リサイクル原料を含む、<11>~<17>のいずれかに記載の熱可塑性樹脂発泡粒子成形体。
<11>
Contains thermoplastic resin
The thermoplastic resin contains a polyester-based resin and a polyimide-based resin.
A thermoplastic resin foamed particle molded product having a single glass transition temperature Tg.
<12>
The thermoplastic resin foamed particle molded product according to <11>, wherein the glass transition temperature Tg is 80 to 130 ° C. or lower.
<13>
The thermoplastic resin according to <11> or <12>, wherein the absolute value of the difference between the heat absorption amount and the calorific value obtained by the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min is 3 to 35 J / g. Foamed particle molded body.
<14>
The content ratio of the polyester resin to the total mass of the thermoplastic resin is 40 to 95% by mass.
The content ratio of the polyimide resin to the total mass of the thermoplastic resin is 5 to 60% by mass.
The thermoplastic resin foamed particle molded product according to any one of <11> to <13>.
<15>
The thermoplastic resin foaming according to any one of <11> to <14>, wherein the temperature at which the loss tangent tan δ is maximum in the solid viscoelasticity measurement at a heating rate of 5 ° C./min and a frequency of 1 Hz is 120 to 230 ° C. Particle molded body.
<16>
The thermoplastic resin foamed particle molded product according to any one of <11> to <15>, wherein the polyimide-based resin is a polyetherimide-based resin.
<17>
The thermoplastic resin foamed particle molded body according to any one of <11> to <16>, wherein the polyester-based resin contains a plant-derived polyester-based resin.
<18>
The thermoplastic resin foamed particle molded product according to any one of <11> to <17>, wherein the thermoplastic resin contains a recycled raw material.

<19>
請求項9又は10に記載の熱可塑性樹脂発泡粒子の製造方法により前記熱可塑性樹脂発泡粒子を得、得られた熱可塑性樹脂発泡粒子を金型のキャビティ内に充填し、前記キャビティ内の前記熱可塑性樹脂発泡粒子を加熱して二次発泡粒子とし、前記二次発泡粒子同士を熱融着させて熱可塑性樹脂発泡粒子成形体を得る、熱可塑性樹脂発泡粒子成形体の製造方法。
<19>
The thermoplastic resin foamed particles are obtained by the method for producing a thermoplastic resin foamed particle according to claim 9 or 10, and the obtained thermoplastic resin foamed particles are filled in a cavity of a mold, and the heat in the cavity is filled. A method for producing a thermoplastic resin foamed particle molded body, wherein the plastic resin foamed particles are heated to form secondary foamed particles, and the secondary foamed particles are heat-sealed to obtain a thermoplastic resin foamed particle molded body.

<20>
<11>~<18>のいずれかに記載の熱可塑性樹脂発泡粒子成形体と、前記熱可塑性樹脂発泡粒子成形体の表面の少なくとも一部に設けられた繊維強化樹脂層とを有する、発泡樹脂複合体。
<20>
A foamed resin having a thermoplastic resin foamed particle molded product according to any one of <11> to <18> and a fiber-reinforced resin layer provided on at least a part of the surface of the thermoplastic resin foamed particle molded product. Complex.

本発明の熱可塑性樹脂発泡粒子によれば、耐熱強度の向上を図れる。 According to the thermoplastic resin foamed particles of the present invention, the heat resistant strength can be improved.

植物由来のポリエステル系樹脂の製造工程の一例を示すフロー図である。It is a flow chart which shows an example of the manufacturing process of the polyester resin of a plant origin. 植物由来のポリエステル系樹脂の製造工程の一例を示すフロー図である。It is a flow chart which shows an example of the manufacturing process of the polyester resin of a plant origin. 植物由来のポリエステル系樹脂の製造工程の一例を示すフロー図である。It is a flow chart which shows an example of the manufacturing process of the polyester resin of a plant origin. 本発明の熱可塑性樹脂発泡粒子の製造装置の一例を示す側断面模式図である。It is a side sectional schematic diagram which shows an example of the manufacturing apparatus of the thermoplastic resin foamed particles of this invention. 本発明の熱可塑性樹脂発泡粒子の製造装置の一例を示す正面模式図である。It is a front schematic diagram which shows an example of the manufacturing apparatus of the thermoplastic resin foamed particles of this invention. 本発明の熱可塑性樹脂発泡粒子の製造装置の一例を示す正面模式図である。It is a front schematic diagram which shows an example of the manufacturing apparatus of the thermoplastic resin foamed particles of this invention. 本発明の一実施形態に係る発泡樹脂複合体の断面図である。It is sectional drawing of the foamed resin composite which concerns on one Embodiment of this invention. 実施例3の発泡粒子のDSC曲線である。It is a DSC curve of the foamed particle of Example 3. FIG. 実施例3の損失正接tanδの測定結果を示すグラフである。It is a graph which shows the measurement result of the loss tangent tan δ of Example 3. FIG. 比較例1の損失正接tanδの測定結果を示すグラフである。It is a graph which shows the measurement result of the loss tangent tan δ of the comparative example 1. FIG.

本稿において、「~」はその両端の値を下限値及び上限値として含む範囲を表す。 In this paper, "~" represents a range including the values at both ends as the lower limit value and the upper limit value.

(熱可塑性樹脂発泡粒子)
本発明の熱可塑性樹脂発泡粒子(発泡粒子)は、熱可塑性樹脂を含む。発泡粒子は、熱可塑性樹脂と発泡剤とを含む熱可塑性樹脂組成物(以下、単に「樹脂組成物」ということがある)を造粒し、発泡してなる粒子である。
発泡粒子は、粒子状の発泡体である。発泡粒子は、いわゆる型内発泡成形で成形される熱可塑性樹脂発泡粒子成形体(発泡粒子成形体)の原料に用いられる。
(Thermoplastic resin foam particles)
The thermoplastic resin foamed particles (foamed particles) of the present invention include a thermoplastic resin. The foamed particles are particles obtained by granulating and foaming a thermoplastic resin composition (hereinafter, may be simply referred to as “resin composition”) containing a thermoplastic resin and a foaming agent.
The foamed particles are particulate foams. The foamed particles are used as a raw material for a thermoplastic resin foamed particle molded product (foamed particle molded product) molded by so-called in-mold foam molding.

<熱可塑性樹脂>
発泡粒子の熱可塑性樹脂は、ポリエステル系樹脂とポリイミド系樹脂とを含む。本発明の発泡粒子は、ポリエステル系樹脂とポリイミド系樹脂との双方を含むことで、発泡粒子成形体の耐熱強度を高められる。
<Thermoplastic resin>
The thermoplastic resin of the foamed particles includes a polyester-based resin and a polyimide-based resin. The foamed particles of the present invention contain both a polyester-based resin and a polyimide-based resin, so that the heat-resistant strength of the foamed particle molded body can be enhanced.

≪ポリエステル系樹脂≫
ポリエステル系樹脂としては、ポリエチレンテレフタレート樹脂(PET)、ポリブチレンテレフタレート樹脂(PBT)、ポリエチレンナフタレート樹脂(PEN)、ポリエチレンフラノエート樹脂(PEF)、ポリブチレンナフタレート樹脂(PBN)、ポリトリメチレンテレフタレート樹脂(PTT)、テレフタル酸とエチレングリコールとシクロヘキサンジメタノールの共重合体及びこれらの混合物等が挙げられる。ポリエステル系樹脂としては、ポリエチレンテレフタレート樹脂が好ましく、結晶性ポリエチレンテレフタレート樹脂(C-PET)がより好ましい。C-PETは、酸成分がテレフタル酸であり、グリコール成分がエチレングリコールであるポリエステル系樹脂である。
ポリエステル系樹脂は、石油化学品由来のポリエステル系樹脂でもよいし、いわゆるバイオPET等の植物由来のポリエステル系樹脂でもよいし、これらの混合物でもよい。
植物由来のポリエステル系樹脂としては、ポリエチレンテレフタレート樹脂、植物由来のポリエチレンフラノエート樹脂、植物由来のポリトリメチレンテレフタレート樹脂等が挙げられる。
また、ポリエステル系樹脂は、リサイクル原料でもよい。
これらのポリエステル系樹脂は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
≪Polyester resin≫
Examples of the polyester resin include polyethylene terephthalate resin (PET), polybutylene terephthalate resin (PBT), polyethylene naphthalate resin (PEN), polyethylene furanoate resin (PEF), polybutylene naphthalate resin (PBN), and polytrimethylene terephthalate. Examples thereof include a resin (PTT), a copolymer of terephthalic acid, ethylene glycol and cyclohexanedimethanol, and a mixture thereof. As the polyester-based resin, polyethylene terephthalate resin is preferable, and crystalline polyethylene terephthalate resin (C-PET) is more preferable. C-PET is a polyester-based resin in which the acid component is terephthalic acid and the glycol component is ethylene glycol.
The polyester-based resin may be a polyester-based resin derived from a petrochemical product, a polyester-based resin derived from a plant such as so-called bio-PET, or a mixture thereof.
Examples of the plant-derived polyester resin include polyethylene terephthalate resin, plant-derived polyethylene furanoate resin, and plant-derived polytrimethylene terephthalate resin.
Further, the polyester resin may be a recycled raw material.
These polyester-based resins may be used alone or in combination of two or more.

以下、植物由来のポリエステル系樹脂について説明する。
植物由来のポリエステル系樹脂は、サトウキビ、トウモロコシ等の植物原料を由来とするポリマーである。「植物原料を由来とする」とは、植物原料から合成され又は抽出されたポリマーが挙げられる。また、例えば、「植物原料を由来とする」とは、植物原料から合成され又は抽出されたモノマーが重合されたポリマーが挙げられる。「植物原料から合成され又は抽出されたモノマー」には、植物原料から合成され又は抽出された化合物を原料とし合成されたモノマーが含まれる。植物由来のポリエステル系樹脂は、モノマーの一部が「植物原料を由来とする」ものを含む。
Hereinafter, the polyester resin derived from plants will be described.
The plant-derived polyester resin is a polymer derived from plant raw materials such as sugar cane and corn. "Derived from plant material" includes polymers synthesized or extracted from plant material. Further, for example, "derived from a plant raw material" includes a polymer obtained by polymerizing a monomer synthesized or extracted from a plant raw material. The "monomer synthesized or extracted from a plant raw material" includes a monomer synthesized from a compound synthesized or extracted from a plant raw material. Plant-derived polyester resins include those in which some of the monomers are "derived from plant raw materials".

植物由来のポリエステル系樹脂について、PET、PEFを例にして説明する。 A plant-derived polyester resin will be described by taking PET and PEF as an example.

PETの合成反応を(1)式に示す。nモルのエチレングリコールとnモルのテレフタル酸(Benzen-1,4-dicarboxylic Acid)との脱水反応によって、PETが合成される。この合成反応における化学量論上の質量比は、エチレングリコール:テレフタル酸=30:70(質量比)である。 The PET synthesis reaction is shown in Eq. (1). PET is synthesized by a dehydration reaction between n moles of ethylene glycol and n moles of terephthalic acid (Benzene-1,4-dicarboxylAcid). The stoichiometric mass ratio in this synthetic reaction is ethylene glycol: terephthalic acid = 30:70 (mass ratio).

Figure 2022057468000001
Figure 2022057468000001

[(1)式中、nは化学量論係数(重合度)であり、250~1100の数である。] [In the equation (1), n is a stoichiometric coefficient (degree of polymerization), which is a number of 250 to 1100. ]

エチレングリコールは、エチレンを酸化し、水和することで、工業的に製造される。また、テレフタル酸は、パラキシレンを酸化することで、工業的に製造される。
ここで、図1に示すように、植物由来のエタノール(バイオエタノール)の脱水反応によりエチレンを得、このエチレンから合成されたエチレングリコール(バイオエタノール由来のエチレングリコール)と、石油化学品由来のテレフタル酸からPETを合成する場合、製造されるPETは、植物由来30質量%のPETである。
また、図2に示すように、植物由来のイソブタノール(バイオイソブタノール)の脱水反応によりパラキシレンを得、このパラキシレンから合成したテレフタル酸と、バイオエタノール由来のエチレングリコールとからPETを合成する場合、製造されるPETは、植物由来100質量%のPETである。
Ethylene glycol is industrially produced by oxidizing and hydrating ethylene. In addition, terephthalic acid is industrially produced by oxidizing para-xylene.
Here, as shown in FIG. 1, ethylene is obtained by dehydration reaction of plant-derived ethanol (bioethanol), ethylene glycol synthesized from this ethylene (ethylene glycol derived from bioethanol), and terephthal derived from petrochemicals. When synthesizing PET from acid, the PET produced is 30% by mass PET derived from plants.
Further, as shown in FIG. 2, paraxylene is obtained by dehydration reaction of plant-derived isobutanol (bioisobutanol), and PET is synthesized from terephthalic acid synthesized from this paraxylene and ethylene glycol derived from bioethanol. If the PET produced is 100% by mass plant-derived PET.

PEFの合成反応を(2)式に示す。nモルのエチレングリコールと、nモルのフランジカルボン酸(2,5-Furandicarboxylic Acid)との脱水反応によって、PEFが合成される。 The PEF synthesis reaction is shown in Eq. (2). PEF is synthesized by a dehydration reaction between n moles of ethylene glycol and n moles of furandicarboxylic acid.

Figure 2022057468000002
Figure 2022057468000002

[(2)式中、nは化学量論係数(重合度)であり、250~1100の数である。] [In equation (2), n is a stoichiometric coefficient (degree of polymerization), which is a number of 250 to 1100. ]

フランジカルボン酸(FDCA)は、例えば、植物由来のフルクトースやグルコースの脱水反応によってヒドロキシメチルフルフラール(HMF)を得、HMFを酸化して得られる。
図3に示すように、FDCA及びエチレングリコールの双方が植物由来の場合、製造されるPEFは、植物由来100質量%のPEFである。
Frangylcarboxylic acid (FDCA) is obtained, for example, by dehydrating plant-derived fructose or glucose to obtain hydroxymethylfurfural (HMF) and oxidizing HMF.
As shown in FIG. 3, when both FDCA and ethylene glycol are derived from plants, the produced PEF is 100% by mass of plant-derived PEF.

ポリエステル系樹脂のガラス転移温度Tgは、50~100℃が好ましく、60~90℃がより好ましく、70~85℃がさらに好ましい。Tgが上記下限値以上であれば、耐熱強度、加熱寸法安定性をより高められる。Tgが上記上限値以下であれば、成形サイクルを短くして生産性を高め、成形性を高められる。なお、「成形性」は、例えば、発泡粒子を金型のキャビティに充填し、これを加熱して二次発泡させた際に、所望の形状に近づけられることであり、所望の形状に近づくほど、成形性は「良好」である。 The glass transition temperature Tg of the polyester resin is preferably 50 to 100 ° C, more preferably 60 to 90 ° C, still more preferably 70 to 85 ° C. When Tg is at least the above lower limit value, the heat resistance strength and the heating dimensional stability can be further improved. When Tg is not more than the above upper limit value, the molding cycle can be shortened to increase productivity and improve moldability. The "formability" means, for example, that when foamed particles are filled in a mold cavity and heated for secondary foaming, the shape is brought closer to a desired shape, and the closer the shape is to a desired shape. , The moldability is "good".

ポリエステル系樹脂の融点は、230~270℃が好ましく、240~260℃がより好ましく、245~255℃がさらに好ましい。融点が上記下限値以上であれば、耐熱強度、加熱寸法安定性をより高められる。融点が上記上限値以下であれば、成形サイクルを短くして生産性を高め、成形性を高められる。 The melting point of the polyester resin is preferably 230 to 270 ° C, more preferably 240 to 260 ° C, still more preferably 245 to 255 ° C. When the melting point is at least the above lower limit value, the heat resistance strength and the heating dimensional stability can be further improved. When the melting point is not more than the above upper limit value, the molding cycle can be shortened to increase productivity and improve moldability.

ポリエステル系樹脂の固有粘度(IV値)は、0.5~1.5が好ましく、0.6~1.3がより好ましく、0.7~1.2がさらに好ましい。IV値が上記下限値以上であれば、発泡時の破泡が抑制され、連続気泡率をより低められる。IV値が上記上限値以下であれば、密度をより低くし、表面をより平滑にして、外観の美麗さを高められる。
IV値は、JIS K7367-5(2000)の方法で測定できる。
The intrinsic viscosity (IV value) of the polyester resin is preferably 0.5 to 1.5, more preferably 0.6 to 1.3, and even more preferably 0.7 to 1.2. When the IV value is equal to or higher than the above lower limit value, defoaming during foaming is suppressed and the open cell ratio can be further lowered. When the IV value is not more than the above upper limit value, the density can be made lower, the surface can be made smoother, and the appearance can be enhanced.
The IV value can be measured by the method of JIS K7367-5 (2000).

ポリエステル系樹脂の数平均分子量Mnは、9,000~45,000であり、15,000~43,000が好ましく、20,000~40,000がより好ましい。
Mnが上記下限値以上であれば、耐寒性(即ち、低温での機械的強度)をさらに高められる。Mnが上記上限値以下であれば、耐熱性をさらに高められる。
The number average molecular weight Mn of the polyester resin is 9,000 to 45,000, preferably 15,000 to 43,000, and more preferably 20,000 to 40,000.
When Mn is at least the above lower limit value, cold resistance (that is, mechanical strength at low temperature) can be further enhanced. When Mn is not more than the above upper limit value, the heat resistance can be further improved.

ポリエステル系樹脂のZ平均分子量Mzは、50,000~500,000であり、180,000~450,000が好ましく、100,000~400,000がより好ましい。
Mzが上記範囲内であれば、耐寒性(即ち、低温での機械的強度)をさらに高められる。
The Z average molecular weight Mz of the polyester resin is 50,000 to 500,000, preferably 180,000 to 450,000, and more preferably 100,000 to 400,000.
When Mz is within the above range, cold resistance (that is, mechanical strength at low temperature) can be further enhanced.

Mn及びMzは、以下の方法で測定できる。
[ポリエステル系樹脂の分子量]
測定対象から試料5mgを取り、これにヘキサフルオロイソプロパノール(HFIP)0.5mL、クロロホルム0.5mLの順に追加して軽く手動で振とうする。これを浸漬時間24±1.0hrで放置する。試料が完全に溶解したことを確認後に、クロロホルムで10mLに希釈して軽く手動で振とうして、混合する。その後、ジーエルサイエンス(株)製の非水系0.45μmのクロマトディスク、又は(株)島津ジーエルシー製の非水系0.45μmシリンジフィルターにて濾過して、測定試料とする。測定試料を次の測定条件にて、クロマトグラフで測定し、予め作成しておいた標準ポリスチレン検量線から試料の数平均分子量Mn及びZ平均分子量Mzを求める。
Mn and Mz can be measured by the following methods.
[Molecular weight of polyester resin]
Take 5 mg of the sample from the measurement target, add 0.5 mL of hexafluoroisopropanol (HFIP) and 0.5 mL of chloroform in this order, and shake lightly and manually. This is left to stand for a soaking time of 24 ± 1.0 hr. After confirming that the sample is completely dissolved, dilute it to 10 mL with chloroform and gently shake it manually to mix. Then, the sample is filtered through a non-aqueous 0.45 μm chromatographic disk manufactured by GL Sciences Co., Ltd. or a non-aqueous 0.45 μm syringe filter manufactured by Shimadzu GLC Co., Ltd. to obtain a measurement sample. The measurement sample is measured by a chromatograph under the following measurement conditions, and the number average molecular weight Mn and Z average molecular weight Mz of the sample are obtained from a standard polystyrene calibration curve prepared in advance.

〔測定装置〕
・測定装置=東ソー(株)製、「HLC-8320GPC EcoSEC」、ゲル浸透クロマトグラフ(RI検出器・UV検出器内蔵)。
〔GPC測定条件〕
・カラム
〈サンプル側〉
ガードカラム=東ソー(株)製 TSK guardcolumn HXL-H(6.0mm×4.0cm)×1本。
測定カラム=東ソー(株)製 TSKgel GMHXL(7.8mmI.D.×30cm)×2本直列。
〈リファレンス側〉
抵抗管(内径0.1mm×2m)×2本直列。
カラム温度=40℃。
移動相=クロロホルム。
〈動相流量〉
サンプル側ポンプ=1.0mL/分。
リファレンス側ポンプ=0.5mL/分。
検出器=UV検出器(254nm)。
注入量=15μL。
測定時間=26分。
サンプリングピッチ=500m秒。
〔measuring device〕
-Measuring device = "HLC-8320GPC EcoSEC" manufactured by Tosoh Corporation, gel penetration chromatograph (built-in RI detector / UV detector).
[GPC measurement conditions]
・ Column <sample side>
Guard column = TSK guardcolum HXL-H (6.0 mm x 4.0 cm) x 1 manufactured by Tosoh Corporation.
Measurement column = TSKgel GMHXL (7.8 mm ID x 30 cm) manufactured by Tosoh Corporation x 2 in series.
<Reference side>
Resistance tube (inner diameter 0.1 mm x 2 m) x 2 in series.
Column temperature = 40 ° C.
Mobile phase = chloroform.
<Dynamic flow rate>
Sample side pump = 1.0 mL / min.
Reference side pump = 0.5 mL / min.
Detector = UV detector (254 nm).
Injection amount = 15 μL.
Measurement time = 26 minutes.
Sampling pitch = 500 msec.

