JP2020120714A - sewing machine - Google Patents

sewing machine Download PDF

Info

Publication number
JP2020120714A
JP2020120714A JP2019012815A JP2019012815A JP2020120714A JP 2020120714 A JP2020120714 A JP 2020120714A JP 2019012815 A JP2019012815 A JP 2019012815A JP 2019012815 A JP2019012815 A JP 2019012815A JP 2020120714 A JP2020120714 A JP 2020120714A
Authority
JP
Japan
Prior art keywords
sewing
thread
tension
thread tension
upper thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019012815A
Other languages
Japanese (ja)
Inventor
宏史 近藤
Hiroshi Kondo
宏史 近藤
雄介 今村
Yusuke Imamura
雄介 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2019012815A priority Critical patent/JP2020120714A/en
Priority to CN202010036051.5A priority patent/CN111485337B/en
Publication of JP2020120714A publication Critical patent/JP2020120714A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B69/00Driving-gear; Control devices
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B65/00Devices for severing the needle or lower thread

Abstract

To provide a sewing machine capable of identifying sewing defects on the basis of needle thread tension.SOLUTION: A sewing machine executes a sewing defect determination process to determine whether or not a sewing defect that normal seams cannot be formed occurs during a sewing operation on the basis of needle thread tension that is the tension of a needle thread. The fluctuation of needle thread tension is repeated with a period by a unit of hour. The sewing defect determination process includes a thread tightening defect determination process (S111), a specific thread breakage determination process (S113), and a specific stitch skipping determination process (S115). In the process, whether or not each of sewing defects has occurred is determined by comparing the needle thread tension that fluctuates in an N-period with the needle thread tension that fluctuates in an (N-1) period by using a thread tightening defect specific threshold value, a first thread breakage specific threshold value, a second thread breakage specific threshold value, a first stitch skipping specific threshold value, and a second specific stitch skipping threshold value which are previously set corresponding to each of the defects.SELECTED DRAWING: Figure 17

Description

本発明は、ミシンに関する。 The present invention relates to sewing machines.

縫製不良が発生したか否かを判断できるミシンが公知である。特許文献1に開示のミシンは、増分検出器と張力測定装置を備える。増分検出器は、上軸の回転に応じたパルス信号を出力する。張力測定装置は、上糸の張力である上糸張力の時間的な変化を示す信号を出力する。ミシンは、増分検出器と張力測定装置の夫々の検出結果に基づき、糸張力関数を取得する。糸張力関数は、上軸角に依存して表す上糸張力を示す。ミシンは、上軸の各回転周期内における糸張力関数と、先行する回転周期における糸張力関数との差(以下、張力差と称す)を取得する。取得した張力差が所定の大きさを超えている時、ミシンは縫製不良が生じたと判断する。 A sewing machine is known that can determine whether a sewing failure has occurred. The sewing machine disclosed in Patent Document 1 includes an incremental detector and a tension measuring device. The incremental detector outputs a pulse signal according to the rotation of the upper shaft. The tension measuring device outputs a signal indicating a temporal change of the upper thread tension, which is the tension of the upper thread. The sewing machine acquires the yarn tension function based on the detection results of the incremental detector and the tension measuring device. The thread tension function represents the needle thread tension expressed depending on the upper axis angle. The sewing machine acquires a difference (hereinafter referred to as a tension difference) between the thread tension function in each rotation cycle of the upper shaft and the thread tension function in the preceding rotation cycle. When the acquired tension difference exceeds a predetermined magnitude, the sewing machine determines that a sewing failure has occurred.

特許第2821048号公報Japanese Patent No. 2821048

縫製不良は、発生後すぐに縫製動作を停止することが好ましい縫製不良と、発生後すぐに縫製動作を停止しなくてもよい可能性を有する縫製不良とを含む。しかし、上記ミシンでは、取得した張力差が、具体的な種々の縫製不良と対応していない。故にミシンは縫製不良を識別できない可能性がある。 The poor sewing includes a poor sewing in which it is preferable to stop the sewing operation immediately after the occurrence, and a poor sewing in which it is not necessary to stop the sewing operation immediately after the occurrence. However, in the above sewing machine, the acquired tension difference does not correspond to various specific sewing defects. Therefore, the sewing machine may not be able to identify poor sewing.

本発明の目的は、上糸張力の変化に基づき縫製不良を識別できるミシンを提供することである。 An object of the present invention is to provide a sewing machine that can identify a sewing failure based on a change in needle thread tension.

