WO2019044212A1 - Photoacoustic image generation device and image acquisition method - Google Patents

Photoacoustic image generation device and image acquisition method Download PDF

Info

Publication number
WO2019044212A1
WO2019044212A1 PCT/JP2018/026597 JP2018026597W WO2019044212A1 WO 2019044212 A1 WO2019044212 A1 WO 2019044212A1 JP 2018026597 W JP2018026597 W JP 2018026597W WO 2019044212 A1 WO2019044212 A1 WO 2019044212A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoacoustic
excitation light
image
photoacoustic image
light generation
Prior art date
Application number
PCT/JP2018/026597
Other languages
French (fr)
Japanese (ja)
Inventor
温之 橋本
山本 勝也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019044212A1 publication Critical patent/WO2019044212A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography

Definitions

  • the photoacoustic wave generation unit disposed at the tip of the insert inserted in the subject detects the photoacoustic wave generated by receiving the excitation light emitted from the light source by the acoustic wave detection means.
  • the present invention relates to a photoacoustic image generation device that generates a photoacoustic image based on a signal obtained by the above-described method, and an image acquisition method in the photoacoustic image generation device.
  • Ultrasonography is known as a type of imaging that can noninvasively inspect the internal condition of a living body.
  • an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used.
  • the ultrasonic waves travel inside the living body and are reflected at the tissue interface.
  • the internal appearance can be imaged by receiving the reflected ultrasound by the ultrasound probe and calculating the distance based on the time until the reflected ultrasound returns to the ultrasound probe.
  • photoacoustic imaging which image-forms the inside of a biological body using a photoacoustic effect is known.
  • pulsed laser light is applied to the inside of a living body.
  • living tissue absorbs the energy of the pulsed laser light, and adiabatic expansion by the energy generates an ultrasonic wave (photoacoustic wave).
  • ultrasonic wave photoacoustic wave
  • Visualization of the inside of the living body based on the photoacoustic wave is possible by detecting the photoacoustic wave with an ultrasonic probe or the like and constructing a photoacoustic image based on the detection signal.
  • a puncture needle in which a photoacoustic wave generating unit for absorbing light and generating a photoacoustic wave is provided in the vicinity of the tip.
  • a photoacoustic wave generating unit for absorbing light and generating a photoacoustic wave is provided in the vicinity of the tip.
  • an optical fiber is provided up to the tip of the puncture needle, and the light guided by the optical fiber is irradiated to the photoacoustic wave generation unit.
  • the photoacoustic wave generated in the photoacoustic wave generation unit is detected by the ultrasonic probe, and a photoacoustic image is generated based on the detection signal.
  • a portion of the photoacoustic wave generation unit appears as a bright spot, and the position of the puncture needle can be confirmed using the photoacoustic image.
  • one image may be configured using a plurality of photoacoustic images, or one line may be used using reception data of a plurality of waves. In this case, there is a problem that the frame rate decreases.
  • the photoacoustic wave can be efficiently received by the ultrasonic probe by optimizing the pulse width of the excitation light for generating the photoacoustic wave according to the ultrasonic probe. Is disclosed. However, in the method of Patent Document 1, efficiency improvement is insufficient such that many acoustic waves of frequency components that do not contribute to imaging still occur.
  • Patent Document 2 discloses that the photoacoustic wave can be efficiently received by the ultrasonic probe by determining the pulse width and the number of pulses of the excitation light according to the reception frequency characteristic of the ultrasonic probe. ing. Further, in Patent Document 2, after the pulse width and the number of pulses of excitation light are determined according to the reception frequency characteristic of the ultrasonic probe, the resolution can be improved by changing the pulse repetition period while keeping the pulse width constant. It is stated that it can. However, if the pulse repetition period is changed after determining the pulse width of the excitation light, the band of the generated photoacoustic wave changes, and the reception frequency characteristic of the ultrasonic probe does not match, and the reception efficiency of the ultrasonic probe becomes There is a problem of falling.
  • the present invention in view of the above circumstances, in photoacoustic imaging using an insert provided with a photoacoustic wave generation unit in the vicinity of the tip, a photoacoustic image generation device with improved visible depth in a photoacoustic image, and light
  • An object of the present invention is to provide an image acquisition method in an acoustic image generation device.
  • the photoacoustic wave generation unit disposed at the tip of the insert inserted in the subject receives the excitation light emitted from the light source and the photoacoustic wave is generated.
  • a photoacoustic image generation apparatus including a photoacoustic image generation unit that generates a photoacoustic image based on a signal obtained by detection by an acoustic wave detection unit, a light source is based on a reception frequency characteristic of the acoustic wave detection unit.
  • a control unit that performs control to adjust the excitation light generation condition based on the pulse width of the excitation light generated in the light source and the number of pulses.
  • control unit adjusts the excitation light generation condition to approximate the frequency characteristic of the photoacoustic wave detected by the acoustic wave detection unit and the reception frequency characteristic of the acoustic wave detection unit. Control may be performed.
  • control unit stores a plurality of excitation light generation conditions having different frequency characteristics of the photoacoustic wave generated in the object, and the excitation light generation condition selected from among the plurality of stored excitation light generation conditions
  • the light source may be controlled based on
  • control unit stores a plurality of excitation light generation conditions for each type of acoustic wave detection means having different reception frequency characteristics, and the excitation light selected by the user from among the plurality of stored excitation light generation conditions
  • the light source may be controlled based on the generation condition.
  • control unit may adjust the excitation light generation condition based on the position of the distal end portion of the insert in the photoacoustic image.
  • the control unit may adjust the excitation light generation condition based on the image depth of the photoacoustic image.
  • control unit may adjust the excitation light generation condition based on the focal depth of the photoacoustic image.
  • the photoacoustic image generation unit may perform correction processing on the photoacoustic image based on the excitation light generation condition.
  • the photoacoustic wave generated when the photoacoustic wave generation unit disposed at the tip of the insert inserted into the subject receives the excitation light emitted from the light source is an acoustic wave. It is an image acquisition method in a photoacoustic image generation apparatus provided with the photoacoustic image generation part which produces a photoacoustic image based on the signal obtained by detecting by detection means, and the light source receives the acoustic wave detection means Based on the frequency characteristics, control is performed to adjust the excitation light generation conditions based on the pulse width of the excitation light generated in the light source and the number of pulses.
  • the excitation light generation condition is adjusted to perform control to make the frequency characteristic of the photoacoustic wave detected by the acoustic wave detection means closer to the reception frequency characteristic of the acoustic wave detection means.
  • a plurality of excitation light generation conditions having different frequency characteristics of the photoacoustic wave generated in the object are stored, and the light source is selected based on the excitation light generation conditions selected from among the plurality of stored excitation light generation conditions. May be controlled.
  • a plurality of excitation light generation conditions are stored for each type of reception frequency characteristics of the acoustic wave detection means different, and based on the excitation light generation conditions selected by the user from among the plurality of stored excitation light generation conditions.
  • the light source may be controlled.
  • the excitation light generation condition may be adjusted based on the position of the distal end portion of the insert in the photoacoustic image.
  • the excitation light generation condition may be adjusted based on the image depth of the photoacoustic image.
  • the excitation light generation condition may be adjusted based on the focal depth of the photoacoustic image.
  • correction process may be performed on the photoacoustic image based on the excitation light generation condition.
  • the reception frequency characteristics of the acoustic wave detecting means with respect to the light source in the photoacoustic imaging using the insert provided with the photoacoustic wave generating unit near the tip Since the control for adjusting the excitation light generation condition based on the pulse width of the excitation light generated in the light source and the plurality of pulses is performed based on the above, the reception efficiency of the photoacoustic wave in the acoustic wave detection means As a result, the visible depth in the photoacoustic image can be improved.
  • a block diagram showing a schematic configuration of a photoacoustic image generation apparatus according to a first embodiment of the present invention
  • Cross-sectional view showing the configuration of the tip portion of the puncture needle Graph showing the waveform of excitation light Graph showing the photoacoustic wave waveform Graph showing spectrum of photoacoustic wave Graph showing the photoacoustic wave waveform Graph showing the waveform of excitation light Graph showing spectrum of photoacoustic wave Graph showing the waveform of excitation light Graph showing spectrum of photoacoustic wave Graph showing the waveform of excitation light Graph showing spectrum of photoacoustic wave Graph showing the waveform of excitation light Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave Graph showing spectrum of photoacoustic wave
  • FIG. 1 is a schematic view showing an overall configuration of a photoacoustic image generation apparatus 10 according to a first embodiment of the present invention.
  • the shape of the ultrasonic probe (hereinafter simply referred to as a probe) 11 is schematically shown.
  • the photoacoustic image generating apparatus 10 includes a probe 11 (corresponding to an acoustic wave detecting unit according to the present invention), an ultrasonic unit 12, a laser unit 13, and a puncture needle 15 (the present invention). Equivalent to the insert of The puncture needle 15 and the laser unit 13 are connected by an optical fiber 15 b.
  • the puncture needle 15 is detachable from the laser unit 13 and is configured to be disposable.
  • an ultrasonic wave is used as the acoustic wave, but the invention is not limited to the ultrasonic wave, and if an appropriate frequency is selected in accordance with an object to be detected, measurement conditions, etc. Acoustic waves may be used.
  • the laser unit 13 is provided with a solid-state laser light source using, for example, YAG (yttrium aluminum garnet) and alexandrite.
  • the laser light emitted from the solid state laser light source of the laser unit 13 is guided by the optical fiber 15 b and is incident on the puncture needle 15.
  • the laser unit 13 of the present embodiment emits pulsed laser light in the near infrared wavelength range.
  • the near infrared wavelength range means and a wavelength range of 700 nm (nanometers) to 850 nm (nanometers).
  • the solid-state laser light source is used, but another laser light source such as a gas laser light source may be used, or a light source other than the laser light source may be used.
  • the laser unit 13 can also be configured using a LD (Laser Diode) or an LED (Light Emitting Diode). Since the present invention improves the reception efficiency of photoacoustic waves, the light source can be a low power LD or LED instead of a high power individual laser. In addition, in order to generate excitation light of an arbitrary waveform as described later, LD or LED is generally preferable to a solid laser.
  • LD Laser Diode
  • LED Light Emitting Diode
  • the puncture needle 15 is an embodiment of the insert of the present invention, and is a needle to be punctured by a subject.
  • FIG. 2 is a cross-sectional view including a central axis extending in the longitudinal direction of the puncture needle 15.
  • the puncture needle 15 has an opening at the tip formed at an acute angle, and guides the laser light emitted from the hollow needle body 15a and the laser unit 13 to the vicinity of the opening of the puncture needle 15 It includes an optical fiber 15b (corresponding to the light guide member of the present invention) and a photoacoustic wave generation unit 15c that absorbs the laser light emitted from the optical fiber 15b to generate a photoacoustic wave.
  • the optical fiber 15b and the photoacoustic wave generation unit 15c are disposed in the hollow portion 15d of the puncture needle main body 15a.
  • the optical fiber 15b is connected to the laser unit 13 via, for example, an optical connector provided at the proximal end of the laser unit 13 side. For example, several ⁇ J (micro joules) of laser light is emitted from the light emitting end of the optical fiber 15 b.
  • the photoacoustic wave generation unit 15c is provided at the light emitting end of the optical fiber 15b, and is provided near the tip of the puncture needle 15 and on the inner wall of the puncture needle main body 15a.
  • the photoacoustic wave generation unit 15c absorbs the laser light emitted from the optical fiber 15b to generate a photoacoustic wave.
  • the photoacoustic wave generation unit 15 c is formed of, for example, an epoxy resin mixed with a black pigment, a polyurethane resin, a fluorine resin, a silicone rubber, or the like.
  • the direction of the photoacoustic wave generation part 15c is drawn larger than the optical fiber 15b, it is not limited to this,
  • the photoacoustic wave generation part 15c is comparable as the diameter of the optical fiber 15b.
  • the size of the Moreover, the pigment mixed to the photoacoustic wave generation part 15c is not limited to a black pigment, An organic or inorganic pigment
  • the photoacoustic wave generation unit 15 c is not limited to the above-described one, and a metal film or an oxide film having light absorbability with respect to the wavelength of laser light may be used as the photoacoustic wave generation unit.
  • a film of iron oxide having high light absorbability with respect to the wavelength of the laser light, or an oxide film such as chromium oxide and manganese oxide can be used as the photoacoustic wave generation unit 15c.
  • a metal film such as Ti (titanium) or Pt (platinum) having a light absorbability lower than that of an oxide but having high biocompatibility may be used as the photoacoustic wave generation unit 15c.
  • the position at which the photoacoustic wave generation unit 15c is provided is not limited to the inner wall of the puncture needle main body 15a.
  • a metal film or oxide film which is the photoacoustic wave generation unit 15c, is formed on the light emitting end of the optical fiber 15b to a film thickness of, for example, about 100 nm (nanometers) by evaporation or the like.
  • the light emitting end may be covered.
  • at least a portion of the laser light emitted from the light emitting end of the optical fiber 15b is absorbed by the metal film or oxide film covering the light emitting end, and the photoacoustic wave is transmitted from the metal film or oxide film. It occurs.
  • the probe 11 detects the photoacoustic wave emitted from the photoacoustic wave generation unit 15 c after the puncture needle 15 is punctured in the subject.
  • the probe 11 includes an acoustic wave detection unit 20 that detects a photoacoustic wave.
  • the acoustic wave detection unit 20 includes a piezoelectric element array in which a plurality of piezoelectric elements for detecting photoacoustic waves are arranged in one dimension, and a multiplexer.
  • the piezoelectric element is an ultrasonic transducer, for example, a piezoelectric element or a piezoelectric element composed of a polymer film such as polyvinylidene fluoride (PVDF).
  • the acoustic wave detection unit 20 includes an acoustic lens, an acoustic matching layer, a backing material, a control circuit of a piezoelectric element array, and the like.
  • the ultrasound unit 12 includes a reception circuit 21, a reception memory 22, a data separation unit 23, a photoacoustic image generation unit 24, an ultrasound image generation unit 25, an image output unit 26, a transmission control circuit 27, and a control unit 28.
  • the control unit 28 generates excitation light generation conditions based on the pulse width of the laser light generated in the laser unit 13 and the number of pulses with respect to the laser unit 13 as the light source based on the reception frequency characteristic of the probe 11 Have functions such as control to adjust the
  • the ultrasound unit 12 typically includes a processor, a memory, a bus, and the like. In the ultrasound unit 12, programs related to photoacoustic image generation processing, ultrasound image generation processing, control processing of the laser unit 13, and the like are incorporated in a memory.
  • control unit 28 configured by a processor
  • the functions of the data separation unit 23, the photoacoustic image generation unit 24, the ultrasound image generation unit 25, and the image output unit 26 are realized. That is, these units are configured by a memory and a processor in which a program is incorporated.
  • the hardware configuration of the ultrasound unit 12 is not particularly limited, and a plurality of integrated circuits (ICs), processors, application specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), memories, etc. It can be realized by appropriately combining
  • the receiving circuit 21 receives the detection signal output from the probe 11, and stores the received detection signal in the receiving memory 22.
  • the receiving circuit 21 typically includes a low noise amplifier, a variable gain amplifier, a low pass filter, and an analog to digital converter.
  • the detection signal of the probe 11 is amplified by a low noise amplifier, then gain adjusted according to the depth by a variable gain amplifier, high frequency components are cut by a low pass filter, and then converted to digital signals by an AD converter It is stored in the memory 22.
  • the receiving circuit 21 is configured of, for example, one IC.
  • the probe 11 outputs a detection signal of the photoacoustic wave and a detection signal of the reflected ultrasonic wave
  • the reception memory 22 stores detection signals (sampling data) of the photoacoustic wave and the reflected ultrasonic wave subjected to AD conversion.
  • the data separation unit 23 reads the detection signal of the photoacoustic wave from the reception memory 22 and transmits the detection signal to the photoacoustic image generation unit 24. Further, the detection signal of the reflected ultrasound is read from the reception memory 22 and transmitted to the ultrasound image generation unit 25.
