WO2019043813A1 - Sewing machine - Google Patents

Sewing machine Download PDF

Info

Publication number
WO2019043813A1
WO2019043813A1 PCT/JP2017/031065 JP2017031065W WO2019043813A1 WO 2019043813 A1 WO2019043813 A1 WO 2019043813A1 JP 2017031065 W JP2017031065 W JP 2017031065W WO 2019043813 A1 WO2019043813 A1 WO 2019043813A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewing
upper thread
sewing machine
tension
needle
Prior art date
Application number
PCT/JP2017/031065
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 甲斐
東一 上野
俊介 吉田
士朗 若山
信明 濱田
良太 坂神
悠輔 生嶋
晋 谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017008004.5T priority Critical patent/DE112017008004B4/en
Priority to PCT/JP2017/031065 priority patent/WO2019043813A1/en
Priority to CN201780094214.1A priority patent/CN111065773B/en
Priority to JP2018544292A priority patent/JP6477987B1/en
Publication of WO2019043813A1 publication Critical patent/WO2019043813A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B29/00Pressers; Presser feet
    • D05B29/06Presser feet
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B47/00Needle-thread tensioning devices; Applications of tensometers
    • D05B47/04Automatically-controlled tensioning devices

Definitions

  • the present invention relates to a sewing machine provided with an inner presser that presses a workpiece at the time of sewing.
  • an upper thread of a sewing machine is supplied along a thread path starting from a supply source such as thread winding installed on an arm portion or a stand and ending at a sewing needle serving as a consuming portion of the upper thread.
  • Patent Document 1 discloses an upper thread tension detector that detects the tension of an upper thread during sewing operation by providing a piezoelectric element in the above-described thread path. Moreover, in patent document 1, the piezoelectric element is arrange
  • Patent Documents 3 and 4 show sewing machines that not only detect the tension of the upper thread but also control the tension of the upper thread in accordance with the sewing pattern using an upper thread tension adjusting device and an upper thread tensioning means.
  • Patent Document 3 shows an upper thread tension adjusting device that makes the resistance of the upper thread nipped between the fixing plate and the thread pressure end plate variable at the time of sewing operation by pressing force or torque applied by an electromagnetic actuator or the like. It is done.
  • Patent Document 4 discloses a sewing machine having a thread tensioning means for optimally adjusting the tension of the thread, even when the width and direction of the seam constantly change, for the purpose of creating an embroidery product having a good texture. It is done.
  • Patent Documents 3 and 4 describe a configuration of feedback control that adjusts the thread tension based on the output of an upper thread tension detector (a tension detection means in Patent Document 4) that detects thread tension by a piezoelectric element or a detection coil. It is done.
  • Patent Document 6 discloses a sewing machine that improves the pressing accuracy of a workpiece by controlling the driving force of a motor that drives the pressing device.
  • Patent Document 7 discloses a sewing machine that detects the thickness and hardness of a material to be sewn based on the rotational angle of a motor that drives a middle press and the detection value of a driving torque.
  • Patent Documents 1 to 5 disclose a sewing machine provided with a device for detecting or controlling upper thread tension during sewing operation for the purpose of improving sewing quality such as thread breakage or thread tension due to upper thread tension.
  • Patent Documents 6 and 7 disclose sewing machines that change the operation pattern of the pressing device for the purpose of improving sewing quality such as tightening accuracy due to pressing accuracy of the sewing object by the pressing device.
  • the sewing machines disclosed in Patent Documents 6 and 7 can improve the sewing quality such as the above-mentioned tightening accuracy because the pressing accuracy of the sewing material is improved by changing the operation pattern of the pressing device. .
  • the behavior of the upper thread that is, the supply amount of upper thread, tension, and the like is not monitored, for example, if thread breakage occurs, a stitch is not formed and a sewing failure occurs.
  • the sewing operation is continued even if the thread tension or texture is disturbed due to an external factor.
  • the sewing machines of Patent Documents 6 and 7 when checking sewing quality such as thread tension and texture, it is necessary to check the finishing condition after a series of sewing operations are completed by using an inspection device or the like.
  • the conventional sewing machines disclosed in Patent Documents 6 and 7 drive the pressing device so that the sewing quality such as thread tension and tightening accuracy is improved, but guaranteeing the quality of the formed seam There was a problem that I could not
  • the present invention has been made in view of the above, and monitors occurrence of thread breakage while performing sewing operation with a simple configuration with few additional parts, and further guarantees sewing quality such as thread tension and tightening accuracy. Aims to provide a sewing machine that can
  • the sewing machine has a sewing needle having a needle hole for inserting the upper thread, a hook for catching the upper thread, and a small hole for inserting the upper thread.
  • a balance that pulls up the upper thread from the sewing object to be sewn by raising the small hole from the bottom dead center to the top dead center, a middle presser that prevents the sewn product from floating, and a drive source that drives the middle presser
  • the upper thread tension is monitored based on the load applied from the upper thread to the middle presser by the transport means for transporting the sewn material and the upper thread contacting the middle presser when the transport means transports the sewn material And a tension monitoring unit.
  • the present invention it is possible to detect the tension applied to the upper thread through the middle press, to perform the sewing operation and to detect thread breakage and tightening accuracy related to sewing quality with a simple configuration with few additional parts. be able to.
  • FIG. 17 is a perspective view showing details of an inner pressing drive mechanism of the sewing machine according to the first embodiment.
  • a perspective view showing an upper thread path of a sewing machine according to a first embodiment Block diagram showing the control configuration of the sewing machine according to the first embodiment Image showing the operation of a typical electronic sewing machine Image showing tension detection operation of the sewing machine according to the first embodiment
  • Block diagram showing details of the PF axis deviation suppression unit of the sewing machine according to the first embodiment Block diagram showing the details of the tension monitoring unit of the sewing machine according to the first embodiment
  • Block diagram showing details of PF axis motor control calculation unit of sewing machine according to Embodiment 4 Block diagram showing details of the PF axis
  • Embodiment 1 In the first embodiment, a configuration example of an industrial electronic sewing machine that performs a sewing operation while moving a workpiece to be sewed such as cloth or leather with a transport device such as an XY table will be described.
  • a sewing machine provided with pressing devices such as cloth pressing and middle pressing and capable of conveying the material to be sewn so that the upper thread comes in contact with the pressing devices, for example, general sewing machines, vocational sewing machines, home
  • the configuration example of the present embodiment can be applied even to a sewing machine, an embroidery machine or the like.
  • FIGS. 1 to 5 in the right-handed XYZ coordinates, the direction in which the sewing needle moves up and down is the Z axis direction, the direction orthogonal to the Z axis direction is the X axis direction, and the Z axis direction and the X axis direction The direction orthogonal to both is taken as the Y-axis direction.
  • the X-axis direction is equal to the longitudinal direction of the bed described later.
  • the main part of the sewing machine 100 shown in FIG. 1 includes a housing mechanism P0, a transport mechanism P1 whose details are shown in FIG. 2, a control device P2, and a sewing mechanism P3 shown in FIG.
  • the casing mechanism P0 of the sewing machine 100 includes an arm 101 for storing the upper shaft included in the sewing mechanism P3 of FIG. 3 and a spindle motor case 102 for housing the spindle motor connected to the upper shaft.
  • a sewing machine head 103 in which a sewing mechanism P3 performs a sewing operation at a tip end of an arm 101, a bed 104 for storing an XY stage included in a transport mechanism P1, and support legs 105 for supporting the arm 101 and the bed 104 from an installation floor
  • a sliding plate 106 fixed to the upper surface of the bed 104 and slidably supporting the holding device 112 included in the transport mechanism P1 on a plane.
  • the housing mechanism P0 is a high rigidity steel plate designed to withstand mechanical breakage due to an impact when the sewing machine 100 operates, or a flexible material that disperses and absorbs the impact such as steel sheet or casting. Configure.
  • the spindle motor case 102 is connected to one end of the arm 101 in FIG. 1 in order to clearly show the disposition of the spindle motor, the spindle motor 201 of FIG. Also good.
  • the spindle motor 201 shown in FIG. 3 may be installed integrally with the sewing machine head 103, not inside the arm 101.
  • the transport mechanism P ⁇ b> 1 of the sewing machine 100 includes an XY stage 111 and a holding device 112.
  • the XY stage 111 is driven in the X-axis direction and the Y-axis direction by the X-axis motor 113 and the Y-axis motor 114 in FIG. 2, and the holding device 112 connected to the movable portion of the XY stage 111 is on the horizontal surface of the slide plate 106 Transport
  • the X-axis motor 113 and the Y-axis motor 114 are servomotors mounted on the side of the bed 104, and drive the X-axis drive mechanism 115 and the Y-axis drive mechanism 116, respectively.
  • the XY stage 111 uses the X-axis motor 113 and the Y-axis motor 114 as drive sources in the X-axis direction and the Y-axis direction, respectively, and holds the holding device 112 coupled to the movable portion of the XY stage 111.
  • the sheet is transported in the horizontal plane on the slide plate 106.
  • the X-axis drive mechanism 115 uses a movable race 115a to which the holding device 112 is connected as a movable portion
  • the Y-axis drive mechanism 116 uses a Y-axis guide 116a to which the holding device 112 is connected as a movable portion.
  • the X-axis motor 113 and the Y-axis motor 114 are attached with rotation information detectors 117 and 118, respectively, which detect rotation information such as the angle and angular velocity of the rotor with respect to the stator.
  • the rotation information detectors 117 and 118 are described as being optical encoders that detect the angle of the rotor with respect to the stator. The angular velocity and angular acceleration of the rotor can be obtained by differentiating the detected angle signal.
  • the holding device 112 connected to the XY stage 111 includes a pressing stand 112 a, a feed plate 112 b, an outer pressing 112 c, and an air cylinder 112 d.
  • the presser stand 112a is connected to the moving race 115a, the Y-axis guide 116a, and the XY stage 111, and the slide plate 106 on the other end is connected to the feed plate 112b and the outer presser 112c.
  • the feed plate 112 b is disposed on the upper surface of the slide plate 106, and slidably moves on the slide plate 106 as the XY stage 111 is driven.
  • An object to be sewn which is an object forming a seam by the sewing machine 100, is disposed between the feed plate 112b and the outer presser 112c, and the outer presser 112c presses the feed plate 112b vertically downward to hold the holding device 112. Is held by
  • the holding device 112 switches between holding and non-holding of the workpiece using the air cylinder 112 d as a drive source.
  • the holding device 112 performs a conveying operation for holding and conveying the material to be sewn such that the insertion position of the sewing needle with respect to the material to be sewn is a specific position designated by the user of the sewing machine 100.
  • the air cylinder 112d is used to adjust the air pressure in order to secure the holding force of the holding device 112, but the invention is not limited to this, and the sewing material is held using an electromagnetic press or a hydraulic press. You may.
  • the configuration of the transport mechanism P1 is not limited to that shown in FIG. 2.
  • other types of sewing machines that transport the sewing material to the sewing needle by the feed teeth or a sewing machine that transports the sewing material by the robot The upper thread tension detection method described in the embodiment can be applied. Further, although in FIG.
  • the X-axis drive mechanism 115 and the Y-axis drive mechanism 116 are configured by a belt pulley mechanism, the invention is not limited to this, and a ball screw mechanism or a ball spline mechanism may be used.
  • the drive source of the XY stage 111 is not limited to the rotating electrical machine, and a plurality of linear motors, planar motors, spherical motors, etc. may be used.
  • a control device P2 of the sewing machine 100 includes an operation panel 121, a control panel 122, and a foot switch 123.
  • a user of the sewing machine 100 gives a sewing command signal for driving the sewing machine 100 from the operation panel 121 to the control panel 122 based on sewing data such as sewing pattern data created on the operation panel 121.
  • the control panel 122 controls the conveyance operation by the conveyance mechanism P1, and further controls the speed and timing of the sewing operation by the sewing mechanism P3 described later.
  • the foot switch 123 receives an operation that the user of the sewing machine 100 presses a button, a touch panel, or the like, and starts an operation start signal to start the sewing operation by the sewing machine 100; A holding signal for switching is output to the control board 122.
  • the operation of the control device P2 will be described after the details of the sewing mechanism P3 are described.
  • the sewing mechanism P3 pulls the needle thread from the sewing material by means of a needle 132 having a needle hole, a hook 132 for catching the needle thread and entangleing the needle thread and the bobbin thread.
  • a balance 133 which performs seam tightening to be formed, a spindle motor 134 which is a driving source for driving the sewing needle 131 and the hook 132 and the balance 133, a middle presser 135 which prevents floating of a sewing material, and a middle presser 135 And a middle pressing motor 136 which is a driving source.
  • the sewing mechanism P3 includes a pre-tension 162 and a main tension 163 for adjusting the tension of the upper thread.
  • the sewing needle 131 has a needle hole 131a through which an upper thread serving as an upper thread is formed when forming a stitch, and moves up and down in the Z-axis direction using the spindle motor 134 as a drive source.
  • the sewing needle 131 descends from the top dead center and reaches the bottom dead center after being inserted into the sewing material, and then the sewing material is sewn while the sewing needle 131 rises from the bottom dead center to the top dead center You are pulled out of the
  • the sewing needle 131 cooperates with the hook 132 after reaching the bottom dead center and before the needle is pulled out from the sewing material, and when forming a stitch, a lower thread which is a lower thread of the sewing material and Tangle the upper thread. Thereafter, the needle thread 131a of the sewing needle 131 is pulled out of the material to be sewn, whereby the upper thread is pulled out to the upper surface of the material to be sewn.
  • a rotation information detector 137 is attached to the spindle motor 134 to detect rotation information such as the angle and angular velocity of the rotor with respect to the stator.
  • the rotation information detector 137 is described as an optical encoder that detects the angle of the rotor with respect to the stator of the spindle motor 134.
  • the spindle motor 134 is fixed to the arm 101, and one end of a shaft-shaped upper shaft 139 is coupled to the rotor of the spindle motor 134 via a coupling 138.
  • the rotational movement of the upper shaft 139 is converted to the vertical movement of the needle bar 142 through the balance drive mechanism 140 and the needle bar drive mechanism 141 mounted on the other end of the upper shaft 139 to which the coupling 138 is not connected.
  • a sewing needle 131 is attached to the tip of the needle bar 142, and along with the vertical movement of the needle bar 142, the sewing needle 131 moves up and down in the Z-axis direction.
  • the needle bar drive mechanism 141 for moving the sewing needle 131 up and down with the main spindle motor 134 as a drive source is constituted by a needle bar crank, a connecting bar, a needle bar holding, etc. The other description using and the like is omitted.
  • the kettle 132 is comprised of an outer kettle having a sword tip, a bobbin wound with a lower thread, and a bobbin case 143 for housing the bobbin so as to prevent the bobbin from falling out of the outer kettle.
  • a case is shown in which a full-turn furnace is adopted as the furnace 132, but the present invention is not limited to this.
  • the barrel 132 may be half a turn, or it may be horizontal or vertical.
  • the iron 132 uses the spindle motor 134 as a drive source.
  • an upper shaft pulley 144 is concentrically mounted on the upper shaft 139 near one end of the upper shaft 139 and the coupling portion of the coupling 138, and the upper shaft pulley 144 on the driving side is a timing belt 145.
  • the lower shaft pulley 146 on the driven side is rotated.
  • the lower shaft pulley 146 rotates the large diameter gear 147 via the shaft and rotates the small diameter gear 148 engaged with the large diameter gear 147.
  • the shaft-shaped lower shaft 149 connected to the small diameter gear 148 rotates at a double speed with respect to the upper shaft 139.
  • the bite 132 and the lower shaft 149 are connected to the lower shaft 149 at the end of the shaft where the small diameter gear 148 is not fitted, and the bite 132 moves the sewing needle 131 up and down by the rotation of the spindle motor 134 Rotate at twice the frequency.
  • the point of the biting needle 132 is such that the sewing needle 131 is lowered and inserted into the sewing material, and after reaching the bottom dead center, it is rising toward the top dead center.
  • the loop formed by the upper thread passed through the needle hole is captured.
  • the configuration of the full rotation oven is a well-known technology, so other explanations using an enlarged view etc. will be omitted.
  • the balance 133 uses a main spindle motor 134 as a drive source, and is connected to a balance drive mechanism 140 configured by a crank and a balance rod.
  • the balance 133 is a rigid body of a metal material in the shape of a bell crank, and has one end provided with a small hole 133a for inserting an upper thread at one end, and the other end rotated with respect to the crank connected to the upper shaft 139 Connectable.
  • the other end of the balance rod one end of which is rotatably connected to the arm 101, is connected to the bent portion in the bell crank shape.
  • the balance 133 is driven by the upper shaft 139 that rotates in synchronization with the spindle motor 134, and one cycle of vertical movement of the sewing needle 131 and the balance 133 becomes equal.
  • the small hole 133a of the balance 133 is normally driven to reach the top dead center when the rotation angle of the spindle motor 134 is delayed by about 60 degrees from the top dead center of the sewing needle 131.
  • the configuration of the balance drive mechanism 140 for driving the balance 133 is a well-known technology, and thus other descriptions using an enlarged view and the like will be omitted.
  • the middle presser 135 uses the middle presser motor 136 including the rotation information detector 150 as a drive source, and is connected to the middle presser drive mechanism 151.
  • the middle pressing drive mechanism 151 drives a PF (Pressure Foot) axis of the sewing machine 100.
  • the presser motor 136 includes a rotation information detector 150 to detect the angle or speed of the rotor with respect to the stator of the presser motor 136.
  • the rotation information detector 150 is described as an engineered encoder that detects the angle of the rotor with respect to the stator.
  • the middle pressing drive mechanism 151 includes a pinion 152, a rack 153, a slide guide 154, a slider 155, a middle pressing rod holder 156, and a middle pressing rod 157.
  • the middle pressing motor 136 is a servomotor fixed to the arm 101, and a small circular hole provided at the center of the small diameter circular gear shaped pinion 152 is fitted to the rotor thereof. There is.
  • the teeth of the pinion 152 mesh with the teeth of the rack 153 and convert the rotational movement of the presser motor 136 into a translational movement of the rack 153.
  • the rack 153 is connected to the slider 155, and the slider 155 is guided by the slide guide 154 so as to slide up and down in the Z-axis direction.
  • a middle presser bar clamp 156 is fastened to the slider 155 with a bolt, and the middle presser bar 157 is inserted into the middle presser bar clamp 156 and is compacted.
  • the middle presser 135 is attached to the tip of the middle presser bar 157, and the middle presser bar 157 moves up and down in the Z-axis direction to drive the middle presser 135 in the vertical direction.
  • a circular through hole 135a is provided at the tip of the middle presser 135, and a sewing needle is inserted through the through hole 135a.
  • a rotary servomotor that is, a rotary electric machine having an annular stator and a cylindrical rotor
  • the middle presser motor 136 is used as the middle presser motor 136, and the rotational motion of the rotor is controlled by the rack and the pinion. Convert to translational motion.
  • the drive source of the inner presser 135 is not limited to a rotating electrical machine such as a servo motor or a stepping motor, and may be an actuator that directly realizes translational drive such as a linear motor or a voice coil motor. By using these, it is possible to reduce the loss of power transmission ratio by the rack and pinion mechanism. In addition, since the effects of backlash and friction are reduced by simplifying the mechanism, it is possible to make it easy to grasp the external force that the middle presser 135 receives from the outside from the behavior of the actuator.
  • FIG. 5A is an overall view showing the entire upper thread path in the sewing machine 100
  • FIG. 5B is an enlarged view showing the upper thread path in the sewing machine head 103.
  • the upper yarn path starts from the yarn winding 159 erected on the yarn winding stand 158, the upper yarn guides 160 and 161, the pretension 162, the main tension 163, the small hole 133a of the balance 133, and the upper yarn guides 164 and 165, A needle hole 131 a provided at the tip of the sewing needle 131 is taken as an end point via 166 in order. Since the sewing needle 131 is inserted into the through hole 135a provided in the cylindrical portion at the tip end of the middle pressing portion, the upper thread T inserted into the needle hole 131a is also inserted into the through hole 135a.
  • the upper thread guides 160, 161, 164, 165, and 166 are through holes through which the upper thread T is inserted, and guides the upper thread T along the arm 101 so that the upper thread T does not get entangled or unraveled.
  • the tension of the upper thread T is applied by a spring which is a component of the pre-tension 162 and the main tension 163 and a plate for holding the thread.
  • FIG. 6 is a block diagram showing a control configuration of the sewing machine according to the first embodiment.
  • the control panel indicated by reference numeral 122A corresponds to the control panel 122 shown in FIG.
  • the control panel 121 of the sewing machine 100 includes a display 121a, a processor 121b, a storage device 121c for storing sewing pattern data D1, and an input device 121d.
  • the user of the sewing machine 100 inputs the sewing pattern data D1 for each needle by operating the input device 121d configured by a push-down button or a touch panel while referring to the display 121a.
  • the sewing pattern data D1 is stored in the storage device 121c.
  • the operating system of the control panel 121 is operated by the processor 121 b.
  • the sewing pattern data D1 created on the control panel 121 is converted into a sewing command signal by the processor 121a and transmitted to the command generation unit 1A1 of the control panel 122A.
  • the sewing pattern data D1 is data that determines the position and shape of the stitches formed on the workpiece and the operation speed of the sewing machine 100. Transmission of signals between the control panel 121 and the control panel 122A is performed via a communication circuit (not shown).
  • the indicator 121a of the control panel 121 receives the tension monitoring signal output from the PF-axis motor control calculation unit 1A3 of the control panel 122A as input, and detects the occurrence of thread breakage based on the tension monitoring signal and forms the same seam If the upper thread tension fluctuates for each needle despite the fact that the sewing operation is performed, the occurrence of the sewing failure is displayed to the user of the sewing machine 100.
  • the display 121a is not limited to the one provided inside the control panel 121, and may be a display such as a liquid crystal panel or a traffic signal present outside the control panel 121. In this case, communication between the display and the control panel 122A may be either wired communication or wireless communication. Also, the display 121a may be included in the control panel 122A. Similarly, the storage device 121 c is not limited to one provided inside the operation panel 121, and a storage device existing outside the operation panel 121 can be used. In this case, communication between the storage device and the control panel 122A may be either wired communication or wireless communication.
  • the control panel 122A for controlling the sewing machine 100 includes at least a command generation unit 1A1, a spindle motor control calculation unit 1A2, a PF axis motor control calculation unit 1A3, and an X axis motor control calculation unit 1A4. And Y-axis motor control calculation unit 1A5.
  • it has a control circuit and a power supply circuit that drive a solenoid that performs thread cutting when sewing is completed, a notification sensor that notifies that the thread is lost, a position sensor for performing return-to-origin with the transport mechanism P1, and the like. In some cases, these are not directly related to the effects of the present invention, and thus the description thereof is omitted.
  • Control panel 122 A is a spindle motor output from rotation information detector 137 of spindle motor 134, a sewing command signal output from processor 121 b of operation panel 121, a holding signal and operation start signal output from foot switch 123, and The spindle rotation signal which is the rotation information of 137, the PF axis rotation signal which is the rotation information of the inner pressing motor 136 outputted from the rotation information detector 150 of the inner pressing motor 136, and the rotation information detector 117 of the X axis motor 113
  • An X-axis rotation signal which is rotation information of the X-axis motor 113 output from the Y-axis motor 114, and a Y-axis rotation signal output from the rotation information detector 118 of the Y-axis motor 114 are input.
  • the control board 122A controls the spindle control current for driving the spindle motor 134, the PF axis control current for driving the middle presser motor 136, and the X axis control current for driving the X axis motor 113 based on these input signals.
  • a Y-axis control current for driving the Y-axis motor 114, a holding command signal for driving the air cylinder 112d, and a tension monitoring signal output from the PF-axis motor control calculation unit 1A3 are output.
  • the command generation unit 1A1 of the control panel 122A receives the sewing command signal output from the processor 121b of the control panel 121, the holding signal and the operation start signal output from the foot switch 123, and the spindle command signal PF
  • An axis command signal, an X axis command signal, a Y axis command signal, and a holding command signal are output.
  • the spindle command signal, the PF axis command signal, the X axis command signal, and the Y axis command signal respectively represent the rotation angles of the spindle motor 134, the inner press motor 136, the X axis motor 113, and the Y axis motor 114. It is an electrical signal to be specified, and is calculated inside the command generation unit 1A1 according to the sewing pattern data D1.
  • the holding signal output from the foot switch 123 is an electric signal that designates the pressure of the air cylinder 112 d so that the sewing material is held by the feed plate 112 a and the outer presser 112 b of the holding device 112.
  • the command generation unit 1A1 controls the spindle command signal, the PF axis command signal, the X axis command signal, and the Y axis command signal, and the spindle motor control operation unit 1A2 It is an electric signal which designates the timing which starts transmission toward PF axis motor control operation part 1A3, X axis motor control operation part 1A4, and Y axis motor control operation part 1A5.
  • Spindle motor control calculation unit 1A2 of control board 122A receives spindle command signal and spindle rotation signal and outputs spindle control current for rotating spindle motor 134 so that the difference between spindle command signal and spindle rotation signal becomes zero. .
  • the PF axis motor control calculation unit 1A3 of the control board 122A receives the PF axis command signal and the PF axis rotation signal and rotates the middle pressing motor 136 so that the difference between the PF axis command signal and the PF axis rotation signal becomes zero. Outputs PF axis control current. Further, the PF-axis motor control calculation unit 1A3 monitors the tension of the upper thread during a period in which the small hole 133a of the balance 133 rises with the rotation of the spindle motor 134, and outputs an upper thread tension monitoring signal. That is, the sewing machine 100 according to the present invention is configured such that the PF axis motor control calculation unit 1A3 monitors the upper thread tension.
  • the X-axis motor control calculation unit 1A4 of the control board 122A receives the X-axis command signal and the X-axis rotation signal and rotates the X-axis motor 113 so that the difference between the X-axis command signal and the X-axis rotation signal becomes zero. Outputs X-axis control current.
  • the Y-axis motor control calculation unit 1A5 of the control panel 122A receives the Y-axis command signal and the Y-axis rotation signal and rotates the Y-axis motor 114 so that the difference between the Y-axis command signal and the Y-axis rotation signal becomes zero. Outputs Y-axis control current.
  • the sewing machine 100 forms a stitch.
  • the user of the sewing machine 100 supplies the upper thread T from the thread winding 159 to the needle hole 131a along the above-described upper thread path.
  • the lower thread Td which is the lower thread when forming the seam, is wound around the bobbin stored in the bobbin case 143 of the hook 132.
  • the air cylinder 112d is activated by the holding command signal output from the command generating unit 1A1.
  • the sewing material is nipped by the holding device 112 shown in FIG. 1 so that it can be conveyed.
  • the foot switch 123 is further depressed and an operation start signal is sent to the control panel 122A, the X-axis motor 113 and Y-axis motor 114 as drive sources of the transport mechanism P1 and the main shaft as drive sources of the sewing mechanism P3.
  • the motor 134 and the middle pressing motor 136 are activated, and the sewing machine 100 starts to form a stitch at a specific position of the material to be sewn that the user of the sewing machine 100 has designated in advance with the operation panel 121.
  • the spindle motor control calculation unit 1Ab of the control panel 122A rotates the spindle motor 134, the sewing needle 131 having the needle thread T passing through the needle hole 131a is directed from the upper side to the lower side of the sliding plate 106 Needle is inserted into the workpiece.
  • the upper thread T is supplied to the lower side of the workpiece by the operation of the sewing needle 131. Thereafter, when the sewing needle 131 ascends from the bottom dead center, the upper thread T forms a loop on the lower side of the sewing material due to the friction with the sewing material.
  • the point of the hook 132 catches the upper thread at the timing at which the loop of the upper thread T is formed, and entangles the upper thread and the lower thread.