本発明のミシンは、縫針を装着する上下動可能な針棒と、前記縫針に挿通する上糸を捕捉して下糸と絡める釜と、前記釜が前記下糸と絡めた前記上糸を引き上げる天秤と、前記縫針へと至る前記上糸の供給経路において前記天秤よりも上流側で前記上糸が通る糸調子皿を有し、前記上糸に張力を付与する糸調子機構と、前記上糸の張力である上糸張力を検出する糸張力検出機構と、前記針棒、前記釜、及び前記天秤を制御して、布に縫製を実行する縫製制御部と、前記縫製制御部による縫製に伴い周期的に変動する前記上糸張力を、前記糸張力検出機構の検出結果に基づき取得する張力取得部と、前記張力取得部に基づき取得した前記上糸張力に基づき、前記縫製制御部による縫製動作中に正常な縫目を形成できない縫製不良が発生したか否かを判断する判断部とを備え、前記判断部は、前記張力取得部に基づき取得したN番目(Nは自然数)周期において変動する前記上糸張力と、一周期において変動する基準となる前記上糸張力である基準上糸張力とを比較することで、前記縫製不良が発生したか否かを判断する特定縫製不良判断部を備えるミシンにおいて、前記張力取得部は、単位を時間とした周期で変動を繰り返す前記上糸張力を周期ごとに取得し、前記特定縫製不良判断部は、前記N番目周期において変動する前記上糸張力と、前記基準上糸張力とを、複数の前記縫製不良の夫々に対応して予め設定した複数の特定閾値を用いて比較することで、前記縫製不良が発生したか否かを判断することを特徴とする。 The sewing machine of the present invention includes a vertically movable needle bar on which a sewing needle is mounted, a hook that catches an upper thread inserted through the sewing needle and entangles it with a lower thread, and the hook pulls up the upper thread entwined with the lower thread. A thread balance mechanism, a thread tension mechanism through which the needle thread passes upstream of the thread balance in the supply path of the needle thread leading to the sewing needle, and a tension mechanism for applying tension to the needle thread; The thread tension detection mechanism that detects the upper thread tension, which is the tension of the sewing machine, the needle bar, the hook, and the balance, and the sewing control section that executes sewing on the cloth; A sewing operation by the sewing control unit based on the tension acquisition unit that acquires the periodically changing upper thread tension based on the detection result of the thread tension detection mechanism, and the upper thread tension acquired based on the tension acquisition unit. And a judgment unit for judging whether or not a sewing failure in which a normal stitch cannot be formed occurs, and the judgment unit changes in the N-th (N is a natural number) cycle acquired based on the tension acquisition unit. A specific sewing failure determination unit that determines whether or not the sewing failure has occurred by comparing the upper thread tension with a reference upper thread tension, which is the upper thread tension that is a reference that changes in one cycle. In the sewing machine, the tension acquisition unit acquires the upper thread tension that repeats fluctuations in units of time for each cycle, and the specific sewing failure determination unit determines the upper thread tension that changes in the Nth cycle. And comparing the reference upper thread tension with a plurality of specific threshold values set in advance corresponding to each of the plurality of sewing defects, thereby determining whether the sewing defect has occurred. And

上記構成によれば、特定縫製不良判断部は、複数の縫製不良に対応して予め設定した複数の特定閾値を用いて縫製不良の発生の有無を判断する。故にミシンは具体的な縫製不良を識別できる。故にミシンは上糸張力の変化に基づき縫製不良を識別できる。 According to the above configuration, the specific sewing failure determination unit determines whether or not the sewing failure has occurred using a plurality of specific threshold values set in advance corresponding to the plurality of sewing failures. Therefore, the sewing machine can identify the specific sewing failure. Therefore, the sewing machine can identify the sewing failure based on the change in the needle thread tension.

前記ミシンでは、前記張力取得部は、前記N番目周期の期間内において、前記上糸張力の一回目のピークが生じる期間である第一期間と、前記上糸張力の二回目のピークが生じる第二期間との間における前記上糸張力である第三上糸張力を基準として、前記第一期間における前記上糸張力である第一上糸張力と、前記第二期間における前記上糸張力である第二上糸張力とを取得してもよい。第三上糸張力は、第一糸張力と第二上糸張力とに対して小さくなり易い。故に第三上糸張力を基準とした第一上糸張力と第二上糸張力は、大きくなり易い。故にミシンは、第一上糸張力と、第二上糸張力とを高い精度で取得できる。 In the sewing machine, the tension acquisition unit has a first period in which a first peak of the upper thread tension occurs and a second peak of the upper thread tension in a period of the Nth cycle. A first upper thread tension which is the upper thread tension in the first period and a upper thread tension in the second period with reference to the third upper thread tension which is the upper thread tension between two periods. The second upper thread tension may be acquired. The third upper thread tension tends to be smaller than the first thread tension and the second upper thread tension. Therefore, the first upper thread tension and the second upper thread tension based on the third upper thread tension tend to be large. Therefore, the sewing machine can acquire the first upper thread tension and the second upper thread tension with high accuracy.

前記ミシンでは、前記縫製不良は、縫製中に前記上糸が切れる糸切れを含み、前記判断部は、前記糸切れが発生したか否かを判断する糸切れ判断部を備え、前記第一期間は、前記釜が前記上糸を捕捉する釜捕捉期間であり、前記第二期間は、前記天秤が前記上糸を引き上げる天秤引上期間であり、前記糸切れ判断部は、前記第一上糸張力が第一閾値以下であり、且つ、前記第二上糸張力が第二閾値以下となる時に、前記糸切れが発生したと判断してもよい。糸切れが発生すると、第一上糸張力は第一閾値以下となり、且つ第二上糸張力は第二閾値以下となる。糸切れ判断部が糸切れの発生の有無を判断できるので、ミシンは、縫製不良として糸切れを識別できる。 In the sewing machine, the poor sewing includes a thread breakage in which the upper thread is cut during sewing, the determination unit includes a thread breakage determination unit that determines whether or not the thread breakage occurs, and the first period Is a shuttle catching period in which the shuttle catches the upper thread, the second period is a balance pull-up period in which the thread take-up pulls the upper thread, and the thread breakage judging unit is configured to detect the first upper thread. It may be determined that the yarn breakage has occurred when the tension is less than or equal to the first threshold and the second upper thread tension is less than or equal to the second threshold. When the yarn breakage occurs, the first upper thread tension becomes less than the first threshold value and the second upper thread tension becomes less than the second threshold value. Since the thread breakage determination unit can judge whether or not the thread breakage has occurred, the sewing machine can identify the thread breakage as a sewing failure.