  • the photoacoustic image generation unit 24 generates a photoacoustic image based on the detection signal of the photoacoustic wave detected by the probe 11.
  • the photoacoustic image generation process includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the ultrasound image generation unit 25 generates an ultrasound image (reflection acoustic wave image) based on the detection signal of the reflection ultrasound detected by the probe 11.
  • the ultrasonic image generation process also includes image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like.
  • the image output unit 26 outputs the photoacoustic image and the ultrasound image to an image display unit 30 such as a display device.
  • the control unit 28 controls each unit in the ultrasonic unit 12.
  • the control unit 28 transmits a trigger signal to the laser unit 13 based on the excitation light generation condition, and causes the laser unit 13 to emit a laser beam. Further, according to the emission of the laser light, the sampling trigger signal is transmitted to the receiving circuit 21 to control the sampling start timing of the photoacoustic wave and the like.
  • the photoacoustic wave image and the ultrasound image may be displayed separately, or may be displayed in combination. By combining and displaying, it becomes possible to confirm where in the living body the tip of the puncture needle 15 is located, thereby enabling accurate and safe puncture.
  • the control unit 28 causes the laser unit 13 (light source) to generate laser light (excitation light) to be generated in the laser unit 13 based on the reception frequency characteristics of the probe 11 (acoustic wave detection means). Control is performed to adjust the excitation light generation condition based on the pulse width of and the number of pulses.
  • a center frequency is considered as a frequency characteristic here, it is good also as other frequency characteristics, such as peak frequency.
  • the control unit 28 performs control to adjust the excitation light generation condition based on the reception frequency characteristic of the probe 11 (acoustic wave detection means), that is, the center frequency in the sensitivity of the probe 11.
  • FIG. 3 is a graph showing the waveform of the excitation light
  • FIG. 4 is a graph showing the waveform of the photoacoustic wave
  • FIG. 5 is a graph showing the spectrum of the photoacoustic wave, and as shown in FIGS.
  • the pulse width t LP of the laser light is 1 / (2 ⁇ 6.5 M)
  • the pulse width t LP of the laser light is 1 / (2 ⁇ 6.5 M)
  • the reception frequency band of the probe 11 is a band having a width of 70% to 100% with respect to the center frequency, so the frequency of acoustic waves that can be received by the probe with a center frequency of 6.5 MHz (megahertz) is 3.2. It is considered to be about 9.8 MHz (megahertz).
  • the number of pulses of laser light is 1, as shown in FIG. 5, many photoacoustic waves other than the frequency that can be received by the probe 11 are generated, and the reception efficiency of the photoacoustic wave at the probe 11 is low.
  • the number of pulses of laser light is 2, most of the generated photoacoustic waves become frequencies that can be received by the probe 11, and the photoacoustic wave reception efficiency in the probe 11 is high.
  • the intensity of the photoacoustic wave generated at the second pulse can be made larger than that of the photoacoustic wave generated at the first pulse of the laser light. This is considered to be due to the following two effects.
  • the first is the temperature dependency of the photoacoustic wave generation unit 15c.
  • the intensity of the generated photoacoustic wave is proportional to the thermal expansion coefficient of the photoacoustic wave generation unit 15c.
  • the glass transition temperature of the black epoxy resin used for the photoacoustic wave generation unit 15c in the present embodiment is about 55 degrees, and the thermal expansion coefficient is 30 ⁇ 10 ⁇ 6 / ° C., 100 ⁇ below and above the glass transition temperature, respectively. It is greatly changed to 10 -6 / ° C. It is generally said that the thermal expansion coefficient does not change suddenly at the glass transition temperature, but changes stepwise at the near temperature (Epoxy technology company application guide).
  • the thermal expansion coefficient gradually increases in the vicinity of 55 degrees, and the intensity of the generated photoacoustic wave also gradually increases in the vicinity of 55 degrees.
  • the first pulse of the excitation light reaches the photoacoustic wave generation unit 15c
  • the light is absorbed and a photoacoustic wave is generated.
  • the temperature of the photoacoustic wave generation unit 15c rises due to the absorption of light energy.
  • the second pulse reaches the photoacoustic wave generation unit 15c, but the temperature of the photoacoustic wave generation unit 15c is higher than that of the first pulse, so the thermal expansion coefficient becomes high, and as shown in FIG.
  • the intensity of the photoacoustic wave also increases.
  • the second is the superposition of photoacoustic waves.
  • the photoacoustic wave is generated in all directions in the photoacoustic wave generation unit 15c.
  • the photoacoustic wave reaching the probe 11 is a superposition of one coming from the photoacoustic wave generation part 15 c directly in the probe direction and one coming from the photoacoustic wave generation part 15 c not directly but after being reflected by the needle tube toward the probe 11.
  • the center frequency of the generated photoacoustic wave is 9 MHz (megahertz)
  • the center wavelength of the photoacoustic wave in the photoacoustic wave generation unit 15c which is an epoxy resin (sound velocity 2500 to 3000 m / s (meters / second)) is 0 It is considered to be about .3 mm (millimeter).
  • the outer diameter of the optical fiber is about 0.15 mm (millimeter)
  • the distance from the center of the optical fiber to the needle tube is also about 0.15 mm (millimeter)
  • the photoacoustic wave directed from the photoacoustic wave generator 15c directly to the probe The path difference between the light beam reflected by the needle tube and the photoacoustic wave traveling in the probe direction is about 0.3 mm (millimeters).
  • the path difference corresponds to one wavelength, it is generated by the photoacoustic wave that is generated by the first pulse of the laser light and reflected by the needle tube and then travels in the probe direction and the second pulse of the laser light.
  • the photoacoustic waves coming toward the probe direction strengthen each other by superposition.
  • the path difference does not necessarily have to be an integral multiple of the wavelength, and can be reinforced even in the vicinity thereof.
  • the amplitude of the second pulse is larger than that of the first pulse.
  • an effect that can be suitably used is at least It can be seen that the pulse repetition period occurs in the range of 3 ⁇ s (microseconds) or less.
  • t LP t LR / 2
  • Fc 1 / between the pulse width t LP of the laser light, the repetition cycle t LR of the pulse of the laser light, and the center frequency Fc of the probe 11.
  • t LR t LR / 2
  • Fc 1 / between the pulse width t LP of the laser light, the repetition cycle t LR of the pulse of the laser light, and the center frequency Fc of the probe 11.
  • Fc 1 / between the pulse width t LP of the laser light, the repetition cycle t LR of the pulse of the laser light, and the center frequency Fc of the probe 11.
  • t LR ⁇ 3 ⁇ s (microseconds)
  • this corresponds to Fc> 0.33 MHz (megahertz)
  • at least the probe 11 with a center frequency of 0.33 MHz (megahertz) or more has the present effect. It can be seen that can be used.
  • the center frequency of the ultrasound probe 11 is 1 MHz (megahertz)
  • Bandwidth is broadened. The bandwidth of the photoacoustic wave generated can also be adjusted by utilizing this effect.
  • the generation efficiency of the photoacoustic wave in the puncture needle 15 can be enhanced and the reception efficiency of the photoacoustic wave in the probe 11 can be enhanced by performing the control described above, the visible depth of the puncture needle 15 in the photoacoustic image Can be significantly improved.
  • the number of pulses of the laser beam is not limited to two, and may be three or more.
  • the photoacoustic image generation unit 24 correct the tip position of the puncture needle 15 in the photoacoustic image according to the excitation light generation condition.
  • the center frequency of the photoacoustic wave generated in the object and the center frequency in the sensitivity of the probe 11 do not necessarily have to coincide with each other.
  • the center frequency of the photoacoustic wave may be set at an arbitrary position in the frequency band in the sensitivity of the probe 11 from the requirement of image quality and the like.
  • the photoacoustic image generation apparatus 10 according to the present embodiment is different from the photoacoustic image generation apparatus 10 according to the first embodiment only in the control method of the laser unit 13 (light source) in the control unit 28. Since the configuration is the same, the description of the same part is omitted.
  • control unit 28 is based on the reception frequency characteristics of the probe 11 (acoustic wave detection means) and the depth of the tip position of the puncture needle 15 with respect to the laser unit 13 (light source) at the time of photoacoustic image acquisition.
  • the pulse width of the laser light (excitation light) generated in the laser unit 13 so that the frequency characteristic of the photoacoustic wave immediately before the probe 11 approaches the reception frequency characteristic of the probe 11 (acoustic wave detection means), and Control is performed to adjust the excitation light generation condition based on the number of pulses and the pulse repetition period.
  • a center frequency is considered as a frequency characteristic here, it is good also as other frequency characteristics, such as peak frequency.
  • FIG. 7 is a graph showing the waveform of excitation light
  • FIG. 8 is a graph showing the spectrum of photoacoustic waves. As shown in FIG.
  • the excitation light generation condition (laser light L (excitation light) such that the center frequency of the photoacoustic wave generated in the subject M is 6.5 MHz (megahertz)
  • the pulse width t LP of 77 ns (nanoseconds), the pulse repetition period t LR of laser light L 154 ns (nanoseconds) was set, but the generated photoacoustic wave is attenuated in the subject M (In particular, as the high frequency component is attenuated more,) the center frequency of the photoacoustic wave immediately before the probe 11 changes from 6.5 MHz (megahertz) to a lower center frequency, as shown in FIG.
  • the excitation light generation condition is set so that the center frequency of the photoacoustic wave immediately before the probe 11 approaches the center frequency in the sensitivity of the probe 11 in consideration of the attenuation in the subject M. .
  • FIG. 9 is a graph showing the waveform of excitation light
  • FIG. 10 is a graph showing the spectrum of photoacoustic waves.
  • the number of pulses of the laser light L is 2, the pulse width t LP of the laser light L 62.5 ns (nanoseconds), and the pulse repetition period t LR of the laser light L 125 ns (nano In the case of second), as shown in FIG.
  • the center frequency of the photoacoustic wave immediately before the probe 11 can be set to 6.5 MHz (megahertz). Thereby, the receiving efficiency of the photoacoustic wave in the probe 11 can be raised rather than the said 1st Embodiment.
  • a plurality of patterns of excitation light generation conditions such that the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 are close to each other as a table in the ultrasonic unit 12 for each type of probe 11 in advance. (For example, when the tip position of the puncture needle 15 is located at a shallow location, for being located at an intermediate location, for being located at a deep location, etc.) and stored so that the user can select them Is desirable.
  • the detection conditions of the photoacoustic wave be optimized in accordance with each mode.
  • the excitation light generation condition may be automatically switched in accordance with the photoacoustic image or the image depth (maximum depth in the image) or the focal depth of an ultrasound image to be synthesized with the photoacoustic image.
  • the number of pulses of the laser beam is not limited to two, and may be three or more.
  • the photoacoustic image generation unit 24 it is desirable for the photoacoustic image generation unit 24 to correct the object position in the photoacoustic image according to the excitation light generation condition.
  • the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 do not necessarily have to coincide with each other.
  • the center frequency of the photoacoustic wave may be set at an arbitrary position in the frequency band in the sensitivity of the probe 11 from the requirement of image quality and the like.
  • the photoacoustic image generation apparatus 10 according to the present embodiment is different from the photoacoustic image generation apparatus 10 according to the first embodiment only in the control method of the laser unit 13 (light source) in the control unit 28. Since the configuration is the same, the description of the same part is omitted.
  • control unit 28 is based on the reception frequency characteristics of the probe 11 (acoustic wave detection means) and the depth of the tip position of the puncture needle 15 with respect to the laser unit 13 (light source) at the time of photoacoustic image acquisition. Excitation based on the pulse width of the laser light (excitation light) generated in the laser unit 13, the number of pulses, and the repetition period of the pulse so as to obtain appropriate reception characteristics such as resolution priority or sensitivity priority. Regarding the light generation condition, control is performed to select an optimum setting from among a plurality of settings in which the center frequency of the photoacoustic wave generated in the subject M is different. In addition, although a center frequency is considered as a frequency characteristic here, it is good also as other frequency characteristics, such as peak frequency.
  • the photoacoustic wave generated in the subject is attenuated in the subject (in particular, it attenuates more as the high frequency component) reaches the probe 11. Therefore, when the tip position of the puncture needle 15 is at a deep position, the excitation light generation condition is adjusted so that a low-frequency photoacoustic wave with a small attenuation rate per unit length is generated, and a shallow position. Since the influence of attenuation is small, the excitation light generation conditions are adjusted so that a high-resolution photoacoustic wave with high resolution is generated, and a more desirable photoacoustic image is obtained at each depth.
  • FIG. 11 is a graph showing the waveform of excitation light
  • FIG. 12 is a graph showing the spectrum of photoacoustic waves. As shown in FIG.
  • the conditions are a pulse width t LP of 62.5 ns (nanoseconds) of the laser light L (excitation light), and a repetition cycle t LR of 125 ns (nanoseconds) of the pulses of the laser light L. Further, the spectrum of the photoacoustic wave generated under these conditions is as shown in FIG.
  • FIG. 13 which is a graph showing the spectrum of the photoacoustic wave
  • the depth of the tip position of the puncture needle 15 is shallow (for example, 1 cm (centimeter))
  • the influence of attenuation in the subject is small.
  • the difference in intensity between the two photoacoustic waves is small.
  • the high frequency waveform may be selected with emphasis on resolution.
  • the main component of the high frequency photoacoustic wave is in the receivable frequency band (about 3.2 to 9.8 MHz (megahertz)) of the probe having a center frequency of 6.5 MHz (megahertz).
  • FIG. 14 which is a graph showing the spectrum of the photoacoustic wave
  • the tip position of the puncture needle 15 is deep (for example, 8 cm (centimeter)
  • the attenuation in the subject is large.
  • the difference in intensity between the two photoacoustic waves is large.
  • the low frequency waveform may be selected with emphasis on sensitivity.
  • the main component of the low frequency photoacoustic wave is in the receivable frequency band (about 3.2 to 9.8 MHz (megahertz)) of the probe having a center frequency of 6.5 MHz (megahertz).
  • a plurality of patterns of excitation light generation conditions such that the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 are close to each other as a table in the ultrasonic unit 12 for each type of probe 11 in advance. (For example, when the tip position of the puncture needle 15 is located at a shallow location, for being located at an intermediate location, for being located at a deep location, etc.) and stored so that the user can select them Is desirable.
  • the detection conditions of the photoacoustic wave be optimized in accordance with each mode.
  • the excitation light generation condition may be automatically switched in accordance with the photoacoustic image or the image depth (maximum depth in the image) or the focal depth of an ultrasound image to be synthesized with the photoacoustic image.
  • the number of pulses of the laser beam is not limited to three, and may be two or more.
  • the photoacoustic image generation unit 24 it is desirable for the photoacoustic image generation unit 24 to correct the object position in the photoacoustic image according to the excitation light generation condition.
  • the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 do not necessarily have to coincide with each other.
  • the center frequency of the photoacoustic wave may be set at an arbitrary position in the frequency band in the sensitivity of the probe 11 from the requirement of the image quality and the like.
  • the puncture needle 15 was used as one embodiment of an insert, as an insert, it is not limited to this.
  • the insert may be a radiofrequency ablation needle containing an electrode used for radiofrequency ablation, or a catheter inserted into a blood vessel.
  • the catheter may be inserted into a blood vessel. It may be a guide wire of Alternatively, it may be an optical fiber for laser treatment.
  • the insert of the present invention is not limited to a needle such as an injection needle, and may be a biopsy needle used for a biopsy. That is, the biopsy needle may be a biopsy needle which can be punctured into a subject to be examined in a living body to collect a tissue at a biopsy site in the subject. In that case, the photoacoustic wave may be generated in a collection unit (suction port) for suctioning and collecting the tissue at the biopsy site.
  • the needle may also be used as a guiding needle for deep puncture, such as subcutaneous and intra-abdominal organs.
  • an insert and a photoacoustic measuring device of the present invention are not limited only to the above-mentioned embodiment, and various modification from composition of the above-mentioned embodiment Also, modifications are included in the scope of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Provided is a photoacoustic image generation device offering improved visible depth of photoacoustic images in photoacoustic imaging using an inserted article comprising a photoacoustic wave generation unit provided near the distal end thereof. Also provided is an image acquisition method for use with the photoacoustic image generation device. A control unit of the photoacoustic image generation device performs a control for adjusting excitation light generation conditions for a light source that irradiates the photoacoustic wave generation unit disposed on the distal end section of the inserted article with excitation light, said conditions being based on the pulse width and multiple pulse counts for the excitation light generated by the light source, on the basis of the reception frequency properties of an acoustic wave detection means.