〔検量線用標準ポリスチレン試料〕
検量線用標準ポリスチレン試料は、昭和電工(株)製の製品名「STANDARD SM-105」及び「STANDARD SH-75」から、質量平均分子量Mwが5,620,000、3,120,000、1,250,000、442,000、131,000、54,000、20,000、7,590、3,450、1,320のものを用いる。
上記検量線用標準ポリスチレンをA(5,620,000、1,250,000、131,000、20,000、3,450)及びB(3,120,000、442,000、54,000、7,590、1,320)にグループ分けする。Aを秤量(2mg、3mg、4mg、4mg、4mg)した後、クロロホルム30mLに溶解する。Bを秤量(3mg、4mg、4mg、4mg、4mg)した後、クロロホルム30mLに溶解する。
標準ポリスチレン検量線は、作成した各A及びB溶解液を50μL注入して測定後に得られた保持時間から較正曲線(三次式)を作成することにより得る。その検量線を用いて数平均分子量Mn及びZ平均分子量Mzを算出する。
[Standard polystyrene sample for calibration curve]
The standard polystyrene sample for the calibration curve has a mass average molecular weight Mw of 5,620,000, 3,120,000, and 1 from the product names "STANDARD SM-105" and "STANDARD SH-75" manufactured by Showa Denko KK. , 250,000, 442,000, 131,000, 54,000, 20,000, 7,590, 3,450, 1,320 are used.
The standard polystyrenes for the calibration curve are A (5,620,000, 1,250,000, 131,000, 20,000, 3,450) and B (3,120,000, 442,000, 54,000, Group 7,590,1,320). A is weighed (2 mg, 3 mg, 4 mg, 4 mg, 4 mg) and then dissolved in 30 mL of chloroform. B is weighed (3 mg, 4 mg, 4 mg, 4 mg, 4 mg) and then dissolved in 30 mL of chloroform.
A standard polystyrene calibration curve is obtained by injecting 50 μL of each of the prepared A and B solutions and preparing a calibration curve (third-order formula) from the retention time obtained after the measurement. The number average molecular weight Mn and the Z average molecular weight Mz are calculated using the calibration curve.

発泡粒子に含まれる熱可塑性樹脂の総質量に対するポリエステル系樹脂の含有割合は、40~95質量%が好ましく、45~90質量%がより好ましく、50~80質量%がさらに好ましく、50~70質量%が特に好ましい。ポリエステル系樹脂の含有割合が上記下限値以上であれば、成形性を高められる。ポリエステル系樹脂の含有割合が上記上限値以下であれば、耐熱強度をより高められる。 The content ratio of the polyester resin to the total mass of the thermoplastic resin contained in the foamed particles is preferably 40 to 95% by mass, more preferably 45 to 90% by mass, further preferably 50 to 80% by mass, and further preferably 50 to 70% by mass. % Is particularly preferable. When the content ratio of the polyester resin is at least the above lower limit value, the moldability can be improved. When the content ratio of the polyester resin is not more than the above upper limit value, the heat resistant strength can be further increased.

≪ポリイミド系樹脂≫
ポリイミド系樹脂としては、特に限定されないが、環状イミド基を繰り返し単位として含有するポリマーであることが好ましく、溶融成形性を有するポリマーであることが好ましい。
ポリイミド系樹脂としては、例えば、米国特許第4141927号明細書、特許第2622678号公報、特許第2606912号公報、特許第2606914号公報、特許第2596565号公報、特許第2596566号公報、特許第2598478号公報などに記載されるポリエーテルイミド、特許第2598536号公報、特許第2599171号公報、特開平9-48852号公報、特許第2565556号公報、特許第2564636号公報、特許第2564637号公報、特許第2563548号公報、特許第2563547号公報、特許第2558341号公報、特許第2558339号公報、特許第2834580号公報に記載のポリマー等が挙げられる。本発明の効果が損なわれない範囲であれば、ポリイミド系樹脂の主鎖に環状イミド以外の構造単位が含まれていてもよい。環状イミド以外の構造単位としては、例えば、芳香族、脂肪族、脂環族、脂環族エステル単位、オキシカルボニル単位等が挙げられる。
また、ポリイミド系樹脂は、リサイクル原料でもよい。
これらのポリイミド系樹脂は、1種単独でもよいし、2種以上の組み合わせでもよい。
≪Polyimide resin≫
The polyimide-based resin is not particularly limited, but is preferably a polymer containing a cyclic imide group as a repeating unit, and preferably a polymer having melt moldability.
Examples of the polyimide resin include US Pat. No. 4,141,927, Japanese Patent No. 2622678, Japanese Patent No. 2606912, Japanese Patent No. 2606914, Japanese Patent No. 2596565, Japanese Patent No. 2596566, and Japanese Patent No. 2598478. Polyetherimide, Patent No. 2598536, Japanese Patent No. 2599171, Japanese Patent Application Laid-Open No. 9-48852, Japanese Patent No. 2565556, Japanese Patent No. 2564636, Japanese Patent No. 2564637, Japanese Patent No. Examples thereof include the polymers described in Japanese Patent No. 2563548, Japanese Patent No. 2563547, Japanese Patent No. 2558341, Japanese Patent No. 2558339, and Japanese Patent No. 2834580. As long as the effect of the present invention is not impaired, the main chain of the polyimide resin may contain a structural unit other than the cyclic imide. Examples of the structural unit other than the cyclic imide include aromatic, aliphatic, alicyclic, alicyclic ester unit, oxycarbonyl unit and the like.
Further, the polyimide resin may be a recycled raw material.
These polyimide-based resins may be used alone or in combination of two or more.

ポリイミド系樹脂は、例えば、下記(3)式で表される化合物が好ましい。 As the polyimide resin, for example, a compound represented by the following formula (3) is preferable.

Figure 2022057468000003
Figure 2022057468000003

[(3)式中、Rは、炭素数6~42の炭素原子の有する芳香族基であり、R’は、炭素数6~30の2価の芳香族基、炭素数2~30の脂肪族基及び炭素数4~30の脂環族基からなる群から選ばれた少なくとも1種の2価の有機基である。pは繰り返し単位を表す数である。] [In the formula (3), R is an aromatic group having a carbon atom having 6 to 42 carbon atoms, and R'is a divalent aromatic group having 6 to 30 carbon atoms and a fat having 2 to 30 carbon atoms. It is at least one divalent organic group selected from the group consisting of a group group and an alicyclic group group having 4 to 30 carbon atoms. p is a number representing a repeating unit. ]

ポリイミド系樹脂としては、ポリエステル系樹脂との相溶性を高める観点から、エーテル結合を有する構造単位を有するポリエーテルイミド系樹脂が好ましい。 As the polyimide-based resin, a polyetherimide-based resin having a structural unit having an ether bond is preferable from the viewpoint of enhancing compatibility with the polyester-based resin.

ポリイミド系樹脂は、従来公知の製造方法により調製できる。例えば、(3)式中のRを誘導することができる原料であるテトラカルボン酸並びにその酸無水物のいずれかもしくは双方と、(3)式中のR’を誘導することができる原料である脂肪族一級ジアミン並びに芳香族一級ジアミンよりなる群から選ばれる一種もしくは二種以上の化合物を脱水縮合することにより得られる。ポリイミド系樹脂の製造方法として具体的には、ポリアミド酸を得て、次いで、加熱閉環する方法を例示することができる。または、酸無水物とピリジン、カルボジイミド等の化学閉環剤を用いて化学閉環する方法、上記テトラカルボン酸無水物と上記R’を誘導することのできるジイソシアネートとを加熱して脱炭酸を行って重合する方法等を例示できる。 The polyimide resin can be prepared by a conventionally known production method. For example, either or both of tetracarboxylic acid and its acid anhydride, which are raw materials capable of inducing R in the formula (3), and raw materials capable of inducing R'in the formula (3). It is obtained by dehydration condensation of one or more compounds selected from the group consisting of aliphatic primary diamines and aromatic primary diamines. Specifically, as a method for producing a polyimide resin, a method of obtaining a polyamic acid and then heat-closing the ring can be exemplified. Alternatively, a method of chemically closing the ring using an acid anhydride and a chemical ring-closing agent such as pyridine or carbodiimide, the tetracarboxylic acid anhydride and the diisocyanate capable of inducing R'are heated and decarbonated for polymerization. An example of how to do this.

テトラカルボン酸としては、例えば、ピロメリット酸、1,2,3,4-ベンゼンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタン、1,1’-ビス(2,3-ジカルボキシフェニル)エタン、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン、2,2’-ビス(2,3-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(2,3-ジカルボキシフェニル)スルホン、2,3,6,7-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、2,2’-ビス[(2,3-ジカルボキシフェノキシ)フェニル]プロパン及びその酸無水物等が挙げられる。 Examples of the tetracarboxylic acid include pyromellitic acid, 1,2,3,4-benzenetetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,2', 3,3'-. Biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, 2,2', 3,3'-benzophenone tetracarboxylic acid, bis (2,3-dicarboxyphenyl) methane, bis (3) , 4-Dicarboxyphenyl) methane, 1,1'-bis (2,3-dicarboxyphenyl) ethane, 2,2'-bis (3,4-dicarboxyphenyl) propane, 2,2'-bis (2,2'-bis ( 2,3-Dicarboxyphenyl) Propane, bis (3,4-dicarboxyphenyl) ether, bis (2,3-dicarboxyphenyl) ether, bis (3,4-dicarboxyphenyl) sulfone, bis (2, 3-Dicarboxyphenyl) sulfone, 2,3,6,7-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 2,2 '-Bis [(2,3-dicarboxyphenoxy) phenyl] propane and its acid anhydrides and the like can be mentioned.

ジアミンとしては、例えば、ベンジジン、ジアミノジフェニルメタン、ジアミノジフェニルエタン、ジアミノジフェニルプロパン、ジアミノジフェニルブタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルベンゾフェノン、o,m,p-フェニレンジアミン、トリレンジアミン、キシレンジアミン等及びこれらの芳香族一級ジアミンの炭化水素基を構造単位に有する芳香族一級ジアミン、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,6-ヘキサメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,4-シクロヘキサンジメチルアミン、2-メチル-1,3-シクロヘキサンジアミン、イソホロンジアミン等及びこれらの脂肪族、並びに脂環族一級ジアミンの炭化水素基を構造単位に有する脂肪族及び脂環族一級ジアミン等を例示できる。 Examples of the diamine include benzidine, diaminodiphenylmethane, diaminodiphenylethane, diaminodiphenylpropane, diaminodiphenylbutane, diaminodiphenylether, diaminodiphenylsulfone, diaminodiphenylbenzophenone, o, m, p-phenylenediamine, tolylene diamine, xylenediamine and the like. And aromatic primary diamines, ethylenediamines, 1,2-propanediamines, 1,3-propanediamines, 2,2-dimethyl-1,3-propanediamines, which have hydrocarbon groups of these aromatic primary diamines as structural units. 1,6-Hexamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 2 , 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,4-cyclohexanedimethylamine, 2-methyl-1,3 -Examples include cyclohexanediamine, isophorone diamine and the like, their aliphatics, and aliphatic and alicyclic primary diamines having a hydrocarbon group of the alicyclic primary diamine as a structural unit.

ポリイミド系樹脂のガラス転移温度Tgは、190~240℃が好ましく、200~230℃がより好ましく、210~220℃がさらに好ましい。Tgが上記下限値以上であれば、耐熱強度、加熱寸法安定性をより高められる。Tgが上記上限値以下であれば、成形サイクルを短くして生産性を高め、成形性を高められる。 The glass transition temperature Tg of the polyimide resin is preferably 190 to 240 ° C., more preferably 200 to 230 ° C., and even more preferably 210 to 220 ° C. When Tg is at least the above lower limit value, the heat resistance strength and the heating dimensional stability can be further improved. When Tg is not more than the above upper limit value, the molding cycle can be shortened to increase productivity and improve moldability.

ポリイミド系樹脂のメルトフローレイト(MFR)は、3~30g/10分が好ましく、5~25g/10分がより好ましく、7~20g/10分がさらに好ましい。MFRが上記下限値以上であれば、成形サイクルを短くして生産性を高め、成形性を高められる。MFRが上記上限値以下であれば、耐熱強度、加熱寸法安定性をより高められる。 The melt flow rate (MFR) of the polyimide resin is preferably 3 to 30 g / 10 minutes, more preferably 5 to 25 g / 10 minutes, still more preferably 7 to 20 g / 10 minutes. When the MFR is at least the above lower limit value, the molding cycle can be shortened to increase productivity and improve moldability. When the MFR is not more than the above upper limit value, the heat resistance strength and the heating dimensional stability can be further improved.

ポリイミド系樹脂の数平均分子量は、5,000~50,000が好ましく、6,000~39,000がより好ましく、7,000~27,000がさらに好ましい。ポリイミド系樹脂の数平均分子量が上記下限値以上であれば耐衝撃性をより高められる。ポリイミド系樹脂の数平均分子量が上記上限値以下であれば成形性をより高められる。 The number average molecular weight of the polyimide resin is preferably 5,000 to 50,000, more preferably 6,000 to 39,000, and even more preferably 7,000 to 27,000. If the number average molecular weight of the polyimide resin is at least the above lower limit, the impact resistance can be further enhanced. When the number average molecular weight of the polyimide resin is not more than the above upper limit value, the moldability can be further improved.

発泡粒子に含まれる熱可塑性樹脂の総質量に対するポリイミド系樹脂の含有割合は、5~60質量%が好ましく、10~55質量%がより好ましく、20~50質量%がさらに好ましく、30~50質量%が特に好ましい。ポリイミド系樹脂の含有割合が上記下限値以上であれば、耐熱強度をより高められる。ポリイミド系樹脂の含有割合が上記上限値以下であれば、成形性をより高められる。 The content ratio of the polyimide resin to the total mass of the thermoplastic resin contained in the foamed particles is preferably 5 to 60% by mass, more preferably 10 to 55% by mass, further preferably 20 to 50% by mass, and 30 to 50% by mass. % Is particularly preferable. When the content ratio of the polyimide resin is at least the above lower limit value, the heat resistant strength can be further increased. When the content ratio of the polyimide resin is not more than the above upper limit value, the moldability can be further improved.

発泡粒子に含まれる熱可塑性樹脂は、リサイクル原料を含んでいてもよい。ポリエステル系樹脂とポリイミド系樹脂の何れか一方にリサイクル原料を含んでいてもよく、ポリエステル系樹脂とポリイミド系樹脂の両方にリサイクル原料を含んでいてもよい。ポリエステル系樹脂の一部又は全部がポリエステル系樹脂のリサイクル原料であってもよく、ポリイミド系樹脂の一部又は全部がポリイミド系樹脂のリサイクル原料であってもよい。
リサイクル原料は、例えば、次の原料等が挙げられる。
1)発泡粒子又は発泡粒子成形体等の発泡体を粉砕して得られるフレーク状の樹脂を押出機で再溶融させ、ノズル金型よりストランド状に押出し、これを冷却した後ペレタイズした回収ペレット。
2)PETボトルを粉砕して得られるフレーク状の樹脂を押出機で再溶融させ、ノズル金型よりストランド状に押出し、これを冷却した後ペレタイズした再生PET。
The thermoplastic resin contained in the foamed particles may contain a recycled raw material. Either one of the polyester-based resin and the polyimide-based resin may contain the recycled raw material, and both the polyester-based resin and the polyimide-based resin may contain the recycled raw material. A part or all of the polyester resin may be a recycled raw material of the polyester resin, and a part or all of the polyimide resin may be a recycled raw material of the polyimide resin.
Examples of the recycled raw material include the following raw materials.
1) A recovery pellet obtained by remelting a flake-shaped resin obtained by crushing a foam such as foamed particles or a foamed particle molded product with an extruder, extruding it into a strand shape from a nozzle die, cooling the foam, and then pelletizing the resin.
2) Recycled PET obtained by remelting a flake-shaped resin obtained by crushing a PET bottle with an extruder, extruding it into a strand shape from a nozzle die, cooling it, and then pelletizing it.

≪その他の樹脂≫
発泡粒子は、熱硬化性樹脂を実質的に含まない。「実質的に含まない」とは、全く含まないか、発泡粒子の品質に影響しない程度に含むことをいう。発泡粒子に含まれる熱硬化性樹脂の含有量は、熱可塑性樹脂100質量部に対して、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましく、0質量%が最も好ましい。
≪Other resins≫
The foamed particles are substantially free of thermosetting resin. "Substantially free" means that it is not contained at all or is contained to the extent that it does not affect the quality of the foamed particles. The content of the thermosetting resin contained in the foamed particles is preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less, and 0% by mass with respect to 100 parts by mass of the thermoplastic resin. Is the most preferable.

熱可塑性樹脂は、ポリエステル系樹脂及びポリイミド系樹脂以外の熱可塑性樹脂(他の熱可塑性樹脂)を含んでもよい。他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリフェニルスルホン系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂等が挙げられる。 The thermoplastic resin may contain a thermoplastic resin (other thermoplastic resin) other than the polyester resin and the polyimide resin. Examples of other thermoplastic resins include polyolefin resins such as polyethylene and polypropylene, polystyrene resins, polyphenylene ether resins, polyamide resins, polycarbonate resins, polyarylate resins, polyphenyl sulfone resins, and polysulfone resins. , Polyether sulfone-based resin and the like.

熱可塑性樹脂の総質量に対して、ポリエステル系樹脂及びポリイミド系樹脂の合計割合は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、100質量%が最も好ましい。ポリエステル系樹脂及びポリイミド系樹脂の合計割合が上記下限値以上であれば、発泡粒子の耐熱強度をより高められる。 The total ratio of the polyester resin and the polyimide resin to the total mass of the thermoplastic resin is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, and most preferably 100% by mass. preferable. When the total ratio of the polyester resin and the polyimide resin is at least the above lower limit value, the heat resistant strength of the foamed particles can be further enhanced.

≪物性≫
発泡粒子は、単一のガラス転移温度Tgを示す。ポリエステル系樹脂とポリイミド系樹脂とが相溶することで、単一のガラス転移温度Tgとなる。発泡粒子のガラス転移温度Tgが単一であることで、ポリエステル系樹脂のガラス転移温度Tgよりも高いガラス転移温度Tgとなり、発泡粒子成形体の耐熱強度が高まる。
なお、「ガラス転移温度が単一」であるとは、加熱速度10℃/分における熱流束示差走査熱量測定チャート(DSC曲線)において、2回目昇温過程にみられる結晶化ピークよりも低温側におけるガラス転移温度Tgが単一であると認識できることをいう。但し、2回目昇温過程において結晶化ピークが観測されない場合は、2回目昇温過程の温度範囲(30~300℃)におけるガラス転移温度Tgが単一であると認識できることをいう。
発泡粒子におけるガラス転移温度Tgは、例えば、80~130℃が好ましく、85~125℃がより好ましく、90~120℃がさらに好ましい。Tgが上記下限値以上であれば、発泡粒子成形体の耐熱強度及び加熱寸法安定性をより高められる。Tgが上記上限値以下であれば、成形サイクルを短くして生産性を高め、成形性を高められる。
発泡粒子におけるガラス転移温度Tgは、加熱速度10℃/分における熱流束示差走査熱量測定で求められる。
なお、発泡粒子におけるガラス転移温度Tgは、発泡粒子を構成する熱可塑性樹脂のガラス転移温度Tgと同一視できる。
≪Physical characteristics≫
Effervescent particles exhibit a single glass transition temperature Tg. When the polyester resin and the polyimide resin are compatible with each other, a single glass transition temperature Tg is obtained. Since the glass transition temperature Tg of the foamed particles is single, the glass transition temperature Tg is higher than the glass transition temperature Tg of the polyester resin, and the heat resistance strength of the foamed particle molded body is enhanced.
In addition, "the glass transition temperature is single" means that the temperature is lower than the crystallization peak seen in the second temperature rise process in the heat flux differential scanning calorimetry chart (DSC curve) at a heating rate of 10 ° C./min. It means that it can be recognized that the glass transition temperature Tg in the above is single. However, if no crystallization peak is observed in the second temperature rise process, it means that it can be recognized that the glass transition temperature Tg in the temperature range (30 to 300 ° C.) in the second temperature rise process is single.
The glass transition temperature Tg of the foamed particles is, for example, preferably 80 to 130 ° C., more preferably 85 to 125 ° C., and even more preferably 90 to 120 ° C. When Tg is at least the above lower limit value, the heat resistance strength and the heating dimensional stability of the foamed particle molded product can be further enhanced. When Tg is not more than the above upper limit value, the molding cycle can be shortened to increase productivity and improve moldability.
The glass transition temperature Tg of the foamed particles is determined by measuring the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min.
The glass transition temperature Tg of the foamed particles can be equated with the glass transition temperature Tg of the thermoplastic resin constituting the foamed particles.

発泡粒子における吸熱量と発熱量との差の絶対値(吸熱発熱差)は、3~35J/gが好ましく、5~25J/gがより好ましく、7~15J/gがさらに好ましい。吸熱発熱差が上記下限値以上であれば、結晶化度が高まり、発泡粒子成形体の耐熱強度及び加熱寸法安定性をより高められる。吸熱発熱差が上記上限値以下であれば、結晶化度が高まりすぎず、優れた二次発泡性や熱融着性を発揮し、成形性や機械強度を高められる。
吸熱発熱差は、加熱速度10℃/分における熱流束示差走査熱量測定によって求められ吸熱量と発熱量との差である。
なお、発泡粒子における吸熱発熱差は、発泡粒子を構成する熱可塑性樹脂の吸熱発熱差と同一視できる。
The absolute value of the difference between the amount of heat absorption and the amount of heat generated in the foamed particles (heat absorption heat generation difference) is preferably 3 to 35 J / g, more preferably 5 to 25 J / g, and even more preferably 7 to 15 J / g. When the endothermic heat generation difference is at least the above lower limit value, the crystallinity is increased, and the heat resistance strength and the heating dimensional stability of the foamed particle molded body can be further improved. When the endothermic heat generation difference is not more than the above upper limit value, the crystallinity does not increase too much, excellent secondary foamability and heat fusion properties are exhibited, and moldability and mechanical strength can be enhanced.
The endothermic heat generation difference is the difference between the endothermic amount and the calorific value obtained by measuring the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min.
The endothermic heat generation difference in the foamed particles can be equated with the endothermic heat generation difference of the thermoplastic resin constituting the foamed particles.