前記ミシンでは、前記縫製不良は、縫製中に前記釜が前記上糸を捕捉し損ねる目飛びを含み、前記判断部は、前記目飛びが発生したか否かを判断する目飛び判断部を備え、前記目飛び判断部は、前記第一上糸張力が第三閾値以下であり、且つ、前記第二上糸張力が第四閾値以上となる時に、前記目飛びが発生したと判断してもよい。目飛びが発生すると、第一上糸張力は第三閾値以下となり、且つ第二上糸張力は第四閾値以上となる。目飛び判断部が目飛びの発生の有無を判断できるので、ミシンは縫製不良として目飛びを識別できる。 In the sewing machine, the poor sewing includes skip stitches in which the hook catches the upper thread during sewing, and the determination unit includes a skip stitch determination unit that determines whether or not the skip stitches have occurred. The stitch skipping determination unit may determine that the stitch skipping has occurred when the first upper thread tension is equal to or lower than a third threshold and the second upper thread tension is equal to or higher than a fourth threshold. Good. When skipping occurs, the first upper thread tension becomes equal to or lower than the third threshold value, and the second upper thread tension becomes equal to or higher than the fourth threshold value. Since the stitch skipping determination unit can determine whether stitch skipping has occurred, the sewing machine can identify stitch skipping as defective sewing.

前記ミシンでは、前記縫製不良は、前記天秤が前記上糸を引き上げた時の縫目を形成する前記上糸と前記下糸のバランス不良である糸締り不良を含み、前記複数の特定閾値は、第一特定閾値を含み、前記特定縫製不良判断部は、前記N番目周期における前記上糸張力の二回目のピークの発生時機が、前記基準上糸張力における二回目のピークの発生時機に対して前記第一特定閾値以上に早い時に、前記糸締り不良が発生したと判断する糸締り不良判断部を備えてもよい。糸締り不良が発生すると、第二上糸張力の発生時機は早くなる。糸締り不良判断部が糸締り不良の発生の有無を判断できるので、ミシンは、縫製不良として糸締り不良を識別できる。 In the sewing machine, the sewing failure includes a thread tightening failure that is a poor balance between the upper thread and the lower thread that form a stitch when the balance pulls up the upper thread, and the plurality of specific threshold values are The specific sewing failure determination unit includes a first specific threshold value, and when the second peak of the needle thread tension in the N-th cycle occurs, the second peak of the reference needle thread tension occurs. A thread tightening failure determination unit that determines that the thread tightening failure has occurred when the speed is equal to or higher than the first specific threshold may be provided. When the thread tightening failure occurs, the time when the second upper thread tension is generated becomes faster. Since the thread tightening failure determination unit can determine whether or not the thread tightening failure has occurred, the sewing machine can identify the thread tightening failure as a sewing failure.

前記ミシンは、前記針棒と前記天秤を上下動する上軸を備え、前記糸調子機構は、前記糸調子皿を回転する糸調子モータを備え、前記縫製制御部による縫製時、前記上軸の回転速度を取得する速度取得部と、前記速度取得部が取得した前記回転速度が第一速度以下の時、前記糸調子モータを駆動して、前記上糸を巻く巻取方向に前記糸調子皿を回転する糸調子制御部とを備えてもよい。ミシンによる縫製速度が遅い時、第一上糸張力及び第二上糸張力は低くなる。上軸の回転速度が第一速度以下の時、糸調子制御部は糸調子皿を巻取方向に回転するので、上糸の緩みは生じ難い。故に、ミシンは、第一上糸張力と第二上糸張力を生じ易くできる。 The sewing machine includes an upper shaft that moves the needle bar and the balance up and down, the thread tension mechanism includes a thread tension motor that rotates the thread tension disc, and when the sewing control unit performs sewing, When the rotation speed acquired by the speed acquisition unit and the rotation speed acquired by the speed acquisition unit is less than or equal to a first speed, the thread tension motor is driven to wind the needle thread in the winding direction. And a thread tension control unit for rotating. When the sewing speed by the sewing machine is slow, the first needle thread tension and the second needle thread tension are low. When the rotation speed of the upper shaft is equal to or lower than the first speed, the thread tension control unit rotates the thread tension disc in the winding direction, so that the looseness of the upper thread is unlikely to occur. Therefore, the sewing machine can easily generate the first upper thread tension and the second upper thread tension.

前記ミシンは、前記速度取得部が取得した速度に基づく前記回転速度に変化が生じた時、前記複数の特定閾値、前記第一閾値、前記第二閾値、及び前記第三閾値の少なくとも一つの閾値を、前記回転速度の加速度に応じて変更する加速度対応変更部を備えてもよい。上軸の回転速度に変化が生じると、加速度に応じて上糸張力が変化し、縫製不良が生じる時の上糸張力も変化する。該時でも、加速度対応変更部が上軸の回転速度の変化に応じて閾値を変更するので、ミシンは縫製不良を適正に検出できる。 The sewing machine, when a change occurs in the rotation speed based on the speed acquired by the speed acquisition unit, at least one of the plurality of specific thresholds, the first threshold, the second threshold, and the third threshold May be provided with an acceleration correspondence changing unit that changes according to the acceleration of the rotation speed. When the rotation speed of the upper shaft changes, the upper thread tension changes according to the acceleration, and the upper thread tension when sewing failure occurs also changes. Even at this time, the acceleration correspondence changing unit changes the threshold value according to the change in the rotation speed of the upper shaft, so that the sewing machine can properly detect the sewing failure.

前記ミシンは、前記速度取得部が取得した前記回転速度に応じて、前記複数の特定閾値、前記第一閾値、前記第二閾値、及び前記第三閾値の少なくとも一つの閾値を変更する速度対応変更部を備えてもよい。上軸の回転速度に応じて上糸張力は変化し、縫製不良が生じた時の上糸張力も変化する。該時でも、速度対応変更部が上軸の回転速度に応じて閾値を変更するので、ミシンは縫製不良を適正に検出できる。 The sewing machine changes the speed correspondence to change at least one of the plurality of specific thresholds, the first threshold, the second threshold, and the third threshold according to the rotation speed acquired by the speed acquisition unit. You may provide a part. The needle thread tension changes according to the rotation speed of the upper shaft, and the needle thread tension also changes when a sewing failure occurs. Even at this time, the speed correspondence changing unit changes the threshold value according to the rotation speed of the upper shaft, so that the sewing machine can properly detect the sewing failure.

前記ミシンでは、前記判断部は、前記縫製制御部による縫製開始から所定針目の縫製までである縫い始めよりも後に、前記縫製不良の発生の有無を判断してもよい。縫い始め時に第一上糸張力及び第二上糸張力は低くなる。故に、縫い始めに判断部が縫製不良の判断の有無を判断すると、縫製不良が発生していないも関わらず、縫製不良が発生したと判断部が誤って判断する虞がある。判断部は、縫い始めにおける縫製不良の有無を判断しない。故に、縫製不良が発生したと誤って判断するのをミシンは抑制できる。 In the sewing machine, the determination unit may determine whether or not the sewing failure has occurred after the start of sewing, which is from the start of sewing by the sewing control unit to the sewing of a predetermined stitch. At the start of sewing, the first needle thread tension and the second needle thread tension become low. Therefore, if the determination unit determines whether or not there is a sewing failure determination at the start of sewing, the determination unit may erroneously determine that a sewing failure has occurred, even though no sewing failure has occurred. The determination unit does not determine whether or not there is a sewing failure at the beginning of sewing. Therefore, the sewing machine can prevent erroneous determination that a sewing failure has occurred.

前記ミシンでは、前記速度取得部が取得した前記回転速度が第二速度よりも大きい時、前記判断部は、前記縫製不良の発生の有無を判断してもよい。ミシンによる縫製速度が遅い時、第一上糸張力及び第二上糸張力は低く、ミシンは上糸張力に基づいた縫製不良を検出し難い。縫製不良判断部は、上軸の回転速度が第二速度以下の時、縫製不良の有無の判断をしない。故にミシンは縫製不良の有無を更に適正に判断できる。 In the sewing machine, when the rotation speed acquired by the speed acquisition unit is higher than the second speed, the determination unit may determine whether the sewing failure has occurred. When the sewing speed by the sewing machine is slow, the first upper thread tension and the second upper thread tension are low, and it is difficult for the sewing machine to detect a sewing failure based on the upper thread tension. The sewing failure determination unit does not determine whether there is a sewing failure when the rotation speed of the upper shaft is equal to or lower than the second speed. Therefore, the sewing machine can more properly judge the presence or absence of sewing failure.

前記ミシンは、前記上糸と前記下糸を切断する糸切機構と、前記縫製制御部による縫製後、前記糸切機構を制御して前記上糸と前記下糸を切断する糸切制御部を備え、前記糸張力検出機構は、前記上糸と接触し、前記上糸張力に応じて移動する可動部材と、前記可動部材に設けた磁石と、前記磁石の磁束密度を検出し、検出に応じた電圧を出力する磁気センサとを備え、前記張力取得部は、前記磁気センサの出力電圧に基づき、前記上糸張力を取得し、前記張力取得部は、前記糸切制御部による前記上糸と前記下糸の切断時、前記磁気センサの基準となる出力電圧を設定し直すゼロ点調整を実行する調整制御部を備えてもよい。縫製制御部が縫製動作を繰り返すと、磁気センサの出力電圧は基準となる出力電圧に対して大きく変動する虞がある。該時でも、上糸張力が上糸と下糸の切断に伴って低減して磁気センサの出力電圧が低下した時に、調整制御部はゼロ点調整を実行し、ミシンは磁気センサの基準となる出力電圧を設定し直す。故にミシンは、磁気センサの出力電圧に基づき上糸張力を継続的に精度良く取得できる。 The sewing machine includes a thread cutting mechanism for cutting the upper thread and the lower thread, and a thread cutting control section for controlling the thread cutting mechanism to cut the upper thread and the lower thread after sewing by the sewing control section. The thread tension detection mechanism detects a movable member that comes into contact with the upper thread and moves according to the upper thread tension, a magnet provided in the movable member, and a magnetic flux density of the magnet, and detects the detected magnetic flux density. And a magnetic sensor that outputs a voltage, the tension acquisition unit acquires the upper thread tension based on the output voltage of the magnetic sensor, and the tension acquisition unit includes the upper thread and the upper thread by the thread trimming control unit. An adjustment control unit may be provided to execute a zero point adjustment for resetting an output voltage serving as a reference of the magnetic sensor when the bobbin thread is cut. When the sewing control unit repeats the sewing operation, the output voltage of the magnetic sensor may greatly change with respect to the reference output voltage. Even at that time, when the needle thread tension is reduced due to the cutting of the needle thread and the bobbin thread and the output voltage of the magnetic sensor is lowered, the adjustment control unit executes the zero point adjustment, and the sewing machine serves as a reference of the magnetic sensor. Reset the output voltage. Therefore, the sewing machine can continuously and accurately obtain the needle thread tension based on the output voltage of the magnetic sensor.

ミシン1の全体斜視図。The whole perspective view of the sewing machine 1. 頭部5の部分拡大図。The elements on larger scale of the head 5. 主糸調子器60の断面図。Sectional drawing of the main thread tension device 60. 糸張力検出機構130の斜視図。The perspective view of the thread tension detection mechanism 130. ミシン1の電気ブロック図。The electric block diagram of sewing machine 1. 磁気センサ105と増幅回路151の出力電圧を示すグラフ。The graph which shows the output voltage of the magnetic sensor 105 and the amplifier circuit 151. 正常に縫製動作を実行する時の変動張力を示すグラフ。The graph which shows the variable tension at the time of performing sewing operation normally. 糸締り不良が発生した時の変動張力を示すグラフ。The graph which shows the fluctuating tension when the thread tightening failure occurs. 目飛びが発生した時の変動張力を示すグラフ。The graph which shows the fluctuating tension when a skipped stitch occurs. 正常に縫目を形成する時の相関係数を示すグラフ。The graph which shows the correlation coefficient when forming a stitch normally. 糸締り不良が発生した時の相関係数を示すグラフ。The graph which shows the correlation coefficient when a thread tightening defect occurs. 目飛びが発生した時の相関係数を示すグラフ。The graph which shows the correlation coefficient when a skip is generated. 糸切れが発生した時の相関係数を示すグラフ。The graph which shows a correlation coefficient when a thread breakage occurs. 縫製処理の流れ図。Flow chart of the sewing process. 上糸巻取処理の流れ図。The flowchart of an upper thread winding process. 張力取得処理の流れ図。The flowchart of a tension acquisition process. 縫製不良判断処理の流れ図。The flowchart of a sewing defect determination process. 糸締り不良判断処理の流れ図。The flowchart of a thread tightening defect determination process. 特定糸切れ判断処理の流れ図。The flowchart of a specific thread breakage determination process. 特定目飛び判断処理の流れ図。The flowchart of a specific skip determination process. 糸切れ判断処理の流れ図。The flowchart of a thread breakage determination process. 目飛び判断処理の流れ図。The flow chart of the skipped stitch determination process.

本発明の一実施形態であるミシン1を説明する。以下説明は、図中に矢印で示す左右、前後、上下を使用する。 A sewing machine 1, which is an embodiment of the present invention, will be described. In the following description, left and right, front and rear, and up and down indicated by arrows in the drawing will be used.

図1、図2を参照し、ミシン1の構造を説明する。ミシン1はベッド部2、脚柱部3、アーム部4を備える。ベッド部2は作業台の開口に装着し、左右方向に延びる。ベッド部2は上面に針板7を装着する。作業者はベッド部2と針板7に布を載置する。針板7は針穴8と送り歯穴14を備える。針穴8は平面視円形状である。送り歯穴14は前後方向に長径を有し、針穴8の左方、後方、右方、前方の夫々にある。脚柱部3はベッド部2右端から上方に延びる。アーム部4は脚柱部3上端から左方に延び、ベッド部2上面と対向する。アーム部4は前面左右方向略中央部に入力部24と表示部25を備える。本例の入力部24は三つの入力ボタンである。作業者は、表示部25を見ながら入力部24を操作して各種指示を入力する。アーム部4は、上面左側に上方に突出する糸立棒20を備える。糸立棒20は、糸駒から繰り出される上糸6を挿通する。 The structure of the sewing machine 1 will be described with reference to FIGS. 1 and 2. The sewing machine 1 includes a bed section 2, a pillar section 3, and an arm section 4. The bed 2 is attached to the opening of the workbench and extends in the left-right direction. The needle plate 7 is mounted on the upper surface of the bed 2. The operator places the cloth on the bed portion 2 and the needle plate 7. The needle plate 7 has a needle hole 8 and a feed dog hole 14. The needle hole 8 is circular in plan view. The feed dog hole 14 has a major axis in the front-rear direction, and is located on the left, rear, right, and front of the needle hole 8. The pedestal portion 3 extends upward from the right end of the bed portion 2. The arm portion 4 extends leftward from the upper end of the pillar portion 3 and faces the upper surface of the bed portion 2. The arm unit 4 includes an input unit 24 and a display unit 25 at a substantially central portion on the front left-right direction. The input unit 24 in this example is three input buttons. The operator operates the input unit 24 while looking at the display unit 25 to input various instructions. The arm portion 4 includes a thread spool bar 20 protruding upward on the left side of the upper surface. The thread stand bar 20 passes the needle thread 6 fed from the thread spool.

アーム部4は内部に上軸15と主モータ27(図5参照)を備える。上軸15は左右方向に延び、上軸プーリ(図示略)を介して主モータ27の出力軸に連結する。上軸プーリは上軸15右端部に固定する。アーム部4は左端部に頭部5を備える。頭部5はアーム部4から下方に突出し、針板7に上方から対向する。頭部5は針棒11を上下動可能に支持する。針棒11下端部は頭部5から下方に突出する。針棒11は上下動機構(図示略)を介して上軸15に連結する。針棒11は、上軸15の回動に伴って、上下動機構を介して上下動する。針棒11は下端に縫針10を装着する。縫針10は目孔に挿通した上糸6を保持する。縫針10は針棒11と共に上下動する。縫針10は針穴8を通過可能であり、縫針10の可動範囲下端は下死点であり、可動範囲上端は上死点である。 The arm portion 4 includes an upper shaft 15 and a main motor 27 (see FIG. 5) inside. The upper shaft 15 extends in the left-right direction and is connected to the output shaft of the main motor 27 via an upper shaft pulley (not shown). The upper shaft pulley is fixed to the right end of the upper shaft 15. The arm portion 4 has a head portion 5 at the left end. The head portion 5 projects downward from the arm portion 4 and faces the needle plate 7 from above. The head 5 supports the needle bar 11 so that it can move up and down. The lower end of the needle bar 11 projects downward from the head 5. The needle bar 11 is connected to the upper shaft 15 via a vertical movement mechanism (not shown). The needle bar 11 moves up and down through the up-and-down moving mechanism as the upper shaft 15 rotates. The needle bar 11 has the sewing needle 10 attached to the lower end. The sewing needle 10 holds the needle thread 6 inserted through the eyelet. The sewing needle 10 moves up and down together with the needle bar 11. The sewing needle 10 can pass through the needle hole 8, the lower end of the movable range of the sewing needle 10 is bottom dead center, and the upper end of the movable range is top dead center.