Description

光音響画像生成装置および画像取得方法Photoacoustic image generating apparatus and image acquiring method
 本発明は、被検体内に挿入された挿入物の先端部分に配された光音響波発生部が光源から出射された励起光を受けることにより発生させた光音響波を音響波検出手段により検出して得られた信号に基づいて光音響画像を生成する光音響画像生成装置、および光音響画像生成装置における画像取得方法に関する。 According to the present invention, the photoacoustic wave generation unit disposed at the tip of the insert inserted in the subject detects the photoacoustic wave generated by receiving the excitation light emitted from the light source by the acoustic wave detection means. The present invention relates to a photoacoustic image generation device that generates a photoacoustic image based on a signal obtained by the above-described method, and an image acquisition method in the photoacoustic image generation device.
 生体内部の状態を非侵襲で検査できる画像検査法の一種として、超音波検査法が知られている。超音波検査では、超音波の送信および受信が可能な超音波プローブが用いられる。超音波プローブから被検体(生体)に超音波を送信させると、その超音波は生体内部を進んでいき、組織界面で反射する。その反射超音波を超音波プローブによって受信し、反射超音波が超音波プローブに戻ってくるまでの時間に基づいて距離を計算することで、内部の様子を画像化することができる。 Ultrasonography is known as a type of imaging that can noninvasively inspect the internal condition of a living body. In ultrasonic examination, an ultrasonic probe capable of transmitting and receiving ultrasonic waves is used. When ultrasonic waves are transmitted from the ultrasonic probe to a subject (living body), the ultrasonic waves travel inside the living body and are reflected at the tissue interface. The internal appearance can be imaged by receiving the reflected ultrasound by the ultrasound probe and calculating the distance based on the time until the reflected ultrasound returns to the ultrasound probe.
 また、光音響効果を利用して生体の内部を画像化する光音響イメージングが知られている。一般に光音響イメージングでは、パルスレーザ光を生体内に照射する。生体内部では、生体組織がパルスレーザ光のエネルギーを吸収し、そのエネルギーによる断熱膨張により超音波(光音響波)が発生する。この光音響波を超音波プローブなどによって検出し、検出信号に基づいて光音響画像を構成することにより、光音響波に基づく生体内の可視化が可能である。 Moreover, photoacoustic imaging which image-forms the inside of a biological body using a photoacoustic effect is known. In general, in photoacoustic imaging, pulsed laser light is applied to the inside of a living body. Inside the living body, living tissue absorbs the energy of the pulsed laser light, and adiabatic expansion by the energy generates an ultrasonic wave (photoacoustic wave). Visualization of the inside of the living body based on the photoacoustic wave is possible by detecting the photoacoustic wave with an ultrasonic probe or the like and constructing a photoacoustic image based on the detection signal.
 また、光音響イメージングに関し、光を吸収して光音響波を発生する光音響波発生部を先端付近に設けた穿刺針が提案されている。この穿刺針においては、穿刺針の先端まで光ファイバが設けられ、その光ファイバによって導光された光が光音響波発生部に照射される。光音響波発生部において発生した光音響波は超音波プローブによって検出され、その検出信号に基づいて光音響画像が生成される。光音響画像では、光音響波発生部の部分が輝点として現れ、光音響画像を用いて穿刺針の位置の確認が可能となる。 Further, with regard to photoacoustic imaging, there has been proposed a puncture needle in which a photoacoustic wave generating unit for absorbing light and generating a photoacoustic wave is provided in the vicinity of the tip. In this puncture needle, an optical fiber is provided up to the tip of the puncture needle, and the light guided by the optical fiber is irradiated to the photoacoustic wave generation unit. The photoacoustic wave generated in the photoacoustic wave generation unit is detected by the ultrasonic probe, and a photoacoustic image is generated based on the detection signal. In the photoacoustic image, a portion of the photoacoustic wave generation unit appears as a bright spot, and the position of the puncture needle can be confirmed using the photoacoustic image.
特開2016-47232号公報JP, 2016-47232, A 特開2016-47077号公報JP, 2016-47077, A
 上記のような光音響イメージングにおいて、光音響画像における視認可能深さを向上させるためには、(1)被検体内で発生させる光音響波のエネルギーを大きくする、(2)発生した光音響波を検出する超音波プローブの受信効率を向上させる、(3)画像のバックグラウンドノイズを低減させる、の3つの方法が考えられる。 In the photoacoustic imaging as described above, in order to improve the visible depth in the photoacoustic image, (1) increase the energy of the photoacoustic wave generated in the object, (2) the generated photoacoustic wave There are three possible ways to improve the receiving efficiency of the ultrasonic probe that detects the (3) reduce the background noise of the image.
 (1)の被検体内で発生させる光音響波のエネルギーを大きくするためには、被検体内に照射される励起光のエネルギーを大きくすることが考えられるが、光源のハードウェアとしての制約により、励起光の1パルスのピークエネルギーを大きくするのは限度がある。また、(3)の画像のバックグラウンドノイズを低減させるためには、複数枚の光音響画像を利用して1枚の画像を構成すること、または、複数波の受信データを利用して1ラインの受信データを構成することが考えられるが、この場合には、フレームレートが低下するという問題がある。 In order to increase the energy of the photoacoustic wave generated in the object in (1), it is conceivable to increase the energy of the excitation light irradiated in the object, but due to the hardware limitation of the light source There is a limit to increasing the peak energy of one pulse of excitation light. Moreover, in order to reduce the background noise of the image of (3), one image may be configured using a plurality of photoacoustic images, or one line may be used using reception data of a plurality of waves. In this case, there is a problem that the frame rate decreases.
 そのため、光音響画像における視認可能深さを向上させるためには、(2)の発生した光音響波を検出する超音波プローブの受信効率を向上させることが好ましい。 Therefore, in order to improve the viewable depth in the photoacoustic image, it is preferable to improve the reception efficiency of the ultrasonic probe that detects the generated photoacoustic wave in (2).
 この点について、特許文献1では、光音響波を発生させるための励起光のパルス幅を超音波プローブに応じて最適化することで、光音響波を超音波プローブにおいて効率よく受信できるようにすることが開示されている。しかし特許文献1の方法では、画像化に寄与しない周波数成分の音響波がまだ多く発生するなど、効率化が不十分である。 In this regard, in Patent Document 1, the photoacoustic wave can be efficiently received by the ultrasonic probe by optimizing the pulse width of the excitation light for generating the photoacoustic wave according to the ultrasonic probe. Is disclosed. However, in the method of Patent Document 1, efficiency improvement is insufficient such that many acoustic waves of frequency components that do not contribute to imaging still occur.
 また、特許文献2では、超音波プローブの受信周波数特性に応じて励起光のパルス幅およびパルス数を決定することで、光音響波を超音波プローブにおいて効率よく受信できるようにすることが開示されている。さらに特許文献2では、超音波プローブの受信周波数特性に応じて励起光のパルス幅およびパルス数を決定した後、パルス幅を一定にしたままパルスの繰り返し周期を変えることで分解能を向上させることができると記載されている。しかしながら、励起光のパルス幅を決定したのちにパルスの繰り返し周期を変えると、発生する光音響波の帯域が変わってしまい、超音波プローブの受信周波数特性と合わなくなり、超音波プローブの受信効率が低下するという問題がある。 Further, Patent Document 2 discloses that the photoacoustic wave can be efficiently received by the ultrasonic probe by determining the pulse width and the number of pulses of the excitation light according to the reception frequency characteristic of the ultrasonic probe. ing. Further, in Patent Document 2, after the pulse width and the number of pulses of excitation light are determined according to the reception frequency characteristic of the ultrasonic probe, the resolution can be improved by changing the pulse repetition period while keeping the pulse width constant. It is stated that it can. However, if the pulse repetition period is changed after determining the pulse width of the excitation light, the band of the generated photoacoustic wave changes, and the reception frequency characteristic of the ultrasonic probe does not match, and the reception efficiency of the ultrasonic probe becomes There is a problem of falling.
 また、特許文献1および2ともに、光音響波発生部を先端付近に設けた穿刺針などの挿入物に関して何ら言及されていない。 Moreover, neither patent document 1 nor 2 mentions at all about inserts, such as a puncture needle which provided the photoacoustic wave generation part in the tip vicinity.
 本発明は、上記事情に鑑み、光音響波発生部を先端付近に設けた挿入物を用いた光音響イメージングにおいて、光音響画像における視認可能深さを向上させた光音響画像生成装置、および光音響画像生成装置における画像取得方法を提供することを目的とするものである。 The present invention, in view of the above circumstances, in photoacoustic imaging using an insert provided with a photoacoustic wave generation unit in the vicinity of the tip, a photoacoustic image generation device with improved visible depth in a photoacoustic image, and light An object of the present invention is to provide an image acquisition method in an acoustic image generation device.
 本発明の光音響画像生成装置は、被検体内に挿入された挿入物の先端部分に配された光音響波発生部が光源から出射された励起光を受けることにより発生させた光音響波を音響波検出手段により検出して得られた信号に基づいて光音響画像を生成する光音響画像生成部を備える光音響画像生成装置において、光源に対して、音響波検出手段の受信周波数特性に基づいて、光源において発生させる励起光のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行う制御部を備える。 In the photoacoustic image generation apparatus according to the present invention, the photoacoustic wave generation unit disposed at the tip of the insert inserted in the subject receives the excitation light emitted from the light source and the photoacoustic wave is generated. In a photoacoustic image generation apparatus including a photoacoustic image generation unit that generates a photoacoustic image based on a signal obtained by detection by an acoustic wave detection unit, a light source is based on a reception frequency characteristic of the acoustic wave detection unit. And a control unit that performs control to adjust the excitation light generation condition based on the pulse width of the excitation light generated in the light source and the number of pulses.
 本発明の光音響画像生成装置において、制御部は、励起光発生条件を調整して、音響波検出手段において検出される光音響波の周波数特性と、音響波検出手段の受信周波数特性とを近づける制御を行うものとしてもよい。 In the photoacoustic image generating apparatus according to the present invention, the control unit adjusts the excitation light generation condition to approximate the frequency characteristic of the photoacoustic wave detected by the acoustic wave detection unit and the reception frequency characteristic of the acoustic wave detection unit. Control may be performed.
 また、制御部は、被検体内において発生する光音響波の周波数特性が異なる複数の励起光発生条件を記憶し、記憶している複数の励起光発生条件の中から選択された励起光発生条件に基づいて光源を制御するものとしてもよい。 Further, the control unit stores a plurality of excitation light generation conditions having different frequency characteristics of the photoacoustic wave generated in the object, and the excitation light generation condition selected from among the plurality of stored excitation light generation conditions The light source may be controlled based on
 この場合、制御部は、音響波検出手段の受信周波数特性が異なる種類毎に複数の励起光発生条件を記憶し、記憶している複数の励起光発生条件の中からユーザに選択された励起光発生条件に基づいて光源を制御するものとしてもよい。 In this case, the control unit stores a plurality of excitation light generation conditions for each type of acoustic wave detection means having different reception frequency characteristics, and the excitation light selected by the user from among the plurality of stored excitation light generation conditions The light source may be controlled based on the generation condition.
 また、制御部は、光音響画像における挿入物の先端部分の位置に基づいて、励起光発生条件を調整するものとしてもよい。 In addition, the control unit may adjust the excitation light generation condition based on the position of the distal end portion of the insert in the photoacoustic image.
 また、制御部は、光音響画像の画像深さに基づいて、励起光発生条件を調整するものとしてもよい。 The control unit may adjust the excitation light generation condition based on the image depth of the photoacoustic image.
 また、制御部は、光音響画像の焦点深さに基づいて、励起光発生条件を調整するものとしてもよい。 In addition, the control unit may adjust the excitation light generation condition based on the focal depth of the photoacoustic image.
 また、光音響画像生成部は、励起光発生条件に基づいて、光音響画像に対して補正処理を施すものとしてもよい。 The photoacoustic image generation unit may perform correction processing on the photoacoustic image based on the excitation light generation condition.
 本発明の画像取得方法は、被検体内に挿入された挿入物の先端部分に配された光音響波発生部が光源から出射された励起光を受けることにより発生させた光音響波を音響波検出手段により検出して得られた信号に基づいて光音響画像を生成する光音響画像生成部を備える光音響画像生成装置における画像取得方法であって、光源に対して、音響波検出手段の受信周波数特性に基づいて、光源において発生させる励起光のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行う。 In the image acquisition method of the present invention, the photoacoustic wave generated when the photoacoustic wave generation unit disposed at the tip of the insert inserted into the subject receives the excitation light emitted from the light source is an acoustic wave. It is an image acquisition method in a photoacoustic image generation apparatus provided with the photoacoustic image generation part which produces a photoacoustic image based on the signal obtained by detecting by detection means, and the light source receives the acoustic wave detection means Based on the frequency characteristics, control is performed to adjust the excitation light generation conditions based on the pulse width of the excitation light generated in the light source and the number of pulses.
 本発明の画像取得方法においては、励起光発生条件を調整して、音響波検出手段において検出される光音響波の周波数特性と、音響波検出手段の受信周波数特性とを近づける制御を行うようにしてもよい。 In the image acquisition method of the present invention, the excitation light generation condition is adjusted to perform control to make the frequency characteristic of the photoacoustic wave detected by the acoustic wave detection means closer to the reception frequency characteristic of the acoustic wave detection means. May be
 また、被検体内において発生する光音響波の周波数特性が異なる複数の励起光発生条件を記憶し、記憶している複数の励起光発生条件の中から選択された励起光発生条件に基づいて光源を制御するようにしてもよい。 Further, a plurality of excitation light generation conditions having different frequency characteristics of the photoacoustic wave generated in the object are stored, and the light source is selected based on the excitation light generation conditions selected from among the plurality of stored excitation light generation conditions. May be controlled.
 この場合、音響波検出手段の受信周波数特性が異なる種類毎に複数の励起光発生条件を記憶し、記憶している複数の励起光発生条件の中からユーザに選択された励起光発生条件に基づいて光源を制御するようにしてもよい。 In this case, a plurality of excitation light generation conditions are stored for each type of reception frequency characteristics of the acoustic wave detection means different, and based on the excitation light generation conditions selected by the user from among the plurality of stored excitation light generation conditions. The light source may be controlled.
 また、光音響画像における挿入物の先端部分の位置に基づいて、励起光発生条件を調整するものとしてもよい。 In addition, the excitation light generation condition may be adjusted based on the position of the distal end portion of the insert in the photoacoustic image.
 また、光音響画像の画像深さに基づいて、励起光発生条件を調整するようにしてもよい。 Further, the excitation light generation condition may be adjusted based on the image depth of the photoacoustic image.
 また、光音響画像の焦点深さに基づいて、励起光発生条件を調整するようにしてもよい。 Further, the excitation light generation condition may be adjusted based on the focal depth of the photoacoustic image.
 また、励起光発生条件に基づいて、光音響画像に対して補正処理を施すようにしてもよい。 Further, the correction process may be performed on the photoacoustic image based on the excitation light generation condition.
 本発明の光音響画像生成装置および画像取得方法によれば、光音響波発生部を先端付近に設けた挿入物を用いた光音響イメージングにおいて、光源に対して、音響波検出手段の受信周波数特性に基づいて、光源において発生させる励起光のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行うようにしたので、音響波検出手段における光音響波の受信効率を向上させることができ、その結果、光音響画像における視認可能深さを向上させることができる。 According to the photoacoustic image generating apparatus and the image acquiring method of the present invention, the reception frequency characteristics of the acoustic wave detecting means with respect to the light source in the photoacoustic imaging using the insert provided with the photoacoustic wave generating unit near the tip. Since the control for adjusting the excitation light generation condition based on the pulse width of the excitation light generated in the light source and the plurality of pulses is performed based on the above, the reception efficiency of the photoacoustic wave in the acoustic wave detection means As a result, the visible depth in the photoacoustic image can be improved.
本発明の第1の実施形態の光音響画像生成装置の概略構成を示すブロック図A block diagram showing a schematic configuration of a photoacoustic image generation apparatus according to a first embodiment of the present invention 穿刺針の先端部分の構成を示す断面図Cross-sectional view showing the configuration of the tip portion of the puncture needle 励起光の波形を示すグラフGraph showing the waveform of excitation light 光音響波の波形を示すグラフGraph showing the photoacoustic wave waveform 光音響波のスペクトルを示すグラフGraph showing spectrum of photoacoustic wave 光音響波の波形を示すグラフGraph showing the photoacoustic wave waveform 励起光の波形を示すグラフGraph showing the waveform of excitation light 光音響波のスペクトルを示すグラフGraph showing spectrum of photoacoustic wave 励起光の波形を示すグラフGraph showing the waveform of excitation light 光音響波のスペクトルを示すグラフGraph showing spectrum of photoacoustic wave 励起光の波形を示すグラフGraph showing the waveform of excitation light 光音響波のスペクトルを示すグラフGraph showing spectrum of photoacoustic wave 光音響波のスペクトルを示すグラフGraph showing spectrum of photoacoustic wave 光音響波のスペクトルを示すグラフGraph showing spectrum of photoacoustic wave