発泡粒子において、加熱速度5℃/分、周波数1Hzでの固体粘弾性測定における損失正接tanδが最大となる温度は、120~230℃が好ましく、130~225℃がより好ましく、150~220℃がさらに好ましい。損失正接tanδが最大となる温度が上記下限値以上であれば、発泡粒子成形体が軟化する温度が高くなり、発泡粒子成形体の耐熱強度をより高められる。損失正接tanδが最大となる温度が上記上限値以下であれば、発泡粒子成形体が軟化する温度が過度に高くなりすぎず、成形性をより高められる。
発泡粒子の損失正接tanδが最大となる温度は、発泡粒子成形体を成形し、この発泡粒子成形体の固体粘弾性を測定することにより求められる。
For the foamed particles, the temperature at which the loss tangent tan δ is maximized in the solid viscoelasticity measurement at a heating rate of 5 ° C./min and a frequency of 1 Hz is preferably 120 to 230 ° C, more preferably 130 to 225 ° C, and more preferably 150 to 220 ° C. More preferred. When the temperature at which the loss tangent tan δ is maximized is at least the above lower limit value, the temperature at which the foamed particle molded body softens becomes high, and the heat resistance strength of the foamed particle molded body can be further increased. When the temperature at which the loss tangent tan δ is maximized is not more than the above upper limit value, the temperature at which the foamed particle compact is softened does not become excessively high, and the moldability can be further improved.
The temperature at which the loss tangent tan δ of the foamed particles is maximized is determined by molding the foamed particle molded body and measuring the solid viscoelasticity of the foamed particle molded body.

<発泡剤>
発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテル等のエーテル類、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等が挙げられ、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素、窒素が好ましい。これらの発泡剤は、1種単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
<Effervescent agent>
Examples of the foaming agent include saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane and hexane, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, 1 , 1-Difluoroethane, fluorocarbons such as monochlorofluoromethane, carbon dioxide, nitrogen and the like, and dimethyl ether, propane, normal butane, isobutane, carbon dioxide and nitrogen are preferable. These foaming agents may be used alone or in combination of two or more.

発泡剤の含有量は、特に限定されないが、樹脂100質量部に対して、例えば、0.1~12質量部が好ましい。 The content of the foaming agent is not particularly limited, but is preferably 0.1 to 12 parts by mass with respect to 100 parts by mass of the resin.

<任意成分>
本実施形態の発泡粒子は、熱可塑性樹脂及び発泡剤以外のその他成分(任意成分)を含有してもよい。
任意成分としては、気泡調整剤、安定剤、紫外線吸収剤、着色剤、酸化防止剤、結晶化促進剤、滑剤、架橋剤、界面活性剤、収縮防止剤、難燃剤、劣化防止剤等が挙げられる。
<Arbitrary ingredient>
The foamed particles of the present embodiment may contain other components (arbitrary components) other than the thermoplastic resin and the foaming agent.
Optional components include bubble regulators, stabilizers, UV absorbers, colorants, antioxidants, crystallization accelerators, lubricants, cross-linking agents, surfactants, shrinkage inhibitors, flame retardants, deterioration inhibitors and the like. Be done.

架橋剤としては、例えば、無水ピロメリット酸等の酸二無水物、多官能エポキシ化合物、オキサゾリン化合物、オキサジン化合物等が挙げられる。樹脂組成物に架橋剤を配合することで、発泡時の破泡が抑制され、連続気泡率をより低められる。
架橋剤の含有量は、樹脂100質量部に対して、例えば、0.08~0.8質量部が好ましい。
Examples of the cross-linking agent include acid dianhydrides such as pyromellitic anhydride, polyfunctional epoxy compounds, oxazoline compounds, and oxazine compounds. By blending a cross-linking agent with the resin composition, defoaming during foaming is suppressed and the open cell ratio can be further lowered.
The content of the cross-linking agent is preferably, for example, 0.08 to 0.8 parts by mass with respect to 100 parts by mass of the resin.

気泡調整剤は、例えば、タルク、シリカ等の無機粉末等の混合物等である。これらの気泡調整剤は、発泡粒子の独立気泡率を高め、発泡粒子を形成しやすい。
気泡調整剤の含有量は樹脂100質量部に対して、例えば、0.2~5質量部が好ましい。
The bubble adjusting agent is, for example, a mixture of inorganic powders such as talc and silica. These bubble adjusting agents increase the closed cell ratio of the foamed particles and easily form the foamed particles.
The content of the bubble adjusting agent is preferably 0.2 to 5 parts by mass with respect to 100 parts by mass of the resin.

安定剤は、例えば、カルシウム亜鉛系熱安定剤、スズ系熱安定剤、鉛系熱安定剤等である。
安定剤の含有量は、樹脂100質量部に対して、例えば、1質量部以下が好ましい。
The stabilizer is, for example, a calcium-zinc-based heat stabilizer, a tin-based heat stabilizer, a lead-based heat stabilizer, or the like.
The content of the stabilizer is preferably, for example, 1 part by mass or less with respect to 100 parts by mass of the resin.

紫外線吸収剤は、例えば、酸化セシウム系紫外線吸収剤、酸化チタン系紫外線吸収剤等である。
紫外線吸収剤の含有量は、樹脂100質量部に対して、例えば、1質量部以下が好ましい。
The ultraviolet absorber is, for example, a cesium oxide-based ultraviolet absorber, a titanium oxide-based ultraviolet absorber, or the like.
The content of the ultraviolet absorber is preferably, for example, 1 part by mass or less with respect to 100 parts by mass of the resin.

酸化防止剤は、例えば、酸化セリウム、酸化セリウム/ジルコニア固溶体、水酸化セリウム、カーボン、カーボンナノチューブ、酸化チタン、及びフラーレン等である。
酸化防止剤の含有量は、樹脂100質量部に対して、例えば、1質量部以下が好ましい。
Antioxidants are, for example, cerium oxide, cerium oxide / zirconia solid solution, cerium hydroxide, carbon, carbon nanotubes, titanium oxide, fullerenes and the like.
The content of the antioxidant is preferably, for example, 1 part by mass or less with respect to 100 parts by mass of the resin.

着色剤は、例えば、酸化チタン、カーボンブラック、チタンイエロー、酸化鉄、群青、コバルトブルー、焼成顔料、メタリック顔料、マイカ、パール顔料、酸化亜鉛、沈降性シリカ、カドミウム赤等である。
本実施形態の発泡粒子を食品用の容器に用いる場合には、上記の着色剤の中から衛生協議会登録品を選択することが好ましい。
着色剤の含有量は、樹脂100質量部に対して、例えば、2質量部以下が好ましい。
The colorant is, for example, titanium oxide, carbon black, titanium yellow, iron oxide, ultramarine blue, cobalt blue, fired pigment, metallic pigment, mica, pearl pigment, zinc oxide, precipitated silica, cadmium red and the like.
When the foamed particles of the present embodiment are used in a container for food, it is preferable to select a product registered by the Hygiene Council from the above colorants.
The content of the colorant is preferably, for example, 2 parts by mass or less with respect to 100 parts by mass of the resin.

結晶化促進剤は、例えば、ケイ酸塩、炭素、金属酸化物等である。ケイ酸塩としては、例えば、含水ケイ酸マグネシウムであるタルクが挙げられる。炭素としては、例えば、カーボンブラック、カーボンナノファイバー、カーボンナノチューブ、カーボンナノホーン、活性炭、グラファイト、グラフェン、コークス、メソポーラスカーボン、ガラス状炭素、ハードカーボン、ソフトカーボン等が挙げられ、カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック、サーマルブラックが挙げられる。金属酸化物としては、例えば、酸化亜鉛、酸化チタン等が挙げられる。
結晶化促進剤の含有量は、樹脂100質量部に対して、例えば、3質量部以下が好ましい。
The crystallization accelerator is, for example, a silicate, carbon, a metal oxide, or the like. Examples of the silicate include talc, which is a hydrous magnesium silicate. Examples of carbon include carbon black, carbon nanofibers, carbon nanotubes, carbon nanohorns, activated carbon, graphite, graphene, coke, mesoporous carbon, glassy carbon, hard carbon, soft carbon and the like, and carbon black includes furnaces. Examples include black, acetylene black, carbon-walled black, and thermal black. Examples of the metal oxide include zinc oxide and titanium oxide.
The content of the crystallization accelerator is preferably, for example, 3 parts by mass or less with respect to 100 parts by mass of the resin.

上述の任意成分は、それぞれ1種単独でもよいし、2種以上の組み合わせでもよい。
発泡粒子に含まれる任意成分の総量は、発泡粒子の総質量に対して、0.1~5質量部が好ましく、0.5~3質量部がより好ましい。
Each of the above-mentioned optional components may be used alone or in combination of two or more.
The total amount of the optional components contained in the foamed particles is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to the total mass of the foamed particles.

<物性>
発泡粒子の大きさは、用途に応じて適宜選択され、発泡粒子の群の平均粒子径は、例えば、0.5~5mmとされる。
発泡粒子の群の平均粒子径はD50で表現される値である。
具体的には、ロータップ型篩振とう機(飯田製作所社製)を用いて、篩目開き26.5mm、22.4mm、19.0mm、16.0mm、13.2mm、11.20mm、9.50mm、8.80mm、6.70mm、5.66mm、4.76mm、4.00mm、3.35mm、2.80mm、2.36mm、2.00mm、1.70mm、1.40mm、1.18mm、1.00mm、0.85mm、0.71mm、0.60mm、0.50mm、0.425mm、0.355mm、0.300mm、0.250mm、0.212mm及び0.180mmのJIS標準篩(JIS Z8801-1:2006)で試料約25gを10分間分級し、篩網上の試料重量を測定した。得られた結果から累積重量分布曲線を作成し、累積重量が50%となる粒子径(メディアン径)を平均粒子径とする。
<Physical characteristics>
The size of the foamed particles is appropriately selected according to the intended use, and the average particle size of the group of foamed particles is, for example, 0.5 to 5 mm.
The average particle size of the group of foamed particles is a value expressed by D50.
Specifically, using a low-tap type sieve shaker (manufactured by Iida Seisakusho Co., Ltd.), the sieve mesh openings are 26.5 mm, 22.4 mm, 19.0 mm, 16.0 mm, 13.2 mm, 11.20 mm, 9. 50 mm, 8.80 mm, 6.70 mm, 5.66 mm, 4.76 mm, 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, 1.40 mm, 1.18 mm, 1.00 mm, 0.85 mm, 0.71 mm, 0.60 mm, 0.50 mm, 0.425 mm, 0.355 mm, 0.300 mm, 0.250 mm, 0.212 mm and 0.180 mm JIS standard sieve (JIS Z8801) -1: 2006), about 25 g of the sample was classified for 10 minutes, and the weight of the sample on the sieve net was measured. A cumulative weight distribution curve is created from the obtained results, and the particle diameter (median diameter) at which the cumulative weight is 50% is defined as the average particle diameter.

発泡粒子の連続気泡率は、20%以下が好ましく、18%以下がより好ましく、16%以下がさらに好ましい。発泡粒子の連続気泡率が上記上限値以下であると、発泡粒子の二次発泡性をより高め、成形性や機械強度をより高められる。発泡粒子の連続気泡率は、JIS K7138:2006「硬質発泡プラスチック-連続気泡率及び独立気泡率の求め方」に記載の方法により求められる。 The open cell ratio of the foamed particles is preferably 20% or less, more preferably 18% or less, still more preferably 16% or less. When the open cell ratio of the foamed particles is not more than the above upper limit value, the secondary foamability of the foamed particles can be further enhanced, and the moldability and the mechanical strength can be further enhanced. The open cell ratio of the foamed particles is determined by the method described in JIS K7138: 2006 "Hard foamed plastic-How to determine the open cell ratio and the closed cell ratio".

発泡粒子の見掛け密度は、例えば、0.027~0.675g/cmが好ましく、0.045~0.45g/cmがより好ましく、0.0675~0.27g/cmがさらに好ましい。見掛け密度が上記下限値以上であれば、発泡粒子成形体の緩衝力を高められる。見掛け密度が上記上限値以下であると、発泡粒子成形体の機械的強度を高められる。 The apparent density of the foamed particles is, for example, preferably 0.027 to 0.675 g / cm 3 , more preferably 0.045 to 0.45 g / cm 3 , and even more preferably 0.0675 to 0.27 g / cm 3 . When the apparent density is at least the above lower limit value, the cushioning power of the foamed particle molded product can be increased. When the apparent density is not more than the above upper limit value, the mechanical strength of the foamed particle molded product can be increased.

発泡粒子の嵩発泡倍率は、例えば、2~50倍が好ましく、3~30倍がより好ましく、5~20倍がさらに好ましい。嵩発泡倍率が上記下限値以上であれば、緩衝力を高められる。嵩発泡倍率が上記上限値以下であると、機械的強度を高められる。 The bulk foaming ratio of the foamed particles is, for example, preferably 2 to 50 times, more preferably 3 to 30 times, still more preferably 5 to 20 times. When the bulk foaming ratio is equal to or higher than the above lower limit, the buffering force can be increased. When the bulk foaming ratio is not more than the above upper limit value, the mechanical strength can be increased.

発泡粒子の平均気泡径は、例えば、5~500μmが好ましく、10~400μmがより好ましく、20~300μmがさらに好ましい。平均気泡径が上記下限値以上であれば、緩衝力を高められる。平均気泡径が上記上限値以下であると、機械的強度を高められる。
平均気泡径は、ASTM D3576-77の試験方法に準拠して測定できる。
The average bubble diameter of the foamed particles is, for example, preferably 5 to 500 μm, more preferably 10 to 400 μm, and even more preferably 20 to 300 μm. If the average bubble diameter is at least the above lower limit, the buffering power can be increased. When the average bubble diameter is not more than the above upper limit value, the mechanical strength can be increased.
The average cell diameter can be measured according to the test method of ASTM D3576-77.

<製造方法>
本発明の発泡粒子の製造方法としては、熱可塑性樹脂と発泡剤とを含む樹脂組成物を押し出し、発泡して、発泡粒子を得る方法、熱可塑性樹脂を押し出して樹脂粒子を得、得られた樹脂粒子に発泡剤を含侵して発泡粒子とする方法が挙げられる。
より具体的な発泡粒子の製造方法としては、例えば、次の方法等が挙げられる。
1)熱可塑性樹脂と発泡剤とを押出機に供給して溶融混錬し、溶融状態の樹脂組成物を押出機先端に設けたダイの孔から空中に押し出して発泡させ、押し出して発泡させると同時に切断し、切断された発泡した球状の粒子を水中に投じて冷却して、発泡粒子を得る方法。
2)熱可塑性樹脂と発泡剤とを押出機に供給して溶融混錬し、溶融状態の樹脂組成物を押出機先端に設けたダイの孔から水中に押し出して発泡させて冷却し、押し出して発泡させて冷却すると同時に切断し、切断された発泡した球状の発泡粒子を得る方法。
3)熱可塑性樹脂と発泡剤とを押出機に供給して溶融混錬し、溶融状態の樹脂組成物を押出機先端に設けたダイの孔から水中に押し出して冷却し、押し出して冷却すると同時に切断し、切断された球状の発泡性粒子を得て、発泡性粒子を加熱して発泡粒子を得る方法。
4)熱可塑性樹脂を押出機に供給して溶融混錬し、溶融状態の熱可塑性樹脂を押出機先端に設けたダイの孔から空中に押し出して、押し出すと同時に切断し、切断された球状の樹脂粒子を水中に投じて冷却して樹脂粒子を得て、樹脂粒子に発泡剤を含浸させて発泡性粒子を得て、発泡性粒子を加熱して発泡粒子を得る方法。
5)熱可塑性樹脂を押出機に供給して溶融混錬し、溶融状態の熱可塑性樹脂を押出機先端に設けたダイの孔から水中に押し出して冷却し、押し出して冷却すると同時に切断し、切断された球状の樹脂粒子を得て、樹脂粒子に発泡剤を含浸させて発泡性粒子を得て、発泡性粒子を加熱して発泡粒子を得る方法。
6)熱可塑性樹脂を押出機に供給して溶融混錬し、溶融状態の熱可塑性樹脂を押出機先端に設けたダイの孔からストランド状に押し出し、押し出した後に水中に導き冷却し、冷却した後に所定の長さ毎に切断して柱状の樹脂粒子を得て、樹脂粒子に発泡剤を含浸させて発泡性粒子を得て、発泡性粒子を加熱して発泡粒子を得る方法。
<Manufacturing method>
As a method for producing foamed particles of the present invention, a resin composition containing a thermoplastic resin and a foaming agent is extruded and foamed to obtain foamed particles, and a thermoplastic resin is extruded to obtain resin particles. Examples thereof include a method of impregnating resin particles with a foaming agent to form foamed particles.
As a more specific method for producing foamed particles, for example, the following method and the like can be mentioned.
1) When the thermoplastic resin and the foaming agent are supplied to the extruder and melt-kneaded, the molten resin composition is extruded into the air through the holes of the die provided at the tip of the extruder to be foamed, and then extruded and foamed. A method of obtaining foamed particles by cutting them at the same time and throwing the cut foamed spherical particles into water to cool them.
2) The thermoplastic resin and the foaming agent are supplied to the extruder and melt-kneaded, and the molten resin composition is extruded into water through the holes of the die provided at the tip of the extruder to be foamed, cooled, and extruded. A method of foaming, cooling, and at the same time cutting to obtain cut foamed spherical foam particles.
3) The thermoplastic resin and the foaming agent are supplied to the extruder and melt-kneaded, and the molten resin composition is extruded into water through the holes of the die provided at the tip of the extruder to be cooled, and at the same time extruded and cooled. A method of cutting to obtain cut spherical effervescent particles and heating the effervescent particles to obtain effervescent particles.
4) The thermoplastic resin is supplied to the extruder and melt-kneaded, and the molten thermoplastic resin is extruded into the air from the hole of the die provided at the tip of the extruder, and is cut at the same time as being extruded, and the cut spherical shape is formed. A method in which resin particles are cast in water and cooled to obtain resin particles, the resin particles are impregnated with a foaming agent to obtain foamable particles, and the foamable particles are heated to obtain foamed particles.
5) The thermoplastic resin is supplied to the extruder and melt-kneaded, and the melted thermoplastic resin is extruded into water from the hole of the die provided at the tip of the extruder to be cooled, extruded and cooled, and at the same time cut and cut. A method in which the formed spherical resin particles are obtained, the resin particles are impregnated with a foaming agent to obtain foamable particles, and the foamable particles are heated to obtain foamed particles.
6) The thermoplastic resin was supplied to the extruder and melt-kneaded, and the melted thermoplastic resin was extruded into a strand shape from the hole of the die provided at the tip of the extruder, and after being extruded, it was guided into water and cooled to be cooled. Later, a method in which columnar resin particles are obtained by cutting at predetermined lengths, the resin particles are impregnated with a foaming agent to obtain foamable particles, and the foamable particles are heated to obtain foamed particles.

以下、樹脂組成物を空中に押し出して発泡させ、これを切断して球状の粒子を水中に投じて冷却する方法について、より詳細に説明する。 Hereinafter, a method of extruding the resin composition into the air to foam it, cutting the resin composition, and throwing spherical particles into water to cool the resin composition will be described in more detail.

本発明の発泡粒子の製造に用いられる押出機を説明する。
図4の発泡粒子製造装置10は、押出機(不図示)と、押出機の先端に設けられたノズル金型1とを有する。ノズル金型1の先端には、回転軸2が接続されている。回転軸2は、後述する冷却部材4を構成する冷却ドラム41の前部41aを貫通してモータ等の駆動部材3に連結されている。
ノズル金型1の前端面1aには、ノズルの出口部11が複数個、回転軸2を中心とした同一仮想円A上に等間隔に形成されている(図5参照)。
The extruder used for producing the foamed particles of the present invention will be described.
The foamed particle manufacturing apparatus 10 of FIG. 4 has an extruder (not shown) and a nozzle mold 1 provided at the tip of the extruder. A rotating shaft 2 is connected to the tip of the nozzle mold 1. The rotary shaft 2 penetrates the front portion 41a of the cooling drum 41 constituting the cooling member 4 described later and is connected to the drive member 3 such as a motor.
On the front end surface 1a of the nozzle mold 1, a plurality of nozzle outlet portions 11 are formed at equal intervals on the same virtual circle A centered on the rotation shaft 2 (see FIG. 5).

ノズル金型1のノズルの数(即ち、出口部11の数)は、2~80個が好ましい。ノズル数が1個の場合、発泡粒子の製造効率が低下することがある。80個より多い場合、互いに隣接するノズルから押出発泡される押出発泡体同士が接触して合着することがある。また、押出発泡体を切断して得られる発泡粒子同士が合着することがある。ノズルの数は、5~60個がより好ましく、8~50個が特に好ましい。
ノズル金型1におけるノズルの出口部11の直径(開口径)は、0.2~2mmが好ましい。出口部11の開口径が0.2mm未満の場合、押出圧力が高くなりすぎて押出発泡が困難となることがある。出口部11の開口径が2mmより大きい場合、発泡粒子の径が大きくなって金型への充填効率が低下することがある。出口部11の開口径は、0.3~1.6mmがより好ましく、0.4~1.2mmが特に好ましい。
ノズル金型1のランド部の長さは、ノズル金型1のノズルにおける出口部11の開口径の4~30倍が好ましい。長さが4倍未満の場合、フラクチャーが発生して安定的に押出発泡できないことがある。30倍より大きい場合、ノズル金型1に大きな圧力が加わり過ぎて押出発泡できない場合がある。ランド部の長さは、5~20倍がより好ましい。
The number of nozzles in the nozzle mold 1 (that is, the number of outlet portions 11) is preferably 2 to 80. When the number of nozzles is one, the production efficiency of foamed particles may decrease. If the number is more than 80, the extruded foams extruded from the nozzles adjacent to each other may come into contact with each other and coalesce. In addition, the foamed particles obtained by cutting the extruded foam may coalesce with each other. The number of nozzles is more preferably 5 to 60, and particularly preferably 8 to 50.
The diameter (opening diameter) of the nozzle outlet portion 11 in the nozzle mold 1 is preferably 0.2 to 2 mm. If the opening diameter of the outlet portion 11 is less than 0.2 mm, the extrusion pressure may become too high and extrusion foaming may become difficult. When the opening diameter of the outlet portion 11 is larger than 2 mm, the diameter of the foamed particles may become large and the filling efficiency into the mold may decrease. The opening diameter of the outlet portion 11 is more preferably 0.3 to 1.6 mm, and particularly preferably 0.4 to 1.2 mm.
The length of the land portion of the nozzle mold 1 is preferably 4 to 30 times the opening diameter of the outlet portion 11 of the nozzle of the nozzle mold 1. If the length is less than 4 times, fracture may occur and stable extrusion foaming may not be possible. If it is larger than 30 times, excessive pressure may be applied to the nozzle mold 1 and extrusion foaming may not be possible. The length of the land portion is more preferably 5 to 20 times.

