WO2019044250A1 - Particle detection sensor - Google Patents

Particle detection sensor Download PDF

Info

Publication number
WO2019044250A1
WO2019044250A1 PCT/JP2018/027221 JP2018027221W WO2019044250A1 WO 2019044250 A1 WO2019044250 A1 WO 2019044250A1 JP 2018027221 W JP2018027221 W JP 2018027221W WO 2019044250 A1 WO2019044250 A1 WO 2019044250A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
particles
particle
detection sensor
processing circuit
Prior art date
Application number
PCT/JP2018/027221
Other languages
French (fr)
Japanese (ja)
Inventor
吉祥 永谷
貴司 中川
圭子 川人
則之 安池
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019539053A priority Critical patent/JP7008252B2/en
Priority to KR1020207005101A priority patent/KR102327743B1/en
Priority to CN201880055186.7A priority patent/CN111051851B/en
Publication of WO2019044250A1 publication Critical patent/WO2019044250A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Definitions

  • the present invention relates to a particle detection sensor.
  • a photoelectric particle detection sensor that includes a light emitting element and a light receiving element, detects particles suspended on a measurement target, and calculates a mass concentration of the particles included in the measurement target (for example, patent documents See 1).
  • the photoelectric particle detection sensor light is emitted from the light emitting element toward the detection area, and when the particles pass through the detection area, the light receiving element receives scattered light of light by particles passing through. The size of the particles is determined based on the received light intensity of the scattered light, and the mass concentration of the particles contained in the measurement object is calculated from the size and the number of the particles.
  • the inside of the particle detection sensor when the inside of the particle detection sensor is dirty, for example, when the particles adhere to at least one of the light emitting element and the light receiving element, the light should be originally irradiated to the detection area and the light originally enters the light receiving element.
  • the scattered light that is to be blocked by the attached particles is reduced respectively.
  • light that is scattered by attached particles and that should not be originally incident on the light receiving element may be incident on the light receiving element. In either case, it causes false detection of particle size, and detection accuracy decreases.
  • an object of the present invention is to provide a particle detection sensor capable of detecting the size of particles with high accuracy and calculating the mass concentration of particles contained in the measurement object with high accuracy.
  • a particle detection sensor is a particle detection sensor that detects a plurality of particles included in a measurement target, and a light projecting unit that emits light toward a detection region A light receiving unit for receiving scattered light of the light by the target particle when the target particle which is at least one of the plurality of particles passes through the detection area; and the light emitting unit and the light receiving unit. And a signal processing circuit, the signal processing circuit receiving light intensity of stray light received by the light receiving unit when the plurality of particles do not pass through the detection region.
  • the temporal change amount of the target particle is acquired, the light reception intensity of the scattered light is corrected based on the acquired temporal change amount, and the target particle is subjected to any of a plurality of particle sizes based on the light reception intensity of the scattered light corrected.
  • Classified into crabs One, by identifying the number of detected target particles, to calculate the mass concentration of the particles contained in the measurement target.
  • the particle detection sensor According to the particle detection sensor according to the present invention, it is possible to accurately detect the size of particles and accurately calculate the mass concentration of particles contained in the measurement object even in a state in which the inside of the particle detection sensor is dirty with time. it can.
  • FIG. 1 is a perspective view of a particle detection sensor according to an embodiment.
  • FIG. 2 is a perspective view when the lid of the particle detection sensor according to the embodiment is opened.
  • FIG. 3 is a cross-sectional view of the particle detection sensor according to the embodiment.
  • FIG. 4 is an enlarged cross-sectional view for explaining the operation of the particle detection sensor according to the embodiment.
  • FIG. 5 is a diagram showing an electrical signal output from the light receiving element during the operation shown in FIG.
  • FIG. 6 is a view for explaining classification of particles by size by the particle detection sensor according to the embodiment.
  • FIG. 7 is a histogram of particles detected by the particle detection sensor according to the embodiment.
  • FIG. 8 is an enlarged cross-sectional view for explaining an operation when particles adhere to the light emitting unit and the light receiving unit of the particle detection sensor according to the embodiment.
  • FIG. 9 is a diagram showing an electrical signal output from the light receiving element during the operation shown in FIG.
  • FIG. 10 is a diagram showing correction processing of the electric signal shown in FIG.
  • FIG. 11 is a diagram illustrating an example of timing when the particle detection sensor according to the embodiment acquires the amount of change with time.
  • FIG. 12 is a diagram illustrating another example of the timing at which the particle detection sensor according to the embodiment acquires the amount of change with time.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • the particle detection sensor detects the size of particles based on the received light intensity of light scattered by the particles passing through the detection area, and calculates the mass concentration of the particles contained in the measurement target.
  • the particle detection sensor is a light that should be originally irradiated to the detection area and a scattering that should originally be incident on the light receiving element based on the amount of time-dependent change of the received light intensity of the stray light received when the particles are not passing.
  • the variation of the light intensity is estimated and corrected, the particle size is accurately detected based on the corrected scattered light intensity, and the mass concentration of the particles included in the measurement object is calculated.
  • FIG. 1 is a perspective view of a particle detection sensor 1 according to the present embodiment.
  • FIG. 2 is a perspective view when the lid 13 of the particle detection sensor 1 according to the present embodiment is opened.
  • the lid 13 is opened for the purpose of cleaning the inside of the housing 10, for example, while the particle detection sensor 1 is not operated.
  • FIG. 3 is a cross-sectional view of the particle detection sensor 1 according to the present embodiment. Specifically, FIG. 3 shows a cross section parallel to the XY plane at substantially the center of the casing 10 of the particle detection sensor 1 in the Z-axis direction.
  • FIG. 4 is an enlarged sectional view for explaining the operation of the particle detection sensor 1 according to the present embodiment. Specifically, FIG. 4 is an enlarged view of a portion including the detection area DA in the cross section shown in FIG.
  • the X-axis, the Y-axis, and the Z-axis indicate three axes of the three-dimensional orthogonal coordinate system.
  • the X-axis direction and the Y-axis direction are directions along two sides of the casing 10 having a substantially flat rectangular parallelepiped shape.
  • the Z-axis direction corresponds to the thickness direction of the housing 10.
  • the particle detection sensor 1 is a photoelectric particle detection sensor that detects a plurality of particles P included in a measurement target.
  • the measurement target is a gas such as air (atmosphere).
  • the particles P are fine particles on the order of micrometers suspended in a gas, that is, particulate matter (aerosol).
  • the particles P are PM 2.5, suspended particulate matter (SPM: Suspended Particulate Matter), PM 10 and the like.
  • the particle detection sensor 1 includes a housing 10, a light projecting unit 20, a light receiving unit 30, a blower mechanism 40, a signal processing circuit 50, and a control circuit 60. Since the signal processing circuit 50 and the control circuit 60 do not appear in the cross section shown in FIG. 3, the signal processing circuit 50 and the control circuit 60 are schematically shown in FIG. The signal processing circuit 50 and the control circuit 60 are attached to, for example, the outer surface of the housing 10 on the opposite side to the lid 13 or the like.
  • the housing 10 accommodates the light emitting unit 20 and the light receiving unit 30 and has a detection area DA inside.
  • the housing 10 forms a gas flow path including a plurality of particles P.
  • the detection area DA is located on the gas flow path.
  • the housing 10 has an inlet 11 for allowing gas to flow therein, and an outlet 12 for allowing the gas to flow out.
  • a path from the inlet 11 to the outlet 12 in the inside of the housing 10 corresponds to a gas flow path.
  • the example in which the flow path of gas is formed in L shape is shown in FIG. 3, it may be formed in linear form which connects the inflow port 11 and the outflow port 12.
  • the housing 10 has, for example, a light shielding property, and suppresses the incidence of external light that causes noise on the light receiving unit 30 and the detection area DA.
  • the housing 10 is formed, for example, by injection molding using a black resin material. Specifically, the housing 10 is configured by combining a plurality of parts formed by injection molding. The light emitting unit 20 and the light receiving unit 30 are sandwiched by the plurality of components and fixed at a predetermined position in the housing 10.
  • a light trap structure may be provided to attenuate stray light by multiple reflection. Stray light is light other than the scattered light L2 (see FIG. 4) which is not scattered by the particles P passing through the detection area DA among the light L1 (see FIG. 4) emitted from the light projection unit 20
  • the light of The light trap structure can also attenuate external light that has entered from the inlet 11 or the outlet 12.
  • the housing 10 has a lid 13 which can be opened and closed.
  • the lid 13 is detachably fixed so as to close an opening 14 (see FIG. 2) provided in the housing 10. The user can open and close the lid 13 as needed.
  • the opening 14 is a cleaning window for exposing the inside of the housing 10 to the outside when the lid 13 is opened and removing particles adhering to the inside of the housing 10.
  • the user inserts a cleaning rod or the like into the opening 14 to remove particles attached to the lens 22 of the light emitting unit 20, the lens 32 of the light receiving unit 30, and the detection area DA.
  • the size and shape of the lid 13 and the opening 14 are not particularly limited. Although the lid 13 and the opening 14 are provided at positions overlapping with the detection area DA when viewed in the Z-axis direction, the present invention is not limited thereto.
  • the light projecting unit 20 emits the light L1 toward the detection area DA. As shown in FIGS. 3 and 4, the light projecting unit 20 includes a light emitting element 21 and a lens 22.
  • the light projecting element 21 is, for example, a solid light emitting element, and specifically, a laser element such as a semiconductor laser.
  • the light emitting element 21 may be a light emitting diode (LED) or an organic electroluminescent (EL) element.
  • the light L1 emitted by the light emitting element 21 is light having a peak at a predetermined wavelength such as infrared light, ultraviolet light, blue light, green light or red light.
  • the half width at the peak of the light L1 may be a narrow band such as 50 nm or less.
  • the light L1 is continuous light or pulsed light driven by DC, but is not limited thereto.
  • the lens 22 is disposed between the light emitting element 21 and the detection area DA.
  • the lens 22 is, for example, a condensing lens, and efficiently condenses the light L1 emitted from the light emitting element 21 on the detection area DA.
  • the light receiving unit 30 receives the scattered light L2 of the light L1 by the target particle.
  • the light receiving unit 30 includes a light receiving element 31 and a lens 32.
  • the light receiving element 31 is a photoelectric conversion element, such as a photodiode, a phototransistor, or a photomultiplier, which converts received light into an electric signal.
  • the light receiving element 31 outputs a current signal according to the light receiving intensity of the received light.
  • the light receiving element 31 is sensitive to the wavelength band of the light L1 emitted by the light emitting element 21.
  • the light receiving element 31 receives the scattered light L2 of the light L1 by the particles P passing through the detection area DA. Furthermore, the light receiving element 31 receives stray light. Stray light is light that enters the light receiving element 31 when the particle P has not passed through the detection area DA. Specifically, the stray light is light other than the scattered light L2 of the light by the particle P passing through the detection area DA, and corresponds to a noise component. That is, stray light is light which should not be received originally.
  • the stray light includes scattered light L3 (see FIG. 8) and the like by particles attached to the light projecting unit 20.
  • the light receiving element 31 is arrange
  • the optical axis of the light emitting element 21 corresponds to the path of the light with the strongest intensity among the light L1 emitted by the light emitting element 21.
  • the optical axis of the light emitting element 21 corresponds to a straight line connecting the light emitting element 21 and the detection area DA.
  • the light receiving element 31 is disposed such that the optical axis of the light receiving element 31 intersects the optical axis of the light emitting element 21 in the detection area DA.
  • the lens 32 is disposed between the light receiving element 31 and the detection area DA.
  • the lens 32 efficiently condenses the scattered light L2 scattered by the particles P in the detection area DA on the light receiving element 31.
  • the blower mechanism 40 generates an air flow passing through the detection area DA.
  • the blower mechanism 40 is, for example, a heating element such as a heater, and generates an updraft by heat generation.
  • the particle detection sensor 1 is configured such that the positive direction of the Y axis shown in FIGS. 1 to 3 is vertically upward and the negative direction of the Y axis is vertically downward in order to efficiently use the rising air flow. It is used by standing.
  • the blower mechanism 40 may be a small fan or the like.
  • the blower mechanism 40 is disposed inside the housing 10, but may be disposed outside the housing 10.
  • the signal processing circuit 50 acquires the temporal change amount of the light reception intensity of the stray light received by the light receiving unit 30 when the plurality of particles P do not pass through the detection area DA.
  • the signal processing circuit 50 corrects the light reception intensity of the scattered light L2 based on the acquired temporal change amount.
  • the signal processing circuit 50 classifies the target particles into any of a plurality of particle sizes based on the corrected light reception intensity of the scattered light L2, and specifies the number of detected target particles to obtain a gas.
  • the mass concentration of the particles P contained is calculated. Specific processing of the signal processing circuit 50 will be described later.
  • the signal processing circuit 50 outputs the calculated mass concentration to an external device as a sensor output value.
  • the signal processing circuit 50 is realized by, for example, one or more electronic components.
  • the signal processing circuit 50 is realized by an MPU (Micro Processing Unit) or the like.
  • the control circuit 60 stops the operation of the blower mechanism 40 when the signal processing circuit 50 acquires the temporal change amount. Specifically, the control circuit 60 stops the operation of the blower mechanism 40 at the timing when the signal processing circuit 50 acquires the temporal change amount.
  • the signal processing circuit 50 changes over time based on the received light intensity of the stray light received by the light receiving unit 30 after waiting for a predetermined period until the air flow in the housing 10 becomes sufficiently small after the operation of the blower mechanism 40 is stopped. Get the amount.
  • the control circuit 60 is realized by, for example, one or more electronic components.
  • the control circuit 60 is realized by an MPU or the like.
  • the control circuit 60 may be realized by the same hardware configuration as the signal processing circuit 50.
  • the light emitting element 21 always emits the light L ⁇ b> 1 during the operation period.
  • the light receiving element 31 receives the scattered light L2 by the particle P passing through.
  • the particles P passing through are target particles to be detected by the particle detection sensor 1.
  • FIG. 5 is a diagram showing an electrical signal output from the light receiving element 31 during the operation shown in FIG.
  • the horizontal axis is time
  • the vertical axis is signal strength.
  • the signal intensity of the electrical signal output from the light receiving element 31 has a substantially constant noise level when particles are not detected.
  • the noise level is generated in the housing 10 and corresponds to the light amount of stray light which may be incident on the light receiving element 31 (hereinafter, simply referred to as “stray light amount”).
  • stray light amount corresponds to the light amount of stray light which may be incident on the light receiving element 31 (hereinafter, simply referred to as “stray light amount”).
  • the signal processing circuit 50 classifies the size of the particles P based on the received light intensity of the scattered light L2. Specifically, the signal processing circuit 50 classifies the size of the particles P based on the size of the peak corresponding to the received light intensity of the scattered light L2.
  • FIG. 6 is a view for explaining classification of each size of particles P by the particle detection sensor 1 according to the present embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the signal intensity of the electrical signal output from the light receiving element 31, specifically, the intensity of the received light.
  • FIG. 6 shows the relationship between the light reception intensity of the scattered light by the particle P and the size of the particle when the particle P passes through the center of the detection area DA.
  • the current signal output from the light receiving element 31 has a large signal strength. For example, as shown in FIG. 6, every time the particle P passes through the detection area DA, peaks S1 to S3 of the current signal are detected.
  • the size of the peak depends on the size of the particle P passing through the detection area DA, that is, the particle P that has generated the scattered light L2. Specifically, as the particle P is larger, the light reception intensity of the scattered light L2 is larger, and the signal intensity is larger. The smaller the particle P, the smaller the received light intensity of the scattered light L2, and the smaller the signal intensity.
