JP6127280B1 - Particle detection sensor - Google Patents

Particle detection sensor Download PDF

Info

Publication number
JP6127280B1
JP6127280B1 JP2016065313A JP2016065313A JP6127280B1 JP 6127280 B1 JP6127280 B1 JP 6127280B1 JP 2016065313 A JP2016065313 A JP 2016065313A JP 2016065313 A JP2016065313 A JP 2016065313A JP 6127280 B1 JP6127280 B1 JP 6127280B1
Authority
JP
Japan
Prior art keywords
outside air
housing
flow path
light
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016065313A
Other languages
Japanese (ja)
Other versions
JP2017181153A (en
Inventor
吉祥 永谷
吉祥 永谷
貴司 中川
貴司 中川
則之 安池
則之 安池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016065313A priority Critical patent/JP6127280B1/en
Priority to CN201780013842.2A priority patent/CN108713134B/en
Priority to PCT/JP2017/009919 priority patent/WO2017169685A1/en
Application granted granted Critical
Publication of JP6127280B1 publication Critical patent/JP6127280B1/en
Publication of JP2017181153A publication Critical patent/JP2017181153A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】光電式粒子センサの検知領域における乱流を抑制する。【解決手段】本発明に係る粒子検出センサ1は、外気が流入する筐体流入部101と、外気が流出する筐体流出部と102を有する筐体10と、筐体10内部に設けられ、投光素子121の投光領域と受光素子131の受光対象領域とが重なり合う領域である検知領域DAにおいて外気に含まれる粒子2による投光素子121の光の散乱光を受光することにより粒子2を検出するセンサ部と、筐体10の周囲に設置され、外気が流入する少なくとも1つの外気流入部631と、外気が流出する少なくとも1つの外気流出部632とを有する外郭63と、外気流入部631又は外気流出部632のいずれか一方の近傍に備えられた送風機構66と、第1流路61と、第2流路62と、から構成され、第1流路61の流体抵抗は、第2流路62の流体抵抗よりも大きい。【選択図】図1Turbulent flow in a detection region of a photoelectric particle sensor is suppressed. A particle detection sensor 1 according to the present invention is provided in a housing 10 having a housing inflow portion 101 through which outside air flows, a housing outflow portion 102 through which outside air flows out, and a housing 10. In the detection area DA that is an area where the light projecting area of the light projecting element 121 and the light receiving target area of the light receiving element 131 overlap, the particles 2 are received by receiving the scattered light of the light projecting element 121 by the particles 2 contained in the outside air. An outer shell 63 that is installed around the housing 10 and has at least one outside air inflow portion 631 through which outside air flows, and at least one outside air outflow portion 632 through which outside air flows out, and an outside air inflow portion 631. Alternatively, it includes a blower mechanism 66 provided in the vicinity of one of the outside air outflow portions 632, a first flow path 61, and a second flow path 62, and the fluid resistance of the first flow path 61 is the second. Of the flow path 62 Larger than the body resistance. [Selection] Figure 1

Description

本発明は、粒子検出センサに関する。   The present invention relates to a particle detection sensor.

従来より、大気中に浮遊する粒子を検出する粒子検出センサが知られている。大気中に浮遊する粒子を気流とともにセンサ内部に取り込み、センサ内部に備えられている投光素子と受光素子の検知領域に粒子が横切ることで生じる受光量の変化を検知し、受光量の変化割合により粒子の大きさや数を検出する。   2. Description of the Related Art Conventionally, particle detection sensors that detect particles floating in the atmosphere are known. The change in the amount of light received by detecting changes in the amount of light received when particles floating in the atmosphere are taken into the sensor along with the air current and the particles cross the detection area of the light emitting element and light receiving element provided inside the sensor. To detect the size and number of particles.

現在、光電式粒子検出センサは、エアコンや空気清浄機等の民生機器に組み込まれるほど小型化が進んでいる。また、小型化による受光素子への外乱光照射を防ぐため、センサ内部に光トラップ構造が組み込まれている(特許文献1)。   Currently, photoelectric particle detection sensors are becoming smaller in size as they are incorporated into consumer equipment such as air conditioners and air purifiers. Moreover, in order to prevent disturbance light irradiation to the light receiving element by size reduction, the optical trap structure is incorporated in the inside of a sensor (patent document 1).

特開2013−195261号公報JP 2013-195261 A

粒子の数をカウントする粒子検出センサにおいて、大気中に浮遊する粒子をセンサ内部の検知領域に取り込む気流は、層流であることが望ましい。しかしながら、センサの小型化により気流の流れる流路幅が狭くなるとともに、光トラップ構造の内蔵により流路形状が複雑化していることから、従来と同程度の流量で気流を流した場合、センサ内部の流速が必要以上に早くなり、検知領域において乱流が発生しやすくなり、粒子の検出精度が低下するという課題がある。   In the particle detection sensor that counts the number of particles, it is desirable that the airflow that takes particles floating in the atmosphere into the detection region inside the sensor is a laminar flow. However, since the flow path width through which the airflow flows becomes narrow due to the downsizing of the sensor and the flow path shape is complicated due to the built-in optical trap structure, There is a problem that the flow velocity of the particles becomes faster than necessary, turbulence is likely to occur in the detection region, and the particle detection accuracy decreases.

本発明は、このような課題を解決するためにされたものであり、検知領域における乱流の発生抑制し、粒子の検出精度の低下を防ぐことを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to suppress the occurrence of turbulent flow in a detection region and prevent a decrease in particle detection accuracy.

上記目的を達成するために、本発明に係る粒子検出センサの一態様は、外気が流入する筐体流入部と、前記外気が流出する筐体流出部とを有する筐体と、前記筐体内部に設けられ、投光素子の投光領域と受光素子の受光対象領域とが重なり合う領域である検知領域において前記外気に含まれる粒子による前記投光素子の光の散乱光を受光することにより前記粒子を検出するセンサ部と、前記外気が流入する少なくとも1つの外気流入部と、前記外気が流出する少なくとも1つの外気流出部とを有する外郭とを備え前記外郭は、前記筐体流出部と前記外気流出部との間に空間を有して、前記筐体の周囲に設置され、前記外気流出部の下流には送風機構をさらに備え、前記外気の一部が前記外気流入部から前記筐体流入部を経て前記筐体の内部に誘引され、前記検知領域を通り、前記筐体流出部を経て前記外気流出部に排出される第1流路と、前記外気の一部が前記外気流入部から前記送風機構により誘引され、前記筐体の外側と前記外郭の内側との間を通り、前記外気流出部に排出される第2流路と、から構成され、前記第1流路の流体抵抗は、前記第2流路の流体抵抗よりも大きく、前記筐体流出部と前記外気流出部との間の前記空間の少なくとも一部において、前記第1流路と前記第2流路とは流路を共有しており、前記筐体流出部の近傍には、前記第2流路を通る前記外気が、前記筐体流出部から流入することを防ぐ気流誘導壁が設けられていることを特徴とする。 In order to achieve the above object, one aspect of the particle detection sensor according to the present invention includes: a housing having a housing inflow portion through which outside air flows; a housing outflow portion through which the outside air flows out; The particle is obtained by receiving the scattered light of the light projecting element by the particles contained in the outside air in a detection area that is an area where the light projecting area of the light projecting element and the light receiving target area of the light receiving element overlap. a sensor unit for detecting the at least one external air inlet before Kigaiki flows, and a shell having at least one external air outlet portion and the ambient air flows out, the shell is provided with the housing outflow section A space is provided between the outside air outflow portion and the housing is installed around the casing. A blower mechanism is further provided downstream of the outside air outflow portion, and a part of the outside air flows from the outside air inflow portion to the housing. Inside the housing through the body inflow part The first flow path that is attracted and passes through the detection region, is discharged to the outside air outflow portion through the housing outflow portion, and a part of the outside air is attracted from the outside air inflow portion by the air blowing mechanism, and the housing A second flow path that passes between the outside of the body and the inside of the outer shell and is discharged to the outside air outflow portion. The fluid resistance of the first flow path is the fluid resistance of the second flow path. much larger than the said at least part of the space between the housing outlet portion and the outside-air discharge unit, wherein the first flow path and the second flow path shares the channel, the housing An airflow guiding wall is provided in the vicinity of the body outflow portion to prevent the outside air passing through the second flow path from flowing in from the housing outflow portion .

本発明によれば、検知領域における乱流を抑制し、粒子の検出精度の低下を防ぐことができる。   According to the present invention, it is possible to suppress turbulent flow in the detection region and prevent a decrease in particle detection accuracy.

図1は、本発明の実施の形態1に係る粒子検出センサの概要斜視図である。FIG. 1 is a schematic perspective view of a particle detection sensor according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る筐体の概要斜視図である。FIG. 2 is a schematic perspective view of the housing according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る筐体の分解斜視図である。FIG. 3 is an exploded perspective view of the housing according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る筐体の六面図である。FIG. 4 is a six-sided view of the housing according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係る筐体内部を示す横断面図である。FIG. 5 is a cross-sectional view showing the inside of the housing according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1に係る外郭の横断面図である。FIG. 6 is a cross-sectional view of the outer shell according to the first embodiment of the present invention. 図7は、本発明の実施の形態1に係る粒子検出センサの縦断面図である。FIG. 7 is a longitudinal sectional view of the particle detection sensor according to Embodiment 1 of the present invention. 図8は、本発明の変形例1に係る外郭の横断面図である。FIG. 8 is a cross-sectional view of an outer shell according to Modification 1 of the present invention. 図9は、本発明の変形例2に係る粒子検出センサの縦断面図である。FIG. 9 is a longitudinal sectional view of a particle detection sensor according to Modification 2 of the present invention. 図10は、本発明の変形例3に係る粒子検出センサの縦断面図である。FIG. 10 is a longitudinal sectional view of a particle detection sensor according to Modification 3 of the present invention.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps (steps) and order of steps, and the like shown in the following embodiments are examples and limit the present invention. It is not the purpose to do. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.

なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。   Each figure is a schematic diagram and is not necessarily illustrated strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.

(実施の形態1)
[粒子検出センサ]
まず、本実施の形態にかかる粒子検出センサの概要について図1〜図6を用いて説明する。
(Embodiment 1)
[Particle detection sensor]
First, the outline | summary of the particle | grain detection sensor concerning this Embodiment is demonstrated using FIGS.

粒子検出センサ1は、図1に示す扁平な略直方体状であり、互いに直交する2つの辺に沿った方向をそれぞれX軸方向及びY軸方向とする。また、粒子検出センサ1の厚さ方向をZ軸方向とする。本実施の形態では、粒子検出センサ1は、例えば、X:64mm×Y:47mm×Z:34mmに収まる範囲の大きさである。   The particle detection sensor 1 has a flat and substantially rectangular parallelepiped shape shown in FIG. 1, and the directions along two sides orthogonal to each other are taken as an X-axis direction and a Y-axis direction, respectively. Moreover, let the thickness direction of the particle | grain detection sensor 1 be a Z-axis direction. In the present embodiment, the particle detection sensor 1 has a size within a range of, for example, X: 64 mm × Y: 47 mm × Z: 34 mm.

粒子検出センサ1は、図1及び図5に示すように、外郭63の内部に、筐体10と、筐体10の内部に配置された光学系20とを備える光電式粒子検出センサである。具体的には、粒子検出センサ1は、光学系20が筐体10内の検知領域DAに光を照射し、検知領域DAを通過する粒子2(エアロゾル)による光の散乱光を受光することで、粒子2の有無を検出する。また、粒子検出センサ1は、粒子2の有無に限らず、粒子2の個数及び大きさなどを検出してもよい。なお、粒子検出センサ1の検出対象とする粒子2は、例えば、微小なホコリ、花粉、煙、PM2.5などの微粒子である。   As illustrated in FIGS. 1 and 5, the particle detection sensor 1 is a photoelectric particle detection sensor including a housing 10 and an optical system 20 disposed inside the housing 10 inside an outer shell 63. Specifically, in the particle detection sensor 1, the optical system 20 irradiates the detection area DA in the housing 10 with light, and receives light scattered by the particles 2 (aerosol) passing through the detection area DA. The presence or absence of particles 2 is detected. Further, the particle detection sensor 1 is not limited to the presence or absence of the particles 2 and may detect the number and size of the particles 2. The particles 2 to be detected by the particle detection sensor 1 are fine particles such as fine dust, pollen, smoke, and PM2.5, for example.

外郭63は、筐体10を取り囲む構造体である。本実施の形態においては、外郭63は、外気流入部631と外気流出部632を有する。粒子2を含む外気は、外気流入部631から粒子検出センサ1に流入し、その少なくとも一部が筐体10内の検知領域DAを通って、外気流出部632から流出する。外郭63の詳細な構成については、後で説明する。   The outer shell 63 is a structure that surrounds the housing 10. In the present embodiment, the outer shell 63 has an outside air inflow portion 631 and an outside air outflow portion 632. The outside air including the particles 2 flows into the particle detection sensor 1 from the outside air inflow portion 631, and at least a part thereof flows out of the outside air outflow portion 632 through the detection area DA in the housing 10. The detailed configuration of the outer shell 63 will be described later.

筐体10は、光学系20及び検知領域DAを覆う筐体(ケース)である。筐体10は、
光学系20及び検知領域DAに外光が照射されないように、光学系20及び検知領域DAを覆うとともに、光学系20及び検知領域DAのそれぞれの相対的位置を固定している。
The housing 10 is a housing (case) that covers the optical system 20 and the detection area DA. The housing 10 is
The optical system 20 and the detection area DA are covered and the relative positions of the optical system 20 and the detection area DA are fixed so that external light is not irradiated onto the optical system 20 and the detection area DA.

筐体10は、内部に粒子2が流入するための筐体流入部101と、内部に流入した粒子2が外部に流出するための筐体流出部102とを有する。本実施の形態では、図5の太点線の矢印で示すように、粒子2は筐体流入部101から流入し、筐体10の内部(例えば、検知領域DA)を通過して筐体流出部102から流出する。筐体10の詳細な構成については、後で説明する。   The housing 10 includes a housing inflow portion 101 for allowing the particles 2 to flow into the interior, and a housing outflow portion 102 for allowing the particles 2 that have flowed into the interior to flow out. In the present embodiment, as indicated by the thick dotted arrow in FIG. 5, the particles 2 flow from the housing inflow portion 101, pass through the inside of the housing 10 (for example, the detection area DA), and the housing outflow portion. Out of 102. A detailed configuration of the housing 10 will be described later.

光学系20は、筐体流入部101を介して筐体10内に流入し、かつ検知領域DAを通過する粒子2を光学的に検出する。本実施の形態では、光学系20は、検知領域DAに互いの光軸(光軸P及び光軸Q)が交差するように配置された投光系120及び受光系130を有し、検知領域DAを通過する粒子2を、投光系120が出力する光を用いて受光系130によって検出する。投光系120は、投光素子121と、投光レンズ122とを備える。受光系130は、受光素子131と、受光レンズ132とを備える。光学系20の詳細な構成については、後で説明する。   The optical system 20 optically detects the particles 2 that flow into the housing 10 through the housing inflow portion 101 and pass through the detection area DA. In the present embodiment, the optical system 20 includes a light projecting system 120 and a light receiving system 130 that are arranged so that their optical axes (the optical axis P and the optical axis Q) intersect the detection area DA. The particle 2 passing through the DA is detected by the light receiving system 130 using the light output from the light projecting system 120. The light projecting system 120 includes a light projecting element 121 and a light projecting lens 122. The light receiving system 130 includes a light receiving element 131 and a light receiving lens 132. The detailed configuration of the optical system 20 will be described later.

なお、検知領域DA(光散乱部)は、測定対象の気体に含まれる粒子2を検知するための領域であるエアゾル検知領域(エアゾル測定部)である。検知領域DAは、例えば、φ2mmである。測定対象の気体は、筐体10の筐体流入部101から流入し、検知領域DAに誘導されたあと、筐体流出部102から流出する。   The detection area DA (light scattering part) is an aerosol detection area (aerosol measurement part) that is an area for detecting the particles 2 contained in the gas to be measured. The detection area DA is, for example, φ2 mm. The gas to be measured flows from the housing inflow portion 101 of the housing 10, is guided to the detection area DA, and then flows out from the housing outflow portion 102.

粒子検出センサ1は、図2、図3及び図5に示すように、さらに、光トラップ40と、回路基板70と、コネクタ80と、第1シールドカバー90と、第2シールドカバー91とを備える。   As shown in FIGS. 2, 3, and 5, the particle detection sensor 1 further includes an optical trap 40, a circuit board 70, a connector 80, a first shield cover 90, and a second shield cover 91. .

本実施の形態において、光トラップ40は、投光系120から出力されて検知領域DAを取った光をトラップする第1光トラップ41と、第1光トラップ41にトラップされない光をトラップする第2光トラップ42からなる。第1光トラップ41は、検知領域DAを介して投光系120と対向する位置に設けられている。また、第2光トラップ42は、検知領域DAを介して受光系130と対向する位置に設けられている。第2光トラップ42は、例えば、複数の楔形突出部115が設けられたラビリンス構造である。   In the present embodiment, the optical trap 40 traps light that is output from the light projecting system 120 and takes the detection area DA, and second light that traps light that is not trapped in the first optical trap 41. It consists of an optical trap 42. The first light trap 41 is provided at a position facing the light projecting system 120 via the detection area DA. The second optical trap 42 is provided at a position facing the light receiving system 130 via the detection area DA. The second optical trap 42 has, for example, a labyrinth structure in which a plurality of wedge-shaped protrusions 115 are provided.

回路基板70は、粒子検出センサ1の制御回路が形成されたプリント配線基板である。制御回路は、例えば、投光系120による光の出力、受光系130によって受光した光信号に基づく電気信号の処理を制御する。例えば、制御回路は、粒子2の有無、大きさ及び個数などを検出し、コネクタ80を介して外部に検出結果を出力する。   The circuit board 70 is a printed wiring board on which a control circuit for the particle detection sensor 1 is formed. The control circuit controls, for example, the output of light by the light projecting system 120 and the processing of an electrical signal based on the optical signal received by the light receiving system 130. For example, the control circuit detects the presence / absence, size, and number of particles 2 and outputs the detection result to the outside via the connector 80.