ノズル金型1の前端面1aにおけるノズルの出口部11で囲まれた部分には、回転軸2が前方に向かって突出した状態に配設されている。
回転軸2の後端部の外周面には一枚又は複数枚の回転刃5が一体的に設けられており、全ての回転刃5は、その回転時には、前端面1aに常時、接触した状態となる。なお、回転軸2に複数枚の回転刃5が一体的に設けられている場合には、複数枚の回転刃5は回転軸2の周方向に等間隔毎に配列されている。また、図5では、一例として、四個の回転刃5を回転軸2の外周面に一体的に設けた場合を示している。
回転軸2が回転することによって回転刃5は、前端面1aに常時、接触しながら、ノズルの出口部11が形成されている仮想円A上を移動し、ノズルの出口部11から押出された押出発泡体を順次、連続的に切断可能に構成されている。
発泡粒子製造装置10は、ノズル金型1の少なくとも前端面1aと、回転軸2とを包囲する冷却部材4が配設されている。冷却部材4は、ノズル金型1よりも大径な正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設された円筒状の周壁部41bとを有する有底円筒状の冷却ドラム41とを備えている。
A rotation shaft 2 is arranged in a portion of the front end surface 1a of the nozzle mold 1 surrounded by the nozzle outlet portion 11 so as to project forward.
One or a plurality of rotary blades 5 are integrally provided on the outer peripheral surface of the rear end portion of the rotary shaft 2, and all the rotary blades 5 are in constant contact with the front end surface 1a during the rotation. Will be. When a plurality of rotary blades 5 are integrally provided on the rotary shaft 2, the plurality of rotary blades 5 are arranged at equal intervals in the circumferential direction of the rotary shaft 2. Further, FIG. 5 shows, as an example, a case where four rotary blades 5 are integrally provided on the outer peripheral surface of the rotary shaft 2.
As the rotary shaft 2 rotates, the rotary blade 5 moves on the virtual circle A on which the outlet portion 11 of the nozzle is formed while constantly in contact with the front end surface 1a, and is extruded from the outlet portion 11 of the nozzle. The extruded foam is configured to be able to be cut sequentially and continuously.
The foamed particle manufacturing apparatus 10 is provided with a cooling member 4 that surrounds at least the front end surface 1a of the nozzle mold 1 and the rotating shaft 2. The cooling member 4 has a bottom having a front portion 41a having a front circular shape having a diameter larger than that of the nozzle mold 1 and a cylindrical peripheral wall portion 41b extending rearward from the outer peripheral edge of the front portion 41a. It is provided with a cylindrical cooling drum 41.

周壁部41bにおけるノズル金型1の外面に対向する領域には、冷却液42を供給するための供給口41cが形成されている。供給口41cは、周壁部41bを貫通している。周壁部41bの外面で、供給口41cには、冷却液42を冷却ドラム41内に供給するための供給管41dが接続されている。
冷却液42は、供給管41dを通じて、冷却ドラム41の周壁部41bの内周面に沿って斜め前方に向かって供給されるように構成されている。
A supply port 41c for supplying the cooling liquid 42 is formed in the region of the peripheral wall portion 41b facing the outer surface of the nozzle mold 1. The supply port 41c penetrates the peripheral wall portion 41b. On the outer surface of the peripheral wall portion 41b, a supply pipe 41d for supplying the cooling liquid 42 into the cooling drum 41 is connected to the supply port 41c.
The coolant 42 is configured to be supplied obliquely forward along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 through the supply pipe 41d.

周壁部41bの前端部下面には、排出口41eが形成されている。排出口41eは、周壁部41bを貫通している。周壁部41bの外面で、排出口41eには、排出管41fが接続されている。
押出機としては、従来から汎用されている押出機であれば、特に限定されず、例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられる。
A discharge port 41e is formed on the lower surface of the front end portion of the peripheral wall portion 41b. The discharge port 41e penetrates the peripheral wall portion 41b. On the outer surface of the peripheral wall portion 41b, the discharge pipe 41f is connected to the discharge port 41e.
The extruder is not particularly limited as long as it is a conventional general-purpose extruder, and examples thereof include a single-screw extruder, a twin-screw extruder, and a tandem type extruder in which a plurality of extruders are connected. ..

発泡粒子製造装置10を用いた発泡粒子の製造方法を説明する。
供給口41cを介して、冷却液42を供給管41dから冷却ドラム41内に供給する。供給された冷却液42は、供給される際の流速に伴う遠心力によって、周壁部41bの内周面に沿って螺旋状を描くように前方(前部41a方向)に向かって進む。冷却液42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向(即ち、周壁部41bの周方向)に広がる。周壁部41bの周方向に広がった冷却液42は、供給口41cより前方の周壁部41bの内周面を全面的に被覆する。
A method of manufacturing foamed particles using the foamed particle manufacturing apparatus 10 will be described.
The coolant 42 is supplied into the cooling drum 41 from the supply pipe 41d via the supply port 41c. The supplied coolant 42 advances forward (toward the front portion 41a) in a spiral shape along the inner peripheral surface of the peripheral wall portion 41b due to the centrifugal force accompanying the flow velocity at the time of supply. The coolant 42 gradually spreads in a direction orthogonal to the traveling direction (that is, the circumferential direction of the peripheral wall portion 41b) while traveling along the inner peripheral surface of the peripheral wall portion 41b. The coolant 42 spreading in the circumferential direction of the peripheral wall portion 41b completely covers the inner peripheral surface of the peripheral wall portion 41b in front of the supply port 41c.

冷却液42としては、発泡粒子を冷却できれば、特に限定されず、例えば、水、アルコール等が挙げられるが、使用後の処理を考慮すると、水が好ましい。
冷却液42の温度は、10~40℃が好ましい。冷却液の温度が10℃以上であれば、冷却ドラム41の近傍に位置するノズル金型1が過度に冷却されることなく、樹脂組成物をより円滑に出口部11から押し出せる。冷却液の温度が40℃以下であれば、粒子状切断物の冷却をより速やかに行える。
The coolant 42 is not particularly limited as long as it can cool the foamed particles, and examples thereof include water and alcohol, but water is preferable in consideration of post-use treatment.
The temperature of the coolant 42 is preferably 10 to 40 ° C. When the temperature of the coolant is 10 ° C. or higher, the resin composition can be more smoothly extruded from the outlet portion 11 without excessively cooling the nozzle mold 1 located in the vicinity of the cooling drum 41. When the temperature of the coolant is 40 ° C. or lower, the particulate cut can be cooled more quickly.

回転刃5を回転させつつ、樹脂組成物をノズルの出口部11から押し出す。
樹脂組成物に配合されるポリエステル系樹脂(原料ポリエステル系樹脂)のガラス転移温度Tgは、50~100℃が好ましく、60~90℃がより好ましく、70~85℃がさらに好ましい。Tgが上記下限値以上であれば、耐熱強度、加熱寸法安定性をより高められる。Tgが上記上限値以下であれば、成形サイクルを短くして生産性を高め、成形性を高められる。なお、「成形性」は、例えば、発泡粒子を金型のキャビティに充填し、これを加熱して二次発泡させた際に、所望の形状に近づけられることであり、所望の形状に近づくほど、成形性は「良好」である。
While rotating the rotary blade 5, the resin composition is pushed out from the outlet portion 11 of the nozzle.
The glass transition temperature Tg of the polyester resin (raw material polyester resin) blended in the resin composition is preferably 50 to 100 ° C, more preferably 60 to 90 ° C, still more preferably 70 to 85 ° C. When Tg is at least the above lower limit value, the heat resistance strength and the heating dimensional stability can be further improved. When Tg is not more than the above upper limit value, the molding cycle can be shortened to increase productivity and improve moldability. The "formability" means, for example, that when foamed particles are filled in a mold cavity and heated for secondary foaming, the shape is brought closer to a desired shape, and the closer the shape is to a desired shape. , The moldability is "good".

原料ポリエステル系樹脂の融点は、230~270℃が好ましく、240~260℃がより好ましく、245~255℃がさらに好ましい。融点が上記下限値以上であれば、耐熱強度、加熱寸法安定性をより高められる。融点が上記上限値以下であれば、成形サイクルを短くして生産性を高め、成形性を高められる。 The melting point of the raw material polyester resin is preferably 230 to 270 ° C, more preferably 240 to 260 ° C, still more preferably 245 to 255 ° C. When the melting point is at least the above lower limit value, the heat resistance strength and the heating dimensional stability can be further improved. When the melting point is not more than the above upper limit value, the molding cycle can be shortened to increase productivity and improve moldability.

原料ポリエステル系樹脂の固有粘度(IV値)は、0.5~1.5が好ましく、0.6~1.3がより好ましく、0.7~1.2がさらに好ましい。IV値が上記下限値以上であれば、発泡時の破泡が抑制されて連続気泡率をより低められる。IV値が上記上限値以下であれば、密度をより低くし、発泡粒子成形体の表面をより平滑にして、外観の美麗さを高められる。
IV値は、JIS K7367-5(2000)の方法で測定できる。
The intrinsic viscosity (IV value) of the raw material polyester resin is preferably 0.5 to 1.5, more preferably 0.6 to 1.3, and even more preferably 0.7 to 1.2. When the IV value is equal to or higher than the above lower limit value, defoaming during foaming is suppressed and the open cell ratio can be further lowered. When the IV value is not more than the above upper limit value, the density can be made lower, the surface of the foamed particle molded product can be made smoother, and the appearance can be enhanced.
The IV value can be measured by the method of JIS K7367-5 (2000).

原料ポリエステル系樹脂の数平均分子量Mnは、9,000~45,000であり、15,000~43,000が好ましく、20,000~40,000がより好ましい。
Mnが上記下限値以上であれば、発泡粒子成形体の耐寒性(即ち、低温での機械的強度)をさらに高められる。Mnが上記上限値以下であれば、発泡粒子成形体の耐熱性をさらに高められる。
The number average molecular weight Mn of the raw material polyester resin is 9,000 to 45,000, preferably 15,000 to 43,000, and more preferably 20,000 to 40,000.
When Mn is at least the above lower limit value, the cold resistance (that is, the mechanical strength at low temperature) of the foamed particle molded product can be further enhanced. When Mn is not more than the above upper limit value, the heat resistance of the foamed particle molded product can be further enhanced.

原料ポリエステル系樹脂のZ平均分子量Mzは、50,000~500,000であり、80,000~450,000が好ましく、100,000~400,000がより好ましい。
Mzが上記範囲内であれば、発泡粒子成形体の耐寒性をさらに高められる。
The Z average molecular weight Mz of the raw material polyester resin is 50,000 to 500,000, preferably 80,000 to 450,000, and more preferably 100,000 to 400,000.
When Mz is within the above range, the cold resistance of the foamed particle molded product can be further enhanced.

樹脂組成物は、ノズル金型1から押出発泡された押出発泡体となり、かつ回転刃5で切断されて、粒子状切断物となる。全ての回転刃5は前端面1aに常時、接触しながら回転しており、ノズル金型1から押出発泡された押出発泡体は、回転刃5と、ノズルの出口部11端縁との間に生じる剪断応力によって、一定の時間間隔で大気中において切断されて粒子状切断物となる。この時、押出発泡体の冷却が過度とならない範囲内において、押出発泡体に水を霧状に吹き付けてもよい。 The resin composition becomes an extruded foam extruded from the nozzle die 1 and is cut by the rotary blade 5 to become a particulate cut product. All the rotary blades 5 are constantly in contact with the front end surface 1a and rotate, and the extruded foam extruded from the nozzle mold 1 is located between the rotary blade 5 and the end edge of the outlet portion 11 of the nozzle. Due to the shear stress generated, it is cut in the atmosphere at regular time intervals to form particulate cuts. At this time, water may be sprayed onto the extruded foam in the form of mist within a range in which the extruded foam is not excessively cooled.

ノズル金型1のノズル内においては、樹脂組成物が発泡しないようにしている。樹脂組成物は、ノズルの出口部11から吐出された直後は、未だに発泡しておらず、吐出されてから僅かな時間が経過した後に発泡を始める。従って、押出発泡体は、ノズルの出口部11から吐出された直後の未発泡部と、この未発泡部に連続し、未発泡部に先んじて押出された発泡途上の発泡部とからなる。
ノズルの出口部11から吐出されてから発泡を開始するまでの間、未発泡部はその状態を維持する。この未発泡部が維持される時間は、ノズルの出口部11における樹脂圧力や、発泡剤量等によって調整できる。ノズルの出口部11における樹脂圧力が高いと、樹脂組成物は、ノズル金型1から押出されてから直ぐに発泡することはなく、未発泡の状態を維持する。ノズルの出口部11における熱可塑性樹脂の吐出圧力の調整は、ノズルの出口部11の開口径、押出量、樹脂組成物の溶融粘度及び溶融張力によって調整できる。加えて、発泡剤量を適正な量に調整することによって、ノズル金型1の内部において熱可塑性樹脂脂組成物が発泡することを防止し、未発泡部を確実に形成できる。
全ての回転刃5は前端面1aに常時、接触した状態で押出発泡体を切断していることから、押出発泡体は、ノズルの出口部11から吐出された直後の未発泡部において切断された粒子状切断物となる。
The resin composition is prevented from foaming in the nozzle of the nozzle mold 1. Immediately after being ejected from the outlet portion 11 of the nozzle, the resin composition has not yet foamed, and begins to foam after a short time has elapsed after being ejected. Therefore, the extruded foam comprises an unfoamed portion immediately after being ejected from the outlet portion 11 of the nozzle, and a foamed portion that is continuous with the unfoamed portion and is extruded prior to the unfoamed portion.
The unfoamed portion maintains that state from the time when the nozzle is discharged from the outlet portion 11 until the start of foaming. The time for maintaining this unfoamed portion can be adjusted by adjusting the resin pressure at the outlet portion 11 of the nozzle, the amount of foaming agent, and the like. When the resin pressure at the outlet portion 11 of the nozzle is high, the resin composition does not foam immediately after being extruded from the nozzle mold 1 and maintains an unfoamed state. The discharge pressure of the thermoplastic resin at the outlet portion 11 of the nozzle can be adjusted by adjusting the opening diameter of the outlet portion 11 of the nozzle, the extrusion rate, the melt viscosity of the resin composition, and the melt tension. In addition, by adjusting the amount of the foaming agent to an appropriate amount, it is possible to prevent the thermoplastic resin fat composition from foaming inside the nozzle mold 1 and reliably form an unexpanded portion.
Since all the rotary blades 5 cut the extruded foam in a state of being in constant contact with the front end surface 1a, the extruded foam was cut at the unfoamed portion immediately after being ejected from the outlet portion 11 of the nozzle. It becomes a granular cut piece.

回転刃5の回転数は2000~10000rpmが好ましく、2000~9000rpmがより好ましく、2000~8000rpmが特に好ましい。回転数が上記下限値以上であれば、押出発泡体を回転刃5によってより確実に切断して、合着を防止し、発泡粒子をより均一な形状にできる。回転数が上記上限値以下であれば、後述する冷却液42に達するまでの時間が充分に確保されて嵩発泡倍率をより高められる。 The rotation speed of the rotary blade 5 is preferably 2000 to 10000 rpm, more preferably 2000 to 9000 rpm, and particularly preferably 2000 to 8000 rpm. When the number of rotations is equal to or higher than the above lower limit, the extruded foam can be more reliably cut by the rotary blade 5, preventing coalescence, and forming the foamed particles into a more uniform shape. When the rotation speed is not more than the above upper limit value, a sufficient time to reach the coolant 42 described later is sufficiently secured, and the bulk foaming ratio can be further increased.

図6に示すように、回転刃5によって切断された粒子状切断物Pは、回転刃5による切断応力によって切断と同時に冷却ドラム41の内壁に向かって飛散され、周壁部41bの内周面を被覆する冷却液42に衝突する。粒子状切断物は、冷却液42に衝突するまでの間も発泡をし続け、粒子状切断物は発泡によって略球状に成長する。このため、得られる発泡粒子は略球状である。この際、粒子状切断物Pは、冷却液42の表面に対して斜交し、かつ冷却液42の流れ方向Xの上流から下流に向かって、冷却液42に衝突することが好ましい(図6参照)。粒子状切断物を冷却液42に衝突させるときに、粒子状切断物Pを冷却液42の流れを追う方向から冷却液42に衝突することで、粒子状切断物Pは冷却液42の表面に弾かれることなく、粒子状切断物Pは、冷却液42内に円滑に、かつ確実に進入して、冷却液42によって冷却されて、発泡粒子となる。 As shown in FIG. 6, the particulate cut piece P cut by the rotary blade 5 is scattered toward the inner wall of the cooling drum 41 at the same time as cutting due to the cutting stress by the rotary blade 5, and the inner peripheral surface of the peripheral wall portion 41b is scattered. It collides with the coolant 42 to be coated. The particulate cuts continue to foam until they collide with the coolant 42, and the particulate cuts grow substantially spherical by foaming. Therefore, the obtained foamed particles are substantially spherical. At this time, it is preferable that the particulate cut piece P is oblique to the surface of the coolant 42 and collides with the coolant 42 from upstream to downstream in the flow direction X of the coolant 42 (FIG. 6). reference). When the particulate cuts collide with the coolant 42, the particulate cuts P collide with the coolant 42 from the direction of following the flow of the coolant 42, so that the particulate cuts P come into contact with the surface of the coolant 42. Without being repelled, the particulate cuts P smoothly and reliably enter the coolant 42 and are cooled by the coolant 42 to become foamed particles.

本実施形態によれば、押出発泡体を回転刃5によって切断した後に、粒子状切断物を直ちに冷却液42によって冷却していることから、粒子状切断物が過度に発泡するのを防止して、所望する嵩発泡倍率の発泡粒子を得られる。
加えて、粒子状切断物は、押出発泡体の切断後に直ちに冷却されるため、発泡粒子の結晶化度の上昇が抑制されている。このため、発泡粒子は、優れた二次発泡性や熱融着性を発揮し、得られる発泡粒子成形体は優れた機械強度を有している。さらに、型内発泡成形時にポリエステル系樹脂の発泡粒子成形体の結晶化度を上昇させることで、加熱寸法安定性をより高められる。
According to the present embodiment, after the extruded foam is cut by the rotary blade 5, the particulate cut is immediately cooled by the coolant 42, so that the particulate cut is prevented from being excessively foamed. , Foaming particles having a desired bulk foaming ratio can be obtained.
In addition, since the particulate cuts are cooled immediately after cutting the extruded foam, the increase in the crystallinity of the foamed particles is suppressed. Therefore, the foamed particles exhibit excellent secondary foaming property and heat fusion property, and the obtained foamed particle molded product has excellent mechanical strength. Further, by increasing the crystallinity of the foamed particle molded product of the polyester resin during in-mold foam molding, the heating dimensional stability can be further enhanced.

冷却液42で冷却された発泡粒子は、冷却液42と共に、排出口41eを介して排出管41fに流入し、冷却ドラム41外に排出される。排出された発泡粒子は、冷却液42から分離され、必要に応じて乾燥される。発泡粒子と冷却液42との分離方法としては、例えば、篩を通す等、従来公知の固液分離方法が挙げられる。 The foamed particles cooled by the coolant 42, together with the coolant 42, flow into the discharge pipe 41f through the discharge port 41e and are discharged to the outside of the cooling drum 41. The discharged foam particles are separated from the coolant 42 and dried if necessary. Examples of the method for separating the foamed particles and the cooling liquid 42 include conventionally known solid-liquid separation methods such as passing through a sieve.

(熱可塑性樹脂発泡粒子成形体)
本実施形態の熱可塑性樹脂発泡粒子成形体(発泡粒子成形体)は、発泡粒子を発泡し、互いに融着させたものである。発泡粒子成形体としては、自動車、航空機、鉄道車両又は船舶等の輸送機器の部品、電気製品の緩衝材や筐体等が挙げられる。自動車の部品としては、例えば、エンジン付近に用いられる部材、外装材、断熱材等が挙げられる。また、例えば、発泡粒子成形体としては、魚箱、野菜箱等の食品包装容器、電気製品に用いる緩衝材、梱包材、構造部材、断熱材等が挙げられる。
(Thermoplastic resin foamed particle molded product)
The thermoplastic resin foamed particle molded body (foamed particle molded body) of the present embodiment is formed by foaming foamed particles and fusing them together. Examples of the foamed particle molded body include parts of transportation equipment such as automobiles, aircraft, railroad vehicles, and ships, cushioning materials for electric products, housings, and the like. Examples of automobile parts include members used in the vicinity of an engine, exterior materials, heat insulating materials, and the like. Further, for example, examples of the foamed particle molded body include food packaging containers such as fish boxes and vegetable boxes, cushioning materials used for electric products, packaging materials, structural members, heat insulating materials and the like.

発泡粒子成形体の大きさは、特に限定されず、用途を勘案して適宜決定される。 The size of the foamed particle molded product is not particularly limited and is appropriately determined in consideration of the intended use.

発泡粒子成形体は、単一のガラス転移温度Tgを示す。ポリエステル系樹脂とポリイミド系樹脂とが相溶することで、単一のガラス転移温度Tgとなる。発泡粒子成形体のガラス転移温度Tgが単一であることで、ポリエステル系樹脂のガラス転移温度Tgよりも高いガラス転移温度Tgとなり、発泡粒子成形体の耐熱強度が高まる。
発泡粒子成形体のガラス転移温度Tgは、例えば、80~130℃が好ましく、85~125℃がより好ましく、90~120℃がさらに好ましい。Tgが上記下限値以上であれば、発泡粒子成形体の耐熱強度、加熱寸法安定性をより高められる。Tgが上記上限値以下であれば、成形性が向上し、外観が美麗に仕上がる。
The foamed particle compact exhibits a single glass transition temperature Tg. When the polyester resin and the polyimide resin are compatible with each other, a single glass transition temperature Tg is obtained. Since the glass transition temperature Tg of the foamed particle molded body is single, the glass transition temperature Tg is higher than the glass transition temperature Tg of the polyester resin, and the heat resistance strength of the foamed particle molded body is enhanced.
The glass transition temperature Tg of the foamed particle molded product is, for example, preferably 80 to 130 ° C., more preferably 85 to 125 ° C., and even more preferably 90 to 120 ° C. When Tg is at least the above lower limit value, the heat resistance strength and the heating dimensional stability of the foamed particle molded product can be further enhanced. When Tg is not more than the above upper limit value, the moldability is improved and the appearance is beautifully finished.