  • the signal processing circuit 50 classifies the particles P by size based on the magnitude of the signal intensity. For example, as shown in FIG. 6, the signal processing circuit 50 classifies the particles P into three sizes of “large particle”, “medium particle” and “small particle” based on the magnitude of the signal intensity.
  • the number of classifications of the particles P is not limited to three, and may be two, or four or more.
  • a large number of particles passing through a portion other than the center of the detection area DA are also included.
  • the intensity of light received by the light receiving element 31 of the scattered light by the particle decreases.
  • the size of the particles may be misjudged as being "small particles”.
  • the signal processing circuit 50 holds, for example, a histogram as shown in FIG. 7 in which the signal intensity is associated with the frequency of particles for each size of particles in order to suppress the erroneous determination. ing.
  • FIG. 7 is a histogram of particles P detected by the particle detection sensor 1 according to the present embodiment.
  • the horizontal axis is the signal intensity
  • the vertical axis is the frequency of particles per particle size.
  • the signal processing circuit 50 estimates the size of the particle P corresponding to the peak by referring to the histogram shown in FIG. 7 based on the peak intensity of the electrical signal.
  • the signal processing circuit 50 counts the number of particles P detected during a predetermined operation period for each size.
  • the signal processing circuit 50 calculates the product of the predetermined average mass and the counted number for each size, and adds the product for each calculated size, so that the particles included in the measurement target during the operation period Calculate the mass concentration of
  • FIG. 8 is an enlarged cross-sectional view for explaining the operation when particles adhere to the light emitting unit 20 and the light receiving unit 30 of the particle detection sensor 1 according to the present embodiment. Similar to FIG. 4, FIG. 8 is an enlarged view of a portion including the detection area DA in the cross section shown in FIG. 3.
  • the particle detection sensor 1 calculates a mass concentration of the particles P in the gas by taking in a gas containing a plurality of particles P into the inside of the housing 10.
  • the particles P taken into the inside of the housing 10 are not all released from the outlet 12, but a part thereof adheres to the inside of the housing 10.
  • the operation period of the particle detection sensor 1 becomes longer, the amount of particles adhering to the inside of the housing 10 increases and the amount of stray light also increases.
  • the particles also adhere to the lens 22 of the light emitting unit 20 and the lens 32 of the light receiving unit 30.
  • the particles P1 attached to the lens 22 of the light emitting unit 20 may block part of the light emitted from the light emitting element 21. Therefore, the light L1 reaching the detection area DA is attenuated. As the light L1 reaching the detection area DA is attenuated, the scattered light L2 by the particles P passing through the detection area DA is also attenuated. The particles P2 attached to the lens 32 of the light receiving unit 30 may block the scattered light L2 from the particles P. Therefore, the scattered light L2 reaching the light receiving element 31 is attenuated.
  • the peak of the electrical signal corresponding to the scattered light L2 has a signal strength smaller than that of the original peak.
  • the original peak is a peak due to the scattered light L2 when no particle is attached to the light emitting unit 20 and the light receiving unit 30 (specifically, in the case shown in FIG. 4).
  • FIG. 9 is a diagram showing an electrical signal output from the light receiving element 31 during the operation shown in FIG.
  • the horizontal axis is time
  • the vertical axis is signal strength.
  • the broken line represents the signal strength of the original peak.
  • the particles P1 may scatter part of the light emitted from the light emitting element 21. A part of the scattered light L3 due to the particles P1 may be incident on the light receiving element 31. The particles P1 generally remain attached to the lens 22 unless removed by the cleaning operation. For this reason, a part of the scattered light L3 by the particles P1 always enters the light receiving element 31 as stray light.
  • the original noise level is indicated by an alternate long and short dash line.
  • the signal processing circuit 50 acquires the temporal change amount of the light reception intensity of the stray light, and corrects the light reception intensity of the scattered light L2 based on the acquired temporal change amount. .
  • the signal processing circuit 50 calculates the mass concentration of the particles P contained in the gas, based on the corrected received light intensity of the scattered light L2.
  • FIG. 10 is a diagram showing correction processing of the electric signal shown in FIG.
  • the horizontal axis is time
  • the vertical axis is signal strength.
  • the signal processing circuit 50 subtracts the rise amount of the noise level from the signal strength of the peak Sa before correction, and then multiplies the corrected peak by the correction coefficient to generate the original peak Sb. Do.
  • the rise amount of the noise level shown in FIG. 10 corresponds to the time-dependent change amount of the received light intensity of the stray light.
  • the amount of time-dependent change becomes large.
  • the number of particles attached to the light emitting unit 20 or the light receiving unit 30 increases, the light L1 that should originally reach the detection area DA and the scattered light L2 by the particles P passing through the detection area DA decrease. Therefore, the larger the amount of change over time, the larger the amount of decrease in the signal intensity of the original scattered light L2. Also, the smaller the amount of change over time, the smaller the amount of decrease in the signal intensity of the original scattered light L2.
  • the signal processing circuit 50 corrects the peak Sa having a large decrease in signal intensity to the original peak Sb by increasing the correction coefficient as the time-dependent change of the light reception intensity of stray light increases. Further, the signal processing circuit 50 corrects the peak Sa having a small amount of decrease in the signal intensity to the original peak Sb by reducing the correction coefficient as the amount of temporal change in light reception intensity of the stray light decreases.
  • the temporal change amount of the light reception intensity of the stray light is acquired, and the light reception intensity of the scattered light L2 is corrected based on the acquired temporal change amount. Thereby, calculation accuracy of mass concentration of particles P can be raised.
  • the signal processing circuit 50 may correct the light reception intensity of the scattered light not only based on the temporal change amount of the light reception intensity of the stray light but also on the degree of deterioration of the light emitting element 21. For example, when the intensity of the light L1 output from the light emitting element 21 is reduced due to the aged deterioration, the intensity of the scattered light L2 by the particles P is also reduced.
  • the signal processing circuit 50 may acquire the decrease amount of the intensity of the light output from the light emitting element 21 and correct the light reception intensity of the scattered light L2 based on the acquired decrease amount. Specifically, the signal processing circuit 50 corrects the peak with a large decrease in signal intensity to the original peak by increasing the correction coefficient as the decrease in intensity of the light output from the light emitting element 21 is larger. You may The signal processing circuit 50 may correct the peak having a small amount of decrease in signal intensity to the original peak by reducing the correction coefficient as the amount of decrease in intensity of light output from the light emitting element 21 is smaller.
  • FIG. 11 is a diagram showing an example of timing when the particle detection sensor 1 acquires the amount of change with time in the present embodiment.
  • the horizontal axis is the operation time
  • the vertical axis is the received light intensity of the stray light (ie, the stray light amount).
  • the operation time of the particle detection sensor 1 increases, the amount of particles adhering to the inside of the housing 10 increases, and the stray light amount also increases.
  • the operating time and the stray light amount have, for example, a linear relationship.
  • the signal processing circuit 50 acquires the amount of change over time each time a predetermined period elapses.
  • the timing at which the temporal change amount is acquired is indicated by a broken line.
  • the signal processing circuit 50 corrects the light reception intensity of the scattered light L2 based on the amount of change with time obtained at the timing shown in FIG. Specifically, when acquiring the temporal change amount at the first timing, the signal processing circuit 50 acquires the temporal change amount until the operation time reaches the second timing which is the next acquisition timing.
  • the light reception intensity of the scattered light L2 is corrected based on the temporal change amount. The accuracy of the correction can be enhanced by setting the time from the first timing to the second timing short.
  • FIG. 12 is a diagram showing another example of the timing at which the particle detection sensor 1 according to the present embodiment acquires the amount of change with time.
  • the horizontal axis is the time cumulative value of mass concentration
  • the vertical axis is the received light intensity of stray light.
  • the signal processing circuit 50 calculates a time cumulative value of mass concentration.
  • the signal processing circuit 50 stores the calculated value as a time accumulation value in a memory (not shown).
  • the signal processing circuit 50 repeatedly calculates, for example, the mass concentration periodically. Therefore, whenever the mass concentration is calculated, the time accumulation value is read from the memory, and the read time accumulation value and the newly calculated value are added. Do.
  • the signal processing circuit 50 stores the value after the addition in the memory as a new time accumulation value.
  • the time cumulative value of mass concentration increases, the amount of particles adhering to the inside of the housing 10 increases, and the amount of stray light also increases.
  • the time accumulation value and the stray light amount have, for example, a linear relationship.
  • the signal processing circuit 50 increases the amount of change over time every time the amount of increase from the amount of time accumulation when the calculated amount of time accumulation is obtained immediately before the calculated amount of increase over time reaches a predetermined threshold. You may get it.
  • the timing for acquiring the temporal change amount is indicated by a broken line.
  • the signal processing circuit 50 corrects the received light intensity of the scattered light based on the amount of change with time obtained at the timing shown in FIG.
  • the case 10 is provided with a lid 13 and an opening 14 for removing particles adhering to the inside.
  • the amount of stray light due to the attached particles is sufficiently reduced.
  • the signal processing circuit 50 further initializes the amount of change over time when the lid 13 is opened and then closed. For example, the lid 13 is opened by the user to clean the interior of the housing 10, and after particles are removed, the lid 13 is closed again. By removing the particles, the amount of stray light is reduced.
  • the signal processing circuit 50 initializes the amount of change over time when the stray light amount (that is, the noise level) decreases to a predetermined threshold value or less based on the electrical signal output from the light receiving element 31.
  • the particle detection sensor 1 may be provided with an open / close sensor for detecting the open / close of the lid 13.
  • the signal processing circuit 50 initializes the amount of change over time when the lid 13 is closed based on the output signal output from the open / close sensor.
  • the particle detection sensor 1 may be provided with a user interface such as a physical button for receiving the completion of cleaning from the user.
  • the particle detection sensor 1 is a particle detection sensor that detects a plurality of particles P included in the measurement target, and a light projection unit that emits the light L1 toward the detection area DA 20, a light receiving unit 30 for receiving the scattered light L2 of the light L1 by the target particle when the target particle which is at least one of the plurality of particles P passes the detection area DA, the light projecting unit 20, and the light receiving unit And a signal processing circuit 50.
  • the housing 10 has a detection area DA therein.
  • the signal processing circuit 50 acquires the temporal change amount of the light reception intensity of the stray light received by the light receiving unit 30 when the plurality of particles P do not pass through the detection area DA, and based on the acquired temporal change amount, scattered light By correcting the light reception intensity of L2, classifying the target particles into any of a plurality of particle sizes based on the corrected light reception intensity of the scattered light L2, and specifying the number of detected target particles, Calculate the mass concentration of particles contained in the measurement object.
  • the light reception intensity of the scattered light L2 is corrected by taking into consideration the increase amount and the decrease amount of the signal intensity caused by the particles adhering to the inside of the housing 10 by acquiring the temporal change amount of the stray light. be able to.
  • the particle detection sensor 1 calculates the mass concentration based on the corrected received light intensity of the scattered light L2, so that the mass concentration of the particles can be accurately calculated.
  • the signal processing circuit 50 acquires the temporal change amount each time a predetermined period elapses.
  • the signal processing circuit 50 further calculates the time accumulation value of the calculated mass concentration, and is an increase amount of the calculated time accumulation value, which is obtained from the time accumulation value when acquiring the last time change amount.
  • the amount of change over time may be acquired each time the amount of increase reaches a predetermined threshold.
  • the particle detection sensor 1 can always maintain high accuracy of calculation of mass concentration.
  • the housing 10 has a lid 13 which can be opened and closed.
  • the lid 13 can be opened to clean the inside of the housing 10. Since the particles attached to the inside of the housing 10 can be removed, the life of the particle detection sensor 1 can be extended.
  • the signal processing circuit 50 further initializes the amount of change over time.
  • the particle detection sensor 1 can calculate the mass concentration of particles with high accuracy.
  • the particle detection sensor 1 further controls the operation of the air blowing mechanism 40 when the air processing mechanism 50 generates an air flow passing through the detection area DA and the signal processing circuit 50 acquires the temporal change amount. And a circuit 60.
  • the light receiving unit 30 can easily receive stray light with high accuracy. For this reason, since the particle detection sensor 1 can acquire the temporal change amount with high accuracy, it is possible to calculate the mass concentration with high accuracy.
  • the light emitting unit 20 has a laser element.
  • the laser element generally includes a light receiving element, and can detect the intensity of the emitted light L1. Therefore, by detecting the intensity of the light L1 emitted from the laser element, the deterioration of the laser element can be accurately detected. Therefore, the decrease in the light reception intensity of the scattered light L2 based on the deterioration of the light emitting unit 20 can be corrected. Thereby, according to the particle
  • the measurement target may be a liquid.
  • the particle detection sensor 1 detects particles contained in a liquid such as water, and calculates a mass concentration.
  • the particle detection sensor 1 has a waterproof mechanism that prevents the signal processing circuit 50 attached to the outer surface of the housing 10 from contacting liquid.
  • the waterproof mechanism is, for example, a metal shield member provided to cover the signal processing circuit 50.
  • the shield member is fixed to the housing 10 without a gap, for example, by welding.
  • the housing 10 may not include the lid 13 and the opening 14.
  • the inlet 11 or the outlet 12 may be used as a cleaning window.
  • the particle detection sensor 1 may not include the air blowing mechanism 40.
  • the particle detection sensor 1 may be disposed so that the inlet 11 is located on the upstream side of the air flow, and the outlet 12 is located on the downstream side, where the air flow is flowing in a fixed direction.
  • each of the light emitting unit 20 and the light receiving unit 30 includes a lens
  • the present invention is not limited to this.
  • at least one of the light emitting unit 20 and the light receiving unit 30 may include a mirror (reflector) instead of a lens.
  • grain detection sensor 1 is mounted, for example in various household appliances etc., such as an air-conditioner, an air cleaner, and a ventilation fan.
  • Various household appliances may control the operation according to the mass concentration of particles detected by the particle detection sensor 1.
  • the air cleaner may increase the operating strength (specifically, the purification power of air) when the mass concentration of particles is larger than a predetermined threshold.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A particle detection sensor (1) that detects a plurality of particles contained in a subject to be measured is provided with: a light projection unit (20) that outputs light toward a detection region (DA); a light receiving unit (30) which, in the cases where a particle to be detected, i.e., at least one of the particles, passes through the detection region (DA), receives light scattered by the particle; a housing (10), which houses the light projection unit (20) and the light receiving unit (30), and which has the detection region (DA) inside; and a signal processing circuit (50). The signal processing circuit (50) acquires the amount of intensity change of stray light over time, said stray light having been received by the light receiving unit (30) when the particles were not passing through the detection region (DA), then, on the basis of the acquired change amount over time, the signal processing circuit corrects the intensity of the scattering light thus received, and on the basis of corrected intensity of the scattering light thus received, classifies the particle into any one of the groups of a plurality of particle sizes, and identifies the number of detected particles, thereby calculating the mass concentration of the particles contained in the subject to be measured.