  • the timing at which the point of the hook of the hook 132 catches the upper thread is generally from 190 degrees to 210 degrees for the rotation angle of the spindle motor, assuming that the rotation angle of the spindle motor when the sewing needle is at top dead center is 0 degrees. It is set within the range.
  • the pretension 162 and the main tension 163 always apply a constant tension to the upper thread during a period in which the sewing machine 100 forms a stitch.
  • FIG. 7 and FIG. 8 show the sewing needle when the sewing needle descends from the top dead center to the bottom dead center and moves again to the top dead center in the general electronic sewing machine and the sewing machine 100 according to the present embodiment.
  • the positional relationship between the presser and the workpiece and the formed seam are shown.
  • the stitches up to the (N-1) th stitch are already formed, and thereafter the sewing needle descends to perform the sewing operation of the Nth stitch.
  • FIG. 9 is a timing chart depicting driving loci of sewing needles and middle pressers in a general electronic sewing machine and the sewing machine 100 of the present invention.
  • the timing a shown by the broken line in FIG. 9 is the top dead center of the sewing needles 131 'and 131 in the sewing operation of the (N-1) th stitch
  • the timing b is the insertion of the sewing needles 131' and 131
  • the timing c is the sewing needle At the bottom dead center of 131 'and 131
  • timing d is the rotation angle of the spindle motor at the time of withdrawal of the sewing needles 131' and 131 when timing is as follows.
  • timings a ′ to e ′ indicate timings when the sewing machine 100 performs the sewing operation of the N th stitch.
  • 7 and 8 show the operation state when the rotation angle of the spindle motor is at timing a 'in the timing chart of FIG.
  • the black circle ( ⁇ ) mark in the upper part of FIG. 9 explicitly indicates the position of the sewing needle at the timing d when the loop goes around the upper thread loop.
  • the sewing needles 131 'and 131 move up and down in a stroke lh.
  • the middle pressers 135 'and 135 move up and down with the stroke lo.
  • the waveforms in the middle and lower parts of FIG. 9 indicate the drive waveforms of the bottom of the middle presser 135, and the middle presser 135 is a timing e at which the sewing needles 131 'and 131 are withdrawn from the sewing material and inserted again.
  • the bottom surface of the middle presser 135 is driven to stop at a position raised by a distance dlo from the workpiece.
  • the distance dlo is at least longer than the diameter of the upper thread T so that the upper thread T can pass between the middle presser 135 and the workpiece Ob.
  • the inner presser 135 'of a general electronic sewing machine is driven in a sine wave of almost the same phase as the drive trajectory of the sewing needle 131'. For this reason, when the sewing needle 131 'is located at the top dead center, the sewing needle 131' is located at a position further away than the sewn article Ob 'compared to FIG. More specifically, as shown by the open circle (o) in the middle of FIG. 9, the inner presser 135 'of the general electronic sewing machine is sewn at timing d when the hook tip of the hook takes over the upper thread loop. It is driven with a sinusoidal trajectory so as to press an object.
  • the middle presser 135 when the middle presser 135 'uses a main spindle motor as a drive source in a general electronic sewing machine, it is difficult to realize the drive pattern of the middle presser as shown in the lower part of FIG.
  • the middle presser 135 since the middle presser 135 is independently driven by the middle presser motor 136, the distance between the middle presser 135 and the workpiece Ob at the timing a 'at which the sewing needle 131 is located at the top dead center. It can be stopped at a position separated by dlo.
  • the main object of the present invention is to guarantee the sewing quality by detecting the magnitude of the tension based on the behavior of the inner presser motor 136 during the sewing operation without adding a dedicated detector. Therefore, the sewing machine 100 according to the present invention drives the transport mechanism P1 for holding the workpiece Ob so that the upper thread T and the middle presser 135 are in contact with each other. Then, as shown in FIG.
  • the upper presser foot 135 is stopped at a position separated by a distance dlo from the workpiece Ob during a period in which the small hole of the balance is lifted, whereby the upper thread T 'is higher than the upper thread T'.
  • the present invention is characterized in that the influence of the load exerted on the middle presser motor 136 is increased.
  • FIG. 10 shows the drive of the driven object at the (n-1) th and subsequent stitches when the sewing machine 100 repeatedly performs the sewing operation of n stitches or more (n ⁇ 3) on the workpiece Ob on the upper surface of the slide plate 106.
  • the position of the workpiece to be transported in the X-axis direction and the position of the workpiece to be transported by the transport mechanism P1 in the Y-axis direction are shown.
  • the needle hole 131a of the sewing needle 131 having the spindle motor 134 as a drive source draws the same trajectory as that of FIG. Needle insertion, bottom dead center at timing c, needle withdrawal from the workpiece at timing e.
  • the timing d is when the tip of the hook 132 crawls the upper thread loop, and the black circle ( ⁇ ) marks indicate the position of the sewing needle 131 at this time.
  • the stroke of the sewing needle 131 is lh.
  • the second stage from the top of FIG. 10 shows the rotation angle of the bite 132 with the spindle motor 134 as the drive source, and the drive waveform of the bite 132 is a sine wave of amplitude l k.
  • the rotational waveform of the bite 132 is twice as high in frequency as the position waveform of the sewing needle 131.
  • the black circle ( ⁇ ) mark in the figure positively indicates the rotation angle of the bite 132 when the tip of the bite 132 crawls the loop formed on the upper thread.
  • the upper thread T captured by the tip of the hook 132 is released from capture by the hook 132 at timing i when the hook 132 counts from the rotation angle a one and a half rotations.
  • the third row from the top of FIG. 10 shows the position waveform of the small hole 133 a of the balance 133 which uses the spindle motor 134 as a drive source.
  • the small hole 133a of the balance 133 is driven such that one rotation of the spindle motor 134 is one cycle, the top dead center is at the timing h of the spindle motor 134, and the bottom dead center is at the timing i.
  • the timing h is by mechanically adjusting the rotation center at which the balance drive mechanism 140 swings, from when the spindle motor 134 starts rotating until the sewing needle 131 is inserted into the workpiece Ob, ie, the spindle
  • the rotation angle of the motor 134 is designed to exist between a and b.
  • the timing h is an angle at which the spindle motor 134 has rotated 60 degrees from the timing a.
  • the timing i at which the small hole 133a reaches the bottom dead center is the timing at which the rotation angle of the barrel 132 is one and a half from a. This is because, at the rotation angle i of the spindle motor 134, the complementing of the upper thread by the bite 12 starts to be released. If the small hole 133a is pulled up before the complement of the upper thread by the hook 132 is released, the upper thread T can not withstand the tension generated when the balance 133 is raised, or the upper thread is unwound or The problem of thread breakage occurs. Further, in the present embodiment, the timing i is an angle obtained by rotating the spindle motor 134 by 270 degrees from the timing a.
  • the small hole 133a of the balance 133 falls in a period td from the timing h to the timing i during the sewing operation of the (N-1) th stitch, and in a period tu from the timing i to the timing h 'of the Nth needle. To rise. There is a relationship of td> tu between the period td and the period tu.
  • the fourth row from the top of FIG. 10 shows the position of the bottom portion of the middle presser 135 using the middle presser motor 136 as a drive source, as in the lowermost stage of FIG.
  • the middle presser 135 starts lowering from the top dead center by the rotation of the middle presser motor 136, and the upper surface of the sewn article Ob until the timing b when the sewing needle 131 is inserted into the sewn article Ob. Drive to abut on.
  • the middle presser 135 presses the sewn article Ob at the height when the middle presser 135 descends and abuts on the sewn article Ob.
  • the bottom dead center of the middle presser is the height when the bottom portion of the middle presser 135 abuts on the sewn article Ob, and the middle presser 135 moves up and down with stroke lo from the top dead center to the bottom dead center.
  • the middle presser 135 descends and the middle presser 135 presses the sewn article Ob at a height at which the sewn article Ob is compressed.
  • the bottom dead center of the middle presser is the height when the sewn article Ob is compressed. Then, the middle presser 135 starts pressing the material to be sewn Ob before the sewing needle 131 is inserted into the material to be sewn Ob and ascends the distance dlo from the material to be sewn Ob after the needle 131 is withdrawn. .
  • the fifth row from the top of FIG. 10 shows the position waveform of the holding device 122 driven by the X-axis motor 113 in the X-axis direction. Since the holding device 122 holds the workpiece Ob, this position waveform is equal to the position waveform of the workpiece Ob in the X-axis direction.
  • the symbol lx in the figure is the movement distance of the holding device 122 moving in the X-axis direction between one needle.
  • the holding device 122 stands still while the sewing needle 131 is being inserted into the sewing object Ob so that the sewing object Ob is not damaged or the needle breakage occurs, and the sewing needle 131 is moved from the sewing object Ob After the needle removal, it is driven until it is again inserted into the sewing material Ob.
  • the XY stage 111 in order to detect the upper thread tension at the time of lifting the balance from the behavior of the middle pressing motor, the XY stage 111 so that the upper thread T contacts the middle pressing 135 while the small hole 133a of the balance 133 is lifted. Drive. Therefore, the X-axis motor 113 is driven from the timing e at which the sewing needle 131 is pulled out of the workpiece Ob to the timing i at which the small hole 133a starts to rise. Therefore, the X-axis motor 113 rotates for a period tm from the timing e to the timing i at the (N-1) th needle, and stops at a period ts from the timing i to the timing e 'for the Nth needle.
  • the sixth row from the top of FIG. 10 is a position waveform of the holding device 122 driven by the Y-axis motor 114 in the Y-axis direction. Since the holding device 122 holds the workpiece Ob, this position waveform is equal to the position waveform of the workpiece Ob in the Y-axis direction.
  • the symbol ly in the figure is the movement distance of the holding device 122 moving in the Y-axis direction between one needle.
  • the Y-axis motor 114 is driven with the same position waveform as the X-axis motor 113.
  • the movement distance L of the XY stage 111 that is, the pitch of the seam can be obtained by the following equation (1).
  • the middle presser 135 When the bottom of the through hole 135a of the middle presser 135 is a circle of radius r and the sewing needle 131 moves up and down at the center of the through hole 135a, if the movement distance L is larger than the radius r, the middle presser 135 and The XY stage can be driven so that the upper thread T contacts.
  • the PF-axis motor control calculation unit 1A3 of the control panel 122A controls the rotation of the middle presser motor 136 at the time of sewing operation of the PF axis deviation suppression unit 1A3a, the current control unit 1A3b, and the sewing machine 100.
  • a tension monitoring unit 1A3c that monitors the yarn tension.
  • the PF axis deviation suppression unit 1A3a is a PF axis command signal that is a rotation command of the middle pressing motor 136 output from the command generation unit 1A1, and rotation information output from the rotation information detector 150 included in the middle pressing motor 136.
  • PF axis motor that drives middle presser motor 136 so that the difference between the PF axis command signal and the PF axis rotation signal becomes 0 with the PF axis rotation signal and the tension monitoring signal output from tension monitoring unit 1A3 c as input Output a drive signal.
  • the current control unit 1A3b generates a PF-axis control current for rotating the middle presser motor 136 based on the PF-axis motor drive signal, and supplies it to the middle presser motor 136.
  • the tension monitoring unit 1A3c detects the tension generated in the upper thread by the small hole 133a of the balance 133 moving upward based on the PF axis motor drive signal, and the indicator 121a of the operation panel 121 and the PF axis deviation suppressing means Output tension monitor signal to 1A3a.
  • the PF axis deviation suppression unit 1A3a of the PF axis motor control calculation unit 1A3 includes a switch a1, a differentiator a2, and a deviation suppression compensator a3.
  • the switch a1 receives the PF axis command signal output from the command generation unit 1A1 and the tension monitoring signal output from the tension monitoring unit 1A3c as input, and thread breakage or upper thread tension occurs while the sewing machine 100 is performing the sewing operation
  • the change of the value of the PF axis command signal is stopped based on the tension monitoring signal to stop the middle pressing motor in conjunction with the occurrence of the sewing defect.
  • the subtractor a2 calculates a difference between the PF axis command signal output from the switch a1 and the PF axis rotation signal output from the rotation information detector 150, and outputs a deviation signal.
  • the deviation suppression compensator a3 outputs a PF axis motor drive signal for driving the PF axis motor 136 so that the deviation signal converges to zero.
  • the deviation suppression compensator a3 includes at least one of a proportional compensator performing proportional operation, an integral compensator performing integral operation, and a differential compensator performing differential operation to cause the deviation signal to converge to 0. .
  • PI control by a proportional compensator and an integral compensator is described as being adopted in the deviation suppression compensator a3.
  • the tension monitoring unit 1A3c of the PF-axis motor control calculation unit 1A3 includes a filter processing unit c1, a recording unit c2, and a comparator c3.
  • the filter processing unit c1 performs calculation to reduce the frequency component of the PF axis motor drive signal higher than the rotation frequency of the spindle motor 134 to improve the detection accuracy of the upper thread tension, and PF lower than the rotation frequency of the spindle motor 134
  • An evaluation signal is calculated and output by performing one or both of the operations for reducing the frequency component of the axis motor drive signal.
  • a phase filter for operating the phase of the PF axis motor drive signal or a proportional operation for changing the amplitude may be performed.
  • the evaluation signal can be normalized to an arbitrary detection specification by performing a proportional operation of changing the amplitude by multiplying the gain.
  • the recording unit c2 records an evaluation signal output from the filter processing unit c1 while performing a sewing operation one stitch before, and outputs the recorded evaluation signal in synchronization with the current sewing timing. That is, the recording unit c2 may be a delay computer that generates a delay corresponding to a time obtained by multiplying the time required for one hand.
  • the comparator c3 is a tension monitoring signal notifying that the rate of change of the current evaluation signal output from the filter processing unit c1 is larger or smaller than the threshold value with respect to the evaluation signal one stitch before output from the recording unit c2.
  • the upper thread T The load applied to the middle presser motor 136 via the middle presser 135 is uniform.
  • the rate of change of the evaluation signal described above is small (ideally constant).
  • the rate of change of the evaluation signal described above is large, it is possible to detect that the upper thread tension for each needle is dispersed and that the thread tension and the tightening accuracy are not constant.
  • the comparator c3 may calculate feature amounts such as the maximum value, the minimum value, and the average value of the evaluation signal of the previous one-hand input, and compare it with the current evaluation signal. By doing this, it is possible to easily grasp the rate of change of the current evaluation signal with respect to the previous step. For example, the change rate normalizes the maximum value and the minimum value of the evaluation signal recorded in the period from the timing i of the (N-1) th needle to the timing h 'of the Nth needle to 100% and 0%. It can be calculated by evaluating how much the maximum value and the minimum value from the timing i ′ to the timing h ′ ′ of the (N + 1) th needle decrease by the comparator 703.
  • control panel 121 and the control panel 122A may be configured such that the user of the sewing machine 100 can set the threshold from the outside of the control panel 122A by the input device 121d through a preliminary test operation by trial sewing.
  • a configuration may be employed in which the threshold value is recorded in the storage device 121c of the control panel 121 and transmitted to the PF axis motor control calculation unit 1A3 of the control panel 121A through the processor 121b or a communication circuit (not shown). By doing this, it is possible to change the judgment criteria of the quality of the sewing quality in accordance with the request of the user of the sewing machine 100.
  • the tension detection unit 1A3c receives the PF-axis motor drive signal as an input
  • the tension monitoring signal may be calculated and output using the PF-axis control current or the PF-axis rotation signal as an input.
  • Tension detection unit 1A3c forms a disturbance observer that receives a PF axis motor drive signal and a PF axis rotation signal, and is applied to middle presser motor 135 based on a mathematical model of middle presser motor 136 and a middle presser drive mechanism. Upper thread tension may be estimated.
  • the tension applied to the upper thread T by the pretension 162 and the main tension 163 may be controlled based on the tension monitoring signal so that the variation in needle thread tension of the upper thread is reduced.
  • the sewing machine 100 drives the sewn article Ob so that the upper thread T contacts the middle presser 135, and the upper thread is lifted while the small hole 133a of the balance 133 is lifted. Since T detects the load applied to the middle presser motor 136 via the middle presser 135 based on the PF axis motor drive signal, the upper thread tension applied to the upper thread by the rise of the small hole 133a causes the needle thread variation. It can be detected.
  • the sewing machine 100 can form stitches while assuring sewing quality such as thread tension and threading accuracy with which it is possible to determine the quality based on the variation in upper thread tension.
  • the sewing machine 100 forms the seam while guaranteeing the sewing quality for each needle, it is possible to identify the seam in which the sewing failure has occurred.
  • the sewing machine 100 can detect thread breakage when no load is applied from the upper thread T to the middle pressing motor 136.
  • the sewing machine 100 since the sewing machine 100 according to the first embodiment detects the upper thread tension based on the PF axis motor drive signal which is a drive control signal of the inner press motor 135, the sewing operation is performed with a simple configuration with few additional parts. It is possible to monitor the occurrence of thread breakage while doing, and to guarantee sewing quality such as thread tension and tightening accuracy.
  • the sewing machine 100 can easily secure the space around the arm and the ease of assembly compared to the case where a dedicated detector is provided in the upper thread path and upper thread tension is detected.
  • the head design freedom can be expanded.
  • FIG. 14 is a timing chart showing the operation of the sewing machine according to the second embodiment.
  • the sewing machine 100 according to the second embodiment differs from the sewing machine 100 according to the first embodiment in the drive waveforms in the X-axis direction and the Y-axis direction of the holding device 112 driven by the XY stage 111 included in the transport device P1.
  • the other configuration and operation are the same as those of the sewing machine 100 according to the first embodiment. Descriptions of similar parts will be omitted.
  • the XY stage 111 drives the X-axis motor 113 between timing e and timing i. Therefore, the number of rotations of the spindle motor 134 is high, and the sewing time of one needle is short. In the case where the moving distance L is long, it is necessary to drive the holding device 112 at high speed and high accuracy. As described above, in order to increase the speed and accuracy of the XY stage, it is necessary to increase the rigidity of the mechanism and the output of the driving source, which results in high cost. Therefore, in the present embodiment, the driving method of the holding device 112 is changed as follows.
  • the holding device 122 having the X-axis motor 113 as a drive source starts moving from timing e in the sewing operation of the (N ⁇ 1) th stitch and moves by the timing b ′ of the N th stitch. Complete and stop. Therefore, the X-axis motor 113 stops at the period ts from the timing b to the timing e at the (N-1) th needle and rotates at the period tm from the timing e to the timing b 'of the Nth needle.
  • the timing at which the holding device 122 stops may be within the period from the timing e to the timing b.
  • the lower part of FIG. 14 is a position waveform of the holding device 122 driven by the Y-axis motor 114 in the Y-axis direction.
  • the Y-axis motor 114 rotates in a period tm in which the X-axis motor 113 rotates.
  • the sewing machine 100 according to the second embodiment can lengthen the drive time of the X-axis motor 113 and the Y-axis motor 114, so that the rotation speed of the spindle motor 134 is high and the sewing time of one needle is short. Even when the moving distance L is long, the load applied by the upper thread to the middle presser motor 136 via the middle presser 135 can be detected. Therefore, even in such a case, the sewing machine 100 according to the second embodiment can detect variations in needle thread tension applied to the upper thread by raising the small holes 133a. Stitches can be formed while guaranteeing sewing quality such as thread tension and tightness with which it is possible to judge the quality based on the variation in upper thread tension.
  • FIG. 15 is an image diagram showing a task of tension detection operation of the sewing machine according to the third embodiment.
  • FIG. 16 is a timing chart showing the operation of the sewing machine according to the third embodiment.
  • the sewing machine 100 according to the third embodiment differs from the sewing machine 100 according to the first or second embodiment in the drive waveforms in the X axis direction and the Y axis direction of the holding device 112 driven by the XY stage 111 included in the conveyance device P1.
  • the configuration and operation of the second embodiment are the same as the sewing machine 100 according to the first or second embodiment. Descriptions of similar parts will be omitted.
  • FIGS. 15A and 15B show the state of timing a ′ at which the sewing needle 131 becomes the top dead center when the sewing machine 100 is driven based on the timing chart (FIG. 10) of the first embodiment described above. It shows.
  • FIG. 15A since the radius r of the through hole 135a is smaller than the movement distance L of the XY stage, if the XY stage is driven with the waveform pattern in the X axis direction and Y axis direction shown in the timing chart of FIG. At timing a ', the upper thread T contacts the middle presser 135 without any problem. Therefore, in FIG. 15A, while the small hole 133a of the balance 133 is lifted, the load applied to the middle presser motor 136 by the upper thread T via the middle presser 135 can be detected based on the PF axis motor drive signal. it can.
  • the drive pattern of the XY stage is changed as follows.
  • the holding device 122 having the X-axis motor 113 as the drive source forms the seam of the Nth stitch, and moves in the X axis direction from timing e in the conveyance operation of the (N-1) th stitch. Start and finish moving by time i and stop.
  • the movement distance lxx at this time is made larger than the radius r of the through hole 135a so that the angle ⁇ obtained by Equation 3 becomes 30 degrees or less.
  • the holding device 122 stops the sewn article Ob so that the upper thread T contacts the bottom surface portion of the middle presser 135 by stopping in a period tss from the timing i to h 'when the small hole 133a of the balance 133 rises. Hold. Then, in a period from the timing h 'when the small hole 133a has finished rising to the timing b' when the sewing needle 131 is inserted into the workpiece Ob, the needle is moved to a predetermined position for forming the Nth stitch. Then, the holding device 122 stops in a period ts from the timing b 'at which the sewing needle 131 is inserted into the workpiece Ob to the timing e' at which the needle 131 is withdrawn. After timing e ′, the same operation is repeatedly performed to form the (N + 1) seam.
  • the thick line in the lower part of FIG. 16 shows the drive waveform in the Y-axis direction of the holding device 122 having the Y-axis motor 114 as a drive source.
  • the Y-axis motor 114 shows the same drive waveform as the X-axis motor.
  • the distance for moving from the timing h 'to the timing b' is the X-axis direction (lxx It becomes (lyy-ly) in the Y-axis direction, and the movement distance L 2 of the XY stage can be obtained by Expression 4.
  • the movement distance lxx in the X-axis direction is sufficiently larger than the radius r of the through hole 135a, it is not necessary to change the drive waveform of the Y-axis motor, and the movement distance lyy may be ly. That is, it is sufficient to determine lxx and lyy so that the distance L2 obtained by Equation 5 is sufficiently larger than the radius r.
  • the sewing machine 100 according to the third embodiment is a small hole even when the radius r of the through hole 135a of the middle presser 135 is larger than the stitch pitch due to the thickness of the sewing needle 131 and the upper thread T.
  • the holding device 122 is driven so that the upper thread T comes into contact with the bottom surface of the middle presser 135 during the period when 133 a moves up. Therefore, even in such a case, the sewing machine 100 according to the third embodiment can detect variations in needle thread tension applied to the upper thread by raising the small holes 133a. Stitches can be formed while guaranteeing sewing quality such as thread tension and tightness with which it is possible to judge the quality based on the variation in upper thread tension.
  • the through hole 135a of the middle presser 135 has a circular bottom portion with a radius r, but when using the middle presser whose shape of the bottom of the through hole 135a is not circular. Even if it is, quality assurance based on the upper thread tension detection means according to the present invention can be implemented.
  • FIG. 17 is a block diagram showing details of a PF axis motor control calculation unit of the sewing machine according to the fourth embodiment.
  • FIG. 18 is a block diagram showing details of the PF axis deviation suppression unit of the sewing machine according to the fourth embodiment.
  • the sewing machine 100 according to the fourth embodiment differs from the sewing machine 100 according to the first to third embodiments in the data to be stored in the storage device 121c of the operation panel 121 and the PF axis deviation suppression unit 1B3a of the control panel 122B.
  • the other configuration and operation are the same as those of the sewing machine 100 according to the first to third embodiments. Descriptions of similar parts will be omitted.
  • the storage device 121c of the control panel 121 stores the parameter D2 input by the user of the sewing machine 100 using the input device 121d, and outputs the parameter D2 to the control panel 122B.
  • the parameter D2 is transmitted to the control panel 122B via a communication circuit (not shown) based on an instruction of the processor 121b included in the control panel 121.
  • the PF axis deviation suppressor 1B3a of the control board 122B receives the parameter D2 and changes control parameters inside the PF axis deviation suppressor 1B3a.
  • the PF axis deviation suppression unit 1B3a receives a PF axis command signal, a PF axis rotation signal, a tension monitoring signal, and a parameter D2 and outputs a PF axis motor drive signal.
  • the deviation suppression compensator a3 of the PF axis deviation suppression unit 1B3a controls the rotation of the middle pressing motor 136 so that the difference between the PF axis command signal and the PF axis rotation signal becomes zero.
  • the transfer function of the deviation suppression compensator is It can be expressed.
  • the symbol kp is a proportional control gain
  • the symbol Ti is an integration time constant
  • the symbol s is a Laplace operator.
  • the values of kp and Ti which are control parameters inside the PF axis deviation suppression unit 1B3a are changed based on the parameter D2 input from the outside.
  • the parameter D2 manipulates the amplitude of the deviation signal Se by changing the proportional control gain kp, and manipulates the amplitude and phase of the deviation signal Se by changing the integration time constant Ti.
  • the middle presser 135 ascends from the workpiece Ob during a period in which the small hole 113a rises with the operation of the balance 133 after the hook 132 releases the capture of the upper thread T.
  • the proportional control gain kp is made smaller or the integral time constant Ti is changed longer based on the parameter D2.
  • the sewing machine 100 Since the sewing machine 100 according to the fourth embodiment reduces the proportional control gain kp or changes the integral time constant Ti long based on the parameter D2, the external force of the middle presser motor 136 is in a period when the upper thread T contacts the middle presser 135. The response to can be slowed. By doing this, it is possible to reduce the frictional force generated between the upper thread T and the middle presser 135 when the upper yarn T is pulled up with the middle presser 135 as a fulcrum. Therefore, when detecting the upper thread tension, PF axis deviation suppression portion 1B3a of sewing machine 100 according to the present embodiment prevents upper thread T from being cut or broken due to the frictional force with middle presser 135. The middle presser motor 136 can be driven.
  • FIG. 19 is a diagram showing a first hardware configuration example of a control board of a sewing machine according to the first to fourth embodiments.
  • FIG. 20 is a diagram showing a second hardware configuration example of the control board of the sewing machine according to the first to fourth embodiments.
  • FIG. 19 shows an example in which the above processing circuit is realized by dedicated hardware such as the dedicated processing circuit 190.
  • FIG. 20 shows an example in which the above processing circuit is realized by the processor 191 and the storage device 192.
  • the dedicated processing circuit 190 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit (ASIC), an FPGA (field) A programmable gate array) or a combination thereof is applicable.
  • ASIC application specific integrated circuit
  • FPGA field
  • a programmable gate array programmable gate array
  • Each of the above-described functions may be realized by a processing circuit, or may be realized collectively by a processing circuit.
  • the processor 191 and the storage device 192 are used as shown in FIG. 20, each of the functions described above is realized by software, firmware or a combination thereof.
  • the software or firmware is described as a program and stored in the storage device 192.
  • the processor 191 reads out and executes the program stored in the storage device 192.
  • the storage device 192 is a semiconductor memory such as a random access memory (RAM), a read only memory (ROM), a flash memory, an EPROM (registered trademark) (Erasable Programmable Read Only Memory), or an Electrically Erasable Programmable Read Only Memory (EEPROM). Do.
  • the semiconductor memory may be a non-volatile memory or a volatile memory.
  • the storage device 192 corresponds to a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the load applied to the middle presser 135 from the upper thread is detected based on the PF-axis motor drive signal, but the present invention is not limited to this and the load applied to the middle presser 135
  • a detection element for detecting a load may be provided in the middle pressing drive mechanism 151.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Sewing Machines And Sewing (AREA)