 以下、図面を参照して、本発明の実施形態について詳しく説明する。図1は、本発明の第1の実施形態の光音響画像生成装置10の全体構成を示す概略図である。なお図1において、超音波プローブ(以下、単にプローブという)11の形状は概略的に示してある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an overall configuration of a photoacoustic image generation apparatus 10 according to a first embodiment of the present invention. In FIG. 1, the shape of the ultrasonic probe (hereinafter simply referred to as a probe) 11 is schematically shown.
 本実施形態の光音響画像生成装置10は、図1に示すように、プローブ11(本発明の音響波検出手段に相当する)、超音波ユニット12、レーザユニット13、および穿刺針15(本発明の挿入物に相当する)を備えている。穿刺針15とレーザユニット13とは、光ファイバ15bによって接続されている。穿刺針15は、レーザユニット13に対して着脱可能なものであり、ディスポーザブルに構成されたものである。なお、本実施形態では、音響波として超音波を用いるが、超音波に限定されるものでは無く、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数の音響波を用いても良い。 As shown in FIG. 1, the photoacoustic image generating apparatus 10 according to the present embodiment includes a probe 11 (corresponding to an acoustic wave detecting unit according to the present invention), an ultrasonic unit 12, a laser unit 13, and a puncture needle 15 (the present invention). Equivalent to the insert of The puncture needle 15 and the laser unit 13 are connected by an optical fiber 15 b. The puncture needle 15 is detachable from the laser unit 13 and is configured to be disposable. In the present embodiment, an ultrasonic wave is used as the acoustic wave, but the invention is not limited to the ultrasonic wave, and if an appropriate frequency is selected in accordance with an object to be detected, measurement conditions, etc. Acoustic waves may be used.
 レーザユニット13は、例えばYAG(イットリウム・アルミニウム・ガーネット)およびアレキサンドライトなどを用いた固体レーザ光源を備えている。レーザユニット13の固体レーザ光源から出射されたレーザ光は、光ファイバ15bによって導光され、穿刺針15に入射される。本実施形態のレーザユニット13は、近赤外波長域のパルスレーザ光を出射するものである。近赤外波長域とは、および700nm(ナノメートル)~850nm(ナノメートル)の波長域を意味する。なお、本実施形態においては、固体レーザ光源を用いるようにしたが、気体レーザ光源などその他のレーザ光源を用いるようにしてもよいし、レーザ光源以外の光源を用いるようにしてもよい。 The laser unit 13 is provided with a solid-state laser light source using, for example, YAG (yttrium aluminum garnet) and alexandrite. The laser light emitted from the solid state laser light source of the laser unit 13 is guided by the optical fiber 15 b and is incident on the puncture needle 15. The laser unit 13 of the present embodiment emits pulsed laser light in the near infrared wavelength range. The near infrared wavelength range means and a wavelength range of 700 nm (nanometers) to 850 nm (nanometers). In the present embodiment, the solid-state laser light source is used, but another laser light source such as a gas laser light source may be used, or a light source other than the laser light source may be used.
 また、レーザユニット13は、LD(Laser Diode)またはLED(Light Emitting Diode)を用いて構成することもできる。本発明は光音響波の受信効率を向上させるものであるため、光源について、大出力である個体レーザの代わりに、より低出力であるLDまたはLEDとすることもできる。また、後述のように任意の波形の励起光を発生させるためには、一般的に個体レーザよりもLDまたはLEDの方が好適である。 The laser unit 13 can also be configured using a LD (Laser Diode) or an LED (Light Emitting Diode). Since the present invention improves the reception efficiency of photoacoustic waves, the light source can be a low power LD or LED instead of a high power individual laser. In addition, in order to generate excitation light of an arbitrary waveform as described later, LD or LED is generally preferable to a solid laser.
 穿刺針15は、本発明の挿入物の一実施形態であり、被検体に穿刺される針である。図2は、穿刺針15の長さ方向に伸びる中心軸を含む断面図である。穿刺針15は、鋭角に形成された先端に開口を有し、中空状に形成された穿刺針本体15aと、レーザユニット13から出射されたレーザ光を穿刺針15の開口の近傍まで導光する光ファイバ15b(本発明の導光部材に相当する)と、光ファイバ15bから出射したレーザ光を吸収して光音響波を発生する光音響波発生部15cとを含む。 The puncture needle 15 is an embodiment of the insert of the present invention, and is a needle to be punctured by a subject. FIG. 2 is a cross-sectional view including a central axis extending in the longitudinal direction of the puncture needle 15. The puncture needle 15 has an opening at the tip formed at an acute angle, and guides the laser light emitted from the hollow needle body 15a and the laser unit 13 to the vicinity of the opening of the puncture needle 15 It includes an optical fiber 15b (corresponding to the light guide member of the present invention) and a photoacoustic wave generation unit 15c that absorbs the laser light emitted from the optical fiber 15b to generate a photoacoustic wave.
 光ファイバ15bおよび光音響波発生部15cは、穿刺針本体15aの中空部15dに配置される。光ファイバ15bは、例えばレーザユニット13側基端部に設けられた光コネクタを介してレーザユニット13に接続される。光ファイバ15bの光出射端からは、例えば数μJ(マイクロジュール)のレーザ光が出射される。 The optical fiber 15b and the photoacoustic wave generation unit 15c are disposed in the hollow portion 15d of the puncture needle main body 15a. The optical fiber 15b is connected to the laser unit 13 via, for example, an optical connector provided at the proximal end of the laser unit 13 side. For example, several μJ (micro joules) of laser light is emitted from the light emitting end of the optical fiber 15 b.
 光音響波発生部15cは、光ファイバ15bの光出射端に設けられており、穿刺針15の先端近傍かつ穿刺針本体15aの内壁に設けられる。光音響波発生部15cは、光ファイバ15bから出射されるレーザ光を吸収して光音響波を発生する。光音響波発生部15cは、例えば黒顔料を混合したエポキシ樹脂、ポリウレタン樹脂、フッ素樹脂およびシリコーンゴムなどから形成されている。なお、図2では、光ファイバ15bよりも光音響波発生部15cの方が大きく描かれているが、これには限定されず、光音響波発生部15cは、光ファイバ15bの径と同程度の大きさであってもよい。また、光音響波発生部15cに混合する顔料は、黒顔料に限定されず、近赤外吸収色素など、レーザ光の波長を吸収する有機あるいは無機の色素でもよい。 The photoacoustic wave generation unit 15c is provided at the light emitting end of the optical fiber 15b, and is provided near the tip of the puncture needle 15 and on the inner wall of the puncture needle main body 15a. The photoacoustic wave generation unit 15c absorbs the laser light emitted from the optical fiber 15b to generate a photoacoustic wave. The photoacoustic wave generation unit 15 c is formed of, for example, an epoxy resin mixed with a black pigment, a polyurethane resin, a fluorine resin, a silicone rubber, or the like. In addition, in FIG. 2, although the direction of the photoacoustic wave generation part 15c is drawn larger than the optical fiber 15b, it is not limited to this, The photoacoustic wave generation part 15c is comparable as the diameter of the optical fiber 15b. The size of the Moreover, the pigment mixed to the photoacoustic wave generation part 15c is not limited to a black pigment, An organic or inorganic pigment | dye which absorbs the wavelength of a laser beam, such as near-infrared absorption pigment | dye, may be sufficient.
 光音響波発生部15cは、上述したものに限定されず、レーザ光の波長に対して光吸収性を有する金属膜または酸化物の膜を、光音響波発生部としてもよい。例えば光音響波発生部15cとして、レーザ光の波長に対して光吸収性が高い酸化鉄や、酸化クロムおよび酸化マンガンなどの酸化物の膜を用いることができる。あるいは、光吸収性は酸化物よりも低いが生体適合性が高いTi(チタン)やPt(白金)などの金属膜を光音響波発生部15cとして用いてもよい。また、光音響波発生部15cが設けられる位置は穿刺針本体15aの内壁には限定されない。例えば光音響波発生部15cである金属膜または酸化物の膜を、蒸着などにより光ファイバ15bの光出射端上に例えば100nm(ナノメートル)程度の膜厚で製膜し、酸化物の膜が光出射端を覆うようにしてもよい。この場合、光ファイバ15bの光出射端から出射されたレーザ光の少なくとも一部は、光出射端を覆う金属膜または酸化物の膜で吸収され、金属膜または酸化物の膜から光音響波が生じる。 The photoacoustic wave generation unit 15 c is not limited to the above-described one, and a metal film or an oxide film having light absorbability with respect to the wavelength of laser light may be used as the photoacoustic wave generation unit. For example, as the photoacoustic wave generation unit 15c, a film of iron oxide having high light absorbability with respect to the wavelength of the laser light, or an oxide film such as chromium oxide and manganese oxide can be used. Alternatively, a metal film such as Ti (titanium) or Pt (platinum) having a light absorbability lower than that of an oxide but having high biocompatibility may be used as the photoacoustic wave generation unit 15c. Further, the position at which the photoacoustic wave generation unit 15c is provided is not limited to the inner wall of the puncture needle main body 15a. For example, a metal film or oxide film, which is the photoacoustic wave generation unit 15c, is formed on the light emitting end of the optical fiber 15b to a film thickness of, for example, about 100 nm (nanometers) by evaporation or the like. The light emitting end may be covered. In this case, at least a portion of the laser light emitted from the light emitting end of the optical fiber 15b is absorbed by the metal film or oxide film covering the light emitting end, and the photoacoustic wave is transmitted from the metal film or oxide film. It occurs.
 図1に戻り、プローブ11は、被検体に穿刺針15が穿刺された後に、光音響波発生部15cから発せられた光音響波を検出する。プローブ11は、光音響波を検出する音響波検出部20を備えている。 Returning to FIG. 1, the probe 11 detects the photoacoustic wave emitted from the photoacoustic wave generation unit 15 c after the puncture needle 15 is punctured in the subject. The probe 11 includes an acoustic wave detection unit 20 that detects a photoacoustic wave.
 音響波検出部20は、光音響波を検出する複数の圧電素子が一次元に配列された圧電素子アレイと、マルチプレクサとを備えている。圧電素子は、超音波振動子であり、たとえば圧電セラミクス、またはポリフッ化ビニリデン(PVDF)のような高分子フィルムから構成される圧電素子である。また、音響波検出部20は、図示省略しているが、音響レンズ、音響整合層、バッキング材、および圧電素子アレイの制御回路などを備えている。 The acoustic wave detection unit 20 includes a piezoelectric element array in which a plurality of piezoelectric elements for detecting photoacoustic waves are arranged in one dimension, and a multiplexer. The piezoelectric element is an ultrasonic transducer, for example, a piezoelectric element or a piezoelectric element composed of a polymer film such as polyvinylidene fluoride (PVDF). Further, although not shown, the acoustic wave detection unit 20 includes an acoustic lens, an acoustic matching layer, a backing material, a control circuit of a piezoelectric element array, and the like.
 超音波ユニット12は、受信回路21、受信メモリ22、データ分離部23、光音響画像生成部24、超音波画像生成部25、画像出力部26、送信制御回路27、および制御部28を有する。制御部28は、光源としてのレーザユニット13に対して、プローブ11の受信周波数特性に基づいて、レーザユニット13において発生させるレーザ光のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行うなどの機能を備える。超音波ユニット12は、典型的にはプロセッサ、メモリ、およびバスなどを有する。超音波ユニット12には、光音響画像生成処理、超音波画像生成処理、およびレーザユニット13の制御処理などに関するプログラムがメモリに組み込まれている。プロセッサによって構成される制御部28によってそのプログラムが動作することで、データ分離部23、光音響画像生成部24、超音波画像生成部25および画像出力部26の機能が実現する。すなわち、これらの各部は、プログラムが組み込まれたメモリとプロセッサにより構成されている。 The ultrasound unit 12 includes a reception circuit 21, a reception memory 22, a data separation unit 23, a photoacoustic image generation unit 24, an ultrasound image generation unit 25, an image output unit 26, a transmission control circuit 27, and a control unit 28. The control unit 28 generates excitation light generation conditions based on the pulse width of the laser light generated in the laser unit 13 and the number of pulses with respect to the laser unit 13 as the light source based on the reception frequency characteristic of the probe 11 Have functions such as control to adjust the The ultrasound unit 12 typically includes a processor, a memory, a bus, and the like. In the ultrasound unit 12, programs related to photoacoustic image generation processing, ultrasound image generation processing, control processing of the laser unit 13, and the like are incorporated in a memory. When the program is operated by the control unit 28 configured by a processor, the functions of the data separation unit 23, the photoacoustic image generation unit 24, the ultrasound image generation unit 25, and the image output unit 26 are realized. That is, these units are configured by a memory and a processor in which a program is incorporated.
 なお、超音波ユニット12のハードウェアの構成は特に限定されるものではなく、複数のIC(Integrated Circuit)、プロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、およびメモリなどを適宜組み合わせることによって実現することができる。 The hardware configuration of the ultrasound unit 12 is not particularly limited, and a plurality of integrated circuits (ICs), processors, application specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), memories, etc. It can be realized by appropriately combining
 受信回路21は、プローブ11が出力する検出信号を受信し、受信した検出信号を受信メモリ22に格納する。受信回路21は、典型的には、低ノイズアンプ、可変ゲインアンプ、ローパスフィルタ、およびAD変換器(Analog to Digital Convertor)を含む。プローブ11の検出信号は、低ノイズアンプで増幅された後に、可変ゲインアンプで深度に応じたゲイン調整がなされ、ローパスフィルタで高周波成分がカットされた後にAD変換器でデジタル信号に変換され、受信メモリ22に格納される。受信回路21は、例えば1つのICで構成される。 The receiving circuit 21 receives the detection signal output from the probe 11, and stores the received detection signal in the receiving memory 22. The receiving circuit 21 typically includes a low noise amplifier, a variable gain amplifier, a low pass filter, and an analog to digital converter. The detection signal of the probe 11 is amplified by a low noise amplifier, then gain adjusted according to the depth by a variable gain amplifier, high frequency components are cut by a low pass filter, and then converted to digital signals by an AD converter It is stored in the memory 22. The receiving circuit 21 is configured of, for example, one IC.
 プローブ11は、光音響波の検出信号と反射超音波の検出信号とを出力し、受信メモリ22には、AD変換された光音響波および反射超音波の検出信号(サンプリングデータ)が格納される。データ分離部23は、受信メモリ22から光音響波の検出信号を読み出し、光音響画像生成部24に送信する。また、受信メモリ22から反射超音波の検出信号を読み出し、超音波画像生成部25に送信する。 The probe 11 outputs a detection signal of the photoacoustic wave and a detection signal of the reflected ultrasonic wave, and the reception memory 22 stores detection signals (sampling data) of the photoacoustic wave and the reflected ultrasonic wave subjected to AD conversion. . The data separation unit 23 reads the detection signal of the photoacoustic wave from the reception memory 22 and transmits the detection signal to the photoacoustic image generation unit 24. Further, the detection signal of the reflected ultrasound is read from the reception memory 22 and transmitted to the ultrasound image generation unit 25.
 光音響画像生成部24は、プローブ11で検出された光音響波の検出信号に基づいて光音響画像を生成する。光音響画像の生成処理は、例えば位相整合加算などの画像再構成、検波および対数変換などを含む。超音波画像生成部25は、プローブ11で検出された反射超音波の検出信号に基づいて超音波画像(反射音響波画像)を生成する。超音波画像の生成処理も、位相整合加算などの画像再構成、検波および対数変換などを含む。画像出力部26は、光音響画像と超音波画像とをディスプレイ装置などの画像表示部30に出力する。 The photoacoustic image generation unit 24 generates a photoacoustic image based on the detection signal of the photoacoustic wave detected by the probe 11. The photoacoustic image generation process includes, for example, image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like. The ultrasound image generation unit 25 generates an ultrasound image (reflection acoustic wave image) based on the detection signal of the reflection ultrasound detected by the probe 11. The ultrasonic image generation process also includes image reconstruction such as phase matching addition, detection, logarithmic conversion, and the like. The image output unit 26 outputs the photoacoustic image and the ultrasound image to an image display unit 30 such as a display device.
 制御部28は、超音波ユニット12内の各部を制御する。制御部28は、光音響画像を取得する場合は、レーザユニット13に励起光発生条件に基づいたトリガ信号を送信し、レーザユニット13からレーザ光を出射させる。また、レーザ光の出射に合わせて、受信回路21にサンプリングトリガ信号を送信し、光音響波のサンプリング開始タイミングなどを制御する。 The control unit 28 controls each unit in the ultrasonic unit 12. When acquiring the photoacoustic image, the control unit 28 transmits a trigger signal to the laser unit 13 based on the excitation light generation condition, and causes the laser unit 13 to emit a laser beam. Further, according to the emission of the laser light, the sampling trigger signal is transmitted to the receiving circuit 21 to control the sampling start timing of the photoacoustic wave and the like.
 画像表示部30においては、光音響波画像と超音波画像とを別々に表示してもよいし、合成して表示するようにしてもよい。合成して表示することで、穿刺針15の先端が生体内のどこにあるかを確認することができるようになるため、正確で安全な穿刺が可能になる。 In the image display unit 30, the photoacoustic wave image and the ultrasound image may be displayed separately, or may be displayed in combination. By combining and displaying, it becomes possible to confirm where in the living body the tip of the puncture needle 15 is located, thereby enabling accurate and safe puncture.