回路基板70は、例えば、矩形の平板であり、一方の主面(表面)に筐体10が固定されている。他方の主面(裏面)には、制御回路を構成する1つ又は複数の回路素子(回路部品)が実装されている。なお、投光素子121及び受光素子131の各々の電極端子は、筐体10の背面カバー110(詳細は後述)及び回路基板70を貫通し、回路基板70の裏面にはんだ付けされている。これにより、投光素子121及び受光素子の各々は、制御回路に電気的に接続されて、制御回路によって動作が制御される。   The circuit board 70 is, for example, a rectangular flat plate, and the housing 10 is fixed to one main surface (front surface). One or a plurality of circuit elements (circuit components) constituting the control circuit are mounted on the other main surface (back surface). The electrode terminals of the light projecting element 121 and the light receiving element 131 penetrate the back cover 110 (details will be described later) of the housing 10 and the circuit board 70 and are soldered to the back surface of the circuit board 70. Thereby, each of the light projecting element 121 and the light receiving element is electrically connected to the control circuit, and the operation is controlled by the control circuit.

複数の回路素子は、例えば、抵抗、コンデンサ、コイル、ダイオード又はトランジスタなどを含む。複数の回路素子の1つである電解コンデンサ71は、図5に示すように、回路基板70の表面に設けられ、筐体10内に配置されている。   The plurality of circuit elements include, for example, a resistor, a capacitor, a coil, a diode, or a transistor. As shown in FIG. 5, the electrolytic capacitor 71, which is one of the plurality of circuit elements, is provided on the surface of the circuit board 70 and is disposed in the housing 10.

コネクタ80は、粒子検出センサ1の制御回路(回路基板70)と、外部の制御回路又
は電源回路とを接続するためのコネクタである。コネクタ80は、回路基板70の裏面に実装されている。例えば、粒子検出センサ1は、コネクタ80を介して、外部から電力が供給されて動作する。
The connector 80 is a connector for connecting the control circuit (circuit board 70) of the particle detection sensor 1 to an external control circuit or a power supply circuit. The connector 80 is mounted on the back surface of the circuit board 70. For example, the particle detection sensor 1 operates by supplying electric power from the outside via the connector 80.

第1シールドカバー90は、外部ノイズから制御回路を保護するために設けられた金属製のカバーである。第1シールドカバー90は、回路基板70の裏面側に取り付けられている。   The first shield cover 90 is a metal cover provided to protect the control circuit from external noise. The first shield cover 90 is attached to the back side of the circuit board 70.

第2シールドカバー91は、外部ノイズから受光系130の受光素子131を保護するために設けられた金属製のカバーである。第2シールドカバー91は、図4の(a)、(d)及び(e)に示すように、筐体10の前面、上面及び左側面の一部であって、内部に受光素子131が配置された部分を覆っている。   The second shield cover 91 is a metal cover provided to protect the light receiving element 131 of the light receiving system 130 from external noise. As shown in FIGS. 4A, 4D, and 4E, the second shield cover 91 is a part of the front, top, and left side of the housing 10, and the light receiving element 131 is disposed therein. Covers the part that was made.

なお、第1シールドカバー90及び第2シールドカバー91は、例えば、半田付けなどで容易に接続できるブリキなどから構成される。   The first shield cover 90 and the second shield cover 91 are made of tin plate that can be easily connected by soldering, for example.

以下では、粒子検出センサ1が備える各構成要素について、詳細に説明する。   Below, each component with which the particle | grain detection sensor 1 is provided is demonstrated in detail.

[筐体]
筐体10は、内部に検知領域DAと光学系20とからなるセンサ部及び光トラップ40が設けられている。本実施の形態では、筐体10は、前面カバー100と、背面カバー110との2つの部材によって構成されている。
[Case]
The housing 10 is provided with a sensor section and a light trap 40 each including a detection area DA and an optical system 20. In the present embodiment, the housing 10 is composed of two members, a front cover 100 and a back cover 110.

筐体10は、遮光性を有する。例えば、筐体10は、迷光を吸収させるように、少なくとも内面が黒色である。   The housing 10 has a light shielding property. For example, the housing 10 is black at least on the inner surface so as to absorb stray light.

ここで、迷光は、粒子2による散乱光以外の光であり、具体的には、投光系120が出力する光のうち検知領域DAにおいて粒子2に散乱されることなく、筐体10内を進行する光である。   Here, the stray light is light other than the scattered light by the particles 2. Specifically, the stray light is not scattered by the particles 2 in the detection area DA out of the light output from the light projecting system 120, and the inside of the housing 10. It is a traveling light.

筐体10は、例えば、ABS樹脂などの樹脂材料を用いた射出成形により形成される。具体的には、前面カバー100及び背面カバー110の各々が、樹脂材料を用いた射出成形により形成された後、互いに組み合わされることで筐体10を構成する。このとき、例えば黒色の顔料又は染料を添加した樹脂材料を用いることで、筐体10の内面を黒色面にすることができる。   The housing 10 is formed, for example, by injection molding using a resin material such as ABS resin. Specifically, each of the front cover 100 and the back cover 110 is formed by injection molding using a resin material, and then combined with each other to form the housing 10. At this time, for example, by using a resin material to which a black pigment or dye is added, the inner surface of the housing 10 can be made a black surface.

筐体10は、図2及び図3に示すように、扁平な多面体であり、前面部10aと、背面部10bと、下面部10cと、上面部10dと、左側面部10eと、右側面部10fとを有する。具体的には、図4(a)に示すように、筐体10は、矩形の4つの角のうち右上及び左上の角が斜めになった略七角形を底面とする角柱形状である。   The housing 10 is a flat polyhedron, as shown in FIGS. 2 and 3, and includes a front surface portion 10a, a back surface portion 10b, a lower surface portion 10c, an upper surface portion 10d, a left side surface portion 10e, and a right side surface portion 10f. Have Specifically, as illustrated in FIG. 4A, the housing 10 has a prismatic shape having a bottom surface of a substantially heptagon in which the upper right corner and the upper left corner of the four corners of the rectangle are slanted.

前面部10a、背面部10b、下面部10c、上面部10d、左側面部10e及び右側面部10fはそれぞれ、筐体10の前面(正面)、背面、下面、上面、左側面、右側面を形成する。前面部10aは、前面カバー100の底部であり、背面部10bは、背面カバー110の底部である。下面部10c、上面部10d、左側面部10e及び右側面部10fは、前面カバー100の側周部と背面カバー110の側周部とが組み合わされて形成される。   The front surface portion 10a, the back surface portion 10b, the lower surface portion 10c, the upper surface portion 10d, the left side surface portion 10e, and the right side surface portion 10f form a front surface (front surface), a back surface, a lower surface, an upper surface, a left side surface, and a right side surface, respectively. The front part 10 a is the bottom of the front cover 100, and the back part 10 b is the bottom of the back cover 110. The lower surface portion 10c, the upper surface portion 10d, the left side surface portion 10e, and the right side surface portion 10f are formed by combining the side periphery of the front cover 100 and the side periphery of the back cover 110.

なお、筐体10の形状は、一例であって、これに限らない。例えば、筐体10は、底面(前面部10a及び背面部10b)が矩形の直方体でもよく、あるいは、底面が円形の円
柱でもよい。
In addition, the shape of the housing | casing 10 is an example, Comprising: It does not restrict to this. For example, the housing 10 may be a rectangular parallelepiped having a rectangular bottom surface (front surface portion 10a and back surface portion 10b), or a circular cylinder having a circular bottom surface.

筐体10の外壁には、図2に示すように、筐体流入部101と、筐体流出部102が設けられている。具体的には、筐体10の前面部10aに、筐体流入部101と、筐体流出部102とが設けられている。   As shown in FIG. 2, a housing inflow portion 101 and a housing outflow portion 102 are provided on the outer wall of the housing 10. Specifically, a housing inflow portion 101 and a housing outflow portion 102 are provided on the front surface portion 10 a of the housing 10.

筐体流入部101は、筐体10の外壁に設けられた所定形状の開口であり、当該開口を介して、粒子2を含む気体が筐体10の内部に流入する。筐体流入部101は、例えば、5.5mm×12mmの略矩形の開口であるが、筐体流入部101の形状はこれに限らない。例えば、筐体流入部101は、円形又は楕円形などの開口でもよい。   The housing inflow portion 101 is an opening having a predetermined shape provided on the outer wall of the housing 10, and the gas containing the particles 2 flows into the housing 10 through the opening. The case inflow portion 101 is, for example, a substantially rectangular opening of 5.5 mm × 12 mm, but the shape of the case inflow portion 101 is not limited to this. For example, the casing inflow portion 101 may be an opening such as a circle or an ellipse.

本実施の形態では、筐体流入部101は、図5に示すように、検知領域DAの直下方向には設けられておらず、前面カバー100の下部の隅に設けられている。これにより、筐体流入部101から侵入する外光が検知領域DAに照射されにくくなり、また、迷光として受光素子131に入射されるのを抑制することができる。   In the present embodiment, as shown in FIG. 5, the housing inflow portion 101 is not provided directly below the detection area DA, but is provided in the lower corner of the front cover 100. This makes it difficult for external light entering from the housing inflow portion 101 to be irradiated to the detection area DA, and to prevent the light from entering the light receiving element 131 as stray light.

筐体流出部102は、筐体10の外壁に設けられた所定形状の開口であり、当該開口を介して、粒子2を含む気体が筐体10の外部に流出する。筐体流出部102は、例えば、5mm×12mmの略矩形の開口であるが、筐体流出部102の形状はこれに限らない。例えば、筐体流出部102は、円形又は楕円形などの開口でもよい。筐体流出部102の大きさは、例えば、筐体流入部101と略同じである。   The case outflow portion 102 is an opening having a predetermined shape provided on the outer wall of the case 10, and the gas containing the particles 2 flows out of the case 10 through the opening. The case outflow portion 102 is, for example, a substantially rectangular opening of 5 mm × 12 mm, but the shape of the case outflow portion 102 is not limited to this. For example, the housing outflow portion 102 may be an opening such as a circle or an ellipse. The size of the housing outflow portion 102 is substantially the same as that of the housing inflow portion 101, for example.