Description

粒子検出センサParticle detection sensor
 本発明は、粒子検出センサに関する。 The present invention relates to a particle detection sensor.
 従来、投光素子と受光素子とを備え、計測対象に浮遊する粒子を検出し、計測対象に含まれる粒子の質量濃度を算出する光電式の粒子検出センサが知られている(例えば、特許文献1を参照)。光電式の粒子検出センサでは、投光素子から検知領域に向けて光を出射し、検知領域を粒子が通過した場合に、通過中の粒子による光の散乱光を受光素子が受光する。散乱光の受光強度に基づいて粒子の大きさが求められ、粒子の大きさと数とから、計測対象に含まれる粒子の質量濃度を算出する。 BACKGROUND Conventionally, there is known a photoelectric particle detection sensor that includes a light emitting element and a light receiving element, detects particles suspended on a measurement target, and calculates a mass concentration of the particles included in the measurement target (for example, patent documents See 1). In the photoelectric particle detection sensor, light is emitted from the light emitting element toward the detection area, and when the particles pass through the detection area, the light receiving element receives scattered light of light by particles passing through. The size of the particles is determined based on the received light intensity of the scattered light, and the mass concentration of the particles contained in the measurement object is calculated from the size and the number of the particles.
特開2015-210183号公報JP, 2015-210183, A
 しかしながら、上記従来技術では粒子検出センサの内部が汚れ、例えば、投光素子及び受光素子の少なくとも一方に粒子が付着した場合、検出領域に本来照射されるべき光、及び、受光素子に本来入射すべき散乱光が、付着した粒子により妨げられ、それぞれ減少する。また、付着した粒子によって散乱された光であって、受光素子に本来入射すべきでない光が受光素子に入射する場合もある。いずれの場合においても、粒子の大きさの誤検出の要因となり、検出確度が低下する。 However, in the above-mentioned prior art, when the inside of the particle detection sensor is dirty, for example, when the particles adhere to at least one of the light emitting element and the light receiving element, the light should be originally irradiated to the detection area and the light originally enters the light receiving element. The scattered light that is to be blocked by the attached particles is reduced respectively. In addition, light that is scattered by attached particles and that should not be originally incident on the light receiving element may be incident on the light receiving element. In either case, it causes false detection of particle size, and detection accuracy decreases.
 そこで、本発明は、粒子の大きさを確度良く検出し、計測対象に含まれる粒子の質量濃度を確度良く算出することができる粒子検出センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a particle detection sensor capable of detecting the size of particles with high accuracy and calculating the mass concentration of particles contained in the measurement object with high accuracy.
 上記目的を達成するため、本発明の一態様に係る粒子検出センサは、計測対象に含まれる複数の粒子を検出する粒子検出センサであって、検出領域に向けて光を出射する投光部と、前記複数の粒子の少なくとも1つである対象粒子が前記検出領域を通過した場合に、当該対象粒子による前記光の散乱光を受光する受光部と、前記投光部及び前記受光部を収納し、内部に前記検出領域を有する筐体と、信号処理回路とを備え、前記信号処理回路は、前記複数の粒子が前記検出領域を通過していない時に前記受光部によって受光される迷光の受光強度の経時変化量を取得し、取得した経時変化量に基づいて、前記散乱光の受光強度を補正し、補正された前記散乱光の受光強度に基づいて、前記対象粒子を複数の粒子サイズのいずれかに分類し、かつ、検出された対象粒子の個数を特定することで、前記計測対象に含まれる粒子の質量濃度を算出する。 In order to achieve the above object, a particle detection sensor according to an aspect of the present invention is a particle detection sensor that detects a plurality of particles included in a measurement target, and a light projecting unit that emits light toward a detection region A light receiving unit for receiving scattered light of the light by the target particle when the target particle which is at least one of the plurality of particles passes through the detection area; and the light emitting unit and the light receiving unit. And a signal processing circuit, the signal processing circuit receiving light intensity of stray light received by the light receiving unit when the plurality of particles do not pass through the detection region. The temporal change amount of the target particle is acquired, the light reception intensity of the scattered light is corrected based on the acquired temporal change amount, and the target particle is subjected to any of a plurality of particle sizes based on the light reception intensity of the scattered light corrected. Classified into crabs, One, by identifying the number of detected target particles, to calculate the mass concentration of the particles contained in the measurement target.
 本発明に係る粒子検出センサによれば、経時により粒子検出センサの内部が汚れた状態でも、粒子の大きさを確度良く検出し、計測対象に含まれる粒子の質量濃度を確度良く算出することができる。 According to the particle detection sensor according to the present invention, it is possible to accurately detect the size of particles and accurately calculate the mass concentration of particles contained in the measurement object even in a state in which the inside of the particle detection sensor is dirty with time. it can.
図1は、実施の形態に係る粒子検出センサの斜視図である。FIG. 1 is a perspective view of a particle detection sensor according to an embodiment. 図2は、実施の形態に係る粒子検出センサの蓋を開けた場合の斜視図である。FIG. 2 is a perspective view when the lid of the particle detection sensor according to the embodiment is opened. 図3は、実施の形態に係る粒子検出センサの断面図である。FIG. 3 is a cross-sectional view of the particle detection sensor according to the embodiment. 図4は、実施の形態に係る粒子検出センサの動作を説明するための拡大断面図である。FIG. 4 is an enlarged cross-sectional view for explaining the operation of the particle detection sensor according to the embodiment. 図5は、図4に示す動作中に受光素子から出力された電気信号を示す図である。FIG. 5 is a diagram showing an electrical signal output from the light receiving element during the operation shown in FIG. 図6は、実施の形態に係る粒子検出センサによる粒子のサイズ毎の分類を説明するための図である。FIG. 6 is a view for explaining classification of particles by size by the particle detection sensor according to the embodiment. 図7は、実施の形態に係る粒子検出センサによって検出された粒子のヒストグラムである。FIG. 7 is a histogram of particles detected by the particle detection sensor according to the embodiment. 図8は、実施の形態に係る粒子検出センサの投光部及び受光部に粒子が付着した場合の動作を説明するための拡大断面図である。FIG. 8 is an enlarged cross-sectional view for explaining an operation when particles adhere to the light emitting unit and the light receiving unit of the particle detection sensor according to the embodiment. 図9は、図8に示す動作中に受光素子から出力された電気信号を示す図である。FIG. 9 is a diagram showing an electrical signal output from the light receiving element during the operation shown in FIG. 図10は、図8に示す電気信号の補正処理を示す図である。FIG. 10 is a diagram showing correction processing of the electric signal shown in FIG. 図11は、実施の形態に係る粒子検出センサが経時変化量の取得を行うタイミングの一例を示す図である。FIG. 11 is a diagram illustrating an example of timing when the particle detection sensor according to the embodiment acquires the amount of change with time. 図12は、実施の形態に係る粒子検出センサが経時変化量の取得を行うタイミングの別の例を示す図である。FIG. 12 is a diagram illustrating another example of the timing at which the particle detection sensor according to the embodiment acquires the amount of change with time.
 以下では、本発明の実施の形態に係る粒子検出センサについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Below, the particle | grain detection sensor which concerns on embodiment of this invention is demonstrated in detail using drawing. Each embodiment described below shows one specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangements and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 (実施の形態)
 本実施の形態に係る粒子検出センサは、検出領域を通過する粒子による光の散乱光の受光強度に基づいて、粒子の大きさを検出し、計測対象に含まれる粒子の質量濃度を算出する光電式の粒子検出センサである。粒子検出センサは、粒子が検出領域を通過していない時に受光される迷光の受光強度の経時変化量に基づいて、検出領域に本来照射されるべき光、及び、受光素子に本来入射すべき散乱光強度の変動を推定補正し、補正後の散乱光強度に基づいて粒子の大きさを確度良く検出し、計測対象に含まれる粒子の質量濃度を算出する。
Embodiment
The particle detection sensor according to the present embodiment detects the size of particles based on the received light intensity of light scattered by the particles passing through the detection area, and calculates the mass concentration of the particles contained in the measurement target. Particle detection sensor of the formula. The particle detection sensor is a light that should be originally irradiated to the detection area and a scattering that should originally be incident on the light receiving element based on the amount of time-dependent change of the received light intensity of the stray light received when the particles are not passing The variation of the light intensity is estimated and corrected, the particle size is accurately detected based on the corrected scattered light intensity, and the mass concentration of the particles included in the measurement object is calculated.
 [構成]
 まず、本実施の形態に係る粒子検出センサ1について、図1~図4を用いて説明する。
[Constitution]
First, a particle detection sensor 1 according to the present embodiment will be described using FIGS. 1 to 4.
 図1は、本実施の形態に係る粒子検出センサ1の斜視図である。図2は、本実施の形態に係る粒子検出センサ1の蓋13を開けた場合の斜視図である。蓋13は、例えば、粒子検出センサ1を動作させない期間中に筐体10の内部を清掃する目的で開けられる。 FIG. 1 is a perspective view of a particle detection sensor 1 according to the present embodiment. FIG. 2 is a perspective view when the lid 13 of the particle detection sensor 1 according to the present embodiment is opened. The lid 13 is opened for the purpose of cleaning the inside of the housing 10, for example, while the particle detection sensor 1 is not operated.
 図3は、本実施の形態に係る粒子検出センサ1の断面図である。具体的には、図3は、粒子検出センサ1の筐体10のZ軸方向における略中央におけるXY面に平行な断面を示している。 FIG. 3 is a cross-sectional view of the particle detection sensor 1 according to the present embodiment. Specifically, FIG. 3 shows a cross section parallel to the XY plane at substantially the center of the casing 10 of the particle detection sensor 1 in the Z-axis direction.
 図4は、本実施の形態に係る粒子検出センサ1の動作を説明するための拡大断面図である。具体的には、図4は、図3に示す断面において、検出領域DAを含む部分を拡大して示している。 FIG. 4 is an enlarged sectional view for explaining the operation of the particle detection sensor 1 according to the present embodiment. Specifically, FIG. 4 is an enlarged view of a portion including the detection area DA in the cross section shown in FIG.
 なお、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を示している。X軸方向及びY軸方向は、略扁平な直方体形状を有する筐体10の2つの辺に沿った方向である。Z軸方向は、筐体10の厚み方向に相当する。 The X-axis, the Y-axis, and the Z-axis indicate three axes of the three-dimensional orthogonal coordinate system. The X-axis direction and the Y-axis direction are directions along two sides of the casing 10 having a substantially flat rectangular parallelepiped shape. The Z-axis direction corresponds to the thickness direction of the housing 10.
 粒子検出センサ1は、計測対象に含まれる複数の粒子Pを検出する光電式の粒子検出センサである。本実施の形態では、計測対象は、空気(大気)などの気体である。粒子Pは、気体中を浮遊するマイクロメートルオーダーの微粒子、すなわち、粒子状物質(エアロゾル)である。具体的には、粒子Pは、PM2.5、浮遊粒子状物質(SPM:Suspended Particulate Matter)、PM10などである。 The particle detection sensor 1 is a photoelectric particle detection sensor that detects a plurality of particles P included in a measurement target. In the present embodiment, the measurement target is a gas such as air (atmosphere). The particles P are fine particles on the order of micrometers suspended in a gas, that is, particulate matter (aerosol). Specifically, the particles P are PM 2.5, suspended particulate matter (SPM: Suspended Particulate Matter), PM 10 and the like.
 図1~図3に示すように、粒子検出センサ1は、筐体10と、投光部20と、受光部30と、送風機構40と、信号処理回路50と、制御回路60とを備える。なお、図3に示す断面には、信号処理回路50及び制御回路60が表れていないので、図3では、信号処理回路50及び制御回路60を模式的に表している。信号処理回路50及び制御回路60は、例えば、筐体10の外側面であって、蓋13とは反対側の面などに取り付けられている。 As shown in FIGS. 1 to 3, the particle detection sensor 1 includes a housing 10, a light projecting unit 20, a light receiving unit 30, a blower mechanism 40, a signal processing circuit 50, and a control circuit 60. Since the signal processing circuit 50 and the control circuit 60 do not appear in the cross section shown in FIG. 3, the signal processing circuit 50 and the control circuit 60 are schematically shown in FIG. The signal processing circuit 50 and the control circuit 60 are attached to, for example, the outer surface of the housing 10 on the opposite side to the lid 13 or the like.
 筐体10は、投光部20及び受光部30を収納し、内部に検出領域DAを有する。筐体10は、複数の粒子Pを含む気体の流路を形成している。検出領域DAは、気体の流路上に位置している。 The housing 10 accommodates the light emitting unit 20 and the light receiving unit 30 and has a detection area DA inside. The housing 10 forms a gas flow path including a plurality of particles P. The detection area DA is located on the gas flow path.
 具体的には、筐体10は、図1に示すように、内部に気体を流入させる流入口11と、流入した気体を外部に流出させる流出口12とを有する。図3の太破線の矢印で示すように、筐体10の内部を、流入口11から流出口12まで至る経路が、気体の流路に相当する。図3には、気体の流路がL字状に形成されている例を示しているが、流入口11と流出口12とを結ぶ直線状に形成されていてもよい。 Specifically, as shown in FIG. 1, the housing 10 has an inlet 11 for allowing gas to flow therein, and an outlet 12 for allowing the gas to flow out. As indicated by thick dashed arrows in FIG. 3, a path from the inlet 11 to the outlet 12 in the inside of the housing 10 corresponds to a gas flow path. Although the example in which the flow path of gas is formed in L shape is shown in FIG. 3, it may be formed in linear form which connects the inflow port 11 and the outflow port 12.
 筐体10は、例えば、遮光性を有し、受光部30及び検出領域DAに、ノイズの原因となる外光が入射するのを抑制する。筐体10は、例えば黒色の樹脂材料を用いた射出成形により形成されている。具体的には、筐体10は、射出成形により形成された複数の部品が組み合わされて構成されている。当該複数の部品によって、投光部20及び受光部30が挟まれて筐体10内の所定位置に固定されている。 The housing 10 has, for example, a light shielding property, and suppresses the incidence of external light that causes noise on the light receiving unit 30 and the detection area DA. The housing 10 is formed, for example, by injection molding using a black resin material. Specifically, the housing 10 is configured by combining a plurality of parts formed by injection molding. The light emitting unit 20 and the light receiving unit 30 are sandwiched by the plurality of components and fixed at a predetermined position in the housing 10.
 筐体10の内部には、迷光を多重反射させることにより減衰させる光トラップ構造が設けられていてもよい。迷光は、投光部20から出射された光L1(図4を参照)のうち、検出領域DAを通過中の粒子Pによって散乱されなかった光、すなわち、散乱光L2(図4を参照)以外の光である。光トラップ構造は、流入口11又は流出口12から内部に入射した外光も減衰させることができる。 Inside the housing 10, a light trap structure may be provided to attenuate stray light by multiple reflection. Stray light is light other than the scattered light L2 (see FIG. 4) which is not scattered by the particles P passing through the detection area DA among the light L1 (see FIG. 4) emitted from the light projection unit 20 The light of The light trap structure can also attenuate external light that has entered from the inlet 11 or the outlet 12.
 図1に示すように、筐体10は、開閉自在な蓋13を有する。蓋13は、筐体10に設けられた開口14(図2を参照)を塞ぐように着脱自在に固定されている。ユーザなどは、必要に応じて蓋13を開閉することができる。 As shown in FIG. 1, the housing 10 has a lid 13 which can be opened and closed. The lid 13 is detachably fixed so as to close an opening 14 (see FIG. 2) provided in the housing 10. The user can open and close the lid 13 as needed.
 開口14は、蓋13が開けられた場合に筐体10の内部を外部に露出させ、筐体10の内部に付着した粒子を取り除くための掃除窓である。例えば、ユーザは、開口14に掃除用の棒などを挿入し、投光部20のレンズ22、受光部30のレンズ32及び検出領域DAに付着している粒子を取り除く。蓋13及び開口14の大きさ及び形状は特に限定されない。蓋13及び開口14は、Z軸方向から見た場合に、検出領域DAに重複する位置に設けられているが、これに限らない。 The opening 14 is a cleaning window for exposing the inside of the housing 10 to the outside when the lid 13 is opened and removing particles adhering to the inside of the housing 10. For example, the user inserts a cleaning rod or the like into the opening 14 to remove particles attached to the lens 22 of the light emitting unit 20, the lens 32 of the light receiving unit 30, and the detection area DA. The size and shape of the lid 13 and the opening 14 are not particularly limited. Although the lid 13 and the opening 14 are provided at positions overlapping with the detection area DA when viewed in the Z-axis direction, the present invention is not limited thereto.
 投光部20は、検出領域DAに向けて光L1を出射する。図3及び図4に示すように、投光部20は、投光素子21と、レンズ22とを備える。 The light projecting unit 20 emits the light L1 toward the detection area DA. As shown in FIGS. 3 and 4, the light projecting unit 20 includes a light emitting element 21 and a lens 22.
 投光素子21は、例えば固体発光素子であり、具体的には半導体レーザなどのレーザ素子である。あるいは、投光素子21は、発光ダイオード(LED:Light Emitting Diode)又は有機EL(Electroluminescense)素子などでもよい。 The light projecting element 21 is, for example, a solid light emitting element, and specifically, a laser element such as a semiconductor laser. Alternatively, the light emitting element 21 may be a light emitting diode (LED) or an organic electroluminescent (EL) element.
 投光素子21が出射する光L1は、赤外光、紫外光、青色光、緑色光又は赤色光などの所定の波長にピークを有する光である。光L1のピークにおける半値幅は、例えば50nm以下などの狭帯域でもよい。また、光L1は、DC駆動による連続光又はパルス光であるが、これらに限られない。 The light L1 emitted by the light emitting element 21 is light having a peak at a predetermined wavelength such as infrared light, ultraviolet light, blue light, green light or red light. The half width at the peak of the light L1 may be a narrow band such as 50 nm or less. The light L1 is continuous light or pulsed light driven by DC, but is not limited thereto.
 レンズ22は、投光素子21と検出領域DAとの間に配置されている。レンズ22は、例えば集光レンズであり、投光素子21から出射された光L1を効率良く検出領域DAに集光させる。 The lens 22 is disposed between the light emitting element 21 and the detection area DA. The lens 22 is, for example, a condensing lens, and efficiently condenses the light L1 emitted from the light emitting element 21 on the detection area DA.
 受光部30は、複数の粒子Pの少なくとも1つである対象粒子が検出領域DAを通過した場合に、当該対象粒子による光L1の散乱光L2を受光する。図3及び図4に示すように、受光部30は、受光素子31と、レンズ32とを備える。 When the target particle which is at least one of the plurality of particles P passes through the detection area DA, the light receiving unit 30 receives the scattered light L2 of the light L1 by the target particle. As shown in FIGS. 3 and 4, the light receiving unit 30 includes a light receiving element 31 and a lens 32.
 受光素子31は、例えばフォトダイオード、フォトトランジスタ、又は光電子増倍管などの、受光した光を電気信号に変換する光電変換素子である。受光素子31は、受光した光の受光強度に応じた電流信号を出力する。受光素子31は、投光素子21が出射する光L1の波長帯域に感度を有する。 The light receiving element 31 is a photoelectric conversion element, such as a photodiode, a phototransistor, or a photomultiplier, which converts received light into an electric signal. The light receiving element 31 outputs a current signal according to the light receiving intensity of the received light. The light receiving element 31 is sensitive to the wavelength band of the light L1 emitted by the light emitting element 21.
 受光素子31は、検出領域DAを通過する粒子Pによる光L1の散乱光L2を受光する。さらに、受光素子31は、迷光を受光する。迷光は、粒子Pが検出領域DAを通過していないときに受光素子31に入射する光である。具体的には、迷光は、検出領域DAを通過中の粒子Pによる光の散乱光L2以外の光であり、ノイズ成分に相当する。つまり、迷光は、本来受光されるべきではない光である。迷光には、投光部20に付着した粒子による散乱光L3(図8を参照)などが含まれる。 The light receiving element 31 receives the scattered light L2 of the light L1 by the particles P passing through the detection area DA. Furthermore, the light receiving element 31 receives stray light. Stray light is light that enters the light receiving element 31 when the particle P has not passed through the detection area DA. Specifically, the stray light is light other than the scattered light L2 of the light by the particle P passing through the detection area DA, and corresponds to a noise component. That is, stray light is light which should not be received originally. The stray light includes scattered light L3 (see FIG. 8) and the like by particles attached to the light projecting unit 20.
 受光素子31は、図3に示すように、投光素子21が出射した光L1の直接光が入射しない位置に配置されている。具体的には、受光素子31は、投光素子21の光軸と重ならない位置に配置されている。なお、投光素子21の光軸は、投光素子21が出射する光L1のうち、強度が最も強い光の経路に相当する。具体的には、投光素子21の光軸は、投光素子21と検出領域DAとを結ぶ直線に相当する。本実施の形態では、受光素子31は、受光素子31の光軸が検出領域DAで投光素子21の光軸と交差するように配置されている。 The light receiving element 31 is arrange | positioned in the position where direct light of light L1 which the light emitting element 21 radiate | emitted does not inject, as shown in FIG. Specifically, the light receiving element 31 is disposed at a position not overlapping the optical axis of the light emitting element 21. The optical axis of the light emitting element 21 corresponds to the path of the light with the strongest intensity among the light L1 emitted by the light emitting element 21. Specifically, the optical axis of the light emitting element 21 corresponds to a straight line connecting the light emitting element 21 and the detection area DA. In the present embodiment, the light receiving element 31 is disposed such that the optical axis of the light receiving element 31 intersects the optical axis of the light emitting element 21 in the detection area DA.
 レンズ32は、受光素子31と検出領域DAとの間に配置されている。レンズ32は、検出領域DAにおいて粒子Pによって散乱された散乱光L2を効率良く受光素子31に集光させる。 The lens 32 is disposed between the light receiving element 31 and the detection area DA. The lens 32 efficiently condenses the scattered light L2 scattered by the particles P in the detection area DA on the light receiving element 31.
 送風機構40は、検出領域DAを通過する気流を生成する。送風機構40は、例えば、ヒータなどの発熱素子であり、発熱による上昇気流を生成する。なお、上昇気流を効率良く利用するため、本実施の形態では、図1~図3に示すY軸の正方向が鉛直上方、Y軸の負方向が鉛直下方になるように、粒子検出センサ1を立てて使用される。 The blower mechanism 40 generates an air flow passing through the detection area DA. The blower mechanism 40 is, for example, a heating element such as a heater, and generates an updraft by heat generation. In the present embodiment, the particle detection sensor 1 is configured such that the positive direction of the Y axis shown in FIGS. 1 to 3 is vertically upward and the negative direction of the Y axis is vertically downward in order to efficiently use the rising air flow. It is used by standing.
 送風機構40は、小型のファンなどでもよい。送風機構40は、筐体10の内部に配置されているが、筐体10の外側に配置されていてもよい。 The blower mechanism 40 may be a small fan or the like. The blower mechanism 40 is disposed inside the housing 10, but may be disposed outside the housing 10.
 信号処理回路50は、複数の粒子Pが検出領域DAを通過していない時に受光部30によって受光される迷光の受光強度の経時変化量を取得する。信号処理回路50は、取得した経時変化量に基づいて、散乱光L2の受光強度を補正する。信号処理回路50は、補正された散乱光L2の受光強度に基づいて、対象粒子を複数の粒子サイズのいずれかに分類し、かつ、検出された対象粒子の個数を特定することで、気体に含まれる粒子Pの質量濃度を算出する。信号処理回路50の具体的な処理については、後で説明する。信号処理回路50は、算出した質量濃度をセンサ出力値として外部機器に出力する。 The signal processing circuit 50 acquires the temporal change amount of the light reception intensity of the stray light received by the light receiving unit 30 when the plurality of particles P do not pass through the detection area DA. The signal processing circuit 50 corrects the light reception intensity of the scattered light L2 based on the acquired temporal change amount. The signal processing circuit 50 classifies the target particles into any of a plurality of particle sizes based on the corrected light reception intensity of the scattered light L2, and specifies the number of detected target particles to obtain a gas. The mass concentration of the particles P contained is calculated. Specific processing of the signal processing circuit 50 will be described later. The signal processing circuit 50 outputs the calculated mass concentration to an external device as a sensor output value.
 信号処理回路50は、例えば1以上の電子部品で実現される。例えば、信号処理回路50は、MPU(Micro Processing Unit)などで実現される。 The signal processing circuit 50 is realized by, for example, one or more electronic components. For example, the signal processing circuit 50 is realized by an MPU (Micro Processing Unit) or the like.
 制御回路60は、信号処理回路50が経時変化量を取得する場合に、送風機構40の動作を停止させる。具体的には、制御回路60は、信号処理回路50が経時変化量の取得を行うタイミングで、送風機構40の動作を停止させる。信号処理回路50は、送風機構40の動作が停止してから、筐体10内の気流が十分に小さくなるまで所定期間待機した後に受光部30が受光した迷光の受光強度に基づいて、経時変化量を取得する。 The control circuit 60 stops the operation of the blower mechanism 40 when the signal processing circuit 50 acquires the temporal change amount. Specifically, the control circuit 60 stops the operation of the blower mechanism 40 at the timing when the signal processing circuit 50 acquires the temporal change amount. The signal processing circuit 50 changes over time based on the received light intensity of the stray light received by the light receiving unit 30 after waiting for a predetermined period until the air flow in the housing 10 becomes sufficiently small after the operation of the blower mechanism 40 is stopped. Get the amount.
 制御回路60は、例えば1以上の電子部品で実現される。例えば、制御回路60は、MPUなどで実現される。制御回路60は、信号処理回路50と同じハードウェア構成で実現されていてもよい。 The control circuit 60 is realized by, for example, one or more electronic components. For example, the control circuit 60 is realized by an MPU or the like. The control circuit 60 may be realized by the same hardware configuration as the signal processing circuit 50.
 [動作]
 続いて、粒子検出センサ1の動作について、図4及び図5を用いて説明する。
[Operation]
Subsequently, the operation of the particle detection sensor 1 will be described using FIGS. 4 and 5.
 図4に示すように、粒子検出センサ1では、動作期間中には、投光素子21が常に光L1を出射している。検出領域DAを粒子Pが通過した場合に、通過中の粒子Pによる散乱光L2が受光素子31に受光される。なお、通過中の粒子Pは、粒子検出センサ1の検出の対象となる対象粒子である。 As shown in FIG. 4, in the particle detection sensor 1, the light emitting element 21 always emits the light L <b> 1 during the operation period. When the particle P passes through the detection area DA, the light receiving element 31 receives the scattered light L2 by the particle P passing through. The particles P passing through are target particles to be detected by the particle detection sensor 1.
 図5は、図4に示す動作中に受光素子31から出力された電気信号を示す図である。図5において、横軸は時間であり、縦軸は信号強度である。 FIG. 5 is a diagram showing an electrical signal output from the light receiving element 31 during the operation shown in FIG. In FIG. 5, the horizontal axis is time, and the vertical axis is signal strength.
 図5に示すように、受光素子31から出力される電気信号の信号強度は、粒子が検出されない場合には、略一定のノイズレベルである。ノイズレベルは、筐体10内に発生し、受光素子31に入射しうる迷光の光量(以下、単に「迷光量」と記載する)に相当する。受光素子31に散乱光L2が入射した場合、電気信号には、散乱光L2の受光強度に応じたピークSが現れる。 As shown in FIG. 5, the signal intensity of the electrical signal output from the light receiving element 31 has a substantially constant noise level when particles are not detected. The noise level is generated in the housing 10 and corresponds to the light amount of stray light which may be incident on the light receiving element 31 (hereinafter, simply referred to as “stray light amount”). When the scattered light L2 is incident on the light receiving element 31, a peak S corresponding to the light reception intensity of the scattered light L2 appears in the electric signal.
 本実施の形態では、信号処理回路50は、散乱光L2の受光強度に基づいて粒子Pのサイズの分類を行う。具体的には、信号処理回路50は、散乱光L2の受光強度に応じたピークの大きさに基づいて、粒子Pのサイズの分類を行う。 In the present embodiment, the signal processing circuit 50 classifies the size of the particles P based on the received light intensity of the scattered light L2. Specifically, the signal processing circuit 50 classifies the size of the particles P based on the size of the peak corresponding to the received light intensity of the scattered light L2.
 図6は、本実施の形態に係る粒子検出センサ1による粒子Pのサイズ毎の分類を説明するための図である。図6において、横軸は時間であり、縦軸は受光素子31から出力される電気信号の信号強度、具体的には、受光した光の強度である。図6は、検出領域DAの中心を粒子Pが通過した場合の粒子Pによる散乱光の受光強度と粒子のサイズとの関係を表している。 FIG. 6 is a view for explaining classification of each size of particles P by the particle detection sensor 1 according to the present embodiment. In FIG. 6, the horizontal axis represents time, and the vertical axis represents the signal intensity of the electrical signal output from the light receiving element 31, specifically, the intensity of the received light. FIG. 6 shows the relationship between the light reception intensity of the scattered light by the particle P and the size of the particle when the particle P passes through the center of the detection area DA.
 動作期間中に、検出領域DAを粒子Pが通過した場合、通過中の粒子Pによる散乱光L2が受光素子31に入射する。このため、受光素子31から出力される電流信号は、その信号強度が大きくなる。例えば、図6に示すように、粒子Pが検出領域DAを通過する度に、電流信号のピークS1~S3が検出される。 When the particle P passes through the detection area DA during the operation period, the scattered light L2 by the particle P passing through is incident on the light receiving element 31. Therefore, the current signal output from the light receiving element 31 has a large signal strength. For example, as shown in FIG. 6, every time the particle P passes through the detection area DA, peaks S1 to S3 of the current signal are detected.
 ピークの大きさは、検出領域DAを通過中の粒子P、すなわち、散乱光L2を生成させた粒子Pのサイズに依存する。具体的には、粒子Pが大きい程、散乱光L2の受光強度が大きくなり、信号強度が大きくなる。粒子Pが小さい程、散乱光L2の受光強度が小さくなり、信号強度が小さくなる。 The size of the peak depends on the size of the particle P passing through the detection area DA, that is, the particle P that has generated the scattered light L2. Specifically, as the particle P is larger, the light reception intensity of the scattered light L2 is larger, and the signal intensity is larger. The smaller the particle P, the smaller the received light intensity of the scattered light L2, and the smaller the signal intensity.
 信号処理回路50は、信号強度の大きさに基づいて、粒子Pをサイズ毎に分類する。例えば、信号処理回路50は、図6に示すように、信号強度の大きさに基づいて、「大粒子」、「中粒子」、「小粒子」の3つのサイズに粒子Pを分類する。なお、粒子Pの分類数は、3つに限らず、2つでもよく、4つ以上でもよい。 The signal processing circuit 50 classifies the particles P by size based on the magnitude of the signal intensity. For example, as shown in FIG. 6, the signal processing circuit 50 classifies the particles P into three sizes of “large particle”, “medium particle” and “small particle” based on the magnitude of the signal intensity. The number of classifications of the particles P is not limited to three, and may be two, or four or more.
 本実施の形態に係る粒子検出センサ1では、実際には、検出領域DAの中心以外の部分を通過する粒子も多数含まれる。例えば、検出領域DAの端を大きな粒子が通過した場合、当該粒子による散乱光の受光素子31による受光強度が小さくなる。このため、大きな粒子であるにも関わらず、当該粒子のサイズが「小粒子」であると誤判定されうる。 In the particle detection sensor 1 according to the present embodiment, in practice, a large number of particles passing through a portion other than the center of the detection area DA are also included. For example, when a large particle passes the end of the detection area DA, the intensity of light received by the light receiving element 31 of the scattered light by the particle decreases. For this reason, despite being large particles, the size of the particles may be misjudged as being "small particles".
 本実施の形態に係る信号処理回路50は、当該誤判定を抑制するため、例えば、図7に示すような、信号強度と、粒子のサイズ毎の粒子の頻度とを対応付けたヒストグラムを保持している。図7は、本実施の形態に係る粒子検出センサ1によって検出された粒子Pのヒストグラムである。図7において、横軸は信号強度、縦軸は粒子のサイズ毎の粒子の頻度である。 The signal processing circuit 50 according to the present embodiment holds, for example, a histogram as shown in FIG. 7 in which the signal intensity is associated with the frequency of particles for each size of particles in order to suppress the erroneous determination. ing. FIG. 7 is a histogram of particles P detected by the particle detection sensor 1 according to the present embodiment. In FIG. 7, the horizontal axis is the signal intensity, and the vertical axis is the frequency of particles per particle size.
 図7に示すように、信号強度が大きい場合には、そのほとんどが大粒子である。一方で、信号強度が小さい場合には、小粒子だけでなく、検出領域DAの中心以外の部分を通過する大粒子及び中粒子も含まれる。信号処理回路50は、電気信号のピーク強度に基づいて、図7に示すヒストグラムを参照することで、当該ピークに対応する粒子Pのサイズを推定する。 As shown in FIG. 7, when the signal strength is high, most of them are large particles. On the other hand, when the signal intensity is small, not only small particles but also large particles and medium particles which pass through a portion other than the center of the detection area DA are included. The signal processing circuit 50 estimates the size of the particle P corresponding to the peak by referring to the histogram shown in FIG. 7 based on the peak intensity of the electrical signal.
 信号処理回路50は、一定の動作期間中に検出された粒子Pの個数をサイズ毎にカウントする。信号処理回路50は、サイズ毎に、予め定められた平均質量と、カウントした個数との積を算出し、算出したサイズ毎の積を加算することで、動作期間中の計測対象に含まれる粒子の質量濃度を算出する。 The signal processing circuit 50 counts the number of particles P detected during a predetermined operation period for each size. The signal processing circuit 50 calculates the product of the predetermined average mass and the counted number for each size, and adds the product for each calculated size, so that the particles included in the measurement target during the operation period Calculate the mass concentration of
 続いて、投光部20及び受光部30に粒子が付着した場合について説明する。 Subsequently, a case where particles adhere to the light emitting unit 20 and the light receiving unit 30 will be described.
 図8は、本実施の形態に係る粒子検出センサ1の投光部20及び受光部30に粒子が付着した場合の動作を説明するための拡大断面図である。図8は、図4と同様に、図3に示す断面において、検出領域DAを含む部分を拡大して示している。 FIG. 8 is an enlarged cross-sectional view for explaining the operation when particles adhere to the light emitting unit 20 and the light receiving unit 30 of the particle detection sensor 1 according to the present embodiment. Similar to FIG. 4, FIG. 8 is an enlarged view of a portion including the detection area DA in the cross section shown in FIG. 3.
 図8に示すように、粒子検出センサ1は、複数の粒子Pを含む気体を筐体10の内部に取り込むことにより、気体中の粒子Pの質量濃度を算出する。筐体10の内部に取り込まれた粒子Pは、全てが流出口12から放出される訳ではなく、一部が筐体10の内部に付着する。粒子検出センサ1の動作期間が長くなる程、筐体10の内部に付着する粒子量が増加し、迷光量も増加する。 As shown in FIG. 8, the particle detection sensor 1 calculates a mass concentration of the particles P in the gas by taking in a gas containing a plurality of particles P into the inside of the housing 10. The particles P taken into the inside of the housing 10 are not all released from the outlet 12, but a part thereof adheres to the inside of the housing 10. As the operation period of the particle detection sensor 1 becomes longer, the amount of particles adhering to the inside of the housing 10 increases and the amount of stray light also increases.
 このとき、図8に示す粒子P1及びP2などのように、投光部20のレンズ22及び受光部30のレンズ32にも粒子は付着する。 At this time, like the particles P1 and P2 shown in FIG. 8, the particles also adhere to the lens 22 of the light emitting unit 20 and the lens 32 of the light receiving unit 30.
 投光部20のレンズ22に付着した粒子P1は、投光素子21から出射された光の一部を遮る場合がある。このため、検出領域DAに到達する光L1が減衰する。検出領域DAに到達する光L1が減衰することにより、検出領域DAを通過する粒子Pによる散乱光L2も減衰する。また、受光部30のレンズ32に付着した粒子P2は、粒子Pからの散乱光L2を遮る場合がある。このため、受光素子31に到達する散乱光L2が減衰する。 The particles P1 attached to the lens 22 of the light emitting unit 20 may block part of the light emitted from the light emitting element 21. Therefore, the light L1 reaching the detection area DA is attenuated. As the light L1 reaching the detection area DA is attenuated, the scattered light L2 by the particles P passing through the detection area DA is also attenuated. The particles P2 attached to the lens 32 of the light receiving unit 30 may block the scattered light L2 from the particles P. Therefore, the scattered light L2 reaching the light receiving element 31 is attenuated.
 したがって、図9に示すように、散乱光L2に対応する電気信号のピークは、本来のピークよりも、その信号強度が減少する。なお、本来のピークとは、投光部20及び受光部30に粒子が付着していない場合(具体的には、図4に示す場合)の散乱光L2によるピークである。 Therefore, as shown in FIG. 9, the peak of the electrical signal corresponding to the scattered light L2 has a signal strength smaller than that of the original peak. The original peak is a peak due to the scattered light L2 when no particle is attached to the light emitting unit 20 and the light receiving unit 30 (specifically, in the case shown in FIG. 4).
 ここで、図9は、図8に示す動作中に受光素子31から出力された電気信号を示す図である。図9において、横軸は時間であり、縦軸は信号強度である。図9では、破線で本来のピークの信号強度を表している。 Here, FIG. 9 is a diagram showing an electrical signal output from the light receiving element 31 during the operation shown in FIG. In FIG. 9, the horizontal axis is time, and the vertical axis is signal strength. In FIG. 9, the broken line represents the signal strength of the original peak.
 また、粒子P1は、投光素子21から出射された光の一部を散乱させる場合がある。粒子P1による散乱光L3は、その一部が受光素子31に入射する場合がある。粒子P1は、清掃作業によって取り除かれない限り、通常、レンズ22に付着したままである。このため、粒子P1による散乱光L3の一部は、常に受光素子31に迷光として入射される。 The particles P1 may scatter part of the light emitted from the light emitting element 21. A part of the scattered light L3 due to the particles P1 may be incident on the light receiving element 31. The particles P1 generally remain attached to the lens 22 unless removed by the cleaning operation. For this reason, a part of the scattered light L3 by the particles P1 always enters the light receiving element 31 as stray light.
 したがって、図9に示すように、受光素子31から出力される電気信号のノイズレベル、すなわち、迷光量が上昇する。なお、図9では、一点鎖線で本来のノイズレベルを示している。 Therefore, as shown in FIG. 9, the noise level of the electric signal output from the light receiving element 31, that is, the amount of stray light rises. In FIG. 9, the original noise level is indicated by an alternate long and short dash line.
 以上のように、投光部20及び受光部30に粒子が付着した場合、検出されるべき散乱光L2の信号強度の低下と、ノイズレベル、すなわち、迷光量の増加との両方が起きる。なお、検出領域DAに粒子が付着した場合も同様である。 As described above, when particles adhere to the light emitting unit 20 and the light receiving unit 30, both a decrease in the signal intensity of the scattered light L2 to be detected and an increase in the noise level, that is, the stray light amount occur. The same applies to the case where particles adhere to the detection area DA.
 そこで、本実施の形態に係る粒子検出センサ1では、信号処理回路50は、迷光の受光強度の経時変化量を取得し、取得した経時変化量に基づいて、散乱光L2の受光強度を補正する。信号処理回路50は、補正された散乱光L2の受光強度に基づいて、気体に含まれる粒子Pの質量濃度を算出する。 Therefore, in the particle detection sensor 1 according to the present embodiment, the signal processing circuit 50 acquires the temporal change amount of the light reception intensity of the stray light, and corrects the light reception intensity of the scattered light L2 based on the acquired temporal change amount. . The signal processing circuit 50 calculates the mass concentration of the particles P contained in the gas, based on the corrected received light intensity of the scattered light L2.
 図10は、図8に示す電気信号の補正処理を示す図である。図10において、横軸は時間であり、縦軸は信号強度である。図10に示すように、信号処理回路50は、補正前のピークSaの信号強度からノイズレベルの上昇量を減算した後、減算後のピークに補正係数を乗ずることにより、本来のピークSbを生成する。なお、図10に示すノイズレベルの上昇量は、迷光の受光強度の経時変化量に相当する。 FIG. 10 is a diagram showing correction processing of the electric signal shown in FIG. In FIG. 10, the horizontal axis is time, and the vertical axis is signal strength. As shown in FIG. 10, the signal processing circuit 50 subtracts the rise amount of the noise level from the signal strength of the peak Sa before correction, and then multiplies the corrected peak by the correction coefficient to generate the original peak Sb. Do. The rise amount of the noise level shown in FIG. 10 corresponds to the time-dependent change amount of the received light intensity of the stray light.
 投光部20又は受光部30に付着した粒子が多い程、これらの粒子による散乱光L3が増加するので、経時変化量が大きくなる。また、投光部20又は受光部30に付着した粒子が多い程、本来検出領域DAまで到達すべき光L1、及び、検出領域DAを通過中の粒子Pによる散乱光L2が減少する。したがって、経時変化量が大きい程、本来の散乱光L2の信号強度の減少量が大きくなる。また、経時変化量が小さい程、本来の散乱光L2の信号強度の減少量が小さくなる。 Since the scattered light L3 by these particle | grains increases, so that there are many particle | grains adhering to the light projection part 20 or the light reception part 30, the amount of time-dependent change becomes large. In addition, as the number of particles attached to the light emitting unit 20 or the light receiving unit 30 increases, the light L1 that should originally reach the detection area DA and the scattered light L2 by the particles P passing through the detection area DA decrease. Therefore, the larger the amount of change over time, the larger the amount of decrease in the signal intensity of the original scattered light L2. Also, the smaller the amount of change over time, the smaller the amount of decrease in the signal intensity of the original scattered light L2.
 したがって、信号処理回路50は、迷光の受光強度の経時変化量が大きい程、補正係数を大きくすることで、信号強度の減少量が大きいピークSaを本来のピークSbに補正する。また、信号処理回路50は、迷光の受光強度の経時変化量が小さい程、補正係数を小さくすることで、信号強度の減少量が小さいピークSaを本来のピークSbに補正する。 Therefore, the signal processing circuit 50 corrects the peak Sa having a large decrease in signal intensity to the original peak Sb by increasing the correction coefficient as the time-dependent change of the light reception intensity of stray light increases. Further, the signal processing circuit 50 corrects the peak Sa having a small amount of decrease in the signal intensity to the original peak Sb by reducing the correction coefficient as the amount of temporal change in light reception intensity of the stray light decreases.
 このように、本実施の形態に係る粒子検出センサ1では、迷光の受光強度の経時変化量を取得し、取得した経時変化量に基づいて散乱光L2の受光強度を補正する。これにより、粒子Pの質量濃度の算出確度を高めることができる。 As described above, in the particle detection sensor 1 according to the present embodiment, the temporal change amount of the light reception intensity of the stray light is acquired, and the light reception intensity of the scattered light L2 is corrected based on the acquired temporal change amount. Thereby, calculation accuracy of mass concentration of particles P can be raised.
 なお、信号処理回路50は、迷光の受光強度の経時変化量だけでなく、投光素子21の劣化の程度に基づいて散乱光の受光強度を補正してもよい。例えば、経年劣化により投光素子21から出力される光L1の強度が低下した場合、粒子Pによる散乱光L2の強度も低下する。 Note that the signal processing circuit 50 may correct the light reception intensity of the scattered light not only based on the temporal change amount of the light reception intensity of the stray light but also on the degree of deterioration of the light emitting element 21. For example, when the intensity of the light L1 output from the light emitting element 21 is reduced due to the aged deterioration, the intensity of the scattered light L2 by the particles P is also reduced.
 このため、信号処理回路50は、投光素子21からの光出力の強度の低下量を取得し、取得した低下量に基づいて散乱光L2の受光強度を補正してもよい。具体的には、信号処理回路50は、投光素子21からの光出力の強度の低下量が大きい程、補正係数を大きくすることで、信号強度の減少量が大きいピークを本来のピークに補正してもよい。信号処理回路50は、投光素子21からの光出力の強度の低下量が小さい程、補正係数を小さくすることで、信号強度の減少量が小さいピークを本来のピークに補正してもよい。 Therefore, the signal processing circuit 50 may acquire the decrease amount of the intensity of the light output from the light emitting element 21 and correct the light reception intensity of the scattered light L2 based on the acquired decrease amount. Specifically, the signal processing circuit 50 corrects the peak with a large decrease in signal intensity to the original peak by increasing the correction coefficient as the decrease in intensity of the light output from the light emitting element 21 is larger. You may The signal processing circuit 50 may correct the peak having a small amount of decrease in signal intensity to the original peak by reducing the correction coefficient as the amount of decrease in intensity of light output from the light emitting element 21 is smaller.
 [経時変化量を取得するタイミング]
 続いて、迷光の受光強度の経時変化量を取得するタイミングについて説明する。
[When to acquire the amount of change over time]
Subsequently, the timing for acquiring the temporal change amount of the light reception intensity of the stray light will be described.
 図11は、本実施の形態に粒子検出センサ1が経時変化量の取得を行うタイミングの一例を示す図である。図11において、横軸は動作時間であり、縦軸は迷光の受光強度(すなわち、迷光量)である。 FIG. 11 is a diagram showing an example of timing when the particle detection sensor 1 acquires the amount of change with time in the present embodiment. In FIG. 11, the horizontal axis is the operation time, and the vertical axis is the received light intensity of the stray light (ie, the stray light amount).
 図11に示すように、粒子検出センサ1の動作時間が長くなる程、筐体10の内部に付着する粒子量が増加し、迷光量も増加する。動作時間と迷光量とは、例えば線形の関係を有する。 As shown in FIG. 11, as the operation time of the particle detection sensor 1 increases, the amount of particles adhering to the inside of the housing 10 increases, and the stray light amount also increases. The operating time and the stray light amount have, for example, a linear relationship.
 このため、本実施の形態では、信号処理回路50は、予め定められた期間が経過する度に経時変化量を取得する。図11では、経時変化量を取得するタイミングを破線で示している。信号処理回路50は、図11に示すタイミングで取得した経時変化量に基づいて、散乱光L2の受光強度を補正する。具体的には、信号処理回路50は、第1のタイミングで経時変化量を取得した場合、次の取得タイミングである第2のタイミングに動作時間が達するまでの間、第1のタイミングで取得した経時変化量に基づいて、散乱光L2の受光強度を補正する。第1のタイミングから第2タイミングまでの時間を短く設定することで、補正の精度を高めることができる。 Therefore, in the present embodiment, the signal processing circuit 50 acquires the amount of change over time each time a predetermined period elapses. In FIG. 11, the timing at which the temporal change amount is acquired is indicated by a broken line. The signal processing circuit 50 corrects the light reception intensity of the scattered light L2 based on the amount of change with time obtained at the timing shown in FIG. Specifically, when acquiring the temporal change amount at the first timing, the signal processing circuit 50 acquires the temporal change amount until the operation time reaches the second timing which is the next acquisition timing. The light reception intensity of the scattered light L2 is corrected based on the temporal change amount. The accuracy of the correction can be enhanced by setting the time from the first timing to the second timing short.
 あるいは、信号処理回路50は、動作時間ではなく、質量濃度の時間累積値に基づいて経時変化量を取得してもよい。図12は、本実施の形態に係る粒子検出センサ1が経時変化量の取得を行うタイミングの別の例を示す図である。図12において、横軸は質量濃度の時間累積値であり、縦軸は迷光の受光強度である。 Alternatively, the signal processing circuit 50 may acquire the time-dependent change amount based on the time accumulation value of mass concentration instead of the operation time. FIG. 12 is a diagram showing another example of the timing at which the particle detection sensor 1 according to the present embodiment acquires the amount of change with time. In FIG. 12, the horizontal axis is the time cumulative value of mass concentration, and the vertical axis is the received light intensity of stray light.