 ここで、本実施形態の光音響画像生成装置10における光音響画像の取得方法について詳細に説明する。光音響画像取得時において、制御部28は、レーザユニット13(光源)に対して、プローブ11(音響波検出手段)の受信周波数特性に基づいて、レーザユニット13において発生させるレーザ光(励起光)のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行う。なお、ここでは周波数特性として中心周波数を考えるが、ピーク周波数など、他の周波数特性としてもよい。 Here, the method of acquiring the photoacoustic image in the photoacoustic image generation apparatus 10 according to the present embodiment will be described in detail. At the time of photoacoustic image acquisition, the control unit 28 causes the laser unit 13 (light source) to generate laser light (excitation light) to be generated in the laser unit 13 based on the reception frequency characteristics of the probe 11 (acoustic wave detection means). Control is performed to adjust the excitation light generation condition based on the pulse width of and the number of pulses. In addition, although a center frequency is considered as a frequency characteristic here, it is good also as other frequency characteristics, such as peak frequency.
 制御部28は、プローブ11(音響波検出手段)の受信周波数特性、すなわちプローブ11の感度における中心周波数に基づいて、励起光発生条件を調整する制御を行う。 The control unit 28 performs control to adjust the excitation light generation condition based on the reception frequency characteristic of the probe 11 (acoustic wave detection means), that is, the center frequency in the sensitivity of the probe 11.
 例えば、プローブ11の感度における中心周波数が6.5MHz(メガヘルツ)の場合を考える。この場合、被検体内で発生させる光音響波の中心周波数が6.5MHz(メガヘルツ)付近になることが望ましい。図3は励起光の波形を示すグラフ、図4は光音響波の波形を示すグラフ、図5は光音響波のスペクトルを示すグラフであり、図3~5に示すように、光音響波はレーザ光(励起光)の波形における強度エッジにて発生すると考えることができるため、レーザ光のパルス数が1の場合には、レーザ光のパルス幅tLP=1/(2×6.5M)=77ns(ナノ秒)に設定すると、6.5MHz(メガヘルツ)の中心周波数をもつ光音響波を発生させることができる。 For example, consider the case where the center frequency in the sensitivity of the probe 11 is 6.5 MHz (megahertz). In this case, it is desirable that the center frequency of the photoacoustic wave generated in the subject be around 6.5 MHz (megahertz). FIG. 3 is a graph showing the waveform of the excitation light, FIG. 4 is a graph showing the waveform of the photoacoustic wave, FIG. 5 is a graph showing the spectrum of the photoacoustic wave, and as shown in FIGS. Since it can be considered that generation occurs at the intensity edge in the waveform of the laser light (excitation light), when the pulse number of the laser light is 1, the pulse width t LP of the laser light is 1 / (2 × 6.5 M) When set to 77 ns (nanoseconds), it is possible to generate a photoacoustic wave having a center frequency of 6.5 MHz (megahertz).
 それに対し、同じく図3~5に示すように、レーザ光のパルス数を2以上とし、レーザ光のパルス幅tLP=1/(2×6.5M)=77ns(ナノ秒)に、レーザ光のパルスの繰り返し周期tLR=1/6.5M=154ns(ナノ秒)に設定すると、6.5MHz(メガヘルツ)付近に中心周波数をもち、ピークのスペクトル強度がパルス数1の場合より大きく、帯域幅がパルス数1の場合より狭い光音響波を発生させることができる。 On the other hand, as shown in FIGS. 3 to 5, the laser light pulse number is set to 2 or more, and the laser light pulse width t LP = 1 / (2 × 6.5 M) = 77 ns (nanosecond) Setting the pulse repetition period t LR = 1 / 6.5 M = 154 ns (nanoseconds), the center frequency is around 6.5 MHz (megahertz), and the peak spectral intensity is larger than in the case of one pulse; A narrower photoacoustic wave can be generated than in the case of one pulse in width.
 一般にプローブ11の受信周波数帯域は、中心周波数に対して70%~100%の幅を持つ帯域であるため、中心周波数6.5MHz(メガヘルツ)のプローブで受信可能な音響波の周波数は3.2~9.8MHz(メガヘルツ)程度と考えられる。レーザ光のパルス数が1の場合、図5に示すように、プローブ11で受信可能な周波数以外の光音響波が多く発生してしまっており、プローブ11における光音響波の受信効率が低い。一方、レーザ光のパルス数が2の場合、発生する光音響波の多くがプローブ11で受信可能な周波数となり、プローブ11における光音響波の受信効率が高い。 Generally, the reception frequency band of the probe 11 is a band having a width of 70% to 100% with respect to the center frequency, so the frequency of acoustic waves that can be received by the probe with a center frequency of 6.5 MHz (megahertz) is 3.2. It is considered to be about 9.8 MHz (megahertz). When the number of pulses of laser light is 1, as shown in FIG. 5, many photoacoustic waves other than the frequency that can be received by the probe 11 are generated, and the reception efficiency of the photoacoustic wave at the probe 11 is low. On the other hand, when the number of pulses of laser light is 2, most of the generated photoacoustic waves become frequencies that can be received by the probe 11, and the photoacoustic wave reception efficiency in the probe 11 is high.
 さらに、穿刺針15を用いた場合、図4に示すように、レーザ光の1パルス目で発生する光音響波よりも、2パルス目で発生する光音響波の強度を大きくすることができる。これは、以下の2つの効果によるものと考えられる。 Furthermore, when the puncture needle 15 is used, as shown in FIG. 4, the intensity of the photoacoustic wave generated at the second pulse can be made larger than that of the photoacoustic wave generated at the first pulse of the laser light. This is considered to be due to the following two effects.
 1つ目は光音響波発生部15cの温度依存性である。発生する光音響波の強度は光音響波発生部15cの熱膨脹係数に比例する。本実施形態で光音響波発生部15cに用いている黒色エポキシ樹脂のガラス転移温度は55度程度であり、熱膨張係数はガラス転移温度以下および以上でそれぞれ30×10-6/℃、100×10-6/℃と大きく変化している。一般に熱膨張係数はガラス転移温度で突然変化するのではなく、近傍温度で段階的に変化するといわれている(Epoxy technology社 Application guide)。そのため55度近傍では熱膨張係数が段階的に大きくなっており、発生する光音響波の強度も55度近傍では徐々に大きくなる。励起光の1パルス目が光音響波発生部15cに達すると、光は吸収され光音響波が発生する。このとき光エネルギーの吸収により光音響波発生部15cの温度は上昇する。次に2パルス目が光音響波発生部15cに達するが、光音響波発生部15cの温度は1パルス目の時よりも高いため熱膨張係数が高くなり、図4に示すように、発生する光音響波の強度も高くなる。 The first is the temperature dependency of the photoacoustic wave generation unit 15c. The intensity of the generated photoacoustic wave is proportional to the thermal expansion coefficient of the photoacoustic wave generation unit 15c. The glass transition temperature of the black epoxy resin used for the photoacoustic wave generation unit 15c in the present embodiment is about 55 degrees, and the thermal expansion coefficient is 30 × 10 −6 / ° C., 100 × below and above the glass transition temperature, respectively. It is greatly changed to 10 -6 / ° C. It is generally said that the thermal expansion coefficient does not change suddenly at the glass transition temperature, but changes stepwise at the near temperature (Epoxy technology company application guide). Therefore, the thermal expansion coefficient gradually increases in the vicinity of 55 degrees, and the intensity of the generated photoacoustic wave also gradually increases in the vicinity of 55 degrees. When the first pulse of the excitation light reaches the photoacoustic wave generation unit 15c, the light is absorbed and a photoacoustic wave is generated. At this time, the temperature of the photoacoustic wave generation unit 15c rises due to the absorption of light energy. Next, the second pulse reaches the photoacoustic wave generation unit 15c, but the temperature of the photoacoustic wave generation unit 15c is higher than that of the first pulse, so the thermal expansion coefficient becomes high, and as shown in FIG. The intensity of the photoacoustic wave also increases.
 2つ目は光音響波の重ね合わせである。光音響波は光音響波発生部15cにおいてあらゆる方向へ向けて発生する。プローブ11に達する光音響波は、光音響波発生部15cから直接プローブ方向に向かってきたものと、直接ではなく針管で反射された後にプローブ11方向に向かってきたものとの重ね合わせとなる。例えば発生する光音響波の中心周波数が9MHz(メガヘルツ)の場合、エポキシ樹脂(音速2500~3000m/s(メートル/秒))である光音響波発生部15cでの光音響波の中心波長は0.3mm(ミリメートル)程度であると考えられる。光ファイバの外径が0.15mm(ミリメートル)程度であるため、光ファイバの中心から針管までの距離も0.15mm(ミリメートル)程度となり、光音響波発生部15cから直接プローブに向かう光音響波と、針管で反射された後にプローブ方向に向かう光音響波との経路差は0.3mm(ミリメートル)程度となる。このとき、経路差が1波長分に相当するため、レーザ光の1パルス目により発生し針管で反射された後にプローブ方向に向かってきた光音響波と、レーザ光の2パルス目により発生し直接プローブ方向に向かってきた光音響波は重ね合わせにより強めあう。なお、強めあうためには必ずしも経路差が波長の整数倍である必要はなく、その近傍であっても強めあうことができる。 The second is the superposition of photoacoustic waves. The photoacoustic wave is generated in all directions in the photoacoustic wave generation unit 15c. The photoacoustic wave reaching the probe 11 is a superposition of one coming from the photoacoustic wave generation part 15 c directly in the probe direction and one coming from the photoacoustic wave generation part 15 c not directly but after being reflected by the needle tube toward the probe 11. For example, when the center frequency of the generated photoacoustic wave is 9 MHz (megahertz), the center wavelength of the photoacoustic wave in the photoacoustic wave generation unit 15c which is an epoxy resin (sound velocity 2500 to 3000 m / s (meters / second)) is 0 It is considered to be about .3 mm (millimeter). Since the outer diameter of the optical fiber is about 0.15 mm (millimeter), the distance from the center of the optical fiber to the needle tube is also about 0.15 mm (millimeter), and the photoacoustic wave directed from the photoacoustic wave generator 15c directly to the probe The path difference between the light beam reflected by the needle tube and the photoacoustic wave traveling in the probe direction is about 0.3 mm (millimeters). At this time, since the path difference corresponds to one wavelength, it is generated by the photoacoustic wave that is generated by the first pulse of the laser light and reflected by the needle tube and then travels in the probe direction and the second pulse of the laser light. The photoacoustic waves coming toward the probe direction strengthen each other by superposition. In order to reinforce each other, the path difference does not necessarily have to be an integral multiple of the wavelength, and can be reinforced even in the vicinity thereof.
 次に、レーザ光のパルス幅tLP=90ns(ナノ秒)で、レーザ光のパルスの繰り返し周期tLR=3μs(マイクロ秒)とした場合の光音響波の波形を示すグラフを図6に示す。図6に示すように、1パルス目に比べて2パルス目の振幅が大きくなっていることが分かる。このことから、レーザ光の1パルス目で発生する光音響波よりも、2パルス目で発生する光音響波の強度を大きくすることができる穿刺針15において、好適に利用可能な効果は、少なくともパルス繰返し周期が3μs(マイクロ秒)以下の範囲で発生することが分かる。 Next, FIG. 6 shows a graph showing the waveform of the photoacoustic wave in the case where the pulse width t LP of laser light is 90 ns (nanoseconds) and the pulse repetition cycle of laser light is t LR = 3 μs (microseconds). . As shown in FIG. 6, it can be seen that the amplitude of the second pulse is larger than that of the first pulse. From this, in the puncture needle 15 capable of making the intensity of the photoacoustic wave generated in the second pulse greater than that of the photoacoustic wave generated in the first pulse of the laser light, an effect that can be suitably used is at least It can be seen that the pulse repetition period occurs in the range of 3 μs (microseconds) or less.
 また、穿刺針15において、レーザ光のパルス幅tLPと、レーザ光のパルスの繰り返し周期tLRと、プローブ11の中心周波数Fcとの間に、tLP=tLR/2、Fc=1/tLRの関係がある場合が最も望ましい。この関係式を用いると、tLR<3μs(マイクロ秒)とした場合、Fc>0.33MHz(メガヘルツ)に相当し、少なくとも中心周波数が0.33MHz(メガヘルツ)以上のプローブ11においては、本効果を用いることができることが分かる。一般的に超音波プローブ11の中心周波数は1MHz(メガヘルツ)以上であるので、本効果を利用することが可能である。 In the puncture needle 15, t LP = t LR / 2, Fc = 1 / between the pulse width t LP of the laser light, the repetition cycle t LR of the pulse of the laser light, and the center frequency Fc of the probe 11. Most preferably, there is a relationship of t LR . Using this relationship, when t LR <3 μs (microseconds), this corresponds to Fc> 0.33 MHz (megahertz), and at least the probe 11 with a center frequency of 0.33 MHz (megahertz) or more has the present effect. It can be seen that can be used. In general, the center frequency of the ultrasound probe 11 is 1 MHz (megahertz) or more, so it is possible to use this effect.
 なお、上記では、レーザ光のパルス幅tLPと、レーザ光のパルスの繰り返し周期tLRとの間に、tLP=tLR/2の関係があるとして説明したが、それに限定されない。レーザ光を被検体に照射した時に発生する光音響波の中心周波数Fcは、レーザ光のパルス幅tLPと、レーザ光のパルスの繰り返し周期tLRの双方に依存して決まるため、厳密には個々に計算することが望ましいが、一般には繰り返し周期tLRの寄与のほうがより大きいため、第一次近似としてはFc≒1/tLRとしてもよい。 In the above description, although the relationship of t LP = t LR / 2 is described between the pulse width t LP of the laser beam and the repetition period t LR of the pulse of the laser beam, it is not limited thereto. Since the center frequency Fc of the photoacoustic wave generated when the laser beam is irradiated to the subject is determined depending on both the pulse width t LP of the laser beam and the repetition period t LR of the pulse of the laser beam, Although it is desirable to calculate individually, since the contribution of the repetition period t LR is generally larger, the first approximation may be Fc ≒ 1 / t LR .
 また、tLP≠tLR/2とした場合は、発生する光音響波がより多くの周波数成分を含むことになるため、一般にtLP=tLR/2の場合よりも発生する光音響波の帯域幅が広くなる。この効果を利用して発生する光音響波の帯域幅の調整をすることもできる。 In addition, when t LP ≠ t LR / 2, the generated photoacoustic wave contains more frequency components, so that the generated photoacoustic wave is generally larger than that of t LP = t LR / 2. Bandwidth is broadened. The bandwidth of the photoacoustic wave generated can also be adjusted by utilizing this effect.
 上記の制御を行うことにより、穿刺針15における光音響波の発生効率を高めるとともに、プローブ11における光音響波の受信効率を高めることができるため、光音響画像における穿刺針15の視認可能深さを大幅に向上させることができる。 Since the generation efficiency of the photoacoustic wave in the puncture needle 15 can be enhanced and the reception efficiency of the photoacoustic wave in the probe 11 can be enhanced by performing the control described above, the visible depth of the puncture needle 15 in the photoacoustic image Can be significantly improved.
 なお、レーザ光のパルス数は2に限らず、3以上としてもよい。 The number of pulses of the laser beam is not limited to two, and may be three or more.
 また、例えば、レーザ光のパルス数が増えた場合に、光音響画像中の穿刺針15の先端位置が深い方向にずれるなど、励起光発生条件が変化することで、光音響画像中の穿刺針15の先端位置が変化してしまう。そのため、光音響画像生成部24において、励起光発生条件に応じて、光音響画像中の穿刺針15の先端位置を補正することが望ましい。 In addition, for example, when the number of pulses of laser light increases, the tip position of the puncture needle 15 in the photoacoustic image is displaced in the deep direction, and the excitation light generation condition changes, so that the puncture needle in the photoacoustic image The position of the tip of 15 changes. Therefore, it is desirable that the photoacoustic image generation unit 24 correct the tip position of the puncture needle 15 in the photoacoustic image according to the excitation light generation condition.
 また、被検体内で発生させる光音響波の中心周波数とプローブ11の感度における中心周波数を必ずしも一致させる必要はない。例えば、画質などの要請からプローブ11の感度における周波数帯域内の任意の箇所に光音響波の中心周波数を設定してもよい。 In addition, the center frequency of the photoacoustic wave generated in the object and the center frequency in the sensitivity of the probe 11 do not necessarily have to coincide with each other. For example, the center frequency of the photoacoustic wave may be set at an arbitrary position in the frequency band in the sensitivity of the probe 11 from the requirement of image quality and the like.
 次に、本発明の第2の実施形態の光音響画像生成装置10について説明する。本実施形態の光音響画像生成装置10は、上記第1の実施形態の光音響画像生成装置10と比較して、制御部28におけるレーザユニット13(光源)の制御方法が異なるだけで、他の構成は同じであるため、同じ部分の説明は省略する。 Next, a photoacoustic image generation apparatus 10 according to a second embodiment of the present invention will be described. The photoacoustic image generation apparatus 10 according to the present embodiment is different from the photoacoustic image generation apparatus 10 according to the first embodiment only in the control method of the laser unit 13 (light source) in the control unit 28. Since the configuration is the same, the description of the same part is omitted.
 本実施形態において、制御部28は、光音響画像取得時に、レーザユニット13(光源)に対して、プローブ11(音響波検出手段)の受信周波数特性と穿刺針15の先端位置の深さに基づいて、プローブ11直前での光音響波の周波数特性をプローブ11(音響波検出手段)の受信周波数特性に近づけるように、レーザユニット13において発生させるレーザ光(励起光)のパルス幅と、複数のパルス数と、パルスの繰り返し周期とに基づいた励起光発生条件を調整する制御を行う。なお、ここでは周波数特性として中心周波数を考えるが、ピーク周波数など、他の周波数特性としてもよい。 In the present embodiment, the control unit 28 is based on the reception frequency characteristics of the probe 11 (acoustic wave detection means) and the depth of the tip position of the puncture needle 15 with respect to the laser unit 13 (light source) at the time of photoacoustic image acquisition. The pulse width of the laser light (excitation light) generated in the laser unit 13 so that the frequency characteristic of the photoacoustic wave immediately before the probe 11 approaches the reception frequency characteristic of the probe 11 (acoustic wave detection means), and Control is performed to adjust the excitation light generation condition based on the number of pulses and the pulse repetition period. In addition, although a center frequency is considered as a frequency characteristic here, it is good also as other frequency characteristics, such as peak frequency.