なお、筐体流入部101及び筐体流出部102は、筐体10の前面部10aに設けたが、これに限らない。例えば、筐体流入部101は、筐体10の背面部10b、下面部10c、左側面部10e又は右側面部10fに設けてもよい。また、筐体流出部102は、筐体10の背面部10b、上面部10d、右側面部10e又は左側面部10fに設けてもよい。   In addition, although the housing | casing inflow part 101 and the housing | casing outflow part 102 were provided in the front part 10a of the housing | casing 10, it is not restricted to this. For example, the housing inflow portion 101 may be provided on the back surface portion 10b, the bottom surface portion 10c, the left side surface portion 10e, or the right side surface portion 10f of the housing 10. Further, the housing outflow portion 102 may be provided on the back surface portion 10b, the top surface portion 10d, the right side surface portion 10e, or the left side surface portion 10f of the housing 10.

筐体10には、光トラップ40を構成するための内部構造が設けられている。具体的には、背面カバー110は、内面から立設した第1光反射壁111、第2光反射壁112、第3光反射壁113、第4光反射壁114及び複数の楔形突出部115を有する。第1光反射壁111及び第2光反射壁112は、第1光トラップ41を形成する。第3光反射壁113、第4光反射壁114及び複数の楔形突出部115は、第2光トラップ42を形成する。   The housing 10 is provided with an internal structure for configuring the optical trap 40. Specifically, the back cover 110 includes a first light reflecting wall 111, a second light reflecting wall 112, a third light reflecting wall 113, a fourth light reflecting wall 114, and a plurality of wedge-shaped protrusions 115 standing from the inner surface. Have. The first light reflecting wall 111 and the second light reflecting wall 112 form a first light trap 41. The third light reflecting wall 113, the fourth light reflecting wall 114, and the plurality of wedge-shaped protrusions 115 form the second light trap 42.

筐体10は、前面部10aには、さらに、掃除窓108が設けられている。具体的には、掃除窓108は、前面カバー100の中央部に設けられた台形状の貫通孔である。掃除窓108は、投光レンズ122、受光レンズ132及び筐体10の内部に付着した汚れ又はホコリを取り除くために設けられている。例えば、掃除窓108から綿棒などを筐体10の内部に挿入することで、内部の掃除を行うことができる。掃除窓108は、粒子検出センサ1を動作させる際には、掃除窓108を介して外光が検知領域DAに照射されないように、図示しないカバー部材によって蓋をされる。   The housing 10 is further provided with a cleaning window 108 on the front surface portion 10a. Specifically, the cleaning window 108 is a trapezoidal through hole provided in the center of the front cover 100. The cleaning window 108 is provided to remove dirt or dust attached to the inside of the light projecting lens 122, the light receiving lens 132, and the housing 10. For example, the inside of the housing 10 can be cleaned by inserting a cotton swab or the like through the cleaning window 108. When the particle detection sensor 1 is operated, the cleaning window 108 is covered with a cover member (not shown) so that external light is not irradiated onto the detection area DA through the cleaning window 108.

[光学系]
光学系20は、筐体10の背面カバー110に配置されて、前面カバー100によって挟まれることで、筐体10の内部に収納されている。投光系120と受光系130とは、図5に示されるように、各々の光軸(光軸P及び光軸Q)が交差するように配置されている。
[Optical system]
The optical system 20 is disposed in the back cover 110 of the housing 10 and is housed inside the housing 10 by being sandwiched by the front cover 100. As shown in FIG. 5, the light projecting system 120 and the light receiving system 130 are arranged so that their optical axes (optical axis P and optical axis Q) intersect each other.

投光系120は、検知領域DAに集光するように光を出力する。投光系120は、投光
素子121と、投光レンズ122とを備える。
The light projecting system 120 outputs light so as to be focused on the detection area DA. The light projecting system 120 includes a light projecting element 121 and a light projecting lens 122.

投光素子121は、所定の波長の光を発する光源(発光部)であり、例えば、LED(Light Emitting Diode)又は半導体レーザなどの固体発光素子である。投光素子121の光軸は、投光系120の光軸Pに一致し、例えば、検知領域DAを通過する。   The light projecting element 121 is a light source (light emitting unit) that emits light of a predetermined wavelength, and is, for example, a solid light emitting element such as an LED (Light Emitting Diode) or a semiconductor laser. The optical axis of the light projecting element 121 coincides with the optical axis P of the light projecting system 120 and passes through the detection area DA, for example.

投光素子121としては、紫外光、青色光、緑色光、赤色光又は赤外光を発する発光素子を用いることができる。この場合、投光素子121は、2波長以上の混合波を発するように構成されていてもよい。本実施の形態では、粒子2による光の散乱強度に鑑みて、投光素子121として、例えば、600nm〜800nmの波長の光を出力する砲弾型のLEDを用いる。   As the light projecting element 121, a light emitting element that emits ultraviolet light, blue light, green light, red light, or infrared light can be used. In this case, the light projecting element 121 may be configured to emit a mixed wave having two or more wavelengths. In the present embodiment, a bullet-type LED that outputs light with a wavelength of 600 nm to 800 nm, for example, is used as the light projecting element 121 in view of the light scattering intensity by the particles 2.

投光レンズ122は、投光素子121の前方に配置されており、投光素子121から出射する光を検知領域DAに向けて進行するように構成されている。つまり、投光素子121から出射する光は、投光レンズ122を介して検知領域DAを通過する。検知領域DAを通過する粒子2が投光素子121からの光を散乱させる。   The light projecting lens 122 is disposed in front of the light projecting element 121 and is configured to travel light emitted from the light projecting element 121 toward the detection area DA. That is, the light emitted from the light projecting element 121 passes through the detection area DA via the light projecting lens 122. The particles 2 passing through the detection area DA scatter light from the light projecting element 121.

投光レンズ122は、例えば、投光素子121から出射する光を検知領域DAに集束させる集光レンズであり、例えば、ポリカーボネート(PC)などの透明樹脂レンズ又はガラスレンズである。例えば、投光レンズ122の焦点は、検知領域DAに存在する。   The light projecting lens 122 is, for example, a condensing lens that focuses light emitted from the light projecting element 121 onto the detection area DA, and is, for example, a transparent resin lens such as polycarbonate (PC) or a glass lens. For example, the focus of the light projection lens 122 exists in the detection area DA.

受光系130は、検知領域DAにおける粒子2による投光系120からの光の散乱光を受光する。なお、図5では、太実線の矢印で光の経路の一例を示している。受光系130は、受光素子131と、受光レンズ132とを備える。   The light receiving system 130 receives light scattered from the light projecting system 120 by the particles 2 in the detection area DA. In FIG. 5, an example of a light path is indicated by a thick solid arrow. The light receiving system 130 includes a light receiving element 131 and a light receiving lens 132.

受光素子131は、検知領域DAにおける粒子2による投光素子121からの光の散乱光の少なくとも一部を受光する。受光素子131は、具体的には、受光した光を電気信号に変換する光電変換素子であり、例えば、フォトダイオード、フォトICダイオード、フォトトランジスタ又は光電子増倍管などである。受光素子131の光軸は、受光系130の光軸Qに一致し、例えば、検知領域DAを通過する。   The light receiving element 131 receives at least a part of light scattered from the light projecting element 121 by the particles 2 in the detection area DA. Specifically, the light receiving element 131 is a photoelectric conversion element that converts received light into an electrical signal, such as a photodiode, a photo IC diode, a phototransistor, or a photomultiplier tube. The optical axis of the light receiving element 131 coincides with the optical axis Q of the light receiving system 130 and passes, for example, the detection area DA.

受光レンズ132は、受光素子131と検知領域DAとの間に配置されており、検知領域DA側から入射する光を受光素子131に集光するように構成されている。具体的には、受光レンズ132は、検知領域DAにおいて粒子2による散乱光を、受光素子131に集光させる集光レンズであり、例えば、PCなどの透明樹脂レンズ又はガラスレンズである。例えば、受光レンズ132の焦点は、検知領域DA及び受光素子131の表面に存在する。   The light receiving lens 132 is disposed between the light receiving element 131 and the detection area DA, and is configured to collect light incident from the detection area DA side on the light receiving element 131. Specifically, the light receiving lens 132 is a condensing lens that condenses the scattered light from the particles 2 on the light receiving element 131 in the detection area DA, and is, for example, a transparent resin lens such as a PC or a glass lens. For example, the focal point of the light receiving lens 132 exists on the surface of the detection area DA and the light receiving element 131.

[外郭]
外郭63の内部には、筐体10及び第2流路(詳細は後述する)が設けられている。本実施の形態では、外郭63は、外郭前面カバー633と、外郭背面カバー634と、外郭側面カバー635との3つの部材によって構成されている。
[Outside]
Inside the outer shell 63, a housing 10 and a second flow path (details will be described later) are provided. In the present embodiment, the outer shell 63 is composed of three members: an outer shell front cover 633, an outer shell rear cover 634, and an outer shell side cover 635.

外郭63は、遮光性を有し、例えば、ABS樹脂などの樹脂材料を用いた射出成形により形成される。具体的には、外郭前面カバー633、外郭背面カバー634及び外郭側面カバー635の各々が樹脂材料を用いた射出成形により形成された後、互いに組み合わされることで外郭63を構成する。   The outer shell 63 has a light shielding property and is formed by injection molding using a resin material such as ABS resin, for example. Specifically, each of the outer front cover 633, the outer rear cover 634, and the outer side cover 635 is formed by injection molding using a resin material, and then combined with each other to form the outer shell 63.

外郭63は、本実施の形態においては、図1に示すように、略直方体形状であり、前面
部63aと、背面部63bと、下面部63cと、上面部63dと、左側面部63eと、右側面部63fとを有する。
In the present embodiment, the outer shell 63 has a substantially rectangular parallelepiped shape as shown in FIG. 1, and includes a front surface portion 63a, a back surface portion 63b, a lower surface portion 63c, an upper surface portion 63d, a left side surface portion 63e, and a right side. And a surface portion 63f.

前面部63aは、外郭前面カバー633の底部であり、背面部63bは、外郭背面カバー634の底部であり、右側面部63eは、外郭側面カバー635である。下面部63c、上面部63d及び左側面部63fは、外郭前面カバー633の側面部と外郭背面カバー634の側面部とが組み合わされて形成されている。   The front surface portion 63 a is a bottom portion of the outer front surface cover 633, the back surface portion 63 b is a bottom portion of the outer surface back cover 634, and the right side surface portion 63 e is an outer surface side cover 635. The lower surface portion 63c, the upper surface portion 63d, and the left side surface portion 63f are formed by combining the side surface portion of the outer front cover 633 and the side surface portion of the outer rear cover 634.

なお、外郭63の形状は一例であって、これに限らない。例えば、外郭63は、底面(前面部63a及び背面部63b)が略多角形の角柱形状でもよく、あるいは、底面が円形の円柱でもよい。   Note that the shape of the outer shell 63 is an example, and is not limited to this. For example, the outer shell 63 may be a prism having a substantially polygonal bottom surface (front surface portion 63a and back surface portion 63b), or a circular cylinder having a circular bottom surface.

外郭63には、図1に示すように、外気流入部631と、外気流出部632とが設けられている。具体的には、外気流入部631は、外郭63の外郭前面カバー633の底部の左側、筐体流入部101の近傍に形成されている。例えば、外気流入部631は、複数の矩形貫通孔によって構成してもよい。外気流出部632は、外郭側面カバー635に設けられている。本実施の形態においては、外気流出部632の内部に外部送風機構が設置されている。外部送風機構が、外気流出部632において外郭63の内部から外郭63の外部に向かう気流を発生させることで、外気流入部631から粒子2を含む気体が外郭63および筐体10の内部に流入する。   As shown in FIG. 1, the outer shell 63 is provided with an outside air inflow portion 631 and an outside air outflow portion 632. Specifically, the outside air inflow portion 631 is formed on the left side of the bottom of the outer front cover 633 of the outer shell 63 and in the vicinity of the housing inflow portion 101. For example, the outside air inflow portion 631 may be configured by a plurality of rectangular through holes. The outside air outflow portion 632 is provided in the outer side surface cover 635. In the present embodiment, an external air blowing mechanism is installed inside the outside air outflow portion 632. The external air blowing mechanism generates an air flow from the inside of the outer shell 63 toward the outside of the outer shell 63 at the outer air outflow portion 632, so that the gas including the particles 2 flows into the outer shell 63 and the inside of the housing 10 from the outer air inflow portion 631. .

外郭背面カバー634は、切欠部636を有する。切欠部636は、粒子検出センサ1のコネクタ80の近傍に設置されている。コネクタ80には、切欠部636を介して、外部から電力を供給される電力線等が接続される。   The outer back cover 634 has a notch 636. The notch 636 is installed in the vicinity of the connector 80 of the particle detection sensor 1. A power line or the like to which power is supplied from the outside is connected to the connector 80 through a notch 636.

[第1流路、第2流路]
図7に示すように、第1流路61は、外気の一部を、外気流入部631から筐体流入部101を経て筐体10の内部に誘引されて検知領域DAを通り、筐体流出部102を経て外気流出部632から外郭63へ排出する流路である。第1流路における外気の流れを点線矢印で示す。
[First channel, second channel]
As shown in FIG. 7, the first flow path 61 attracts a part of the outside air from the outside air inflow portion 631 to the inside of the housing 10 through the housing inflow portion 101, passes through the detection area DA, and flows out of the housing. This is a flow path for discharging from the outside air outflow part 632 to the outer shell 63 via the part 102. The flow of outside air in the first flow path is indicated by a dotted arrow.

第2流路62は、外気の一部を、外気流入部631から外郭63に誘引し、筐体10の外側を通り、外気流出部632から外郭63の外部へ排出する流路である。本実施の形態において、第2流路62の内壁は、外郭63の内壁と筐体10の前面部10aにおける外壁によって構成されている。なお、本実施の形態においては、第1流路61は、外気流入部631と筐体流入部101との間及び、筐体流出部102と外気流出部632との間は、第2流路62と空間を共有している。第2流路における外気の流れを一点破線矢印で示す。   The second flow path 62 is a flow path that attracts part of the outside air from the outside air inflow portion 631 to the outer shell 63, passes through the outside of the housing 10, and is discharged from the outside air outflow portion 632 to the outside of the outer shell 63. In the present embodiment, the inner wall of the second flow path 62 is configured by the inner wall of the outer shell 63 and the outer wall of the front surface portion 10 a of the housing 10. In the present embodiment, the first flow path 61 is the second flow path between the outside air inflow portion 631 and the housing inflow portion 101 and between the housing outflow portion 102 and the outside air outflow portion 632. 62 and share a space. The flow of outside air in the second flow path is indicated by a one-dot broken line arrow.

第1流路61の流路抵抗は、第2流路62の流路抵抗よりも大きくなるように構成されている。ここで流路抵抗とは、流体である外気が流路を通過する際に生じる、流路の内壁と外気との間に、流れとは反対向きに発生する摩擦力である。流路抵抗P[Pa]は、流路が直管である場合には、流路摩擦係数をλ、流路の長さ[m]をL、流路を流れる外気の密度をρ[kg/m3]、流路内の流速Va[m/s]、流路の直径d[m]とすると、以下の式で表すことができる。   The flow path resistance of the first flow path 61 is configured to be larger than the flow path resistance of the second flow path 62. Here, the flow path resistance is a frictional force generated in the direction opposite to the flow between the inner wall of the flow path and the external air, which is generated when outside air that is a fluid passes through the flow path. When the channel is a straight pipe, the channel resistance P [Pa] is λ for the channel friction coefficient, L for the channel length [m], and ρ [kg / kg] for the outside air flowing through the channel. m3], flow velocity Va [m / s] in the flow path, and diameter d [m] of the flow path, can be expressed by the following equation.

ここで、流路摩擦係数λは、例えば、流路内を流れる流体の流れが層流である場合、流体のレイノルズ数をReとすると、以下の式で表すことができる。   Here, the channel friction coefficient λ can be expressed by the following equation, for example, when the fluid flow in the channel is a laminar flow and the Reynolds number of the fluid is Re.

また、流路摩擦係数λは、例えば、流路内を流れる流体の流れが乱流である場合、流体のレイノルズ数をReとすると、以下の式で表すことができる。   Further, for example, when the flow of fluid flowing in the flow channel is turbulent, the flow channel friction coefficient λ can be expressed by the following equation, where Reynolds number of the fluid is Re.

すなわち、流路抵抗は、流路がより長いほど大きくなる。また、流路抵抗は、流路が細いほど大きくなる。   That is, the channel resistance increases as the channel length increases. The channel resistance increases as the channel becomes thinner.

本実施の形態においては、図7に示すように第2流路62の長さを、第1流路61の長さよりも短くすることによって、第1流路61の流路抵抗を、第2流路62の流路抵抗よりも大きくしている。また、例えば、第2流路62の有効断面積を、第1流路61の有効断面積よりも大きくすることによって、第1流路61の流路抵抗を、第2流路62の流路抵抗よりも大きくしてもよい。   In the present embodiment, as shown in FIG. 7, the flow path resistance of the first flow path 61 is reduced by making the length of the second flow path 62 shorter than the length of the first flow path 61. The flow path resistance of the flow path 62 is larger. Further, for example, by making the effective cross-sectional area of the second flow path 62 larger than the effective cross-sectional area of the first flow path 61, the flow resistance of the first flow path 61 is reduced to the flow path of the second flow path 62. It may be larger than the resistance.

また、流路抵抗は、流路が曲がる部分でエネルギー損失が発生するエルボ損失、分岐部におけるエネルギー損失である分岐損失、流路が縮小する箇所でエネルギー損失が発生する縮小損失、流路が拡大する箇所でエネルギー損失が発生する拡大損失などによっても発生するため、曲がり箇所、分岐、出入口や流路の太さの変化が多い流路ほど、流路抵抗が大きくなる。このため、第1流路61は、第2流路62よりも曲がり箇所、分岐、出入口が多いことが好ましい。例えば、本実施の形態においては、図5及び図7に示すように、第1流路61は、外気流入部631に入った後、筐体流入部101、筐体10内での流路の曲がり、筐体流出部102、及び筐体流出部102と外気流出部632の間の流路の曲がりを有する。それに対して、第2流路62は、外気流入部631から入り外気流出部632までの間、ほぼ流路の曲がり等もなくまっすぐに進む。また、本実施の形態において、第1流路61の長さは、第2流路62よりも長い。   In addition, the channel resistance includes elbow loss where energy loss occurs at the part where the channel bends, branching loss as energy loss at the branch, reduction loss where energy loss occurs when the channel shrinks, and channel expansion The flow path resistance increases as the flow path has more changes in the thickness of the bent section, branch, entrance / exit, or flow path. For this reason, it is preferable that the first flow path 61 has more bent portions, branches, and doorways than the second flow path 62. For example, in the present embodiment, as shown in FIGS. 5 and 7, after the first flow path 61 enters the outside air inflow part 631, the flow path in the case inflow part 101 and the case 10 is changed. There is a bend, and the case outflow portion 102 and the bend in the flow path between the case outflow portion 102 and the outside air outflow portion 632. On the other hand, the second flow path 62 travels straight between the outside air inflow portion 631 and the outside air outflow portion 632 almost without any bending of the flow path. In the present embodiment, the length of the first flow path 61 is longer than that of the second flow path 62.

第1流路61の流路抵抗は、第2流路62の流路抵抗よりも大きくなるように構成することによって、検知領域DAを含む第1流路61に流れる気流の流量が制限されて、流速を遅くすることにより、検知領域DAにおける乱流の発生抑制し、粒子の検出精度の低下を防ぐことができる。   By configuring the flow path resistance of the first flow path 61 to be larger than the flow path resistance of the second flow path 62, the flow rate of the airflow flowing through the first flow path 61 including the detection area DA is limited. By slowing down the flow velocity, it is possible to suppress the occurrence of turbulent flow in the detection area DA and to prevent a decrease in particle detection accuracy.

[気流誘導壁]
気流誘導壁64は、筐体流出部102の近傍に設置され、第2流路62を通る外気が、筐体流出部102から流入することを防いでいる。本実施の形態において、気流誘導壁64は、第2流路62の内壁の一部を構成する筐体10の前面部10aにおける外壁と接している。例えば、気流誘導壁64は、筐体10の前面部10aと平行となる所定の一方向における両端のうちの一方の端部641が、外郭63の上面部63dにおける内壁に接続しており、気流誘導壁64の筐体10の前面部10aと平行となる所定の一方向における両端のうち他方の端部642は、外郭63の内壁には接続されていない。このような構成にすることによって、外郭63の上面部63dにおける内壁に接続している他方の端部6
42側から筐体流出部102への外気の逆流を防ぐことができる。また、第1流路61の流路長が長くなることによって、第1流路61の流路抵抗が増加し、第1流路61における流速低減効果が増加し、検知領域DAにおける乱流の発生を抑制できる。
[Airflow guide wall]
The airflow guiding wall 64 is installed in the vicinity of the housing outflow portion 102, and prevents outside air passing through the second flow path 62 from flowing in from the housing outflow portion 102. In the present embodiment, the airflow guiding wall 64 is in contact with the outer wall of the front surface portion 10 a of the housing 10 that constitutes a part of the inner wall of the second flow path 62. For example, the air flow guide wall 64 has one end 641 of both ends in a predetermined direction parallel to the front surface portion 10a of the housing 10 connected to the inner wall of the upper surface portion 63d of the outer shell 63, The other end 642 of both ends in a predetermined direction parallel to the front surface portion 10 a of the housing 10 of the guide wall 64 is not connected to the inner wall of the outer shell 63. With this configuration, the other end 6 connected to the inner wall of the upper surface 63d of the outer shell 63 is provided.
Backflow of outside air from the 42 side to the housing outflow portion 102 can be prevented. In addition, since the flow path length of the first flow path 61 is increased, the flow resistance of the first flow path 61 is increased, the effect of reducing the flow velocity in the first flow path 61 is increased, and the turbulent flow in the detection area DA is increased. Generation can be suppressed.

さらに、気流誘導壁64は、外郭63の内壁には接続されていない他方の端部642は、外気流出部632に向かうように配置することができる。   Further, the air flow guiding wall 64 can be arranged such that the other end 642 not connected to the inner wall of the outer shell 63 is directed to the outside air outflow portion 632.

また、補助気流誘導壁65を、筐体流入部101の近傍に設置してもよい。補助気流誘導壁65を設置することで、外気流入部631から入る気流が外気流出部632へ誘引されるため、第2流路62内が整流化され、第2流路62内の流体抵抗を減らすことができる。   Further, the auxiliary airflow guiding wall 65 may be installed in the vicinity of the housing inflow portion 101. By installing the auxiliary airflow guide wall 65, the airflow entering from the outside air inflow portion 631 is attracted to the outside air outflow portion 632, so that the inside of the second flow path 62 is rectified, and the fluid resistance in the second flow path 62 is reduced. Can be reduced.

(変形例1)
次に、本発明の変形例1に係る粒子検出センサ1Aの構成について図8を用いて説明する。なお、以下に説明では、粒子検出センサ1Aの特徴となる構成で、上記実施の形態における粒子検出センサ1と異なる点を説明し、その他の構成については、粒子検出センサ1と同様である。
(Modification 1)
Next, the configuration of the particle detection sensor 1A according to the first modification of the present invention will be described with reference to FIG. In the following description, a configuration that is a feature of the particle detection sensor 1A will be described, and different points from the particle detection sensor 1 in the above embodiment will be described. Other configurations are the same as those of the particle detection sensor 1.

本変形例における粒子検出センサ1Aは、実施の形態1における粒子検出センサ1における気流誘導壁64のうち外郭63の内壁には接続されていない他方の端部642の方向と、外気流出部632との位置関係が異なる。   The particle detection sensor 1 </ b> A in the present modification includes the direction of the other end 642 that is not connected to the inner wall of the outer shell 63 among the airflow guiding walls 64 in the particle detection sensor 1 in Embodiment 1, and the outside air outflow portion 632. The positional relationship is different.

具体的には、粒子検出センサ1Aは、図8が示すように、気流誘導壁64のうち外郭63の内壁には接続されていない他方の端部642の方向は、外気流出部632のある方向とは反対方向に向かうように配置されている。このように構成することによって、第1流路61のうち筐体流出部102と外気流出部632の間の距離が長くなると同時に流路が曲がる箇所が増え、結果として、第1流路61の流路抵抗がより大きくなる。このような構成にすることにより、第1流路61の流路抵抗は、第2流路62の流路抵抗に対してより大きくなり、検知領域DAを含む第1流路61に流れる気流の流量が制限されて、流速を遅くなることにより、検知領域DAにおける乱流の発生抑制し、粒子の検出精度の低下を防ぐことができる。   Specifically, as shown in FIG. 8, in the particle detection sensor 1 </ b> A, the direction of the other end 642 not connected to the inner wall of the outer shell 63 in the airflow guiding wall 64 is the direction in which the outer air outflow portion 632 is located. It is arranged to go in the opposite direction. With this configuration, the distance between the housing outflow portion 102 and the outside air outflow portion 632 in the first flow path 61 is increased, and the number of places where the flow path is bent is increased. As a result, the first flow path 61 The flow path resistance becomes larger. By adopting such a configuration, the flow resistance of the first flow path 61 becomes larger than the flow resistance of the second flow path 62, and the airflow flowing in the first flow path 61 including the detection area DA is increased. By restricting the flow rate and slowing down the flow rate, it is possible to suppress the occurrence of turbulent flow in the detection area DA and to prevent a decrease in particle detection accuracy.

(変形例2)
次に、本発明の変形例2に係る粒子検出センサ1Bの構成について図9を用いて説明する。なお、以下の説明では、粒子検出センサ1Bの特徴となる構成で、上記実施の形態における粒子検出センサ1と異なる点を説明し、その他の構成については、粒子検出センサ1と同様である。
(Modification 2)
Next, the configuration of the particle detection sensor 1B according to Modification 2 of the present invention will be described with reference to FIG. In the following description, a configuration that is a feature of the particle detection sensor 1B will be described, and different points from the particle detection sensor 1 in the above embodiment will be described. Other configurations are the same as those of the particle detection sensor 1.

本変形例における粒子検出センサ1Bは、実施の形態1における粒子検出センサ1における筐体流入部101の気流流入方向と、外気流入部631の気流流入方向との方向関係が異なる。また、外気流出部632の構造と、送風機構66の位置が異なる。   In the particle detection sensor 1B in the present modification, the directional relationship between the airflow inflow direction of the housing inflow portion 101 and the airflow inflow direction of the outside air inflow portion 631 in the particle detection sensor 1 in the first embodiment is different. Further, the structure of the outside air outflow portion 632 is different from the position of the blower mechanism 66.

具体的には、粒子検出センサ1Bは、図9が示すように、送風機構66は、外気流入部631付近でかつ外郭63の外部に設置されており、外気を外郭63内部に向けて流す気流を発生させている。送風機構66によって発生した気流は、外気流入部631では、X軸と平行な気流流入方向で流れている。外気流入部631から流入した外気のうちの一部は、筐体流入部101からZ軸と平行な気流流入方向の気流の流れとして筐体10内部に流入する。すなわち、筐体流入部101の気流流入方向と、外気流入部631の気流流入方向とは、互いに直交している。   Specifically, as shown in FIG. 9, in the particle detection sensor 1 </ b> B, the air blowing mechanism 66 is installed in the vicinity of the outside air inflow portion 631 and outside the outer shell 63, and the airflow that flows the outside air toward the inside of the outer shell 63. Is generated. The airflow generated by the blower mechanism 66 flows in the airflow inflow direction parallel to the X axis at the outside air inflow portion 631. A part of the outside air that flows in from the outside air inflow portion 631 flows into the inside of the housing 10 from the housing inflow portion 101 as an airflow in the airflow inflow direction parallel to the Z axis. That is, the airflow inflow direction of the housing inflow portion 101 and the airflow inflow direction of the outside air inflow portion 631 are orthogonal to each other.