Abstract

A sewing machine (100) is provided with: a shuttle (132) which captures a needle thread inserted in a needle hole of a sewing needle (131) so as to entangle the needle thread with a bobbin thread; a thread take-up lever (133) having a small hole in which the needle thread is inserted; a conveyance means (P1) which conveys an object to be sewn; a center presser (135) which prevents raising of the object to be sewn; a drive source (136) which drives the center presser (135); and a tension monitoring unit which monitors the tension of the needle thread on the basis of a load that is applied from the needle thread to the center presser (135) when the needle thread comes into contact with the center presser (135) during conveyance of the object to be sewn by the conveyance means (P1).

Description

ミシンsewing machine
本発明は、縫製時に被縫製物を押圧する中押さえを備えるミシンに関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a sewing machine provided with an inner presser that presses a workpiece at the time of sewing.
従来、ミシンの上糸は、アーム部やスタンドに設置した糸巻き等の供給源を始点として、上糸の消費部である縫い針を終点とする糸経路にそって供給される。 Conventionally, an upper thread of a sewing machine is supplied along a thread path starting from a supply source such as thread winding installed on an arm portion or a stand and ending at a sewing needle serving as a consuming portion of the upper thread.
特許文献1では、上述した糸経路に圧電素子を設けることにより、縫製動作時に上糸の張力を検出する上糸張力検出器が示されている。また、特許文献1では、上糸と接触可能な位置に圧電素子を配置し、上糸が該圧電素子と接触することにより糸切れを検出するミシンについて記載されている。特許文献2では、上述した糸経路に歪みゲージを設けて、その出力に基づきミシン主軸の回転位相に対する上糸の張力波形を演算し、該張力波形の形状に応じて上糸の張力を調節する自動糸調子ミシンが公開されている。 Patent Document 1 discloses an upper thread tension detector that detects the tension of an upper thread during sewing operation by providing a piezoelectric element in the above-described thread path. Moreover, in patent document 1, the piezoelectric element is arrange | positioned in the position which can contact upper thread, and it describes about the sewing machine which detects thread breakage by upper thread contacting with this piezoelectric element. In Patent Document 2, a strain gauge is provided in the above-described yarn path, the tension waveform of the upper thread with respect to the rotational phase of the sewing machine main axis is calculated based on the output, and the tension of the upper thread is adjusted according to the shape of the tension waveform. Automatic thread tension sewing machines have been released.
特許文献3と4では、上糸張力調整装置や上糸調子手段を用いて、上糸の張力を検出するだけなく、縫製パターンに合わせて上糸の張力を制御するミシンが示されている。具体的に、特許文献3では、電磁アクチュエータ等で付与する押圧力やトルクにより、固定板と糸押え板とで挟持する上糸の抵抗力を縫製動作時に可変にする上糸張力調整装置が示されている。特許文献4では、風合いの良い刺繍製品を作成することを目的に、縫い目の幅と方向が常時変化する場合であっても、糸の張力を最適に調整する糸調子手段を備えたミシンが公開されている。また、特許文献3と4では、圧電素子又は検出用コイルにより糸張力を検出する上糸張力検出器(特許文献4では張力検出手段)の出力に基づき糸張力を調整するフィードバック制御の構成が記載されている。 Patent Documents 3 and 4 show sewing machines that not only detect the tension of the upper thread but also control the tension of the upper thread in accordance with the sewing pattern using an upper thread tension adjusting device and an upper thread tensioning means. Specifically, Patent Document 3 shows an upper thread tension adjusting device that makes the resistance of the upper thread nipped between the fixing plate and the thread pressure end plate variable at the time of sewing operation by pressing force or torque applied by an electromagnetic actuator or the like. It is done. Patent Document 4 discloses a sewing machine having a thread tensioning means for optimally adjusting the tension of the thread, even when the width and direction of the seam constantly change, for the purpose of creating an embroidery product having a good texture. It is done. Further, Patent Documents 3 and 4 describe a configuration of feedback control that adjusts the thread tension based on the output of an upper thread tension detector (a tension detection means in Patent Document 4) that detects thread tension by a piezoelectric element or a detection coil. It is done.
そして、特許文献5では、針棒、天秤、布押え等の機械要素をそれぞれ個別に駆動するための個別のモータを具備し、天秤を駆動するモータの回転角度に応じて予め定められたトルクデータとモータに供給する電流値に基づき、上糸の張力を制御するミシンが公開されている。 And in patent document 5, it equips with the separate motor for driving each mechanical elements, such as a needle bar, a balance, and a cloth presser, respectively, The torque data predetermined according to the rotation angle of the motor which drives a balance A sewing machine is disclosed that controls the tension of the upper thread based on the current value supplied to the motor and the motor.
ところで、上述した糸経路の終点の近傍には、縫い針の上昇時に被縫製物の浮き上がりを防止するため、一般に布押さえや中押さえと呼ばれる被縫製物の押圧装置が取り付けられる。特許文献6では、該押圧装置を駆動するモータの駆動力を制御することにより、被縫製物の押圧精度を改善するミシンが公開されている。特許文献7では、中押さえを駆動するモータの回転角度や駆動トルクの検出値に基づき被縫製物の厚さや硬さを検出するミシンが開示されている。 By the way, in the vicinity of the end point of the above-described yarn path, a pressing device for a material to be sewn, which is generally called cloth pressing or middle pressing, is attached in order to prevent floating of the material to be sewn. Patent Document 6 discloses a sewing machine that improves the pressing accuracy of a workpiece by controlling the driving force of a motor that drives the pressing device. Patent Document 7 discloses a sewing machine that detects the thickness and hardness of a material to be sewn based on the rotational angle of a motor that drives a middle press and the detection value of a driving torque.
このように特許文献1から5では、上糸張力に起因した糸切れや糸調子等の縫製品質の向上を目的として、縫製動作時に上糸張力を検出又は制御する装置を備えるミシンが公開されている。また、特許文献6と7では、押圧装置による被縫製物の押圧精度に起因した縫い締り精度等の縫製品質の向上を目的として、当該押圧装置の動作パターンを変更するミシンが公開されている。 As described above, Patent Documents 1 to 5 disclose a sewing machine provided with a device for detecting or controlling upper thread tension during sewing operation for the purpose of improving sewing quality such as thread breakage or thread tension due to upper thread tension. There is. Further, Patent Documents 6 and 7 disclose sewing machines that change the operation pattern of the pressing device for the purpose of improving sewing quality such as tightening accuracy due to pressing accuracy of the sewing object by the pressing device.
特開平6-343784号公報Unexamined-Japanese-Patent No. 6-343784 gazette 特開平7-662号公報JP-A-7-662 特開平11-47479号公報JP-A-11-47479 特開平7-661号公報JP-A-7-661 特開2010-178785号公報JP, 2010-178785, A 特開平11-19358号公報Unexamined-Japanese-Patent No. 11-19358 gazette 特開2010-131175号公報JP, 2010-131175, A
しかしながら、特許文献1から4に開示されるミシンで上糸の張力を検出する場合は、何れの場合も、圧電素子や歪みゲージ等で構成する糸張力検出装置やその設置治具、及び配線を設ける必要があるのでミシンの製造コストが増加する。また、経年変化にともなう検出器の感度や帯域の変化を較正する必要があるのでミシンの保守コストが増加する。また、糸経路に検出器を設ける場合は、糸経路の長大化や設置スペースの確保と言った構造設計上の制約をもたらし、ミシン頭部のレイアウトが制限される問題がある。また、特許文献5のミシンは、天秤を個別に駆動するモータを備える必要がある。要するに、特許文献1から5で開示される従来のミシンは、上糸張力の検出にあたって縫製機構へ追加する部品が多く、コスト及び設計制約の増大が問題となる。 However, in the case of detecting the tension of the upper thread with the sewing machine disclosed in Patent Documents 1 to 4, in any case, a yarn tension detection device configured with a piezoelectric element, a strain gauge, etc. The need for installation increases the manufacturing cost of the sewing machine. In addition, the maintenance cost of the sewing machine increases because it is necessary to calibrate changes in the sensitivity and the bandwidth of the detector due to aging. Further, when a detector is provided in the yarn path, there is a restriction on the structural design such as an increase in the length of the yarn path and securing of an installation space, and there is a problem that the layout of the sewing machine head is limited. Moreover, the sewing machine of patent document 5 needs to be equipped with the motor which drives a balance separately. In short, the conventional sewing machines disclosed in Patent Documents 1 to 5 have many parts to be added to the sewing mechanism when detecting the upper thread tension, and the increase in cost and design constraints becomes a problem.
一方、特許文献6と7に開示されるミシンは、押圧装置の動作パターンを変更することによって被縫製物の押圧精度を改善するため、上述した縫い締り精度等の縫製品質を向上させることができる。しかしながら、上糸の挙動、すなわち上糸の供給量や張力等を監視している訳では無いので、例えば糸切れが発生すれば縫い目が形成されずに縫製不良が発生する。また、外的要因により糸調子や風合いが乱れても縫製動作を継続する。特許文献6と7のミシンにおいて、糸調子や風合いと言った縫製品質を確認する際は、検査機器を使用する等して、一連の縫製動作が完了した後に仕上がり具合を確認する必要がある。要するに、特許文献6や7に開示される従来のミシンは、糸調子や縫い締り精度と言った縫製品質が改善されるように押圧装置を駆動するが、形成される縫い目の品質を保証することができないと言う問題があった。 On the other hand, the sewing machines disclosed in Patent Documents 6 and 7 can improve the sewing quality such as the above-mentioned tightening accuracy because the pressing accuracy of the sewing material is improved by changing the operation pattern of the pressing device. . However, since the behavior of the upper thread, that is, the supply amount of upper thread, tension, and the like is not monitored, for example, if thread breakage occurs, a stitch is not formed and a sewing failure occurs. In addition, the sewing operation is continued even if the thread tension or texture is disturbed due to an external factor. In the sewing machines of Patent Documents 6 and 7, when checking sewing quality such as thread tension and texture, it is necessary to check the finishing condition after a series of sewing operations are completed by using an inspection device or the like. In short, the conventional sewing machines disclosed in Patent Documents 6 and 7 drive the pressing device so that the sewing quality such as thread tension and tightening accuracy is improved, but guaranteeing the quality of the formed seam There was a problem that I could not
本発明は、上記に鑑みてなされたものであって、追加部品の少ない簡素な構成で縫製動作を行いながら糸切れの発生を監視し、さらに糸調子や縫い締り精度といった縫製品質を保証することができるミシンを提供することを目的とする。 The present invention has been made in view of the above, and monitors occurrence of thread breakage while performing sewing operation with a simple configuration with few additional parts, and further guarantees sewing quality such as thread tension and tightening accuracy. Aims to provide a sewing machine that can
本発明に係るミシンは、上糸を挿通する針孔を有する縫い針と、上糸を捕捉することで上糸と下糸とを絡ませるかまと、上糸を挿通する小孔を有し、小孔が下死点から上死点まで上昇することにより上糸を縫製対象である被縫製物から引き上げる天秤と、被縫製物の浮き上がりを防止する中押さえと、中押さえを駆動する駆動源と、被縫製物を搬送する搬送手段と、搬送手段が被縫製物を搬送する際に上糸が中押さえに接触することにより、上糸より中押さえへ付与される負荷に基づき上糸張力を監視する張力監視部と、を備えるものである。 The sewing machine according to the present invention has a sewing needle having a needle hole for inserting the upper thread, a hook for catching the upper thread, and a small hole for inserting the upper thread. A balance that pulls up the upper thread from the sewing object to be sewn by raising the small hole from the bottom dead center to the top dead center, a middle presser that prevents the sewn product from floating, and a drive source that drives the middle presser The upper thread tension is monitored based on the load applied from the upper thread to the middle presser by the transport means for transporting the sewn material and the upper thread contacting the middle presser when the transport means transports the sewn material And a tension monitoring unit.
本発明によれば、中押さえを介して上糸にかかる張力を検出することができ、縫製動作を実施するとともに縫製品質に関わる糸切れや縫い締り精度を追加部品の少ない簡素な構成で検知することができる。 According to the present invention, it is possible to detect the tension applied to the upper thread through the middle press, to perform the sewing operation and to detect thread breakage and tightening accuracy related to sewing quality with a simple configuration with few additional parts. be able to.
実施の形態1に係るミシンの全体構成を示す斜視図The perspective view which shows the whole structure of the sewing machine which concerns on Embodiment 1 実施の形態1に係るミシンの搬送機構の詳細を示す斜視図The perspective view which shows the detail of the conveyance mechanism of the sewing machine concerning Embodiment 1 実施の形態1に係るミシンの縫製機構を示す斜視図A perspective view showing a sewing mechanism of a sewing machine according to a first embodiment 実施の形態1に係るミシンの中押さえ駆動機構の詳細を示す斜視図FIG. 17 is a perspective view showing details of an inner pressing drive mechanism of the sewing machine according to the first embodiment. 実施の形態1に係るミシンの上糸経路を示す斜視図A perspective view showing an upper thread path of a sewing machine according to a first embodiment 実施の形態1に係るミシンの制御構成を示すブロック図Block diagram showing the control configuration of the sewing machine according to the first embodiment 一般的な電子ミシンの動作を示すイメージ図Image showing the operation of a typical electronic sewing machine 実施の形態1に係るミシンの張力検出動作を示すイメージ図Image showing tension detection operation of the sewing machine according to the first embodiment 一般的な電子ミシンと実施の形態1に係るミシンの縫い針と中押さえの動作パターンを示すタイミングチャートA timing chart showing operation patterns of a sewing needle according to the general electronic sewing machine and the sewing machine according to the first embodiment 実施の形態1に係るミシンの動作を示すタイミングチャートTiming chart showing the operation of the sewing machine according to the first embodiment 実施の形態1に係るミシンのPF軸モータ制御演算部の詳細を示すブロック図Block diagram showing details of PF axis motor control calculation unit of sewing machine according to the first embodiment 実施の形態1に係るミシンのPF軸偏差抑制部の詳細を示すブロック図Block diagram showing details of the PF axis deviation suppression unit of the sewing machine according to the first embodiment 実施の形態1に係るミシンの張力監視部の詳細を示すブロック図Block diagram showing the details of the tension monitoring unit of the sewing machine according to the first embodiment 実施の形態2に係るミシンの動作を示すタイミングチャートTiming chart showing the operation of the sewing machine according to the second embodiment 実施の形態3に係るミシンの張力検出動作の課題を示すイメージ図Image showing the problem of tension detection operation of the sewing machine according to the third embodiment 実施の形態3に係るミシンの動作を示すタイミングチャートTiming chart showing the operation of the sewing machine according to the third embodiment 実施の形態4に係るミシンのPF軸モータ制御演算部の詳細を示すブロック図Block diagram showing details of PF axis motor control calculation unit of sewing machine according to Embodiment 4 実施の形態4に係るミシンのPF軸偏差抑制部の詳細を示すブロック図Block diagram showing details of the PF axis deviation suppression unit of the sewing machine according to the fourth embodiment 実施の形態1から4に係るミシンの制御盤の第1のハードウェア構成例を示す図A diagram showing a first hardware configuration example of a control board of a sewing machine according to Embodiments 1 to 4. 実施の形態1から4に係るミシンの制御盤の第2のハードウェア構成例を示す図A diagram showing a second hardware configuration example of a control board of a sewing machine according to Embodiments 1 to 4.
以下に、本発明の実施の形態に係るミシンを図面に基づいて詳細に説明する。なお、この実施の形態により、本発明が限定されるものではない。 Hereinafter, a sewing machine according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.
実施の形態1.
実施の形態1では、布や革などの縫製素材である被縫製物を、XYテーブル等の搬送装置で移動させながら縫製動作を行う工業用の電子ミシンの構成例を説明する。ただし、布押さえや中押さえ等の押圧装置を備え、かつ上糸が該押圧装置に接触するように被縫製物を搬送することが可能なミシンであれば、例えば一般ミシン、職業用ミシン、家庭用ミシン、刺繍機等であっても、本実施の形態の構成例を適用することができる。
Embodiment 1
In the first embodiment, a configuration example of an industrial electronic sewing machine that performs a sewing operation while moving a workpiece to be sewed such as cloth or leather with a transport device such as an XY table will be described. However, as long as it is a sewing machine provided with pressing devices such as cloth pressing and middle pressing and capable of conveying the material to be sewn so that the upper thread comes in contact with the pressing devices, for example, general sewing machines, vocational sewing machines, home The configuration example of the present embodiment can be applied even to a sewing machine, an embroidery machine or the like.
まず、図1から図5に基づき本実施の形態に係るミシン100の構成例を説明する。ただし、図1から図5では、右手系のXYZ座標において、縫い針が上下動する方向をZ軸方向とし、Z軸方向と直交する方向をX軸方向とし、Z軸方向とX軸方向の両者に直交する方向をY軸方向とする。X軸方向は、後述するベッドの長手方向に等しい。 First, a configuration example of a sewing machine 100 according to the present embodiment will be described based on FIGS. 1 to 5. However, in FIGS. 1 to 5, in the right-handed XYZ coordinates, the direction in which the sewing needle moves up and down is the Z axis direction, the direction orthogonal to the Z axis direction is the X axis direction, and the Z axis direction and the X axis direction The direction orthogonal to both is taken as the Y-axis direction. The X-axis direction is equal to the longitudinal direction of the bed described later.
 図1に示すミシン100の主要部は、筐体機構P0と、図2に詳細を示す搬送機構P1と、制御装置P2と、図3に示す縫製機構P3とで構成される。 The main part of the sewing machine 100 shown in FIG. 1 includes a housing mechanism P0, a transport mechanism P1 whose details are shown in FIG. 2, a control device P2, and a sewing mechanism P3 shown in FIG.
図1に示すように、ミシン100の筐体機構P0は、図3の縫製機構P3に含まれる上軸を格納するアーム101と、該上軸に連結した主軸モータを格納する主軸モータケース102と、アーム101の先端で縫製機構P3が縫製作業を行うミシン頭部103と、搬送機構P1に含まれるXYステージを格納するベッド104と、アーム101及びベッド104を設置床から支持する支持脚105と、ベッド104の上面に固定されて搬送機構P1に含まれる保持装置112を平面上で摺動自在に支持する滑り板106と、を備える。 As shown in FIG. 1, the casing mechanism P0 of the sewing machine 100 includes an arm 101 for storing the upper shaft included in the sewing mechanism P3 of FIG. 3 and a spindle motor case 102 for housing the spindle motor connected to the upper shaft. A sewing machine head 103 in which a sewing mechanism P3 performs a sewing operation at a tip end of an arm 101, a bed 104 for storing an XY stage included in a transport mechanism P1, and support legs 105 for supporting the arm 101 and the bed 104 from an installation floor And a sliding plate 106 fixed to the upper surface of the bed 104 and slidably supporting the holding device 112 included in the transport mechanism P1 on a plane.
筐体機構P0は、ミシン100が動作する時の衝撃による機械的な破壊に耐え得るように設計した高剛性の鋼板や鋳物等の素形材、又は該衝撃を分散させて吸収する柔軟材で構成する。 The housing mechanism P0 is a high rigidity steel plate designed to withstand mechanical breakage due to an impact when the sewing machine 100 operates, or a flexible material that disperses and absorbs the impact such as steel sheet or casting. Configure.
なお、図1では主軸モータの配置を陽に示すため、主軸モータケース102をアーム101の一端に連結させる形で構成しているが、アーム101の内側に図3の主軸モータ201を設置しても良い。また、図3の主軸モータ201は、アーム101の内側でなくとも、ミシン頭部103と一体化させる形で設置しても良い。 Although the spindle motor case 102 is connected to one end of the arm 101 in FIG. 1 in order to clearly show the disposition of the spindle motor, the spindle motor 201 of FIG. Also good. The spindle motor 201 shown in FIG. 3 may be installed integrally with the sewing machine head 103, not inside the arm 101.
図1に示すように、ミシン100の搬送機構P1は、XYステージ111と、保持装置112を備える。XYステージ111は、図2のX軸モータ113及びY軸モータ114によりそれぞれX軸方向及びY軸方向へ駆動され、XYステージ111の可動部に連結した保持装置112を滑り板106の水平面上で搬送する。 As shown in FIG. 1, the transport mechanism P <b> 1 of the sewing machine 100 includes an XY stage 111 and a holding device 112. The XY stage 111 is driven in the X-axis direction and the Y-axis direction by the X-axis motor 113 and the Y-axis motor 114 in FIG. 2, and the holding device 112 connected to the movable portion of the XY stage 111 is on the horizontal surface of the slide plate 106 Transport
本実施の形態において、X軸モータ113とY軸モータ114は、ベッド104の側面に装着するサーボモータであり、それぞれX軸駆動機構115とY軸駆動機構116を駆動する。XYステージ111は、図2に詳細を示すように、X軸モータ113及びY軸モータ114をそれぞれX軸方向及びY軸方向の駆動源とし、XYステージ111の可動部に連結した保持装置112を滑り板106上の水平面内で搬送する。X軸駆動機構115は、保持装置112が連結された移動レース115aを可動部とし、Y軸駆動機構116は、保持装置112が連結されたY軸ガイド116aを可動部とする。 In the present embodiment, the X-axis motor 113 and the Y-axis motor 114 are servomotors mounted on the side of the bed 104, and drive the X-axis drive mechanism 115 and the Y-axis drive mechanism 116, respectively. As shown in detail in FIG. 2, the XY stage 111 uses the X-axis motor 113 and the Y-axis motor 114 as drive sources in the X-axis direction and the Y-axis direction, respectively, and holds the holding device 112 coupled to the movable portion of the XY stage 111. The sheet is transported in the horizontal plane on the slide plate 106. The X-axis drive mechanism 115 uses a movable race 115a to which the holding device 112 is connected as a movable portion, and the Y-axis drive mechanism 116 uses a Y-axis guide 116a to which the holding device 112 is connected as a movable portion.
X軸モータ113とY軸モータ114には、固定子に対する回転子の角度や角速度等の回転情報を検出する回転情報検出器117と118がそれぞれ取り付けられる。本実施の形態では、回転情報検出器117と118が固定子に対する回転子の角度を検出する光学式エンコーダであるものとして記載する。回転子の角速度及び角加速度は、検出した角度信号を微分演算して求められる。 The X-axis motor 113 and the Y-axis motor 114 are attached with rotation information detectors 117 and 118, respectively, which detect rotation information such as the angle and angular velocity of the rotor with respect to the stator. In the present embodiment, the rotation information detectors 117 and 118 are described as being optical encoders that detect the angle of the rotor with respect to the stator. The angular velocity and angular acceleration of the rotor can be obtained by differentiating the detected angle signal.
XYステージ111に連結される保持装置112は、押さえ台112a、送り板112b、外押さえ112c、エアシリンダ112dを含む。押さえ台112aは、移動レース115aとY軸ガイド116aとXYステージ111側で連結され、他端の滑り板106側は送り板112b及び外押さえ112cと連結される。送り板112bは、滑り板106の上面に配置され、XYステージ111の駆動にともない滑り板106上を摺動自在に移動する。ミシン100により縫い目を形成する対象物である被縫製物は、送り板112bと外押さえ112cとの間に配置され、外押さえ112cが送り板112bに対して鉛直下向きに押圧することで保持装置112により保持される。 The holding device 112 connected to the XY stage 111 includes a pressing stand 112 a, a feed plate 112 b, an outer pressing 112 c, and an air cylinder 112 d. The presser stand 112a is connected to the moving race 115a, the Y-axis guide 116a, and the XY stage 111, and the slide plate 106 on the other end is connected to the feed plate 112b and the outer presser 112c. The feed plate 112 b is disposed on the upper surface of the slide plate 106, and slidably moves on the slide plate 106 as the XY stage 111 is driven. An object to be sewn, which is an object forming a seam by the sewing machine 100, is disposed between the feed plate 112b and the outer presser 112c, and the outer presser 112c presses the feed plate 112b vertically downward to hold the holding device 112. Is held by
保持装置112は、エアシリンダ112dを駆動源として、被縫製物の保持と不保持の切り替えを行う。保持装置112は、被縫製物に対する縫い針の挿針位置が、ミシン100の使用者が指定する特定の位置になるように、被縫製物を保持し搬送する搬送作業を行う。 The holding device 112 switches between holding and non-holding of the workpiece using the air cylinder 112 d as a drive source. The holding device 112 performs a conveying operation for holding and conveying the material to be sewn such that the insertion position of the sewing needle with respect to the material to be sewn is a specific position designated by the user of the sewing machine 100.
本実施の形態では、保持装置112の保持力を確保するため、エアシリンダ112dを用いて空気圧を調整するが、これに限定されずに電磁式プレスや油圧式プレスを用いて被縫製物を保持しても良い。また、搬送機構P1の構成は図2に限定されず、例えば送り歯により被縫製物を縫い針に対して搬送する他種のミシン、又はロボットにより被縫製物を搬送するミシンであっても本実施の形態に示す上糸張力の検出手法を適用することができる。また、図2では、X軸駆動機構115及びY軸駆動機構116をベルトプーリ機構で構成するが、これに限定されることは無く、ボールねじ機構やボールスプライン機構を使用しても良い。また、XYステージ111の駆動源は、回転電機に限定されず、複数のリニアモータ、平面モータ、球面モータ等を使用しても良い。 In the present embodiment, the air cylinder 112d is used to adjust the air pressure in order to secure the holding force of the holding device 112, but the invention is not limited to this, and the sewing material is held using an electromagnetic press or a hydraulic press. You may. Further, the configuration of the transport mechanism P1 is not limited to that shown in FIG. 2. For example, other types of sewing machines that transport the sewing material to the sewing needle by the feed teeth or a sewing machine that transports the sewing material by the robot The upper thread tension detection method described in the embodiment can be applied. Further, although in FIG. 2 the X-axis drive mechanism 115 and the Y-axis drive mechanism 116 are configured by a belt pulley mechanism, the invention is not limited to this, and a ball screw mechanism or a ball spline mechanism may be used. Further, the drive source of the XY stage 111 is not limited to the rotating electrical machine, and a plurality of linear motors, planar motors, spherical motors, etc. may be used.
ミシン100の制御装置P2は、操作盤121、制御盤122及びフットスイッチ123を備える。ミシン100の使用者は、操作盤121で作成する縫製パターンデータ等の縫製データに基づき、ミシン100を駆動する縫製指令信号を操作盤121から制御盤122へ与える。制御盤122は、搬送機構P1による前記搬送作業を制御し、さらに、後述する縫製機構P3による縫製作業の速度とタイミングとを制御する。フットスイッチ123は、ミシン100の使用者がボタンやタッチパネル等を押下する操作を受けて、ミシン100による縫製作業を開始する動作開始信号と、保持装置112による被縫製物の保持と不保持との切り替えを行う保持信号と、を制御盤122へ出力する。制御装置P2の動作については、縫製機構P3の詳細を説明した後に記載する。 A control device P2 of the sewing machine 100 includes an operation panel 121, a control panel 122, and a foot switch 123. A user of the sewing machine 100 gives a sewing command signal for driving the sewing machine 100 from the operation panel 121 to the control panel 122 based on sewing data such as sewing pattern data created on the operation panel 121. The control panel 122 controls the conveyance operation by the conveyance mechanism P1, and further controls the speed and timing of the sewing operation by the sewing mechanism P3 described later. The foot switch 123 receives an operation that the user of the sewing machine 100 presses a button, a touch panel, or the like, and starts an operation start signal to start the sewing operation by the sewing machine 100; A holding signal for switching is output to the control board 122. The operation of the control device P2 will be described after the details of the sewing mechanism P3 are described.
次に、図3から図5を用いて本実施の形態に係るミシン100の縫製機構P3の詳細を説明する。図3に示すように、縫製機構P3は、針孔を有する縫い針131と、上糸を捕捉して上糸と下糸とを絡ませるかま132と、上糸を被縫製物から引き上げることで形成する縫い目の縫い締めを行う天秤133と、縫い針131とかま132と天秤133を駆動する駆動源である主軸モータ134と、被縫製物の浮き上がりを防止する中押さえ135と、中押さえ135の駆動源である中押さえモータ136と、を備える。また、縫製機構P3は、図5(B)に示すように、上糸の張力を調整するプリテンション162及びメインテンション163を含む。 Next, details of the sewing mechanism P3 of the sewing machine 100 according to the present embodiment will be described using FIGS. 3 to 5. As shown in FIG. 3, the sewing mechanism P3 pulls the needle thread from the sewing material by means of a needle 132 having a needle hole, a hook 132 for catching the needle thread and entangleing the needle thread and the bobbin thread. A balance 133 which performs seam tightening to be formed, a spindle motor 134 which is a driving source for driving the sewing needle 131 and the hook 132 and the balance 133, a middle presser 135 which prevents floating of a sewing material, and a middle presser 135 And a middle pressing motor 136 which is a driving source. Further, as shown in FIG. 5B, the sewing mechanism P3 includes a pre-tension 162 and a main tension 163 for adjusting the tension of the upper thread.
縫い針131は、縫い目を形成した際に上側の糸となる上糸が挿通された針孔131aを有し、主軸モータ134を駆動源としてZ軸方向で上下動する。縫い針131は、上死点から下降して被縫製物に挿針された後に下死点に達し、その後、縫い針131が下死点から上死点へ向かって上昇する間に被縫製物から抜針される。縫い針131は、下死点に到達した後、被縫製物から抜針されるまでの間にかま132と協調し、縫い目を形成した際に被縫製物の下側の糸となる下糸と前記上糸とを絡ませる。その後、縫い針131の針孔131aが被縫製物から抜針されることで、上糸は被縫製物の上面へ引き出される。 The sewing needle 131 has a needle hole 131a through which an upper thread serving as an upper thread is formed when forming a stitch, and moves up and down in the Z-axis direction using the spindle motor 134 as a drive source. The sewing needle 131 descends from the top dead center and reaches the bottom dead center after being inserted into the sewing material, and then the sewing material is sewn while the sewing needle 131 rises from the bottom dead center to the top dead center You are pulled out of the The sewing needle 131 cooperates with the hook 132 after reaching the bottom dead center and before the needle is pulled out from the sewing material, and when forming a stitch, a lower thread which is a lower thread of the sewing material and Tangle the upper thread. Thereafter, the needle thread 131a of the sewing needle 131 is pulled out of the material to be sewn, whereby the upper thread is pulled out to the upper surface of the material to be sewn.
主軸モータ134には、固定子に対する回転子の角度及び角速度等の回転情報を検出する回転情報検出器137が取り付けられる。本実施の形態では、回転情報検出器137が主軸モータ134の固定子に対する回転子の角度を検出する光学式エンコーダであるものとして記載する。主軸モータ134は、アーム101に固定され、主軸モータ134の回転子には、シャフト形状の上軸139の一端がカップリング138を介して連結される。 A rotation information detector 137 is attached to the spindle motor 134 to detect rotation information such as the angle and angular velocity of the rotor with respect to the stator. In the present embodiment, the rotation information detector 137 is described as an optical encoder that detects the angle of the rotor with respect to the stator of the spindle motor 134. The spindle motor 134 is fixed to the arm 101, and one end of a shaft-shaped upper shaft 139 is coupled to the rotor of the spindle motor 134 via a coupling 138.