発泡粒子成形体の吸熱発熱差は、3~35J/gが好ましく、10~30J/gがより好ましく、15~28J/gがさらに好ましい。吸熱発熱差が上記下限値以上であれば、結晶化度が高まり、発泡粒子成形体の加熱寸法安定性を高められる。吸熱発熱差が上記上限値以下であれば、結晶化度が高まりすぎず、発泡粒子成形体の耐衝撃性を高められる。
吸熱発熱差は、加熱速度10℃/分における熱流束示差走査熱量測定によって求められ吸熱量と発熱量との差である。
The endothermic heat generation difference of the foamed particle molded product is preferably 3 to 35 J / g, more preferably 10 to 30 J / g, and even more preferably 15 to 28 J / g. When the endothermic heat generation difference is at least the above lower limit value, the crystallinity is increased and the heating dimensional stability of the foamed particle molded product can be improved. When the endothermic heat generation difference is not more than the above upper limit value, the crystallinity does not increase too much, and the impact resistance of the foamed particle molded product can be enhanced.
The endothermic heat generation difference is the difference between the endothermic amount and the calorific value obtained by measuring the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min.

発泡粒子成形体において、加熱速度5℃/分、周波数1Hzでの固体粘弾性測定における損失正接tanδが最大となる温度は、120~230℃が好ましく、130~225℃がより好ましく、150~220℃がさらに好ましい。損失正接tanδが最大となる温度が上記下限値以上であれば、発泡粒子成形体が軟化する温度が高くなり、発泡粒子成形体の耐熱強度をより高められる。損失正接tanδが最大となる温度が上記上限値以下であれば、発泡粒子成形体が軟化する温度が過度に高くなりすぎず、成形性をより高められる。 In the foamed particle molded body, the temperature at which the loss tangent tan δ is maximized in the solid viscoelasticity measurement at a heating rate of 5 ° C./min and a frequency of 1 Hz is preferably 120 to 230 ° C, more preferably 130 to 225 ° C, and 150 to 220. ° C is more preferred. When the temperature at which the loss tangent tan δ is maximized is at least the above lower limit value, the temperature at which the foamed particle molded body softens becomes high, and the heat resistance strength of the foamed particle molded body can be further increased. When the temperature at which the loss tangent tan δ is maximized is not more than the above upper limit value, the temperature at which the foamed particle compact is softened does not become excessively high, and the moldability can be further improved.

発泡粒子成形体の連続気泡率は、例えば、20%以下が好ましく、18%以下がより好ましく、16%以下がさらに好ましい。発泡粒子成形体の連続気泡率が上記上限値以下であると、発泡粒子成形体の耐衝撃性をより高められる。発泡粒子成形体の連続気泡率は、JIS K7138:2006「硬質発泡プラスチック-連続気泡率及び独立気泡率の求め方」に記載の方法により求められる。 The open cell ratio of the foamed particle molded product is, for example, preferably 20% or less, more preferably 18% or less, still more preferably 16% or less. When the open cell ratio of the foamed particle molded product is not more than the above upper limit value, the impact resistance of the foamed particle molded product can be further enhanced. The open cell ratio of the foamed particle molded body is determined by the method described in JIS K7138: 2006 "Hard foamed plastic-How to determine the open cell ratio and the closed cell ratio".

発泡粒子成形体の見掛け密度は、例えば、0.027~0.675g/cmが好ましく、0.045~0.45g/cmがより好ましく、0.0675~0.27g/cmがさらに好ましい。発泡粒子成形体の見掛け密度が上記下限値以上であると、発泡粒子成形体の耐衝撃性をより高められる。発泡粒子成形体の見掛け密度が上記上限値以下であると、発泡粒子成形体をより軽量にできる。 The apparent density of the foamed particle molded body is, for example, preferably 0.027 to 0.675 g / cm 3 , more preferably 0.045 to 0.45 g / cm 3 , and further preferably 0.0675 to 0.27 g / cm 3 . preferable. When the apparent density of the foamed particle molded product is at least the above lower limit value, the impact resistance of the foamed particle molded product can be further enhanced. When the apparent density of the foamed particle molded product is not more than the above upper limit value, the foamed particle molded product can be made lighter.

発泡粒子成形体の発泡倍率は、例えば、2~50倍が好ましく、3~30倍がより好ましく、5~20倍がさらに好ましい。発泡粒子成形体の発泡倍率が上記下限値以上であると、発泡粒子成形体の耐衝撃性をより高められる。発泡粒子成形体の発泡倍率が上記上限値以下であると、発泡粒子成形体の機械的強度をより高められる。 The foaming ratio of the foamed particle molded product is, for example, preferably 2 to 50 times, more preferably 3 to 30 times, still more preferably 5 to 20 times. When the expansion ratio of the foamed particle molded product is at least the above lower limit value, the impact resistance of the foamed particle molded product can be further enhanced. When the expansion ratio of the foamed particle molded product is not more than the above upper limit value, the mechanical strength of the foamed particle molded product can be further increased.

発泡粒子成形体の平均気泡径は、例えば、5~500μmが好ましく、10~400μmがより好ましく、20~300μmがさらに好ましい。発泡粒子成形体の平均気泡径が上記下限値以上であると、発泡粒子成形体の耐衝撃性をより高められる。発泡粒子成形体の平均気泡径が上記上限値以下であると、発泡粒子成形体の表面平滑性をより高められる。
発泡粒子成形体の平均気泡径は、ASTM D2842-69に記載の方法に準拠して測定できる。
The average bubble diameter of the foamed particle molded product is, for example, preferably 5 to 500 μm, more preferably 10 to 400 μm, and even more preferably 20 to 300 μm. When the average bubble diameter of the foamed particle molded body is at least the above lower limit value, the impact resistance of the foamed particle molded body can be further enhanced. When the average cell diameter of the foamed particle molded body is not more than the above upper limit value, the surface smoothness of the foamed particle molded body can be further enhanced.
The average cell diameter of the foamed particle molded product can be measured according to the method described in ASTM D2842-69.

<製造方法>
発泡粒子を用いた発泡粒子成形体は、従来公知の製造方法で製造できる。
発泡粒子成形体の製造方法としては、例えば、次の方法等が挙げられる。
1)発泡粒子(嵩発泡倍率:2~50倍)を成形型内に充填し、これを加熱して、発泡粒子を二次発泡させて二次発泡粒子としつつ融着して、型内発泡成形により、発泡粒子成形体(発泡倍率:2~50倍)とする(加熱成形工程)方法。
2)発泡粒子を加熱して任意の嵩発泡倍率に発泡させた予備発泡粒子(嵩発泡倍率:2~50倍)とし(予備発泡工程)、予備発泡粒子を成形型内に充填し、これを加熱して、予備発泡粒子を二次発泡させて二次発泡粒子としつつ融着して、型内発泡成形により発泡粒子成形体(発泡倍率:2~50倍)とする(加熱成形工程)方法。
<Manufacturing method>
The foamed particle molded product using the foamed particles can be manufactured by a conventionally known manufacturing method.
Examples of the method for producing the foamed particle molded product include the following methods.
1) Foaming particles (bulk foaming ratio: 2 to 50 times) are filled in a molding mold, and the foaming particles are secondarily foamed to form secondary foaming particles and fused to form in-mold foaming. A method of forming a foamed particle molded body (foaming ratio: 2 to 50 times) by molding (heat molding step).
2) Pre-foamed particles heated to an arbitrary bulk-foaming ratio (bulk-foaming ratio: 2 to 50 times) (preliminary foaming step), and the pre-foaming particles are filled in a mold and then filled. Method of heating to secondary foam the prefoamed particles to form secondary foamed particles and fusing them to obtain a foamed particle molded body (expansion ratio: 2 to 50 times) by in-mold foam molding (heat molding step). ..

二次発泡させる方法としては、例えば、金型のキャビティ内を水蒸気で加熱する方法が挙げられる。
二次発泡させる温度は、例えば、100~180℃が好ましい。
二次発泡させる時間(即ち、金型に蒸気を供給する時間)は、5~120秒間が好ましい。
なお、二次発泡においては、雌型側からキャビティ内に水蒸気を供給してもよいし、雄型側からキャビティ内に水蒸気を供給してもよいし、これらを交互に行ってもよい。
さらに、発泡粒子に不活性ガス又は空気(以下、不活性ガス等と称する)を含浸させて、発泡粒子の二次発泡力を向上させてもよい(内圧付与工程)。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。
発泡粒子に不活性ガス等を含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス等雰囲気下に発泡粒子を置くことによって、発泡粒子中に不活性ガス等を含浸させる方法が挙げられる。発泡粒子は、金型内に充填する前に不活性ガス等が含浸されてもよいが、発泡粒子を金型内に充填した後に金型ごと不活性ガス等雰囲気下に置くことで含浸されてもよい。なお、不活性ガスが窒素である場合、ゲージ圧(大気圧基準)0.1~2MPaの窒素雰囲気中に発泡粒子を20分~24時間に亘って放置してもよい。
Examples of the method of secondary foaming include a method of heating the inside of the mold cavity with steam.
The temperature for secondary foaming is preferably, for example, 100 to 180 ° C.
The time for secondary foaming (that is, the time for supplying steam to the mold) is preferably 5 to 120 seconds.
In the secondary foaming, water vapor may be supplied into the cavity from the female mold side, steam may be supplied into the cavity from the male mold side, or these may be alternately performed.
Further, the foamed particles may be impregnated with an inert gas or air (hereinafter referred to as an inert gas or the like) to improve the secondary foaming power of the foamed particles (internal pressure applying step). Examples of the inert gas include carbon dioxide, nitrogen, helium, argon and the like.
As a method of impregnating the foamed particles with an inert gas or the like, for example, a method of impregnating the foamed particles with the inert gas or the like by placing the foamed particles in an atmosphere such as an inert gas having a pressure higher than normal pressure is used. Can be mentioned. The foamed particles may be impregnated with an inert gas or the like before being filled in the mold, but are impregnated by placing the foamed particles in an atmosphere such as an inert gas together with the mold after being filled in the mold. May be good. When the inert gas is nitrogen, the foamed particles may be left for 20 minutes to 24 hours in a nitrogen atmosphere having a gauge pressure (based on atmospheric pressure) of 0.1 to 2 MPa.

加熱成形工程に次いで、金型内の発泡粒子成形体をさらに加熱することで、熱可塑性樹脂の結晶化度を高めてもよい(保熱工程)。 Following the heat molding step, the crystallinity of the thermoplastic resin may be increased by further heating the foamed particle molded body in the mold (heat retention step).

(発泡樹脂複合体)
発泡樹脂複合体は、本発明の発泡粒子成形体と、発泡粒子成形体の表面の少なくとも一部に設けられた繊維強化樹脂層(表皮材)とを有する。
発泡樹脂複合体は、耐熱性及び機械強度に優れており、輸送機器構成用部材として広範囲に用いることができる。加えて、発泡樹脂複合体は、建築資材、風車翼、ロボットアーム、電気製品の筐体、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材としても好適に用いることができる。
輸送機器構成部材としては、自動車、航空機、鉄道車両又は船舶等の輸送機器の本体を構成する構造部材が挙げられる。自動車の本体を構成する構造部材としては、例えば、ドアパネル、ドアインナー、バンパー、フェンダー、フェンダーサポート、エンジンカバー、ルーフパネル、トランクリッド、フロアパネル、センタートンネル、クラッシュボックス、カウル等が挙げられる。例えば、従来、鋼板で作製されていたドアパネルに樹脂複合体を用いると、鋼板製ドアパネルと略同一の剛性を有し、かつ大幅に軽量化できるため、自動車の軽量化を図れる。
(Foam resin complex)
The foamed resin composite has a foamed particle molded product of the present invention and a fiber reinforced resin layer (skin material) provided on at least a part of the surface of the foamed particle molded product.
The foamed resin composite has excellent heat resistance and mechanical strength, and can be widely used as a member for constructing transportation equipment. In addition, foamed resin composites include building materials, windmill wings, robot arms, housings for electrical products, cushioning materials for helmets, agricultural products boxes, transport containers such as heat and cold insulation containers, rotor blades for industrial helicopters, and parts packaging materials. Can also be suitably used.
Examples of the transportation equipment component include structural members constituting the main body of the transportation equipment such as an automobile, an aircraft, a railroad vehicle, or a ship. Examples of structural members constituting the main body of an automobile include door panels, door inners, bumpers, fenders, fender supports, engine covers, roof panels, trunk lids, floor panels, center tunnels, crash boxes, cowls and the like. For example, if a resin composite is used for a door panel made of steel plate in the past, the rigidity is substantially the same as that of the door panel made of steel plate, and the weight can be significantly reduced, so that the weight of the automobile can be reduced.

例えば、図7の発泡樹脂複合体100は、平板状の発泡粒子成形体(発泡層)102と、発泡粒子成形体102の両面に設けられた繊維強化樹脂層104とを有する。 For example, the foamed resin composite 100 of FIG. 7 has a flat plate-shaped foamed particle molded body (foamed layer) 102 and a fiber reinforced resin layer 104 provided on both sides of the foamed particle molded body 102.

発泡層102は、上述した本発明の発泡粒子成形体である。
繊維強化樹脂層104を構成している繊維としては、特に限定されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等が挙げられる。この内、優れた機械強度及び耐熱性を有していることから、炭素繊維、ガラス繊維、アラミド繊維が好ましく、炭素繊維がより好ましい。
繊維の形態としては、特に限定されず、例えば、織物、編物、不織布、繊維を一方向に引き揃えた繊維束(ストランド)をポリアミド樹脂、ポリエステル樹脂等の合成樹脂糸又はガラス繊維糸等のステッチ糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。
繊維は、(1)織物、編物若しくは不織布同士又はこれらを任意の組み合わせで複数枚、積層してなる多層面材、(2)繊維を一方向に引き揃えた繊維束(ストランド)をポリアミド樹脂、ポリエステル樹脂等の合成樹脂糸又はガラス繊維糸等のステッチ糸で結束(縫合)してなる複数枚の面材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた面材どうしをポリアミド樹脂、ポリエステル樹脂等の合成樹脂糸又はガラス繊維糸等のステッチ糸で一体化(縫合)してなる多層面材であってもよい。
The foamed layer 102 is the foamed particle molded product of the present invention described above.
The fibers constituting the fiber reinforced resin layer 104 are not particularly limited, and examples thereof include carbon fibers, glass fibers, aramid fibers, boron fibers, and metal fibers. Of these, carbon fiber, glass fiber, and aramid fiber are preferable, and carbon fiber is more preferable, because they have excellent mechanical strength and heat resistance.
The form of the fiber is not particularly limited, and for example, a woven fabric, a knitted fabric, a non-woven fabric, and a fiber bundle (strand) in which fibers are arranged in one direction are stitched with a synthetic resin thread such as a polyamide resin or a polyester resin or a glass fiber thread. Examples thereof include a face material that is bound (sewn) with a thread. Examples of the weaving method of the woven fabric include plain weave, twill weave, satin weave and the like.
The fibers are (1) a multilayer surface material formed by laminating a plurality of textiles, knitted fabrics or nonwoven fabrics or any combination thereof, and (2) a fiber bundle (strand) in which fibers are aligned in one direction is a polyamide resin. A plurality of face materials bound (sewn) with synthetic resin threads such as polyester resin or stitch threads such as glass fiber threads were overlapped and overlapped so that the fiber directions of the fiber bundles pointed to different directions. It may be a multilayer face material in which face materials are integrated (sewn) with a synthetic resin thread such as a polyamide resin or a polyester resin or a stitch thread such as a glass fiber thread.

繊維強化樹脂層104に含まれる樹脂としては、未硬化の熱硬化性樹脂、熱可塑性樹脂が挙げられる。熱硬化性樹脂としては、特に限定されず、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられる。耐熱性、弾性率及び耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられても二種以上が併用されてもよい。
熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂等が挙げられる。
繊維強化樹脂層104の樹脂の含有量は、繊維強化樹脂層104の総質量に対して、20~70質量%が好ましく、30~60質量%がより好ましい。樹脂の含有量が上記下限値以上であれば、繊維同士の結合がより高まり、得られる発泡樹脂複合体の機械強度がより高まる。樹脂の含有量が上記上限値以下であれば、繊維間に存在する樹脂の量が多くなりすぎず、繊維強化樹脂層104の機械強度がより高まり、得られる発泡樹脂複合体の機械強度がより高まる。
Examples of the resin contained in the fiber reinforced resin layer 104 include an uncured thermosetting resin and a thermoplastic resin. The thermosetting resin is not particularly limited, and is not particularly limited, for example, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicon resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide resin and cyanide. Examples thereof include a resin obtained by prepolymerizing an acid ester resin. Epoxy resins and vinyl ester resins are preferable because they are excellent in heat resistance, elastic modulus and chemical resistance. The thermosetting resin may contain additives such as a curing agent and a curing accelerator. The thermosetting resin may be used alone or in combination of two or more.
The thermoplastic resin is not particularly limited, and examples thereof include polyethylene-based resins, polyolefin-based resins such as polypropylene-based resins, acrylic-based resins, polyester-based resins, polyamide-based resins, and polycarbonate-based resins.
The resin content of the fiber reinforced resin layer 104 is preferably 20 to 70% by mass, more preferably 30 to 60% by mass, based on the total mass of the fiber reinforced resin layer 104. When the resin content is at least the above lower limit, the bonds between the fibers are further enhanced, and the mechanical strength of the obtained foamed resin composite is further enhanced. When the resin content is not more than the above upper limit, the amount of the resin existing between the fibers does not become too large, the mechanical strength of the fiber reinforced resin layer 104 is further increased, and the mechanical strength of the obtained foamed resin composite is further increased. It will increase.

繊維に樹脂を含浸させる方法としては、特に限定されず、例えば、(1)繊維を樹脂中に浸漬する方法、(2)繊維に樹脂を塗布する方法等が挙げられる。 The method of impregnating the fiber with the resin is not particularly limited, and examples thereof include (1) a method of immersing the fiber in the resin, and (2) a method of applying the resin to the fiber.

本実施形態において、発泡粒子成形体の両面に位置する繊維強化樹脂層の素材は、互いに同じでもよいし、異なってもよい。 In the present embodiment, the materials of the fiber reinforced resin layers located on both sides of the foamed particle molded product may be the same or different from each other.

繊維強化樹脂層104の厚さは、例えば、0.1~5mmが好ましく、0.3~3mmがより好ましい。繊維強化樹脂層104の厚さが上記下限値以上であれば、発泡樹脂複合体100の機械強度をより高められる。繊維強化樹脂層104の厚さが上記上限値以下であれば、発泡樹脂複合体100のさらなる軽量化を図れる。
本実施形態において、発泡粒子成形体102の両面に位置する繊維強化樹脂層104の厚さは、互いに同じでもよいし、異なってもよい。
The thickness of the fiber reinforced resin layer 104 is preferably, for example, 0.1 to 5 mm, more preferably 0.3 to 3 mm. When the thickness of the fiber reinforced resin layer 104 is at least the above lower limit value, the mechanical strength of the foamed resin composite 100 can be further increased. When the thickness of the fiber reinforced resin layer 104 is not more than the above upper limit value, the weight of the foamed resin composite 100 can be further reduced.
In the present embodiment, the thicknesses of the fiber-reinforced resin layers 104 located on both sides of the foamed particle molded body 102 may be the same or different from each other.

<製造方法>
発泡粒子成形体102の表面に繊維強化樹脂層104を設ける方法としては、特に限定されず、例えば、(1)発泡粒子成形体102の表面に接着剤を介して繊維強化樹脂層104を積層し、接合する方法、(2)発泡粒子成形体102の表面に、熱可塑性樹脂が含浸された繊維強化樹脂層104を積層し、熱可塑性樹脂をバインダーとして、発泡粒子成形体102の表面に繊維強化樹脂層104を接合する方法、(3)発泡粒子成形体102の表面に、未硬化の熱硬化性樹脂が含浸された繊維強化樹脂層104を積層し、熱硬化性樹脂の硬化物をバインダーとして発泡粒子成形体102に繊維強化樹脂層104を接合する方法、(4)発泡粒子成形体102の表面に、加熱されて軟化状態の繊維強化樹脂層104を積層し、発泡粒子成形体102の表面に繊維強化樹脂層104を押圧することによって、発泡粒子成形体102に繊維強化樹脂層104を接合する方法等が挙げられる。方法(4)では、繊維強化樹脂層104を発泡粒子成形体102の表面に沿って変形させることも可能である。ここで、本発明の発泡粒子成形体102は高温環境下における耐荷重性に優れていることから、方法(4)も好適に用いることができる。
これら方法により、発泡粒子成形体102の表面に繊維強化樹脂層104を一体的に設けられる。
発泡粒子成形体102の表面に繊維強化樹脂層104を接合する方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
<Manufacturing method>
The method of providing the fiber-reinforced resin layer 104 on the surface of the foamed particle molded body 102 is not particularly limited, and for example, (1) the fiber-reinforced resin layer 104 is laminated on the surface of the foamed particle molded body 102 via an adhesive. (2) Fiber reinforced resin layer 104 impregnated with a thermoplastic resin is laminated on the surface of the foamed particle molded body 102, and the fiber reinforced resin is used as a binder on the surface of the foamed particle molded body 102. Method for joining the resin layer 104, (3) A fiber-reinforced resin layer 104 impregnated with an uncured heat-curable resin is laminated on the surface of the foamed particle molded body 102, and the cured product of the heat-curable resin is used as a binder. A method of joining the fiber-reinforced resin layer 104 to the foamed particle molded body 102, (4) The fiber-reinforced resin layer 104 in a heated and softened state is laminated on the surface of the foamed particle molded body 102, and the surface of the foamed particle molded body 102 is laminated. Examples thereof include a method of joining the fiber-reinforced resin layer 104 to the foamed particle molded body 102 by pressing the fiber-reinforced resin layer 104. In the method (4), the fiber reinforced resin layer 104 can be deformed along the surface of the foamed particle molded body 102. Here, since the foamed particle molded product 102 of the present invention is excellent in load bearing capacity in a high temperature environment, the method (4) can also be preferably used.
By these methods, the fiber reinforced resin layer 104 is integrally provided on the surface of the foamed particle molded body 102.
Examples of the method for joining the fiber reinforced resin layer 104 to the surface of the foamed particle molded body 102 include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepreg Compression Molding) method, and an RTM (Resin Transfer Molding) method. The VaRTM (Vacum assisted Resin Transfer Molding) method and the like can be mentioned.