さらに、粒子検出センサ1Bは、外気流出部として、第1外気流出部671と第2外気流出部672とを有している。また、第1外気流出部671と、第2外気流出部672とは、別の位置に構成されている。第1流路61は、外気流入部631と第1外気流出部671に接続している。また、第2流路62は、外気流入部631と第2外気流出部672に接続している。   Further, the particle detection sensor 1B includes a first outside air outflow portion 671 and a second outside air outflow portion 672 as outside air outflow portions. Further, the first outside air outflow portion 671 and the second outside air outflow portion 672 are configured at different positions. The first flow path 61 is connected to the outside air inflow portion 631 and the first outside air outflow portion 671. Further, the second flow path 62 is connected to the outside air inflow portion 631 and the second outside air outflow portion 672.

本変形例においては、第2外気流出部672の断面積は、第1外気流出部671の断面積に比べて大きい。さらに、第2流路62の有効断面積は、第1流路61の有効断面積に比べて大きい。   In the present modification, the cross-sectional area of the second outside air outflow portion 672 is larger than the cross-sectional area of the first outside air outflow portion 671. Further, the effective cross-sectional area of the second flow path 62 is larger than the effective cross-sectional area of the first flow path 61.

このような構成にすることにより、第1流路61の流路抵抗は、第2流路62の流路抵抗に対してより大きくなり、検知領域DAを含む第1流路61に流れる気流の流量が制限されて、流速を遅くなることにより、検知領域DAにおける乱流の発生抑制し、粒子の検出精度の低下を防ぐことができる。   By adopting such a configuration, the flow resistance of the first flow path 61 becomes larger than the flow resistance of the second flow path 62, and the airflow flowing in the first flow path 61 including the detection area DA is increased. By restricting the flow rate and slowing down the flow rate, it is possible to suppress the occurrence of turbulent flow in the detection area DA and to prevent a decrease in particle detection accuracy.

(変形例3)
次に、本発明の変形例3に係る粒子検出センサ1Cの構成について図10を用いて説明する。なお、以下の説明では、粒子検出センサ1Cの特徴となる構成で、上記実施の形態における粒子検出センサ1と異なる点を説明し、その他の構成については、粒子検出センサ1と同様である。
(Modification 3)
Next, the configuration of a particle detection sensor 1C according to Modification 3 of the present invention will be described with reference to FIG. In the following description, a configuration that is a feature of the particle detection sensor 1C will be described, and different points from the particle detection sensor 1 in the above embodiment will be described. Other configurations are the same as those of the particle detection sensor 1.

本変形例における粒子検出センサ1Cは、実施の形態1における粒子検出センサ1における外気流入部の構造と、送風機構66の位置が異なる。   The particle detection sensor 1 </ b> C in the present modification is different from the structure of the outside air inflow portion in the particle detection sensor 1 in the first embodiment in the position of the blower mechanism 66.

具体的には、粒子検出センサ1Cは、図10が示すように、送風機構66は、外気流出部632付近でかつ外郭63の外部に設置されており、外気を外郭63内部から送風機構66に向けて誘引する気流を発生させている。   Specifically, as shown in FIG. 10, in the particle detection sensor 1 </ b> C, the air blowing mechanism 66 is installed in the vicinity of the outside air outflow portion 632 and outside the outer shell 63, and the outside air is transferred from the inside of the outer shell 63 to the air blowing mechanism 66. It generates an air current that attracts you.

さらに、粒子検出センサ1Cは、外気流入部として、第1外気流入部681と第2外気流入部682とを有している。また、第1外気流入部681と、第2外気流入部682とは、別の位置に構成されている。第1流路61は、第1外気流入部681と外気流出部632に接続している。また、第2流路62は、第2外気流入部682と外気流出部632に接続している。   Furthermore, the particle detection sensor 1C includes a first outside air inflow portion 681 and a second outside air inflow portion 682 as outside air inflow portions. Moreover, the 1st external air inflow part 681 and the 2nd external air inflow part 682 are comprised in another position. The first flow path 61 is connected to the first outside air inflow portion 681 and the outside air outflow portion 632. The second flow path 62 is connected to the second outside air inflow portion 682 and the outside air outflow portion 632.

このような構成にすることにより、第1流路61の流路抵抗は、第2流路62の流路抵抗に対してより大きくなり、検知領域DAを含む第1流路61に流れる気流の流量が制限されて、流速を遅くなることにより、検知領域DAにおける乱流の発生抑制し、粒子の検出精度の低下を防ぐことができる。
(その他)
以上、本発明に係る粒子検出センサについて、実施の形態及び変形例に基づいて説明したが、本発明は、上記実施の形態及び変形例に限定されるものではない。
By adopting such a configuration, the flow resistance of the first flow path 61 becomes larger than the flow resistance of the second flow path 62, and the airflow flowing in the first flow path 61 including the detection area DA is increased. By restricting the flow rate and slowing down the flow rate, it is possible to suppress the occurrence of turbulent flow in the detection area DA and to prevent a decrease in particle detection accuracy.
(Other)
As mentioned above, although the particle | grain detection sensor which concerns on this invention was demonstrated based on embodiment and a modification, this invention is not limited to the said embodiment and modification.

例えば、上記実施の形態では、筐体10が前面カバー100と背面カバー110とに分割可能な例について示したがこれに限らない。筐体10は、樹脂材料と金型を用いた射出成形などによって、一体形成されていてもよい。   For example, in the above-described embodiment, an example in which the housing 10 can be divided into the front cover 100 and the back cover 110 has been described, but the present invention is not limited thereto. The housing 10 may be integrally formed by injection molding using a resin material and a mold.

また、例えば、上記実施の形態では光学系20は、検知領域DAを挟んで投光系21と受光系22とが水平方向に配置されているが、上下方向に配置されてもよい。   Further, for example, in the above embodiment, the optical system 20 has the light projecting system 21 and the light receiving system 22 arranged in the horizontal direction across the detection area DA, but may be arranged in the vertical direction.

また、例えば、上記実施の形態では投光素子121からの光を集光する部材および、受
光素子131へ光を集光する部材として、投光レンズ122及び受光レンズ132を示したが、集光ミラーなどの反射部材を使用してもよい。
For example, in the above embodiment, the light projecting lens 122 and the light receiving lens 132 are shown as a member that condenses the light from the light projecting element 121 and a member that condenses the light to the light receiving element 131. A reflective member such as a mirror may be used.

その他、各実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
In addition, a form obtained by making various modifications conceived by those skilled in the art with respect to each embodiment and modification, and any combination of components and functions in the embodiment without departing from the spirit of the present invention Forms to be made are also included in the invention.

1、1A、1B、1C 粒子検出センサ
10 筐体
101 筐体流入部
102 筐体流出部
121 投光素子
131 受光素子
2 粒子
20 光学系(センサ部)
DA 検知領域(センサ部)
61 第1流路
62 第2流路
63 外郭
631 外気流入部
632 外気流出部
64 気流誘導壁
641 一方の端部
642 他方の端部
66 送風機構
671 第1外気流出部
672 第2外気流出部
681 第1外気流入部
682 第2外気流入部
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C Particle detection sensor 10 Case 101 Case inflow part 102 Case outflow part 121 Light projecting element 131 Light receiving element 2 Particle 20 Optical system (sensor part)
DA detection area (sensor part)
61 1st flow path 62 2nd flow path 63 Outer shell 631 Outside air inflow part 632 Outside air outflow part 64 Air flow guide wall 641 One end part 642 Other end part 66 Blower mechanism 671 First outside air outflow part 672 Second outside air outflow part 681 First outside air inflow portion 682 Second outside air inflow portion

Claims (7)