 例えば、プローブ11の感度の中心周波数が6.5MHz(メガヘルツ)で、主要な観察対象の深さが4cm(センチメートル)の場合を考える。図7は励起光の波形を示すグラフ、図8は光音響波のスペクトルを示すグラフである。図7に示すように、上記第1の実施形態では、被検体M内で発生する光音響波の中心周波数が6.5MHz(メガヘルツ)となるような励起光発生条件(レーザ光L(励起光)のパルス幅tLP=77ns(ナノ秒)、レーザ光Lのパルスの繰り返し周期tLR=154ns(ナノ秒))を設定していたが、発生した光音響波は被検体M中で減衰する(特に高周波成分ほど多く減衰する)ため、図8に示すように、プローブ11直前での光音響波の中心周波数は6.5MHz(メガヘルツ)からより低い中心周波数に変化してしまう。 For example, consider the case where the center frequency of the sensitivity of the probe 11 is 6.5 MHz (megahertz) and the depth of the main observation target is 4 cm (centimeter). FIG. 7 is a graph showing the waveform of excitation light, and FIG. 8 is a graph showing the spectrum of photoacoustic waves. As shown in FIG. 7, in the first embodiment, the excitation light generation condition (laser light L (excitation light) such that the center frequency of the photoacoustic wave generated in the subject M is 6.5 MHz (megahertz) The pulse width t LP of 77 ns (nanoseconds), the pulse repetition period t LR of laser light L 154 ns (nanoseconds) was set, but the generated photoacoustic wave is attenuated in the subject M (In particular, as the high frequency component is attenuated more,) the center frequency of the photoacoustic wave immediately before the probe 11 changes from 6.5 MHz (megahertz) to a lower center frequency, as shown in FIG.
 そのため、本実施形態においては、被検体M中での減衰を考慮して、プローブ11直前での光音響波の中心周波数がプローブ11の感度における中心周波数に近づくよう、励起光発生条件を設定する。図9は励起光の波形を示すグラフ、図10は光音響波のスペクトルを示すグラフである。図9に示すように、例えば、レーザ光Lのパルス数を2とし、レーザ光Lのパルス幅tLP=62.5ns(ナノ秒)、レーザ光Lのパルスの繰り返し周期tLR=125ns(ナノ秒)とした場合、図10に示すように、プローブ11直前での光音響波の中心周波数を6.5MHz(メガヘルツ)とすることができる。これにより、上記第1の実施形態よりも、プローブ11における光音響波の受信効率を高めることができる。 Therefore, in the present embodiment, the excitation light generation condition is set so that the center frequency of the photoacoustic wave immediately before the probe 11 approaches the center frequency in the sensitivity of the probe 11 in consideration of the attenuation in the subject M. . FIG. 9 is a graph showing the waveform of excitation light, and FIG. 10 is a graph showing the spectrum of photoacoustic waves. As shown in FIG. 9, for example, assuming that the number of pulses of the laser light L is 2, the pulse width t LP of the laser light L 62.5 ns (nanoseconds), and the pulse repetition period t LR of the laser light L 125 ns (nano In the case of second), as shown in FIG. 10, the center frequency of the photoacoustic wave immediately before the probe 11 can be set to 6.5 MHz (megahertz). Thereby, the receiving efficiency of the photoacoustic wave in the probe 11 can be raised rather than the said 1st Embodiment.
 なお、プローブ11直前での光音響波の中心周波数とプローブ11の感度における中心周波数が近くなるような励起光発生条件のパターンについて、超音波ユニット12内部にあらかじめテーブルとしてプローブ11の種類毎に複数(例えば穿刺針15の先端位置が浅い場所に位置する場合用、中間の場所に位置する場合用、深い場所に位置する場合用など)記憶されていて、ユーザがそれらを選択できるようにしておくことが望ましい。 A plurality of patterns of excitation light generation conditions such that the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 are close to each other as a table in the ultrasonic unit 12 for each type of probe 11 in advance. (For example, when the tip position of the puncture needle 15 is located at a shallow location, for being located at an intermediate location, for being located at a deep location, etc.) and stored so that the user can select them Is desirable.
 このとき、光音響波の検波条件もそれぞれのモードに応じて最適化されていることが望ましい。また、光音響画像、または光音響画像と合成する超音波画像の画像深さ(画像における最大深さ)や焦点深さに応じて、励起光発生条件が自動で切り替わるようにしてもよい。 At this time, it is desirable that the detection conditions of the photoacoustic wave be optimized in accordance with each mode. Further, the excitation light generation condition may be automatically switched in accordance with the photoacoustic image or the image depth (maximum depth in the image) or the focal depth of an ultrasound image to be synthesized with the photoacoustic image.
 また、レーザ光のパルス数は2に限らず、3以上としてもよい。 The number of pulses of the laser beam is not limited to two, and may be three or more.
 また、例えば、レーザ光のパルス数が増えた場合に、光音響画像中の物体位置が深い方向にずれるなど、励起光発生条件が変化することで、光音響画像中の物体位置が変化してしまう。そのため、光音響画像生成部24において、励起光発生条件に応じて、光音響画像中の物体位置を補正することが望ましい。 In addition, for example, when the number of pulses of laser light increases, the object position in the photoacoustic image changes, such as the object position in the photoacoustic image shifts in a deep direction, and the excitation light generation condition changes. I will. Therefore, it is desirable for the photoacoustic image generation unit 24 to correct the object position in the photoacoustic image according to the excitation light generation condition.
 また、プローブ11直前での光音響波の中心周波数とプローブ11の感度における中心周波数を必ずしも一致させる必要はない。例えば、画質などの要請からプローブ11の感度における周波数帯域内の任意の箇所に光音響波の中心周波数を設定してもよい。 In addition, the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 do not necessarily have to coincide with each other. For example, the center frequency of the photoacoustic wave may be set at an arbitrary position in the frequency band in the sensitivity of the probe 11 from the requirement of image quality and the like.
 次に、本発明の第3の実施形態の光音響画像生成装置10について説明する。本実施形態の光音響画像生成装置10は、上記第1の実施形態の光音響画像生成装置10と比較して、制御部28におけるレーザユニット13(光源)の制御方法が異なるだけで、他の構成は同じであるため、同じ部分の説明は省略する。 Next, a photoacoustic image generation apparatus 10 according to a third embodiment of the present invention will be described. The photoacoustic image generation apparatus 10 according to the present embodiment is different from the photoacoustic image generation apparatus 10 according to the first embodiment only in the control method of the laser unit 13 (light source) in the control unit 28. Since the configuration is the same, the description of the same part is omitted.
 本実施形態において、制御部28は、光音響画像取得時に、レーザユニット13(光源)に対して、プローブ11(音響波検出手段)の受信周波数特性と穿刺針15の先端位置の深さに基づいて、分解能優先または感度優先などの適切な受信特性となるように、レーザユニット13において発生させるレーザ光(励起光)のパルス幅と、複数のパルス数と、パルスの繰り返し周期とに基づいた励起光発生条件について、被検体M中で発生させる光音響波の中心周波数が異なる複数の設定の中から最適な設定を選択する制御を行う。なお、ここでは周波数特性として中心周波数を考えるが、ピーク周波数など、他の周波数特性としてもよい。 In the present embodiment, the control unit 28 is based on the reception frequency characteristics of the probe 11 (acoustic wave detection means) and the depth of the tip position of the puncture needle 15 with respect to the laser unit 13 (light source) at the time of photoacoustic image acquisition. Excitation based on the pulse width of the laser light (excitation light) generated in the laser unit 13, the number of pulses, and the repetition period of the pulse so as to obtain appropriate reception characteristics such as resolution priority or sensitivity priority. Regarding the light generation condition, control is performed to select an optimum setting from among a plurality of settings in which the center frequency of the photoacoustic wave generated in the subject M is different. In addition, although a center frequency is considered as a frequency characteristic here, it is good also as other frequency characteristics, such as peak frequency.
 具体的には、被検体内で発生した光音響波は被検体中で減衰して(特に高周波成分ほど多く減衰する)プローブ11に達する。そのため、穿刺針15の先端位置が深い位置にある場合は、単位長さ当たりの減衰率が小さい低周波数寄りの光音響波が発生するように励起光発生条件を調整し、浅い位置にある場合は減衰の影響が少ないため、分解能の良い高周波数寄りの光音響波が発生するように励起光発生条件を調整し、それぞれの深さでより望ましい光音響画像を得るようにしている。 Specifically, the photoacoustic wave generated in the subject is attenuated in the subject (in particular, it attenuates more as the high frequency component) reaches the probe 11. Therefore, when the tip position of the puncture needle 15 is at a deep position, the excitation light generation condition is adjusted so that a low-frequency photoacoustic wave with a small attenuation rate per unit length is generated, and a shallow position. Since the influence of attenuation is small, the excitation light generation conditions are adjusted so that a high-resolution photoacoustic wave with high resolution is generated, and a more desirable photoacoustic image is obtained at each depth.
 例えば、パルス数が3で、被検体M中で発生する光音響波の中心周波数がそれぞれ6.5MHz(メガヘルツ)と8MHz(メガヘルツ)の場合を考える。図11は励起光の波形を示すグラフ、図12は光音響波のスペクトルを示すグラフである。図11に示すように、被検体M内で発生する光音響波の中心周波数が6.5MHz(メガヘルツ)となるような励起光発生条件は、レーザ光L(励起光)のパルス幅tLP=77ns(ナノ秒)、レーザ光Lのパルスの繰り返し周期tLR=154ns(ナノ秒)であり、被検体M内で発生する光音響波の中心周波数が8MHz(メガヘルツ)となるような励起光発生条件は、レーザ光L(励起光)のパルス幅tLP=62.5ns(ナノ秒)、レーザ光Lのパルスの繰り返し周期tLR=125ns(ナノ秒)となる。また、これらの条件により発生する光音響波のスペクトルは図12に示すようになる。 For example, consider the case where the number of pulses is 3, and the center frequencies of the photoacoustic waves generated in the subject M are 6.5 MHz (megahertz) and 8 MHz (megahertz), respectively. FIG. 11 is a graph showing the waveform of excitation light, and FIG. 12 is a graph showing the spectrum of photoacoustic waves. As shown in FIG. 11, under the excitation light generation condition that the center frequency of the photoacoustic wave generated in the subject M is 6.5 MHz (megahertz), the pulse width t LP of the laser light L (excitation light) is Excitation light generation with 77 ns (nanoseconds), pulse repetition period t LR = 154 ns (nanoseconds) of laser light L, and a center frequency of the photoacoustic wave generated in the subject M being 8 MHz (megahertz) The conditions are a pulse width t LP of 62.5 ns (nanoseconds) of the laser light L (excitation light), and a repetition cycle t LR of 125 ns (nanoseconds) of the pulses of the laser light L. Further, the spectrum of the photoacoustic wave generated under these conditions is as shown in FIG.
 光音響波のスペクトルを示すグラフである図13に示すように、穿刺針15の先端位置の深さが浅い場合(例えば1cm(センチメートル))、被検体中での減衰の影響が少ないため、2種の光音響波間での強度の差は小さい。このような場合、分解能を重視して高周波の波形を選択すればよい。なお、高周波の光音響波の主成分は中心周波数6.5MHz(メガヘルツ)のプローブの受信可能周波数帯域(3.2~9.8MHz(メガヘルツ)程度)に入っている。 As shown in FIG. 13 which is a graph showing the spectrum of the photoacoustic wave, when the depth of the tip position of the puncture needle 15 is shallow (for example, 1 cm (centimeter)), the influence of attenuation in the subject is small. The difference in intensity between the two photoacoustic waves is small. In such a case, the high frequency waveform may be selected with emphasis on resolution. The main component of the high frequency photoacoustic wave is in the receivable frequency band (about 3.2 to 9.8 MHz (megahertz)) of the probe having a center frequency of 6.5 MHz (megahertz).
 光音響波のスペクトルを示すグラフである図14に示すように、穿刺針15の先端位置の深さが深い場合(例えば8cm(センチメートル))、被検体中での減衰の影響が多いため、2種の光音響波間での強度の差は大きい。このような場合、感度を重視して低周波の波形を選択すればよい。なお、低周波の光音響波の主成分は中心周波数6.5MHz(メガヘルツ)のプローブの受信可能周波数帯域(3.2~9.8MHz(メガヘルツ)程度)に入っている。 As shown in FIG. 14 which is a graph showing the spectrum of the photoacoustic wave, when the tip position of the puncture needle 15 is deep (for example, 8 cm (centimeter)), the attenuation in the subject is large. The difference in intensity between the two photoacoustic waves is large. In such a case, the low frequency waveform may be selected with emphasis on sensitivity. The main component of the low frequency photoacoustic wave is in the receivable frequency band (about 3.2 to 9.8 MHz (megahertz)) of the probe having a center frequency of 6.5 MHz (megahertz).
 このように、穿刺針15の先端位置の深さに基づいて励起光発生条件を調整することで、穿刺針15の先端位置の深さ毎に好適な光音響画像を取得することができる。 As described above, by adjusting the excitation light generation condition based on the depth of the distal end position of the puncture needle 15, it is possible to acquire a suitable photoacoustic image for each depth of the distal end position of the puncture needle 15.
 なお、プローブ11直前での光音響波の中心周波数とプローブ11の感度における中心周波数が近くなるような励起光発生条件のパターンについて、超音波ユニット12内部にあらかじめテーブルとしてプローブ11の種類毎に複数(例えば穿刺針15の先端位置が浅い場所に位置する場合用、中間の場所に位置する場合用、深い場所に位置する場合用など)記憶されていて、ユーザがそれらを選択できるようにしておくことが望ましい。 A plurality of patterns of excitation light generation conditions such that the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 are close to each other as a table in the ultrasonic unit 12 for each type of probe 11 in advance. (For example, when the tip position of the puncture needle 15 is located at a shallow location, for being located at an intermediate location, for being located at a deep location, etc.) and stored so that the user can select them Is desirable.
 このとき、光音響波の検波条件もそれぞれのモードに応じて最適化されていることが望ましい。また、光音響画像、または光音響画像と合成する超音波画像の画像深さ(画像における最大深さ)や焦点深さに応じて、励起光発生条件が自動で切り替わるようにしてもよい。 At this time, it is desirable that the detection conditions of the photoacoustic wave be optimized in accordance with each mode. Further, the excitation light generation condition may be automatically switched in accordance with the photoacoustic image or the image depth (maximum depth in the image) or the focal depth of an ultrasound image to be synthesized with the photoacoustic image.
 また、レーザ光のパルス数は3に限らず、2以上としてもよい。 The number of pulses of the laser beam is not limited to three, and may be two or more.
 また、例えば、レーザ光のパルス数が増えた場合に、光音響画像中の物体位置が深い方向にずれるなど、励起光発生条件が変化することで、光音響画像中の物体位置が変化してしまう。そのため、光音響画像生成部24において、励起光発生条件に応じて、光音響画像中の物体位置を補正することが望ましい。 In addition, for example, when the number of pulses of laser light increases, the object position in the photoacoustic image changes, such as the object position in the photoacoustic image shifts in a deep direction, and the excitation light generation condition changes. I will. Therefore, it is desirable for the photoacoustic image generation unit 24 to correct the object position in the photoacoustic image according to the excitation light generation condition.
 また、プローブ11直前での光音響波の中心周波数とプローブ11の感度における中心周波数を必ずしも一致させる必要はない。例えば、画質などの要請からプローブ11の感度における周波数帯域内の任意の箇所に光音響波の中心周波数を設定してもよい。 In addition, the center frequency of the photoacoustic wave immediately before the probe 11 and the center frequency in the sensitivity of the probe 11 do not necessarily have to coincide with each other. For example, the center frequency of the photoacoustic wave may be set at an arbitrary position in the frequency band in the sensitivity of the probe 11 from the requirement of the image quality and the like.
 また、上記実施形態では、挿入物の一実施形態として穿刺針15を用いるようにしたが、挿入物としては、これには限定されない。挿入物は、内部にラジオ波焼灼術に用いられる電極を収容するラジオ波焼灼用針であってもよいし、血管内に挿入されるカテーテルであってもよいし、血管内に挿入されるカテーテルのガイドワイヤであってもよい。あるいは、レーザ治療用の光ファイバであってもよい。 Moreover, in the said embodiment, although the puncture needle 15 was used as one embodiment of an insert, as an insert, it is not limited to this. The insert may be a radiofrequency ablation needle containing an electrode used for radiofrequency ablation, or a catheter inserted into a blood vessel. The catheter may be inserted into a blood vessel. It may be a guide wire of Alternatively, it may be an optical fiber for laser treatment.
 また、本発明の挿入物は、注射針のような針には限定されず、生体検査に用いられる生検針であってもよい。すなわち、生体の検査対象物に穿刺して検査対象物中の生検部位の組織を採取可能な生検針であってもよい。その場合には、生検部位の組織を吸引して採取するための採取部(吸入口)において光音響波を発生させればよい。また、針は、皮下および腹腔内臓器など、深部までの穿刺を目的とするガイディングニードルとして使用されてもよい。 Moreover, the insert of the present invention is not limited to a needle such as an injection needle, and may be a biopsy needle used for a biopsy. That is, the biopsy needle may be a biopsy needle which can be punctured into a subject to be examined in a living body to collect a tissue at a biopsy site in the subject. In that case, the photoacoustic wave may be generated in a collection unit (suction port) for suctioning and collecting the tissue at the biopsy site. The needle may also be used as a guiding needle for deep puncture, such as subcutaneous and intra-abdominal organs.
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の挿入物および光音響計測装置は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。 As mentioned above, although the present invention was explained based on the suitable embodiment, an insert and a photoacoustic measuring device of the present invention are not limited only to the above-mentioned embodiment, and various modification from composition of the above-mentioned embodiment Also, modifications are included in the scope of the present invention.