上述の実施形態の発泡樹脂複合体は、平板状の発泡粒子成形体を有するが、本発明はこれに限定されず、発泡粒子成形体の形状は用途に応じて適宜決定できる。即ち、発泡樹脂複合体の形状は、用途に応じて適宜決定できる。
上述の実施形態では、発泡粒子成形体の両面に繊維強化樹脂層が設けられているが、本発明はこれに限定されず、発泡粒子成形体の片面にのみ繊維強化樹脂層が設けられていてもよいし、発泡粒子成形体の表面の一部にのみ繊維強化樹脂層が設けられていてもよい。
The foamed resin composite of the above-described embodiment has a flat-plate-shaped foamed particle molded product, but the present invention is not limited to this, and the shape of the foamed particle molded product can be appropriately determined depending on the intended use. That is, the shape of the foamed resin complex can be appropriately determined according to the intended use.
In the above-described embodiment, the fiber-reinforced resin layer is provided on both sides of the foamed particle molded product, but the present invention is not limited to this, and the fiber-reinforced resin layer is provided on only one side of the foamed particle molded product. Alternatively, the fiber reinforced resin layer may be provided only on a part of the surface of the foamed particle molded product.

本実施形態の発泡粒子は、ポリエステル系樹脂とポリイミド系樹脂とが相溶しており、熱可塑性樹脂のガラス転移温度が単一であるため、ポリエステル系樹脂のガラス転移温度Tgよりも高いガラス転移温度Tgとなり、耐熱強度を高められる。このため、発泡粒子を加熱成形して得られる発泡粒子成形体は、耐熱強度に優れる。
加えて、本実施形態の発泡粒子は、保熱工程を要することなく、優れた耐熱強度を発揮するため、発泡粒子成形体の生産性を高められる。本実施形態の発泡粒子成形体は、結晶化度が20%未満でも、優れた耐熱強度を発揮する。
さらに、本実施形態の発泡粒子成形体は、保熱工程を経て製造されることで、結晶化度が高まり、加熱寸法安定性がより高まる。
In the foamed particles of the present embodiment, the polyester resin and the polyimide resin are compatible with each other, and the thermoplastic resin has a single glass transition temperature. Therefore, the glass transition temperature is higher than the glass transition temperature Tg of the polyester resin. The temperature becomes Tg, and the heat resistance can be increased. Therefore, the foamed particle molded product obtained by heat-molding the foamed particles has excellent heat resistance.
In addition, the foamed particles of the present embodiment exhibit excellent heat-resistant strength without requiring a heat retention step, so that the productivity of the foamed particle molded body can be enhanced. The foamed particle molded product of the present embodiment exhibits excellent heat resistance even when the crystallinity is less than 20%.
Further, the foamed particle molded product of the present embodiment is manufactured through a heat retention step, so that the degree of crystallinity is increased and the heating dimensional stability is further improved.

以下、本発明について実施例を示して説明するが、本発明はこれらにより限定されることはない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

(使用原料)
<ポリエステル系樹脂>
・PET(A):遠東新世紀社製、商品名「CH-611」、ガラス転移温度Tg:78℃、融点:251℃、IV値:1.02、バイオマス度:0%。
・PET(B):INDRAMA社製、商品名「RAMAPET N1B」、ガラス転移温度Tg:78℃、融点:247℃、IV値:0.80、バイオマス度:30%。
・PET(C):遠東新世紀社製、商品名「CH-653」、ガラス転移温度Tg:79℃、融点:248℃、IV値:1.01、バイオマス度:27~30%。
・PET(D):遠東石塚グリーンペット社製、商品名「CB-603RJ」、ガラス転移温度Tg:79℃、融点:248℃、IV値:0.80、バイオマス度:0%、PETボトルをリサイクルした再生PET。
(Raw materials used)
<Polyester resin>
-PET (A): manufactured by Far Eastern New Century, trade name "CH-611", glass transition temperature Tg: 78 ° C, melting point: 251 ° C, IV value: 1.02, biomass degree: 0%.
-PET (B): manufactured by INDRAMA, trade name "RAMA PET N1B", glass transition temperature Tg: 78 ° C., melting point: 247 ° C., IV value: 0.80, biomass degree: 30%.
-PET (C): manufactured by Far Eastern New Century, trade name "CH-653", glass transition temperature Tg: 79 ° C, melting point: 248 ° C, IV value: 1.01, biomass degree: 27 to 30%.
-PET (D): manufactured by Farto Ishizuka Greenpet Co., Ltd., trade name "CB-603RJ", glass transition temperature Tg: 79 ° C, melting point: 248 ° C, IV value: 0.80, biomass degree: 0%, PET bottle Recycled recycled PET.

<ポリイミド系樹脂>
・PEI(A):ポリエーテルイミド、SABIC Innovative Plastics社製、商品名「Ultem1000」、ガラス転移温度Tg:217℃、MFR:9g/10分。
・PEI(B):ポリエーテルイミド、SABIC Innovative Plastics社製、商品名「Ultem1010」、ガラス転移温度Tg:217℃、MFR:17.8g/10分。
<Polyimide resin>
-PEI (A): polyetherimide, manufactured by SABIC Innovative Plastics, trade name "Ultem1000", glass transition temperature Tg: 217 ° C., MFR: 9 g / 10 minutes.
-PEI (B): polyetherimide, manufactured by SABIC Innovative Plastics, trade name "Ultem1010", glass transition temperature Tg: 217 ° C., MFR: 17.8 g / 10 minutes.

<非晶性ポリエステル系樹脂>
・PCT(G):イーストマンケミカル製、商品名「Traitan TX-1001」、芳香族ジカルボン酸成分=テレフタル酸、ジオール成分=1,4-シクロヘキサンジメタノール及び2,2,4,4-テトラメチル-1,3-シクロブタンジオール、ガラス転移温度Tg:107℃、IV値:0.72。
<Amorphous polyester resin>
-PCT (G): manufactured by Eastman Chemical Company, trade name "Traitan TX-1001", aromatic dicarboxylic acid component = terephthalic acid, diol component = 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethyl -1,3-Cyclobutanediol, glass transition temperature Tg: 107 ° C., IV value: 0.72.

<タルクマスターバッチ>
・タルクMB:PET=72質量%、タルク=28質量%からなるマスターバッチ。
<Talc Masterbatch>
-Talc MB: A masterbatch consisting of PET = 72% by mass and talc = 28% by mass.

<架橋剤>
・PMDA:無水ピロメリット酸。
<Crosslinking agent>
-PMDA: Piromellitic anhydride.

(発泡粒子の評価方法)
<嵩密度>
発泡粒子の嵩密度は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」に準拠して測定した。JIS K6911に準拠した見掛け密度測定器を用いて測定を行い、下記(s1)式に基づいて、発泡粒子の嵩密度を求めた。
発泡粒子の嵩密度(kg/m)=[発泡粒子を入れたメスシリンダーの質量(kg)-メスシリンダーの質量(kg)]/[メスシリンダーの容量(m)]・・・(s1)
(Evaluation method of foamed particles)
<Bulk density>
The bulk density of the foamed particles was measured according to JIS K6911: 1995 "General Test Method for Thermosetting Plastics". The measurement was performed using an apparent density measuring device compliant with JIS K6911, and the bulk density of the foamed particles was determined based on the following equation (s1).
Bulk density of foamed particles (kg / m 3 ) = [Mass of graduated cylinder containing foamed particles (kg) -Mass of graduated cylinder (kg)] / [Capacity of graduated cylinder (m 3 )] ... (s1) )

<嵩発泡倍率>
発泡粒子の嵩発泡倍率は、各例の配合割合から熱可塑性樹脂の密度を求め、熱可塑性樹脂の密度を得られた発泡粒子の嵩密度で除した値とした。なお、各樹脂の密度は以下の値を用いた。
・PET:1.35g/cm
・PEI:1.28g/cm
・PCT:1.18g/cm
<Bulk foaming ratio>
The bulk foaming ratio of the foamed particles was a value obtained by determining the density of the thermoplastic resin from the blending ratio of each example and dividing the density of the thermoplastic resin by the bulk density of the obtained foamed particles. The following values were used for the density of each resin.
-PET: 1.35 g / cm 3 .
-PEI: 1.28 g / cm 3 .
-PCT: 1.18 g / cm 3 .

<連続気泡率>
発泡粒子の連続気泡率を下記の方法で測定した。まず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量の発泡粒子の全質量A(g)を測定した。次に、発泡粒子全体の体積B(cm)を、比重計を用いて1-1/2-1気圧法により測定した。なお、測定には、東京サイエンス社の「体積測定空気比較式比重計1000型」を使用した。
金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の質量C(g)を測定した。この金網製の容器内に、全ての発泡粒子を入れ、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた質量D(g)を測定した。なお、発泡粒子及び金網製容器の質量測定には、大和製衡社製「電子天びんHB3000」(最小目盛り0.01g)を使用した。
そして、下記式に基づいて発泡粒子の見掛け体積E(cm)を算出し、この見掛け体積Eと発泡粒子全体の体積B(cm)に基づいて下記(s2)式により発泡粒子の連続気泡率を算出した。なお、水1gの体積を1cmとした。また、本測定において発泡粒子は、予め、JISK7100-1999 記号23/50、2級の環境下で16時間保管した後、同環境下において測定を実施した。
連続気泡率(%)=100×(E-B)/E・・・(s2)
(E=A+(C-D))
<Continuous bubble rate>
The open cell ratio of the foamed particles was measured by the following method. First, a sample cup of a volumetric air comparison hydrometer was prepared, and the total mass A (g) of the foamed particles in an amount satisfying about 80% of the sample cup was measured. Next, the volume B (cm 3 ) of the entire foamed particles was measured by the 1-1 / 2-1 atm method using a hydrometer. For the measurement, "Volume measurement air comparison type hydrometer 1000 type" of Tokyo Science Co., Ltd. was used.
A wire mesh container was prepared, the wire mesh container was immersed in water, and the mass C (g) of the wire mesh container in the state of being immersed in the water was measured. All the foamed particles are put in this wire mesh container, the wire mesh container is immersed in water, and the wire mesh container in the state of being immersed in water and the total amount of foamed particles put in this wire mesh container are mixed. The combined mass D (g) was measured. An "electronic balance HB3000" (minimum scale 0.01 g) manufactured by Yamato Scale Co., Ltd. was used for measuring the mass of the foamed particles and the wire mesh container.
Then, the apparent volume E (cm 3 ) of the foamed particles is calculated based on the following formula, and the open cells of the foamed particles are calculated by the following formula (s2) based on the apparent volume E and the volume B (cm 3 ) of the entire foamed particles. The rate was calculated. The volume of 1 g of water was set to 1 cm 3 . Further, in this measurement, the foamed particles were stored in advance in a JISK710-1999 symbol 23/50, second grade environment for 16 hours, and then the measurement was carried out in the same environment.
Continuous bubble ratio (%) = 100 × (EB) / E ... (s2)
(E = A + (CD))

<融点、結晶化温度、ガラス転移温度Tg>
融点、結晶化温度及びガラス転移温度Tgは、JIS K7121:1987、JIS K7121:2012に記載されている方法で測定した。但し、サンプリング方法及び温度条件に関しては以下の通りとした。
発泡粒子又は発泡粒子成形体から切り出した試料をアルミニウム製測定容器の底に、すきまのないように5.5±0.5mg充填後、アルミニウム製の蓋をした。次いで(株)日立ハイテクサイエンス製「DSC7000X、AS-3」示差走査熱量計を用い、示差走査熱量分析を実施した。窒素ガス流量20mL/分のもと、以下のステップ1~4で試料の加熱と冷却とを施して、DSC曲線を得た。
(ステップ1)30℃で2分間保持。
(ステップ2)10℃/分の速度で30℃から300℃まで昇温し(1回目昇温過程)、10分間保持。
(ステップ3)試料を速やかに取出し、25±10℃の環境下にて放冷。
(ステップ4)10℃/分の速度で30℃から300℃まで昇温(2回目昇温過程)。
なお、基準物質としてアルミナを用いた。装置付属の解析ソフトを用いて、図8(実施例3の測定結果)に示すように2回目昇温過程にみられる融解ピーク及び結晶化ピークのトップの温度を読みとって融点及び結晶化温度とした。ガラス転移温度Tgは2回目昇温過程にみられるDSC曲線より、装置付属の解析ソフトを用いて、中間点ガラス転移温度を算出した。この中間点ガラス転移温度は該規格(9.3)より求めた。
なお、ガラス転移温度Tgは、加熱速度10℃/分における熱流束示差走査熱量測定チャート(DSC曲線)において、2回目昇温過程にみられる結晶化ピークよりも低温側におけるガラス転移温度Tgを採用した。但し、2回目昇温過程において結晶化ピークが観測されない場合は、2回目昇温過程の温度範囲(30~300℃)におけるガラス転移温度Tgを採用した。
<Melting point, crystallization temperature, glass transition temperature Tg>
The melting point, crystallization temperature and glass transition temperature Tg were measured by the methods described in JIS K7121: 1987 and JIS K7121: 2012. However, the sampling method and temperature conditions are as follows.
The sample cut out from the foamed particles or the foamed particle molded body was filled in the bottom of the aluminum measuring container in an amount of 5.5 ± 0.5 mg so as to have no gap, and then covered with an aluminum lid. Next, a differential scanning calorimetry was performed using a "DSC7000X, AS-3" differential scanning calorimeter manufactured by Hitachi High-Tech Science Corporation. The sample was heated and cooled in the following steps 1 to 4 under a nitrogen gas flow rate of 20 mL / min to obtain a DSC curve.
(Step 1) Hold at 30 ° C for 2 minutes.
(Step 2) The temperature is raised from 30 ° C. to 300 ° C. at a rate of 10 ° C./min (first temperature rise process) and held for 10 minutes.
(Step 3) The sample is quickly taken out and allowed to cool in an environment of 25 ± 10 ° C.
(Step 4) Temperature rise from 30 ° C. to 300 ° C. at a rate of 10 ° C./min (second temperature rise process).
Alumina was used as a reference material. Using the analysis software attached to the device, as shown in FIG. 8 (measurement result of Example 3), read the temperature of the top of the melting peak and the crystallization peak seen in the second temperature raising process, and determine the melting point and the crystallization temperature. bottom. For the glass transition temperature Tg, the intermediate point glass transition temperature was calculated from the DSC curve observed in the second temperature rise process using the analysis software attached to the device. This midpoint glass transition temperature was determined from the standard (9.3).
For the glass transition temperature Tg, the glass transition temperature Tg on the lower temperature side than the crystallization peak seen in the second temperature rise process is adopted in the heat flux differential scanning calorimetry chart (DSC curve) at a heating rate of 10 ° C./min. bottom. However, when no crystallization peak was observed in the second temperature rise process, the glass transition temperature Tg in the temperature range (30 to 300 ° C.) in the second temperature rise process was adopted.

<吸熱量(a)、発熱量(b)、結晶化度>
吸熱量(a)(融解熱量)及び発熱量(b)(結晶化熱量)はJIS K7121:1987、JIS K7121:2012に記載されている方法で測定した。但し、サンプリング方法及び温度条件に関しては以下の通りとした。
発泡粒子又は発泡粒子成形体から切り出した試料をアルミニウム製測定容器の底に、すきまのないように5.5±0.5mg充填後、アルミニウム製の蓋をした。次いで(株)日立ハイテクサイエンス製「DSC7000X、AS-3」示差走査熱量計を用い、示差走査熱量分析を実施した。窒素ガス流量20mL/分のもと、以下のステップ1~2で試料の加熱及び冷却を施して、DSC曲線を得た。
(ステップ1)30℃で2分間保持。
(ステップ2)速度10℃/分で30℃から300℃まで昇温(1回目昇温過程)。
この時の基準物質にはアルミナを用いた。吸熱量(a)及び発熱量(b)は、装置付属の解析ソフトを用いて算出した。具体的には、図4に示すように、吸熱量(a)は低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。発熱量(b)は低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側へ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。
結晶化度は、下記方法で求められる。まず、前記吸熱量(a)と前記発熱量(b)の差を求める。この差をポリエチレンテレフタレート完全結晶の理論融解熱量140.1J/gで除して求められる割合を結晶化度とする。
つまり、結晶化度は下記(s3)式より求める。
結晶化度(%)=(吸熱量(a)(J/g)-発熱量(b)(J/g))/140.1(J/g)×100・・・(s3)
<Heat absorption (a), calorific value (b), crystallinity>
The amount of heat absorbed (a) (heat of melting) and the amount of heat generated (b) (heat of crystallization) were measured by the methods described in JIS K7121: 1987 and JIS K7121: 2012. However, the sampling method and temperature conditions are as follows.
The sample cut out from the foamed particles or the foamed particle molded body was filled in the bottom of the aluminum measuring container in an amount of 5.5 ± 0.5 mg so as to have no gap, and then covered with an aluminum lid. Next, a differential scanning calorimetry was performed using a "DSC7000X, AS-3" differential scanning calorimeter manufactured by Hitachi High-Tech Science Corporation. The sample was heated and cooled in steps 1 and 2 below under a nitrogen gas flow rate of 20 mL / min to obtain a DSC curve.
(Step 1) Hold at 30 ° C for 2 minutes.
(Step 2) The temperature is raised from 30 ° C. to 300 ° C. at a speed of 10 ° C./min (first temperature rise process).
Alumina was used as the reference material at this time. The heat absorption amount (a) and the calorific value (b) were calculated using the analysis software attached to the apparatus. Specifically, as shown in FIG. 4, the heat absorption amount (a) is a straight line connecting a point where the DSC curve separates from the baseline on the low temperature side and a point where the DSC curve returns to the baseline on the high temperature side again. It was calculated from the area of the part surrounded by the DSC curve. The calorific value (b) was calculated from the area of the portion surrounded by the DSC curve and the straight line connecting the point where the DSC curve separates from the baseline on the low temperature side and the point where the DSC curve returns to the high temperature side again.
The crystallinity is determined by the following method. First, the difference between the heat absorption amount (a) and the heat generation amount (b) is obtained. The crystallinity is defined as the ratio obtained by dividing this difference by the theoretical melting heat of 140.1 J / g of the polyethylene terephthalate perfect crystal.
That is, the crystallinity is obtained from the following equation (s3).
Crystallinity (%) = (heat absorption (a) (J / g) -calorific value (b) (J / g)) /140.1 (J / g) × 100 ... (s3)

(発泡粒子成形体の評価方法)
<密度>
発泡粒子成形体の密度は、JIS K7222:1999「発泡プラスチック及びゴム-見掛け密度の測定」に記載される方法により測定した。100cm以上の発泡粒子成形体を材料の元のセル構造を変えない様に切断し、その質量を測定した。密度を下記(s4)式により算出した。
密度(g/cm)=発泡粒子成形体の質量(g)/発泡粒子成形体の体積(cm)・・・(s4)
(Evaluation method of foamed particle molded product)
<Density>
The density of the foamed particle compact was measured by the method described in JIS K7222: 1999 "Foam Plastics and Rubber-Measurement of Apparent Density". A foamed particle compact of 100 cm 3 or more was cut so as not to change the original cell structure of the material, and its mass was measured. The density was calculated by the following equation (s4).
Density (g / cm 3 ) = Mass of foamed particle molded body (g) / Volume of foamed particle molded body (cm 3 ) ... (s4)

<発泡倍率>
発泡粒子成形体の嵩発泡倍率は、各例の配合割合から熱可塑性樹脂の密度を求め、熱可塑性樹脂の密度を得られた発泡粒子成形体の密度で除した値とした。なお、各樹脂の密度は以下の値を用いた。
・PET:1.35g/cm
・PEI:1.28g/cm
・PCT:1.18g/cm
<Effervescence magnification>
The bulk foaming ratio of the foamed particle molded body was a value obtained by determining the density of the thermoplastic resin from the blending ratio of each example and dividing the density of the thermoplastic resin by the density of the obtained foamed particle molded body. The following values were used for the density of each resin.
-PET: 1.35 g / cm 3 .
-PEI: 1.28 g / cm 3 .
-PCT: 1.18 g / cm 3 .

<固体粘弾性測定>
固体粘弾性測定は、エスアイアイ・ナノテクノロジー(株)製「EXSTRAR DMS6100」粘弾性スペクトロメータを用いた。発泡粒子成形体から、表面スキン層を取り除き、直径約10mm、厚み約2mmの円柱状の試料を切り出した。条件は次の通りとした。
・モード:圧縮制御モード。
・雰囲気:窒素雰囲気。
・周波数:1Hz。
・昇温速度:5℃/分。
・測定温度:30℃~300℃。
・歪振幅:5μm。
・最小圧縮力:100mN。
・張力ゲイン:1.5。
・力振幅初期値:100mN。
解析は装置付属の解析ソフトを用いた。損失正接tanδが最大となる温度は、50~240℃の温度範囲における損失正接tanδの測定値において最大となる温度として読み取った値である。
試験片の寸法測定には、Mitutoyo Corporation製「DIGIMATIC」CD-15タイプを用いた。
<Measurement of solid viscoelasticity>
For the solid viscoelasticity measurement, a "EXSTRAR DMS6100" viscoelasticity spectrometer manufactured by SII Nanotechnology Co., Ltd. was used. The surface skin layer was removed from the foamed particle molded product, and a columnar sample having a diameter of about 10 mm and a thickness of about 2 mm was cut out. The conditions were as follows.
-Mode: Compression control mode.
・ Atmosphere: Nitrogen atmosphere.
-Frequency: 1Hz.
-Raising rate: 5 ° C / min.
-Measurement temperature: 30 ° C to 300 ° C.
-Strain amplitude: 5 μm.
-Minimum compressive force: 100 mN.
-Tension gain: 1.5.
-Initial force amplitude: 100 mN.
For the analysis, the analysis software attached to the device was used. The temperature at which the loss tangent tan δ is maximum is the value read as the maximum temperature in the measured value of the loss tangent tan δ in the temperature range of 50 to 240 ° C.
A “DIGIMATIC” CD-15 type manufactured by Mitutoyo Corporation was used for measuring the dimensions of the test piece.

<加熱寸法変化率(加熱寸法安定性の評価)>
発泡粒子成形体の加熱寸法変化率はJIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」に記載のB法にて測定した。発泡粒子成形体から、平面形状が一辺150mmの正方形であり、かつ厚みが発泡粒子成形体の厚みである試験片を切り出した。上記試験片の中央部の縦方向及び横方向に、それぞれ互いに平行な3本の100mmの直線を50mm間隔に記入した。縦方向及び横方向についてそれぞれ3本の直線の長さを測定し、それらの相加平均値L0を初めの寸法とした。その後、試験片を100℃及び120℃にそれぞれ設定した熱風循環式乾燥機の中に168時間に放置して、加熱試験を行った。加熱試験後に試験片を取り出し、試験片を25℃にて1時間放置した。次に、試験片の表面に記入した縦方向及び横方向のそれぞれ3本の直線の長さを測定し、それらの相加平均値L1を加熱後の寸法とした。下記(s5)式に基づいて加熱寸法変化率を算出した。
加熱寸法変化率(%)=100×|(L1-L0)|/L0・・・(s5)
各設定温度における発泡粒子成形体の加熱寸法変化率測定の結果から以下の判定基準で評価した。
<Heating dimensional change rate (evaluation of heating dimensional stability)>
The rate of change in heating dimensions of the foamed particle molded product was measured by the method B described in JIS K6767: 1999 "Effervescent Plastic-Polyethylene-Test Method". A test piece having a planar shape of 150 mm on a side and having a thickness of the thickness of the foamed particle molded body was cut out from the foamed particle molded body. Three 100 mm straight lines parallel to each other were drawn at 50 mm intervals in the vertical and horizontal directions of the central portion of the test piece. The lengths of the three straight lines were measured in the vertical direction and the horizontal direction, respectively, and their arithmetic mean value L0 was used as the initial dimension. Then, the test piece was left in a hot air circulation type dryer set at 100 ° C. and 120 ° C. for 168 hours to perform a heating test. After the heating test, the test piece was taken out, and the test piece was left at 25 ° C. for 1 hour. Next, the lengths of the three straight lines in the vertical direction and the horizontal direction written on the surface of the test piece were measured, and their arithmetic mean value L1 was taken as the dimension after heating. The heating dimensional change rate was calculated based on the following equation (s5).
Heating dimensional change rate (%) = 100 × | (L1-L0) | / L0 ... (s5)
Based on the results of the measurement of the rate of change in heating dimensions of the foamed particle molded product at each set temperature, the evaluation was made according to the following criteria.

≪判定基準≫
◎:加熱寸法変化率が1.0%未満である。
○:加熱寸法変化率が1.0%以上1.5%未満である。
△:加熱寸法変化率が1.5以上2.0未満である。
×:加熱寸法変化率が2.0以上である。
≪Judgment criteria≫
⊚: The rate of change in heating dimensions is less than 1.0%.
◯: The heating dimension change rate is 1.0% or more and less than 1.5%.
Δ: The heating dimension change rate is 1.5 or more and less than 2.0.
X: The heating dimension change rate is 2.0 or more.

<曲げ弾性率(耐熱強度)>
曲げ試験における曲げ弾性率は、JIS K7221-1:2006記載の方法に準拠し測定した。曲げ弾性率は(株)島津製作所製「オートグラフAG-X plus 100kN」万能試験機、(株)島津製作所製「TRAPEZIUM X」万能試験機データ処理を用いて測定した。試験片は発泡粒子成形体から幅25mm×長さ130mm×厚さ20mmのサイズにて切り出した。試験速度は10mm/minとした。加圧くさび及び支持台の先端部の半径は5Rとした。支点間距離は100mmとした。試験片はJIS K7100:1999の記号「23/50」、2級の標準雰囲気下で16時間かけて状態調節した後、測定に用いた。
測定は標準雰囲気下及び80℃にて実施した。80℃においては、80℃に設定した恒温槽で24時間状態調節後、恒温槽から試験片を取出し、直ちに(株)島津製作所製「TCR2A型」付帯恒温槽内に設置した冶具に試験片を置き、3分間保持した後に測定した。前記雰囲気温度における試験片の数はそれぞれ5個とした。
曲げ弾性率は、荷重-ひずみの関係が直線となる部分の傾きが最大となる荷重領域を設定し、前記万能試験機データ処理にて算出した。各試験片における曲げ弾性率測定値の相加平均を曲げ弾性率の値とした。
80℃における曲げ弾性率(E80)と標準雰囲気下(23℃)における曲げ弾性率(E23)を用いて、下記(s6)式に基づいて保持率を算出した。
保持率(%)=(E80)/(E23)×100・・・(s6)
発泡粒子成形体の曲げ弾性率の保持率の結果から以下の判定基準で評価した。
<Bending elastic modulus (heat resistance)>
The flexural modulus in the bending test was measured according to the method described in JIS K7221-1: 2006. The flexural modulus was measured using "Autograph AG-X plus 100kN" universal testing machine manufactured by Shimadzu Corporation and "TRAPEZIUM X" universal testing machine manufactured by Shimadzu Corporation. The test piece was cut out from the foamed particle molded body in a size of 25 mm in width × 130 mm in length × 20 mm in thickness. The test speed was 10 mm / min. The radius of the pressure wedge and the tip of the support base was 5R. The distance between the fulcrums was 100 mm. The test piece was used for the measurement after adjusting the condition for 16 hours under the symbol "23/50" of JIS K7100: 1999 under the standard atmosphere of the second grade.
The measurement was carried out in a standard atmosphere and at 80 ° C. At 80 ° C, after adjusting the condition for 24 hours in a constant temperature bath set at 80 ° C, take out the test piece from the constant temperature bath and immediately place the test piece in the jig installed in the "TCR2A type" attached constant temperature bath manufactured by Shimadzu Corporation. It was placed and held for 3 minutes before measurement. The number of test pieces at the atmospheric temperature was 5 each.
The flexural modulus was calculated by the universal testing machine data processing in which the load region where the inclination of the portion where the load-strain relationship is straight is maximized was set. The arithmetic mean of the flexural modulus measurements in each test piece was taken as the flexural modulus.
Using the flexural modulus (E80) at 80 ° C. and the flexural modulus (E23) under a standard atmosphere (23 ° C.), the retention rate was calculated based on the following equation (s6).
Retention rate (%) = (E80) / (E23) × 100 ... (s6)
Based on the results of the retention rate of the flexural modulus of the foamed particle molded product, it was evaluated according to the following criteria.

≪判定基準≫
◎:保持率が80%以上である。
○:保持率が75%以上80%未満である。
△:保持率が70%以上75%未満である。
×:保持率が70%未満である。
≪Judgment criteria≫
⊚: The retention rate is 80% or more.
◯: The retention rate is 75% or more and less than 80%.
Δ: The retention rate is 70% or more and less than 75%.
X: The retention rate is less than 70%.

<外観>
発泡粒子成形体の表面を目視にて確認し、以下の判定基準で評価した。
≪判定基準≫
◎:発泡粒子間の間隙が無く、成形体表面が非常に平滑で成形体外観が非常によい。
○:発泡粒子間の間隙が非常に少なく、成形体表面がほぼ平滑で成形体外観が良好である。
△:発泡粒子間の間隙が少なく、成形体表面に小さな凹凸があり、成形体外観がやや劣る。
×:発泡粒子間の間隙が多数あり、成形体表面に大きな凹凸があり、成形体外観が大きく劣る。
<Appearance>
The surface of the foamed particle molded product was visually confirmed and evaluated according to the following criteria.
≪Judgment criteria≫
⊚: There are no gaps between the foamed particles, the surface of the molded body is very smooth, and the appearance of the molded body is very good.
◯: The gap between the foamed particles is very small, the surface of the molded product is almost smooth, and the appearance of the molded product is good.
Δ: There are few gaps between the foamed particles, there are small irregularities on the surface of the molded body, and the appearance of the molded body is slightly inferior.
X: There are many gaps between the foamed particles, the surface of the molded product has large irregularities, and the appearance of the molded product is significantly inferior.

<総合評価>
加熱寸法変化率、曲げ弾性率及び外観の評価結果を下記評価基準によって分類した。
<Comprehensive evaluation>
The evaluation results of heating dimensional change rate, flexural modulus and appearance were classified according to the following evaluation criteria.

≪評価基準≫
◎:全ての項目の評価が「◎」であった。
〇:全ての項目の評価が「◎」か「〇」であり、1つ以上が「〇」であった。
△:全ての項目の評価で「×」がなく、かついずれかの項目の評価で「△」が1つ以上であった。
×:いずれかの項目の評価が「×」であった。
≪Evaluation criteria≫
⊚: The evaluation of all items was "◎".
〇: The evaluation of all items was "◎" or "○", and one or more was "○".
Δ: There was no “x” in the evaluation of all items, and there was one or more “Δ” in the evaluation of any item.
X: The evaluation of any of the items was "x".

(実施例1)
図3~5に示した発泡粒子製造装置10と同様の製造装置を用いて、以下の手順で発泡粒子を作製した。
まず、表中の配合に従い、ポリエステル系樹脂、ポリイミド系樹脂、タルクマスターバッチ及び架橋剤を、シリンダー口径Dが65mmでかつL(シリンダー長さ)/D(シリンダー口径)比が34の単軸押出機に供給し、これらを290℃にて溶融混練した。続いて、押出機の途中から、発泡剤としてブタン(イソブタン:ノルマルブタン=35:65(質量比))を表中の量となるように、溶融状態の溶融混練物に圧入し、溶融混練物中に均一に分散させて、樹脂組成物とした。その後、押出機の前端部において、溶融状態の樹脂組成物を300℃にした後、押出機の前端に取り付けたマルチノズル式のノズル金型1の各ノズルから樹脂組成物を押出発泡させた。樹脂組成物の押出量を30kg/hとした。
なお、ノズル金型1は、出口部11の直径が1mmのノズルを20個有しており、全ての出口部11は、直径139.5mmの仮想円A上に等間隔毎に位置していた。そして、回転軸2の後端部外周面には、2枚の回転刃5が回転軸2の周方向に180°の位相差でもって一体的に設けられており、各回転刃5はノズル金型1の前端面1aに常時、接触した状態で仮想円A上を移動するように構成されていた。
(Example 1)
Using the same manufacturing apparatus as the foamed particle manufacturing apparatus 10 shown in FIGS. 3 to 5, foamed particles were produced by the following procedure.
First, according to the formulation in the table, polyester resin, polyimide resin, talc masterbatch and cross-linking agent are extruded from a single shaft having a cylinder diameter D of 65 mm and an L (cylinder length) / D (cylinder diameter) ratio of 34. They were supplied to the machine and these were melt-kneaded at 290 ° C. Subsequently, from the middle of the extruder, butane (isobutane: normal butane = 35: 65 (mass ratio)) as a foaming agent is press-fitted into the melt-kneaded product in a molten state so as to have the amount in the table, and the melt-kneaded product. It was uniformly dispersed in the resin composition to obtain a resin composition. Then, at the front end portion of the extruder, the temperature of the molten resin composition was set to 300 ° C., and then the resin composition was extruded and foamed from each nozzle of the multi-nozzle type nozzle mold 1 attached to the front end of the extruder. The extrusion rate of the resin composition was 30 kg / h.
The nozzle mold 1 has 20 nozzles having an outlet portion 11 having a diameter of 1 mm, and all the outlet portions 11 are located at equal intervals on a virtual circle A having a diameter of 139.5 mm. .. Two rotary blades 5 are integrally provided on the outer peripheral surface of the rear end portion of the rotary shaft 2 with a phase difference of 180 ° in the circumferential direction of the rotary shaft 2, and each rotary blade 5 is provided with a nozzle metal. It was configured to move on the virtual circle A in a state of being in constant contact with the front end surface 1a of the mold 1.

冷却部材4は、正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設され、かつ内径が320mmの円筒状の周壁部41bとからなる冷却ドラム41を備えていた。そして、供給管41d及び冷却ドラム41の供給口41cを通じて、冷却ドラム41内に20℃の冷却液42を供給した。冷却ドラム41内の容積は17684cmであった。
冷却液42は、供給管41dから冷却ドラム41の周壁部41bの内周面に供給される際の流速に伴う遠心力によって、冷却ドラム41の周壁部41b内周面に沿って螺旋状を描くように前方に向かって進んでいた。冷却液42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、冷却ドラム41の供給口41cより前方の周壁部41bの内周面を全面的に被覆していた。
The cooling member 4 includes a cooling drum 41 including a front portion 41a having a circular front surface and a cylindrical peripheral wall portion 41b extending rearward from the outer peripheral edge of the front portion 41a and having an inner diameter of 320 mm. rice field. Then, the coolant 42 at 20 ° C. was supplied into the cooling drum 41 through the supply pipe 41d and the supply port 41c of the cooling drum 41. The volume in the cooling drum 41 was 17684 cm 3 .
The coolant 42 draws a spiral along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 due to the centrifugal force accompanying the flow velocity when the coolant 42 is supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41. I was heading forward. The coolant 42 gradually spreads in a direction orthogonal to the traveling direction while traveling along the inner peripheral surface of the peripheral wall portion 41b, and covers the entire inner peripheral surface of the peripheral wall portion 41b in front of the supply port 41c of the cooling drum 41. Was covered with.

前端面1aに配設した回転刃5を3400rpmの回転数で回転させてあり、ノズル金型1の各ノズルの出口部11から押出発泡された押出発泡体を回転刃5によって切断して略球状の粒子状切断物を製造した。押出発泡体は、ノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなっていた。そして、押出発泡体は、ノズルの出口部11の開口端において切断されており、押出発泡体の切断は未発泡部において行われていた。
なお、上述の発泡粒子の製造にあたっては、まず、ノズル金型1に回転軸2を取り付けず、かつ冷却部材4をノズル金型1から退避させておいた。この状態で、押出機から樹脂組成物を押出発泡して押出発泡体とし、ノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなることを確認した。次に、ノズル金型1に回転軸2を取り付け且つ冷却部材4を所定位置に配設した後、回転軸2を回転させ、押出発泡体をノズルの出口部11の開口端において回転刃5で切断して粒子状切断物を製造した。
The rotary blade 5 arranged on the front end surface 1a is rotated at a rotation speed of 3400 rpm, and the extruded foam extruded from the outlet portion 11 of each nozzle of the nozzle mold 1 is cut by the rotary blade 5 to be substantially spherical. A particulate cut was produced. The extruded foam was composed of an unexpanded portion immediately after being extruded from the nozzle of the nozzle mold 1 and a foamed portion in the process of being continuously expanded to the unexpanded portion. The extruded foam was cut at the open end of the outlet portion 11 of the nozzle, and the extruded foam was cut at the unfoamed portion.
In the production of the foamed particles described above, first, the rotating shaft 2 was not attached to the nozzle mold 1 and the cooling member 4 was retracted from the nozzle mold 1. In this state, the resin composition is extruded from an extruder to form an extruded foam, and the unexpanded portion immediately after being extruded from the nozzle of the nozzle mold 1 and the foamed portion in the process of being continuously expanded to the unexpanded portion. It was confirmed that it consisted of. Next, after the rotary shaft 2 is attached to the nozzle mold 1 and the cooling member 4 is arranged at a predetermined position, the rotary shaft 2 is rotated, and the extruded foam is placed at the opening end of the outlet portion 11 of the nozzle by the rotary blade 5. It was cut to produce a particulate cut.

この粒子状切断物は、回転刃5による切断応力によって外方又は前方に向かって飛ばされ、冷却部材4の冷却ドラム41の内面に沿って流れている冷却液42にこの冷却液42の流れの上流側から下流側に向かって冷却液42を追うように冷却液42の表面に対して斜交する方向から衝突し、粒子状切断物は冷却液42中に進入して直ちに冷却され、発泡粒子が製造された。
得られた発泡粒子は、冷却ドラム41の排出口41eを通じて冷却液42と共に排出された後、脱水機にて冷却液42と分離された。
This particulate cut piece is blown outward or forward by the cutting stress of the rotary blade 5, and the flow of the coolant 42 flows into the coolant 42 flowing along the inner surface of the cooling drum 41 of the cooling member 4. It collides with the surface of the coolant 42 from an oblique direction so as to follow the coolant 42 from the upstream side to the downstream side, and the particulate cut pieces enter the coolant 42 and are immediately cooled to be foamed particles. Was manufactured.
The obtained foamed particles were discharged together with the coolant 42 through the discharge port 41e of the cooling drum 41, and then separated from the coolant 42 by a dehydrator.

金型(雄金型と雌金型)を備えた型内発泡成形機を用意した。雄金型と雌金型とを型締めした状態において、雌雄金型間には内法寸法が縦300mm×横400mm×高さ30mmである直方体形状のキャビティが形成されていた。
そして、金型クラッキングを3mm取った状態で金型内に発泡粒子を充填後、雌型からキャビティ内が0.08MPa(ゲージ圧)となるように水蒸気を30秒間導入し(一方加熱)、次いで、雄型からキャビティ内が0.08MPa(ゲージ圧)となるように水蒸気を30秒間導入し(逆一方加熱)、次いで、雄雌両型からキャビティ内が0.12MPa(ゲージ圧)となるように30秒間水蒸気を供給し(両面加熱)、発泡粒子を加熱、二次発泡させて二次発泡粒子どうしを熱融着一体化させた。その後、キャビティ内へ水蒸気の導入を止めた状態で300秒間保持した後(保熱工程)、最後に、キャビティ内に冷却液を供給して金型内の発泡粒子成形体を冷却した上でキャビティを開いて発泡粒子成形体を取り出した。
このとき、金型内に発泡粒子を充填する工程から発泡粒子成形体を得るためにかかった時間(成形サイクル時間)は600秒であった。
An in-mold foam molding machine equipped with a mold (male mold and female mold) was prepared. In a state where the male mold and the female mold were molded, a rectangular parallelepiped-shaped cavity having internal dimensions of 300 mm in length × 400 mm in width × 30 mm in height was formed between the male and female molds.
Then, after filling the mold with foamed particles with the mold cracking removed by 3 mm, steam is introduced from the female mold so that the inside of the cavity becomes 0.08 MPa (gauge pressure) for 30 seconds (on the other hand, heating), and then , Water vapor is introduced from the male mold to 0.08 MPa (gauge pressure) in the cavity for 30 seconds (reverse one-sided heating), and then from both male and female molds to 0.12 MPa (gauge pressure) in the cavity. Steam was supplied to the water vapor for 30 seconds (double-sided heating), and the foamed particles were heated and secondarily foamed to integrate the secondary foamed particles by heat fusion. Then, after holding for 300 seconds in a state where the introduction of water vapor into the cavity is stopped (heat retention step), finally, a cooling liquid is supplied into the cavity to cool the foamed particle molded body in the mold, and then the cavity. Was opened and the foamed particle molded product was taken out.
At this time, the time (molding cycle time) required to obtain the foamed particle molded body from the step of filling the foamed particles in the mold was 600 seconds.

(実施例2~3、6、8~9、11~13、比較例1、3~4)
ポリエステル系樹脂、ポリイミド系樹脂、タルクマスターバッチ、架橋剤及び発泡剤を表中の配合とし、表中に示した成形条件としたこと以外は、実施例1と同様にして発泡粒子と発泡粒子成形体を作製した。
図9に、実施例3の損失正接tanδの測定結果を示し、図10に、比較例1の損失正接tanδの測定結果を示す。
(Examples 2 to 3, 6, 8 to 9, 11 to 13, Comparative Examples 1 and 3 to 4)
Foamed particles and foamed particle molding in the same manner as in Example 1 except that the polyester resin, polyimide resin, talc masterbatch, cross-linking agent and foaming agent were blended in the table and the molding conditions shown in the table were used. The body was made.
FIG. 9 shows the measurement result of the loss tangent tan δ of Example 3, and FIG. 10 shows the measurement result of the loss tangent tan δ of Comparative Example 1.

(実施例4)
実施例3と同じ発泡粒子を用いて、表中の成形条件としたこと以外は実施例1と同様にして発泡粒子成形体を作製した。
(Example 4)
Using the same foamed particles as in Example 3, a foamed particle molded product was produced in the same manner as in Example 1 except that the molding conditions in the table were set.

(実施例5)
ポリエステル系樹脂、ポリイミド系樹脂、タルクマスターバッチ、架橋剤及び発泡剤を表中の配合としたこと以外は、実施例1と同様にして発泡粒子と作製した。作製した発泡粒子を150℃の恒温槽内で1時間静置させて発泡粒子を発泡させ予備発泡粒子を得た。得られた予備発泡粒子の物性を表中に示す。
前記予備発泡粒子を1日間室温(23℃)に放置した後、圧力容器中に密閉し、圧力容器内を窒素ガスで置換した後、窒素ガスを含浸圧(ゲージ圧)含浸圧0.5MPaまで圧入し、20℃の環境下に静置し、加圧養生を8時間実施した。(内圧付与工程)その後、予備発泡粒子を圧力容器から取り出した。
内圧付与工程を実施した前記予備発泡粒子を0.30MPa(ゲージ圧)の水蒸気で30秒間加熱することで二次発泡させたところ、実施例3で得られた発泡粒子とほぼ同じ二次発泡性を確認した。
内圧付与工程を実施した前記予備発泡粒子を用いて、表中に示した成形条件としたこと以外は、実施例1と同様にして発泡粒子成形体を作製した。
(Example 5)
The particles were prepared as foamed particles in the same manner as in Example 1 except that the polyester resin, the polyimide resin, the talc masterbatch, the cross-linking agent and the foaming agent were blended in the table. The prepared foamed particles were allowed to stand in a constant temperature bath at 150 ° C. for 1 hour to foam the foamed particles to obtain preliminary foamed particles. The physical characteristics of the obtained preliminary foamed particles are shown in the table.
The prefoamed particles were left at room temperature (23 ° C.) for 1 day, sealed in a pressure vessel, the inside of the pressure vessel was replaced with nitrogen gas, and then the impregnation pressure (gauge pressure) was up to 0.5 MPa. It was press-fitted, allowed to stand in an environment of 20 ° C., and pressure-cured for 8 hours. (Internal pressure applying step) After that, the preliminary foamed particles were taken out from the pressure vessel.
When the preliminary foamed particles subjected to the internal pressure applying step were secondarily foamed by heating with steam of 0.30 MPa (gauge pressure) for 30 seconds, the secondary foaming property was almost the same as that of the foamed particles obtained in Example 3. It was confirmed.
Using the preliminary foamed particles subjected to the internal pressure applying step, a foamed particle molded product was produced in the same manner as in Example 1 except that the molding conditions shown in the table were met.

(実施例7)
実施例6と同じ発泡粒子を用いて、表中に示した成形条件としたこと以外は実施例1と同様にして発泡粒子成形体を作製した。
(Example 7)
Using the same foamed particles as in Example 6, a foamed particle molded product was produced in the same manner as in Example 1 except that the molding conditions shown in the table were used.

(実施例10)
実施例3と同じ発泡粒子を二軸押出機で再溶融させ、ノズル金型よりストランド状に押出し、これを冷却した後ペレタイズした回収ペレットを作製した。表中の配合及び成形条件に従った以外は、実施例1と同様にして発泡粒子と発泡粒子成形体を作製した。
(Example 10)
The same foamed particles as in Example 3 were remelted by a twin-screw extruder, extruded into strands from a nozzle die, cooled, and then pelletized to prepare recovered pellets. Effervescent particles and an effervescent particle molded product were produced in the same manner as in Example 1 except that the formulation and molding conditions in the table were followed.

(比較例2)
比較例1と同じ発泡粒子を用いて、表中に示した成形条件としたこと以外は実施例1と同様にして発泡粒子成形体を作製した。
(Comparative Example 2)
Using the same foamed particles as in Comparative Example 1, a foamed particle molded product was produced in the same manner as in Example 1 except that the molding conditions shown in the table were used.

(比較例5)
比較例4と同じ発泡粒子を用いて、表中に示した成形条件としたこと以外は実施例1と同様にして発泡粒子成形体を作製した。
(Comparative Example 5)
Using the same foamed particles as in Comparative Example 4, a foamed particle molded product was produced in the same manner as in Example 1 except that the molding conditions shown in the table were used.

Figure 2022057468000004
Figure 2022057468000004

Figure 2022057468000005
Figure 2022057468000005

Figure 2022057468000006
Figure 2022057468000006

Figure 2022057468000007
Figure 2022057468000007

Figure 2022057468000008
Figure 2022057468000008

Figure 2022057468000009
Figure 2022057468000009

本発明を適用した実施例1~13は、耐熱強度(曲げ弾性率)の評価が「△」~「◎」であり、総合評価が「△」~「◎」であった。
PEIを含まない比較例1~2、ガラス転移温度が単一でない比較例3~5は、耐熱強度(曲げ弾性率)の評価が「×」であり、総合評価が「×」であった。
以上の結果から、本発明を適用することで、熱可塑性樹脂発泡粒子成形体の耐熱強度を高められることが、確認された。
In Examples 1 to 13 to which the present invention was applied, the evaluation of the heat resistant strength (flexural modulus) was "Δ" to "◎", and the overall evaluation was "Δ" to "◎".
In Comparative Examples 1 and 2 not including PEI and Comparative Examples 3 to 5 in which the glass transition temperature was not single, the evaluation of the heat resistant strength (flexural modulus) was "x", and the overall evaluation was "x".
From the above results, it was confirmed that the heat resistant strength of the thermoplastic resin foamed particle molded product can be enhanced by applying the present invention.

(実施例14)
<発泡樹脂複合体の作製>
炭素繊維からなる綾織の織物から形成された繊維強化基材に、熱硬化性樹脂として未硬化のエポキシ樹脂を40質量%含有させた厚みが0.22mmの繊維強化樹脂層形成材(CFRP、三菱レイヨン社製「パイロフィルプリプレグ TR3523 381GMX」、目付:200g/m)を用意した。実施例3にて得られた発泡粒子成形体の両面に2層ずつ繊維強化樹脂層形成材を乗せて積層体とし、オートクレーブ法にて発泡粒子成形体の表面に繊維強化樹脂層形成材を接合した。具体的には、0.3MPaのゲージ圧力に加圧して積層体に押圧力を加えると共に、130℃で60分間に亘って積層体を加熱して、繊維強化樹脂層形成材中の熱硬化性樹脂を硬化させると共に、繊維強化樹脂層形成材を硬化した熱硬化性樹脂によって発泡粒子成形体の両面に接合した。
得られた発泡樹脂複合体の外観を目視観察して、表皮材表面に凹凸部が無く、外観が美麗な発泡樹脂複合体が得られたことを確認した。
(Example 14)
<Preparation of foamed resin complex>
A fiber reinforced resin layer forming material (CFRP, Mitsubishi) with a thickness of 0.22 mm, which contains 40% by mass of an uncured epoxy resin as a thermosetting resin in a fiber reinforced base material made of a twill weave made of carbon fiber. "Pyrofil prepreg TR3523 381GMX" manufactured by Rayon Co., Ltd., with a grain size of 200 g / m 2 ) was prepared. Two layers of a fiber-reinforced resin layer forming material are placed on both sides of the foamed particle molded body obtained in Example 3 to form a laminated body, and the fiber-reinforced resin layer forming material is bonded to the surface of the foamed particle molded body by an autoclave method. bottom. Specifically, the laminate is pressurized to a gauge pressure of 0.3 MPa to apply a pressing force to the laminate, and the laminate is heated at 130 ° C. for 60 minutes to have thermosetting properties in the fiber-reinforced resin layer forming material. The resin was cured, and the fiber-reinforced resin layer forming material was bonded to both sides of the foamed particle molded product with the cured thermosetting resin.
By visually observing the appearance of the obtained foamed resin composite, it was confirmed that the foamed resin composite having no unevenness on the surface of the skin material and having a beautiful appearance was obtained.

100 発泡樹脂複合体
102 発泡粒子成形体
104 繊維強化樹脂層
100 Foamed resin composite 102 Foamed particle molded body 104 Fiber reinforced resin layer

Claims (20)

熱可塑性樹脂を含み、
前記熱可塑性樹脂は、ポリエステル系樹脂とポリイミド系樹脂とを含み、
ガラス転移温度Tgが単一である、熱可塑性樹脂発泡粒子。
Contains thermoplastic resin
The thermoplastic resin contains a polyester-based resin and a polyimide-based resin.
Thermoplastic resin foamed particles having a single glass transition temperature Tg.
前記ガラス転移温度Tgは、80~130℃である、請求項1に記載の熱可塑性樹脂発泡粒子。 The thermoplastic resin foamed particles according to claim 1, wherein the glass transition temperature Tg is 80 to 130 ° C. 加熱速度10℃/分における熱流束示差走査熱量測定によって求められる吸熱量と発熱量との差の絶対値が3~35J/gである、請求項1又は2に記載の熱可塑性樹脂発泡粒子。 The thermoplastic resin foamed particles according to claim 1 or 2, wherein the absolute value of the difference between the heat absorption amount and the calorific value obtained by the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min is 3 to 35 J / g. 前記熱可塑性樹脂の総質量に対する前記ポリエステル系樹脂の含有割合は、40~95質量%であり、
前記熱可塑性樹脂の総質量に対する前記ポリイミド系樹脂の含有割合は、5~60質量%である、
請求項1~3のいずれか一項に記載の熱可塑性樹脂発泡粒子。
The content ratio of the polyester resin to the total mass of the thermoplastic resin is 40 to 95% by mass.
The content ratio of the polyimide resin to the total mass of the thermoplastic resin is 5 to 60% by mass.
The thermoplastic resin foamed particles according to any one of claims 1 to 3.
加熱速度5℃/分、周波数1Hzでの固体粘弾性測定における損失正接tanδが最大となる温度は、120~230℃である、請求項1~4のいずれか一項に記載の熱可塑性樹脂発泡粒子。 The thermoplastic resin foaming according to any one of claims 1 to 4, wherein the temperature at which the loss tangent tan δ is maximized in the solid viscoelasticity measurement at a heating rate of 5 ° C./min and a frequency of 1 Hz is 120 to 230 ° C. particle. 前記ポリイミド系樹脂がポリエーテルイミド系樹脂である、請求項1~5のいずれか一項に記載の熱可塑性樹脂発泡粒子。 The thermoplastic resin foamed particles according to any one of claims 1 to 5, wherein the polyimide-based resin is a polyetherimide-based resin. 前記ポリエステル系樹脂が、植物由来のポリエステル系樹脂を含む、請求項1~6のいずれか一項に記載の熱可塑性樹脂発泡粒子。 The thermoplastic resin foamed particles according to any one of claims 1 to 6, wherein the polyester-based resin contains a plant-derived polyester-based resin. 前記熱可塑性樹脂が、リサイクル原料を含む、請求項1~7のいずれか一項に記載の熱可塑性樹脂発泡粒子。 The thermoplastic resin foamed particles according to any one of claims 1 to 7, wherein the thermoplastic resin contains a recycled raw material. 前記熱可塑性樹脂と発泡剤とを含む熱可塑性樹脂組成物を押し出し、発泡して、熱可塑性樹脂発泡粒子を得る工程を有する、請求項1~8のいずれか一項に記載の熱可塑性樹脂発泡粒子の製造方法。 The thermoplastic resin foaming according to any one of claims 1 to 8, further comprising a step of extruding and foaming the thermoplastic resin composition containing the thermoplastic resin and the foaming agent to obtain thermoplastic resin foamed particles. How to make particles. 前記熱可塑性樹脂組成物は、架橋剤をさらに含む、請求項9に記載の熱可塑性樹脂発泡粒子の製造方法。 The method for producing thermoplastic resin foamed particles according to claim 9, wherein the thermoplastic resin composition further contains a cross-linking agent. 熱可塑性樹脂を含み、
前記熱可塑性樹脂は、ポリエステル系樹脂とポリイミド系樹脂とを含み、
ガラス転移温度Tgが単一である、熱可塑性樹脂発泡粒子成形体。
Contains thermoplastic resin
The thermoplastic resin contains a polyester-based resin and a polyimide-based resin.
A thermoplastic resin foamed particle molded product having a single glass transition temperature Tg.
前記ガラス転移温度Tgは、80~130℃以下である、請求項11に記載の熱可塑性樹脂発泡粒子成形体。 The thermoplastic resin foamed particle molded product according to claim 11, wherein the glass transition temperature Tg is 80 to 130 ° C. or lower. 加熱速度10℃/分における熱流束示差走査熱量測定によって求められる吸熱量と発熱量との差の絶対値は、3~35J/gである、請求項11又は12に記載の熱可塑性樹脂発泡粒子成形体。 The thermoplastic resin foamed particles according to claim 11 or 12, wherein the absolute value of the difference between the heat absorption amount and the calorific value obtained by the heat flux differential scanning calorimetry at a heating rate of 10 ° C./min is 3 to 35 J / g. Molded body. 前記熱可塑性樹脂の総質量に対する前記ポリエステル系樹脂の含有割合は、40~95質量%であり、
前記熱可塑性樹脂の総質量に対する前記ポリイミド系樹脂の含有割合は、5~60質量%である、
請求項11~13のいずれか一項に記載の熱可塑性樹脂発泡粒子成形体。
The content ratio of the polyester resin to the total mass of the thermoplastic resin is 40 to 95% by mass.
The content ratio of the polyimide resin to the total mass of the thermoplastic resin is 5 to 60% by mass.
The thermoplastic resin foamed particle molded product according to any one of claims 11 to 13.
加熱速度5℃/分、周波数1Hzでの固体粘弾性測定における損失正接tanδが最大となる温度は、120~230℃である、請求項11~14のいずれか一項に記載の熱可塑性樹脂発泡粒子成形体。 The thermoplastic resin foaming according to any one of claims 11 to 14, wherein the temperature at which the loss tangent tan δ is maximized in the solid viscoelasticity measurement at a heating rate of 5 ° C./min and a frequency of 1 Hz is 120 to 230 ° C. Particle molded body. 前記ポリイミド系樹脂がポリエーテルイミド系樹脂である、請求項11~15のいずれか一項に記載の熱可塑性樹脂発泡粒子成形体。 The thermoplastic resin foamed particle molded product according to any one of claims 11 to 15, wherein the polyimide-based resin is a polyetherimide-based resin. 前記ポリエステル系樹脂が、植物由来のポリエステル系樹脂を含む、請求項11~16のいずれか一項に記載の熱可塑性樹脂発泡粒子成形体。 The thermoplastic resin foamed particle molded body according to any one of claims 11 to 16, wherein the polyester-based resin contains a plant-derived polyester-based resin. 前記熱可塑性樹脂が、リサイクル原料を含む、請求項11~17のいずれか一項に記載の熱可塑性樹脂発泡粒子成形体。 The thermoplastic resin foamed particle molded product according to any one of claims 11 to 17, wherein the thermoplastic resin contains a recycled raw material. 請求項9又は10に記載の熱可塑性樹脂発泡粒子の製造方法により前記熱可塑性樹脂発泡粒子を得、得られた熱可塑性樹脂発泡粒子を金型のキャビティ内に充填し、前記キャビティ内の前記熱可塑性樹脂発泡粒子を加熱して二次発泡粒子とし、前記二次発泡粒子同士を熱融着させて熱可塑性樹脂発泡粒子成形体を得る、熱可塑性樹脂発泡粒子成形体の製造方法。 The thermoplastic resin foamed particles are obtained by the method for producing a thermoplastic resin foamed particle according to claim 9 or 10, and the obtained thermoplastic resin foamed particles are filled in a cavity of a mold, and the heat in the cavity is filled. A method for producing a thermoplastic resin foamed particle molded body, wherein the plastic resin foamed particles are heated to form secondary foamed particles, and the secondary foamed particles are heat-sealed to obtain a thermoplastic resin foamed particle molded body. 請求項11~18のいずれか一項に記載の熱可塑性樹脂発泡粒子成形体と、前記熱可塑性樹脂発泡粒子成形体の表面の少なくとも一部に設けられた繊維強化樹脂層とを有する、発泡樹脂複合体。 A foamed resin having a thermoplastic resin foamed particle molded product according to any one of claims 11 to 18 and a fiber-reinforced resin layer provided on at least a part of the surface of the thermoplastic resin foamed particle molded product. Complex.
JP2020165746A 2020-07-31 2020-09-30 Thermoplastic resin expanded beads, thermoplastic resin expanded bead molded product, expanded resin composite, method for producing thermoplastic resin expanded beads, and method for producing thermoplastic resin expanded bead molded product Active JP7524018B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020165746A JP7524018B2 (en) 2020-09-30 2020-09-30 Thermoplastic resin expanded beads, thermoplastic resin expanded bead molded product, expanded resin composite, method for producing thermoplastic resin expanded beads, and method for producing thermoplastic resin expanded bead molded product
PCT/JP2021/028416 WO2022025274A1 (en) 2020-07-31 2021-07-30 Thermoplastic resin foam, thermoplastic resin foam sheet, fiber-reinforced resin composite, method for manufacturing thermoplastic resin foam, thermoplastic resin foam molded article, method for manufacturing thermoplastic resin foam molded article, and foamed resin composite
US18/018,678 US20230295420A1 (en) 2020-07-31 2021-07-30 Thermoplastic resin foam, thermoplastic resin foam sheet, fiber-reinforced resin composite, method for manufacturing thermoplastic resin foam, thermoplastic resin foam molded article, method for manufacturing thermoplastic resin foam molded article, and foamed resin composite
EP21851301.8A EP4190533A4 (en) 2020-07-31 2021-07-30 Thermoplastic resin foam, thermoplastic resin foam sheet, fiber-reinforced resin composite, method for manufacturing thermoplastic resin foam, thermoplastic resin foam molded article, method for manufacturing thermoplastic resin foam molded article, and foamed resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165746A JP7524018B2 (en) 2020-09-30 2020-09-30 Thermoplastic resin expanded beads, thermoplastic resin expanded bead molded product, expanded resin composite, method for producing thermoplastic resin expanded beads, and method for producing thermoplastic resin expanded bead molded product

Publications (2)

Publication Number Publication Date
JP2022057468A true JP2022057468A (en) 2022-04-11
JP7524018B2 JP7524018B2 (en) 2024-07-29

Family

ID=81110313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165746A Active JP7524018B2 (en) 2020-07-31 2020-09-30 Thermoplastic resin expanded beads, thermoplastic resin expanded bead molded product, expanded resin composite, method for producing thermoplastic resin expanded beads, and method for producing thermoplastic resin expanded bead molded product

Country Status (1)

Country Link
JP (1) JP7524018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238958A1 (en) * 2022-06-10 2023-12-14 積水化成品工業株式会社 Foamed thermoplastic resin particles, molded body of foamed thermoplastic resin particles, foamed resin composite, method for producing foamed thermoplastic resin particles, and method for producing molded body of foamed thermoplastic resin particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182938A (en) 2002-12-05 2004-07-02 Nippon Polyester Co Ltd Foam and foam particle formed from polyester/polycarbonate resin composition
US20070149629A1 (en) 2005-12-22 2007-06-28 Michael Stephen Donovan Expanded and expandable high glass transition temperature polymers
JP2009056621A (en) 2007-08-30 2009-03-19 Toray Ind Inc Laminated polyester film
JP6809149B2 (en) 2016-11-09 2021-01-06 三菱ケミカル株式会社 Polyester resin composition
JP2019172735A (en) 2018-03-27 2019-10-10 積水化成品工業株式会社 Foam particle, foam molded body, manufacturing method therefor, and resin composite
JP6864775B1 (en) 2020-07-31 2021-04-28 積水化成品工業株式会社 Thermoplastic resin foam sheet, thermoplastic resin foam sheet molded product and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238958A1 (en) * 2022-06-10 2023-12-14 積水化成品工業株式会社 Foamed thermoplastic resin particles, molded body of foamed thermoplastic resin particles, foamed resin composite, method for producing foamed thermoplastic resin particles, and method for producing molded body of foamed thermoplastic resin particles

Also Published As

Publication number Publication date
JP7524018B2 (en) 2024-07-29

Similar Documents

Publication Publication Date Title
JP5974010B2 (en) Aromatic polyester resin foamed particles for in-mold foam molding and method for producing the same, in-mold foam molded body, composite structure member, and automotive member
JP6043677B2 (en) Thermoplastic polyester resin extruded foam sheet, molded product using the same, method for producing thermoplastic polyester resin extruded foam sheet, and fiber reinforced composite
TWI700306B (en) Foamed particle, foam molded body, method for manufacturing them and resin composite
KR102318499B1 (en) Ester-based elastomer expanded molded article, its use, and ester-based elastomer expanded particles
JP5652859B2 (en) Composite laminate
TWI615434B (en) Foamed particle and foamed molded body, fiber reinforced composite and parts for automobiles
JP7524018B2 (en) Thermoplastic resin expanded beads, thermoplastic resin expanded bead molded product, expanded resin composite, method for producing thermoplastic resin expanded beads, and method for producing thermoplastic resin expanded bead molded product
JP6864775B1 (en) Thermoplastic resin foam sheet, thermoplastic resin foam sheet molded product and manufacturing method thereof
JP5907847B2 (en) Method for producing foamed thermoplastic polyester resin particles, foamed thermoplastic polyester resin particles, method for producing foamed molding using thermoplastic polyester resin foamed particles, foamed molded product and composite foam
JP6131232B2 (en) Thermoplastic polyester resin foamed particles and method for producing the same, foam molded article and method for producing the same, and composite foam
JP2019044105A (en) Foamed particle, foamed molding, fiber-reinforced composite body, method for producing the same, and automobile parts
JP6200861B2 (en) Resin foam for forming composite and method for producing fiber-reinforced composite
JP2014043528A (en) Thermoplastic polyester resin foamed particles, method for producing the same, foam-molded product, and composite molded product
WO2022025274A1 (en) Thermoplastic resin foam, thermoplastic resin foam sheet, fiber-reinforced resin composite, method for manufacturing thermoplastic resin foam, thermoplastic resin foam molded article, method for manufacturing thermoplastic resin foam molded article, and foamed resin composite
JP2023111039A (en) Thermoplastic resin foam particle, thermoplastic resin foam particle molding, foam resin composite body, method for producing thermoplastic resin foam particle, and method for producing thermoplastic resin foam particle molding
WO2023238958A1 (en) Foamed thermoplastic resin particles, molded body of foamed thermoplastic resin particles, foamed resin composite, method for producing foamed thermoplastic resin particles, and method for producing molded body of foamed thermoplastic resin particles
JP2015105334A (en) Method for manufacturing fiber-reinforced composite, fiber-reinforced composite, and member for configuration of transportation equipment
TWI856698B (en) Thermoplastic resin foamed particle, thermoplastic resin foamed particle molded article, foamed resin composite, method for producing thermoplastic resin foamed particle, and method for producing thermoplastic resin foamed particle molded article
JP2022102868A (en) Fiber-reinforced resin composite body and thermoplastic resin foam sheet for fiber-reinforced resin composite body
WO2022196473A1 (en) Foamed particles of aromatic polyester resin, production method therefor, molded foam, and member for vehicle
WO2023145811A1 (en) Aromatic polyester-based resin foam particle and method for producing same, foam molded article, composite structural member, and vehicle member
JP2022129943A (en) Foam particle, foam molding and composite structure member
JP2022027409A (en) Thermoplastic resin foam, thermoplastic resin foam sheet, method for producing thermoplastic resin foam, thermoplastic resin foam molding and method for producing thermoplastic resin foam molding
JP7203198B2 (en) Resin composition for manufacturing expanded beads, expanded beads, expanded moldings and composite structural members
JP7277308B2 (en) foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240717

R150 Certificate of patent or registration of utility model

Ref document number: 7524018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150