WO2019043814A1 - Trigonometric function approximation device, trigonometric function approximation method, and trigonometric function approximation program - Google Patents

Trigonometric function approximation device, trigonometric function approximation method, and trigonometric function approximation program Download PDF

Info

Publication number
WO2019043814A1
WO2019043814A1 PCT/JP2017/031066 JP2017031066W WO2019043814A1 WO 2019043814 A1 WO2019043814 A1 WO 2019043814A1 JP 2017031066 W JP2017031066 W JP 2017031066W WO 2019043814 A1 WO2019043814 A1 WO 2019043814A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sawtooth
function
phase
trigonometric function
Prior art date
Application number
PCT/JP2017/031066
Other languages
French (fr)
Japanese (ja)
Inventor
崇 西辻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/031066 priority Critical patent/WO2019043814A1/en
Priority to JP2019512852A priority patent/JP6548855B1/en
Publication of WO2019043814A1 publication Critical patent/WO2019043814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B28/00Generation of oscillations by methods not covered by groups H03B5/00 - H03B27/00, including modification of the waveform to produce sinusoidal oscillations

Definitions

  • the present invention relates to a trigonometric function approximation device, a trigonometric function approximation method, and a trigonometric function approximation program that approximates a trigonometric function such as a cosine function or a sine function.
  • Trigonometric functions are fundamental functions widely used for signal processing such as wave signal processing or image processing. Wave signal processing is used as an example in the field of radar. Image processing is used in the field of 3DCG (3-Dimensional Computer Graphics) as a specific example. Trigonometric functions are transcendental functions. Thus, trigonometric functions can not be calculated by a finite number of algebraic operations such as addition and multiplication. Therefore, when the calculation of the trigonometric function is realized by computer implementation, an approximate calculation method or a table reference method using a pre-calculated value stored in the memory is used.
  • Non-Patent Document 1 discloses a simple trigonometric function approximation method. As an example of a simple trigonometric function approximation method, a method of performing approximation with only three operations of remainder operation, subtraction, and absolute value operation is disclosed. Further, Patent Document 1 discloses a technique of approximately outputting a sine wave based on a parabola signal and an error between a parabola signal and a sine wave signal recorded in advance.
  • Non-Patent Document 1 requires iterative calculation for approximation. Therefore, the latency of the result output and the circuit scale become problems. Further, in the trigonometric function approximation method disclosed in Non-Patent Document 2, low approximation accuracy is a problem. Further, in the technology disclosed in Patent Document 1, the size of the memory amount for storing the error of the sine wave signal with respect to the parabola signal is a mounting problem.
  • An object of the present invention is to provide a trigonometric function approximation device which can be implemented with a small circuit area and a small amount of memory, and which has high accuracy.
  • a trigonometric function approximating apparatus uses an output of a trigonometric function to which a phase signal is input as an ideal function and generates an approximating signal approximating the ideal function.
  • a main generation unit including a first sawtooth wave generator that generates a first sawtooth wave signal that is synchronized with the ideal function using the phase signal; Error correction generation that generates an error correction signal that is generated from the ideal function and the first sawtooth signal and that represents an error between the ideal triangular wave signal whose phase, frequency, and amplitude are the same as the ideal function Equipped with
  • the error correction generation unit An adjustment unit configured to generate an adjustment signal obtained by multiplying the phase signal by a constant and adding a constant; A sub-generation unit that generates a second triangular wave signal whose phase and frequency are the same triangular wave signal as the error correction signal using the adjustment signal; And a second correction unit configured to adjust a value range of the waveform of the second triangular wave signal and generate the error correction signal.
  • the main generation unit further includes An addition unit that adds the first sawtooth signal and the error correction signal to generate a corrected sawtooth signal;
  • the correction sawtooth signal is used to provide an approximate signal generation unit that generates, as the approximate signal, a triangular wave signal having the same phase, frequency, and amplitude as the ideal function.
  • the trigonometric function approximation apparatus generates a triangular wave signal tuned to an ideal function by sequentially converting a sawtooth wave signal to a triangular wave signal with respect to a phase signal as an input of the trigonometric function. Then, the trigonometric function approximating apparatus superimposes an error correction signal generated from the same phase signal on the generated triangular wave signal. Therefore, according to the trigonometric function approximating apparatus of the present invention, the trigonometric function can be accurately approximated by a small-scale calculation circuit or calculation program.
  • FIG. 2 is a functional configuration diagram of the trigonometric function approximation device according to the first embodiment.
  • 6 shows an example of a hardware configuration of a trigonometric function approximation apparatus according to Embodiment 1.
  • 7 shows another example of the hardware configuration of the trigonometric function approximation device according to the first embodiment.
  • FIG. 6 is a flowchart of trigonometric function approximation processing according to the first embodiment.
  • FIG. 6 is a diagram for explaining main generation processing according to the first embodiment.
  • FIG. 6 is a diagram for explaining an error correction signal according to the first embodiment.
  • FIG. 7 is a diagram for explaining an error correction generation process according to the first embodiment.
  • FIG. 7 is a diagram for explaining an error correction generation process according to the first embodiment.
  • FIG. 6 is a diagram for explaining trigonometric function approximation processing according to the first embodiment.
  • FIG. 1 shows an example of the functional configuration of the trigonometric function approximating apparatus 10 according to the present embodiment.
  • FIG. 2 shows an example of the hardware configuration of the trigonometric function approximating apparatus 10 according to the present embodiment.
  • FIG. 3 shows another example of the hardware configuration of the trigonometric function approximating apparatus 10 according to the present embodiment.
  • the trigonometric function approximating apparatus 10 receives the phase signal 51 input to the trigonometric function as an input, and outputs the output of the trigonometric function as the approximating signal 52.
  • the phase signal 51 is an input signal to be input to the trigonometric function. That is, the trigonometric function approximating apparatus 10 generates an approximation signal 52 approximating the ideal function 61 by setting the output of the trigonometric function to which the phase signal 51 is input as the ideal function 61 (see FIG. 5).
  • the trigonometric function approximating apparatus 10 generates an approximate signal 52 by adding a simple arithmetic process to the phase signal 51. More specifically, the trigonometric function approximating apparatus 10 performs processing represented on the phase signal 51 by a combination of remainder operation, subtraction, multiplication, and absolute value operation. Thus, the trigonometric function approximating apparatus 10 can generate the approximate signal 52 that approximates the output of the trigonometric function with high accuracy.
  • the operations performed by the trigonometric function approximation device 10 correspond to a trigonometric function approximation method and a trigonometric function approximation program.
  • Embodiment 1 *** Description of the configuration *** Next, a functional configuration example and a hardware configuration example of the trigonometric function approximating apparatus 10 will be described using FIGS. 1, 2 and 3.
  • one of the hardware configuration examples of the trigonometric function approximating apparatus 10 is a computer.
  • the trigonometric function approximating apparatus 10 in this configuration example includes hardware of a signal input / output interface 21, a processor 22, and a storage device 23.
  • the processor 22 is connected to other hardware via signal lines to control these other hardware.
  • the signal input / output interface 21 connects an input / output device such as a signal generation source such as a sensor or a display device.
  • a signal generation source such as a sensor or a display device.
  • the signal input / output interface 21 is a connection terminal of USB, HDMI (registered trademark), IEEE 1394, or NIC.
  • USB is an abbreviation for Universal Serial Bus.
  • HDMI (registered trademark) is an abbreviation of High-Definition Multimedia Interface.
  • NIC is an abbreviation of Network Interface Card.
  • the processor 22 is an IC that performs processing.
  • the processor 22 is, specifically, a CPU, a DSP, or a GPU.
  • IC is an abbreviation for Integrated Circuit.
  • CPU is an abbreviation of Central Processing Unit.
  • DSP is an abbreviation of Digital Signal Processor.
  • GPU is an abbreviation of Graphics Processing Unit.
  • the storage device 23 includes a memory 231 and a storage 232.
  • a specific example of the memory 231 is a RAM.
  • An example of the storage 232 is an HDD.
  • the storage 232 may also be a portable storage medium such as an SD (registered trademark) memory card, a CF, a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD.
  • RAM is an abbreviation of Random Access Memory.
  • HDD is an abbreviation of Hard Disk Drive.
  • SD (registered trademark) Memory Card SD (registered trademark) is an abbreviation of Secure Digital.
  • CF is an abbreviation of Compact Flash.
  • DVD Digital Abbreviation for Versatile Disk.
  • one of the hardware configuration examples of the trigonometric function approximating apparatus 10 is a digital circuit.
  • the trigonometric function approximating apparatus 10 in this configuration example is composed of a plurality of digital circuit blocks. All digital circuit blocks are connected by signal lines.
  • the plurality of digital circuit blocks include bit extractors 701 and 708, adders 702 and 707, subtractors 703, 705, 709, 711, 712 and 714, multipliers 706, 713 and 715, and an exclusive OR 704, It is 710.
  • the trigonometric function approximating apparatus 10 includes a main generation unit 11, an error correction generation unit 12, and a first correction unit 13 as functional components.
  • the main generation unit 11 includes a first sawtooth wave generation unit 111, an addition unit 113, and a first aliasing wave generation unit 112.
  • the error correction generation unit 12 includes an adjustment unit 121, a sub generation unit 122, and a second correction unit 123.
  • the sub-generation unit 122 includes a second sawtooth wave generation unit 1221 and a second second aliasing wave generation unit 1222. These functions are realized by software or digital circuits.
  • the storage 232 stores a program for realizing the functions of the respective units of the trigonometric function approximating apparatus 10.
  • This program is read by the processor 22 into the memory 231 and executed by the processor 22. Thereby, the function of each part of the trigonometric function approximating apparatus 10 is executed.
  • the addition unit 113 realizes a function by an adder.
  • the first sawtooth wave generator 111 is configured by a bit extractor 701 that extracts only the decimal part of the input signal.
  • the second sawtooth wave generator 1221 is configured of a bit extractor 708.
  • the addition unit 113 is configured of an adder 702.
  • the first return wave generation unit 112 is composed of subtractors 703 and 705 and an exclusive OR 704.
  • the second second aliasing wave generator 1222 is configured by subtractors 709 and 711 and an exclusive OR 710.
  • Adjustment unit 121 is configured of multiplier 706 and adder 707.
  • the first correction unit 13 includes a subtractor 714 and a multiplier 715.
  • the second correction unit 123 includes a subtractor 712 and a multiplier 713.
  • the multipliers 706, 713, and 715 may be implemented by bit shift because they perform multiplication of powers of two.
  • Each of the processor and digital circuitry is also referred to as processing circuitry. That is, the function of each part of the trigonometric function approximating apparatus 10 is realized by processing circuitry.
  • the “parts” of each part of the trigonometric function approximating apparatus 10 may be read as “process”.
  • the “process” of each process described below may be read as a “program”, a “program product”, or a “computer readable storage medium storing a program”.
  • FIG. 4 is a flowchart of the trigonometric function approximation process S100 according to the present embodiment.
  • FIG. 5 is a diagram for explaining main generation processing according to the present embodiment.
  • FIG. 6 is a diagram for explaining an error correction signal according to the present embodiment.
  • FIG. 7 is a diagram for explaining an error correction generation process according to the present embodiment.
  • FIG. 8 is a diagram for explaining an error correction generation process according to the present embodiment.
  • FIG. 9 is a diagram for explaining trigonometric function approximation processing according to the present embodiment.
  • the phase signal 51 is input to the main generation unit 11 and the error correction generation unit 12. Then, in the trigonometric function approximating apparatus 10, the approximate signal 52 is output from the first correction unit 13.
  • the main generation unit 11 executes sawtooth wave generation processing S101, addition processing S106, and return wave generation processing S107 on the phase signal 51, and outputs a first triangular wave signal 502.
  • the first sawtooth wave generation unit 111 of the main generation unit 11 uses the phase signal 51 to generate a first sawtooth wave signal 501 synchronized with the ideal function 61. Specifically, the first sawtooth wave generation unit 111 acquires the phase signal 51 and executes the first sawtooth wave generation process. The first sawtooth wave generation unit 111 forms, for the phase signal 51, a first sawtooth wave signal 501 tuned to a desired trigonometric function frequency.
  • a desired trigonometric function is an ideal function 61.
  • the ideal function 61 is an output of a trigonometric function to which the phase signal 51 is input. In FIG.
  • the ideal function 61 is represented by a dotted line
  • the first sawtooth signal 501 is represented by a solid line.
  • the first sawtooth wave generation unit 111 generates the first sawtooth wave signal 501 by processing for extracting the decimal point part of ⁇ . That is, the first sawtooth wave generation unit 111 generates a first sawtooth wave signal 501 having a peak at the timing when ⁇ reaches 1.0 and having a value range of 0.0 to 1.0.
  • This first sawtooth wave generation process is realized by extracting a bit string corresponding to the decimal part of the phase signal 51 when the trigonometric function approximating apparatus 10 is implemented by a digital circuit and the phase signal 51 is implemented in fixed point. it can. That is, the first sawtooth wave generation process of the first sawtooth wave generation unit 111 is realized by the bit extractor 701.
  • the phase signal 51 ie, the phase signal f
  • the timing at which ⁇ reaches 1.0 coincides with the timing at which the phase signal f reaches an integral multiple of 2 ⁇ . Therefore, the first sawtooth signal 501 output from the first sawtooth wave generator 111 is tuned to a trigonometric function of a period 2 ⁇ .
  • Addition processing The addition unit 113 of the main generation unit 11 adds the first sawtooth signal 501 and the error correction signal 603 to generate a corrected sawtooth signal 501a.
  • the addition process S106 will be described later.
  • the first return wave generation unit 112 generates a first triangular wave signal 502 by performing return wave generation processing on the corrected sawtooth signal 501 a output from the addition unit 113.
  • FIG. 5 a state in which the error correction signal 603 is not added to the first sawtooth signal 501 will be described. That is, the case where the first return wave generation unit 112 performs the return wave generation processing on the first sawtooth signal 501 output from the first sawtooth generation unit 111 will be described.
  • the first return wave generation process S107 for performing the return wave generation process on the corrected sawtooth signal 501a output from the adding unit 113 will be described later.
  • the return wave generation processing converts the first sawtooth wave signal 501 so as to be line symmetrical with respect to the signal of 0.5 or less on the signal waveform at the boundary of 0.5 as shown in FIG. It is a process. Specifically, the first return wave generation unit 112 subtracts the value 0.5 from the first sawtooth signal 501 and further performs an absolute value operation to execute the return wave generation process. When the trigonometric function approximating apparatus 10 is realized by a digital circuit, the subtraction of 0.5 is realized by the subtractor 703 in this return wave generation processing.
  • a subtractor 705 having an output of an exclusive OR 704 having an output of the subtractor 703 and a sign bit as an input, a sign bit of an output of the subtractor 703 and an exclusive OR 704 as an input.
  • the signal is returned at timing when ⁇ reaches an integral multiple of 0.5. That is, the first triangular wave signal 502 which is the output of the first folded wave generation unit 112 is completely tuned to the ideal function 61 since it corresponds to folding at a timing when the phase signal f becomes an integral multiple of ⁇ . Further, the first triangular wave signal 502 which is the output of the first return wave generation unit 112 has a range of 0.0 to 0.5.
  • the first correction unit 13 adds an offset to the first triangular wave signal 502 and multiplies it by a constant in order to adjust the value range of the first triangular wave signal 502 to -1.0 to 1.0 which is the same as the ideal function 61. .
  • the first triangular wave signal 502, which is the output of the main generation unit 11, has a value range of 0.0 to 0.5, so here, ⁇ 0.25 is added and 4 is multiplied.
  • this operation is realized by the subtraction of 0.25 by the subtractor 714 and the multiplication of 0.5 by the multiplier 715.
  • the first correction unit 13 adds the offset to the first triangular wave signal 502, and multiplies the first triangular wave signal 502 by a constant to generate the approximate triangular wave signal 61x of FIG.
  • the approximate triangular wave signal 61 x in FIG. 6 is an approximate signal in a state where the error correction signal 603 is not added to the first sawtooth signal 501.
  • the first correction processing S108 for outputting the approximation signal 52 when the error correction signal 603 is added to the first sawtooth signal 501 will be described later.
  • the error correction generation unit 12 generates an error correction signal 603 that cancels out an error function 63 representing an error between the ideal function 61 and the approximate triangular wave signal 61x not subjected to error correction.
  • the approximate triangular wave signal 61 x is generated from the first sawtooth wave signal 501 and is a triangular wave signal having the same phase, frequency and amplitude as the ideal function 61.
  • the approximate triangular wave signal 61x and the error function 63 will be described below using a specific example.
  • the dotted line is the ideal function 61.
  • the thin dotted line is the output of the main generation unit 11 when the error correction signal 603 is not added, that is, the approximate triangular wave signal 61x not subjected to the error correction.
  • the thin dashed-dotted line is an example of an error function 63 representing an error between the ideal function 61 and the approximate triangular wave signal 61x not subjected to error correction.
  • the error correction signal 603 generated by the error correction generation unit 12 will be described with reference to the example of FIG.
  • 0 ⁇ ⁇ ⁇ 0.5 ⁇
  • f a ( ⁇ ) in the section is expressed by Equation 1 below.
  • f a ( ⁇ ) ⁇ 4 ⁇ + 1 Therefore, the error function ⁇ ( ⁇ ) is a sine function represented by Equation 2 below.
  • Equation 2 Equation 2
  • 0.11, 0.39 ⁇ ⁇ 0.21. . Therefore, the error function ⁇ ( ⁇ ) is a function having a value range of approximately ⁇ 0.21 to 0.21 in the same section and having a waveform similar to a sine wave.
  • the error function ⁇ ( ⁇ ) is phase-shifted by ⁇ / 2 with respect to the ideal function 61, that is, a function having a waveform similar to a cosine function with respect to the sine function, and has a double frequency. Further, as shown in FIG. 6, in the section adjacent to the same section (for example, ⁇
  • the adjustment unit 121 of the error correction generation unit 12 generates an adjustment signal 604 obtained by multiplying the phase signal 51 by a constant and adding a constant.
  • the adjustment unit 121 performs adjustment processing for realizing phase and frequency modulation of the output of the subsequent stage by performing constant multiplication and constant addition on the phase signal 51.
  • the adjustment unit 121 doubles the phase signal 51 as shown in FIG. 7 and further adds 0.25 to generate an adjustment signal 604.
  • the adjustment processing by the adjustment unit 121 is realized by multiplication of constant 2 using the multiplier 706 and addition of 0.25 using the adder 707 when the trigonometric function approximation device 10 is realized by a digital circuit. .
  • the sub-generation unit 122 uses the adjustment signal 604, the sub-generation unit 122 generates a second triangular wave signal 602 that is a triangular wave signal whose phase and frequency are the same as those of the error correction signal 603.
  • the configuration and function of the sub-generation unit 122 are the same as those of the main generation unit 11.
  • the second sawtooth wave generation unit 1221 and the second return wave generation unit 1222 have the same configuration and function as the first sawtooth wave generation unit 111 and the first return wave generation unit 112 in the main generation unit 11.
  • step S103 the second sawtooth wave generation unit 1221 of the sub-generation unit 122 obtains the adjustment signal 604 generated by the adjustment unit 121.
  • the second sawtooth wave generation unit 1221 uses the adjustment signal 604 to shift the phase from the phase of the first sawtooth wave signal 501, and the frequency is 2 of the first sawtooth wave signal 501.
  • a second sawtooth signal 601 is generated which is doubled.
  • the second sawtooth wave generation unit 1221 generates a second sawtooth wave signal 601 by extracting only the decimal part of the adjustment signal 604.
  • the sub-generation unit 122 receives the phase signal doubled by the adjustment unit 121 in order to output the triangular wave signal folded back at the timing when the input signal reaches 0.5. .
  • the sub-generation unit 122 can obtain an output having a cycle that is twice that of the output of the main generation unit 11.
  • the sub-generation unit 122 can obtain an output that is phase-shifted by 1 ⁇ 4 cycle by inputting a phase signal to which 0.25 corresponding to 1 ⁇ 4 of the amplitude is added.
  • the second sawtooth wave generation process is similar to the sawtooth wave generation process described above.
  • step S104 the second return wave generation unit 1222 of the sub-generation unit 122 outputs the second triangular wave signal 602.
  • the second folded wave generation unit 1222 uses the second sawtooth signal 601 and has a frequency equal to that of the second sawtooth signal 601 and having an amplitude that is a half of that of the second sawtooth signal 601.
  • a triangular wave signal 602 is generated.
  • the second folded wave generation unit 1222 subtracts 0.5 from the second sawtooth signal 601 and performs absolute value calculation to generate the second triangular wave signal 602.
  • the second return wave generation process is similar to the above-described return wave generation process.
  • the operation of the sub-generation unit 122 when the trigonometric function approximation device 10 is realized by a digital circuit is similar to the operation of the main generation unit 11.
  • step S105 the second correction unit 123 adjusts the value range of the waveform of the second triangular wave signal 602, and executes a second correction process that is generated as an error correction signal 603.
  • the second correction unit 123 adjusts the range of the waveform by performing multiplication and subtraction on the second triangular wave signal 602. Specifically, the second correction unit 123 aligns the second triangular wave signal 602, which has a value range of 0.0 to 0.5, with the value range of the error function ⁇ ( ⁇ ).
  • the second correction unit 123 adds an offset and multiplies a constant to adjust the second triangular wave signal 602 to the value range of the error function ⁇ ( ⁇ ).
  • the second correction unit 123 generates the second triangular wave signal 602 as the error correction signal 603 by adding the offset and multiplying the constant. Specifically, the second correction unit 123 can make the second triangular wave signal 602 a signal with a range of ⁇ 0.0625 to 0.0625 by subtracting 0.25 and multiplying by 0.25. In this case, although the value does not exactly match the range of the error function ⁇ ( ⁇ ), bit shift operation can be performed by performing processing using a power of two, and the operation cost can be suppressed.
  • the second correction processing is realized by the subtraction of 0.25 by the subtractor 712 and the multiplication of 0.25 by the multiplier 713.
  • the error function ⁇ ( ⁇ ) is expressed by the difference between the ideal function in the range of ⁇ 1.0 to 1.0 and the approximate signal 52 without correction fitted by the first correction unit 13.
  • the width of the value range of the error correction signal 603 needs to be 1 ⁇ 4 of 0.5.
  • the second correction unit 123 causes the subtractor 712 to set the value range 0 to 0.5 of the second triangular wave signal 602 to ⁇ 0.25 to 0.25. Then, the second correction unit 123 sets the value range to 1 ⁇ 4 by the multiplier 713, and sets the value range to ⁇ 0.0625 to 0.0625.
  • step S106 Next, the addition process of step S106 and the first return wave generation process of step S107 will be described using FIG.
  • step S106 the addition unit 113 adds the first sawtooth signal 501 and the error correction signal 603, and performs addition processing to generate a corrected sawtooth signal 501a.
  • the error correction signal 603 has a phase which is about one-fourth of the ideal function 61, a frequency of which is about twice that of the ideal function 61, and an amplitude of the ideal function 61. It is about a quarter.
  • the first return wave generation unit 112 and the first correction unit 13 are referred to as an approximation signal generation unit 114.
  • the approximation signal generation unit 114 generates a triangular wave signal having the same phase, frequency, and amplitude as the ideal function 61 as the approximation signal 52 using the corrected sawtooth signal 501 a by the first return wave generation processing and the first correction processing. .
  • Step S107 the first return wave generation unit 112 performs the above-described return wave generation processing on the corrected sawtooth signal 501a output from the addition unit 113.
  • the first return wave generation unit 112 generates the first triangular wave signal 502 of FIG. 9 by performing the return wave generation processing on the corrected sawtooth signal 501 a.
  • step S108 the first correction unit 13 adds an offset to the first triangular wave signal 502 in order to adjust the value range of the first triangular wave signal 502 to -1.0 to 1.0 which is the same as the ideal function 61, Multiply a constant.
  • the first triangular wave signal 502 which is the output of the main generation unit 11 has a value range of 0.0 to 0.5. Therefore, the first correction unit 13 adds ⁇ 0.25 to the first triangular wave signal 502 and multiplies it by 4.
  • this operation is realized by the subtraction of 0.25 by the subtractor 714 and the multiplication of 0.5 by the multiplier 715.
  • the first correction unit 13 adds the offset to the first triangular wave signal 502 in FIG. 9 and multiplies the first triangular wave signal 502 in FIG. 9 by a constant to generate the approximate signal 52 in FIG.
  • the error correction function 603 with respect to the error function ⁇ ( ⁇ ) Are out of phase. Therefore, it seems that the error is amplified in the above range.
  • the error correction signal 603 is added to the first sawtooth signal so as not to amplify the error even in the above range.
  • the error function is in antiphase every half cycle because of the aliasing process by the first aliasing wave generator. Therefore, the error correction signal is added to the first sawtooth signal before the first folded wave generation unit, and is then folded back together with the first sawtooth signal, so that the error correction signal and the first sawtooth signal are simultaneously in antiphase.
  • the main generation unit sequentially generates the sawtooth signal and the triangular wave signal with respect to the input phase signal. Then, the main generation unit generates a triangular wave signal tuned to a desired trigonometric function.
  • the sub-generation unit receives the same phase signal as input, performs multiplication and addition, and generates an adjustment signal. And a sub production
  • the main generation unit adds the error correction signal to the sawtooth signal in the process of generating the triangular wave signal. Therefore, according to the trigonometric function approximating apparatus 10 according to the present embodiment, it is possible to output an approximation signal of a trigonometric function which is tuned to a desired trigonometric function and whose error is more similar.
  • the approximate triangular wave signal is obtained by the main generating unit adding simple arithmetic processing to the phase signal.
  • the error correction generation unit is configured by the adjustment unit for the same phase signal input, the sub generation unit having the same configuration as the main generation unit, and the waveform correction unit.
  • the adding unit adds the output signal of the error correction generating unit to the first sawtooth signal.
  • the trigonometric function approximating apparatus 10 As described above, in the trigonometric function approximating apparatus 10 according to the present embodiment, it is possible to obtain, from the phase signal, a signal output that cancels out the error signal. Therefore, according to the trigonometric function approximating apparatus 10 according to the present embodiment, the calculation load involved in the error correction can be reduced, and the circuit scale can be reduced. In addition, in the trigonometric function approximating apparatus 10 according to the present embodiment, depending on the implementation, the main generation unit can be used recursively, and the additional circuit involved in the error correction can be made smaller.
  • a first correction unit is disposed downstream of the main generation unit. Then, the first correction unit outputs an approximation signal having a value range of ⁇ 1.0 to 1.0 and similar to the ideal function. However, since the output waveform of the main generation unit and the approximate shape of the output waveform of the first correction unit are similar to each other, the output of the main generation unit may be used as an approximation signal when an absolute value as a trigonometric function is not required. As a specific example, as in the case of obtaining the phase distribution of complex amplitude distribution generated by a plurality of wave sources in wave simulation, it is effective when relative values between values derived using a trigonometric function are required.
  • the value range of the ideal function has been described as ⁇ 1.0 to 1.0.
  • a value range may use a function normalized to a positive number, such as 0.0 to 1.0.
  • functions normalized to positive numbers there is, for example, attitude control of robotics.
  • the range of the trigonometric function is not important because the phase is calculated from the relative values of the real part and imaginary part of the wavefront represented by complex numbers. .
  • each unit of the trigonometric function approximating apparatus has been described as an independent functional block.
  • the configuration of the trigonometric function approximation device may not be the configuration as in the above-described embodiment.
  • the functional block of the trigonometric function approximating device may have any configuration as long as the function described in the above-described embodiment can be realized.
  • a plurality of parts in the first embodiment may be combined and implemented. Alternatively, one part of the first embodiment may be implemented. In addition, Embodiment 1 may be implemented in any combination in whole or in part.
  • the embodiments described above are essentially preferable examples, and are not intended to limit the scope of the present invention, the scope of the application of the present invention, and the scope of the application of the present invention. The embodiment described above can be variously modified as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

In the present invention, a main generation unit (11) generates, by using a phase signal (51), a first sawtooth wave signal (501) synchronized with an ideal function. An adjustment unit (121) generates an adjustment signal (604) by multiplying the phase signal (51) by a constant and by further adding a constant thereto. A sub-generation unit (122) generates, by using the adjustment signal (604), a second triangular wave signal (602) which has the same phase and frequency as an error correction signal (603) for offsetting an error function representing an error with respect to an approximate triangular wave signal generated from the first sawtooth wave signal (501). A second correction unit (123) generates the error correction signal (603) by adjusting a value range of the waveform of the second triangular wave signal (602). An addition unit (113) generates a corrected sawtooth wave signal (501a) by adding the first sawtooth wave signal (501) and the error correction signal (603). An approximate signal generation unit (114) generates an approximate signal (52) by using the corrected sawtooth wave signal (501a).

Description

三角関数近似装置、三角関数近似方法、および三角関数近似プログラムTrigonometric function approximation apparatus, trigonometric function approximation method, and trigonometric function approximation program
 本発明は、余弦関数あるいは正弦関数といった三角関数を近似する三角関数近似装置、三角関数近似方法、および三角関数近似プログラムに関する。 The present invention relates to a trigonometric function approximation device, a trigonometric function approximation method, and a trigonometric function approximation program that approximates a trigonometric function such as a cosine function or a sine function.
 三角関数は、波動信号処理あるいは画像処理といった信号処理に、幅広く用いられる基礎的な関数である。波動信号処理は、具体例として、レーダーの分野で用いられる。画像処理は、具体例として、3DCG(3-Dimensional Computer Graphics)の分野で用いられる。三角関数は超越関数である。よって、三角関数は、加算および乗算といった有限数の代数的演算によって計算することができない。したがって、三角関数の計算を計算機実装で実現する場合、近似計算手法、あるいは、メモリに格納した事前計算値を用いたテーブル参照法が用いられる。 Trigonometric functions are fundamental functions widely used for signal processing such as wave signal processing or image processing. Wave signal processing is used as an example in the field of radar. Image processing is used in the field of 3DCG (3-Dimensional Computer Graphics) as a specific example. Trigonometric functions are transcendental functions. Thus, trigonometric functions can not be calculated by a finite number of algebraic operations such as addition and multiplication. Therefore, when the calculation of the trigonometric function is realized by computer implementation, an approximate calculation method or a table reference method using a pre-calculated value stored in the memory is used.
 近似計算手法には、具体例として、テイラー展開といった多項式近似がある。非特許文献1には、回路実装に適した近似計算手法として、CORDIC(Coordinate
 rotational digital computer)が開示されている。CORDICは、電卓といった機器に広く用いられている。
 非特許文献2には、簡易的な三角関数近似手法が開示されている。簡易的な三角関数近似手法の例として、剰余演算、減算、および絶対値演算の3演算のみで近似を実行する手法が開示されている。
 また、特許文献1では、放物線信号と、予め記録した放物線信号と正弦波信号との誤差とに基づいて、正弦波を近似的に出力する技術が開示されている。
A specific example of the approximation calculation method is polynomial approximation such as Taylor expansion. In Non-Patent Document 1, CORDIC (Coordinate) is used as an approximate calculation method suitable for circuit implementation.
A rotational digital computer is disclosed. CORDIC is widely used in devices such as calculators.
Non-Patent Document 2 discloses a simple trigonometric function approximation method. As an example of a simple trigonometric function approximation method, a method of performing approximation with only three operations of remainder operation, subtraction, and absolute value operation is disclosed.
Further, Patent Document 1 discloses a technique of approximately outputting a sine wave based on a parabola signal and an error between a parabola signal and a sine wave signal recorded in advance.
特開2005-045674号公報JP 2005-045674 A
 非特許文献1に開示されている近似計算手法では、近似に反復計算を必要とする。よって、結果出力のレイテンシおよび回路規模が課題となる。
 また、非特許文献2に開示されている三角関数近似手法では、近似精度の低さが課題となる。
 また、特許文献1に開示されている技術では、放物線信号に対する正弦波信号の誤差を格納するメモリ量の大きさが実装上の課題となる。
The approximate calculation method disclosed in Non-Patent Document 1 requires iterative calculation for approximation. Therefore, the latency of the result output and the circuit scale become problems.
Further, in the trigonometric function approximation method disclosed in Non-Patent Document 2, low approximation accuracy is a problem.
Further, in the technology disclosed in Patent Document 1, the size of the memory amount for storing the error of the sine wave signal with respect to the parabola signal is a mounting problem.
 本発明は、少ない回路面積およびメモリ量で実装可能であり、かつ高精度な三角関数近似装置を提供することを目的とする。 An object of the present invention is to provide a trigonometric function approximation device which can be implemented with a small circuit area and a small amount of memory, and which has high accuracy.
 本発明に係る三角関数近似装置は、位相信号が入力された三角関数の出力を理想関数とし、前記理想関数に近似する近似信号を生成する三角関数近似装置において、
 前記位相信号を用いて、前記理想関数と同調する第1鋸波信号を生成する第1鋸波生成部を備える主生成部と、
 前記理想関数と、前記第1鋸波信号から生成され、位相、周波数、および振幅が前記理想関数と同じ近似三角波信号との誤差を表した誤差関数を相殺する誤差補正信号を生成する誤差補正生成部と
を備え、
 前記誤差補正生成部は、
 前記位相信号を定数倍するとともに定数加算した調整信号を生成する調整部と、
 前記調整信号を用いて、位相と周波数とが前記誤差補正信号と同じ三角波信号である第2三角波信号を生成する副生成部と、
 前記第2三角波信号の波形の値域を調整し、前記誤差補正信号として生成する第2補正部と
を備え、
 前記主生成部は、さらに、
 前記第1鋸波信号と前記誤差補正信号とを加算し、補正鋸波信号として生成する加算部と、
 前記補正鋸波信号を用いて、位相、周波数、および振幅が前記理想関数と同じ三角波信号を前記近似信号として生成する近似信号生成部とを備えた。
A trigonometric function approximating apparatus according to the present invention uses an output of a trigonometric function to which a phase signal is input as an ideal function and generates an approximating signal approximating the ideal function.
A main generation unit including a first sawtooth wave generator that generates a first sawtooth wave signal that is synchronized with the ideal function using the phase signal;
Error correction generation that generates an error correction signal that is generated from the ideal function and the first sawtooth signal and that represents an error between the ideal triangular wave signal whose phase, frequency, and amplitude are the same as the ideal function Equipped with
The error correction generation unit
An adjustment unit configured to generate an adjustment signal obtained by multiplying the phase signal by a constant and adding a constant;
A sub-generation unit that generates a second triangular wave signal whose phase and frequency are the same triangular wave signal as the error correction signal using the adjustment signal;
And a second correction unit configured to adjust a value range of the waveform of the second triangular wave signal and generate the error correction signal.
The main generation unit further includes
An addition unit that adds the first sawtooth signal and the error correction signal to generate a corrected sawtooth signal;
The correction sawtooth signal is used to provide an approximate signal generation unit that generates, as the approximate signal, a triangular wave signal having the same phase, frequency, and amplitude as the ideal function.
 本発明に係る三角関数近似装置は、三角関数の入力となる位相信号に対して、鋸波信号から三角波信号へと、順次変換することにより、理想関数に同調する三角波信号を生成する。そして、三角関数近似装置は、生成した三角波信号に、同じ位相信号から生成した誤差補正信号を重畳する。よって、本発明に係る三角関数近似装置によれば、小規模な計算回路、あるいは計算プログラムで、精度良く三角関数を近似できる。 The trigonometric function approximation apparatus according to the present invention generates a triangular wave signal tuned to an ideal function by sequentially converting a sawtooth wave signal to a triangular wave signal with respect to a phase signal as an input of the trigonometric function. Then, the trigonometric function approximating apparatus superimposes an error correction signal generated from the same phase signal on the generated triangular wave signal. Therefore, according to the trigonometric function approximating apparatus of the present invention, the trigonometric function can be accurately approximated by a small-scale calculation circuit or calculation program.
実施の形態1に係る三角関数近似装置の機能構成図。FIG. 2 is a functional configuration diagram of the trigonometric function approximation device according to the first embodiment. 実施の形態1に係る三角関数近似装置のハードウェア構成の一例。6 shows an example of a hardware configuration of a trigonometric function approximation apparatus according to Embodiment 1. 実施の形態1に係る三角関数近似装置のハードウェア構成の他例。7 shows another example of the hardware configuration of the trigonometric function approximation device according to the first embodiment. 実施の形態1に係る三角関数近似処理のフロー図。FIG. 6 is a flowchart of trigonometric function approximation processing according to the first embodiment. 実施の形態1に係る主生成処理を説明する図。FIG. 6 is a diagram for explaining main generation processing according to the first embodiment. 実施の形態1に係る誤差補正信号を説明する図。FIG. 6 is a diagram for explaining an error correction signal according to the first embodiment. 実施の形態1に係る誤差補正生成処理を説明する図。FIG. 7 is a diagram for explaining an error correction generation process according to the first embodiment. 実施の形態1に係る誤差補正生成処理を説明する図。FIG. 7 is a diagram for explaining an error correction generation process according to the first embodiment. 実施の形態1に係る三角関数近似処理を説明する図。FIG. 6 is a diagram for explaining trigonometric function approximation processing according to the first embodiment.
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In the description of the embodiment, the description of the same or corresponding parts will be omitted or simplified as appropriate.
 図1では、本実施の形態に係る三角関数近似装置10の機能構成例を示す。
 図2では、本実施の形態に係る三角関数近似装置10のハードウェア構成の一例を示す。
 図3では、本実施の形態に係る三角関数近似装置10のハードウェア構成の他例を示す。
FIG. 1 shows an example of the functional configuration of the trigonometric function approximating apparatus 10 according to the present embodiment.
FIG. 2 shows an example of the hardware configuration of the trigonometric function approximating apparatus 10 according to the present embodiment.
FIG. 3 shows another example of the hardware configuration of the trigonometric function approximating apparatus 10 according to the present embodiment.
 まず、三角関数近似装置10の概要について説明する。
 本実施の形態に係る三角関数近似装置10は、三角関数に入力される位相信号51を入力とし、三角関数の出力を近似信号52として出力する。位相信号51は、三角関数へ入力する入力信号である。すなわち、三角関数近似装置10は、位相信号51が入力された三角関数の出力を理想関数61とし(図5参照)、理想関数61に近似する近似信号52を生成する。
 三角関数近似装置10は、位相信号51に対して、簡易な演算処理を加えることにより、近似信号52を生成する。より具体的には、三角関数近似装置10は、位相信号51に対して、剰余演算、減算、乗算、および絶対値演算の組み合わせで表現される処理を行う。これにより、三角関数近似装置10は、三角関数の出力を近似した近似信号52を、精度良く生成することができる。
 三角関数近似装置10により行われる動作は、三角関数近似方法、および三角関数近似プログラムに相当する。
First, the outline of the trigonometric function approximating apparatus 10 will be described.
The trigonometric function approximating apparatus 10 according to the present embodiment receives the phase signal 51 input to the trigonometric function as an input, and outputs the output of the trigonometric function as the approximating signal 52. The phase signal 51 is an input signal to be input to the trigonometric function. That is, the trigonometric function approximating apparatus 10 generates an approximation signal 52 approximating the ideal function 61 by setting the output of the trigonometric function to which the phase signal 51 is input as the ideal function 61 (see FIG. 5).
The trigonometric function approximating apparatus 10 generates an approximate signal 52 by adding a simple arithmetic process to the phase signal 51. More specifically, the trigonometric function approximating apparatus 10 performs processing represented on the phase signal 51 by a combination of remainder operation, subtraction, multiplication, and absolute value operation. Thus, the trigonometric function approximating apparatus 10 can generate the approximate signal 52 that approximates the output of the trigonometric function with high accuracy.
The operations performed by the trigonometric function approximation device 10 correspond to a trigonometric function approximation method and a trigonometric function approximation program.
 実施の形態1.
***構成の説明***
 次に、図1、図2、および図3を用いて、三角関数近似装置10の機能構成例、およびハードウェア構成例を説明する。
Embodiment 1
*** Description of the configuration ***
Next, a functional configuration example and a hardware configuration example of the trigonometric function approximating apparatus 10 will be described using FIGS. 1, 2 and 3.
 図2に示すように、三角関数近似装置10のハードウェア構成例の1つはコンピュータである。この構成例における三角関数近似装置10は、信号入出力インターフェース21と、プロセッサ22と、記憶装置23とのハードウェアを備える。プロセッサ22は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。 As shown in FIG. 2, one of the hardware configuration examples of the trigonometric function approximating apparatus 10 is a computer. The trigonometric function approximating apparatus 10 in this configuration example includes hardware of a signal input / output interface 21, a processor 22, and a storage device 23. The processor 22 is connected to other hardware via signal lines to control these other hardware.
 信号入出力インターフェース21は、センサといった信号発生源、あるいは表示装置といった入出力装置を接続する。信号入出力インターフェース21は、具体例としては、USB、HDMI(登録商標)、IEEE1394の接続端子、または、NICである。USBは、Universal Serial Busの略語である。HDMI(登録商標)は、High-Definition Multimedia Interfaceの略語である。NICは、Network Interface Cardの略語である。 The signal input / output interface 21 connects an input / output device such as a signal generation source such as a sensor or a display device. As a specific example, the signal input / output interface 21 is a connection terminal of USB, HDMI (registered trademark), IEEE 1394, or NIC. USB is an abbreviation for Universal Serial Bus. HDMI (registered trademark) is an abbreviation of High-Definition Multimedia Interface. NIC is an abbreviation of Network Interface Card.
 プロセッサ22は、プロセッシングを行うICである。プロセッサ22は、具体例としては、CPU、DSP、あるいはGPUである。ICは、Integrated Circuitの略語である。CPUは、Central Processing Unitの略語である。DSPは、Digital Signal Processorの略語である。GPUは、Graphics Processing Unitの略語である。 The processor 22 is an IC that performs processing. The processor 22 is, specifically, a CPU, a DSP, or a GPU. IC is an abbreviation for Integrated Circuit. CPU is an abbreviation of Central Processing Unit. DSP is an abbreviation of Digital Signal Processor. GPU is an abbreviation of Graphics Processing Unit.
 記憶装置23は、メモリ231とストレージ232を備える。メモリ231の具体例としては、RAMである。ストレージ232の具体例としては、HDDである。また、ストレージ232は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬記憶媒体であってもよい。RAMは、Random Access Memoryの略語である。HDDは、Hard Disk Driveの略語である。SD(登録商標)メモリカードのSD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlashの略語である。DVDは、Digital
 Versatile Diskの略語である。
The storage device 23 includes a memory 231 and a storage 232. A specific example of the memory 231 is a RAM. An example of the storage 232 is an HDD. The storage 232 may also be a portable storage medium such as an SD (registered trademark) memory card, a CF, a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD. RAM is an abbreviation of Random Access Memory. HDD is an abbreviation of Hard Disk Drive. SD (registered trademark) Memory Card SD (registered trademark) is an abbreviation of Secure Digital. CF is an abbreviation of Compact Flash. DVD is Digital
Abbreviation for Versatile Disk.
 また、図3に示すように、三角関数近似装置10のハードウェア構成例の1つは、ディジタル回路である。この構成例における三角関数近似装置10は、複数のディジタル回路ブロックで構成される。全てのディジタル回路ブロックは、信号線で接続されている。複数のディジタル回路ブロックとは、ビット抽出器701,708、加算器702,707、減算器703,705,709,711,712,714、乗算器706,713,715、および排他的論理和704,710である。 Further, as shown in FIG. 3, one of the hardware configuration examples of the trigonometric function approximating apparatus 10 is a digital circuit. The trigonometric function approximating apparatus 10 in this configuration example is composed of a plurality of digital circuit blocks. All digital circuit blocks are connected by signal lines. The plurality of digital circuit blocks include bit extractors 701 and 708, adders 702 and 707, subtractors 703, 705, 709, 711, 712 and 714, multipliers 706, 713 and 715, and an exclusive OR 704, It is 710.
 図1に示すように、三角関数近似装置10は、機能構成要素として、主生成部11と、誤差補正生成部12と、第1補正部13とを備える。主生成部11は、第1鋸波生成部111と、加算部113と、第1折返波生成部112とを備える。誤差補正生成部12は、調整部121と、副生成部122と、第2補正部123とを備える。副生成部122は、第2鋸波生成部1221と、第2第2折返波生成部1222とを備える。これらの機能はソフトウェア、あるいはディジタル回路によって実現される。 As shown in FIG. 1, the trigonometric function approximating apparatus 10 includes a main generation unit 11, an error correction generation unit 12, and a first correction unit 13 as functional components. The main generation unit 11 includes a first sawtooth wave generation unit 111, an addition unit 113, and a first aliasing wave generation unit 112. The error correction generation unit 12 includes an adjustment unit 121, a sub generation unit 122, and a second correction unit 123. The sub-generation unit 122 includes a second sawtooth wave generation unit 1221 and a second second aliasing wave generation unit 1222. These functions are realized by software or digital circuits.
 三角関数近似装置10がソフトウェアで実現される場合、ストレージ232には、三角関数近似装置10の各部の機能を実現するプログラムが記憶されている。このプログラムは、プロセッサ22によりメモリ231に読み込まれ、プロセッサ22によって実行される。これにより、三角関数近似装置10の各部の機能が実行される。なお、加算部113は、加算器により機能を実現する。
 三角関数近似装置10がディジタル回路によって実現される場合、第1鋸波生成部111は、入力信号の小数部のみを抽出するビット抽出器701によって構成される。第2鋸波生成部1221は、ビット抽出器708によって構成される。加算部113は、加算器702によって構成される。第1折返波生成部112は、減算器703,705、および排他的論理和704によって構成される。第2第2折返波生成部1222は、減算器709,711、および排他的論理和710によって構成される。調整部121は、乗算器706、および加算器707によって構成される。第1補正部13は、減算器714、および乗算器715によって構成される。第2補正部123は、減算器712、および乗算器713によって構成される。なお、乗算器706,713,715は、それぞれ2のべき乗数の乗算を行うため、ビットシフトによる実装でも良い。
When the trigonometric function approximating apparatus 10 is realized by software, the storage 232 stores a program for realizing the functions of the respective units of the trigonometric function approximating apparatus 10. This program is read by the processor 22 into the memory 231 and executed by the processor 22. Thereby, the function of each part of the trigonometric function approximating apparatus 10 is executed. The addition unit 113 realizes a function by an adder.
When the trigonometric function approximating apparatus 10 is realized by a digital circuit, the first sawtooth wave generator 111 is configured by a bit extractor 701 that extracts only the decimal part of the input signal. The second sawtooth wave generator 1221 is configured of a bit extractor 708. The addition unit 113 is configured of an adder 702. The first return wave generation unit 112 is composed of subtractors 703 and 705 and an exclusive OR 704. The second second aliasing wave generator 1222 is configured by subtractors 709 and 711 and an exclusive OR 710. Adjustment unit 121 is configured of multiplier 706 and adder 707. The first correction unit 13 includes a subtractor 714 and a multiplier 715. The second correction unit 123 includes a subtractor 712 and a multiplier 713. The multipliers 706, 713, and 715 may be implemented by bit shift because they perform multiplication of powers of two.
 プロセッサとディジタル回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、三角関数近似装置10の各部の機能は、プロセッシングサーキットリにより実現される。 Each of the processor and digital circuitry is also referred to as processing circuitry. That is, the function of each part of the trigonometric function approximating apparatus 10 is realized by processing circuitry.
 三角関数近似装置10の各部の「部」を「工程」に読み替えてもよい。また、以下に説明する各処理の「処理」を「プログラム」、「プログラムプロダクト」または「プログラムを記録したコンピュータ読取可能な記憶媒体」に読み替えてもよい。 The “parts” of each part of the trigonometric function approximating apparatus 10 may be read as “process”. In addition, the “process” of each process described below may be read as a “program”, a “program product”, or a “computer readable storage medium storing a program”.
 ****動作の説明****
 図4は、本実施の形態に係る三角関数近似処理S100のフロー図である。
 図5は、本実施の形態に係る主生成処理を説明する図である。
 図6は、本実施の形態に係る誤差補正信号を説明する図である。
 図7は、本実施の形態に係る誤差補正生成処理を説明する図である。
 図8は、本実施の形態に係る誤差補正生成処理を説明する図である。
 図9は、本実施の形態に係る三角関数近似処理を説明する図である。
 三角関数近似装置10では、位相信号51が、主生成部11と誤差補正生成部12に入力される。そして、三角関数近似装置10では、第1補正部13から近似信号52が出力される。
**** Explanation of operation ****
FIG. 4 is a flowchart of the trigonometric function approximation process S100 according to the present embodiment.
FIG. 5 is a diagram for explaining main generation processing according to the present embodiment.
FIG. 6 is a diagram for explaining an error correction signal according to the present embodiment.
FIG. 7 is a diagram for explaining an error correction generation process according to the present embodiment.
FIG. 8 is a diagram for explaining an error correction generation process according to the present embodiment.
FIG. 9 is a diagram for explaining trigonometric function approximation processing according to the present embodiment.
In the trigonometric function approximation device 10, the phase signal 51 is input to the main generation unit 11 and the error correction generation unit 12. Then, in the trigonometric function approximating apparatus 10, the approximate signal 52 is output from the first correction unit 13.
<主生成処理>
 主生成部11は、位相信号51に対し、鋸波生成処理S101と加算処理S106と折返波生成処理S107とを実行し、第1三角波信号502を出力する。
<Main generation process>
The main generation unit 11 executes sawtooth wave generation processing S101, addition processing S106, and return wave generation processing S107 on the phase signal 51, and outputs a first triangular wave signal 502.
<<第1鋸波生成処理>>
 ステップS101において、主生成部11の第1鋸波生成部111は、位相信号51を用いて、理想関数61と同調する第1鋸波信号501を生成する。具体的には、第1鋸波生成部111は、位相信号51を取得し、第1鋸波生成処理を実行する。第1鋸波生成部111は、位相信号51に対し、所望の三角関数の周波数に同調する第1鋸波信号501を形成する。所望の三角関数を理想関数61とする。理想関数61とは、位相信号51を入力する三角関数の出力である。図5では、理想関数61を点線で表し、第1鋸波信号501を実線で表している。
 ここで、具体例を用いて説明する。位相信号51を、f=2πθで表される浮動小数点、あるいは固定小数点の信号とする。第1鋸波生成部111は、θの小数点部分を抽出する処理によって第1鋸波信号501を生成する。すなわち、第1鋸波生成部111は、θが1.0に達したタイミングでピークを持ち、値域が0.0から1.0である第1鋸波信号501を生成する。
 この第1鋸波生成処理は、三角関数近似装置10がディジタル回路で実装され、かつ、位相信号51が固定小数点で実装されている場合、位相信号51の小数部に相当するビット列の抽出によって実現できる。すなわち、第1鋸波生成部111の第1鋸波生成処理は、ビット抽出器701によって実現される。上述のように、位相信号51、すなわち位相信号fは、2πとθの乗算で表される。このため、θが1.0に達するタイミングは位相信号fが2πの整数倍に達したタイミングと重なる。よって、第1鋸波生成部111から出力される第1鋸波信号501は、周期2πの三角関数に同調する。
<< 1st sawtooth wave generation processing >>
In step S101, the first sawtooth wave generation unit 111 of the main generation unit 11 uses the phase signal 51 to generate a first sawtooth wave signal 501 synchronized with the ideal function 61. Specifically, the first sawtooth wave generation unit 111 acquires the phase signal 51 and executes the first sawtooth wave generation process. The first sawtooth wave generation unit 111 forms, for the phase signal 51, a first sawtooth wave signal 501 tuned to a desired trigonometric function frequency. A desired trigonometric function is an ideal function 61. The ideal function 61 is an output of a trigonometric function to which the phase signal 51 is input. In FIG. 5, the ideal function 61 is represented by a dotted line, and the first sawtooth signal 501 is represented by a solid line.
Here, it demonstrates using an example. The phase signal 51 is a floating point or fixed point signal represented by f = 2πθ. The first sawtooth wave generation unit 111 generates the first sawtooth wave signal 501 by processing for extracting the decimal point part of θ. That is, the first sawtooth wave generation unit 111 generates a first sawtooth wave signal 501 having a peak at the timing when θ reaches 1.0 and having a value range of 0.0 to 1.0.
This first sawtooth wave generation process is realized by extracting a bit string corresponding to the decimal part of the phase signal 51 when the trigonometric function approximating apparatus 10 is implemented by a digital circuit and the phase signal 51 is implemented in fixed point. it can. That is, the first sawtooth wave generation process of the first sawtooth wave generation unit 111 is realized by the bit extractor 701. As described above, the phase signal 51, ie, the phase signal f, is expressed by the multiplication of 2π and θ. Therefore, the timing at which θ reaches 1.0 coincides with the timing at which the phase signal f reaches an integral multiple of 2π. Therefore, the first sawtooth signal 501 output from the first sawtooth wave generator 111 is tuned to a trigonometric function of a period 2π.
<<加算処理>>
 主生成部11の加算部113は、第1鋸波信号501と誤差補正信号603とを加算し、補正鋸波信号501aを生成する。なお、加算処理S106については後述する。
<< Addition processing >>
The addition unit 113 of the main generation unit 11 adds the first sawtooth signal 501 and the error correction signal 603 to generate a corrected sawtooth signal 501a. The addition process S106 will be described later.
<<折返波生成処理>>
 第1折返波生成部112は、加算部113から出力された補正鋸波信号501aに対し、折返波生成処理を行うことにより、第1三角波信号502を生成する。なお、図5では、第1鋸波信号501に誤差補正信号603が加算されていない状態を説明する。すなわち、第1折返波生成部112が、第1鋸波生成部111から出力された第1鋸波信号501に対し、折返波生成処理を行う場合について説明する。加算部113から出力された補正鋸波信号501aに対して折返波生成処理を行う第1折返波生成処理S107については後述する。
<< Return wave generation processing >>
The first return wave generation unit 112 generates a first triangular wave signal 502 by performing return wave generation processing on the corrected sawtooth signal 501 a output from the addition unit 113. In FIG. 5, a state in which the error correction signal 603 is not added to the first sawtooth signal 501 will be described. That is, the case where the first return wave generation unit 112 performs the return wave generation processing on the first sawtooth signal 501 output from the first sawtooth generation unit 111 will be described. The first return wave generation process S107 for performing the return wave generation process on the corrected sawtooth signal 501a output from the adding unit 113 will be described later.
 折返波生成処理は、第1鋸波信号501に対し、図5に示すように、信号波形上、0.5以下の信号に対して0.5を境に線対称となるように変換を行う処理である。
 具体的には、第1折返波生成部112は、第1鋸波信号501から0.5を減算し、さらに、絶対値演算をかけることで、折返波生成処理を実行する。
 この折返波生成処理は、三角関数近似装置10がディジタル回路で実現される場合、0.5の減算は減算器703で実現する。また、絶対値演算は、減算器703の出力と符号ビットを入力に持つ排他的論理和704の出力と、減算器703の出力の符号ビットと排他的論理和704とを入力に持つ減算器705によって実現される。第1折返波生成部112の折返波生成処理は、θが0.5の整数倍に達するタイミングで信号を折り返す。すなわち、位相信号fがπの整数倍になるタイミングでの折り返しに相当するため、第1折返波生成部112の出力である第1三角波信号502は、理想関数61に完全に同調する。また、第1折返波生成部112の出力である第1三角波信号502は、値域が0.0から0.5となる。
The return wave generation processing converts the first sawtooth wave signal 501 so as to be line symmetrical with respect to the signal of 0.5 or less on the signal waveform at the boundary of 0.5 as shown in FIG. It is a process.
Specifically, the first return wave generation unit 112 subtracts the value 0.5 from the first sawtooth signal 501 and further performs an absolute value operation to execute the return wave generation process.
When the trigonometric function approximating apparatus 10 is realized by a digital circuit, the subtraction of 0.5 is realized by the subtractor 703 in this return wave generation processing. Further, in the absolute value operation, a subtractor 705 having an output of an exclusive OR 704 having an output of the subtractor 703 and a sign bit as an input, a sign bit of an output of the subtractor 703 and an exclusive OR 704 as an input. Is realized by In the return wave generation process of the first return wave generation unit 112, the signal is returned at timing when θ reaches an integral multiple of 0.5. That is, the first triangular wave signal 502 which is the output of the first folded wave generation unit 112 is completely tuned to the ideal function 61 since it corresponds to folding at a timing when the phase signal f becomes an integral multiple of π. Further, the first triangular wave signal 502 which is the output of the first return wave generation unit 112 has a range of 0.0 to 0.5.
<<補正処理>>
 第1補正部13は、第1三角波信号502の値域を、理想関数61と同じ-1.0から1.0に合わせるため、第1三角波信号502に対し、オフセットを加算し、定数を乗算する。主生成部11の出力である第1三角波信号502は、値域が0.0から0.5のため、ここでは-0.25を加算し、4を乗算する。三角関数近似装置10がディジタル回路で実装される場合、この動作は減算器714による0.25の減算と、乗算器715による0.5の乗算によって実現される。このように、第1補正部13は、第1三角波信号502に対し、オフセットを加算し、定数を乗算することにより、図6の近似三角波信号61xを生成する。なお、図6の近似三角波信号61xは、誤差補正信号603を第1鋸波信号501に加算していない状態での近似信号である。誤差補正信号603を第1鋸波信号501に加算した場合の近似信号52を出力する第1補正処理S108については後述する。
<< correction processing >>
The first correction unit 13 adds an offset to the first triangular wave signal 502 and multiplies it by a constant in order to adjust the value range of the first triangular wave signal 502 to -1.0 to 1.0 which is the same as the ideal function 61. . The first triangular wave signal 502, which is the output of the main generation unit 11, has a value range of 0.0 to 0.5, so here, −0.25 is added and 4 is multiplied. When the trigonometric function approximating apparatus 10 is implemented by a digital circuit, this operation is realized by the subtraction of 0.25 by the subtractor 714 and the multiplication of 0.5 by the multiplier 715. As described above, the first correction unit 13 adds the offset to the first triangular wave signal 502, and multiplies the first triangular wave signal 502 by a constant to generate the approximate triangular wave signal 61x of FIG. The approximate triangular wave signal 61 x in FIG. 6 is an approximate signal in a state where the error correction signal 603 is not added to the first sawtooth signal 501. The first correction processing S108 for outputting the approximation signal 52 when the error correction signal 603 is added to the first sawtooth signal 501 will be described later.
<誤差補正信号生成処理>
 図6に示すように、誤差補正生成部12は、理想関数61と、誤差補正をしていない近似三角波信号61xとの誤差を表した誤差関数63を相殺する誤差補正信号603を生成する。近似三角波信号61xは、第1鋸波信号501から生成され、位相、周波数、および振幅が理想関数61と同じ三角波信号である。近似三角波信号61xおよび誤差関数63について、具体例を用いて以下に説明する。
<Error correction signal generation processing>
As shown in FIG. 6, the error correction generation unit 12 generates an error correction signal 603 that cancels out an error function 63 representing an error between the ideal function 61 and the approximate triangular wave signal 61x not subjected to error correction. The approximate triangular wave signal 61 x is generated from the first sawtooth wave signal 501 and is a triangular wave signal having the same phase, frequency and amplitude as the ideal function 61. The approximate triangular wave signal 61x and the error function 63 will be described below using a specific example.
 図6において、点線は理想関数61である。細点線は、誤差補正信号603を加算しなかった場合の主生成部11の出力、すなわち、誤差補正をしていない近似三角波信号61xである。細一点鎖線は、理想関数61と、誤差補正をしていない近似三角波信号61xとの誤差を表す誤差関数63の例である。以下、図6の例を参照しながら、誤差補正生成部12により生成される誤差補正信号603について説明する。 In FIG. 6, the dotted line is the ideal function 61. The thin dotted line is the output of the main generation unit 11 when the error correction signal 603 is not added, that is, the approximate triangular wave signal 61x not subjected to the error correction. The thin dashed-dotted line is an example of an error function 63 representing an error between the ideal function 61 and the approximate triangular wave signal 61x not subjected to error correction. Hereinafter, the error correction signal 603 generated by the error correction generation unit 12 will be described with reference to the example of FIG.
 誤差補正信号603を加算しなかった場合の主生成部11の出力、すなわち誤差補正をしていない近似三角波信号61xをf(θ)、理想関数61をf(θ)=cos(2πθ)とする。このとき、f(θ)とf(θ)との誤差関数ε(θ)は、ε(θ)=f(θ)-f(θ)で定義される。 The output of the main generation unit 11 when the error correction signal 603 is not added, that is, the approximate triangular wave signal 61 x without error correction is f a (θ), and the ideal function 61 is f i (θ) = cos (2πθ) I assume. At this time, an error function ε (θ) between f a (θ) and f i (θ) is defined by ε (θ) = f i (θ) −f a (θ).
 図6では、説明のためθ(x)=xとした場合の例を示している。誤差関数が連続である区間の代表として、{θ|0≦θ<0.5}を考えたとき、同区間においてf(θ)は、以下の数式1となる。
 (数式1) f(θ)=-4θ+1
 そのため、誤差関数ε(θ)は、以下の数式2で表される正弦関数となる。
 (数式2) ε(θ)=cos(2πθ)+4θ-1
FIG. 6 shows an example where θ (x) = x for the sake of explanation. When {θ | 0 ≦ θ <0.5} is considered as a representative of a section in which the error function is continuous, f a (θ) in the section is expressed by Equation 1 below.
(Formula 1) f a (θ) = − 4θ + 1
Therefore, the error function ε (θ) is a sine function represented by Equation 2 below.
(Equation 2) ε (θ) = cos (2πθ) + 4θ-1
 数式2より、同区間においてε(θ)=0を満たすθは、0、0.25、0.5の3点である。また、数式2は、以下の数式3および数式4に示すθにおいて極値を取る。そして、当該範囲では、n=0のとき、すなわち、θ≒0.11,0.39で極値を取り、ε(θ)|θ=0.11,0.39≒±0.21となる。したがって、誤差関数ε(θ)は、同区間において、およそ、-0.21から0.21の値域を持ち、正弦波に類似した波形をもつ関数となる。誤差関数ε(θ)は理想関数61に対してπ/2だけ位相シフト、すなわち正弦関数に対して余弦関数に類似した波形を持つ関数となり、倍の周波数を持っている。また、図6に示す通り、同区間に隣接する区間(例えば{θ|0.5≦θ<1.0})では接続点に対して対称な波形となる。この特性は、他の区間においても同様である。したがって、誤差補正生成部12は、この特性を持つ数式2の誤差関数を相殺する誤差補正信号603を生成する。 From Expression 2, θ satisfying θ (θ) = 0 in the same section is three points of 0, 0.25, and 0.5. Equation 2 takes an extreme value at θ shown in Equation 3 and Equation 4 below. And in the relevant range, when n = 0, that is, the extreme value is taken at θ ≒ 0.11, 0.39, and ε (θ) | θ = 0.11, 0.39 ≒ ± 0.21. . Therefore, the error function ε (θ) is a function having a value range of approximately −0.21 to 0.21 in the same section and having a waveform similar to a sine wave. The error function ε (θ) is phase-shifted by π / 2 with respect to the ideal function 61, that is, a function having a waveform similar to a cosine function with respect to the sine function, and has a double frequency. Further, as shown in FIG. 6, in the section adjacent to the same section (for example, {θ | 0.5 ≦ θ <1.0}), the waveform is symmetrical with respect to the connection point. This characteristic is the same in other sections. Therefore, the error correction generator 12 generates an error correction signal 603 that cancels out the error function of Equation 2 having this characteristic.
 (数式3) θ=(2nπ+π-sin-1(2/π))/2π,n∈Z
 (数式4) θ=(2nπ+sin-1(2/π))/2π,n∈Z
(Expression 3) θ = (2nπ + π-sin -1 (2 / π)) / 2π, n∈Z
(Expression 4) θ = (2nπ + sin −1 (2 / π)) / 2π, n∈Z
 次に、図7および図8を用いて、誤差補正生成部12による誤差補正生成処理について説明する。 Next, an error correction generation process by the error correction generation unit 12 will be described with reference to FIGS. 7 and 8.
<<調整処理>>
 誤差補正生成部12の調整部121は、位相信号51を定数倍するとともに定数加算した調整信号604を生成する。調整部121は、位相信号51に対して、定数倍および定数加算をすることで、後段出力の位相および周波数変調を実現する調整処理を実行する。
 ステップS102において、調整部121は、図7に示すように、位相信号51を2倍し、さらに0.25を加算し、調整信号604を生成する。この調整部121による調整処理は、三角関数近似装置10がディジタル回路で実現される場合、乗算器706を用いた定数2の乗算と、加算器707を用いた0.25の加算で実現される。
<< Adjustment process >>
The adjustment unit 121 of the error correction generation unit 12 generates an adjustment signal 604 obtained by multiplying the phase signal 51 by a constant and adding a constant. The adjustment unit 121 performs adjustment processing for realizing phase and frequency modulation of the output of the subsequent stage by performing constant multiplication and constant addition on the phase signal 51.
In step S102, the adjustment unit 121 doubles the phase signal 51 as shown in FIG. 7 and further adds 0.25 to generate an adjustment signal 604. The adjustment processing by the adjustment unit 121 is realized by multiplication of constant 2 using the multiplier 706 and addition of 0.25 using the adder 707 when the trigonometric function approximation device 10 is realized by a digital circuit. .
<<副生成処理>>
 次に、副生成部122は、調整信号604を用いて、位相と周波数とが誤差補正信号603と同じ三角波信号である第2三角波信号602を生成する。副生成部122の構成および機能は、主生成部11と同様である。第2鋸波生成部1221と第2折返波生成部1222は、主生成部11における第1鋸波生成部111と第1折返波生成部112と同様の構成および機能を有する。
<< Secondary processing >>
Next, using the adjustment signal 604, the sub-generation unit 122 generates a second triangular wave signal 602 that is a triangular wave signal whose phase and frequency are the same as those of the error correction signal 603. The configuration and function of the sub-generation unit 122 are the same as those of the main generation unit 11. The second sawtooth wave generation unit 1221 and the second return wave generation unit 1222 have the same configuration and function as the first sawtooth wave generation unit 111 and the first return wave generation unit 112 in the main generation unit 11.
<<<第2鋸波生成処理>>>
 ステップS103において、副生成部122の第2鋸波生成部1221は、調整部121により生成された調整信号604を取得する。図7に示すように、第2鋸波生成部1221は、調整信号604を用いて、位相が第1鋸波信号501の位相とずれており、かつ、周波数が第1鋸波信号501の2倍である第2鋸波信号601を生成する。第2鋸波生成部1221は、調整信号604に対して、小数部のみを抽出することで第2鋸波信号601を生成する。主生成部11と同様に、入力信号が0.5に達するタイミングで折り返された三角波信号を出力するために、副生成部122には、調整部121によって2倍された位相信号が入力される。よって、副生成部122は、主生成部11の出力に対して倍の周期を持つ出力を得ることができる。また、副生成部122は、振幅の1/4に相当する0.25を加算した位相信号が入力されることで、1/4周期位相シフトした出力を得られる。第2鋸波生成処理は、上述した鋸波生成処理と同様である。
<<<< 2nd sawtooth wave generation process >>>
In step S103, the second sawtooth wave generation unit 1221 of the sub-generation unit 122 obtains the adjustment signal 604 generated by the adjustment unit 121. As shown in FIG. 7, the second sawtooth wave generation unit 1221 uses the adjustment signal 604 to shift the phase from the phase of the first sawtooth wave signal 501, and the frequency is 2 of the first sawtooth wave signal 501. A second sawtooth signal 601 is generated which is doubled. The second sawtooth wave generation unit 1221 generates a second sawtooth wave signal 601 by extracting only the decimal part of the adjustment signal 604. Similar to the main generation unit 11, the sub-generation unit 122 receives the phase signal doubled by the adjustment unit 121 in order to output the triangular wave signal folded back at the timing when the input signal reaches 0.5. . Thus, the sub-generation unit 122 can obtain an output having a cycle that is twice that of the output of the main generation unit 11. Further, the sub-generation unit 122 can obtain an output that is phase-shifted by 1⁄4 cycle by inputting a phase signal to which 0.25 corresponding to 1⁄4 of the amplitude is added. The second sawtooth wave generation process is similar to the sawtooth wave generation process described above.
<<<第2折返波生成処理>>>
 ステップS104において、図8に示すように、副生成部122の第2折返波生成部1222は、第2三角波信号602を出力する。第2折返波生成部1222は、第2鋸波信号601を用いて、周波数が第2鋸波信号601と同じで、かつ、振幅が第2鋸波信号601の2分の1である第2三角波信号602を生成する。具体的には、第2折返波生成部1222は、第2鋸波信号601から0.5を減算し、絶対値演算を行うことにより、第2三角波信号602を生成する。第2折返波生成処理は、上述した折返波生成処理と同様である。
 また、三角関数近似装置10がディジタル回路で実現される場合の副生成部122の動作は、主生成部11の動作と同様である。
<<< Second return wave generation process >>>
In step S104, as shown in FIG. 8, the second return wave generation unit 1222 of the sub-generation unit 122 outputs the second triangular wave signal 602. The second folded wave generation unit 1222 uses the second sawtooth signal 601 and has a frequency equal to that of the second sawtooth signal 601 and having an amplitude that is a half of that of the second sawtooth signal 601. A triangular wave signal 602 is generated. Specifically, the second folded wave generation unit 1222 subtracts 0.5 from the second sawtooth signal 601 and performs absolute value calculation to generate the second triangular wave signal 602. The second return wave generation process is similar to the above-described return wave generation process.
The operation of the sub-generation unit 122 when the trigonometric function approximation device 10 is realized by a digital circuit is similar to the operation of the main generation unit 11.
<<第2補正処理>>
 ステップS105において、第2補正部123は、第2三角波信号602の波形の値域を調整し、誤差補正信号603として生成する第2補正処理を実行する。第2補正部123は、第2三角波信号602に対して乗算および減算を施すことで波形の値域を調整する。具体的には、第2補正部123は、値域が0.0から0.5である第2三角波信号602を、誤差関数ε(θ)の値域に合わせる。第2補正部123は、第2三角波信号602を誤差関数ε(θ)の値域に合わせるため、オフセットを加算し、定数を乗算する。第2補正部123は、オフセットを加算し、定数を乗算することにより、第2三角波信号602を誤差補正信号603として生成する。
 具体的には、第2補正部123は、0.25を減算し、0.25を乗算することで、第2三角波信号602を値域が-0.0625から0.0625の信号にできる。この場合、厳密には誤差関数ε(θ)の値域と合致しないが、2のべき乗数による処理とすることで、ビットシフト演算が可能になり、演算コストを抑えることができる。三角関数近似装置10がディジタル回路で実装される場合、第2補正処理は、減算器712による0.25の減算と、乗算器713による0.25の乗算によって実現される。
 誤差関数ε(θ)は、値域が-1.0から1.0の理想関数と、第1補正部13によってフィッティングされた補正無しの近似信号52との差分により表現される。一方、誤差補正信号603は、第1補正部13を通過する前、すなわち値域が0から0.5(幅は理想関数の4分の1)となる第1三角波信号502を生成する際に、第1鋸波信号に加算される。よって、誤差補正信号603の値域の幅は、0.5の4分の1となる必要がある。具体的には、第2補正部123は、第2三角波信号602の値域0から0.5を、減算器712により-0.25から0.25とする。そして、第2補正部123は、その値域を乗算器713により4分の1とし、-0.0625から0.0625とする。
<< Second correction process >>
In step S105, the second correction unit 123 adjusts the value range of the waveform of the second triangular wave signal 602, and executes a second correction process that is generated as an error correction signal 603. The second correction unit 123 adjusts the range of the waveform by performing multiplication and subtraction on the second triangular wave signal 602. Specifically, the second correction unit 123 aligns the second triangular wave signal 602, which has a value range of 0.0 to 0.5, with the value range of the error function ε (θ). The second correction unit 123 adds an offset and multiplies a constant to adjust the second triangular wave signal 602 to the value range of the error function ε (θ). The second correction unit 123 generates the second triangular wave signal 602 as the error correction signal 603 by adding the offset and multiplying the constant.
Specifically, the second correction unit 123 can make the second triangular wave signal 602 a signal with a range of −0.0625 to 0.0625 by subtracting 0.25 and multiplying by 0.25. In this case, although the value does not exactly match the range of the error function ε (θ), bit shift operation can be performed by performing processing using a power of two, and the operation cost can be suppressed. When the trigonometric function approximating apparatus 10 is implemented by a digital circuit, the second correction processing is realized by the subtraction of 0.25 by the subtractor 712 and the multiplication of 0.25 by the multiplier 713.
The error function ε (θ) is expressed by the difference between the ideal function in the range of −1.0 to 1.0 and the approximate signal 52 without correction fitted by the first correction unit 13. On the other hand, before the error correction signal 603 passes through the first correction unit 13, that is, when generating the first triangular wave signal 502 whose range is 0 to 0.5 (the width is a quarter of the ideal function), It is added to the first sawtooth signal. Therefore, the width of the value range of the error correction signal 603 needs to be 1⁄4 of 0.5. Specifically, the second correction unit 123 causes the subtractor 712 to set the value range 0 to 0.5 of the second triangular wave signal 602 to −0.25 to 0.25. Then, the second correction unit 123 sets the value range to 1⁄4 by the multiplier 713, and sets the value range to −0.0625 to 0.0625.
 次に、図9を用いて、ステップS106の加算処理、およびステップS107の第1折返波生成処理について説明する。 Next, the addition process of step S106 and the first return wave generation process of step S107 will be described using FIG.
<<加算処理(ステップS106)>>
 ステップS106では、加算部113は、第1鋸波信号501と誤差補正信号603とを加算し、補正鋸波信号501aを生成する加算処理を行う。図9に示すように、誤差補正信号603は、位相が理想関数61と約4分の1ずれており、かつ、周波数が理想関数61の約2倍であり、かつ、振幅が理想関数61の約4分の1である。
<< Add process (step S106) >>
In step S106, the addition unit 113 adds the first sawtooth signal 501 and the error correction signal 603, and performs addition processing to generate a corrected sawtooth signal 501a. As shown in FIG. 9, the error correction signal 603 has a phase which is about one-fourth of the ideal function 61, a frequency of which is about twice that of the ideal function 61, and an amplitude of the ideal function 61. It is about a quarter.
<近似信号生成処理>
 第1折返波生成部112と第1補正部13とを近似信号生成部114とする。第1折返波生成処理と第1補正処理により、近似信号生成部114は、補正鋸波信号501aを用いて、位相、周波数、および振幅が理想関数61と同じ三角波信号を近似信号52として生成する。
<Approximate signal generation processing>
The first return wave generation unit 112 and the first correction unit 13 are referred to as an approximation signal generation unit 114. The approximation signal generation unit 114 generates a triangular wave signal having the same phase, frequency, and amplitude as the ideal function 61 as the approximation signal 52 using the corrected sawtooth signal 501 a by the first return wave generation processing and the first correction processing. .
<<第1折返波生成処理(ステップS107)>>
 ステップS107では、第1折返波生成部112は、加算部113から出力された補正鋸波信号501aに対し、上述した折返波生成処理を行う。第1折返波生成部112は、補正鋸波信号501aに対し折返波生成処理を行うことにより、図9の第1三角波信号502を生成する。
<< First Returning Wave Generation Process (Step S107) >>
In step S107, the first return wave generation unit 112 performs the above-described return wave generation processing on the corrected sawtooth signal 501a output from the addition unit 113. The first return wave generation unit 112 generates the first triangular wave signal 502 of FIG. 9 by performing the return wave generation processing on the corrected sawtooth signal 501 a.
<第1補正処理>
 ステップS108において、第1補正部13は、第1三角波信号502の値域を、理想関数61と同じ-1.0から1.0に合わせるため、第1三角波信号502に対し、オフセットを加算し、定数を乗算する。主生成部11の出力である第1三角波信号502は、値域0.0から0.5である。よって、第1補正部13は、第1三角波信号502に対し、-0.25を加算し、4を乗算する。三角関数近似装置10がディジタル回路で実装される場合、この動作は減算器714による0.25の減算と、乗算器715による0.5の乗算によって実現される。このように、第1補正部13は、図9の第1三角波信号502に対し、オフセットを加算し、定数を乗算することにより、図9の近似信号52を生成する。
<First correction processing>
In step S108, the first correction unit 13 adds an offset to the first triangular wave signal 502 in order to adjust the value range of the first triangular wave signal 502 to -1.0 to 1.0 which is the same as the ideal function 61, Multiply a constant. The first triangular wave signal 502 which is the output of the main generation unit 11 has a value range of 0.0 to 0.5. Therefore, the first correction unit 13 adds −0.25 to the first triangular wave signal 502 and multiplies it by 4. When the trigonometric function approximating apparatus 10 is implemented by a digital circuit, this operation is realized by the subtraction of 0.25 by the subtractor 714 and the multiplication of 0.5 by the multiplier 715. Thus, the first correction unit 13 adds the offset to the first triangular wave signal 502 in FIG. 9 and multiplies the first triangular wave signal 502 in FIG. 9 by a constant to generate the approximate signal 52 in FIG.
 なお、図8の0.5≦θ<1.0の範囲、および、0.5≦θ<1.0以降の1周期後半の範囲では、誤差関数ε(θ)に対して誤差補正関数603が逆位相になる。よって、上記範囲では誤差を増幅しているように見える。しかし、本実施の形態では、上記範囲でも誤差を増幅しないために、誤差補正信号603を第1鋸波信号に加算している。誤差関数が半周期毎に逆位相になるのは、第1折返波生成部による折返し処理が原因である。したがって、第1折返波生成部の前に誤差補正信号を第1鋸波信号に加算し、第1鋸波信号と併せて折り返すことで、誤差補正信号と第1鋸波信号とを同時に逆位相としている。 Note that in the range of 0.5 ≦ θ <1.0 in FIG. 8 and the range of the latter half of one cycle after 0.5 ≦ θ <1.0, the error correction function 603 with respect to the error function ε (θ) Are out of phase. Therefore, it seems that the error is amplified in the above range. However, in the present embodiment, the error correction signal 603 is added to the first sawtooth signal so as not to amplify the error even in the above range. The error function is in antiphase every half cycle because of the aliasing process by the first aliasing wave generator. Therefore, the error correction signal is added to the first sawtooth signal before the first folded wave generation unit, and is then folded back together with the first sawtooth signal, so that the error correction signal and the first sawtooth signal are simultaneously in antiphase. And
 ****本実施の形態の効果の説明****
 以上のように、本実施の形態に係る三角関数近似装置10では、主生成部が、入力された位相信号に対して、鋸波信号と三角波信号とを順次生成する。そして、主生成部は、所望の三角関数に同調する三角波信号を生成する。また、副生成部は、同じ位相信号を入力とし、乗算と加算を行い、調整信号を生成する。そして、副生成部は、調整信号に対して、同様に鋸波信号と三角波信号とを順次生成する。そして、副生成部は、三角波信号の値域を調整した誤差補正信号を生成する。そして、主生成部は、三角波信号の生成過程において誤差補正信号を鋸波信号に加算する。よって、本実施の形態に係る三角関数近似装置10によれば、所望の三角関数に同調し、かつ、より類似した誤差の小さい三角関数の近似信号を出力できる。
**** Explanation of the effect of the present embodiment ****
As described above, in the trigonometric function approximating apparatus 10 according to the present embodiment, the main generation unit sequentially generates the sawtooth signal and the triangular wave signal with respect to the input phase signal. Then, the main generation unit generates a triangular wave signal tuned to a desired trigonometric function. The sub-generation unit receives the same phase signal as input, performs multiplication and addition, and generates an adjustment signal. And a sub production | generation part produces | generates a sawtooth wave signal and a triangular wave signal sequentially similarly to an adjustment signal. Then, the sub-generation unit generates an error correction signal in which the value range of the triangular wave signal is adjusted. Then, the main generation unit adds the error correction signal to the sawtooth signal in the process of generating the triangular wave signal. Therefore, according to the trigonometric function approximating apparatus 10 according to the present embodiment, it is possible to output an approximation signal of a trigonometric function which is tuned to a desired trigonometric function and whose error is more similar.
 また、本実施の形態に係る三角関数近似装置10では、近似三角波信号は、主生成部が位相信号に対して簡易な演算処理を加えることで得られる。また、誤差補正生成部が、同じ位相信号入力を調整部、主生成部と同様の構成をもつ副生成部、および波形補正部によって構成される。三角関数近似装置10では、加算部が、誤差補正生成部の出力信号を、第1鋸波信号に加算する。これにより、三角関数近似装置10では、主生成部の所望の三角関数に対する誤差を低減し、近似精度を改善する。また、三角関数近似装置10では、計算負荷の高い三角関数(余弦関数、正弦関数)の実装において、少ない計算負荷で高精度な近似出力を得ることができる。 Further, in the trigonometric function approximating apparatus 10 according to the present embodiment, the approximate triangular wave signal is obtained by the main generating unit adding simple arithmetic processing to the phase signal. Further, the error correction generation unit is configured by the adjustment unit for the same phase signal input, the sub generation unit having the same configuration as the main generation unit, and the waveform correction unit. In the trigonometric function approximating apparatus 10, the adding unit adds the output signal of the error correction generating unit to the first sawtooth signal. Thereby, in the trigonometric function approximating apparatus 10, the error with respect to the desired trigonometric function of the main generation unit is reduced, and the approximation accuracy is improved. Further, in the trigonometric function approximating apparatus 10, in the implementation of a trigonometric function (cosine function, sine function) having a high computational load, a highly accurate approximate output can be obtained with a small computational load.
 以上のように、本実施の形態に係る三角関数近似装置10では、位相信号から、誤差信号を相殺する信号出力を得ることができる。よって、本実施の形態に係る三角関数近似装置10によれば、誤差補正に伴う演算負荷を小さくし、回路規模を小さくすることができる。また、本実施の形態に係る三角関数近似装置10では、実装によっては、主生成部を再帰的に使用でき、誤差補正に伴う追加回路を小さくすることができる。 As described above, in the trigonometric function approximating apparatus 10 according to the present embodiment, it is possible to obtain, from the phase signal, a signal output that cancels out the error signal. Therefore, according to the trigonometric function approximating apparatus 10 according to the present embodiment, the calculation load involved in the error correction can be reduced, and the circuit scale can be reduced. In addition, in the trigonometric function approximating apparatus 10 according to the present embodiment, depending on the implementation, the main generation unit can be used recursively, and the additional circuit involved in the error correction can be made smaller.
****他の構成****
 本実施の形態に係る三角関数近似装置は、主生成部の後段に第1補正部が配置されている。そして、第1補正部が、-1.0から1.0の値域を持ち、理想関数に類似する近似信号を出力する。しかし、主生成部の出力波形と第1補正部の出力波形の概形は相似関係にあるため、三角関数としての絶対値を要しない場合は、主生成部の出力を近似信号としてもよい。具体例としては、波動シミュレーションにおいて、複数の波源が作る複素振幅分布の位相分布を求める場合のように、三角関数を用いて導出される値同士の相対値が必要な場合には有効である。
**** Other configurations ****
In the trigonometric function approximating apparatus according to the present embodiment, a first correction unit is disposed downstream of the main generation unit. Then, the first correction unit outputs an approximation signal having a value range of −1.0 to 1.0 and similar to the ideal function. However, since the output waveform of the main generation unit and the approximate shape of the output waveform of the first correction unit are similar to each other, the output of the main generation unit may be used as an approximation signal when an absolute value as a trigonometric function is not required. As a specific example, as in the case of obtaining the phase distribution of complex amplitude distribution generated by a plurality of wave sources in wave simulation, it is effective when relative values between values derived using a trigonometric function are required.
 本実施の形態では、理想関数の値域を-1.0から1.0として説明した。しかし、実装系によっては、値域が、0.0から1.0のように、正数に正規化された関数を用いてもよい。正数に正規化された関数を用いる分野には、例えば、ロボット工学の姿勢制御がある。また、光学シミュレーションにおいて、複数の光源がつくる波面の位相を求める問題の場合、複素数で表される波面の実部および虚部の相対値から位相を算出するため、三角関数の値域は重要ではなくなる。 In the present embodiment, the value range of the ideal function has been described as −1.0 to 1.0. However, depending on the implementation system, a value range may use a function normalized to a positive number, such as 0.0 to 1.0. In the field of using functions normalized to positive numbers, there is, for example, attitude control of robotics. Moreover, in the case of the problem of finding the phase of the wavefront formed by a plurality of light sources in optical simulation, the range of the trigonometric function is not important because the phase is calculated from the relative values of the real part and imaginary part of the wavefront represented by complex numbers. .
 実施の形態1では、三角関数近似装置の各部を独立した機能ブロックとして説明した。しかし、三角関数近似装置の構成は、上述した実施の形態のような構成でなくてもよい。三角関数近似装置の機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。 In the first embodiment, each unit of the trigonometric function approximating apparatus has been described as an independent functional block. However, the configuration of the trigonometric function approximation device may not be the configuration as in the above-described embodiment. The functional block of the trigonometric function approximating device may have any configuration as long as the function described in the above-described embodiment can be realized.
 実施の形態1のうち、複数の部分を組み合わせて実施しても構わない。あるいは、実施の形態1のうち、1つの部分を実施しても構わない。その他、実施の形態1を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
 なお、上述した実施の形態は、本質的に好ましい例示であって、本発明の範囲、本発明の適用物の範囲、および本発明の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
A plurality of parts in the first embodiment may be combined and implemented. Alternatively, one part of the first embodiment may be implemented. In addition, Embodiment 1 may be implemented in any combination in whole or in part.
The embodiments described above are essentially preferable examples, and are not intended to limit the scope of the present invention, the scope of the application of the present invention, and the scope of the application of the present invention. The embodiment described above can be variously modified as needed.
 10 三角関数近似装置、11 主生成部、111 第1鋸波生成部、1221 第2鋸波生成部、112 第1折返波生成部、1222 第2折返波生成部、113 加算部、114 近似信号生成部、12 誤差補正生成部、121 調整部、122 副生成部、13 第1補正部、123 第2補正部、21 信号入出力インターフェース、22 プロセッサ、23 記憶装置、231 メモリ、232 ストレージ、701 ビット抽出器、702 加算器、703 減算器、704 排他的論理和、705 減算器、706 乗算器、707 加算器、708 ビット抽出器、709 減算器、710 排他的論理和、711 減算器、712 減算器、713 乗算器、714 減算器、715 乗算器、51 位相信号、52 近似信号、61x 近似三角波信号、501 第1鋸波信号、601 第2鋸波信号、501a 補正鋸波信号、502 第1三角波信号、602 第2三角波信号、603 誤差補正信号、604 調整信号、61 理想関数、63 誤差関数。 DESCRIPTION OF SYMBOLS 10 Trigonometric function approximation apparatus, 11 Main production | generation part, 111 1st sawtooth wave production | generation part, 1221 2nd sawtooth wave production | generation part, 112 1st return wave production | generation part, 1222 2nd return wave production | generation part, 113 Addition part, 114 approximation signal Generation unit, 12 error correction generation unit, 121 adjustment unit, 122 sub-generation unit, 13 first correction unit, 123 second correction unit, 21 signal input / output interface, 22 processor, 23 storage device, 231 memory, 232 storage, 701 Bit extractor, 702 adder, 703 subtractor, 704 exclusive OR, 705 subtractor, 706 multiplier, 707 adder, 708 bit extractor, 709 subtractor, 710 exclusive OR, 711 subtractor, 712 Subtractor, 713 multiplier, 714 subtractor, 715 multiplier, 51 phase signal, 5 Approximate signal, 61x approximate triangular wave signal, 501 first sawtooth signal, 601 second sawtooth signal, 501a corrected sawtooth signal, 502 first triangular wave signal, 602 second triangular wave signal, 603 error correction signal, 604 adjustment signal, 61 Ideal function, 63 error function.

Claims (8)

  1.  位相信号が入力された三角関数の出力を理想関数とし、前記理想関数に近似する近似信号を生成する三角関数近似装置において、
     前記位相信号を用いて、前記理想関数と同調する第1鋸波信号を生成する第1鋸波生成部を備える主生成部と、
     前記理想関数と、前記第1鋸波信号から生成され、位相、周波数、および振幅が前記理想関数と同じ近似三角波信号との誤差を表した誤差関数を相殺する誤差補正信号を生成する誤差補正生成部と
    を備え、
     前記誤差補正生成部は、
     前記位相信号を定数倍するとともに定数加算した調整信号を生成する調整部と、
     前記調整信号を用いて、位相と周波数とが前記誤差補正信号と同じ三角波信号である第2三角波信号を生成する副生成部と、
     前記第2三角波信号の波形の値域を調整し、前記誤差補正信号として生成する第2補正部と
    を備え、
     前記主生成部は、さらに、
     前記第1鋸波信号と前記誤差補正信号とを加算し、補正鋸波信号として生成する加算部と、
     前記補正鋸波信号を用いて、位相、周波数、および振幅が前記理想関数と同じ三角波信号を前記近似信号として生成する近似信号生成部と
    を備えた三角関数近似装置。
    In a trigonometric function approximating apparatus which uses an output of a trigonometric function to which a phase signal is input as an ideal function and generates an approximation signal approximating the ideal function,
    A main generation unit including a first sawtooth wave generator that generates a first sawtooth wave signal that is synchronized with the ideal function using the phase signal;
    Error correction generation that generates an error correction signal that is generated from the ideal function and the first sawtooth signal and that represents an error between the ideal triangular wave signal whose phase, frequency, and amplitude are the same as the ideal function Equipped with
    The error correction generation unit
    An adjustment unit configured to generate an adjustment signal obtained by multiplying the phase signal by a constant and adding a constant;
    A sub-generation unit that generates a second triangular wave signal whose phase and frequency are the same triangular wave signal as the error correction signal using the adjustment signal;
    And a second correction unit configured to adjust a value range of the waveform of the second triangular wave signal and generate the error correction signal.
    The main generation unit further includes
    An addition unit that adds the first sawtooth signal and the error correction signal to generate a corrected sawtooth signal;
    An approximation signal generator configured to generate, as the approximation signal, a triangular wave signal having the same phase, frequency, and amplitude as the ideal function, using the correction sawtooth signal.
  2.  前記副生成部は、
     前記調整信号を用いて、位相が前記第1鋸波信号の位相とずれており、かつ、周波数が前記第1鋸波信号の2倍である第2鋸波信号を生成する第2鋸波生成部と、
     前記第2鋸波信号を用いて、周波数が前記第2鋸波信号と同じで、かつ、振幅が前記第2鋸波信号の2分の1の前記第2三角波信号を生成する第2折返波生成部と
    を備えた請求項1に記載の三角関数近似装置。
    The sub-generation unit is
    Second sawtooth wave generation using the adjustment signal to generate a second sawtooth wave that is out of phase with the phase of the first sawtooth wave and whose frequency is twice that of the first sawtooth wave Department,
    A second folded wave that generates the second triangular wave signal having a frequency equal to that of the second sawtooth signal and having an amplitude that is half that of the second sawtooth signal using the second sawtooth signal The trigonometric function approximation device according to claim 1, comprising: a generation unit.
  3.  前記誤差補正信号は、
     位相が前記理想関数と4分の1ずれており、かつ、周波数が前記理想関数の2倍であり、かつ、振幅が前記理想関数の4分の1である請求項2に記載の三角関数近似装置。
    The error correction signal is
    The trigonometric function approximation according to claim 2, wherein the phase is quartered from the ideal function, the frequency is twice the ideal function, and the amplitude is a quarter of the ideal function. apparatus.
  4.  前記第2鋸波生成部は、
     前記調整信号の小数部を抽出することにより、前記第2鋸波信号を生成する請求項2または3に記載の三角関数近似装置。
    The second sawtooth wave generator is
    The trigonometric function approximation device according to claim 2 or 3, wherein the second sawtooth signal is generated by extracting a decimal part of the adjustment signal.
  5.  前記第2折返波生成部は、
     前記第2鋸波信号から0.5を減算し、絶対値演算を行うことにより、前記第2三角波信号を生成する請求項2から4のいずれか1項に記載の三角関数近似装置。
    The second return wave generation unit
    The trigonometric function approximation device according to any one of claims 2 to 4, wherein the second triangular wave signal is generated by subtracting 0.5 from the second sawtooth signal and performing an absolute value operation.
  6.  前記第2補正部は、
     前記第2三角波信号に対して乗算および減算を施すことで波形の値域を調整する請求項2から5のいずれか1項に記載の三角関数近似装置。
    The second correction unit is
    The trigonometric function approximation device according to any one of claims 2 to 5, wherein a value range of a waveform is adjusted by performing multiplication and subtraction on the second triangular wave signal.
  7.  位相信号が入力された三角関数の出力を理想関数とし、前記理想関数に近似する近似信号を生成する三角関数近似装置の三角関数近似方法において、
     主生成部が、前記位相信号を用いて、前記理想関数と同調する第1鋸波信号を生成し、
     調整部が、前記位相信号を定数倍するとともに定数加算した調整信号を生成し、
     副生成部が、前記調整信号を用いて、位相と周波数とが、前記第1鋸波信号から生成され、位相、周波数、および振幅が前記理想関数と同じ近似三角波信号との誤差を表した誤差関数を相殺する誤差補正信号と同じ三角波信号である第2三角波信号を生成し、
     第2補正部が、前記第2三角波信号の波形の値域を調整し、前記誤差補正信号を生成し、
     加算部が、前記第1鋸波信号と前記誤差補正信号とを加算し、補正鋸波信号として生成し、
     近似信号生成部が、前記補正鋸波信号を用いて、位相、周波数、および振幅が前記理想関数と同じ三角波信号を前記近似信号として生成する三角関数近似方法。
    In a trigonometric function approximation method of a trigonometric function approximating apparatus, wherein an output of a trigonometric function to which a phase signal is input is an ideal function, and an approximation signal approximating the ideal function is generated;
    A main generation unit generates a first sawtooth signal in phase with the ideal function using the phase signal;
    An adjusting unit generates an adjusting signal obtained by multiplying the phase signal by a constant and adding a constant;
    An error in which a sub-generation unit generates a phase and a frequency from the first sawtooth signal using the adjustment signal, and an error from the approximate triangular wave signal having the same phase, frequency, and amplitude as the ideal function. Generate a second triangular wave signal that is the same triangular wave signal as the error correction signal that cancels out the function,
    A second correction unit adjusts a value range of the waveform of the second triangular wave signal to generate the error correction signal;
    An adder adds the first sawtooth signal and the error correction signal to generate a corrected sawtooth signal,
    An approximation signal generation unit that generates, using the corrected sawtooth signal, a triangular wave signal having the same phase, frequency, and amplitude as the ideal function as the approximation signal.
  8.  位相信号が入力された三角関数の出力を理想関数とし、前記理想関数に近似する近似信号を生成する三角関数近似装置の三角関数近似プログラムにおいて、
     前記位相信号を用いて、前記理想関数と同調する第1鋸波信号を生成する第1鋸波生成処理と、
     前記位相信号を定数倍するとともに定数加算した調整信号を生成する調整処理と、
     前記調整信号を用いて、位相と周波数とが、前記第1鋸波信号から生成され、位相、周波数、および振幅が前記理想関数と同じ近似三角波信号との誤差を表した誤差関数を相殺する誤差補正信号と同じ三角波信号である第2三角波信号を生成する副生成処理と、
     前記第2三角波信号の波形の値域を調整し、前記誤差補正信号を生成する第2補正処理と、
     前記第1鋸波信号と前記誤差補正信号とを加算し、補正鋸波信号として生成する加算処理と、
     前記補正鋸波信号を用いて、位相、周波数、および振幅が前記理想関数と同じ三角波信号を前記近似信号として生成する近似信号生成処理と
    をコンピュータである前記三角関数近似装置に実行させる三角関数近似プログラム。
    In a trigonometric function approximation program of a trigonometric function approximating device, wherein an output of a trigonometric function to which a phase signal is input is an ideal function, and an approximation signal approximating the ideal function is generated,
    A first sawtooth wave generation process for generating a first sawtooth wave signal synchronized with the ideal function using the phase signal;
    An adjustment process for generating an adjustment signal obtained by multiplying the phase signal by a constant and adding a constant;
    An error that uses the adjustment signal to generate a phase and frequency from the first sawtooth signal and cancels an error function that represents an error from the approximate triangular wave signal whose phase, frequency, and amplitude are the same as the ideal function. A sub-generation process for generating a second triangular wave signal that is the same triangular wave signal as the correction signal;
    A second correction process of adjusting the value range of the waveform of the second triangular wave signal to generate the error correction signal;
    Addition processing for adding the first sawtooth signal and the error correction signal to generate a corrected sawtooth signal;
    Trigonometric function approximation that causes the trigonometric function approximation device, which is a computer, to execute approximation signal generation processing that generates, as the approximation signal, a triangular wave signal whose phase, frequency, and amplitude are the same as the ideal function using the corrected sawtooth signal program.
PCT/JP2017/031066 2017-08-30 2017-08-30 Trigonometric function approximation device, trigonometric function approximation method, and trigonometric function approximation program WO2019043814A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/031066 WO2019043814A1 (en) 2017-08-30 2017-08-30 Trigonometric function approximation device, trigonometric function approximation method, and trigonometric function approximation program
JP2019512852A JP6548855B1 (en) 2017-08-30 2017-08-30 Trigonometric function approximation apparatus, trigonometric function approximation method, and trigonometric function approximation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031066 WO2019043814A1 (en) 2017-08-30 2017-08-30 Trigonometric function approximation device, trigonometric function approximation method, and trigonometric function approximation program

Publications (1)

Publication Number Publication Date
WO2019043814A1 true WO2019043814A1 (en) 2019-03-07

Family

ID=65525129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031066 WO2019043814A1 (en) 2017-08-30 2017-08-30 Trigonometric function approximation device, trigonometric function approximation method, and trigonometric function approximation program

Country Status (2)

Country Link
JP (1) JP6548855B1 (en)
WO (1) WO2019043814A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178005A (en) * 1990-11-13 1992-06-25 Roland Corp Pseudo sine wave signal generator
JPH08130414A (en) * 1994-11-01 1996-05-21 Nippon Telegr & Teleph Corp <Ntt> Synthesizer circuit
JPH08130415A (en) * 1994-11-01 1996-05-21 Nippon Telegr & Teleph Corp <Ntt> Synthesizer circuit
JP2017053914A (en) * 2015-09-07 2017-03-16 株式会社河合楽器製作所 Waveform generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178005A (en) * 1990-11-13 1992-06-25 Roland Corp Pseudo sine wave signal generator
JPH08130414A (en) * 1994-11-01 1996-05-21 Nippon Telegr & Teleph Corp <Ntt> Synthesizer circuit
JPH08130415A (en) * 1994-11-01 1996-05-21 Nippon Telegr & Teleph Corp <Ntt> Synthesizer circuit
JP2017053914A (en) * 2015-09-07 2017-03-16 株式会社河合楽器製作所 Waveform generation device

Also Published As

Publication number Publication date
JP6548855B1 (en) 2019-07-24
JPWO2019043814A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
De Dinechin et al. Hardware implementations of fixed-point Atan2
Hung et al. Fast division algorithm with a small lookup table
US9851947B2 (en) Arithmetic processing method and arithmetic processor having improved fixed-point error
Low et al. A memory-efficient tables-and-additions method for accurate computation of elementary functions
WO2012117531A1 (en) Clock generator and system including same
Durán et al. Fourier–Dunkl system of the second kind and Euler–Dunkl polynomials
JP6548855B1 (en) Trigonometric function approximation apparatus, trigonometric function approximation method, and trigonometric function approximation program
TWI754680B (en) Apparatus and method of generating starting estimate, manufacturing method and testing method
KR102503498B1 (en) Systems and methods for computing mathematical functions
ES2696530T3 (en) Calculation procedure, calculation device and calculation software product for Montgomery domain
US9703530B2 (en) Systems and methods for computing mathematical functions
EP3358460B1 (en) Systems and methods for computing mathematical functions
JP2010067251A (en) Integer division circuit with allowable error
JP4696920B2 (en) DDS signal generator
JP6335661B2 (en) Arithmetic apparatus and control method thereof
CN108182050B (en) Calculating trigonometric functions using a four-input dot product circuit
Nilsson Complexity reductions in unrolled CORDIC architectures
JP6327154B2 (en) Signal generation apparatus, signal generation method, and numerically controlled oscillator
Ashrafi Optimization of the quantized coefficients for DDFS utilizing polynomial interpolation methods
Emelyanov On Wood Basis for the mod p Steenrod Algebra.
Wanhammar et al. Efficient sine and cosine computation using a weighted sum of bit-products
Nilsson et al. Power reductions in unrolled CORDIC architectures
Phalle et al. Efficient Implementation of Two Stage Binary Logarithmic Converter
JP2022180257A (en) Inner product calculation device, inner product calculation method, and inner product calculation program
TWI228878B (en) Low-power direct digital synthesizer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512852

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923460

Country of ref document: EP

Kind code of ref document: A1