Claims (16)

  1.  被検体内に挿入された挿入物の先端部分に配された光音響波発生部が光源から出射された励起光を受けることにより発生させた光音響波を音響波検出手段により検出して得られた信号に基づいて光音響画像を生成する光音響画像生成部を備える光音響画像生成装置において、
     前記光源に対して、前記音響波検出手段の受信周波数特性に基づいて、前記光源において発生させる励起光のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行う制御部を備える光音響画像生成装置。
    The photoacoustic wave generation unit disposed at the tip of the insert inserted into the subject is obtained by detecting the photoacoustic wave generated by receiving the excitation light emitted from the light source by the acoustic wave detection means. In a photoacoustic image generation apparatus including a photoacoustic image generation unit that generates a photoacoustic image based on a selected signal,
    Control for adjusting the excitation light generation condition based on the pulse width of excitation light generated in the light source and the number of pulses based on the reception frequency characteristic of the acoustic wave detection unit for the light source A photoacoustic image generating apparatus provided with the following.
  2.  前記制御部は、前記励起光発生条件を調整して、前記音響波検出手段において検出される光音響波の周波数特性と、前記音響波検出手段の受信周波数特性とを近づける制御を行う
     請求項1記載の光音響画像生成装置。
    The control unit adjusts the excitation light generation condition to perform control to bring the frequency characteristic of the photoacoustic wave detected by the acoustic wave detection unit closer to the reception frequency characteristic of the acoustic wave detection unit. The photoacoustic image generation apparatus of description.
  3.  前記制御部は、前記被検体内において発生する光音響波の周波数特性が異なる複数の前記励起光発生条件を記憶し、記憶している複数の前記励起光発生条件の中から選択された前記励起光発生条件に基づいて前記光源を制御する
     請求項1または2記載の光音響画像生成装置。
    The control unit stores a plurality of excitation light generation conditions having different frequency characteristics of photoacoustic waves generated in the subject, and the excitation selected from among the plurality of the excitation light generation conditions stored. The photoacoustic image generating apparatus according to claim 1, wherein the light source is controlled based on a light generation condition.
  4.  前記制御部は、前記音響波検出手段の受信周波数特性が異なる種類毎に複数の前記励起光発生条件を記憶し、記憶している複数の前記励起光発生条件の中からユーザに選択された前記励起光発生条件に基づいて前記光源を制御する
     請求項3記載の光音響画像生成装置。
    The control unit stores a plurality of excitation light generation conditions for each type in which the reception frequency characteristics of the acoustic wave detection means are different, and the control unit is selected by the user from among the plurality of excitation light generation conditions stored. The photoacoustic image generation apparatus according to claim 3, wherein the light source is controlled based on excitation light generation conditions.
  5.  前記制御部は、前記光音響画像における前記挿入物の先端部分の位置に基づいて、前記励起光発生条件を調整する
     請求項1から4のいずれか1項記載の光音響画像生成装置。
    The photoacoustic image generation apparatus according to any one of claims 1 to 4, wherein the control unit adjusts the excitation light generation condition based on the position of the tip portion of the insert in the photoacoustic image.
  6.  前記制御部は、前記光音響画像の画像深さに基づいて、前記励起光発生条件を調整する
     請求項1から5のいずれか1項記載の光音響画像生成装置。
    The photoacoustic image generation apparatus according to any one of claims 1 to 5, wherein the control unit adjusts the excitation light generation condition based on an image depth of the photoacoustic image.
  7.  前記制御部は、前記光音響画像の焦点深さに基づいて、前記励起光発生条件を調整する
     請求項1から5のいずれか1項記載の光音響画像生成装置。
    The photoacoustic image generation apparatus according to any one of claims 1 to 5, wherein the control unit adjusts the excitation light generation condition based on a focal depth of the photoacoustic image.
  8.  前記光音響画像生成部は、前記励起光発生条件に基づいて、前記光音響画像に対して補正処理を施す
     請求項1から7のいずれか1項記載の光音響画像生成装置。
    The photoacoustic image generation apparatus according to any one of claims 1 to 7, wherein the photoacoustic image generation unit performs a correction process on the photoacoustic image based on the excitation light generation condition.
  9.  被検体内に挿入された挿入物の先端部分に配された光音響波発生部が光源から出射された励起光を受けることにより発生させた光音響波を音響波検出手段により検出して得られた信号に基づいて光音響画像を生成する光音響画像生成部を備える光音響画像生成装置における画像取得方法であって、
     前記光源に対して、前記音響波検出手段の受信周波数特性に基づいて、前記光源において発生させる励起光のパルス幅と、複数のパルス数とに基づいた励起光発生条件を調整する制御を行う画像取得方法。
    The photoacoustic wave generation unit disposed at the tip of the insert inserted into the subject is obtained by detecting the photoacoustic wave generated by receiving the excitation light emitted from the light source by the acoustic wave detection means. It is an image acquisition method in a photoacoustic image generation apparatus provided with the photoacoustic image generation part which produces | generates a photoacoustic image based on the said signal, Comprising:
    An image for performing control of adjusting the excitation light generation condition based on the pulse width of excitation light generated in the light source and the number of pulses based on the reception frequency characteristic of the acoustic wave detection unit with respect to the light source Acquisition method.
  10.  前記励起光発生条件を調整して、前記音響波検出手段において検出される光音響波の周波数特性と、前記音響波検出手段の受信周波数特性とを近づける制御を行う
     請求項9記載の画像取得方法。
    10. The image acquisition method according to claim 9, wherein the excitation light generation condition is adjusted to make the frequency characteristic of the photoacoustic wave detected by the acoustic wave detection unit approach the reception frequency characteristic of the acoustic wave detection unit. .
  11.  前記被検体内において発生する光音響波の周波数特性が異なる複数の前記励起光発生条件を記憶し、記憶している複数の前記励起光発生条件の中から選択された前記励起光発生条件に基づいて前記光源を制御する
     請求項9または10記載の画像取得方法。
    Based on the excitation light generation condition selected from among the plurality of excitation light generation conditions stored and stored a plurality of excitation light generation conditions having different frequency characteristics of the photoacoustic wave generated in the subject The image acquisition method according to claim 9, wherein the light source is controlled.
  12.  前記音響波検出手段の受信周波数特性が異なる種類毎に複数の前記励起光発生条件を記憶し、記憶している複数の前記励起光発生条件の中からユーザに選択された前記励起光発生条件に基づいて前記光源を制御する
     請求項11記載の画像取得方法。
    A plurality of the excitation light generation conditions are stored for each type in which the reception frequency characteristics of the acoustic wave detection means are different, and the excitation light generation condition selected by the user from among the stored plurality of excitation light generation conditions is stored. The image acquisition method according to claim 11, wherein the light source is controlled based on the image.
  13.  前記光音響画像における前記挿入物の先端部分の位置に基づいて、前記励起光発生条件を調整する
     請求項9から12のいずれか1項記載の画像取得方法。
    The image acquisition method according to any one of claims 9 to 12, wherein the excitation light generation condition is adjusted based on the position of the distal end portion of the insert in the photoacoustic image.
  14.  前記光音響画像の画像深さに基づいて、前記励起光発生条件を調整する
     請求項9から13のいずれか1項記載の画像取得方法。
    The image acquisition method according to any one of claims 9 to 13, wherein the excitation light generation condition is adjusted based on an image depth of the photoacoustic image.
  15.  前記光音響画像の焦点深さに基づいて、前記励起光発生条件を調整する
     請求項9から13のいずれか1項記載の画像取得方法。
    The image acquisition method according to any one of claims 9 to 13, wherein the excitation light generation condition is adjusted based on a focal depth of the photoacoustic image.
  16.  前記励起光発生条件に基づいて、前記光音響画像に対して補正処理を施す
     請求項9から15のいずれか1項記載の画像取得方法。
    The image acquisition method according to any one of claims 9 to 15, wherein the correction process is performed on the photoacoustic image based on the excitation light generation condition.
PCT/JP2018/026597 2017-08-29 2018-07-13 Photoacoustic image generation device and image acquisition method WO2019044212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017164586 2017-08-29
JP2017-164586 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044212A1 true WO2019044212A1 (en) 2019-03-07