外気が流入する筐体流入部と、前記外気が流出する筐体流出部とを有する筐体と、
前記筐体内部に設けられ、投光素子の投光領域と受光素子の受光対象領域とが重なり合う領域である検知領域において前記外気に含まれる粒子による前記投光素子の光の散乱光を受光することにより前記粒子を検出するセンサ部と、
記外気が流入する少なくとも1つの外気流入部と、前記外気が流出する少なくとも1つの外気流出部とを有する外郭とを備え
前記外郭は、前記筐体流出部と前記外気流出部との間に空間を有して、前記筐体の周囲に設置され、
前記外気流出部の下流には送風機構をさらに備え
前記外気の一部が前記外気流入部から前記筐体流入部を経て前記筐体の内部に誘引され、前記検知領域を通り、前記筐体流出部を経て前記外気流出部に排出される第1流路と、
前記外気の一部が前記外気流入部から前記送風機構により誘引され、前記筐体の外側と前記外郭の内側との間を通り、前記外気流出部に排出される第2流路と、から構成され、
前記第1流路の流体抵抗は、前記第2流路の流体抵抗よりも大きく、
前記筐体流出部と前記外気流出部との間の前記空間の少なくとも一部において、前記第1流路と前記第2流路とは流路を共有しており、
前記筐体流出部の近傍には、前記第2流路を通る前記外気が、前記筐体流出部から流入することを防ぐ気流誘導壁が設けられている
ことを特徴とする粒子検出センサ。
A housing having a housing inflow portion through which outside air flows and a housing outflow portion through which the outside air flows out;
The scattered light of the light projecting element due to the particles contained in the outside air is received in a detection area provided inside the housing and in which the light projecting area of the light projecting element and the light receiving target area of the light receiving element overlap. a sensor unit for detecting the particles by,
Before comprises at least one external air inlet Kigaiki flows, and a shell having at least one external air outlet portion and the ambient air flows out,
The outer shell has a space between the housing outflow portion and the outside air outflow portion, and is installed around the housing.
A further air blowing mechanism is provided downstream of the outside air outflow portion ,
A part of the outside air is attracted from the outside air inflow part to the inside of the case through the case inflow part, passes through the detection region, and is discharged to the outside air outflow part through the case outflow part. A flow path;
A part of the outside air is attracted by the air blowing mechanism from the outside air inflow portion, passes between the outside of the housing and the inside of the outer shell, and is configured to be discharged to the outside air outflow portion. And
The fluid resistance of the first flow path is much larger than the fluid resistance of the second flow path,
In at least a part of the space between the housing outflow portion and the outside air outflow portion, the first flow path and the second flow path share a flow path,
An airflow guide wall that prevents the outside air passing through the second flow path from flowing from the housing outflow portion is provided in the vicinity of the housing outflow portion. Detection sensor.
前記第2流路の長さは、前記第1流路の長さよりも短い
ことを特徴とする請求項1に記載の粒子検出センサ。
The particle detection sensor according to claim 1, wherein a length of the second flow path is shorter than a length of the first flow path.
前記第2流路の有効断面積は、前記第1流路の有効断面積よりも大きい
ことを特徴とする請求項1又は2に記載の粒子検出センサ。
3. The particle detection sensor according to claim 1, wherein an effective area of the second flow path is larger than an effective area of the first flow path.
前記第2流路の内壁は、前記外郭の内壁と前記筐体の外壁とによって構成されており、  The inner wall of the second flow path is constituted by the inner wall of the outer shell and the outer wall of the housing,
前記気流誘導壁は、前記筐体の外壁に接し、  The airflow guiding wall is in contact with the outer wall of the housing,
前記気流誘導壁は、所定の方向における両端のうちの一方の端部が前記外郭の内壁に接  The air flow guide wall has one end of both ends in a predetermined direction in contact with the inner wall of the outer shell.
続され、他方の端部が前記外郭の内壁に接続されていない、Connected, the other end is not connected to the inner wall of the outer shell,
ことを特徴とする請求項1〜3のいずれか1項に記載の粒子検出センサ。The particle detection sensor of any one of Claims 1-3 characterized by the above-mentioned.
前記気流誘導壁は、前記他方の端部が前記外気流出部とは反対方向に向かうように配置されている  The air flow guide wall is disposed such that the other end is directed in a direction opposite to the outside air outflow portion.
ことを特徴とする請求項1〜4のいずれか1項に記載の粒子検出センサ。The particle | grain detection sensor of any one of Claims 1-4 characterized by the above-mentioned.
前記筐体流入部の気流流入方向と、前記外気流入部の気流流入方向とは、互いに直交している  The airflow inflow direction of the housing inflow portion and the airflow inflow direction of the outside air inflow portion are orthogonal to each other.
ことを特徴とする請求項1〜5のいずれか1項に記載の粒子検出センサ。The particle detection sensor of any one of Claims 1-5 characterized by the above-mentioned.
前記外気流出部は1つであり、
前記外気流出部の下流に前記送風機構を備え、
前記外気流入部として、第1外気流入部と第2外気流入部とを有し、
前記第1流路は、前記第1外気流入部に接続し、
前記第2流路は、前記第2外気流入部に接続し、
前記第1外気流入部と、前記第2流入部とは、別の位置に構成されている
ことを特徴とする請求項1〜6のいずれか1項に記載の粒子検出センサ。
The outside air outflow part is one,
The air blowing mechanism is provided downstream of the outside air outflow part,
As the outside air inflow portion, it has a first outside air inflow portion and a second outside air inflow portion,
The first flow path is connected to the first outside air inflow portion,
The second flow path is connected to the second outside air inflow portion,
The particle detection sensor according to claim 1, wherein the first outside air inflow portion and the second inflow portion are configured at different positions.
JP2016065313A 2016-03-29 2016-03-29 Particle detection sensor Active JP6127280B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016065313A JP6127280B1 (en) 2016-03-29 2016-03-29 Particle detection sensor
CN201780013842.2A CN108713134B (en) 2016-03-29 2017-03-13 Particle detection sensor
PCT/JP2017/009919 WO2017169685A1 (en) 2016-03-29 2017-03-13 Particle detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065313A JP6127280B1 (en) 2016-03-29 2016-03-29 Particle detection sensor

Publications (2)

Publication Number Publication Date
JP6127280B1 true JP6127280B1 (en) 2017-05-17
JP2017181153A JP2017181153A (en) 2017-10-05

Family

ID=58714668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065313A Active JP6127280B1 (en) 2016-03-29 2016-03-29 Particle detection sensor

Country Status (3)

Country Link
JP (1) JP6127280B1 (en)
CN (1) CN108713134B (en)
WO (1) WO2017169685A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206814B2 (en) * 2018-10-31 2023-01-18 株式会社デンソー PM sensor
WO2020175381A1 (en) * 2019-02-27 2020-09-03 京セラ株式会社 Particle separation and measurement device, and particle separation and measurement apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521473A (en) * 2010-03-05 2013-06-10 エックストラリス・テクノロジーズ・リミテッド Filter bypass
WO2015008519A1 (en) * 2013-07-17 2015-01-22 シャープ株式会社 Fine particle measurement device
JP2015080777A (en) * 2013-10-24 2015-04-27 シャープ株式会社 Particle separator and particulate measurement equipment comprising the same
JP2015114176A (en) * 2013-12-10 2015-06-22 シャープ株式会社 Particle measuring apparatus and particle measuring method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844878B1 (en) * 2002-09-24 2005-08-05 Commissariat Energie Atomique SPECTROSCOPY METHOD AND DEVICE FOR OPTICALLY TRANSMITTING LIQUID EXCITED BY LASER
JP4455032B2 (en) * 2003-12-08 2010-04-21 キヤノン株式会社 Concentration measuring device and concentration measuring method
US7658884B2 (en) * 2005-10-05 2010-02-09 Swan Analytische Instrumente Ag Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient
CN101968441B (en) * 2010-09-15 2012-05-30 山东大学 New-type gas detection system based on fiber interferometer
US9459194B2 (en) * 2013-03-14 2016-10-04 Cardio Metrix Apparatuses, processes, and systems for measuring particle size distribution and concentration
US9829425B2 (en) * 2013-04-22 2017-11-28 The Regents Of The University Of California Optofluidic devices and methods for sensing single particles
CN105324802B (en) * 2013-06-03 2019-05-31 爱克斯崔里斯科技有限公司 Particle detection system and correlation technique
CN205103165U (en) * 2015-11-10 2016-03-23 南京信息工程大学 Device that combines vortex correlation systematic observation ozone flux

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521473A (en) * 2010-03-05 2013-06-10 エックストラリス・テクノロジーズ・リミテッド Filter bypass
WO2015008519A1 (en) * 2013-07-17 2015-01-22 シャープ株式会社 Fine particle measurement device
JP2015038463A (en) * 2013-07-17 2015-02-26 シャープ株式会社 Fine particle measuring apparatus
JP2015080777A (en) * 2013-10-24 2015-04-27 シャープ株式会社 Particle separator and particulate measurement equipment comprising the same
JP2015114176A (en) * 2013-12-10 2015-06-22 シャープ株式会社 Particle measuring apparatus and particle measuring method

Also Published As

Publication number Publication date
CN108713134B (en) 2021-03-12
JP2017181153A (en) 2017-10-05
CN108713134A (en) 2018-10-26
WO2017169685A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR101905275B1 (en) Particle sensor and electronic apparatus equipped with the same
EP3214425B1 (en) Particle detection sensor, dust sensor, smoke detector, air purifier, ventilation fan, and air conditioner
US9739701B2 (en) Particle sensor
JP2016090350A (en) Particle detection sensor, dust sensor, smoke detector, air purifier, ventilator, and air conditioner
WO2015151502A1 (en) Particle-detecting sensor, dust sensor, smoke detector, air purifier, fan, and air conditioner
JPH08233736A (en) Microparticle detection sensor
JP2015200547A (en) Particle detection sensor, dust sensor, smoke detector, air cleaner and ventilator
JP2017116287A (en) Particle detection sensor
JP6127280B1 (en) Particle detection sensor
KR102644216B1 (en) Apparatus for sensing particle
WO2019176608A1 (en) Particle sensor and electronic apparatus
JP2016090349A (en) Particle detection sensor, dust sensor, smoke detector, air purifier, ventilator, and air conditioner
JP2016045093A (en) Particle detection sensor, dust sensor, smoke sensor, air cleaner, air ventilator and air conditioner
WO2016035300A1 (en) Particle detection sensor
JP2015200629A (en) Particle detection sensor, dust sensor, smoke detector, air cleaner, ventilator and air conditioner
KR102568945B1 (en) Apparatus for sensing particle
JP2017072428A (en) Photoelectric particle detection sensor
KR102344462B1 (en) Apparatus for sensing particle
JP7003835B2 (en) Particle detector
KR102380173B1 (en) Apparatus for sensing particle
JP2017166833A (en) Particle detection sensor
JP2019045197A (en) Particle detection sensor and particle detection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6127280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151