ベッド部2は内部に釜、糸切機構17(図5参照)、布送り機構を備える。釜は、針板7下方に設け、下糸を巻いたボビンを収容する。釜は剣先を備える。釜は主モータ27の動力を得て回動し、縫針10の目孔に挿通する上糸6を剣先で捕捉して、下糸と絡める。糸切機構17(図5参照)は、固定刃、可動刃、糸切ソレノイド17Aを備える。可動刃は糸切ソレノイド17Aに連結する。糸切ソレノイド17Aが駆動することで、可動刃は固定刃に対して移動し、糸切機構17は可動刃と固定刃の協働で上糸6と下糸を切断する。 The bed portion 2 is internally provided with a shuttle, a thread cutting mechanism 17 (see FIG. 5), and a cloth feeding mechanism. The shuttle is provided below the needle plate 7 and accommodates a bobbin wound with a lower thread. The kettle has a sword tip. The hook is rotated by the power of the main motor 27, and the upper thread 6 that is inserted into the eye hole of the sewing needle 10 is caught by the sword tip and entangled with the lower thread. The thread cutting mechanism 17 (see FIG. 5) includes a fixed blade, a movable blade, and a thread cutting solenoid 17A. The movable blade is connected to the thread cutting solenoid 17A. By driving the thread cutting solenoid 17A, the movable blade moves with respect to the fixed blade, and the thread cutting mechanism 17 cuts the upper thread 6 and the lower thread by the cooperation of the movable blade and the fixed blade.

布送り機構は上下送り軸、送り台、送り歯、水平送り軸、送りモータ123(図5参照)を備える。上下送り軸はベッド部2内部で左右方向に延び、ベルトを介して上軸プーリと連結する。送り台は揺動可能に設け、上下送り軸と連結する。上下送り軸が主モータ27の駆動力で回転すると、送り台は上下方向に移動する。送り歯は送り台にて支持する。水平送り軸は、上下送り軸よりも前方で左右方向に延び、送りモータ123と送り台を連結する。水平送り軸が送りモータ123の駆動力で回転すると、送り台は前後方向に移動する。送り台が主モータ27と送りモータ123の駆動に伴い揺動することで、送り歯は送り歯穴14にて出没する。 The cloth feed mechanism includes a vertical feed shaft, a feed base, feed dogs, a horizontal feed shaft, and a feed motor 123 (see FIG. 5). The vertical feed shaft extends in the horizontal direction inside the bed portion 2 and is connected to the upper shaft pulley via a belt. The feed base is swingable and is connected to the vertical feed shaft. When the vertical feed shaft is rotated by the driving force of the main motor 27, the feed base moves in the vertical direction. The feed dog is supported by the feed stand. The horizontal feed shaft extends in the left-right direction in front of the vertical feed shaft and connects the feed motor 123 and the feed base. When the horizontal feed shaft is rotated by the driving force of the feed motor 123, the feed base moves in the front-rear direction. The feed dog is swung along with the drive of the main motor 27 and the feed motor 123, so that the feed dog is projected and retracted in the feed dog hole 14.

図2に示す如く、頭部5は、糸駒から縫針10へと至る繰り出す上糸6の供給経路の上流側から順に、副糸調子器26、主糸調子器60、糸案内21、糸張力検出機構130、天秤23、ガイドフック29を備える。 As shown in FIG. 2, the head 5 has a sub thread tension device 26, a main thread tension device 60, a thread guide 21, and a thread tension in order from the upstream side of the supply path of the needle thread 6 which is fed from the thread spool to the sewing needle 10. The detection mechanism 130, the balance 23, and the guide hook 29 are provided.

副糸調子器26は頭部5前面の右上部に設ける。主糸調子器60は、副糸調子器26下方で、且つ頭部5前面に設ける。副糸調子器26と主糸調子器60は夫々、上糸6に張力を付与する。副糸調子器26は、糸切機構17による上糸6と下糸の切断時に必要な張力を上糸6に付与する。主糸調子器60は、ミシン1の縫製に伴って上糸6に作用する張力を適正化する。主糸調子器60の構造は後述する。糸案内21は主糸調子器60の左方に設ける。糸案内21は、主糸調子器60を経由した上糸6を、糸張力検出機構130と天秤23に向けて折り返して案内する。糸張力検出機構130は、頭部5前面から後方に凹む凹部5Aに螺子90で固定する。糸張力検出機構130は副糸調子器26と主糸調子器60の間となる上下位置にある。糸張力検出機構130は、上糸6に作用する張力を検出可能である。天秤23は副糸調子器26左方に設ける。天秤23は上糸6を挿通する挿通孔23Aを有する。天秤23は主モータ27の駆動に伴って上下動する。ガイドフック29は、糸張力検出機構130左方に設ける。ガイドフック29は、天秤23の挿通孔23Aを通った上糸6を針棒11に向けて案内する。 The auxiliary thread tension device 26 is provided in the upper right portion of the front surface of the head 5. The main thread tension device 60 is provided below the auxiliary thread tension device 26 and on the front surface of the head 5. The sub thread tension device 26 and the main thread tension device 60 apply tension to the upper thread 6, respectively. The sub thread tension device 26 applies a tension required for the upper thread 6 when the upper thread 6 and the lower thread are cut by the thread cutting mechanism 17. The main thread tension device 60 optimizes the tension acting on the upper thread 6 as the sewing machine 1 is sewn. The structure of the main thread tension device 60 will be described later. The thread guide 21 is provided on the left side of the main thread tension device 60. The thread guide 21 folds back and guides the upper thread 6 that has passed through the main thread tension device 60 toward the thread tension detection mechanism 130 and the balance 23. The thread tension detecting mechanism 130 is fixed by a screw 90 to a recess 5A recessed rearward from the front surface of the head 5. The thread tension detecting mechanism 130 is located at a vertical position between the auxiliary thread tension device 26 and the main thread tension device 60. The thread tension detection mechanism 130 can detect the tension acting on the upper thread 6. The balance 23 is provided on the left side of the auxiliary thread tension device 26. The balance 23 has an insertion hole 23A through which the upper thread 6 is inserted. The balance 23 moves up and down as the main motor 27 is driven. The guide hook 29 is provided on the left side of the thread tension detecting mechanism 130. The guide hook 29 guides the needle thread 6 passing through the insertion hole 23A of the balance 23 toward the needle bar 11.