Family

ID=65526282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026597 WO2019044212A1 (en) 2017-08-29 2018-07-13 Photoacoustic image generation device and image acquisition method

Country Status (1)

Country Link
WO (1) WO2019044212A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037519A (en) * 2013-01-09 2015-02-26 富士フイルム株式会社 Photoacoustic image generation device and insert
JP2016047077A (en) * 2014-08-27 2016-04-07 プレキシオン株式会社 Photoacoustic imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037519A (en) * 2013-01-09 2015-02-26 富士フイルム株式会社 Photoacoustic image generation device and insert
JP2016047077A (en) * 2014-08-27 2016-04-07 プレキシオン株式会社 Photoacoustic imaging apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ELECTRONIC INDUSTRIES ASSOCIATION OF JAPAN; CORONA PUBLISHING CO., LTD.), non-official translation (Revision of medical ultrasonic instrument handbook)", 20 January 1997 (1997-01-20), pages 147 *

Similar Documents

Publication Publication Date Title
JP6041832B2 (en) Photoacoustic image generating apparatus and operating method thereof
JP5349839B2 (en) Biological information imaging device
US20170071475A1 (en) Photoacoustic image generation apparatus, signal processing device, and photoacoustic image generation method
US20140221842A1 (en) System and Method for Frequency Domain Photoacoustic Intravascular Imaging
JP6411664B2 (en) Photoacoustic image generating apparatus and insert
WO2018056187A1 (en) Photoacoustic image-generating apparatus
JPWO2017002338A1 (en) Photoacoustic image generating apparatus and insert
JPWO2017002337A1 (en) Photoacoustic image generating apparatus and insert
JP6628891B2 (en) Photoacoustic image generation device
WO2019044212A1 (en) Photoacoustic image generation device and image acquisition method
JP7127034B2 (en) Image generating device and method of operation
JP6790235B2 (en) Photoacoustic image generator
WO2016042716A1 (en) Photoacoustic image generation method and device
JP6482686B2 (en) Photoacoustic image generation system, apparatus, and method
JP6667649B2 (en) Photoacoustic image generation device
WO2016051764A1 (en) Photoacoustic image generation device
WO2019044594A1 (en) Photoacoustic image generation device and image acquisition method
WO2019044593A1 (en) Photoacoustic image generation apparatus and photoacoustic image generation method
JPWO2018061806A1 (en) Insert, photoacoustic measurement apparatus having the insert, and method of manufacturing insert
JP6745888B2 (en) Photoacoustic measuring device
JP6847234B2 (en) Photoacoustic image generator
JP6685413B2 (en) Photoacoustic measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP