WO2019044077A1 - 医用画像処理装置、方法およびプログラム - Google Patents

医用画像処理装置、方法およびプログラム Download PDF

Info

Publication number
WO2019044077A1
WO2019044077A1 PCT/JP2018/020390 JP2018020390W WO2019044077A1 WO 2019044077 A1 WO2019044077 A1 WO 2019044077A1 JP 2018020390 W JP2018020390 W JP 2018020390W WO 2019044077 A1 WO2019044077 A1 WO 2019044077A1
Authority
WO
WIPO (PCT)
Prior art keywords
brain
image
brain image
alignment
past
Prior art date
Application number
PCT/JP2018/020390
Other languages
English (en)
French (fr)
Inventor
王 彩華
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019538974A priority Critical patent/JP6821036B2/ja
Priority to EP18851813.8A priority patent/EP3677181B1/en
Publication of WO2019044077A1 publication Critical patent/WO2019044077A1/ja
Priority to US16/792,322 priority patent/US11158054B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/026Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Definitions

  • the present invention relates to a medical image processing apparatus, method, and program for obtaining the amount of change in the brain caused by dementia and the like using brain images including the brains of the same subject having different imaging dates and times.
  • Alzheimer's disease With the advent of the aging society, patients with dementia disease are increasing year by year. Dementia develops when brain atrophy progresses by accumulation of a protein called amyloid ⁇ in the brain and cognitive ability declines. There is no cure for dementia, so early detection of brain atrophy and early treatment to slow the progression of dementia are important for maintaining quality of life.
  • SPECT Single Photon Emission Computed Tomography
  • PET PET
  • CT images and MRI Magnetic Resonance Imaging
  • An MRI image acquired by the device has made it possible to acquire information about the state of the brain. For example, reductions in blood flow and metabolism in localized areas of the brain can be found by using SPECT and PET images to determine changes over time in localized areas of the brain.
  • brain atrophy can be found by determining the volume of a specific region of the brain by MRI images and comparing temporal changes in volume.
  • alignment of two brain images different in shooting date and time is performed, and then each of the two brain images is divided into tissue areas (gray matter and white matter), and the amount of change is determined for each tissue area.
  • a method for acquiring has been proposed. Also, for a patient, the oldest past medical image serving as a reference and current and near past medical images of a specific part of the patient are acquired, and the difference between the oldest past image and the current and near past medical images is obtained.
  • a method for extracting and calculating the rate of change of the difference with respect to the reference has also been proposed (see Patent Document 2).
  • Patent Document 3 there has been proposed a method of subjecting a patient's brain image to segmentation by aligning a standard brain image segmented according to Brodmann's brain map with the patient's brain image.
  • Brodmann's brain map which region is responsible for which brain function (movement, language, perception, memory, vision, hearing, etc.) in the three-dimensional region of the cerebral cortex of the standard brain It is shown.
  • Non-Patent Documents 1 and 2 are proposed.
  • Non-Patent Documents 1 and 2 first, the first brain image of the patient and the standard brain image are aligned, the first brain image is segmented, and the first brain image is compared with the first brain image.
  • the second brain image of the patient whose imaging date and time is new is aligned with the standard brain image of the patient to segment the second brain image. Then, the amount of change in volume is acquired between the corresponding regions in the first brain image and the second brain image.
  • the atrophy rate of the brain may change depending on which past image is selected. For example, when an image temporally closest to the latest image is selected as a past image, if the brain atrophy starts before the past image, the atrophy rate of the brain from a normal time point is accurately calculated I can not do it.
  • the calculated atrophy rate of the brain is mixed with the atrophy ratio due to disease and the normal atrophy ratio due to aging. Therefore, when a plurality of past images exist, the atrophy rate of the brain can not be accurately calculated unless the past images are properly selected.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to be able to select a past brain image capable of accurately calculating the atrophy rate of the brain when there are a plurality of past brain images.
  • the medical image processing apparatus is an image acquisition unit for acquiring a plurality of past brain images of which imaging dates and times are older than a target brain image to be diagnosed and a target brain image of the same subject.
  • a similarity calculation unit that calculates similarity between each of a plurality of past brain images and a standard brain image;
  • a selection unit configured to select, as a reference brain image, a past brain image having an imaging date and time whose similarity is equal to or higher than a predetermined threshold value and closest to the current date and time from a plurality of past brain images.
  • the similarity calculation unit may calculate similarity between each of a plurality of standard brain images and each of a plurality of past brain images.
  • the similarity calculation unit aligns each of the plurality of past brain images with the standard brain image, and each of the plurality of past brain images after alignment and the standard brain image
  • the correlation with H may be calculated as the degree of similarity
  • the shape and size of the brain are different for each subject.
  • the "plurality of standard brain images” means a plurality of standard brain images different in shape and size.
  • the medical image processing apparatus may further include a change amount calculation unit that calculates a change amount of the brain based on the target brain image and the reference brain image.
  • the change amount calculating unit divides the brain included in the target brain image into a plurality of regions by aligning the target brain image with the standard brain image.
  • An alignment unit that aligns the target brain image with the reference brain image; Based on the alignment result of the target brain image and the reference brain image, from the corresponding area in the brain included in the reference brain image, for at least one of the plurality of regions in the brain included in the target brain image And a change amount acquisition unit for acquiring the change amount of
  • the change amount acquisition unit changes a volume change from a corresponding area of the reference brain image for at least one of a plurality of areas in the brain included in the target brain image.
  • the amount may be calculated.
  • the medical image processing apparatus may further include a display control unit for displaying the volume change amount on the display unit.
  • the alignment unit uses the movement vector of the corresponding pixel position as a variation between corresponding areas of the brain included in the target brain image and the brain included in the reference brain image. It may be acquired.
  • the dividing unit performs the first alignment using the landmarks between the target brain image and the standard brain image, and then performs the processing of the target brain image and the standard brain image. A second alignment between the two may be performed.
  • a “landmark” is a region having a characteristic shape in a target brain image and a standard brain image, and specifically, at least one of characteristic regions such as a brain groove and a ventricle included in the brain is landed. It can be used as a mark.
  • the first alignment may be alignment by similarity conversion
  • the second alignment may be alignment by non-linear conversion
  • the alignment unit performs the third alignment using the landmarks between the target brain image and the reference brain image, and then performs the target brain image and the reference brain image.
  • a fourth alignment may be performed between the target brain image and the reference brain image.
  • the third alignment may be rigid alignment
  • the fourth alignment may be alignment by non-linear transformation
  • the third alignment is alignment using landmarks
  • the fourth alignment is alignment using an arbitrary area between the target brain image and the reference brain image.
  • the alignment using an arbitrary area may be, for example, an alignment using the entire area between the target brain image and the reference brain image, or an alignment using only a partial area.
  • the medical image processing method acquires a target brain image to be diagnosed and a plurality of past brain images whose imaging dates and times are older than that of the target brain image for the same subject, Calculate the similarity between each of multiple past brain images and the standard brain image, From a plurality of past brain images, a past brain image having a shooting date and time whose similarity is equal to or higher than a predetermined threshold value and closest to the current date and time is selected as a reference brain image.
  • the medical image processing method according to the present invention may be provided as a program for causing a computer to execute the method.
  • Another medical image processing apparatus is a memory for storing instructions to be executed by a computer.
  • a processor configured to execute the stored instructions, the processor Acquiring a plurality of past brain images having imaging dates and times older than a target brain image to be diagnosed and a target brain image of the same subject; Calculate the similarity between each of multiple past brain images and the standard brain image, A process of selecting a past brain image having a shooting date and time closest to the current date and time from among a plurality of past brain images as the reference brain image is executed.
  • a target brain image to be diagnosed and a plurality of past brain images whose imaging dates and times are older than the target brain image of the same subject are acquired, and each of the plurality of past brain images and a standard brain image The degree of similarity with is calculated. Then, from the plurality of past brain images, a past brain image having an imaging date and time whose similarity is equal to or higher than a predetermined threshold value and closest to the current date and time is selected as a reference brain image.
  • the reference brain image thus selected has a shape and size similar to that of the standard brain image, although it is captured at the closest time in time to the target brain image.
  • the reference brain image is acquired at the date and time closest to the date and time when the change in size and shape of the plurality of past brain images has started. Therefore, the amount of change of the brain calculated using the target brain image and the reference brain image represents the amount of change of the brain based on the almost normal time point. Therefore, according to the present invention, when there are a plurality of past brain images, it is possible to select a past brain image capable of accurately calculating the atrophy rate of the brain as a reference brain image.
  • a hardware configuration diagram showing an outline of a diagnosis support system to which a medical image processing apparatus according to an embodiment of the present invention is applied A diagram showing a schematic configuration of a medical image processing apparatus Figure showing a standard brain image Diagram for explaining selection of reference brain image Figure showing the target brain image Figure showing a target brain image divided into multiple regions Diagram for explaining alignment Diagram showing movement vector Diagram for explaining calculation of volume change amount Diagram for explaining the display of volume change Flow chart showing processing performed in the present embodiment
  • FIG. 1 is a hardware configuration diagram showing an outline of a diagnosis support system to which a medical image processing apparatus according to an embodiment of the present invention is applied.
  • the medical image processing apparatus 1, the three-dimensional image capturing apparatus 2 and the image storage server 3 according to the present embodiment are connected in a communicable state via the network 4 There is.
  • the three-dimensional image capturing device 2 is a device that generates a three-dimensional image representing a region to be diagnosed as a medical image by capturing a region to be diagnosed of a patient who is a subject.
  • a CT device It is an MRI apparatus, a PET apparatus, and the like.
  • the medical image generated by the three-dimensional image capturing device 2 is transmitted to the image storage server 3 and stored.
  • the diagnosis target site of the patient who is the subject is the brain
  • the three-dimensional image capturing device 2 is the MRI device
  • the MRI image of the head including the brain of the subject is three-dimensional Generate as an image.
  • the image storage server 3 is a computer that stores and manages various data, and includes a large-capacity external storage device and software for database management.
  • the image storage server 3 communicates with other devices via a wired or wireless network 4 to transmit and receive image data and the like.
  • various data including image data of a medical image generated by the three-dimensional image capturing device 2 is acquired via a network, and stored and managed in a recording medium such as a large-capacity external storage device.
  • the storage format of image data and communication between devices via the network 4 are based on a protocol such as DICOM (Digital Imaging and Communication in Medicine).
  • DICOM Digital Imaging and Communication in Medicine
  • the medical image processing apparatus 1 is obtained by installing the medical image processing program of the present invention in one computer.
  • the computer may be a workstation or a personal computer directly operated by a doctor performing diagnosis, or a server computer connected with them via a network.
  • the medical image processing program is distributed by being recorded in a recording medium such as a digital versatile disc (DVD) or a compact disc read only memory (CD-ROM), and is installed in the computer from the recording medium.
  • DVD digital versatile disc
  • CD-ROM compact disc read only memory
  • it is stored in a storage device of a server computer connected to a network or in a network storage in an accessible state from the outside, downloaded to a computer used by a doctor in response to a request, and installed.
  • FIG. 2 is a view showing a schematic configuration of a medical image processing apparatus realized by installing a medical image processing program in a computer.
  • the medical image processing apparatus 1 has a central processing unit (CPU) as a standard work station configuration. 11, a memory 12 and a storage 13 are provided. Further, a display 14 such as a liquid crystal display, and an input unit 15 such as a keyboard and a mouse are connected to the medical image processing apparatus 1.
  • the display 14 corresponds to the display unit.
  • the storage 13 is made of a recording medium such as a hard disk drive or a solid state drive (SSD), and is obtained from the image storage server 3 via the network 4.
  • Various information including standard brain images and information necessary for processing are stored.
  • the memory 12 stores a medical image processing program.
  • the medical image processing program executes, as processing to be executed by the CPU 11, image acquisition processing for acquiring a plurality of past brain images having imaging dates and times older than that of a target brain image to be diagnosed and a target brain image for the same subject. Similarity calculation processing for calculating the similarity between each of the past brain images and the standard brain image, and from the plurality of past brain images, the shooting date and time when the similarity is equal to or greater than a predetermined threshold
  • the previous brain image is selected as a reference brain image, and a change amount calculation process for calculating the amount of change in the brain based on the target brain image and the reference brain image is defined.
  • the target brain image and the standard brain image are aligned to divide the brain included in the target brain image into a plurality of regions, and the position of the target brain image and the reference brain image Included in the reference brain image for at least one of a plurality of regions in the brain included in the target brain image, based on the result of alignment processing to align and alignment between the target brain image and the reference brain image
  • a change amount acquisition process for acquiring a change amount from a corresponding region in the brain and a display control process for displaying the change amount on the display 14 are defined.
  • the CPU 11 executes these processes according to the program, so that the computer acquires the image acquisition unit 21, the similarity calculation unit 22, the selection unit 23, the change amount calculation unit 24, the division unit 25, the alignment unit 26, and the change amount It functions as an acquisition unit 27 and a display control unit 28.
  • the medical image processing apparatus 1 performs a plurality of image acquisition processing, similarity calculation processing, selection processing, change amount calculation processing, division processing in change amount calculation processing, alignment processing, change amount acquisition processing, and display control processing respectively.
  • the image acquisition unit 21 acquires, from the image storage server 3, a target brain image Bt to be diagnosed on the same subject and a plurality of past brain images Bpi (i is 2 or more) whose imaging dates and times are older than the target brain image Bt. .
  • the image acquiring unit 21 acquires the target brain image Bt and the plurality of past brain images Bpi from the storage 13. You may
  • the target brain image Bt is the latest brain image of the subject, but is not limited to this as long as the imaging date and time is newer than the plurality of past brain images Bpi.
  • the image storage server 3 what is stored in the image storage server 3 is a brain image acquired by imaging the head of the subject, and also includes a structure other than the brain such as a skull.
  • the image acquisition unit 21 also acquires a standard brain image Bs from the image storage server 3.
  • the standard brain image Bs is a three-dimensional brain image representing a brain having a standard shape and size and a standard density (pixel value), that is, a standard brain.
  • the standard brain image Bs can be generated by extracting the brains from a plurality of brain images obtained by acquiring the heads of a plurality of healthy persons using a three-dimensional image capturing device and averaging the plurality of extracted brains.
  • the standard brain image Bs may be created by computer graphics or the like.
  • the brain image of one healthy person may be used as a standard brain image Bs.
  • the standard brain image Bs is divided into a plurality of regions.
  • the cerebral cortex is divided into areas responsible for functions such as motion, speech, perception, memory, vision and hearing in a three-dimensional area of the cerebral cortex.
  • An approach can be used.
  • any known method such as a method of dividing into 6 types of regions of cerebrum, interbrain, midbrain, hindbrain, cerebellum and medulla oblongata, or a method of classifying cerebrum into frontal lobe, parietal lobe, temporal lobe and occipital lobe, etc. An approach can be used.
  • FIG. 3 is a view showing an example of a standard brain image.
  • the standard brain image Bs is divided into a plurality of regions in accordance with Brodmann's brain map.
  • the similarity calculation unit 22 calculates the similarity between each of the plurality of past brain images Bpi and the standard brain image Bs. Specifically, the similarity calculation unit 22 aligns each of the plurality of past brain images Bpi with the standard brain image Bs, and then aligns each of the plurality of past brain images Bpi after alignment with the standard brain image Bs.
  • the correlation is calculated as similarity Si.
  • alignment rigid body alignment in which the standard brain image Bs or the past brain image Bpi is translated, rotated, and scaled in a similar manner can be used.
  • the correlation it is possible to use the sum of absolute values of difference values between corresponding pixels of the standard brain image Bs after alignment and the past brain image Bpi or the square sum of difference values.
  • the method of calculating the similarity Si is not limited to this.
  • the correlation between the histogram of pixel values in the corpus callosum of the past brain image Bpi and the histogram of pixel values in the corpus callosum of the standard brain image Bs It may be calculated as the similarity Si.
  • any method other than this can be used as a method of calculating the similarity Si.
  • the selection unit 23 selects a reference brain image B0 serving as a reference for calculating the amount of change in the brain from a plurality of past brain images Bpi.
  • FIG. 4 is a diagram for explaining selection of the reference brain image B0.
  • ten past brain images Bp1 to Bp10 are acquired, and ten similarities S1 to S10 are calculated.
  • the past brain images Bp1 to Bp10 are older in imaging date and time, ie, acquired in the past, as the assigned numbers are smaller.
  • the horizontal axis indicates date and time
  • the vertical axis indicates similarity.
  • the brain is atrophic over time. Therefore, in the past brain images Bp1 to Bp10, the newer the imaging date and time, the smaller the similarity to the standard brain image Bs.
  • the selection unit 23 selects, from the plurality of past brain images Bpi, a past brain image having an imaging date and time closest to the current date and time when the similarity Si is equal to or greater than a predetermined threshold value Th1 as a reference brain image B0. For example, when the similarities S1 to S10 calculated for the past brain images Bp1 to Bp10 change as shown in FIG. 4, the similarities S1 to S4 of the past brain images Bp1 to Bp4 become larger than the threshold Th1. . Further, among the past brain images Bp1 to Bp4, the brain image having the closest photographing date to the target brain image Bt, that is, the latest brain image, is the past brain image Bp4. Therefore, the selection unit 23 selects the past brain image Bp4 as the reference brain image B0.
  • the change amount calculation unit 24 calculates the change amount of the brain based on the target brain image Bt and the reference brain image B0. Hereinafter, calculation of the amount of change will be described.
  • the dividing unit 25 of the change amount calculation unit 24 aligns the target brain image Bt and the standard brain image Bs for calculation of the change amount of the brain, and thereby the brain included in the target brain image Bt is divided into a plurality of regions. Divide into
  • FIG. 5 shows a target brain image Bt.
  • the target brain image Bt is different in shape and size from the standard brain image Bs shown in FIG.
  • the dividing unit 25 performs first alignment using a landmark between the target brain image Bt and the standard brain image Bs. Then, after the first alignment is performed, the second alignment using the entire region between the target brain image Bt and the standard brain image Bs is performed.
  • the landmark specifically, at least one of characteristic regions such as the cerebral sulcus and the ventricles included in the brain can be used.
  • the standard brain image Bs is described as being aligned with the target brain image Bt.
  • the target brain image Bt may be aligned with the standard brain image Bs.
  • the dividing unit 25 extracts landmarks from the target brain image Bt and the standard brain image Bs.
  • the extraction of the landmark may be performed by template matching using, for example, a template representing the landmark, or may be performed by using a discriminator trained so as to discriminate the landmark included in the image.
  • the dividing unit 25 performs the first alignment so as to match the corresponding landmarks between the target brain image Bt and the standard brain image Bs.
  • the first alignment is alignment by similarity transformation. Specifically, alignment is performed by translating, rotating, and resizing the standard brain image Bs.
  • the dividing unit 25 performs similarity transformation on the standard brain image Bs so as to maximize the correlation between the landmarks included in the standard brain image Bs and the corresponding landmarks included in the target brain image Bt. Align.
  • the dividing unit 25 After performing the first alignment using the landmark in this manner, the dividing unit 25 performs the second alignment using the entire region between the target brain image Bt and the standard brain image Bs.
  • the second alignment is alignment by non-linear transformation.
  • alignment by nonlinear conversion alignment by converting a pixel position nonlinearly using functions, such as B spline and thin plate spline (Thin Plate Spline), is mentioned, for example.
  • the dividing unit 25 performs second alignment by nonlinearly converting each pixel position of the standard brain image Bs after the first alignment to the corresponding pixel position included in the target brain image Bt.
  • the dividing unit 25 thus aligns the standard brain image Bs with the target brain image Bt, and applies the boundary of the divided region in the standard brain image Bs to the target brain image Bt, as shown in FIG. Then, the target brain image Bt is divided into a plurality of regions.
  • the alignment unit 26 of the variation calculation unit 24 aligns the target brain image Bt with the reference brain image B0. Specifically, after performing the third alignment using the landmark between the target brain image Bt and the reference brain image B0, the entire region between the target brain image Bt and the reference brain image B0 is used. Perform the fourth alignment.
  • the target brain image Bt is described as being aligned with the reference brain image B0, the reference brain image B0 may be aligned with the target brain image Bt.
  • the alignment unit 26 extracts landmarks from the target brain image Bt and the reference brain image B0.
  • the landmark extraction may be performed in the same manner as the first alignment described above.
  • the alignment unit 26 performs the third alignment so as to match the corresponding landmarks between the target brain image Bt and the reference brain image B0.
  • the brain included in the target brain image Bt and the brain included in the reference brain image B0 have the same size because the subject is the same. Therefore, in the present embodiment, rigid body alignment using only translation and rotation is performed as the third alignment.
  • FIG. 7 is a diagram for explaining rigid body alignment.
  • slice images Gt and G0 of corresponding tomographic planes in the target brain image Bt and the reference brain image B0 are shown.
  • the alignment unit 26 includes a ventricle 31 which is one of the landmarks of the slice image Gt of the target brain image Bt and a corresponding ventricle 32 which is included in the slice image G0 of the reference brain image B0.
  • the target brain image Bt is translated and rotated so as to maximize correlation with the third alignment, which is rigid alignment.
  • the third aligned target brain image Bt1 (slice image Gt1 in FIG. 7) is acquired.
  • the alignment unit 26 After performing the third alignment using the landmark in this manner, the alignment unit 26 performs the fourth alignment using the entire region between the target brain image Bt and the reference brain image B0.
  • the fourth alignment is alignment by non-linear transformation.
  • the fourth alignment may be performed in the same manner as the second alignment described above.
  • the movement vector to the corresponding pixel position of reference brain picture B0 in each pixel of object brain picture Bt is acquired.
  • FIG. 8 is a diagram showing a movement vector. As shown in FIG. 8, at each pixel position of the brain in the target brain image Bt, a movement vector Vm is acquired.
  • the change amount acquisition unit 27 of the change amount calculation unit 24 determines a reference brain image of at least one of a plurality of brain regions included in the target brain image Bt based on the alignment result of the alignment unit 26.
  • the amount of change from the corresponding region in the brain included in B0 is acquired.
  • the amount of change for each of the plurality of regions is acquired.
  • the movement vector Vm is acquired at each pixel position of the brain included in the target brain image Bt by the alignment of the alignment unit 26.
  • the change amount acquisition unit 27 classifies the movement vector Vm at each pixel position of the brain included in the target brain image Bt into each of a plurality of regions in the target brain image Bt.
  • the amount of change from the corresponding region in the brain included in the reference brain image B0 is acquired for each of the plurality of regions in the brain included in the target brain image Bt.
  • the amount of change is the movement vector Vm of the corresponding pixel in the corresponding region.
  • the change amount acquisition unit 27 calculates volume change amounts for each of a plurality of regions in the brain included in the target brain image Bt.
  • FIG. 9 is a diagram for explaining the calculation of the volume change amount.
  • one region 40 included in the target brain image Bt consists of three pixels 41, 42 and 43, and the pixels do not move in the vertical direction in FIG.
  • the movement vector V1 of the pixel 41 is 0.3 pixels in the left direction and the movement vector V2 of the pixel 42 is the left direction
  • the movement vector V3 of 0.4 pixels and the pixel 43 is 0.8 pixels in the left direction.
  • the change amount acquisition unit 27 calculates the change amount of the pixel value of the region 40 as ⁇ 0.5 pixel.
  • the change amount acquisition unit 27 actually calculates the change amounts of pixel values in the directions of the three axes x, y, and z for each region in the target brain image Bt. In the case where the amount of change is a negative value, the area shrinks, and in the case of a positive value, the area is expanded.
  • the change amount acquisition unit 27 further calculates the volume change amount as follows. That is, for each region in the target brain image Bt, the amounts of change calculated for the directions of the three axes x, y, and z are added. Then, by dividing the added value obtained thereby by the total number of pixels in the corresponding area, the change rate of the area volume is calculated as the volume change amount.
  • the volume change amount is represented by the ratio (for example, percentage) of change to the volume of each region.
  • the volume change also has a negative value if the region is atrophy, and a positive value if the region is dilated.
  • the absolute value of the volume change amount which is a negative value is the atrophy rate of the brain.
  • an added value obtained by adding the amounts of change calculated for the directions of the three axes x, y, and z may be calculated as the amount of volume change.
  • the volume change amount is represented by the size of the pixel value, and is a negative value if the region is atrophy, and a positive value if the region is dilated.
  • the volume per pixel (that is, one voxel) is known in advance. Therefore, the amount of change in volume may be calculated by adding the amounts of change calculated in the directions of the three axes x, y, and z, and multiplying the sum obtained by this with the volume per pixel. . In this case, the volume change amount is represented by the magnitude of the volume change amount.
  • the change amount acquisition unit 27 compares the absolute value of the volume change amount, that is, the atrophy rate of the brain with the threshold value Th2 determined in advance, for the region where the value is negative. An area larger than the threshold Th2 is identified as an abnormal area and labeled.
  • the atrophy rate of the brain due to human aging is less than 1% a year, but it is about 1 to 3% in patients with dementia. Therefore, the change amount acquisition unit 27 sets, for example, the threshold value Th2 to ⁇ 1%, and identifies an area where the absolute value of the volume change amount is larger than the threshold value Th2 as an abnormal area.
  • the display control unit 28 of the change amount calculation unit 24 displays the volume change amount on the display 14.
  • FIG. 10 is a diagram for explaining the display of the volume change amount.
  • the abnormal areas A10 and A11 among the plurality of areas of the brain are hatched, and further, labels L10 and L11 indicating the volume change amount are applied.
  • labels L10 and L11 indicate the absolute value of the volume change amount, that is, the atrophy rate of the brain.
  • Each area may be displayed in different colors according to the magnitude of the volume change amount.
  • the display control unit 28 is a part of the change amount calculation unit 24 in the present embodiment, the display control unit 28 may be provided separately from the change amount calculation unit 24.
  • the change amount in the brain that is, the area judged to have a large atrophy rate is displayed identifiably, but the presence or absence of the onset of dementia is diagnosed automatically, The result may be displayed.
  • a discriminator is created by machine learning the amount of change for each region, that is, the atrophy rate and the presence or absence of occurrence of dementia, as teacher data (data with correct answer) for a plurality of patients in the past. Then, the amount of change for each new patient area calculated in the present embodiment, that is, the atrophy rate may be input to the discriminator to determine whether it is dementia or not.
  • FIG. 11 is a flowchart showing the process performed in the present embodiment.
  • the image acquiring unit 21 acquires a target brain image Bt to be diagnosed with the same subject and a plurality of past brain images Bpi whose imaging dates and times are older than the target brain image Bt (step ST1).
  • the similarity calculation unit 22 calculates the similarity between each of the plurality of past brain images Bpi and the standard brain image Bs (step ST2).
  • the selection unit 23 selects a reference brain image B0 serving as a reference for calculating the amount of change in the brain from the plurality of past brain images Bpi (step ST3).
  • the division unit 25 of the change amount calculation unit 24 aligns the brain included in the target brain image Bt into a plurality of regions by aligning the target brain image Bt with the standard brain image Bs divided into the plurality of regions. It divides
  • the change amount acquisition unit 27 of the change amount calculation unit 24 determines the reference brain image B0 for at least one of a plurality of regions in the brain included in the target brain image Bt based on the alignment result.
  • the amount of change from the corresponding region in the included brain is acquired (step ST6), and the corresponding in the reference brain image B0 for at least one of the plurality of regions in the brain included in the target brain image Bt.
  • the volume change amount from the area is calculated (step ST7).
  • the display control unit 28 of the change amount calculation unit 24 displays the volume change amount on the display 14 (step ST8), and the process ends.
  • a target brain image Bt to be diagnosed and a plurality of past brain images Bpi for the same subject are obtained, and each of the plurality of past brain images Bpi and the standard brain image Bs The similarity Si of is calculated.
  • a past brain image having an imaging date and time when the similarity Si is equal to or more than a predetermined threshold value Th1 and closest to the current date and time is selected as the reference brain image B0.
  • the reference brain image B0 selected in this way is captured at a time closest to the target brain image Bt in time, but has a shape and size similar to that of the standard brain image Bs.
  • the reference brain image B0 is acquired at a date and time closest to the date and time when the change in size and shape of the plurality of past brain images Bpi has started. Therefore, the amount of change in the brain calculated using the target brain image Bt and the reference brain image B0 represents the amount of change in the brain based on a substantially normal time point. Therefore, according to the present embodiment, when there are a plurality of past brain images, it is possible to select a past brain image capable of accurately calculating the atrophy rate of the brain as the reference brain image B0.
  • the similarity calculation unit 22 calculates the similarity to a plurality of standard brain images Bs having different shapes and sizes. May be In this case, a plurality of standard brain images Bs having different shapes and sizes may be stored in the storage 13. In this way, by calculating the degree of similarity with a plurality of standard brain images Bs having different shapes and sizes, the degree of similarity with a standard brain image Bs having an appropriate shape and size is calculated according to the subject. Can. Therefore, it is possible to select a reference brain image B0 more suitable for calculating the atrophy rate of the brain.
  • the size of the included brain may be different between the target brain image Bt and the reference brain image B0.
  • scaling may be performed as the third alignment in addition to the rigid alignment.
  • volume change amount is calculated in the above embodiment, only the change amount of each region may be calculated.
  • the second alignment is performed after the first alignment using the landmark is performed in the division unit 25 of the change amount calculation unit 24.
  • the second alignment that is, the second alignment, Only alignment by nonlinear conversion may be performed.
  • the fourth alignment is performed after the third alignment using the landmark is performed in the alignment unit 26 of the change amount calculation unit 24, the fourth alignment, That is, only alignment by nonlinear conversion may be performed.
  • the alignment using the entire area of the standard brain image Bs and the target brain image Bt is performed.
  • the standard brain image Bs and the target brain image Alignment may be performed using a partial area of Bt.
  • alignment may be performed using only individual divided regions in the brain.
  • the alignment using the entire area of the target brain image Bt and the reference brain image B0 is performed, but the target brain image Bt and the reference brain Alignment may be performed using a partial area of the image B0. For example, alignment may be performed using only individual divided regions in the brain.
  • the MRI image of a test object is used as a medical image
  • the degree of similarity to an appropriate standard brain image can be calculated according to the subject. Therefore, it is possible to select a reference brain image more suitable for calculating the brain atrophy rate.

Abstract

医用画像処理装置、方法およびプログラムにおいて、過去の脳画像が複数存在する場合に、脳の萎縮率を精度よく算出できる過去の脳画像を選択できるようにする。画像取得部21が、同一被検体についての診断対象となる対象脳画像Btおよび対象脳画像Btよりも撮影日時が古い複数の過去脳画像Bpiを取得する。類似度算出部22が、複数の過去脳画像Bpiのそれぞれと標準脳画像Bsとの類似度を算出する。選択部23が、複数の過去脳画像Bpiから脳の変化量算出のための基準となる基準脳画像B0を選択する。

Description

医用画像処理装置、方法およびプログラム
 本発明は、撮影日時が異なる同一被検体についての脳を含む脳画像を用いて、認知症等に起因する脳の変化量を求める医用画像処理装置、方法およびプログラムに関するものである。
高齢化社会の到来により、認知症疾患の患者が年々増加している。認知症は脳にアミロイドβと呼ばれるタンパク質が蓄積することによって脳の萎縮が進行し、認知能力が低下することにより発症する。認知症の治療法は存在しないため、脳の萎縮を早期に発見し、認知症の進行を遅らせるための治療を早期に開始することが生活の質を維持する上で重要である。
 このような要望に応えるべく、近年、SPECT(Single Photon Emission Computed Tomography)およびPET(Positron Emission Tomography)等の核医学検査、並びにCT(Computerized Tomography)装置により取得されるCT画像およびMRI(Magnetic Resonance Imaging)装置により取得されるMRI画像によって、脳の状態に関する情報が取得可能になってきている。例えば、脳の局所的な部位の血流および代謝の低下は、SPECTおよびPETの画像を用いて、脳の局所的な部位の経時的な変化を求めることにより発見することができる。
 一方、脳の萎縮については、MRI画像によって脳の特定部位の容積を求め、容積の経時的な変化を比較することにより発見することができる。例えば、特許文献1には、撮影日時が異なる2つの脳画像の位置合わせを行い、その後2つの脳画像のそれぞれを組織領域(灰白質および白質)に領域分割し、組織領域毎に変化量を取得する手法が提案されている。また、ある患者に関して、基準となる最も古い過去の医用画像と、その患者の特定部位の現在および近い過去の医用画像を取得し、最も古い過去画像と現在および近い過去の医用画像との差分を抽出し、基準に対する差分の変化率を算出する手法も提案されている(特許文献2参照)。
 一方、例えばブロードマンの脳地図にしたがって領域分割された標準脳画像と、患者の脳画像とを位置合わせして、患者の脳画像を領域分割する手法が提案されている(特許文献3参照)。ここで、ブロードマンの脳地図においては、標準脳の大脳皮質の3次元領域内において、どの領域がどの脳機能(運動、言語、知覚、記憶、視覚、および聴覚等)を司っているかが示されている。このように患者の脳画像を領域分割した上で、領域毎の容積の変化量を取得する手法が提案されている(非特許文献1,2)。非特許文献1,2に記載された手法においては、まず、患者の第1の脳画像と標準脳画像とを位置合わせして第1の脳画像を領域分割し、第1の脳画像よりも撮影日時が新しい患者の第2の脳画像と標準脳画像とを位置合わせして第2の脳画像を領域分割する。そして、第1の脳画像および第2の脳画像における対応する領域間で容積の変化量を取得している。
特開2014-042684号公報 再公表2015-29135号公報 特開2011-010828号公報
Subregional neuroanatomical change as a biomarker for Alzheimer's disease、Dominic Hollandら、Proceedings of the National Academy of Sciences、106巻、49号、20954-20959頁、2009/12/8 aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI、Yakang Daiら、Alzheimer's Disease Neuroimaging Initiative、April 3, 2013
 同一の患者について、認知症の進行を判断するためには、患者の過去画像と現在の画像とを位置合わせして、脳の領域ごとの委縮率を正確に算出する必要がある。一方、同一の患者について、経過を観察するために複数年に亘って脳の画像を取得している場合、複数の過去画像が存在することとなる。このように、過去画像が複数存在する場合、どの過去画像を選択するかにより、脳の萎縮率が変わってしまう可能性がある。例えば、最新の画像に時間的に最も近い画像を過去画像として選択した場合、脳の萎縮がその過去画像よりも前に始まっていたとすると、正常な時点からの脳の萎縮率を正確に算出することができない。また、時間的に最も古い画像を過去画像として選択した場合、算出した脳の萎縮率には、病気による委縮率と加齢による正常な委縮率とが混在してしまう。したがって、複数の過去画像が存在する場合、過去画像を適切に選択しないと、脳の萎縮率を精度よく算出することができない。
 本発明は上記事情に鑑みなされたものであり、過去の脳画像が複数存在する場合に、脳の萎縮率を精度よく算出できる過去の脳画像を選択できるようにすることを目的とする。
 本発明による医用画像処理装置は、同一被検体についての、診断対象となる対象脳画像および対象脳画像よりも撮影日時が古い複数の過去脳画像を取得する画像取得部と、
 複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出する類似度算出部と、
 複数の過去脳画像から、類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する選択部とを備える。
 なお、本発明による医用画像処理装置においては、類似度算出部は、複数の標準脳画像と複数の過去脳画像のそれぞれとの類似度を算出するものであってもよい。
 また、本発明による医用画像処理装置においては、類似度算出部は、複数の過去脳画像のそれぞれと標準脳画像とを位置合わせし、位置合わせ後の複数の過去脳画像のそれぞれと標準脳画像との相関を類似度として算出するものであってもよい。
 ここで、脳の形状および大きさは被検体毎に異なるものとなる。「複数の標準脳画像」とは、形状および大きさが異なる複数の標準脳画像を意味する。
 また、本発明による医用画像処理装置においては、対象脳画像と基準脳画像とに基づいて、脳の変化量を算出する変化量算出部をさらに備えるものであってもよい。
 また、本発明による医用画像処理装置においては、変化量算出部は、対象脳画像と標準脳画像とを位置合わせすることにより、対象脳画像に含まれる脳を複数の領域に分割する分割部と、
 対象脳画像と基準脳画像とを位置合わせする位置合わせ部と、
 対象脳画像と基準脳画像との位置合わせの結果に基づいて、対象脳画像に含まれる脳における複数の領域のうちの少なくとも1つの領域についての、基準脳画像に含まれる脳における対応する領域からの変化量を取得する変化量取得部とを備えるものであってもよい。
 また、本発明による医用画像処理装置においては、変化量取得部は、対象脳画像に含まれる脳における複数の領域のうちの少なくとも1つの領域についての、基準脳画像の対応する領域からの容積変化量を算出するものであってもよい。
 また、本発明による医用画像処理装置においては、容積変化量を表示部に表示する表示制御部をさらに備えるものであってもよい。
 また、本発明による医用画像処理装置においては、位置合わせ部は、対象脳画像に含まれる脳および基準脳画像に含まれる脳における対応する領域間において、対応する画素位置の移動ベクトルを変化量として取得するものであってもよい。
 また、本発明による医用画像処理装置においては、分割部は、対象脳画像および標準脳画像の間でのランドマークを用いた第1の位置合わせを行った後に、対象脳画像および標準脳画像の間での第2の位置合わせを行うものであってもよい。
 「ランドマーク」とは、対象脳画像および標準脳画像における特徴的な形状を有する領域であり、具体的には脳に含まれる脳溝および脳室等の特徴的な領域の少なくとも1つをランドマークとして用いることができる。
 この場合、第1の位置合わせは相似変換による位置合わせであり、第2の位置合わせは非線形変換による位置合わせであってもよい。
 また、本発明による医用画像処理装置においては、位置合わせ部は、対象脳画像および基準脳画像の間でのランドマークを用いた第3の位置合わせを行った後に、対象脳画像および基準脳画像の間での第4の位置合わせを行うものであってもよい。
 この場合、第3の位置合わせは剛体位置合わせであり、第4の位置合わせは非線形変換による位置合わせであってもよい。
 第3の位置合わせはランドマークを用いた位置合わせであるが、第4の位置合わせは、対象脳画像および基準脳画像間で任意の領域を用いた位置合わせである。任意の領域を用いた位置合わせは、例えば、対象脳画像および基準脳画像間の全領域を用いた位置合わせであってもよく、一部の領域のみを用いた位置合わせであってもよい。
 本発明による医用画像処理方法は、同一被検体についての、診断対象となる対象脳画像および対象脳画像よりも撮影日時が古い複数の過去脳画像を取得し、
 複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出し、
 複数の過去脳画像から、類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する。
 なお、本発明による医用画像処理方法をコンピュータに実行させるためのプログラムとして提供してもよい。
 本発明による他の医用画像処理装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 同一被検体についての、診断対象となる対象脳画像および対象脳画像よりも撮影日時が古い複数の過去脳画像を取得し、
 複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出し、
 複数の過去脳画像から、類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する処理を実行する。
 本発明によれば、同一被検体についての、診断対象となる対象脳画像および対象脳画像よりも撮影日時が古い複数の過去脳画像が取得され、複数の過去脳画像のそれぞれと、標準脳画像との類似度が算出される。そして、複数の過去脳画像から、類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像が基準脳画像として選択される。このようにして選択された基準脳画像は、対象脳画像に時間的に最も近い日時に撮影されているものの、標準脳画像と近い形状および大きさを有するものとなっている。このため、基準脳画像は、複数の過去脳画像のうちの、大きさおよび形状の変化が始まった日時に最も近い日時に取得されたものとなる。したがって、対象脳画像および基準脳画像を用いて算出された脳の変化量は、ほぼ正常な時点を基準とした脳の変化量を表すものとなる。したがって、本発明によれば、過去脳画像が複数存在する場合に、脳の萎縮率を精度よく算出できる過去脳画像を基準脳画像として選択することができる。
本発明の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図 医用画像処理装置の概略構成を示す図 標準脳画像を示す図 基準脳画像の選択を説明するための図 対象脳画像を示す図 複数の領域に分割された対象脳画像を示す図 位置合わせを説明するための図 移動ベクトルを示す図 容積変化量の算出を説明するための図 容積変化量の表示を説明するための図 本実施形態において行われる処理を示すフローチャート
 以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の実施形態による医用画像処理装置を適用した、診断支援システムの概要を示すハードウェア構成図である。図1に示すように、診断支援システムでは、本実施形態による医用画像処理装置1、3次元画像撮影装置2、および画像保管サーバ3が、ネットワーク4を経由して通信可能な状態で接続されている。
 3次元画像撮影装置2は、被検体である患者の診断対象となる部位を撮影することにより、その部位を表す3次元画像を医用画像として生成する装置であり、具体的には、CT装置、MRI装置、およびPET装置等である。3次元画像撮影装置2により生成された医用画像は画像保管サーバ3に送信され、保存される。なお、本実施形態においては、被検体である患者の診断対象部位は脳であり、3次元画像撮影装置2はMRI装置であり、被検体の脳を含む頭部のMRI画像を3次元の脳画像として生成する。
 画像保管サーバ3は、各種データを保存して管理するコンピュータであり、大容量外部記憶装置およびデータベース管理用ソフトウェアを備えている。画像保管サーバ3は、有線あるいは無線のネットワーク4を介して他の装置と通信を行い、画像データ等を送受信する。具体的には3次元画像撮影装置2で生成された医用画像の画像データを含む各種データをネットワーク経由で取得し、大容量外部記憶装置等の記録媒体に保存して管理する。なお、画像データの格納形式およびネットワーク4経由での各装置間の通信は、DICOM(Digital Imaging and Communication in Medicine)等のプロトコルに基づいている。なお、本実施形態においては、同一の被検体について、撮影日時が異なる複数の3次元の脳画像の画像データが画像保管サーバ3に保存されているものとする。また、画像保管サーバ3には、後述する標準脳画像の画像データも保存されているものとする。
 医用画像処理装置1は、1台のコンピュータに、本発明の医用画像処理プログラムをインストールしたものである。コンピュータは、診断を行う医師が直接操作するワークステーションまたはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。医用画像処理プログラムは、DVD(Digital Versatile Disc)あるいはCD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、記録媒体からコンピュータにインストールされる。または、ネットワークに接続されたサーバコンピュータの記憶装置、もしくはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じて医師が使用するコンピュータにダウンロードされ、インストールされる。
 図2は、コンピュータに医用画像処理プログラムをインストールすることにより実現される医用画像処理装置の概略構成を示す図である。図2に示すように、医用画像処理装置1は、標準的なワークステーションの構成として、CPU(Central Processing Unit)
11、メモリ12およびストレージ13を備えている。また、医用画像処理装置1には、液晶ディスプレイ等のディスプレイ14、並びにキーボードおよびマウス等の入力部15が接続されている。なお、ディスプレイ14が表示部に対応する。
 ストレージ13は、ハードディスクドライブ、SSD(Solid State Drive)等の記録媒体からなり、ネットワーク4を経由して画像保管サーバ3から取得した、同一の被検体について撮影日時が異なる複数の脳画像、後述する標準脳画像および処理に必要な情報を含む各種情報が記憶されている。
 また、メモリ12には、医用画像処理プログラムが記憶されている。医用画像処理プログラムは、CPU11に実行させる処理として、同一被検体についての、診断対象となる対象脳画像および対象脳画像よりも撮影日時が古い複数の過去脳画像を取得する画像取得処理、複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出する類似度算出処理、複数の過去脳画像から、類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する選択処理、並びに対象脳画像と基準脳画像とに基づいて、脳の変化量を算出する変化量算出処理を規定する。
 また、変化量算出処理として、対象脳画像と標準脳画像とを位置合わせすることにより、対象脳画像に含まれる脳を複数の領域に分割する分割処理、対象脳画像と基準脳画像とを位置合わせする位置合わせ処理、対象脳画像と基準脳画像との位置合わせの結果に基づいて、対象脳画像に含まれる脳における複数の領域のうちの少なくとも1つの領域についての、基準脳画像に含まれる脳における対応する領域からの変化量を取得する変化量取得処理、並びに変化量をディスプレイ14に表示する表示制御処理を規定する。
 そして、CPU11がプログラムに従いこれらの処理を実行することで、コンピュータは、画像取得部21、類似度算出部22、選択部23、変化量算出部24、分割部25、位置合わせ部26、変化量取得部27および表示制御部28として機能する。なお、医用画像処理装置1は、画像取得処理、類似度算出処理、選択処理、変化量算出処理並びに変化量算出処理における分割処理、位置合わせ処理、変化量取得処理および表示制御処理をそれぞれ行う複数のプロセッサまたは処理回路を備えるものであってもよい。
 画像取得部21は、同一被検体についての診断対象となる対象脳画像Btおよび対象脳画像Btよりも撮影日時が古い複数の過去脳画像Bpi(iは2以上)を画像保管サーバ3から取得する。なお、対象脳画像Btおよび複数の過去脳画像Bpiが既にストレージ13に記憶されている場合には、画像取得部21は、ストレージ13から対象脳画像Btおよび複数の過去脳画像Bpiを取得するようにしてもよい。なお、対象脳画像Btは、被検体についての最新の脳画像とするが、複数の過去脳画像Bpiよりも撮影日時が新しければ、これに限定されるものではない。ここで、本実施形態においては、画像保管サーバ3に保管されているのは被検体の頭部を撮影することにより取得した脳画像であり、頭蓋骨等の脳以外の構造物も含まれる。また、画像取得部21は、標準脳画像Bsも画像保管サーバ3から取得する。
 ここで、標準脳画像Bsとは、標準的な形状および大きさ、並びに標準的な濃度(画素値)を有する脳、すなわち標準脳を表す3次元の脳画像である。標準脳画像Bsは、複数の健常者の頭部を3次元画像撮影装置により取得した複数の脳画像から脳を抽出し、抽出した複数の脳を平均することにより生成することができる。また、標準脳画像Bsは、コンピュータグラフィックス等により作成されたものであってもよい。また、一人の健常者の脳画像を標準脳画像Bsとして用いてもよい。
 また、本実施形態においては、標準脳画像Bsは複数の領域に分割されている。分割の手法としては、例えば、ブロードマンの脳地図に基づいて、大脳皮質の3次元領域内において、大脳皮質を運動、言語、知覚、記憶、視覚および聴覚等の各機能を司る領域に分割する手法を用いることができる。また、大脳、間脳、中脳、後脳、小脳および延髄の6種類の領域に分割する手法、あるいは大脳を前頭葉、頭頂葉、側頭葉および後頭葉に分類する手法等、公知の任意の手法を用いることができる。なお、単純に脳を等間隔で分割する手法を用いてもよい。図3は標準脳画像の例を示す図である。なお、図3においては、標準脳画像Bsは、ブロードマンの脳地図にしたがって複数の領域に分割されている。
 類似度算出部22は、複数の過去脳画像Bpiのそれぞれと、標準脳画像Bsとの類似度を算出する。具体的には、類似度算出部22は、複数の過去脳画像Bpiのそれぞれと標準脳画像Bsとを位置合わせし、位置合わせ後の複数の過去脳画像Bpiのそれぞれと標準脳画像Bsとの相関を類似度Siとして算出する。ここで、位置合わせとしては、標準脳画像Bsまたは過去脳画像Bpiを平行移動、回転および相似に拡大縮小する剛体位置合わせを用いることができる。また、相関としては、位置合わせ後の標準脳画像Bsと過去脳画像Bpiとの対応する画素間の差分値の絶対値の総和または差分値の二乗和等を用いることができる。なお、類似度Siを算出する手法はこれに限定されるものではなく、例えば過去脳画像Bpiの脳梁域内の画素値のヒストグラムと標準脳画像Bsの脳梁域内の画素値のヒストグラムの相関を類似度Siとして算出してもよい。また、類似度Siを算出する手法は、これ以外の任意の手法を用いることができる。
 選択部23は、複数の過去脳画像Bpiから脳の変化量算出のための基準となる基準脳画像B0を選択する。
 図4は基準脳画像B0の選択を説明するための図である。なお、ここでは10個の過去脳画像Bp1~Bp10が取得され、10個の類似度S1~S10が算出されているものとする。また、過去脳画像Bp1~Bp10は、付与された数字が小さいほど撮影日時が古い、すなわち過去に取得されたものとする。また、図4においては、横軸に日時を、縦軸に類似度を示している。ここで、認知症の患者は、時間の経過に伴って脳が萎縮する。このため、過去脳画像Bp1~Bp10においては、撮影日時が新しいほど標準脳画像Bsとの類似度が小さくなる。その一方で、撮影日時が古い過去脳画像においては、認知症に起因する脳の萎縮が始まっていなければ、加齢による脳の萎縮が含まれるのみであるため、標準脳画像Bsとの類似度は比較的大きく、かつ経時によっても殆ど変化しない。認知症に起因する脳の萎縮を精度よく算出するためには、脳の大きな変化、すなわち加齢による委縮よりも大きな萎縮が始まった頃の過去脳画像との比較を行うことが重要である。
 選択部23は、複数の過去脳画像Bpiから、類似度Siが予め定められたしきい値Th1以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像B0として選択する。例えば、過去脳画像Bp1~Bp10について算出した類似度S1~S10が、図4に示すように変化する場合、過去脳画像Bp1~Bp4の類似度S1~S4がしきい値Th1より大きいものとなる。また、過去脳画像Bp1~Bp4のうち、対象脳画像Btすなわち最新の脳画像に撮影日時が最も近い脳画像は、過去脳画像Bp4である。したがって、選択部23は、過去脳画像Bp4を基準脳画像B0として選択する。
 変化量算出部24は、対象脳画像Btと基準脳画像B0とに基づいて、脳の変化量を算出する。以下、変化量の算出について説明する。
 変化量算出部24の分割部25は、脳の変化量の算出のために、対象脳画像Btと標準脳画像Bsとを位置合わせすることにより、対象脳画像Btに含まれる脳を複数の領域に分割する。
 ここで、脳の大きさおよび形状は人により異なる。例えば、標準脳と比較した場合、最大で±15%程度大きさおよび形状が異なる。図5は対象脳画像Btを示す図である。図5に示すように、対象脳画像Btは図3に示す標準脳画像Bsと比較して、形状および大きさが異なるものとなっている。対象脳画像Btを複数の領域に分割するために、分割部25は、対象脳画像Btおよび標準脳画像Bsの間でのランドマークを用いた第1の位置合わせを行う。そして、第1の位置合わせを行った後に、対象脳画像Btおよび標準脳画像Bsの間での全領域を用いた第2の位置合わせを行う。なお、ランドマークは、具体的には脳に含まれる脳溝および脳室等の特徴的な領域の少なくとも1つを用いることができる。また、本実施形態においては、標準脳画像Bsを対象脳画像Btに位置合わせするものとして説明するが、対象脳画像Btを標準脳画像Bsに位置合わせしてもよい。
 位置合わせのために、分割部25は、対象脳画像Btおよび標準脳画像Bsからランドマークを抽出する。ランドマークの抽出は、例えばランドマークを表すテンプレートを用いたテンプレートマッチングにより行ってもよく、画像に含まれるランドマークを判別するように学習がなされた判別器を用いることにより行ってもよい。分割部25は、対象脳画像Btおよび標準脳画像Bs間において、対応するランドマークを一致させるように第1の位置合わせを行う。本実施形態において、第1の位置合わせは相似変換による位置合わせである。具体的には、標準脳画像Bsを平行移動、回転および相似に拡大縮小することによる位置合わせである。分割部25は、標準脳画像Bsに含まれるランドマークと、対象脳画像Btに含まれる対応するランドマークとの相関が最大となるように、標準脳画像Bsを相似変換して、第1の位置合わせを行う。
 分割部25は、このようにランドマークを用いた第1の位置合わせを行った後、対象脳画像Btおよび標準脳画像Bsの間での全領域を用いた第2の位置合わせを行う。本実施形態において、第2の位置合わせは非線形変換による位置合わせである。非線形変換による位置合わせとしては、例えばBスプラインおよびシンプレートスプライン(Thin Plate Spline)等の関数を用いて画素位置を非線形に変換することによる位置合わせが挙げられる。分割部25は、第1の位置合わせ後の標準脳画像Bsの各画素位置を、対象脳画像Btに含まれる対応する画素位置に非線形変換することにより、第2の位置合わせを行う。
 分割部25は、このようにして標準脳画像Bsを対象脳画像Btに位置合わせし、標準脳画像Bsにおける分割された領域の境界を対象脳画像Btに適用することにより、図6に示すように、対象脳画像Btを複数の領域に分割する。
 変化量算出部24の位置合わせ部26は、対象脳画像Btと基準脳画像B0とを位置合わせする。具体的には、対象脳画像Btおよび基準脳画像B0の間でのランドマークを用いた第3の位置合わせを行った後に、対象脳画像Btおよび基準脳画像B0の間での全領域を用いた第4の位置合わせを行う。なお、本実施形態においては、対象脳画像Btを基準脳画像B0に位置合わせするものとして説明するが、基準脳画像B0を対象脳画像Btに位置合わせしてもよい。
 位置合わせのために、位置合わせ部26は、対象脳画像Btおよび基準脳画像B0からランドマークを抽出する。ランドマークの抽出は、上述した第1の位置合わせと同様に行えばよい。位置合わせ部26は、対象脳画像Btおよび基準脳画像B0の間において、対応するランドマークを一致させるように第3の位置合わせを行う。ここで、対象脳画像Btに含まれる脳と基準脳画像B0含まれる脳とは、被検体が同一であるため大きさが一致する。このため、本実施形態において、第3の位置合わせとして、平行移動および回転のみを用いた剛体位置合わせを行う。
 図7は剛体位置合わせを説明するための図である。なお、図7においては、説明のために、対象脳画像Btおよび基準脳画像B0における対応する断層面のスライス画像Gt,G0を示している。位置合わせ部26は、図7に示すように、対象脳画像Btのスライス画像Gtのランドマークの1つである脳室31と、基準脳画像B0のスライス画像G0に含まれる対応する脳室32との相関が最大となるように、対象脳画像Btを平行移動および回転して、剛体位置合わせである第3の位置合わせを行う。これにより、第3の位置合わせ済みの対象脳画像Bt1(図7においてはスライス画像Gt1)が取得される。
 位置合わせ部26は、このようにランドマークを用いた第3の位置合わせを行った後、対象脳画像Btおよび基準脳画像B0の間での全領域を用いた第4の位置合わせを行う。本実施形態において、第4の位置合わせは非線形変換による位置合わせである。第4の位置合わせは、上述した第2の位置合わせと同様に行えばよい。これにより、対象脳画像Btの各画素における基準脳画像B0の対応する画素位置への移動ベクトルが取得される。図8は移動ベクトルを示す図である。図8に示すように、対象脳画像Btにおける脳の各画素位置において、移動ベクトルVmが取得される。
 変化量算出部24の変化量取得部27は、位置合わせ部26による位置合わせ結果に基づいて、対象脳画像Btに含まれる脳における複数の領域のうちの少なくとも1つの領域についての、基準脳画像B0に含まれる脳における対応する領域からの変化量を取得する。本実施形態においては、複数の領域のそれぞれについての変化量を取得するものとする。本実施形態においては、位置合わせ部26の位置合わせにより、対象脳画像Btに含まれる脳の各画素位置において、移動ベクトルVmが取得される。変化量取得部27は、対象脳画像Btに含まれる脳の各画素位置における移動ベクトルVmを、対象脳画像Btにおける複数の領域のそれぞれに分類する。これにより、対象脳画像Btに含まれる脳における複数の領域のそれぞれについての、基準脳画像B0に含まれる脳における対応する領域からの変化量を取得する。この場合、変化量は、対応する領域内における対応する画素の移動ベクトルVmとなる。さらに、変化量取得部27は、対象脳画像Btに含まれる脳における複数の領域のそれぞれについての容積変化量を算出する。
 図9は容積変化量の算出を説明するための図である。ここでは説明のために、対象脳画像Btに含まれる1つの領域40が3つの画素41,42,43からなり、図9における上下方向には画素は移動しなかったものとする。対象脳画像Btにおける3つの画素41,42,43からなる領域A1について、画素41の移動ベクトルV1が左方向に大きさが0.3画素、画素42の移動ベクトルV2が左方向に大きさが0.4画素、画素43の移動ベクトルV3が左方向に大きさが0.8画素であったものとする。
 この場合、領域40の全体は左に移動している。また、画素41と画素42との間隔は0.1画素小さくなっている。また、画素42と画素43との間隔は0.4画素小さくなっている。このため、変化量取得部27は、領域40の画素値の変化量を-0.5画素として算出する。なお、変化量取得部27は、実際には対象脳画像Btにおける各領域について、x,y,zの3軸の方向のそれぞれについての画素値の変化量を算出する。なお、変化量が負の値の場合は領域は萎縮しており、正の値の場合は膨張しているものとなる。
 変化量取得部27は、さらに、以下のように容積変化量を算出する。すなわち、対象脳画像Btにおける各領域について、x,y,zの3軸の方向それぞれについて算出された変化量を加算する。そして、これにより得られる加算値を対応する領域内の総画素数により除算することにより、領域の容積の変化率を容積変化量として算出する。この場合、容積変化量は各領域の容積に対する変化の割合(例えば百分率)により表される。なお、容積変化量も、領域が萎縮していれば負の値となり、膨張していれば正の値となる。ここで、負の値となる容積変化量の絶対値が脳の萎縮率となる。
 なお、対象脳画像Btにおける各領域について、x,y,zの3軸の方向それぞれについて算出された変化量を加算することにより得られる加算値を容積変化量として算出してもよい。この場合、容積変化量は画素値の大きさにより表され、領域が萎縮していれば負の値となり、膨張していれば正の値となる。
 また、対象脳画像Btおよび基準脳画像B0においては1画素(すなわち1ボクセル)当たりの体積が予め分かっている。このため、x,y,zの3軸の方向それぞれについて算出された変化量を加算し、これにより得られる加算値に1画素当たりの体積を乗算することにより容積変化量を算出してもよい。この場合、容積変化量は容積の変化量の大きさにより表される。
 さらに、変化量取得部27は、負の値となった領域について、容積変化量の絶対値、すなわち脳の萎縮率を予め定められたしきい値Th2と比較し、容積変化量の絶対値がしきい値Th2よりも大きい領域を、異常領域に特定してラベルを付与する。ここで、人間の加齢による脳の萎縮率は年に1%未満であるが、認知症の患者では1~3%程度となる。このため、変化量取得部27は、例えばしきい値Th2を-1%に設定し、容積変化量の絶対値がしきい値Th2よりも大きい領域を異常領域に特定する。
 変化量算出部24の表示制御部28は、容積変化量をディスプレイ14に表示する。図10は容積変化量の表示を説明するための図である。図10に示すように、ディスプレイ14には、脳の複数の領域のうちの異常領域A10,A11に斜線が付与されており、さらに、容積変化量を示すラベルL10,L11が付与される。ここで、図10においては、ラベルL10,L11には、容積変化量の絶対値、すなわち脳の萎縮率が示されている。なお、容積変化量の大きさに応じて、各領域を色分けして表示してもよい。なお、本実施形態においては、表示制御部28を変化量算出部24の一部の構成としているが、表示制御部28を変化量算出部24とは別個に設けるようにしてもよい。
 なお、ここでは医師が診断を行うことを前提として、脳における変化量、すなわち萎縮率が大きいと判断された領域を識別可能に表示させたが、認知症の発生の有無を自動で診断し、その結果を表示してもよい。この場合、過去の複数の患者について、領域毎の変化量、すなわち萎縮率および認知症の発生有無を教師データ(正解付きデータ)として機械学習させることにより判別器を作成しておく。そして、本実施形態において算出された新たな患者の領域毎の変化量、すなわち萎縮率を判別器に入力して認知症であるか否かを判別させるようにすればよい 。
 次いで、本実施形態において行われる処理について説明する。図11は本実施形態において行われる処理を示すフローチャートである。まず、画像取得部21が、同一被検体についての診断対象となる対象脳画像Btおよび対象脳画像Btよりも撮影日時が古い複数の過去脳画像Bpiを取得する(ステップST1)。次いで、類似度算出部22が、複数の過去脳画像Bpiのそれぞれと標準脳画像Bsとの類似度を算出する(ステップST2)。そして、選択部23が、複数の過去脳画像Bpiから脳の変化量算出のための基準となる基準脳画像B0を選択する(ステップST3)。
 そして、変化量算出部24の分割部25が、対象脳画像Btと複数の領域に分割された標準脳画像Bsとを位置合わせすることにより、対象脳画像Btに含まれる脳を複数の領域に分割する(ステップST4)。そして、変化量算出部24の位置合わせ部26が、対象脳画像Btと基準脳画像B0とを位置合わせする(ステップST5)。
 さらに、変化量算出部24の変化量取得部27が、位置合わせの結果に基づいて、対象脳画像Btに含まれる脳における複数の領域のうちの少なくとも1つの領域についての、基準脳画像B0に含まれる脳における対応する領域からの変化量を取得し(ステップST6)、さらに、対象脳画像Btに含まれる脳における複数の領域のうちの少なくとも1つの領域についての、基準脳画像B0の対応する領域からの容積変化量を算出する(ステップST7)。そして、変化量算出部24の表示制御部28が、容積変化量をディスプレイ14に表示し(ステップST8)、処理を終了する。
 このように、本実施形態においては、同一被検体についての、診断対象となる対象脳画像Btおよび複数の過去脳画像Bpiが取得され、複数の過去脳画像Bpiのそれぞれと、標準脳画像Bsとの類似度Siが算出される。そして、複数の過去脳画像Bpiから、類似度Siが予め定められたしきい値Th1以上となり、かつ現在日時に最も近い撮影日時の過去脳画像が基準脳画像B0として選択される。このようにして選択された基準脳画像B0は、対象脳画像Btに時間的に最も近い日時に撮影されているものの、標準脳画像Bsと近い形状および大きさを有するものとなっている。このため、基準脳画像B0は、複数の過去脳画像Bpiのうちの、大きさおよび形状の変化が始まった日時に最も近い日時に取得されたものとなる。したがって、対象脳画像Btおよび基準脳画像B0を用いて算出された脳の変化量は、ほぼ正常な時点を基準とした脳の変化量を表すものとなる。したがって、本実施形態によれば、過去脳画像が複数存在する場合に、脳の萎縮率を精度よく算出できる過去脳画像を基準脳画像B0として選択することができる。
 なお、被検体の脳は、年齢および体格等により形状および大きさが異なる。このため、類似度算出部22において、過去脳画像Bpiと標準脳画像Bsとの類似度を算出する際に、形状および大きさが異なる複数の標準脳画像Bsとの類似度を算出するようにしてもよい。この場合、形状および大きさが異なる複数の標準脳画像Bsをストレージ13に記憶しておけばよい。このように、形状および大きさが異なる複数の標準脳画像Bsとの類似度を算出することにより、被検体に応じて適切な形状および大きさの標準脳画像Bsとの類似度を算出することができる。したがって、脳の萎縮率の算出により適した基準脳画像B0を選択することができる。
 また、上記実施形態においては、第3の位置合わせとして剛体位置合わせを行っているが、対象脳画像Btと基準脳画像B0とにおいて、含まれる脳のサイズが異なるものとなる場合がある。このような場合は、第3の位置合わせとして、剛体位置合わせに加えて、拡大縮小を行うようにしてもよい。
 また、上記実施形態においては、容積変化量を算出しているが、各領域の変化量のみを算出するようにしてもよい。
 また、上記実施形態においては、変化量算出部24の分割部25においてランドマークを用いた第1の位置合わせを行った後に第2の位置合わせを行っているが、第2の位置合わせ、すなわち非線形変換による位置合わせのみを行うようにしてもよい。
 また、上記実施形態においては、変化量算出部24の位置合わせ部26においてランドマークを用いた第3の位置合わせを行った後に第4の位置合わせを行っているが、第4の位置合わせ、すなわち非線形変換による位置合わせのみを行うようにしてもよい。
 また、上記実施形態においては、分割部25における第2の位置合わせとして、標準脳画像Bsおよび対象脳画像Btの全領域を用いた位置合わせを行っているが、標準脳画像Bsおよび対象脳画像Btの一部の領域を用いた位置合わせを行うようにしてもよい。例えば、脳における個々の分割された領域のみを用いて位置合わせを行うようにしてもよい。
 また、上記実施形態においては、位置合わせ部26における第4の位置合わせとして、対象脳画像Btおよび基準脳画像B0の全領域を用いた位置合わせを行っているが、対象脳画像Btおよび基準脳画像B0の一部の領域を用いた位置合わせを行うようにしてもよい。例えば、脳における個々の分割された領域のみを用いて位置合わせを行うようにしてもよい。
 また、上記実施形態においては、被検体のMRI画像を医用画像として用いているが、CT画像、PET画像等、MRI画像以外の脳画像を用いてもよい。
 以下、本実施形態の作用効果について説明する。
 複数の標準脳画像と複数の過去脳画像のそれぞれとの類似度を算出することにより、被検体に応じて適切な標準脳画像との類似度を算出することができる。したがって、脳の萎縮率の算出により適した基準脳画像を選択することができる。
 対象脳画像に含まれる脳についての複数の領域のうちの少なくとも1つの領域における基準脳画像の対応する領域からの容積変化量を取得することにより、各領域の容積変化量を精度よく取得することができる。
 ランドマークを用いた第1の位置合わせを行った後に、第2の位置合わせを行うことにより、ランドマークという位置を合わせしやすい領域を用いて位置合わせを行った後に、さらなる位置合わせを行うこととなる。このため、対象脳画像と標準脳画像との位置合わせを効率よく行うことができる。
 ランドマークを用いた第3の位置合わせを行った後に、第4の位置合わせを行うことにより、ランドマークという位置を合わせしやすい領域を用いて位置合わせを行った後に、さらなる位置合わせを行うこととなる。このため、対象脳画像と基準脳画像との位置合わせを効率よく行うことができる。
   1  医用画像処理装置
   2  3次元画像撮影装置
   3  画像保管サーバ
   4  ネットワーク
   11  CPU
   12  メモリ
   13  ストレージ
   14  ディスプレイ
   15  入力部
   21  画像取得部
   22  類似度算出部
   23  選択部
   24  変化量算出部
   25  分割部
   26  位置合わせ部
   27  変化量取得部
   28  表示制御部
   31,32  脳室
   40  領域
   41,42,43  画素
   B0  基準脳画像
   Bt  対象脳画像
   Bpi  過去脳画像
   Bs  標準脳画像
   Gt,G0,Gt1  スライス画像
   L10,L11  ラベル
   Vm  移動ベクトル

Claims (14)

  1.  同一被検体についての、診断対象となる対象脳画像および該対象脳画像よりも撮影日時が古い複数の過去脳画像を取得する画像取得部と、
     前記複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出する類似度算出部と、
     前記複数の過去脳画像から、前記類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する選択部とを備えた医用画像処理装置。
  2.  前記類似度算出部は、複数の標準脳画像と前記複数の過去脳画像のそれぞれとの類似度を算出する請求項1に記載の医用画像処理装置。
  3.  前記類似度算出部は、前記複数の過去脳画像のそれぞれと前記標準脳画像とを位置合わせし、該位置合わせ後の前記複数の過去脳画像のそれぞれと前記標準脳画像との相関を前記類似度として算出する請求項1または2に記載の医用画像処理装置。
  4.  前記対象脳画像と前記基準脳画像とに基づいて、脳の変化量を算出する変化量算出部をさらに備えた請求項1から3のいずれか1項に記載の医用画像処理装置。
  5.  前記変化量算出部は、前記対象脳画像と前記標準脳画像とを位置合わせすることにより、前記対象脳画像に含まれる脳を複数の領域に分割する分割部と、
     前記対象脳画像と前記基準脳画像とを位置合わせする位置合わせ部と、
     前記対象脳画像と前記基準脳画像との位置合わせの結果に基づいて、前記対象脳画像に含まれる脳における前記複数の領域のうちの少なくとも1つの領域についての、前記基準脳画像に含まれる脳における対応する領域からの変化量を取得する変化量取得部とを備えた請求項4に記載の医用画像処理装置。
  6.  前記変化量取得部は、前記対象脳画像に含まれる脳における前記複数の領域のうちの少なくとも1つの領域についての、前記基準脳画像の対応する領域からの容積変化量を算出する請求項5に記載の医用画像処理装置。
  7.  前記容積変化量を表示部に表示する表示制御部をさらに備えた請求項6に記載の医用画像処理装置。
  8.  前記位置合わせ部は、前記対象脳画像に含まれる脳および前記基準脳画像に含まれる脳における対応する領域間において、対応する画素位置の移動ベクトルを前記変化量として取得する請求項5から7のいずれか1項に記載の医用画像処理装置。
  9.  前記分割部は、前記対象脳画像および前記標準脳画像の間でのランドマークを用いた第1の位置合わせを行った後に、前記対象脳画像および前記標準脳画像の間での第2の位置合わせを行う請求項5から8のいずれか1項に記載の医用画像処理装置。
  10.  前記第1の位置合わせは相似変換による位置合わせであり、前記第2の位置合わせは非線形変換による位置合わせである請求項9に記載の医用画像処理装置。
  11.  前記位置合わせ部は、前記対象脳画像および前記基準脳画像の間でのランドマークを用いた第3の位置合わせを行った後に、前記対象脳画像および前記基準脳画像の間での第4の位置合わせを行う請求項5から10のいずれか1項に記載の医用画像処理装置。
  12.  前記第3の位置合わせは剛体位置合わせであり、前記第4の位置合わせは非線形変換による位置合わせである請求項11に記載の医用画像処理装置。
  13.  同一被検体についての、診断対象となる対象脳画像および該対象脳画像よりも撮影日時が古い複数の過去脳画像を取得し、
     前記複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出し、
     前記複数の過去脳画像から、前記類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する医用画像処理方法。
  14.  同一被検体についての、診断対象となる対象脳画像および該対象脳画像よりも撮影日時が古い複数の過去脳画像を取得する手順と、
     前記複数の過去脳画像のそれぞれと、標準脳画像との類似度を算出する手順と、
     前記複数の過去脳画像から、前記類似度が予め定められたしきい値以上となり、かつ現在日時に最も近い撮影日時の過去脳画像を基準脳画像として選択する手順とをコンピュータに実行させる医用画像処理プログラム。
PCT/JP2018/020390 2017-08-28 2018-05-28 医用画像処理装置、方法およびプログラム WO2019044077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019538974A JP6821036B2 (ja) 2017-08-28 2018-05-28 医用画像処理装置、方法およびプログラム
EP18851813.8A EP3677181B1 (en) 2017-08-28 2018-05-28 Medical image processing apparatus, medical image processing method, and medical image processing program
US16/792,322 US11158054B2 (en) 2017-08-28 2020-02-17 Medical image processing apparatus, medical image processing method, and medical image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163008 2017-08-28
JP2017-163008 2017-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/792,322 Continuation US11158054B2 (en) 2017-08-28 2020-02-17 Medical image processing apparatus, medical image processing method, and medical image processing program

Publications (1)

Publication Number Publication Date
WO2019044077A1 true WO2019044077A1 (ja) 2019-03-07

Family

ID=65527240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020390 WO2019044077A1 (ja) 2017-08-28 2018-05-28 医用画像処理装置、方法およびプログラム

Country Status (4)

Country Link
US (1) US11158054B2 (ja)
EP (1) EP3677181B1 (ja)
JP (1) JP6821036B2 (ja)
WO (1) WO2019044077A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114006A1 (ja) * 2020-11-27 2022-06-02 富士フイルム株式会社 情報処理装置、情報処理方法及び情報処理プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240995A1 (ja) * 2019-05-28 2020-12-03 富士フイルム株式会社 マッチング装置、方法およびプログラム
CN113724160B (zh) * 2021-08-26 2023-09-05 浙江大学医学院附属邵逸夫医院 一种脑影像处理方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090292551A1 (en) * 2008-05-20 2009-11-26 General Electric Company System and Method for Mapping Structural and Functional Deviations in an Anatomical Region
JP2011010828A (ja) 2009-07-01 2011-01-20 Toshiba Corp 医用画像表示装置および医用画像表示方法
JP2014042684A (ja) 2012-08-28 2014-03-13 Dainippon Printing Co Ltd 医用画像処理装置、およびプログラム
JP2015029135A (ja) 2013-07-01 2015-02-12 富士ゼロックス株式会社 半導体片の製造方法
JP2016064004A (ja) * 2014-09-25 2016-04-28 大日本印刷株式会社 医用画像表示処理方法、医用画像表示処理装置およびプログラム
JP2017023457A (ja) * 2015-07-23 2017-02-02 東芝メディカルシステムズ株式会社 医用画像処理装置
JP2017124039A (ja) * 2016-01-14 2017-07-20 東芝メディカルシステムズ株式会社 画像処理装置および画像処理プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208243B2 (ja) 2013-08-27 2017-10-04 株式会社日立製作所 罹患率評価装置、罹患率評価方法及び罹患率評価プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090292551A1 (en) * 2008-05-20 2009-11-26 General Electric Company System and Method for Mapping Structural and Functional Deviations in an Anatomical Region
JP2011010828A (ja) 2009-07-01 2011-01-20 Toshiba Corp 医用画像表示装置および医用画像表示方法
JP2014042684A (ja) 2012-08-28 2014-03-13 Dainippon Printing Co Ltd 医用画像処理装置、およびプログラム
JP2015029135A (ja) 2013-07-01 2015-02-12 富士ゼロックス株式会社 半導体片の製造方法
JP2016064004A (ja) * 2014-09-25 2016-04-28 大日本印刷株式会社 医用画像表示処理方法、医用画像表示処理装置およびプログラム
JP2017023457A (ja) * 2015-07-23 2017-02-02 東芝メディカルシステムズ株式会社 医用画像処理装置
JP2017124039A (ja) * 2016-01-14 2017-07-20 東芝メディカルシステムズ株式会社 画像処理装置および画像処理プログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DOMINIC HOLLAND ET AL.: "Subregional neuroanatomical change as a biomarker for Alzheimer's disease", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 106, no. 49, 8 December 2009 (2009-12-08), pages 20954 - 20959
See also references of EP3677181A4 *
YAKANG DAI ET AL.: "aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI", ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE, 3 April 2013 (2013-04-03)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114006A1 (ja) * 2020-11-27 2022-06-02 富士フイルム株式会社 情報処理装置、情報処理方法及び情報処理プログラム

Also Published As

Publication number Publication date
JP6821036B2 (ja) 2021-01-27
EP3677181A4 (en) 2020-10-07
EP3677181B1 (en) 2021-10-13
EP3677181A1 (en) 2020-07-08
JPWO2019044077A1 (ja) 2020-04-09
US11158054B2 (en) 2021-10-26
US20200184649A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP2013545520A (ja) 画像検索エンジン
US11158054B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
JP6771109B2 (ja) 医用情報表示装置、方法及びプログラム
US11580642B2 (en) Disease region extraction apparatus, disease region extraction method, and disease region extraction program
US11164296B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
US11257227B2 (en) Brain image normalization apparatus, brain image normalization method, and brain image normalization program
US20190343473A1 (en) Medical image processing apparatus, method, and program
JP6755406B2 (ja) 医用画像表示装置、方法及びプログラム
US20190019304A1 (en) Medical image processing apparatus, method, and program
JP6827120B2 (ja) 医用情報表示装置、方法及びプログラム
US11216945B2 (en) Image processing for calculation of amount of change of brain
US11315263B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
US11335465B2 (en) Information output apparatus, information output method, and information output program
JP6765396B2 (ja) 医用画像処理装置、方法およびプログラム
US20220044052A1 (en) Matching apparatus, matching method, and matching program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851813

Country of ref document: EP

Effective date: 20200330