 信号処理回路50は、質量濃度の時間累積値を算出する。信号処理回路50は、質量濃度を算出した場合に、算出した値を時間累積値としてメモリ(図示せず)に記憶する。信号処理回路50は、例えば定期的に質量濃度の算出を繰り返し行うので、質量濃度の算出を行う度に、メモリから時間累積値を読み出し、読み出した時間累積値と新たに算出した値とを加算する。信号処理回路50は、加算後の値を新たな時間累積値としてメモリに記憶する。 The signal processing circuit 50 calculates a time cumulative value of mass concentration. When the mass concentration is calculated, the signal processing circuit 50 stores the calculated value as a time accumulation value in a memory (not shown). The signal processing circuit 50 repeatedly calculates, for example, the mass concentration periodically. Therefore, whenever the mass concentration is calculated, the time accumulation value is read from the memory, and the read time accumulation value and the newly calculated value are added. Do. The signal processing circuit 50 stores the value after the addition in the memory as a new time accumulation value.
 図12に示すように、質量濃度の時間累積値が大きくなる程、筐体10の内部に付着する粒子量が増加し、迷光量も増加する。時間累積値と迷光量とは、例えば線形の関係を有する。 As shown in FIG. 12, as the time cumulative value of mass concentration increases, the amount of particles adhering to the inside of the housing 10 increases, and the amount of stray light also increases. The time accumulation value and the stray light amount have, for example, a linear relationship.
 このため、信号処理回路50は、算出した時間累積値の増加量であって、直前の経時変化量の取得したときの時間累積値からの増加量が所定の閾値に達する度に経時変化量を取得してもよい。図12では、経時変化量を取得するタイミングを破線で示している。信号処理回路50は、図12に示すタイミングで取得した経時変化量に基づいて、散乱光の受光強度を補正する。 Therefore, the signal processing circuit 50 increases the amount of change over time every time the amount of increase from the amount of time accumulation when the calculated amount of time accumulation is obtained immediately before the calculated amount of increase over time reaches a predetermined threshold. You may get it. In FIG. 12, the timing for acquiring the temporal change amount is indicated by a broken line. The signal processing circuit 50 corrects the received light intensity of the scattered light based on the amount of change with time obtained at the timing shown in FIG.
 なお、本実施の形態では、図1及び図2で示したように、筐体10には、内部に付着した粒子を取り除くための蓋13及び開口14が設けられている。付着した粒子が取り除かれた場合、付着した粒子に起因する迷光量は十分に小さくなる。 In the present embodiment, as shown in FIGS. 1 and 2, the case 10 is provided with a lid 13 and an opening 14 for removing particles adhering to the inside. When the attached particles are removed, the amount of stray light due to the attached particles is sufficiently reduced.
 このため、信号処理回路50は、さらに、蓋13が開けられた後、閉じられた場合に、経時変化量を初期化する。例えば、ユーザによって蓋13が開けられて筐体10の内部が清掃され、粒子が取り除かれた後、蓋13が再び閉じられる。粒子が取り除かれることにより、迷光量は減少する。信号処理回路50は、受光素子31から出力される電気信号に基づいて迷光量(すなわち、ノイズレベル)が所定の閾値以下まで減少したとき、経時変化量を初期化する。 Therefore, the signal processing circuit 50 further initializes the amount of change over time when the lid 13 is opened and then closed. For example, the lid 13 is opened by the user to clean the interior of the housing 10, and after particles are removed, the lid 13 is closed again. By removing the particles, the amount of stray light is reduced. The signal processing circuit 50 initializes the amount of change over time when the stray light amount (that is, the noise level) decreases to a predetermined threshold value or less based on the electrical signal output from the light receiving element 31.
 あるいは、粒子検出センサ1は、蓋13の開閉を検知する開閉センサが設けられていてもよい。この場合、信号処理回路50は、開閉センサから出力される出力信号に基づいて、蓋13が閉じられた場合に経時変化量を初期化する。あるいは、粒子検出センサ1は、清掃の完了をユーザから受け付ける物理的なボタンなどのユーザインタフェースを備えていてもよい。 Alternatively, the particle detection sensor 1 may be provided with an open / close sensor for detecting the open / close of the lid 13. In this case, the signal processing circuit 50 initializes the amount of change over time when the lid 13 is closed based on the output signal output from the open / close sensor. Alternatively, the particle detection sensor 1 may be provided with a user interface such as a physical button for receiving the completion of cleaning from the user.
 [効果など]
 以上のように、本実施の形態に係る粒子検出センサ1は、計測対象に含まれる複数の粒子Pを検出する粒子検出センサであって、検出領域DAに向けて光L1を出射する投光部20と、複数の粒子Pの少なくとも1つである対象粒子が検出領域DAを通過した場合に、当該対象粒子による光L1の散乱光L2を受光する受光部30と、投光部20及び受光部30を収納し、内部に検出領域DAを有する筐体10と、信号処理回路50とを備える。信号処理回路50は、複数の粒子Pが検出領域DAを通過していない時に受光部30によって受光される迷光の受光強度の経時変化量を取得し、取得した経時変化量に基づいて、散乱光L2の受光強度を補正し、補正された散乱光L2の受光強度に基づいて、対象粒子を複数の粒子サイズのいずれかに分類し、かつ、検出された対象粒子の個数を特定することで、計測対象に含まれる粒子の質量濃度を算出する。
[Effect, etc.]
As described above, the particle detection sensor 1 according to the present embodiment is a particle detection sensor that detects a plurality of particles P included in the measurement target, and a light projection unit that emits the light L1 toward the detection area DA 20, a light receiving unit 30 for receiving the scattered light L2 of the light L1 by the target particle when the target particle which is at least one of the plurality of particles P passes the detection area DA, the light projecting unit 20, and the light receiving unit And a signal processing circuit 50. The housing 10 has a detection area DA therein. The signal processing circuit 50 acquires the temporal change amount of the light reception intensity of the stray light received by the light receiving unit 30 when the plurality of particles P do not pass through the detection area DA, and based on the acquired temporal change amount, scattered light By correcting the light reception intensity of L2, classifying the target particles into any of a plurality of particle sizes based on the corrected light reception intensity of the scattered light L2, and specifying the number of detected target particles, Calculate the mass concentration of particles contained in the measurement object.
 これにより、迷光の経時変化量を取得することで、筐体10内に付着している粒子に起因する信号強度の増加量及び減少量を考慮に入れて、散乱光L2の受光強度を補正することができる。粒子検出センサ1では、補正された散乱光L2の受光強度に基づいて質量濃度を算出するので、粒子の質量濃度を確度良く算出することができる。 Thereby, the light reception intensity of the scattered light L2 is corrected by taking into consideration the increase amount and the decrease amount of the signal intensity caused by the particles adhering to the inside of the housing 10 by acquiring the temporal change amount of the stray light. be able to. The particle detection sensor 1 calculates the mass concentration based on the corrected received light intensity of the scattered light L2, so that the mass concentration of the particles can be accurately calculated.
 また、例えば、信号処理回路50は、予め定められた期間が経過する度に経時変化量を取得する。 Also, for example, the signal processing circuit 50 acquires the temporal change amount each time a predetermined period elapses.
 これにより、定期的に経時変化量を更新することができるので、質量濃度の算出の確度を常に高く維持することができる。 Thereby, since the temporal change amount can be updated regularly, the accuracy of mass concentration calculation can be always maintained high.
 また、例えば、信号処理回路50は、算出した質量濃度の時間累積値をさらに算出し、算出した時間累積値の増加量であって、直前の経時変化量を取得したときの時間累積値からの増加量が所定の閾値に達する度に経時変化量を取得してもよい。 In addition, for example, the signal processing circuit 50 further calculates the time accumulation value of the calculated mass concentration, and is an increase amount of the calculated time accumulation value, which is obtained from the time accumulation value when acquiring the last time change amount. The amount of change over time may be acquired each time the amount of increase reaches a predetermined threshold.
 これにより、質量濃度の時間累積値は、筐体10内を通過した粒子の累積量に相当するので、筐体10内に付着した粒子の量が多くなる度に、経時変化量を更新することができる。したがって、粒子検出センサ1は、質量濃度の算出の確度を常に高く維持することができる。 Thereby, since the time accumulation value of mass concentration corresponds to the accumulated amount of particles having passed through the inside of the housing 10, update the amount of change over time each time the amount of particles adhering to the inside of the housing 10 increases. Can. Therefore, the particle detection sensor 1 can always maintain high accuracy of calculation of mass concentration.
 また、例えば、筐体10は、開閉自在な蓋13を有する。 Further, for example, the housing 10 has a lid 13 which can be opened and closed.
 これにより、蓋13を開けて筐体10の内部を清掃することができる。筐体10の内部に付着した粒子を取り除くことができるので、粒子検出センサ1の長寿命化を実現することができる。 Thereby, the lid 13 can be opened to clean the inside of the housing 10. Since the particles attached to the inside of the housing 10 can be removed, the life of the particle detection sensor 1 can be extended.
 また、例えば、信号処理回路50は、さらに、蓋13が開けられた後、閉じられた場合に、経時変化量を初期化する。 Further, for example, when the lid 13 is closed after being opened, the signal processing circuit 50 further initializes the amount of change over time.
 これにより、経時変化量を初期化することで、経時変化量に基づく散乱光L2の受光強度の補正の確度を高めることができる。したがって、粒子検出センサ1は、粒子の質量濃度を確度良く算出することができる。 As a result, by initializing the temporal change amount, it is possible to enhance the accuracy of the correction of the light reception intensity of the scattered light L2 based on the temporal change amount. Therefore, the particle detection sensor 1 can calculate the mass concentration of particles with high accuracy.
 また、例えば、粒子検出センサ1は、さらに、検出領域DAを通過する気流を生成する送風機構40と、信号処理回路50が経時変化量を取得する場合に、送風機構40の動作を停止させる制御回路60とを備える。 Further, for example, the particle detection sensor 1 further controls the operation of the air blowing mechanism 40 when the air processing mechanism 50 generates an air flow passing through the detection area DA and the signal processing circuit 50 acquires the temporal change amount. And a circuit 60.
 これにより、経時変化量を取得する場合、検出領域DAを通過する粒子による散乱光L2ではなく、迷光を受光部30に受光させる必要がある。このため、制御回路60が送風機構40の動作を停止させることで、外部から粒子Pが筐体10の内部に取り入れられるのを抑制することができる。したがって、受光部30は、迷光を精度良く受光しやすくなる。このため、粒子検出センサ1は、経時変化量を精度良く取得することができるので、質量濃度を確度良く算出することができる。 Thereby, when acquiring a temporal change amount, it is necessary to cause the light receiving unit 30 to receive stray light, not scattered light L2 by particles passing through the detection area DA. Therefore, when the control circuit 60 stops the operation of the air blowing mechanism 40, the particles P can be prevented from being taken into the inside of the housing 10 from the outside. Therefore, the light receiving unit 30 can easily receive stray light with high accuracy. For this reason, since the particle detection sensor 1 can acquire the temporal change amount with high accuracy, it is possible to calculate the mass concentration with high accuracy.
 また、例えば、投光部20は、レーザ素子を有する。 Also, for example, the light emitting unit 20 has a laser element.
 レーザ素子は、一般的に受光素子を備えており、出射する光L1の強度を検出することができる。このため、レーザ素子から出射される光L1の強度を検出することで、レーザ素子の劣化を精度良く検出することができる。したがって、投光部20の劣化に基づく、散乱光L2の受光強度の低下を補正することができる。これにより、粒子検出センサ1によれば、粒子の質量濃度を更に確度良く算出することができる。 The laser element generally includes a light receiving element, and can detect the intensity of the emitted light L1. Therefore, by detecting the intensity of the light L1 emitted from the laser element, the deterioration of the laser element can be accurately detected. Therefore, the decrease in the light reception intensity of the scattered light L2 based on the deterioration of the light emitting unit 20 can be corrected. Thereby, according to the particle | grain detection sensor 1, the mass concentration of particle | grains can be calculated further accurately.
 (その他)
 以上、本発明に係る粒子検出センサについて、上記の実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Others)
As mentioned above, although the particle | grain detection sensor which concerns on this invention was demonstrated based on said embodiment, this invention is not limited to said embodiment.
 例えば、上記の実施の形態では、計測対象が気体である場合を説明したが、これに限らない。計測対象は、液体でもよい。粒子検出センサ1は、水などの液体中に含まれる粒子を検出し、質量濃度を算出する。このとき、粒子検出センサ1は、筐体10の外側面に取り付けられた信号処理回路50が液体に接触するのを防ぐ防水機構を有する。防水機構は、例えば、信号処理回路50を覆うように設けられた金属製のシールド部材である。当該シールド部材は、例えば溶接などにより筐体10に隙間なく固定される。 For example, although the above embodiment has described the case where the object to be measured is a gas, the present invention is not limited to this. The measurement target may be a liquid. The particle detection sensor 1 detects particles contained in a liquid such as water, and calculates a mass concentration. At this time, the particle detection sensor 1 has a waterproof mechanism that prevents the signal processing circuit 50 attached to the outer surface of the housing 10 from contacting liquid. The waterproof mechanism is, for example, a metal shield member provided to cover the signal processing circuit 50. The shield member is fixed to the housing 10 without a gap, for example, by welding.
 また、例えば、筐体10は、蓋13及び開口14を備えなくてもよい。流入口11又は流出口12を清掃用の窓として利用してもよい。 Also, for example, the housing 10 may not include the lid 13 and the opening 14. The inlet 11 or the outlet 12 may be used as a cleaning window.
 また、例えば、粒子検出センサ1は、送風機構40を備えなくてもよい。例えば、粒子検出センサ1は、一定方向に気流が流れている場所に、流入口11が気流の上流側、流出口12が下流側に位置するように配置されてもよい。 Also, for example, the particle detection sensor 1 may not include the air blowing mechanism 40. For example, the particle detection sensor 1 may be disposed so that the inlet 11 is located on the upstream side of the air flow, and the outlet 12 is located on the downstream side, where the air flow is flowing in a fixed direction.
 また、例えば、上記の実施の形態では、投光部20及び受光部30の各々がレンズを備える例について示したが、これに限らない。例えば、投光部20及び受光部30の少なくとも一方は、レンズの代わりに、ミラー(反射体)を備えてもよい。 Also, for example, in the above-described embodiment, although an example in which each of the light emitting unit 20 and the light receiving unit 30 includes a lens is shown, the present invention is not limited to this. For example, at least one of the light emitting unit 20 and the light receiving unit 30 may include a mirror (reflector) instead of a lens.
 なお、粒子検出センサ1は、例えば、エアコン、空気清浄機、換気扇などの各種家電機器などに搭載される。各種家電機器は、粒子検出センサ1によって検出された粒子の質量濃度に応じて、その動作を制御してもよい。例えば、空気清浄機は、粒子の質量濃度が所定の閾値より大きい場合に、運転強度(具体的には、空気の浄化力)を強くしてもよい。 In addition, the particle | grain detection sensor 1 is mounted, for example in various household appliances etc., such as an air-conditioner, an air cleaner, and a ventilation fan. Various household appliances may control the operation according to the mass concentration of particles detected by the particle detection sensor 1. For example, the air cleaner may increase the operating strength (specifically, the purification power of air) when the mass concentration of particles is larger than a predetermined threshold.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
1 粒子検出センサ
10 筐体
13 蓋
20 投光部
21 投光素子(レーザ素子)
30 受光部
40 送風機構
50 信号処理回路
60 制御回路
DESCRIPTION OF SYMBOLS 1 Particle detection sensor 10 Case 13 Lid 20 Light projection part 21 Light projection element (laser element)
Reference Signs List 30 light receiving unit 40 air blowing mechanism 50 signal processing circuit 60 control circuit