図3に示す如く、主糸調子器60は、糸調子ケース62、糸調子台63、糸取ばね65、糸調子モータ16、糸調子皿69を備える。 As shown in FIG. 3, the main thread tension regulator 60 includes a thread tension case 62, a thread tension stand 63, a thread take-up spring 65, a thread tension motor 16, and a thread tension disc 69.

糸調子ケース62は環状の部材である。糸調子ケース62は、頭部5の前壁部5Bに形成した貫通孔5C内側に、締結部材で固定する。糸調子台63は、糸調子ケース62の内側に螺子19で固定する環状の部材である。糸取ばね65は、糸調子台63の外側面に固定し、糸調子台63と糸調子ケース62の間に巻く。糸取ばね65の一端部は前壁部5Bから前方に露出する。糸調子台63が回動することで、ミシン1は糸取ばね65のばね圧を調整できる。糸調子モータ16は、アーム部4の内側にボルトで固定する。糸調子モータ16が有する後述の出力軸18は、糸調子台63の中心孔を介して、前壁部5Bよりも前方に突出する。糸調子皿69は、出力軸18前端部に螺子28で固定する。上糸6は、糸調子皿69に1〜2回程巻く。糸調子皿69は、糸調子モータ16の駆動により回転する。糸調子モータ16は、エンコーダ16A(図5参照)を備える。エンコーダ16Aは出力軸18の回転位置を検出する。 The thread tension case 62 is an annular member. The thread tension case 62 is fixed with a fastening member inside the through hole 5C formed in the front wall portion 5B of the head portion 5. The thread tension stand 63 is an annular member fixed inside the thread tension case 62 with the screw 19. The thread take-up spring 65 is fixed to the outer surface of the thread tension stand 63 and is wound between the thread tension stand 63 and the thread tension case 62. One end of the thread take-up spring 65 is exposed forward from the front wall 5B. By rotating the thread tension base 63, the sewing machine 1 can adjust the spring pressure of the thread take-up spring 65. The thread tension motor 16 is fixed to the inside of the arm portion 4 with a bolt. The output shaft 18, which will be described later, included in the thread tension motor 16 projects forward of the front wall portion 5B through the center hole of the thread tension stand 63. The thread tension disc 69 is fixed to the front end of the output shaft 18 with a screw 28. The upper thread 6 is wound around the thread tension disc 69 about once or twice. The thread tension disc 69 is rotated by driving the thread tension motor 16. The thread tension motor 16 includes an encoder 16A (see FIG. 5). The encoder 16A detects the rotational position of the output shaft 18.

糸調子モータ16はパルスモータであり、出力軸18、エンコーダ16A(図5参照)を備える。出力軸18は、前後方向を軸方向として回動可能である。エンコーダ16Aは、頭部5内部に設ける。エンコーダ16Aが備えるディスクは、出力軸18後端部に固定する。エンコーダ16Aは、出力軸18の回動位置を検出可能である。出力軸18前端部は、アーム部4右方で一対の糸調子皿69を支持する。故に、一対の糸調子皿69は糸調子モータ16の駆動により出力軸18と共に回転する。ミシン1は、出力軸18の回転角位相を制御できる。 The thread tension motor 16 is a pulse motor and includes an output shaft 18 and an encoder 16A (see FIG. 5). The output shaft 18 is rotatable about the front-rear direction. The encoder 16A is provided inside the head 5. The disk included in the encoder 16A is fixed to the rear end of the output shaft 18. The encoder 16A can detect the rotational position of the output shaft 18. The front end portion of the output shaft 18 supports the pair of thread tension discs 69 on the right side of the arm portion 4. Therefore, the pair of thread tension discs 69 rotate together with the output shaft 18 by the drive of the thread tension motor 16. The sewing machine 1 can control the rotation angle phase of the output shaft 18.

図4に示す糸張力検出機構130は、上糸6の供給経路において、糸調子皿69と天秤23の間に設ける。糸張力検出機構130は、上糸張力に応じて前後方向に撓むテンション板50の前後位置を磁気センサ105の出力電圧に基づき検出することで、上糸6の張力である上糸張力を検出する。 The thread tension detecting mechanism 130 shown in FIG. 4 is provided between the thread tension disc 69 and the balance 23 in the supply path of the upper thread 6. The thread tension detection mechanism 130 detects the front-back position of the tension plate 50 that bends in the front-back direction according to the upper thread tension based on the output voltage of the magnetic sensor 105, thereby detecting the upper thread tension, which is the tension of the upper thread 6. To do.

糸張力検出機構130は、取付台140、センサホルダ80、磁気センサ105、テンション板50、案内部材160、磁石58、基板135(図5参照)を備える。 The thread tension detection mechanism 130 includes a mounting base 140, a sensor holder 80, a magnetic sensor 105, a tension plate 50, a guide member 160, a magnet 58, and a substrate 135 (see FIG. 5).

取付台140は、取付部42と台座部410を備える。取付部42と台座部410は互いに一体的に形成する。取付部42は、螺子90を挿通する長孔421を備える。長孔421に挿通した螺子90は凹部5A(図2参照)に設けた螺子穴に締結する。故に取付台140は頭部5に取付ける。台座部410は取付台140左方にある。台座部410は、右突部410Aと左突部410Bを備える。右突部410Aと左突部410Bは夫々、前後方向に延びる直方体状である。 The mounting base 140 includes a mounting portion 42 and a pedestal portion 410. The mounting portion 42 and the pedestal portion 410 are integrally formed with each other. The mounting portion 42 includes a long hole 421 through which the screw 90 is inserted. The screw 90 inserted into the long hole 421 is fastened to the screw hole provided in the recess 5A (see FIG. 2). Therefore, the mounting base 140 is mounted on the head 5. The pedestal portion 410 is on the left side of the mounting base 140. The pedestal portion 410 includes a right protrusion 410A and a left protrusion 410B. The right protrusion 410A and the left protrusion 410B each have a rectangular parallelepiped shape extending in the front-rear direction.