上軸139の回転運動は、カップリング138が連結されていない上軸139の他端に装着された天秤駆動機構140及び針棒駆動機構141を介して、針棒142の上下動へ変換される。針棒142の先端には縫い針131が装着されており、針棒142の上下動にともない縫い針131がZ軸方向で上下動する。この主軸モータ134を駆動源として縫い針131を上下動する針棒駆動機構141は、針棒クランク、連接棒、針棒抱き等で構成されるが、これは周知の技術であるため、拡大図等を用いたその他の説明は省略する。 The rotational movement of the upper shaft 139 is converted to the vertical movement of the needle bar 142 through the balance drive mechanism 140 and the needle bar drive mechanism 141 mounted on the other end of the upper shaft 139 to which the coupling 138 is not connected. . A sewing needle 131 is attached to the tip of the needle bar 142, and along with the vertical movement of the needle bar 142, the sewing needle 131 moves up and down in the Z-axis direction. The needle bar drive mechanism 141 for moving the sewing needle 131 up and down with the main spindle motor 134 as a drive source is constituted by a needle bar crank, a connecting bar, a needle bar holding, etc. The other description using and the like is omitted.
かま132は、剣先を有する外かまと、下糸が巻かれたボビンと、外かまからボビンが抜け落ちないようボビンを収納するボビンケース143とで構成する。本実施の形態では、かま132として全回転かまを採用する場合を示すが、本発明はこれに限定されない。例えば、かま132は半回転かまでも良く、また水平かまでも垂直かまでも問題はない。 The kettle 132 is comprised of an outer kettle having a sword tip, a bobbin wound with a lower thread, and a bobbin case 143 for housing the bobbin so as to prevent the bobbin from falling out of the outer kettle. In the present embodiment, a case is shown in which a full-turn furnace is adopted as the furnace 132, but the present invention is not limited to this. For example, the barrel 132 may be half a turn, or it may be horizontal or vertical.
かま132は、主軸モータ134を駆動源とする。図3において、上軸139の一端とカップリング138の連結部の近傍には、上軸139に上軸プーリ144が同心円状に装着されており、駆動側である上軸プーリ144はタイミングベルト145を介して従動側の下軸プーリ146を回転させる。下軸プーリ146は、シャフトを介して大径ギヤ147を回転させ、大径ギヤ147と噛合する小径ギヤ148を回転させる。このように構成することで、小径ギヤ148に連結されたシャフト形状の下軸149は、上軸139に対して二倍の速度で回転する。かま132と下軸149は、下軸149に小径ギヤ148が勘合されていない方の軸端で連結されており、かま132は主軸モータ134が回転することで、縫い針131が上下動を行う二倍の周波数で回転する。このとき、かま132の剣先は、縫い針131が下降して被縫製物に挿針され、下死点に到達した後から上死点に向かって上昇している最中に、縫い針131の針孔に通された上糸が形成する輪を捕捉する。全回転かまの構成は、周知の技術であるため、拡大図等を用いたその他の説明は省略する。 The iron 132 uses the spindle motor 134 as a drive source. In FIG. 3, an upper shaft pulley 144 is concentrically mounted on the upper shaft 139 near one end of the upper shaft 139 and the coupling portion of the coupling 138, and the upper shaft pulley 144 on the driving side is a timing belt 145. The lower shaft pulley 146 on the driven side is rotated. The lower shaft pulley 146 rotates the large diameter gear 147 via the shaft and rotates the small diameter gear 148 engaged with the large diameter gear 147. By configuring in this manner, the shaft-shaped lower shaft 149 connected to the small diameter gear 148 rotates at a double speed with respect to the upper shaft 139. The bite 132 and the lower shaft 149 are connected to the lower shaft 149 at the end of the shaft where the small diameter gear 148 is not fitted, and the bite 132 moves the sewing needle 131 up and down by the rotation of the spindle motor 134 Rotate at twice the frequency. At this time, the point of the biting needle 132 is such that the sewing needle 131 is lowered and inserted into the sewing material, and after reaching the bottom dead center, it is rising toward the top dead center. The loop formed by the upper thread passed through the needle hole is captured. The configuration of the full rotation oven is a well-known technology, so other explanations using an enlarged view etc. will be omitted.
天秤133は、主軸モータ134を駆動源とし、クランクや天秤ロッドにより構成する天秤駆動機構140に連結される。天秤133は、ベルクランクの形状をした金属素材の剛体であり、一端には上糸を挿通するための小孔133aが設けられ、その他端は上軸139に連結されたクランクに対して回動可能に接続される。ベルクランク形状における屈曲部には、一端がアーム101に対して回動可能に接続された天秤ロッドの他端が連結される。このように構成することで、天秤133は主軸モータ134と同期して回動する上軸139により駆動され、縫い針131と天秤133の上下動の1周期が等しくなる。天秤133の小孔133aは、通常、縫い針131の上死点よりも主軸モータ134の回転角度が60度程遅れたときに上死点に到達するよう駆動される。この天秤133を駆動する天秤駆動機構140の構成は、周知の技術であるため、拡大図等を用いたその他の説明は省略する。 The balance 133 uses a main spindle motor 134 as a drive source, and is connected to a balance drive mechanism 140 configured by a crank and a balance rod. The balance 133 is a rigid body of a metal material in the shape of a bell crank, and has one end provided with a small hole 133a for inserting an upper thread at one end, and the other end rotated with respect to the crank connected to the upper shaft 139 Connectable. The other end of the balance rod, one end of which is rotatably connected to the arm 101, is connected to the bent portion in the bell crank shape. With this configuration, the balance 133 is driven by the upper shaft 139 that rotates in synchronization with the spindle motor 134, and one cycle of vertical movement of the sewing needle 131 and the balance 133 becomes equal. The small hole 133a of the balance 133 is normally driven to reach the top dead center when the rotation angle of the spindle motor 134 is delayed by about 60 degrees from the top dead center of the sewing needle 131. The configuration of the balance drive mechanism 140 for driving the balance 133 is a well-known technology, and thus other descriptions using an enlarged view and the like will be omitted.
次に、図4を用いて本実施の形態に係る中押さえ135の駆動機構について説明する。中押さえ135は、回転情報検出器150を備える中押さえモータ136を駆動源とし、中押さえ駆動機構151に接続される。中押さえ駆動機構151は、ミシン100のPF(Pressure Foot)軸を駆動する。中押さえモータ136は、回転情報検出器150を備え、中押さえモータ136の固定子に対する回転子の角度又は速度を検出する。本実施の形態では、回転情報検出器150が固定子に対する回転子の角度を検出する工学式エンコーダであるものとして記載する。 Next, a drive mechanism of the middle presser 135 according to the present embodiment will be described with reference to FIG. The middle presser 135 uses the middle presser motor 136 including the rotation information detector 150 as a drive source, and is connected to the middle presser drive mechanism 151. The middle pressing drive mechanism 151 drives a PF (Pressure Foot) axis of the sewing machine 100. The presser motor 136 includes a rotation information detector 150 to detect the angle or speed of the rotor with respect to the stator of the presser motor 136. In the present embodiment, the rotation information detector 150 is described as an engineered encoder that detects the angle of the rotor with respect to the stator.
中押さえ駆動機構151は、ピニオン152と、ラック153と、スライドガイド154と、スライダ155と、中押さえ棒抱き156と、中押さえ棒157と、を含む。 The middle pressing drive mechanism 151 includes a pinion 152, a rack 153, a slide guide 154, a slider 155, a middle pressing rod holder 156, and a middle pressing rod 157.
本実施の形態において、中押さえモータ136はアーム101に固定したサーボモータであり、その回転子には小口径の円形歯車形状をしたピニオン152の中心に設けた小円状の穴が勘合されている。ピニオン152の歯は、ラック153の歯と噛合し、中押さえモータ136の回転運動をラック153の並進運動に変換する。ラック153は、スライダ155に連結され、スライダ155はスライドガイド154によりZ軸方向で摺動自在に上下動するよう案内される。スライダ155には、中押さえ棒抱き156がボルトで締結されており、中押さえ棒157が中押さえ棒抱き156に挿通されて締め固められている。中押さえ135は、中押さえ棒157の先端に取り付けられており、中押さえ棒157がZ軸方向に上下動することで中押さえ135が上下方向に駆動される。中押さえ135の先端には円状の貫通孔135aを設けており、貫通孔135aには縫い針が挿通される。このように構成することにより、ミシン100は、中押さえモータ136の回転を制御することで、中押さえ135の高さを他の縫製機構に対して独立に駆動する。 In the present embodiment, the middle pressing motor 136 is a servomotor fixed to the arm 101, and a small circular hole provided at the center of the small diameter circular gear shaped pinion 152 is fitted to the rotor thereof. There is. The teeth of the pinion 152 mesh with the teeth of the rack 153 and convert the rotational movement of the presser motor 136 into a translational movement of the rack 153. The rack 153 is connected to the slider 155, and the slider 155 is guided by the slide guide 154 so as to slide up and down in the Z-axis direction. A middle presser bar clamp 156 is fastened to the slider 155 with a bolt, and the middle presser bar 157 is inserted into the middle presser bar clamp 156 and is compacted. The middle presser 135 is attached to the tip of the middle presser bar 157, and the middle presser bar 157 moves up and down in the Z-axis direction to drive the middle presser 135 in the vertical direction. A circular through hole 135a is provided at the tip of the middle presser 135, and a sewing needle is inserted through the through hole 135a. With such a configuration, the sewing machine 100 drives the height of the middle presser 135 independently of the other sewing mechanisms by controlling the rotation of the middle presser motor 136.
本実施の形態では、中押さえモータ136に回転型のサーボモータ、すなわち環状の固定子及び円柱状の回転子を備える回転電機を使用し、ラックとピニオンにより回転子の回転運動を中押さえ135の並進運動へ変換する。しかしながら、中押さえ135の駆動源は、サーボモータ又はステッピングモータといった回転電機に限定されず、リニアモータやボイスコイルモータ等の並進駆動を直接実現するアクチュエータであってもよい。これらを使用することで、ラックとピニオン機構による動力の伝達率の損失を低減することができる。また、機構が簡素化されることによりバックラッシや摩擦の影響が少なくなるため、中押さえ135が外部から受ける外力をアクチュエータの挙動から把握し易くすることができる。 In this embodiment, a rotary servomotor, that is, a rotary electric machine having an annular stator and a cylindrical rotor, is used as the middle presser motor 136, and the rotational motion of the rotor is controlled by the rack and the pinion. Convert to translational motion. However, the drive source of the inner presser 135 is not limited to a rotating electrical machine such as a servo motor or a stepping motor, and may be an actuator that directly realizes translational drive such as a linear motor or a voice coil motor. By using these, it is possible to reduce the loss of power transmission ratio by the rack and pinion mechanism. In addition, since the effects of backlash and friction are reduced by simplifying the mechanism, it is possible to make it easy to grasp the external force that the middle presser 135 receives from the outside from the behavior of the actuator.
次に、図5(A)、(B)に基づき、ミシン100の上糸経路と張力の制御に係る縫製機構について説明する。図5(A)は、ミシン100における全体の上糸経路を示す全体図であり、図5(B)は、ミシン頭部103における上糸経路を示す拡大図である。
ミシン100の使用者は、ミシン100で縫製動作を実施する前に、縫い目を形成した際に上側の糸となる上糸Tを、上糸Tの供給源である糸巻き159から消費部である縫い針131までの上糸経路に沿って供給する。上糸経路は、糸巻きスタンド158に立てた糸巻き159を始点として、上糸ガイド160及び161と、プリテンション162と、メインテンション163と、天秤133の小孔133aと、上糸ガイド164、165、166の順に経由し、縫い針131の先端に設けられた針孔131aを終点とする。縫い針131は、中押さえ先端部の円筒形状部に設けた貫通孔135aに挿通されるので、針孔131aに挿通された上糸Tも貫通孔135aに挿通される。上糸ガイド160、161、164、165、166は、上糸Tを挿通する通し穴であり、上糸Tが絡まったり解れたりしないように上糸Tをアーム101に沿って案内する。上糸Tの張力は、プリテンション162及びメインテンション163の構成部品であるバネと、糸を挟持する板により付与される。
Next, based on FIGS. 5A and 5B, a sewing mechanism related to control of the upper thread path and tension of the sewing machine 100 will be described. FIG. 5A is an overall view showing the entire upper thread path in the sewing machine 100, and FIG. 5B is an enlarged view showing the upper thread path in the sewing machine head 103.
Before the sewing operation is performed by the sewing machine 100, the user of the sewing machine 100 sews the upper thread T, which is the upper thread when forming the seam, from the thread winding 159 which is the supply source of the upper thread T, Feed along the upper thread path to the needle 131. The upper yarn path starts from the yarn winding 159 erected on the yarn winding stand 158, the upper yarn guides 160 and 161, the pretension 162, the main tension 163, the small hole 133a of the balance 133, and the upper yarn guides 164 and 165, A needle hole 131 a provided at the tip of the sewing needle 131 is taken as an end point via 166 in order. Since the sewing needle 131 is inserted into the through hole 135a provided in the cylindrical portion at the tip end of the middle pressing portion, the upper thread T inserted into the needle hole 131a is also inserted into the through hole 135a. The upper thread guides 160, 161, 164, 165, and 166 are through holes through which the upper thread T is inserted, and guides the upper thread T along the arm 101 so that the upper thread T does not get entangled or unraveled. The tension of the upper thread T is applied by a spring which is a component of the pre-tension 162 and the main tension 163 and a plate for holding the thread.
次に、図6を用いて、本実施の形態に係るミシン100の制御構成について説明する。図6は、実施の形態1に係るミシンの制御構成を示すブロック図である。符号122Aで示す制御盤は図1に示す制御盤122に相当する。 Next, a control configuration of the sewing machine 100 according to the present embodiment will be described using FIG. FIG. 6 is a block diagram showing a control configuration of the sewing machine according to the first embodiment. The control panel indicated by reference numeral 122A corresponds to the control panel 122 shown in FIG.
図6に示すように、ミシン100の操作盤121は、表示器121aと、プロセッサ121bと、縫製パターンデータD1を記憶する記憶装置121cと、入力装置121dと、を備える。ミシン100の使用者は、表示器121aを参照しながら押下式のボタン又はタッチパネル等で構成する入力装置121dを操作して、縫製パターンデータD1を一針毎に入力する。これにより、縫製パターンデータD1が記憶装置121cに保存される。操作盤121のオペレーティングシステムは、プロセッサ121bにより運用される。記憶装置121cに保存された縫製パターンデータD1を使用することにより、縫製パターンの作成、編集及び複製が容易となる。 As shown in FIG. 6, the control panel 121 of the sewing machine 100 includes a display 121a, a processor 121b, a storage device 121c for storing sewing pattern data D1, and an input device 121d. The user of the sewing machine 100 inputs the sewing pattern data D1 for each needle by operating the input device 121d configured by a push-down button or a touch panel while referring to the display 121a. As a result, the sewing pattern data D1 is stored in the storage device 121c. The operating system of the control panel 121 is operated by the processor 121 b. By using the sewing pattern data D1 stored in the storage device 121c, creation, editing and copying of the sewing pattern become easy.
操作盤121で作成された縫製パターンデータD1は、プロセッサ121aにより縫製指令信号に変換されて制御盤122Aの指令生成部1A1へ伝送される。縫製パターンデータD1は、被縫製物に形成する縫い目の位置及び形状、並びにミシン100の動作速度を決めるデータである。操作盤121と制御盤122Aとの間の信号の伝送は、図示しない通信用回路を介して行う。 The sewing pattern data D1 created on the control panel 121 is converted into a sewing command signal by the processor 121a and transmitted to the command generation unit 1A1 of the control panel 122A. The sewing pattern data D1 is data that determines the position and shape of the stitches formed on the workpiece and the operation speed of the sewing machine 100. Transmission of signals between the control panel 121 and the control panel 122A is performed via a communication circuit (not shown).
操作盤121の表示器121aは、制御盤122AのPF軸モータ制御演算部1A3から出力される張力監視信号を入力とし、該張力監視信号に基づき糸切れの発生を検知した場合及び同じ縫い目を形成しているにも関わらず上糸張力が1針毎に変動する場合には、縫製不良が発生したことをミシン100の使用者へ向けて表示する。 The indicator 121a of the control panel 121 receives the tension monitoring signal output from the PF-axis motor control calculation unit 1A3 of the control panel 122A as input, and detects the occurrence of thread breakage based on the tension monitoring signal and forms the same seam If the upper thread tension fluctuates for each needle despite the fact that the sewing operation is performed, the occurrence of the sewing failure is displayed to the user of the sewing machine 100.
なお、表示器121aは、操作盤121の内部に設けられたものに限定されず、操作盤121の外部に存在する液晶パネルや信号機等の表示器でも良い。この場合は、当該表示器と制御盤122Aとの通信は有線通信及び無線通信の何れでも良い。また、表示器121aは、制御盤122Aに含まれても良い。また、記憶装置121cも同様に、操作盤121の内部に設けられたものに限定されず、操作盤121の外部に存在する記憶装置を使用することができる。この場合、当該記憶装置と制御盤122Aとの通信は有線通信及び無線通信の何れの手段でも良い。 The display 121a is not limited to the one provided inside the control panel 121, and may be a display such as a liquid crystal panel or a traffic signal present outside the control panel 121. In this case, communication between the display and the control panel 122A may be either wired communication or wireless communication. Also, the display 121a may be included in the control panel 122A. Similarly, the storage device 121 c is not limited to one provided inside the operation panel 121, and a storage device existing outside the operation panel 121 can be used. In this case, communication between the storage device and the control panel 122A may be either wired communication or wireless communication.
図6に示すように、ミシン100を制御する制御盤122Aは、少なくとも指令生成部1A1と、主軸モータ制御演算部1A2と、PF軸モータ制御演算部1A3と、X軸モータ制御演算部1A4と、Y軸モータ制御演算部1A5と、を備える。これらの他に、縫製作業の完了時に糸切りを行うソレノイド、糸が無くなったことを知らせる通知用センサ、搬送機構P1が原点復帰を行うための位置センサ等を駆動する制御回路及び電源回路を備える場合もあるが、これらについては本発明の効果に直接関係しないので説明を省略する。 As shown in FIG. 6, the control panel 122A for controlling the sewing machine 100 includes at least a command generation unit 1A1, a spindle motor control calculation unit 1A2, a PF axis motor control calculation unit 1A3, and an X axis motor control calculation unit 1A4. And Y-axis motor control calculation unit 1A5. In addition to these, it has a control circuit and a power supply circuit that drive a solenoid that performs thread cutting when sewing is completed, a notification sensor that notifies that the thread is lost, a position sensor for performing return-to-origin with the transport mechanism P1, and the like. In some cases, these are not directly related to the effects of the present invention, and thus the description thereof is omitted.
制御盤122Aは、操作盤121のプロセッサ121bから出力される縫製指令信号と、フットスイッチ123から出力される保持信号及び動作開始信号と、主軸モータ134の回転情報検出器137から出力される主軸モータ137の回転情報である主軸回転信号と、中押さえモータ136の回転情報検出器150から出力される中押さえモータ136の回転情報であるPF軸回転信号と、X軸モータ113の回転情報検出器117から出力されるX軸モータ113の回転情報であるX軸回転信号と、Y軸モータ114の回転情報検出器118から出力されるY軸回転信号と、を入力とする。 Control panel 122 A is a spindle motor output from rotation information detector 137 of spindle motor 134, a sewing command signal output from processor 121 b of operation panel 121, a holding signal and operation start signal output from foot switch 123, and The spindle rotation signal which is the rotation information of 137, the PF axis rotation signal which is the rotation information of the inner pressing motor 136 outputted from the rotation information detector 150 of the inner pressing motor 136, and the rotation information detector 117 of the X axis motor 113 An X-axis rotation signal, which is rotation information of the X-axis motor 113 output from the Y-axis motor 114, and a Y-axis rotation signal output from the rotation information detector 118 of the Y-axis motor 114 are input.
制御盤122Aは、これらの入力信号に基づいて、主軸モータ134を駆動する主軸制御電流と、中押さえモータ136を駆動するPF軸制御電流と、X軸モータ113を駆動するX軸制御電流と、Y軸モータ114を駆動するY軸制御電流と、エアシリンダ112dを駆動する保持指令信号と、PF軸モータ制御演算部1A3から出力される張力監視信号と、を出力する。 The control board 122A controls the spindle control current for driving the spindle motor 134, the PF axis control current for driving the middle presser motor 136, and the X axis control current for driving the X axis motor 113 based on these input signals. A Y-axis control current for driving the Y-axis motor 114, a holding command signal for driving the air cylinder 112d, and a tension monitoring signal output from the PF-axis motor control calculation unit 1A3 are output.
制御盤122Aの指令生成部1A1は、操作盤121のプロセッサ121bから出力される縫製指令信号と、フットスイッチ123から出力される保持信号及び動作開始信号と、を入力として、主軸指令信号と、PF軸指令信号と、X軸指令信号と、Y軸指令信号と、保持指令信号と、を出力する。主軸指令信号と、PF軸指令信号と、X軸指令信号と、Y軸指令信号は、それぞれ主軸モータ134と、中押さえモータ136と、X軸モータ113と、Y軸モータ114との回転角度を指定する電気信号であり、縫製パターンデータD1に応じて指令生成部1A1の内部で計算される。 The command generation unit 1A1 of the control panel 122A receives the sewing command signal output from the processor 121b of the control panel 121, the holding signal and the operation start signal output from the foot switch 123, and the spindle command signal PF An axis command signal, an X axis command signal, a Y axis command signal, and a holding command signal are output. The spindle command signal, the PF axis command signal, the X axis command signal, and the Y axis command signal respectively represent the rotation angles of the spindle motor 134, the inner press motor 136, the X axis motor 113, and the Y axis motor 114. It is an electrical signal to be specified, and is calculated inside the command generation unit 1A1 according to the sewing pattern data D1.
フットスイッチ123から出力される保持信号は、保持装置112の送り板112aと外押さえ112bにより被縫製物が保持されるようエアシリンダ112dの圧力を指定する電気信号である。フットスイッチ123から出力される動作開始信号は、指令生成部1A1が主軸指令信号と、PF軸指令信号と、X軸指令信号と、Y軸指令信号とを、それぞれ主軸モータ制御演算部1A2と、PF軸モータ制御演算部1A3と、X軸モータ制御演算部1A4と、Y軸モータ制御演算部1A5と、に向けて送信し始めるタイミングを指定する電気信号である。 The holding signal output from the foot switch 123 is an electric signal that designates the pressure of the air cylinder 112 d so that the sewing material is held by the feed plate 112 a and the outer presser 112 b of the holding device 112. As the operation start signal output from the foot switch 123, the command generation unit 1A1 controls the spindle command signal, the PF axis command signal, the X axis command signal, and the Y axis command signal, and the spindle motor control operation unit 1A2 It is an electric signal which designates the timing which starts transmission toward PF axis motor control operation part 1A3, X axis motor control operation part 1A4, and Y axis motor control operation part 1A5.
制御盤122Aの主軸モータ制御演算部1A2は、主軸指令信号と主軸回転信号を入力として、主軸指令信号と主軸回転信号の差分が0になるように主軸モータ134を回転させる主軸制御電流を出力する。 Spindle motor control calculation unit 1A2 of control board 122A receives spindle command signal and spindle rotation signal and outputs spindle control current for rotating spindle motor 134 so that the difference between spindle command signal and spindle rotation signal becomes zero. .
制御盤122AのPF軸モータ制御演算部1A3は、PF軸指令信号とPF軸回転信号を入力として、PF軸指令信号とPF軸回転信号の差分が0になるように中押さえモータ136を回転させるPF軸制御電流を出力する。また、PF軸モータ制御演算部1A3は、主軸モータ134の回転にともない天秤133の小孔133aが上昇する期間に上糸の張力を監視し、上糸張力監視信号を出力する。すなわち、本発明に係るミシン100は、PF軸モータ制御演算部1A3が上糸張力を監視するように構成する。
制御盤122AのX軸モータ制御演算部1A4は、X軸指令信号とX軸回転信号を入力として、X軸指令信号とX軸回転信号の差分が0になるようにX軸モータ113を回転させるX軸制御電流を出力する。
The PF axis motor control calculation unit 1A3 of the control board 122A receives the PF axis command signal and the PF axis rotation signal and rotates the middle pressing motor 136 so that the difference between the PF axis command signal and the PF axis rotation signal becomes zero. Outputs PF axis control current. Further, the PF-axis motor control calculation unit 1A3 monitors the tension of the upper thread during a period in which the small hole 133a of the balance 133 rises with the rotation of the spindle motor 134, and outputs an upper thread tension monitoring signal. That is, the sewing machine 100 according to the present invention is configured such that the PF axis motor control calculation unit 1A3 monitors the upper thread tension.
The X-axis motor control calculation unit 1A4 of the control board 122A receives the X-axis command signal and the X-axis rotation signal and rotates the X-axis motor 113 so that the difference between the X-axis command signal and the X-axis rotation signal becomes zero. Outputs X-axis control current.
制御盤122AのY軸モータ制御演算部1A5は、Y軸指令信号とY軸回転信号を入力として、Y軸指令信号とY軸回転信号の差分が0になるようにY軸モータ114を回転させるY軸制御電流を出力する。 The Y-axis motor control calculation unit 1A5 of the control panel 122A receives the Y-axis command signal and the Y-axis rotation signal and rotates the Y-axis motor 114 so that the difference between the Y-axis command signal and the Y-axis rotation signal becomes zero. Outputs Y-axis control current.
次に、ミシン100が縫い目を形成する動作について説明する。まず、ミシン100の使用者は、上述した上糸経路に沿って糸巻き159から針孔131aまで上糸Tを供給する。一方、縫い目を形成した際に下側の糸となる下糸Tdは、かま132のボビンケース143内に格納するボビンに巻き付けられる。 Next, an operation in which the sewing machine 100 forms a stitch will be described. First, the user of the sewing machine 100 supplies the upper thread T from the thread winding 159 to the needle hole 131a along the above-described upper thread path. On the other hand, the lower thread Td, which is the lower thread when forming the seam, is wound around the bobbin stored in the bobbin case 143 of the hook 132.
そして、ミシン100の使用者によりフットスイッチ123が押下され、保持信号が制御盤122Aの指令生成部1A1に送られると、指令生成部1A1から出力される保持指令信号によりエアシリンダ112dが作動し、被縫製物が図1に示す保持装置112によって、搬送可能になるように挟持される。その後、さらにフットスイッチ123が押下され、動作開始信号が制御盤122Aに送られると、搬送機構P1の駆動源であるX軸モータ113及びY軸モータ114と、縫製機構P3の駆動源である主軸モータ134及び中押さえモータ136が作動し、ミシン100の使用者が操作盤121により予め指定しておいた被縫製物の特定の位置にミシン100が縫い目を形成し始める。このようにして、制御盤122Aの主軸モータ制御演算部1Abが主軸モータ134を回転させると、針孔131aに上糸Tを通した縫い針131が、滑り板106の上側から下側に向けて被縫製物へ挿針される。この縫い針131の動作により、上糸Tが被縫製物の下側へ供給される。その後、縫い針131が下死点から上昇する際、上糸Tは、被縫製物との間の摩擦により被縫製物の下側でループを形成する。 Then, when the user of the sewing machine 100 presses the foot switch 123 and the holding signal is sent to the command generating unit 1A1 of the control panel 122A, the air cylinder 112d is activated by the holding command signal output from the command generating unit 1A1. The sewing material is nipped by the holding device 112 shown in FIG. 1 so that it can be conveyed. Thereafter, when the foot switch 123 is further depressed and an operation start signal is sent to the control panel 122A, the X-axis motor 113 and Y-axis motor 114 as drive sources of the transport mechanism P1 and the main shaft as drive sources of the sewing mechanism P3. The motor 134 and the middle pressing motor 136 are activated, and the sewing machine 100 starts to form a stitch at a specific position of the material to be sewn that the user of the sewing machine 100 has designated in advance with the operation panel 121. Thus, when the spindle motor control calculation unit 1Ab of the control panel 122A rotates the spindle motor 134, the sewing needle 131 having the needle thread T passing through the needle hole 131a is directed from the upper side to the lower side of the sliding plate 106 Needle is inserted into the workpiece. The upper thread T is supplied to the lower side of the workpiece by the operation of the sewing needle 131. Thereafter, when the sewing needle 131 ascends from the bottom dead center, the upper thread T forms a loop on the lower side of the sewing material due to the friction with the sewing material.
かま132の剣先は、この上糸Tのループが形成されるタイミングに調時して上糸を捕捉し、上糸と下糸とを絡み合わせる。かま132の剣先が上糸を捕捉するタイミングは、縫い針が上死点に位置するときの主軸モータの回転角度を0度とした場合、一般に主軸モータの回転角度が190度から210度となる範囲内に設定される。上糸と下糸が絡み合った後は、縫い針131が被縫製物から抜針されることで、上糸は被縫製物の上面へ引き出される。そして、天秤133が上糸を被縫製物の上方へ引き上げられることによって上糸Tが締め上げられ、縫い目を形成する。このとき、中押さえ135は、縫い針131及び天秤133の上昇に伴い、被縫製物が浮き上がったり、ばたついたりしないように被縫製物を押圧する。 The point of the hook 132 catches the upper thread at the timing at which the loop of the upper thread T is formed, and entangles the upper thread and the lower thread. The timing at which the point of the hook of the hook 132 catches the upper thread is generally from 190 degrees to 210 degrees for the rotation angle of the spindle motor, assuming that the rotation angle of the spindle motor when the sewing needle is at top dead center is 0 degrees. It is set within the range. After the upper thread and the lower thread are intertwined, the upper thread is pulled out to the upper surface of the material to be sewn by pulling out the sewing needle 131 from the material to be sewn. Then, the upper thread T is tightened by pulling up the upper thread above the sewing material to form a seam. At this time, the middle presser 135 presses the material to be sewn so that the material to be sewn does not lift up or flap as the sewing needle 131 and the balance 133 rise.
そして、プリテンション162とメインテンション163は、ミシン100が縫い目を形成する期間に常時、上糸へ一定の張力を付与する。 Then, the pretension 162 and the main tension 163 always apply a constant tension to the upper thread during a period in which the sewing machine 100 forms a stitch.
次に、図7から図13を用いて、本発明の実施の形態1に係るミシン100の上糸張力の検出動作について説明する。 Next, the detection operation of the upper thread tension of the sewing machine 100 according to the first embodiment of the present invention will be described with reference to FIGS. 7 to 13.
まず、図7から図9に基づき、一般的な電子ミシンの動作と比較して、本実施の形態に係るミシン100が上糸張力を検出する際の動作の特徴を説明する。 First, based on FIGS. 7-9, the characteristic of the operation | movement at the time of the sewing machine 100 which concerns on this Embodiment detecting an upper thread | yarn tension compared with operation | movement of a general electronic sewing machine is demonstrated.
図7と図8は、一般的な電子ミシンと本実施の形態に係るミシン100において、縫い針が上死点から下死点へ下降し再び上死点に移動した時の縫い針と、中押さえと、被縫製物との位置関係、及び形成される縫い目を示している。両図では、(N-1)針目までの縫い目が既に形成されており、以後は縫い針が下降してN針目の縫製作業を行う。 FIG. 7 and FIG. 8 show the sewing needle when the sewing needle descends from the top dead center to the bottom dead center and moves again to the top dead center in the general electronic sewing machine and the sewing machine 100 according to the present embodiment. The positional relationship between the presser and the workpiece and the formed seam are shown. In both figures, the stitches up to the (N-1) th stitch are already formed, and thereafter the sewing needle descends to perform the sewing operation of the Nth stitch.
図9は、一般的な電子ミシンと本発明のミシン100における縫い針と中押さえの駆動軌跡を描いたタイミングチャートである。図9の破線で示すタイミングaは(N-1)針目の縫製動作における縫い針131´及び131の上死点時、タイミングbは縫い針131´及び131の挿針時、タイミングcは縫い針131´及び131の下死点時、タイミングdはかまが上糸のループを掬う時、タイミングeは縫い針131´及び131の抜針時における主軸モータの回転角度である。同様に、タイミングa´からe´は、ミシン100がN針目の縫製動作を行う際のタイミングを表す。図7と図8は、図9のタイミングチャートにおいて、主軸モータの回転角度がタイミングa´のときの動作状態を示している。図9上段の黒丸(●)印は、かまが上糸ループを掬うタイミングdのときの縫い針の位置を陽に示す。 FIG. 9 is a timing chart depicting driving loci of sewing needles and middle pressers in a general electronic sewing machine and the sewing machine 100 of the present invention. The timing a shown by the broken line in FIG. 9 is the top dead center of the sewing needles 131 'and 131 in the sewing operation of the (N-1) th stitch, the timing b is the insertion of the sewing needles 131' and 131, the timing c is the sewing needle At the bottom dead center of 131 'and 131, timing d is the rotation angle of the spindle motor at the time of withdrawal of the sewing needles 131' and 131 when timing is as follows. Similarly, timings a ′ to e ′ indicate timings when the sewing machine 100 performs the sewing operation of the N th stitch. 7 and 8 show the operation state when the rotation angle of the spindle motor is at timing a 'in the timing chart of FIG. The black circle (●) mark in the upper part of FIG. 9 explicitly indicates the position of the sewing needle at the timing d when the loop goes around the upper thread loop.
図9上段に示すように、縫い針131´及び131は、ストロークlhで上下動する。また、図9中段及び下段に示すように、中押さえ135´及び135は、ストロークloで上下動する。ただし、図9中段及び下段の波形は、中押さえ135の底面部の駆動波形を示しており、中押さえ135は縫い針131´及び131が被縫製物から抜針され再び挿針されるタイミングeからb´までの期間に、中押さえ135の底面部が被縫製物から距離dloだけ上昇した位置で停止するように駆動される。距離dloは、上糸Tが中押さえ135と被縫製物Obの間を通過できるように少なくとも上糸Tの直径よりも長い距離とする。 As shown in the upper part of FIG. 9, the sewing needles 131 'and 131 move up and down in a stroke lh. Further, as shown in the middle and lower parts of FIG. 9, the middle pressers 135 'and 135 move up and down with the stroke lo. However, the waveforms in the middle and lower parts of FIG. 9 indicate the drive waveforms of the bottom of the middle presser 135, and the middle presser 135 is a timing e at which the sewing needles 131 'and 131 are withdrawn from the sewing material and inserted again. , And b ', the bottom surface of the middle presser 135 is driven to stop at a position raised by a distance dlo from the workpiece. The distance dlo is at least longer than the diameter of the upper thread T so that the upper thread T can pass between the middle presser 135 and the workpiece Ob.
図7において、一般的な電子ミシンの中押さえ135´は、縫い針131´の駆動軌跡と殆ど同位相の正弦波状に駆動される。このため、縫い針131´が上死点に位置するときは、図8に比べて被縫製物Ob´よりも離れた場所に位置する。より具体的に説明すると、図9中段の白丸(○)印で陽に示すように、一般的な電子ミシンの中押さえ135´は、かまの剣先が上糸のループを掬うタイミングdで被縫製物を押圧するように正弦波状の軌跡で駆動される。特に、一般的な電子ミシンであって中押さえ135´が主軸モータを駆動源とする場合は、図9下段に示すような中押さえの駆動パターンを実現することが困難である。一方、図8では、中押さえ135を中押さえモータ136により独立に駆動するので、縫い針131が上死点に位置するタイミングa´のときに、中押さえ135を被縫製物Obに対して距離dloだけ離れた位置で停止させることができる。 In FIG. 7, the inner presser 135 'of a general electronic sewing machine is driven in a sine wave of almost the same phase as the drive trajectory of the sewing needle 131'. For this reason, when the sewing needle 131 'is located at the top dead center, the sewing needle 131' is located at a position further away than the sewn article Ob 'compared to FIG. More specifically, as shown by the open circle (o) in the middle of FIG. 9, the inner presser 135 'of the general electronic sewing machine is sewn at timing d when the hook tip of the hook takes over the upper thread loop. It is driven with a sinusoidal trajectory so as to press an object. In particular, when the middle presser 135 'uses a main spindle motor as a drive source in a general electronic sewing machine, it is difficult to realize the drive pattern of the middle presser as shown in the lower part of FIG. On the other hand, in FIG. 8, since the middle presser 135 is independently driven by the middle presser motor 136, the distance between the middle presser 135 and the workpiece Ob at the timing a 'at which the sewing needle 131 is located at the top dead center. It can be stopped at a position separated by dlo.
ところで、上糸T´又は上糸Tには、天秤の小孔が上昇することに伴い被縫製物Ob´と小孔との間で張力が発生する。本発明は、専用の検出器を追加すること無く、該張力の大きさを縫製動作中の中押さえモータ136の挙動に基づき検出することで縫製品質を保証することを主目的とする。そこで、本発明に係るミシン100は、上糸Tと中押さえ135が接触するように被縫製物Obを保持する搬送機構P1を駆動する。そして、図8に示すように、天秤の小孔が上昇する期間に中押さえ135を被縫製物Obに対して距離dloだけ離れた位置で停止させることで、上糸T´よりも上糸Tが中押さえモータ136に与える負荷の影響を大きくすることを特徴とする。 By the way, in the upper thread T 'or the upper thread T, tension is generated between the sewn article Ob' and the small hole as the small hole of the balance rises. The main object of the present invention is to guarantee the sewing quality by detecting the magnitude of the tension based on the behavior of the inner presser motor 136 during the sewing operation without adding a dedicated detector. Therefore, the sewing machine 100 according to the present invention drives the transport mechanism P1 for holding the workpiece Ob so that the upper thread T and the middle presser 135 are in contact with each other. Then, as shown in FIG. 8, the upper presser foot 135 is stopped at a position separated by a distance dlo from the workpiece Ob during a period in which the small hole of the balance is lifted, whereby the upper thread T 'is higher than the upper thread T'. The present invention is characterized in that the influence of the load exerted on the middle presser motor 136 is increased.
次に、図10に基づき、本実施の形態に係るミシン100が上糸張力を検出する際の縫製動作及び搬送動作について記載する。 Next, based on FIG. 10, the sewing operation and the conveying operation when the sewing machine 100 according to the present embodiment detects the upper thread tension will be described.
図10は、ミシン100が滑り板106の上面で被縫製物Obに対して、n針以上(n≧3)の縫製動作を繰り返し行う際の(n-1)針目以降における被駆動体の駆動波形を示す。より具体的に、同図は、上から順に、縫い針131の針孔133aの位置、かま132の剣先の回転角度、中押さえ135の位置、天秤133の小孔133aの位置、搬送機構P1で搬送する被縫製物のX軸方向の位置、搬送機構P1で搬送する被縫製物のY軸方向の位置を示す。 FIG. 10 shows the drive of the driven object at the (n-1) th and subsequent stitches when the sewing machine 100 repeatedly performs the sewing operation of n stitches or more (n ≧ 3) on the workpiece Ob on the upper surface of the slide plate 106. Indicates a waveform. More specifically, in the figure, sequentially from the top, the position of the needle hole 133a of the sewing needle 131, the rotation angle of the sword tip of the bar 132, the position of the middle presser 135, the position of the small hole 133a of the balance 133, and the transport mechanism P1. The position of the workpiece to be transported in the X-axis direction and the position of the workpiece to be transported by the transport mechanism P1 in the Y-axis direction are shown.
まず、図10の最上段に示すように、主軸モータ134を駆動源とする縫い針131の針孔131aは図9と同様の軌跡を描き、タイミングaで上死点、タイミングbで被縫製物へ挿針、タイミングcで下死点、タイミングeで被縫製物から抜針される。タイミングdは、かま132の剣先が上糸ループを掬うときであり、黒丸(●)印はこのときの縫い針131の位置を陽に示している。また、図9と同様に、縫い針131のストロークはlhである。 First, as shown in the top row of FIG. 10, the needle hole 131a of the sewing needle 131 having the spindle motor 134 as a drive source draws the same trajectory as that of FIG. Needle insertion, bottom dead center at timing c, needle withdrawal from the workpiece at timing e. The timing d is when the tip of the hook 132 crawls the upper thread loop, and the black circle (●) marks indicate the position of the sewing needle 131 at this time. Further, as in FIG. 9, the stroke of the sewing needle 131 is lh.
次に、図10の上から二段目は、主軸モータ134を駆動源とするかま132の回転角度を示しており、かま132の駆動波形は振幅lkの正弦波となる。本実施の形態では、全回転かまを採用するので、かま132の回転波形は縫い針131の位置波形に比べて周波数が二倍となる。図中の黒丸(●)印は、上糸に形成されるループをかま132の剣先が掬うときのかま132の回転角度を陽に示している。かま132の剣先により捕捉された上糸Tは、かま132が回転角度aから数えて一回転半するタイミングiで、かま132による捕捉から解除される。 Next, the second stage from the top of FIG. 10 shows the rotation angle of the bite 132 with the spindle motor 134 as the drive source, and the drive waveform of the bite 132 is a sine wave of amplitude l k. In the present embodiment, since the full rotation bite is adopted, the rotational waveform of the bite 132 is twice as high in frequency as the position waveform of the sewing needle 131. The black circle (●) mark in the figure positively indicates the rotation angle of the bite 132 when the tip of the bite 132 crawls the loop formed on the upper thread. The upper thread T captured by the tip of the hook 132 is released from capture by the hook 132 at timing i when the hook 132 counts from the rotation angle a one and a half rotations.
次に、図10の上から三段目は、主軸モータ134を駆動源とする天秤133の小孔133aの位置波形である。天秤133の小孔133aは、主軸モータ134の1回転を1周期とし、主軸モータ134の回転がタイミングhのときに上死点となり、タイミングiのときに下死点となるように駆動する。タイミングhは、天秤駆動機構140が揺動する回転中心を機械的に調整することで、主軸モータ134が回転し始めてから縫い針131が被縫製物Obに挿針されるまでの間、すなわち主軸モータ134の回転角度がaからbまでの間に存在するよう設計する。本実施の形態において、タイミングhは、タイミングaから主軸モータ134が60度回転した角度とする。 Next, the third row from the top of FIG. 10 shows the position waveform of the small hole 133 a of the balance 133 which uses the spindle motor 134 as a drive source. The small hole 133a of the balance 133 is driven such that one rotation of the spindle motor 134 is one cycle, the top dead center is at the timing h of the spindle motor 134, and the bottom dead center is at the timing i. The timing h is by mechanically adjusting the rotation center at which the balance drive mechanism 140 swings, from when the spindle motor 134 starts rotating until the sewing needle 131 is inserted into the workpiece Ob, ie, the spindle The rotation angle of the motor 134 is designed to exist between a and b. In the present embodiment, the timing h is an angle at which the spindle motor 134 has rotated 60 degrees from the timing a.
一方、小孔133aが下死点となるタイミングiは、かま132の回転角度がaから1回転半したタイミングとする。なぜならば、主軸モータ134の回転角度iのときに、かま12による上糸の補足が解除され始めるためである。仮に、かま132による上糸の補足が解除される前に小孔133aを引き上げた場合は、天秤133が上昇する際に生じる張力に上糸Tが耐えきれず、上糸が解れる、又は上糸が切れる問題が生じる。また、本実施の形態において、タイミングiは、タイミングaから主軸モータ134が270度回転した角度とする。したがって、天秤133の小孔133aは、(N-1)針目の縫製動作にあって、タイミングhからタイミングiまでの期間tdに下降し、タイミングiからN針目のタイミングh´までの期間tuに上昇する。期間tdと期間tuとの間にはtd>tuの関係がある。 On the other hand, the timing i at which the small hole 133a reaches the bottom dead center is the timing at which the rotation angle of the barrel 132 is one and a half from a. This is because, at the rotation angle i of the spindle motor 134, the complementing of the upper thread by the bite 12 starts to be released. If the small hole 133a is pulled up before the complement of the upper thread by the hook 132 is released, the upper thread T can not withstand the tension generated when the balance 133 is raised, or the upper thread is unwound or The problem of thread breakage occurs. Further, in the present embodiment, the timing i is an angle obtained by rotating the spindle motor 134 by 270 degrees from the timing a. Therefore, the small hole 133a of the balance 133 falls in a period td from the timing h to the timing i during the sewing operation of the (N-1) th stitch, and in a period tu from the timing i to the timing h 'of the Nth needle. To rise. There is a relationship of td> tu between the period td and the period tu.
次に、図10の上から四段目は、図9の最下段と同様に、中押さえモータ136を駆動源とする中押さえ135の底面部の位置を示している。中押さえ135は、中押さえモータ136が回転することによって上死点から下降を始めた後、縫い針131が被縫製物Obに挿針されるタイミングbまでの間に、被縫製物Obの上面へ当接するよう駆動する。被縫製物Obが伸縮性の無い素材で構成される場合は、中押さえ135が下降して被縫製物Obに当接したときの高さで中押さえ135は被縫製物Obを押圧する。この場合、中押さえの下死点は、中押さえ135の底面部が被縫製物Obに当接したときの高さであり、中押さえ135は上死点から下死点までストロークloで上下動する。 Next, the fourth row from the top of FIG. 10 shows the position of the bottom portion of the middle presser 135 using the middle presser motor 136 as a drive source, as in the lowermost stage of FIG. The middle presser 135 starts lowering from the top dead center by the rotation of the middle presser motor 136, and the upper surface of the sewn article Ob until the timing b when the sewing needle 131 is inserted into the sewn article Ob. Drive to abut on. When the sewn article Ob is formed of a non-stretchable material, the middle presser 135 presses the sewn article Ob at the height when the middle presser 135 descends and abuts on the sewn article Ob. In this case, the bottom dead center of the middle presser is the height when the bottom portion of the middle presser 135 abuts on the sewn article Ob, and the middle presser 135 moves up and down with stroke lo from the top dead center to the bottom dead center. Do.
被縫製物Obが伸縮性に富む素材で構成される場合は、中押さえ135が下降して被縫製物Obを圧縮した高さで中押さえ135は被縫製物Obを押圧する。この場合、中押さえの下死点は、被縫製物Obを圧縮したときの高さである。そして、中押さえ135は、縫い針131が被縫製物Obに挿針される前から被縫製物Obを押圧し始め、縫い針131が抜針された後に被縫製物Obから距離dloだけ上昇する。 When the sewn article Ob is formed of a material having high elasticity, the middle presser 135 descends and the middle presser 135 presses the sewn article Ob at a height at which the sewn article Ob is compressed. In this case, the bottom dead center of the middle presser is the height when the sewn article Ob is compressed. Then, the middle presser 135 starts pressing the material to be sewn Ob before the sewing needle 131 is inserted into the material to be sewn Ob and ascends the distance dlo from the material to be sewn Ob after the needle 131 is withdrawn. .
次に、図10の上から五段目は、X軸モータ113で駆動する保持装置122のX軸方向の位置波形である。保持装置122は被縫製物Obを保持するので、この位置波形は被縫製物ObのX軸方向の位置波形に等しい。図中の記号lxは、1針の間にX軸方向へ移動する保持装置122の移動距離である。保持装置122は、被縫製物Obを傷つけたり針折れを発生させたりしないように、縫い針131が被縫製物Obに挿針されている間は静止し、縫い針131が被縫製物Obから抜針された後、再び被縫製物Obに挿針されるまでの間に駆動する。 Next, the fifth row from the top of FIG. 10 shows the position waveform of the holding device 122 driven by the X-axis motor 113 in the X-axis direction. Since the holding device 122 holds the workpiece Ob, this position waveform is equal to the position waveform of the workpiece Ob in the X-axis direction. The symbol lx in the figure is the movement distance of the holding device 122 moving in the X-axis direction between one needle. The holding device 122 stands still while the sewing needle 131 is being inserted into the sewing object Ob so that the sewing object Ob is not damaged or the needle breakage occurs, and the sewing needle 131 is moved from the sewing object Ob After the needle removal, it is driven until it is again inserted into the sewing material Ob.
本実施の形態では、中押さえモータの挙動から天秤上昇時の上糸張力を検出するため、天秤133の小孔133aが上昇する間に上糸Tが中押さえ135に接触するようにXYステージ111を駆動する。このため、縫い針131が被縫製物Obから抜針されるタイミングeから小孔133aが上昇し始めるタイミングiまでの間にX軸モータ113を駆動する。したがって、X軸モータ113は、(N-1)針目においてタイミングeからタイミングiまでの期間tmに回転し、タイミングiからN針目のタイミングe´までの期間tsで停止する。 In this embodiment, in order to detect the upper thread tension at the time of lifting the balance from the behavior of the middle pressing motor, the XY stage 111 so that the upper thread T contacts the middle pressing 135 while the small hole 133a of the balance 133 is lifted. Drive. Therefore, the X-axis motor 113 is driven from the timing e at which the sewing needle 131 is pulled out of the workpiece Ob to the timing i at which the small hole 133a starts to rise. Therefore, the X-axis motor 113 rotates for a period tm from the timing e to the timing i at the (N-1) th needle, and stops at a period ts from the timing i to the timing e 'for the Nth needle.
次に、図10の上から六段目は、Y軸モータ114で駆動する保持装置122のY軸方向の位置波形である。保持装置122は被縫製物Obを保持するので、この位置波形は被縫製物ObのY軸方向の位置波形に等しい。図中の記号lyは、1針の間にY軸方向へ移動する保持装置122の移動距離である。本実施の形態では、Y軸モータ114をX軸モータ113と同じ位置波形で駆動する。 Next, the sixth row from the top of FIG. 10 is a position waveform of the holding device 122 driven by the Y-axis motor 114 in the Y-axis direction. Since the holding device 122 holds the workpiece Ob, this position waveform is equal to the position waveform of the workpiece Ob in the Y-axis direction. The symbol ly in the figure is the movement distance of the holding device 122 moving in the Y-axis direction between one needle. In the present embodiment, the Y-axis motor 114 is driven with the same position waveform as the X-axis motor 113.
被縫製物ObをX軸方向とY軸方向にそれぞれlxとly駆動するとき、XYステージ111の移動距離L、すなわち縫い目のピッチは下記数式1で求まる。 When the workpiece Ob is ly driven with lx in the X-axis direction and the Y-axis direction, the movement distance L of the XY stage 111, that is, the pitch of the seam can be obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
また、中押さえ135の貫通孔135aの底面部が半径rの円であり、縫い針131が貫通孔135aの中心で上下動するとき、移動距離Lが半径rよりも大きければ、中押さえ135と上糸Tが接触するようにXYステージを駆動させることができる。 When the bottom of the through hole 135a of the middle presser 135 is a circle of radius r and the sewing needle 131 moves up and down at the center of the through hole 135a, if the movement distance L is larger than the radius r, the middle presser 135 and The XY stage can be driven so that the upper thread T contacts.
なお、図14に示す被縫製物Obと上糸Tが成す角度θを小さくすることにより、上糸Tが中押さえモータ136に与える負荷の影響を大きくすることができる。角度θは数式2で求まる。 By reducing the angle θ formed by the sewing object Ob and the upper thread T shown in FIG. 14, the influence of the load exerted on the middle pressing motor 136 by the upper thread T can be increased. The angle θ can be obtained by Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
角度θを小さくするには、(L-r)を大きくするか、中押さえを上昇させる距離dloを小さくすれば良い。
(PF軸モータ制御演算部1A3による張力検出動作)
In order to reduce the angle θ, it is sufficient to increase (L−r) or to decrease the distance dlo for raising the middle presser.
(Tension detection operation by PF axis motor control calculation unit 1A3)
次に、図11から図13に基づき、上糸Tの張力が中押さえモータ136に与える負荷を、制御盤122AのPF軸モータ制御演算部1A3で検出する構成と動作について詳細に説明する。 Next, the configuration and operation of detecting the load that the tension of the upper thread T applies to the middle presser motor 136 by the PF-axis motor control calculation unit 1A3 of the control panel 122A will be described in detail with reference to FIGS.
図11に示すように、制御盤122AのPF軸モータ制御演算部1A3は、中押さえモータ136の回転を制御するPF軸偏差抑制部1A3aと、電流制御部1A3bと、ミシン100の縫製動作時に上糸張力を監視する張力監視部1A3cと、を備える。 As shown in FIG. 11, the PF-axis motor control calculation unit 1A3 of the control panel 122A controls the rotation of the middle presser motor 136 at the time of sewing operation of the PF axis deviation suppression unit 1A3a, the current control unit 1A3b, and the sewing machine 100. And a tension monitoring unit 1A3c that monitors the yarn tension.
PF軸偏差抑制部1A3aは、指令生成部1A1から出力される中押さえモータ136の回転指令であるPF軸指令信号と、中押さえモータ136が備える回転情報検出器150から出力される回転情報であるPF軸回転信号と、張力監視部1A3cから出力される張力監視信号とを入力として、PF軸指令信号とPF軸回転信号との差分が0になるように中押さえモータ136を駆動するPF軸モータ駆動信号を出力する。電流制御部1A3bは、PF軸モータ駆動信号に基づき中押さえモータ136を回転させるPF軸制御電流を生成し、中押さえモータ136へ供給する。そして張力監視部1A3cは、PF軸モータ駆動信号に基づき、天秤133の小孔133aが上動することで上糸に発生する張力を検出し、操作盤121の表示器121aとPF軸偏差抑制手段1A3aへ張力監視信号を出力する。 The PF axis deviation suppression unit 1A3a is a PF axis command signal that is a rotation command of the middle pressing motor 136 output from the command generation unit 1A1, and rotation information output from the rotation information detector 150 included in the middle pressing motor 136. PF axis motor that drives middle presser motor 136 so that the difference between the PF axis command signal and the PF axis rotation signal becomes 0 with the PF axis rotation signal and the tension monitoring signal output from tension monitoring unit 1A3 c as input Output a drive signal. The current control unit 1A3b generates a PF-axis control current for rotating the middle presser motor 136 based on the PF-axis motor drive signal, and supplies it to the middle presser motor 136. Then, the tension monitoring unit 1A3c detects the tension generated in the upper thread by the small hole 133a of the balance 133 moving upward based on the PF axis motor drive signal, and the indicator 121a of the operation panel 121 and the PF axis deviation suppressing means Output tension monitor signal to 1A3a.
図12に示すように、PF軸モータ制御演算部1A3のPF軸偏差抑制部1A3aは、スイッチa1と、差分器a2と、偏差抑制補償器a3と、を備える。 As shown in FIG. 12, the PF axis deviation suppression unit 1A3a of the PF axis motor control calculation unit 1A3 includes a switch a1, a differentiator a2, and a deviation suppression compensator a3.
スイッチa1は、指令生成部1A1が出力するPF軸指令信号と張力監視部1A3cが出力する張力監視信号とを入力として、ミシン100が縫製作業を実行している最中に糸切れや上糸張力のばらつきが発生したことを検知すると、張力監視信号に基づきPF軸指令信号の値の変化を停止させることにより、縫製不良の発生と連動させて中押さえモータを停止させる。スイッチa1と同様の機能を、主軸指令信号、X軸指令信号、そしてY軸指令信号に対して設けることにより、縫製不良の発生と連動させてミシン全体の動作を停止させても良い。このようにすることで、縫製不良の発生後にミシン100が余分な縫製動作を行うことを防止することができる。 The switch a1 receives the PF axis command signal output from the command generation unit 1A1 and the tension monitoring signal output from the tension monitoring unit 1A3c as input, and thread breakage or upper thread tension occurs while the sewing machine 100 is performing the sewing operation When it is detected that the variation in the value of &lt; &apos; &gt; occurs, the change of the value of the PF axis command signal is stopped based on the tension monitoring signal to stop the middle pressing motor in conjunction with the occurrence of the sewing defect. By providing the same function as the switch a1 for the main spindle command signal, the X axis command signal, and the Y axis command signal, the operation of the entire sewing machine may be stopped in conjunction with the occurrence of the sewing defect. By doing this, it is possible to prevent the sewing machine 100 from performing an extra sewing operation after the occurrence of a sewing failure.
差分器a2は、スイッチa1が出力するPF軸指令信号と、回転情報検出器150が出力するPF軸回転信号との差分を計算して偏差信号を出力する。偏差抑制補償器a3は、偏差信号が0へ収束するようにPF軸モータ136を駆動するPF軸モータ駆動信号を出力する。偏差抑制補償器a3は、偏差信号を0へ収束させるため、比例演算を行う比例補償器と、積分演算を行う積分補償器と、微分演算を行う微分補償器との内、少なくとも1つを備える。本実施の形態では、比例補償器及び積分補償器によるPI制御を偏差抑制補償器a3に採用するものとして記載する。 The subtractor a2 calculates a difference between the PF axis command signal output from the switch a1 and the PF axis rotation signal output from the rotation information detector 150, and outputs a deviation signal. The deviation suppression compensator a3 outputs a PF axis motor drive signal for driving the PF axis motor 136 so that the deviation signal converges to zero. The deviation suppression compensator a3 includes at least one of a proportional compensator performing proportional operation, an integral compensator performing integral operation, and a differential compensator performing differential operation to cause the deviation signal to converge to 0. . In this embodiment, PI control by a proportional compensator and an integral compensator is described as being adopted in the deviation suppression compensator a3.
そして、図13に示すように、PF軸モータ制御演算部1A3の張力監視部1A3cは、フィルタ処理部c1と、記録部c2と、比較器c3と、を備える。 Then, as shown in FIG. 13, the tension monitoring unit 1A3c of the PF-axis motor control calculation unit 1A3 includes a filter processing unit c1, a recording unit c2, and a comparator c3.
フィルタ処理部c1は、上糸張力の検出精度を改善するため、主軸モータ134の回転周波数よりも高いPF軸モータ駆動信号の周波数成分を低減する演算と、主軸モータ134の回転周波数よりも低いPF軸モータ駆動信号の周波数成分を低減する演算と、の何れか1つ又は両方の演算を施すことにより評価信号を算出して出力する。また、フィルタ処理部c1では、PF軸モータ駆動信号の位相を操作する位相フィルタや振幅を変更する比例演算を施しても良い。位相フィルタを用いることで、回転情報検出器150の検出遅れや通信遅れを補正し、張力の検知時刻の精度を向上できる。また、ゲインを乗じて振幅を変更する比例演算を施すことで、評価信号を任意の検出仕様へ正規化することができる。 The filter processing unit c1 performs calculation to reduce the frequency component of the PF axis motor drive signal higher than the rotation frequency of the spindle motor 134 to improve the detection accuracy of the upper thread tension, and PF lower than the rotation frequency of the spindle motor 134 An evaluation signal is calculated and output by performing one or both of the operations for reducing the frequency component of the axis motor drive signal. In the filter processing unit c1, a phase filter for operating the phase of the PF axis motor drive signal or a proportional operation for changing the amplitude may be performed. By using the phase filter, it is possible to correct the detection delay and communication delay of the rotation information detector 150 and improve the accuracy of the tension detection time. Further, the evaluation signal can be normalized to an arbitrary detection specification by performing a proportional operation of changing the amplitude by multiplying the gain.
記録部c2は、一針前の縫製作業を行う間にフィルタ処理部c1が出力する評価信号を記録し、この記録した評価信号を現在の縫製タイミングと同期するように時刻を合わせて出力する。つまり、記録部c2は、一針に要する時間を逓倍した時間分の遅延を発生させる遅延計算機でも良い。 The recording unit c2 records an evaluation signal output from the filter processing unit c1 while performing a sewing operation one stitch before, and outputs the recorded evaluation signal in synchronization with the current sewing timing. That is, the recording unit c2 may be a delay computer that generates a delay corresponding to a time obtained by multiplying the time required for one hand.
比較器c3は、記録部c2から出力される一針前の評価信号に対して、フィルタ処理部c1が出力する現在の評価信号の変化率が閾値よりも大きい又は小さいことを通知する張力監視信号を出力する。 The comparator c3 is a tension monitoring signal notifying that the rate of change of the current evaluation signal output from the filter processing unit c1 is larger or smaller than the threshold value with respect to the evaluation signal one stitch before output from the recording unit c2. Output
例えば、一定形状の被縫製物Obに対して同一方向の縫い目を形成するときにあって、ミシン100の縫製動作及び搬送動作が正常に行われて縫製不良が発生しない場合には、上糸Tの張力が中押さえ135を介して中押さえモータ136に与える負荷は均一である。この場合、上述した評価信号の変化率は小さく(理想的には一定)となる。一方、上述した評価信号の変化率が大きい場合は、一針毎の上糸張力がばらついており、糸調子及び縫い締り精度が一定でないことを検知することができる。また、上糸Tから中押さえモータ136へ負荷が付与されず、評価信号が0となる場合は、上糸Tが中押さえ135に接触していないので糸切れの発生を検知することができる。このように、評価信号の変化率に対して閾値を設定することにより、上糸張力のばらつきに基づく縫製品質を定量的に評価することができる。 For example, when forming stitches in the same direction on a sewn article Ob having a predetermined shape, when the sewing operation and the conveying operation of the sewing machine 100 are normally performed and no sewing defect occurs, the upper thread T The load applied to the middle presser motor 136 via the middle presser 135 is uniform. In this case, the rate of change of the evaluation signal described above is small (ideally constant). On the other hand, when the rate of change of the evaluation signal described above is large, it is possible to detect that the upper thread tension for each needle is dispersed and that the thread tension and the tightening accuracy are not constant. Further, when no load is applied from the upper thread T to the middle pressing motor 136 and the evaluation signal becomes 0, since the upper thread T is not in contact with the middle pressing 135, occurrence of thread breakage can be detected. Thus, by setting the threshold value for the rate of change of the evaluation signal, it is possible to quantitatively evaluate the sewing quality based on the variation of the upper thread tension.
なお、比較器c3は、入力される一針前の評価信号の最大値、最小値、平均値などの特徴量を計算して、現在の評価信号と比較しても良い。このようにすることで、一針前に対する現在の評価信号の変化率を把握し易くすることができる。例えば、該変化率は、(N-1)針目のタイミングiからN針目のタイミングh´の期間に記録した評価信号の最大値及び最小値を100%及び0%と正規化して、N針目のタイミングi´から(N+1)針目のタイミングh″までの最大値と最小値がどの程度低下しているかを比較器703により評価することで計算できる。 The comparator c3 may calculate feature amounts such as the maximum value, the minimum value, and the average value of the evaluation signal of the previous one-hand input, and compare it with the current evaluation signal. By doing this, it is possible to easily grasp the rate of change of the current evaluation signal with respect to the previous step. For example, the change rate normalizes the maximum value and the minimum value of the evaluation signal recorded in the period from the timing i of the (N-1) th needle to the timing h 'of the Nth needle to 100% and 0%. It can be calculated by evaluating how much the maximum value and the minimum value from the timing i ′ to the timing h ′ ′ of the (N + 1) th needle decrease by the comparator 703.
また、上記の閾値は、縫い方向や被縫製物の形状に起因した一針毎のばらつきを考慮して設定することが望ましい。また、ミシン100の使用者が試し縫いによる事前の試験動作を通じて、入力装置121dにより該閾値を制御盤122Aの外部から設定できるように、操作盤121及び制御盤122Aを構成しても良い。例えば、操作盤121の記憶装置121cに該閾値を記録し、プロセッサ121bや図示しない通信用回路を通じて制御盤121AのPF軸モータ制御演算部1A3へ伝送する構成を採用することができる。このようにすることで、ミシン100の使用者の要求に合わせて縫製品質の良否の判断基準を変更することができる。 Moreover, it is desirable to set the above-mentioned threshold value in consideration of the variation for each needle caused by the sewing direction and the shape of the workpiece. In addition, the control panel 121 and the control panel 122A may be configured such that the user of the sewing machine 100 can set the threshold from the outside of the control panel 122A by the input device 121d through a preliminary test operation by trial sewing. For example, a configuration may be employed in which the threshold value is recorded in the storage device 121c of the control panel 121 and transmitted to the PF axis motor control calculation unit 1A3 of the control panel 121A through the processor 121b or a communication circuit (not shown). By doing this, it is possible to change the judgment criteria of the quality of the sewing quality in accordance with the request of the user of the sewing machine 100.
また、張力検出部1A3cは、PF軸モータ駆動信号を入力としたが、PF軸制御電流やPF軸回転信号を入力として、張力監視信号を演算し出力しても良い。 In addition, although the tension detection unit 1A3c receives the PF-axis motor drive signal as an input, the tension monitoring signal may be calculated and output using the PF-axis control current or the PF-axis rotation signal as an input.
また、張力検出部1A3cは、PF軸モータ駆動信号及びPF軸回転信号を入力とする外乱オブザーバを構成して、中押さえモータ136及び中押さえ駆動機構の数式モデルに基づき中押さえモータ135に付与される上糸張力を推定しても良い。 Tension detection unit 1A3c forms a disturbance observer that receives a PF axis motor drive signal and a PF axis rotation signal, and is applied to middle presser motor 135 based on a mathematical model of middle presser motor 136 and a middle presser drive mechanism. Upper thread tension may be estimated.
また、上糸張力の一針毎のばらつきが小さくなるように、プリテンション162及びメインテンション163によって上糸Tに付与する張力を、張力監視信号に基づき制御しても良い。 In addition, the tension applied to the upper thread T by the pretension 162 and the main tension 163 may be controlled based on the tension monitoring signal so that the variation in needle thread tension of the upper thread is reduced.
以上に説明したように、実施の形態1に係るミシン100は、上糸Tが中押さえ135に接触するように被縫製物Obを駆動し、天秤133の小孔133aが上昇する間に上糸Tが中押さえ135を介して中押さえモータ136に付与する負荷をPF軸モータ駆動信号に基づき検出するので、小孔133aの上昇により上糸に付与される上糸張力の一針毎のばらつきを検知することができる。 As described above, the sewing machine 100 according to the first embodiment drives the sewn article Ob so that the upper thread T contacts the middle presser 135, and the upper thread is lifted while the small hole 133a of the balance 133 is lifted. Since T detects the load applied to the middle presser motor 136 via the middle presser 135 based on the PF axis motor drive signal, the upper thread tension applied to the upper thread by the rise of the small hole 133a causes the needle thread variation. It can be detected.
したがって、実施の形態1に係るミシン100は、該上糸張力のばらつきに基づき良否を判断可能な糸調子や縫い締り精度といった縫製品質を保証しながら縫い目を形成することができる。 Therefore, the sewing machine 100 according to the first embodiment can form stitches while assuring sewing quality such as thread tension and threading accuracy with which it is possible to determine the quality based on the variation in upper thread tension.
また、実施の形態1に係るミシン100は、一針毎に縫製品質を保証しながら縫い目を形成するので、縫製不良が発生した縫い目を特定することができる。 Further, since the sewing machine 100 according to the first embodiment forms the seam while guaranteeing the sewing quality for each needle, it is possible to identify the seam in which the sewing failure has occurred.
実施の形態1に係るミシン100は、上糸Tから中押さえモータ136へ負荷が付与されない場合に糸切れを検知することができる。 The sewing machine 100 according to the first embodiment can detect thread breakage when no load is applied from the upper thread T to the middle pressing motor 136.
また、実施の形態1に係るミシン100は、中押さえモータ135の駆動制御信号であるPF軸モータ駆動信号に基づき前記の上糸張力を検出するので、追加部品の少ない簡素な構成で縫製動作を行いながら糸切れの発生を監視し、さらに糸調子や縫い締り精度といった縫製品質を保証することができる。 In addition, since the sewing machine 100 according to the first embodiment detects the upper thread tension based on the PF axis motor drive signal which is a drive control signal of the inner press motor 135, the sewing operation is performed with a simple configuration with few additional parts. It is possible to monitor the occurrence of thread breakage while doing, and to guarantee sewing quality such as thread tension and tightening accuracy.
また、実施の形態1に係るミシン100は、専用の検出器を上糸経路に設けて上糸張力を検出する場合に比べて、アーム部周辺におけるスペースや組み立ての容易性を確保し易く、ミシン頭部の設計自由度を広げることができる。 In addition, the sewing machine 100 according to the first embodiment can easily secure the space around the arm and the ease of assembly compared to the case where a dedicated detector is provided in the upper thread path and upper thread tension is detected. The head design freedom can be expanded.
実施の形態2.
図14に基づき、実施の形態2に係るミシン100の構成と動作について説明する。図14は、実施の形態2に係るミシンの動作を示すタイミングチャートである。
Second Embodiment
The configuration and operation of the sewing machine 100 according to the second embodiment will be described based on FIG. FIG. 14 is a timing chart showing the operation of the sewing machine according to the second embodiment.
実施の形態2に係るミシン100は、搬送装置P1が備えるXYステージ111で駆動する保持装置112のX軸方向及びY軸方向の駆動波形が実施の形態1に係るミシン100と異なる。その他の構成及び動作については実施の形態1に係るミシン100と同じである。同様の部分については説明を省略する。 The sewing machine 100 according to the second embodiment differs from the sewing machine 100 according to the first embodiment in the drive waveforms in the X-axis direction and the Y-axis direction of the holding device 112 driven by the XY stage 111 included in the transport device P1. The other configuration and operation are the same as those of the sewing machine 100 according to the first embodiment. Descriptions of similar parts will be omitted.
上述した実施の形態1のXYステージ111は、タイミングeからタイミングiまでの間にX軸モータ113を駆動するので、主軸モータ134の回転数が高く一針の縫製時間が短い場合やXYステージ111の移動距離Lが長い場合は、保持装置112を高速高精度に駆動する必要がある。このようにXYステージを高速高精度化するには、機構の高剛性化や駆動源の高出力化が必要であり高コストとなる。そこで、本実施の形態では、以下のように保持装置112の駆動方法を変更する。 The XY stage 111 according to the first embodiment described above drives the X-axis motor 113 between timing e and timing i. Therefore, the number of rotations of the spindle motor 134 is high, and the sewing time of one needle is short. In the case where the moving distance L is long, it is necessary to drive the holding device 112 at high speed and high accuracy. As described above, in order to increase the speed and accuracy of the XY stage, it is necessary to increase the rigidity of the mechanism and the output of the driving source, which results in high cost. Therefore, in the present embodiment, the driving method of the holding device 112 is changed as follows.
図14の上段に示すように、X軸モータ113を駆動源とする保持装置122は、(N-1)針目の縫製動作においてタイミングeから移動を開始し、N針目のタイミングb´までに移動を完了して停止する。したがって、X軸モータ113は、(N-1)針目においてタイミングbからタイミングeまでの期間tsに停止し、タイミングeからN針目のタイミングb´までの期間tmで回転する。保持装置122が停止するタイミングは、タイミングeからタイミングbまでの期間内であれば良い。 As shown in the upper part of FIG. 14, the holding device 122 having the X-axis motor 113 as a drive source starts moving from timing e in the sewing operation of the (N−1) th stitch and moves by the timing b ′ of the N th stitch. Complete and stop. Therefore, the X-axis motor 113 stops at the period ts from the timing b to the timing e at the (N-1) th needle and rotates at the period tm from the timing e to the timing b 'of the Nth needle. The timing at which the holding device 122 stops may be within the period from the timing e to the timing b.
また、図14の下段は、Y軸モータ114で駆動する保持装置122のY軸方向の位置波形である。Y軸モータ114は、X軸モータ113が回転する期間tmで回転する。 The lower part of FIG. 14 is a position waveform of the holding device 122 driven by the Y-axis motor 114 in the Y-axis direction. The Y-axis motor 114 rotates in a period tm in which the X-axis motor 113 rotates.
実施の形態2に係るミシン100は、X軸モータ113及びY軸モータ114の駆動時間を長くすることができるので、主軸モータ134の回転数が高く一針の縫製時間が短い場合やXYステージ111の移動距離Lが長い場合にあっても、上糸が中押さえ135を介して中押さえモータ136へ付与する負荷を検出することができる。したがって、実施の形態2に係るミシン100は、このような場合にあっても、小孔133aの上昇により上糸に付与される上糸張力の一針毎のばらつきを検知することができ、該上糸張力のばらつきに基づき良否を判断可能な糸調子や縫い締り精度といった縫製品質を保証しながら縫い目を形成することができる。 The sewing machine 100 according to the second embodiment can lengthen the drive time of the X-axis motor 113 and the Y-axis motor 114, so that the rotation speed of the spindle motor 134 is high and the sewing time of one needle is short. Even when the moving distance L is long, the load applied by the upper thread to the middle presser motor 136 via the middle presser 135 can be detected. Therefore, even in such a case, the sewing machine 100 according to the second embodiment can detect variations in needle thread tension applied to the upper thread by raising the small holes 133a. Stitches can be formed while guaranteeing sewing quality such as thread tension and tightness with which it is possible to judge the quality based on the variation in upper thread tension.
実施の形態3.
図15と図16に基づき、実施の形態3に係るミシン100の構成と動作について説明する。図15は、実施の形態3に係るミシンの張力検出動作の課題を示すイメージ図である。図16は、実施の形態3に係るミシンの動作を示すタイミングチャートである。
Third Embodiment
The configuration and operation of the sewing machine 100 according to the third embodiment will be described based on FIGS. 15 and 16. FIG. 15 is an image diagram showing a task of tension detection operation of the sewing machine according to the third embodiment. FIG. 16 is a timing chart showing the operation of the sewing machine according to the third embodiment.
実施の形態3に係るミシン100は、搬送装置P1が備えるXYステージ111で駆動する保持装置112のX軸方向及びY軸方向の駆動波形が実施の形態1又は2に係るミシン100と異なり、その他の構成及び動作については実施の形態1又は2に係るミシン100と同じである。同様の部分については説明を省略する。 The sewing machine 100 according to the third embodiment differs from the sewing machine 100 according to the first or second embodiment in the drive waveforms in the X axis direction and the Y axis direction of the holding device 112 driven by the XY stage 111 included in the conveyance device P1. The configuration and operation of the second embodiment are the same as the sewing machine 100 according to the first or second embodiment. Descriptions of similar parts will be omitted.
まず、図15に基づき、本実施の形態に係るミシンが解決する課題について説明する。本実施の形態では、上述した実施の形態1及び2に比べて、縫い針131及び上糸Tの直径が太い場合を想定する。このため図15では、図7及び図8に比べて縫い針131及び上糸Tの直径を太くし、さらに中押さえ135の貫通孔135aの半径rを大きく描いている。 First, problems to be solved by the sewing machine according to the present embodiment will be described based on FIG. In the present embodiment, it is assumed that the diameters of the sewing needle 131 and the upper thread T are larger than those in the first and second embodiments described above. For this reason, in FIG. 15, the diameters of the sewing needle 131 and the upper thread T are made larger than in FIGS. 7 and 8, and the radius r of the through hole 135a of the inner presser 135 is drawn larger.
図15(a)、(b)は、上述した実施の形態1のタイミングチャート(図10)に基づいてミシン100を駆動する場合に、縫い針131が上死点となるタイミングa´の状態を示している。図15(a)では、XYステージの移動距離Lよりも貫通孔135aの半径rが小さいので、図10のタイミングチャートに示したX軸方向及びY軸方向の波形パターンでXYステージを駆動すると、タイミングa´で上糸Tが中押さえ135に問題なく接触する。したがって、図15(a)では、天秤133の小孔133aが上昇する間に上糸Tが中押さえ135を介して中押さえモータ136に付与する負荷をPF軸モータ駆動信号に基づき検出することができる。 FIGS. 15A and 15B show the state of timing a ′ at which the sewing needle 131 becomes the top dead center when the sewing machine 100 is driven based on the timing chart (FIG. 10) of the first embodiment described above. It shows. In FIG. 15A, since the radius r of the through hole 135a is smaller than the movement distance L of the XY stage, if the XY stage is driven with the waveform pattern in the X axis direction and Y axis direction shown in the timing chart of FIG. At timing a ', the upper thread T contacts the middle presser 135 without any problem. Therefore, in FIG. 15A, while the small hole 133a of the balance 133 is lifted, the load applied to the middle presser motor 136 by the upper thread T via the middle presser 135 can be detected based on the PF axis motor drive signal. it can.
しかしながら、図15(b)では移動距離Lよりも半径rが大きいので、図10及び図14のタイミングチャートに示したX軸方向及びY軸方向の波形パターンで保持装置122を駆動しても、小孔133aの上昇時に上糸Tと中押さえ135の底面部とを接触させることができない。上糸Tと中押さえ135の底面部とを接触させるためには、貫通孔135aの半径rが最小となる中押さえを使用することが望ましいが、中押さえの種類を多数用意し、縫い針131及び上糸Tの太さに応じて半径rが最小の中押さえへ付け替えることは効率的でない上、限界がある。そこで、本実施の形態では、以下のようにXYステージの駆動パターンを変更する。 However, since the radius r is larger than the movement distance L in FIG. 15B, even if the holding device 122 is driven with the waveform patterns in the X-axis direction and the Y-axis direction shown in the timing charts of FIGS. The upper thread T can not be brought into contact with the bottom of the middle presser 135 when the small hole 133a is lifted. In order to bring the upper thread T into contact with the bottom of the middle presser 135, it is desirable to use an inner presser in which the radius r of the through hole 135a is minimum. In addition, it is not efficient and there is a limit to replacing the middle presser with the smallest radius r depending on the thickness of the upper thread T. Therefore, in the present embodiment, the drive pattern of the XY stage is changed as follows.
図16上段の太線で示すように、X軸モータ113を駆動源とする保持装置122はN針目の縫い目を形成するため、(N-1)針目の搬送動作においてタイミングeからX軸方向に移動を開始し、タイミングiまでに移動を完了し停止する。このときの移動距離lxxは、数式3で求まる角度θが30度以下になるように貫通孔135aの半径rよりも大きくする。 As indicated by the thick line in the upper part of FIG. 16, the holding device 122 having the X-axis motor 113 as the drive source forms the seam of the Nth stitch, and moves in the X axis direction from timing e in the conveyance operation of the (N-1) th stitch. Start and finish moving by time i and stop. The movement distance lxx at this time is made larger than the radius r of the through hole 135a so that the angle θ obtained by Equation 3 becomes 30 degrees or less.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
次いで、保持装置122は、天秤133の小孔133aが上昇するタイミングiからh´の期間tssにおいて停止することで、上糸Tが中押さえ135の底面部に接触するように被縫製物Obを保持する。そして、小孔133aが上昇し終えたタイミングh´から縫い針131が被縫製物Obに挿針されるタイミングb´までの期間に、N針目の縫い目を形成する所定の位置へ移動する。そして、保持装置122は、縫い針131が被縫製物Obに挿針されるタイミングb´から抜針されるタイミングe´までの期間tsで停止する。タイミングe´以降は、(N+1)縫い目を形成するために同様の動作を繰り返し実行する。 Next, the holding device 122 stops the sewn article Ob so that the upper thread T contacts the bottom surface portion of the middle presser 135 by stopping in a period tss from the timing i to h 'when the small hole 133a of the balance 133 rises. Hold. Then, in a period from the timing h 'when the small hole 133a has finished rising to the timing b' when the sewing needle 131 is inserted into the workpiece Ob, the needle is moved to a predetermined position for forming the Nth stitch. Then, the holding device 122 stops in a period ts from the timing b 'at which the sewing needle 131 is inserted into the workpiece Ob to the timing e' at which the needle 131 is withdrawn. After timing e ′, the same operation is repeatedly performed to form the (N + 1) seam.
一方、図16下段の太線は、Y軸モータ114を駆動源とする保持装置122のY軸方向の駆動波形を示す。同図において、Y軸モータ114はX軸モータと同様の駆動波形を示す。 On the other hand, the thick line in the lower part of FIG. 16 shows the drive waveform in the Y-axis direction of the holding device 122 having the Y-axis motor 114 as a drive source. In the figure, the Y-axis motor 114 shows the same drive waveform as the X-axis motor.
なお、(N-1)針目とN針目の縫い目はX軸方向にlx、Y軸方向にly離れているので、タイミングh´からタイミングb´までの期間に移動する距離はX軸方向(lxx-lx)、Y軸方向に(lyy-ly)となり、XYステージの移動距離L2は数式4で求まる。 Since the (N-1) th stitch and the Nth stitch are lx in the X-axis direction and ly in the Y-axis direction, the distance for moving from the timing h 'to the timing b' is the X-axis direction (lxx It becomes (lyy-ly) in the Y-axis direction, and the movement distance L 2 of the XY stage can be obtained by Expression 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
したがって、X軸方向の移動距離lxxが貫通孔135aの半径rよりも十分に大きい場合は、Y軸モータの駆動波形を変更する必要はないため、移動距離lyyをlyとしても良い。すなわち、数式5で求まる距離L2が半径rよりも十分大きくなるようにlxxとlyyを決定すれば良い。 Therefore, when the movement distance lxx in the X-axis direction is sufficiently larger than the radius r of the through hole 135a, it is not necessary to change the drive waveform of the Y-axis motor, and the movement distance lyy may be ly. That is, it is sufficient to determine lxx and lyy so that the distance L2 obtained by Equation 5 is sufficiently larger than the radius r.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
また、主軸モータ134の回転数が高く一針の縫製時間が短い場合やXYステージ111の移動距離Lが長い場合は、タイミングeからiまでの期間が短くなる。このため、図16の太破線で示すように、上糸Tが中押さえ135の底面部と接触するのであれば、タイミングeからタイミングh´までの期間内で保持装置122が停止するタイミングを変更しても良い。 When the number of rotations of the spindle motor 134 is high and the sewing time of one needle is short, or when the moving distance L of the XY stage 111 is long, the period from the timing e to i becomes short. For this reason, as shown by the thick broken line in FIG. 16, if the upper thread T contacts the bottom surface portion of the middle presser 135, the timing at which the holding device 122 stops within the period from timing e to timing h 'is changed. You may.
実施の形態3に係るミシン100は、縫い針131や上糸Tの太さに起因して、縫い目のピッチよりも中押さえ135の貫通孔135aの半径rが大きい場合にあっても、小孔133aが上昇する期間に、上糸Tが中押さえ135の底面部に接触するように保持装置122を駆動する。したがって、実施の形態3に係るミシン100は、このような場合にあっても、小孔133aの上昇により上糸に付与される上糸張力の一針毎のばらつきを検知することができ、該上糸張力のばらつきに基づき良否を判断可能な糸調子や縫い締り精度といった縫製品質を保証しながら縫い目を形成することができる。 The sewing machine 100 according to the third embodiment is a small hole even when the radius r of the through hole 135a of the middle presser 135 is larger than the stitch pitch due to the thickness of the sewing needle 131 and the upper thread T. The holding device 122 is driven so that the upper thread T comes into contact with the bottom surface of the middle presser 135 during the period when 133 a moves up. Therefore, even in such a case, the sewing machine 100 according to the third embodiment can detect variations in needle thread tension applied to the upper thread by raising the small holes 133a. Stitches can be formed while guaranteeing sewing quality such as thread tension and tightness with which it is possible to judge the quality based on the variation in upper thread tension.
なお、本実施の形態では、中押さえ135の貫通孔135aが半径rの円形の底面部を有することを前提としたが、貫通孔135aの底面部の形状が円形でない中押さえを使用する場合にあっても、本発明に係る上糸張力の検出手段に基づく品質保証を実施することができる。 In the present embodiment, it is assumed that the through hole 135a of the middle presser 135 has a circular bottom portion with a radius r, but when using the middle presser whose shape of the bottom of the through hole 135a is not circular. Even if it is, quality assurance based on the upper thread tension detection means according to the present invention can be implemented.
実施の形態4.
図17と図18に基づき、実施の形態4に係るミシン100の構成と動作について説明する。図17は、実施の形態4に係るミシンのPF軸モータ制御演算部の詳細を示すブロック図である。図18は、実施の形態4に係るミシンのPF軸偏差抑制部の詳細を示すブロック図である。
Fourth Embodiment
The configuration and operation of the sewing machine 100 according to the fourth embodiment will be described based on FIGS. 17 and 18. FIG. 17 is a block diagram showing details of a PF axis motor control calculation unit of the sewing machine according to the fourth embodiment. FIG. 18 is a block diagram showing details of the PF axis deviation suppression unit of the sewing machine according to the fourth embodiment.
実施の形態4に係るミシン100は、操作盤121が備える記憶装置121cに記憶させるデータと、制御盤122Bが備えるPF軸偏差抑制部1B3aとが実施の形態1から3に係るミシン100と異なり、その他の構成及び動作については実施の形態1から3に係るミシン100と同じである。同様の部分については説明を省略する。 The sewing machine 100 according to the fourth embodiment differs from the sewing machine 100 according to the first to third embodiments in the data to be stored in the storage device 121c of the operation panel 121 and the PF axis deviation suppression unit 1B3a of the control panel 122B. The other configuration and operation are the same as those of the sewing machine 100 according to the first to third embodiments. Descriptions of similar parts will be omitted.
まず、図17に基づき、実施の形態4に係るミシン100が操作盤121と制御盤121Bとの間で通信するデータについて説明する。操作盤121の記憶装置121cは、ミシン100の使用者が入力装置121dを用いて入力するパラメータD2を記憶して、パラメータD2を制御盤122Bへ出力する。パラメータD2は、操作盤121が備えるプロセッサ121bの命令に基づき、図示しない通信回路を介して制御盤122Bへ伝送される。制御盤122BのPF軸偏差抑制部1B3aは、パラメータD2を受信してPF軸偏差抑制部1B3aの内部の制御パラメータを変更する。 First, data that the sewing machine 100 according to the fourth embodiment communicates between the operation panel 121 and the control panel 121B will be described based on FIG. The storage device 121c of the control panel 121 stores the parameter D2 input by the user of the sewing machine 100 using the input device 121d, and outputs the parameter D2 to the control panel 122B. The parameter D2 is transmitted to the control panel 122B via a communication circuit (not shown) based on an instruction of the processor 121b included in the control panel 121. The PF axis deviation suppressor 1B3a of the control board 122B receives the parameter D2 and changes control parameters inside the PF axis deviation suppressor 1B3a.
次に、図18に基づき、PF軸偏差抑制部1B3aの詳細を説明する。PF軸偏差抑制部1B3aは、PF軸指令信号とPF軸回転信号と張力監視信号とパラメータD2とを入力としてPF軸モータ駆動信号を出力する。PF軸偏差抑制部1B3aの偏差抑制補償器a3は、PF軸指令信号とPF軸回転信号との差分が0になるように中押さえモータ136の回転を制御する。図18において、比例補償器及び積分補償器によるPI制御を偏差抑制補償器a3に採用し、偏差信号をSe、PF軸モータ駆動信号をSdとすると、偏差抑制補償器の伝達関数は数式6で表現できる。 Next, the details of the PF axis deviation suppression unit 1B3a will be described with reference to FIG. The PF axis deviation suppression unit 1B3a receives a PF axis command signal, a PF axis rotation signal, a tension monitoring signal, and a parameter D2 and outputs a PF axis motor drive signal. The deviation suppression compensator a3 of the PF axis deviation suppression unit 1B3a controls the rotation of the middle pressing motor 136 so that the difference between the PF axis command signal and the PF axis rotation signal becomes zero. In FIG. 18, assuming that PI control by a proportional compensator and an integral compensator is adopted as the deviation suppression compensator a3 and the deviation signal is Se and the PF axis motor drive signal is Sd, the transfer function of the deviation suppression compensator is It can be expressed.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
ただし、記号kpは比例制御ゲイン、記号Tiは積分時定数、そして記号sはラプラス演算子である。PF軸偏差抑制部1B3aの内部の制御パラメータであるkp及びTiの値は、外部から入力されるパラメータD2に基づき変更される。 Here, the symbol kp is a proportional control gain, the symbol Ti is an integration time constant, and the symbol s is a Laplace operator. The values of kp and Ti which are control parameters inside the PF axis deviation suppression unit 1B3a are changed based on the parameter D2 input from the outside.
具体的に、パラメータD2は、比例制御ゲインkpを変更することにより偏差信号Seの振幅を、積分時定数Tiを変更することにより偏差信号Seの振幅及び位相をそれぞれ操作する。本実施の形態に係るミシン100は、かま132が上糸Tの捕捉を解除した後から天秤133の動作にともない小孔113aが上昇する期間に、すなわち中押さえ135が被縫製物Obから上昇し上糸Tと接触する可能性がある期間に、パラメータD2に基づき比例制御ゲインkpを小さく、又は積分時定数Tiを長く変更する。 Specifically, the parameter D2 manipulates the amplitude of the deviation signal Se by changing the proportional control gain kp, and manipulates the amplitude and phase of the deviation signal Se by changing the integration time constant Ti. In the sewing machine 100 according to the present embodiment, the middle presser 135 ascends from the workpiece Ob during a period in which the small hole 113a rises with the operation of the balance 133 after the hook 132 releases the capture of the upper thread T. During a period of contact with the upper thread T, the proportional control gain kp is made smaller or the integral time constant Ti is changed longer based on the parameter D2.
実施の形態4に係るミシン100は、パラメータD2に基づき比例制御ゲインkpを小さく、又は積分時定数Tiを長く変更するので、上糸Tが中押さえ135に接触する期間に中押さえモータ136の外力に対する応答を緩慢にすることができる。このようにすることで、上糸Tが中押さえ135を支点として引き上げられる際に上糸Tと中押さえ135との間で生じる摩擦力を低減することができる。したがって、本実施の形態に係るミシン100のPF軸偏差抑制部1B3aは、上糸張力を検出する際に、上糸Tが中押さえ135との間の摩擦力により切断されたり解れたりしないように中押さえモータ136を駆動することができる。 Since the sewing machine 100 according to the fourth embodiment reduces the proportional control gain kp or changes the integral time constant Ti long based on the parameter D2, the external force of the middle presser motor 136 is in a period when the upper thread T contacts the middle presser 135. The response to can be slowed. By doing this, it is possible to reduce the frictional force generated between the upper thread T and the middle presser 135 when the upper yarn T is pulled up with the middle presser 135 as a fulcrum. Therefore, when detecting the upper thread tension, PF axis deviation suppression portion 1B3a of sewing machine 100 according to the present embodiment prevents upper thread T from being cut or broken due to the frictional force with middle presser 135. The middle presser motor 136 can be driven.
実施の形態1から4に係るミシン100の制御盤が備える各機能は処理回路を用いて実現することができる。各機能とは、指令生成部1A1及びPF軸モータ制御演算部1A3である。図19は、実施の形態1から4に係るミシンの制御盤の第1のハードウェア構成例を示す図である。図20は、実施の形態1から4に係るミシンの制御盤の第2のハードウェア構成例を示す図である。図19には専用処理回路190のような専用のハードウェアにより上記の処理回路を実現する例が示される。図20にはプロセッサ191及び記憶装置192により上記の処理回路を実現する例が示される。 Each function of the control panel of the sewing machine 100 according to the first to fourth embodiments can be realized using a processing circuit. The respective functions are the command generation unit 1A1 and the PF axis motor control calculation unit 1A3. FIG. 19 is a diagram showing a first hardware configuration example of a control board of a sewing machine according to the first to fourth embodiments. FIG. 20 is a diagram showing a second hardware configuration example of the control board of the sewing machine according to the first to fourth embodiments. FIG. 19 shows an example in which the above processing circuit is realized by dedicated hardware such as the dedicated processing circuit 190. FIG. 20 shows an example in which the above processing circuit is realized by the processor 191 and the storage device 192.
図18に示すように専用のハードウェアを利用する場合、専用処理回路190は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。上記の各機能のそれぞれを、処理回路で実現しても良いし、まとめて処理回路で実現しても良い。
図20に示すようにプロセッサ191及び記憶装置192を利用する場合、上記の各機能のそれぞれは、ソフトウェア、ファームウェア又はこれらの組合せにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、記憶装置192に記憶される。プロセッサ191は記憶装置192に記憶されたプログラムを読み出して実行する。またこれらのプログラムは、上記の各機能のそれぞれが実行する手順及び方法をコンピュータに実行させるものであるとも言える。記憶装置192は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(登録商標)(Erasable Programmable Read Only Memory)、又はEEPROM(Electrically Erasable Programmable Read Only Memory)といった半導体メモリが該当する。半導体メモリは不揮発性メモリでも良いし揮発性メモリでも良い。また記憶装置192は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disc)が該当する。
When dedicated hardware is used as shown in FIG. 18, the dedicated processing circuit 190 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application specific integrated circuit (ASIC), an FPGA (field) A programmable gate array) or a combination thereof is applicable. Each of the above-described functions may be realized by a processing circuit, or may be realized collectively by a processing circuit.
When the processor 191 and the storage device 192 are used as shown in FIG. 20, each of the functions described above is realized by software, firmware or a combination thereof. The software or firmware is described as a program and stored in the storage device 192. The processor 191 reads out and executes the program stored in the storage device 192. It can also be said that these programs cause a computer to execute the procedures and methods performed by each of the above functions. The storage device 192 is a semiconductor memory such as a random access memory (RAM), a read only memory (ROM), a flash memory, an EPROM (registered trademark) (Erasable Programmable Read Only Memory), or an Electrically Erasable Programmable Read Only Memory (EEPROM). Do. The semiconductor memory may be a non-volatile memory or a volatile memory. In addition to the semiconductor memory, the storage device 192 corresponds to a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
上述した実施の形態に示した構成では、上糸より中押さえ135に付与される負荷をPF軸モータ駆動信号に基づき検出したが、本発明はこれに限定されず、中押さえ135に付与される負荷を検出するための検出素子を中押さえ駆動機構151に設けてもよい。 In the configuration shown in the embodiment described above, the load applied to the middle presser 135 from the upper thread is detected based on the PF-axis motor drive signal, but the present invention is not limited to this and the load applied to the middle presser 135 A detection element for detecting a load may be provided in the middle pressing drive mechanism 151.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
100 ミシン、101 アーム、102 主軸モータケース、103 ミシン頭部、104 ベッド、105 支持脚、106 滑り板、111 XYステージ、112 保持装置、112a 送り板、112b 外押さえ、112c 押さえ台、112d エアシリンダ、113 X軸モータ、114 Y軸モータ、115 X軸駆動機構、115a 移動レース、116 Y軸駆動機構、116aY軸ガイド、117、118、137、150 回転情報検出器、121 操作盤、121a 表示器、121b、191 プロセッサ、121c、192 記憶装置、D1 縫製パターンデータ、121d 入力装置、122、122A 制御盤、123 フットスイッチ、1A1 指令生成部、1A2 主軸モータ制御演算部、1A3 PF軸モータ制御演算部、1A4 X軸モータ制御演算部、1A5 Y軸モータ制御演算部、131、131´ 縫い針、131a、131a´ 針孔、132 かま、133 天秤、133a、131a´ 小孔、134 主軸モータ、135、135´ 中押さえ、135a、135a´ 貫通孔、136 中押さえモータ、138 カップリング、139 上軸、140 天秤駆動機構、141 針棒駆動機構、142 針棒、143 ボビンケース、144 上軸プーリ、145 タイミングベルト、146 下軸プーリ、147 大径ギヤ、148 小径ギヤ、149 下軸、151 中押さえ駆動機構、152 ピニオン、153 ラック、154 スライドガイド、155 スライダ、156 中押さえ棒抱き、157 中押さえ棒、158 糸巻きスタンド、159 糸巻き、160、161、164、165、166 上糸ガイド、162 プリテンション、163 メインテンション、190 専用処理回路、a1 スイッチ、a2 差分器、a3 偏差抑制補償器、c1 フィルタ処理部、c2 記録部、c3 比較器、T、T´ 上糸、Td、Td´ 下糸、Ob、Ob´ 被縫製物。 DESCRIPTION OF SYMBOLS 100 sewing machine, 101 arm, 102 main spindle motor case, 103 sewing machine head, 104 bed, 105 support leg, 106 slide plate, 111 XY stage, 112 holding device, 112a feed plate, 112b outer presser, 112c presser base, 112d air cylinder , 113 X axis motor, 114 Y axis motor, 115 X axis drive mechanism, 115a moving race, 116 Y axis drive mechanism, 116a Y axis guide, 117, 118, 137, 150 rotation information detector, 121 operation panel, 121a display , 121b, 191 processor, 121c, 192 memory device, D1 sewing pattern data, 121d input device, 122, 122A control panel, 123 foot switch, 1A1 command generation unit, 1A2 spindle motor control arithmetic operation unit, 1A3 PF axis motor control operation unit, 1A4 X axis motor control operation unit, 1A5 Y axis motor control operation unit, 131, 131 ′ sewing needle, 131a, 131a ′ needle hole, 132 bite, 133 balance, 133a, 131a ′ small hole, 134 spindle motor, 135, 135 'middle presser, 135a, 135a' through hole, 136 middle presser motor, 138 coupling, 139 upper shaft, 140 balance drive mechanism, 141 needle bar drive mechanism, 142 needle bar, 143 bobbin case, 144 upper shaft pulley, 145 timing belt, 146 lower shaft pulley, 147 large diameter gear, 148 small diameter gear, 149 lower shaft, 151 middle pressing drive mechanism, 152 pinion, 153 rack, 154 slide guide, 155 slider, 156 middle pressing bar Hugging, 157 pressed inside Bar, 158 pin winding stand, 159 pin winding, 160, 161, 164, 165, 166 upper thread guide, 162 pretension, 163 main tension, 190 dedicated processing circuit, a1 switch, a2 differencer, a3 deviation suppression compensator, c1 filter Processing unit, c2 recording unit, c3 comparator, T, T 'upper thread, Td, Td' lower thread, Ob, Ob 'material to be sewn.

Claims (11)

  1. 縫い針の針孔に挿通された上糸を捕捉することで前記上糸と下糸とを絡ませるかまと、
    前記上糸を挿通する小孔を有し、前記小孔が下死点から上死点まで上昇することにより前記上糸を縫製対象である被縫製物から引き上げる天秤と、
    前記被縫製物の浮き上がりを防止する中押さえと、
    前記中押さえを駆動する駆動源と、
    前記被縫製物を搬送する搬送手段と、
    前記搬送手段が前記被縫製物を搬送する際に前記上糸が前記中押さえに接触することにより、前記上糸より前記中押さえに付与される負荷に基づき上糸張力を監視する張力監視部と、
    を備えるミシン。
    A bite for entangling the upper thread and the lower thread by capturing the upper thread inserted into the needle hole of the sewing needle,
    A balance having a small hole through which the upper thread is inserted, and the small hole raising the upper thread from a material to be sewn as the small hole rises from the bottom dead center to the top dead center;
    An inner press to prevent lifting of the sewing material,
    A drive source for driving the middle presser,
    Transport means for transporting the sewing material;
    A tension monitoring unit that monitors an upper thread tension based on a load applied from the upper thread to the middle presser when the upper thread contacts the middle presser when the transport means transports the sewn material; ,
    Sewing machine equipped with
  2.  前記張力監視部は、前記上糸張力を、前記駆動源へ付与される負荷に基づき検出する
    請求項1に記載のミシン。
    The sewing machine according to claim 1, wherein the tension monitoring unit detects the upper thread tension based on a load applied to the drive source.
  3. 前記張力監視部は、前記かまが前記上糸の捕捉を解除した後から前記小孔が上死点に達するまでの期間の前記上糸張力を監視する請求項1または2に記載のミシン。
    3. The sewing machine according to claim 1, wherein the tension monitoring unit monitors the upper thread tension in a period from when the hook releases the upper thread until it reaches the top dead center.
  4. 前記張力監視部は、前記上糸張力が外部から入力される基準値よりも大きい又は小さいときに縫製不良を通知する縫製不良信号を出力する請求項1から3のいずれかに記載のミシン。
    The sewing machine according to any one of claims 1 to 3, wherein the tension monitoring unit outputs a sewing failure signal for notifying a sewing failure when the upper thread tension is larger or smaller than a reference value input from the outside.
  5. 前記張力監視部は、前記上糸張力を一針毎に記録する記録部を備え、
    一針毎の前記上糸張力のばらつきが外部から入力される基準値よりも大きい又は小さいときに縫製不良を通知する縫製不良信号を出力する請求項1から3のいずれかに記載のミシン。
    The tension monitoring unit includes a recording unit that records the upper thread tension for each needle.
    The sewing machine according to any one of claims 1 to 3, which outputs a sewing failure signal notifying sewing failure when the variation in the upper thread tension for each needle is larger or smaller than a reference value input from the outside.
  6. 前記張力監視部は、前記上糸張力を一針毎に記録する記録部を備え、
    前記記録部が記録した上糸張力と前記張力監視部が監視する上糸張力との差分が設定された閾値よりも大きいときに縫製不良を通知する縫製不良信号を出力する請求項1から3のいずれかに記載のミシン。
    The tension monitoring unit includes a recording unit that records the upper thread tension for each needle.
    The sewing defect signal for notifying a sewing defect is output when the difference between the upper thread tension recorded by the recording unit and the upper thread tension monitored by the tension monitoring unit is larger than a set threshold value. The sewing machine according to any one.
  7. 前記かまが前記上糸の捕捉を解除した後から前記小孔が上昇する期間に、前記被縫製物に対して前記中押さえを一定の高さで停止させる前記駆動源の駆動指令を生成する指令生成器を備える請求項1から6のいずれかに記載のミシン。
    A command to generate a drive command of the drive source to stop the inner presser at a certain height for the sewing material during a period when the small hole rises after the hook releases the capture of the upper thread The sewing machine according to any one of claims 1 to 6, comprising a generator.
  8. 前記駆動源の駆動状態と前記駆動指令との差分により求める偏差信号が0になるように前記駆動源を制御する偏差抑制部を備え、
    前記かまが前記上糸の捕捉を解除した後から前記天秤の動作にともない前記小孔が上昇する期間に、前記偏差抑制部の外部から設定するパラメータにもとづき前記偏差信号の振幅を操作する比例演算器のゲインを小さくする請求項7に記載のミシン。
    And a deviation suppression unit that controls the drive source such that a deviation signal obtained from a difference between the drive state of the drive source and the drive command is zero.
    Proportional operation for manipulating the amplitude of the deviation signal based on a parameter set from the outside of the deviation suppression unit during a period in which the small hole rises with the operation of the balance after the hook releases the capture of the upper thread The sewing machine according to claim 7, wherein the gain of the machine is reduced.
  9. 前記駆動源の駆動状態と前記駆動指令との差分により求める偏差信号が0になるように前記駆動源を制御する偏差抑制部を備え、
    前記かまが前記上糸の捕捉を解除した後から前記天秤の動作にともない前記小孔が上昇する期間に、前記偏差抑制部の外部から設定するパラメータにもとづき前記偏差信号の振幅及び位相を操作する積分演算器の積分時定数を長くする請求項7に記載のミシン。
    And a deviation suppression unit that controls the drive source such that a deviation signal obtained from a difference between the drive state of the drive source and the drive command is zero.
    The amplitude and phase of the deviation signal are manipulated based on a parameter set from the outside of the deviation suppression unit during a period in which the small hole rises with the operation of the balance after the hook releases the capture of the upper thread. The sewing machine according to claim 7, wherein the integration time constant of the integration operator is increased.
  10. 前記張力監視部が監視する上糸張力に基づき縫製不良を検知して、前記縫い針と、前記かまと、前記天秤と、前記押さえと、前記搬送手段の何れか一つ又は複数を停止させる請求項1から9のいずれかに記載のミシン。
    A sewing failure is detected based on the upper thread tension monitored by the tension monitoring unit, and one or more of the sewing needle, the hook, the balance, the presser, and the conveying means are stopped. The sewing machine according to any one of Items 1 to 9.
  11. 前記張力監視部が監視する上糸張力に基づき縫製不良を検知して、縫製不良が発生したことを表示する表示器を備える請求項1から10のいずれかに記載のミシン。 The sewing machine according to any one of claims 1 to 10, further comprising an indicator for detecting a sewing failure based on the upper thread tension monitored by the tension monitoring unit, and displaying that the sewing failure has occurred.
PCT/JP2017/031065 2017-08-30 2017-08-30 Sewing machine WO2019043813A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017008004.5T DE112017008004B4 (en) 2017-08-30 2017-08-30 sewing machine
PCT/JP2017/031065 WO2019043813A1 (en) 2017-08-30 2017-08-30 Sewing machine
CN201780094214.1A CN111065773B (en) 2017-08-30 2017-08-30 Sewing machine
JP2018544292A JP6477987B1 (en) 2017-08-30 2017-08-30 sewing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031065 WO2019043813A1 (en) 2017-08-30 2017-08-30 Sewing machine

Publications (1)

Publication Number Publication Date
WO2019043813A1 true WO2019043813A1 (en) 2019-03-07

Family

ID=65525154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031065 WO2019043813A1 (en) 2017-08-30 2017-08-30 Sewing machine

Country Status (4)

Country Link
JP (1) JP6477987B1 (en)
CN (1) CN111065773B (en)
DE (1) DE112017008004B4 (en)
WO (1) WO2019043813A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6987325B1 (en) * 2020-08-19 2021-12-22 三菱電機株式会社 Sewing machine, sewing machine data processing device, sewing machine data display device, sewing machine learning device, sewing machine inference device and sewing machine storage device
WO2022038800A1 (en) * 2020-08-19 2022-02-24 三菱電機株式会社 Sewing machine, data processing device for sewing machine, data display device for sewing machine, learning device for sewing machine, inference device for sewing machine, and storage device for sewing machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225852A1 (en) * 2022-05-24 2023-11-30 Abb Schweiz Ag Device and method for thread drawing
CN117151448B (en) * 2023-10-26 2024-01-26 合肥新振智能科技有限公司 Intelligent workshop management system based on digital production platform

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187417A (en) * 2005-01-05 2006-07-20 Juki Corp Sewing machine
JP2009011544A (en) * 2007-07-04 2009-01-22 Juki Corp Sewing machine
JP2009089823A (en) * 2007-10-05 2009-04-30 Juki Corp Thread tension control device of sewing machine
JP2013162859A (en) * 2012-02-10 2013-08-22 Juki Corp Sewing machine
JP2014161461A (en) * 2013-02-25 2014-09-08 Juki Corp Two-needle sewing machine
WO2017175526A1 (en) * 2016-04-04 2017-10-12 三菱電機株式会社 Sewing machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123974A (en) 1982-12-29 1984-07-17 Fujitsu Ltd Vector data storage control system
JPH07661Y2 (en) 1987-07-20 1995-01-11 マツダ株式会社 Exhaust sensor mounting structure for turbocharged engine
JPH07662Y2 (en) 1989-08-09 1995-01-11 本田技研工業株式会社 Exhaust pipe support device
JPH06343784A (en) 1993-06-10 1994-12-20 Brother Ind Ltd Thread tension detector for sewing machine
JP3516024B2 (en) 1993-06-21 2004-04-05 東海工業ミシン株式会社 sewing machine
JPH07662A (en) 1993-06-21 1995-01-06 Brother Ind Ltd Thread tension detecting device for sewing machine
JP3913842B2 (en) 1997-07-02 2007-05-09 Juki株式会社 Sewing presser pressure control device
JPH1147479A (en) 1997-07-29 1999-02-23 Juki Corp Thread tension adjusting device of sewing machine
JP2010069205A (en) * 2008-09-22 2010-04-02 Juki Corp Cloth cutting device of hole stitching machine
JP5208700B2 (en) 2008-12-04 2013-06-12 Juki株式会社 sewing machine
JP5249804B2 (en) 2009-02-03 2013-07-31 エヌエスディ株式会社 Sewing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187417A (en) * 2005-01-05 2006-07-20 Juki Corp Sewing machine
JP2009011544A (en) * 2007-07-04 2009-01-22 Juki Corp Sewing machine
JP2009089823A (en) * 2007-10-05 2009-04-30 Juki Corp Thread tension control device of sewing machine
JP2013162859A (en) * 2012-02-10 2013-08-22 Juki Corp Sewing machine
JP2014161461A (en) * 2013-02-25 2014-09-08 Juki Corp Two-needle sewing machine
WO2017175526A1 (en) * 2016-04-04 2017-10-12 三菱電機株式会社 Sewing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6987325B1 (en) * 2020-08-19 2021-12-22 三菱電機株式会社 Sewing machine, sewing machine data processing device, sewing machine data display device, sewing machine learning device, sewing machine inference device and sewing machine storage device
WO2022038800A1 (en) * 2020-08-19 2022-02-24 三菱電機株式会社 Sewing machine, data processing device for sewing machine, data display device for sewing machine, learning device for sewing machine, inference device for sewing machine, and storage device for sewing machine

Also Published As

Publication number Publication date
CN111065773B (en) 2021-06-11
JP6477987B1 (en) 2019-03-06
CN111065773A (en) 2020-04-24
DE112017008004T5 (en) 2020-07-02
JPWO2019043813A1 (en) 2019-11-07
DE112017008004B4 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6477987B1 (en) sewing machine
TWI611062B (en) Sewing machine
JP6605123B2 (en) sewing machine
JP6031380B2 (en) Double needle sewing machine
JP2016202437A (en) Stitch skipping detection device, sewing machine, stitch skipping detection method and program
US11066767B2 (en) Sewing machine
JP5254047B2 (en) sewing machine
EP2669416A1 (en) Sewing direction control apparatus for sewing machine
JP6552233B2 (en) sewing machine
TWI582286B (en) Sewing machine and control method thereof
US5088429A (en) Sewing machine individually driving needle bar and looper
JP6239209B1 (en) sewing machine
JP2019166039A (en) sewing machine
EP1905879A2 (en) Sewing machine and controller therefor
JP5253992B2 (en) sewing machine
JP2011212137A (en) Sewing machine
JP2020127677A (en) Sewing machine control method and sewing machine controller
JP2023098053A (en) Sewing machine and bobbin thread determination means
JP6975555B2 (en) A sewing device equipped with a sewing thread feed mechanism and a sewing thread feed mechanism of the sewing device.
JP2021000207A (en) sewing machine
CN113463285A (en) Sewing device
JP2021023325A (en) sewing machine
JP2020120714A (en) sewing machine
JP3169734U (en) Skip detection device
KR20140049793A (en) Method for setting thread tension in embroidering machine and embrodering machine threrof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544292

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923672

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17923672

Country of ref document: EP

Kind code of ref document: A1