Claims (7)

  1.  計測対象に含まれる複数の粒子を検出する粒子検出センサであって、
     検出領域に向けて光を出射する投光部と、
     前記複数の粒子の少なくとも1つである対象粒子が前記検出領域を通過した場合に、当該対象粒子による前記光の散乱光を受光する受光部と、
     前記投光部及び前記受光部を収納し、内部に前記検出領域を有する筐体と、
     信号処理回路とを備え、
     前記信号処理回路は、
     前記複数の粒子が前記検出領域を通過していない時に前記受光部によって受光される迷光の受光強度の経時変化量を取得し、
     取得した経時変化量に基づいて、前記散乱光の受光強度を補正し、
     補正された前記散乱光の受光強度に基づいて、前記対象粒子を複数の粒子サイズのいずれかに分類し、かつ、検出された対象粒子の個数を特定することで、前記計測対象に含まれる粒子の質量濃度を算出する
     粒子検出センサ。
    A particle detection sensor for detecting a plurality of particles contained in a measurement object, comprising:
    A light emitting unit that emits light toward the detection area;
    A light receiving unit that receives scattered light of the light by the target particle when the target particle, which is at least one of the plurality of particles, passes through the detection area;
    A housing that accommodates the light emitting unit and the light receiving unit and has the detection area inside;
    And a signal processing circuit,
    The signal processing circuit
    Acquiring a temporal change amount of received light intensity of stray light received by the light receiving unit when the plurality of particles do not pass through the detection area;
    The light reception intensity of the scattered light is corrected based on the acquired temporal change amount,
    The particles included in the measurement target by classifying the target particles into any of a plurality of particle sizes based on the corrected received light intensity of the scattered light and specifying the number of detected target particles. Particle detection sensor that calculates the mass concentration of.
  2.  前記信号処理回路は、予め定められた期間が経過する度に前記経時変化量を取得する
     請求項1に記載の粒子検出センサ。
    The particle detection sensor according to claim 1, wherein the signal processing circuit acquires the temporal change amount each time a predetermined period elapses.
  3.  前記信号処理回路は、算出した質量濃度の時間累積値をさらに算出し、算出した時間累積値の増加量であって、直前の前記経時変化量を取得したときの時間累積値からの増加量が所定の閾値に達する度に前記経時変化量を取得する
     請求項1に記載の粒子検出センサ。
    The signal processing circuit further calculates the time accumulation value of the calculated mass concentration, and is the increase amount of the calculated time accumulation value, and the increase amount from the time accumulation value when the immediately preceding change amount is acquired is The particle detection sensor according to claim 1, wherein the temporal change amount is acquired each time a predetermined threshold is reached.
  4.  前記筐体は、開閉自在な蓋を有する
     請求項1~3のいずれか1項に記載の粒子検出センサ。
    The particle detection sensor according to any one of claims 1 to 3, wherein the case has a lid that can be opened and closed.
  5.  前記信号処理回路は、さらに、前記蓋が開けられた後、閉じられた場合に、前記経時変化量を初期化する
     請求項4に記載の粒子検出センサ。
    The particle detection sensor according to claim 4, wherein the signal processing circuit further initializes the temporal change amount when the lid is opened and then closed.
  6.  さらに、前記検出領域を通過する気流を生成する送風機構と、
     前記信号処理回路が前記経時変化量を取得する場合に、前記送風機構の動作を停止させる制御回路とを備える
     請求項1~5のいずれか1項に記載の粒子検出センサ。
    Furthermore, a blower mechanism that generates an air flow passing through the detection area;
    The particle detection sensor according to any one of claims 1 to 5, further comprising: a control circuit configured to stop the operation of the air blowing mechanism when the signal processing circuit acquires the temporal change amount.
  7.  前記投光部は、レーザ素子を有する
     請求項1~6のいずれか1項に記載の粒子検出センサ。
    The particle detection sensor according to any one of claims 1 to 6, wherein the light projecting unit has a laser element.
PCT/JP2018/027221 2017-08-29 2018-07-20 Particle detection sensor WO2019044250A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019539053A JP7008252B2 (en) 2017-08-29 2018-07-20 Particle detection sensor
KR1020207005101A KR102327743B1 (en) 2017-08-29 2018-07-20 particle detection sensor
CN201880055186.7A CN111051851B (en) 2017-08-29 2018-07-20 Particle detection sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164486 2017-08-29
JP2017164486 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044250A1 true WO2019044250A1 (en) 2019-03-07

Family

ID=65526232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027221 WO2019044250A1 (en) 2017-08-29 2018-07-20 Particle detection sensor

Country Status (4)

Country Link
JP (1) JP7008252B2 (en)
KR (1) KR102327743B1 (en)
CN (1) CN111051851B (en)
WO (1) WO2019044250A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108834B (en) * 2021-04-06 2022-08-02 北京工业大学 Electrostatic spraying state detection method based on current measurement and optical particle counting
CN113804606A (en) * 2021-08-26 2021-12-17 之江实验室 Suspended light trap nanoparticle quality measurement method based on electric field calibration

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213794A (en) * 1988-02-22 1989-08-28 Nohmi Bosai Kogyo Co Ltd Fire alarm with dirt correcting function
JPH06201582A (en) * 1992-12-28 1994-07-19 Sharp Corp Smoke sensing apparatus
JPH10334363A (en) * 1997-05-27 1998-12-18 Matsushita Electric Works Ltd Photoelectric smoke sensor
JPH1194741A (en) * 1997-09-22 1999-04-09 Sharp Corp Dust sensor apparatus with sensitivity-correcting function
JP2002195946A (en) * 2000-12-25 2002-07-10 Shimadzu Corp Atomic absorption photometer
JP2011086058A (en) * 2009-10-14 2011-04-28 Sharp Corp Smoke sensor and fire alarm
JP2015200547A (en) * 2014-04-07 2015-11-12 パナソニックIpマネジメント株式会社 Particle detection sensor, dust sensor, smoke detector, air cleaner and ventilator
JP2015210183A (en) * 2014-04-25 2015-11-24 パナソニックIpマネジメント株式会社 Particle measuring apparatus
JP2016180609A (en) * 2015-03-23 2016-10-13 株式会社トクヤマ Detector detecting by ultraviolet light absorption
WO2017217078A1 (en) * 2016-06-13 2017-12-21 シャープ株式会社 Photoelectric dust sensor device and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200372496Y1 (en) 2004-10-29 2005-01-14 (주)니즈 The optical dust sensor which has a function of self diagonosis and the sensitivity control
JP6201582B2 (en) 2013-09-27 2017-09-27 ヤマハ株式会社 Controller device
CN106574898B (en) * 2014-10-31 2019-07-12 松下知识产权经营株式会社 Particle detection sensor
JP2016109629A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Particle measuring apparatus, air cleaner, and particle measuring method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213794A (en) * 1988-02-22 1989-08-28 Nohmi Bosai Kogyo Co Ltd Fire alarm with dirt correcting function
JPH06201582A (en) * 1992-12-28 1994-07-19 Sharp Corp Smoke sensing apparatus
JPH10334363A (en) * 1997-05-27 1998-12-18 Matsushita Electric Works Ltd Photoelectric smoke sensor
JPH1194741A (en) * 1997-09-22 1999-04-09 Sharp Corp Dust sensor apparatus with sensitivity-correcting function
JP2002195946A (en) * 2000-12-25 2002-07-10 Shimadzu Corp Atomic absorption photometer
JP2011086058A (en) * 2009-10-14 2011-04-28 Sharp Corp Smoke sensor and fire alarm
JP2015200547A (en) * 2014-04-07 2015-11-12 パナソニックIpマネジメント株式会社 Particle detection sensor, dust sensor, smoke detector, air cleaner and ventilator
JP2015210183A (en) * 2014-04-25 2015-11-24 パナソニックIpマネジメント株式会社 Particle measuring apparatus
JP2016180609A (en) * 2015-03-23 2016-10-13 株式会社トクヤマ Detector detecting by ultraviolet light absorption
WO2017217078A1 (en) * 2016-06-13 2017-12-21 シャープ株式会社 Photoelectric dust sensor device and air conditioner

Also Published As

Publication number Publication date
JPWO2019044250A1 (en) 2020-03-26
CN111051851A (en) 2020-04-21
KR20200027028A (en) 2020-03-11
KR102327743B1 (en) 2021-11-17
CN111051851B (en) 2022-12-06
JP7008252B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
US20200011779A1 (en) Highly integrated optical particle counter (opc)
US9995667B2 (en) Portable device for detecting and measuring particles entrained in the air
KR101905275B1 (en) Particle sensor and electronic apparatus equipped with the same
JP6883770B2 (en) Particle detection sensor
US8901512B2 (en) Particle detector
JP7008252B2 (en) Particle detection sensor
JP2015200547A (en) Particle detection sensor, dust sensor, smoke detector, air cleaner and ventilator
CN108291862B (en) Particle detection sensor, dust sensor, smoke sensor, air conditioner, and particle detection method
JP2017223560A (en) Particle detection sensor
JP5991893B2 (en) Filter device and air conditioner
EP2818846A1 (en) Particle detector and air-conditioner
KR20190050045A (en) Dust sensor with a shutter
CN107036949B (en) Dust concentration detection device and air purification equipment with same
JP2016090349A (en) Particle detection sensor, dust sensor, smoke detector, air purifier, ventilator, and air conditioner
JP3214850U (en) Particle detection sensor
CN111051853B (en) Particle detection system and particle detection method
JP6127280B1 (en) Particle detection sensor
JP7110852B2 (en) Particle sensors and electronics
JP6952288B2 (en) Particle detection sensor and particle detection method
CN106290098B (en) Dust detection device
JP6830262B2 (en) Particle detection sensor, dust sensor, smoke detector, and air conditioner
JP2019045197A (en) Particle detection sensor and particle detection method
DK179567B1 (en) Wet/dry vacuum cleaner comprising a dust detection module
JP2770800B2 (en) Dust detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539053

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207005101

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850434

Country of ref document: EP

Kind code of ref document: A1