センサホルダ80は、直方体状に形成し、右突部410Aと左突部410Bの間で台座部410に取り付ける。センサホルダ80は、非磁性体によって形成する。磁気センサ105は、センサホルダ80の前面に保持する。磁気センサ105はホール素子を含む。磁気センサ105は、右突部410Aと左突部410Bの夫々の前端よりも後側にある。 The sensor holder 80 is formed in a rectangular parallelepiped shape, and is attached to the pedestal portion 410 between the right protrusion 410A and the left protrusion 410B. The sensor holder 80 is made of a non-magnetic material. The magnetic sensor 105 is held on the front surface of the sensor holder 80. The magnetic sensor 105 includes a Hall element. The magnetic sensor 105 is behind the front ends of the right protrusion 410A and the left protrusion 410B.

テンション板50は、前後方向に厚みを有する板状であり、右突部410Aと左突部410Bに架け渡す。案内部材160は、螺子97、98によって、右突部410Aと左突部410Bに取付ける。案内部材160は右突部410Aとの間にテンション板50の右端部を挟み込み、且つ左突部410Bとの間でテンション板50の左端部を挟み込む。テンション板50の左右方向中央部は、センサホルダ80の前面との間に隙間を有する。故にテンション板50は、左右方向の両端部を支点として、前後方向に撓むことができる。 The tension plate 50 has a plate shape having a thickness in the front-rear direction and bridges the right protrusion 410A and the left protrusion 410B. The guide member 160 is attached to the right protrusion 410A and the left protrusion 410B by screws 97 and 98. The guide member 160 sandwiches the right end of the tension plate 50 between itself and the right protrusion 410A, and sandwiches the left end of the tension plate 50 between it and the left protrusion 410B. The center portion of the tension plate 50 in the left-right direction has a gap with the front surface of the sensor holder 80. Therefore, the tension plate 50 can bend in the front-rear direction with the left and right ends as fulcrums.

磁石58は、前後方向を軸方向とする円柱状に形成する。磁石58は、テンション板50の左右方向中央部の後面に接着剤で固定する。故に、テンション板50が前後方向に撓むと、磁石58は前後に移動し、磁気センサ105との距離が変化する。磁気センサ105は磁石58の磁束密度の変化を検出する。基板135(図5参照)は、頭部5の内部に設ける。基板135は、フラットフレキシブルケーブル136を介して磁気センサ105と接続する。基板135は磁気センサ105の検出結果を取得する。 The magnet 58 is formed in a columnar shape whose axial direction is the front-back direction. The magnet 58 is fixed to the rear surface of the central portion of the tension plate 50 in the left-right direction with an adhesive. Therefore, when the tension plate 50 bends in the front-rear direction, the magnet 58 moves back and forth, and the distance from the magnetic sensor 105 changes. The magnetic sensor 105 detects a change in the magnetic flux density of the magnet 58. The substrate 135 (see FIG. 5) is provided inside the head 5. The substrate 135 is connected to the magnetic sensor 105 via the flat flexible cable 136. The substrate 135 acquires the detection result of the magnetic sensor 105.

案内部材160は、上糸案内溝182と下糸案内溝172を備える。上糸案内溝182と下糸案内溝172は、テンション板50を間にして上下方向に並ぶ。上糸案内溝182と下糸案内溝172は、上下方向に開口し、鉤状に形成する。上糸案内溝182は上保持孔181を備え、下糸案内溝172は下保持孔171を備える。上保持孔181と下保持孔171は前後方向に延びる。上糸6は、上保持孔181と下保持孔171に挿通して保持する。上保持孔181と下保持孔171の間にある上糸6は、前方からテンション板50前面に接触する。上糸張力が増大する程、上糸6はテンション板50を後方に付勢する。故に、ミシン1は磁気センサ105の出力電圧に基づき上糸張力を取得できる。 The guide member 160 includes an upper thread guide groove 182 and a lower thread guide groove 172. The upper thread guide groove 182 and the lower thread guide groove 172 are arranged vertically with the tension plate 50 in between. The upper thread guide groove 182 and the lower thread guide groove 172 are opened in the vertical direction and formed in a hook shape. The upper thread guide groove 182 has an upper holding hole 181, and the lower thread guide groove 172 has a lower holding hole 171. The upper holding hole 181 and the lower holding hole 171 extend in the front-rear direction. The upper thread 6 is inserted into and held by the upper holding hole 181 and the lower holding hole 171. The upper thread 6 between the upper holding hole 181 and the lower holding hole 171 contacts the front surface of the tension plate 50 from the front. As the needle thread tension increases, the needle thread 6 biases the tension plate 50 rearward. Therefore, the sewing machine 1 can acquire the needle thread tension based on the output voltage of the magnetic sensor 105.

図5を参照し、ミシン1の電気的構成を説明する。ミシン1の制御装置30はCPU91を備える。CPU91はミシン1の動作を制御する。CPU91はROM92、RAM93、記憶装置94、I/Oインターフェース(以下、I/Oと称す)45と接続する。ROM92は後述の縫製処理(図14参照)等、各種処理を実行する為のプログラム等を記憶する。RAM93は、各種値を一時的に記憶する。記憶装置94は不揮発性である。 The electrical configuration of the sewing machine 1 will be described with reference to FIG. The control device 30 of the sewing machine 1 includes a CPU 91. The CPU 91 controls the operation of the sewing machine 1. The CPU 91 is connected to the ROM 92, the RAM 93, the storage device 94, and the I/O interface (hereinafter referred to as I/O) 45. The ROM 92 stores programs and the like for executing various kinds of processing such as sewing processing (see FIG. 14) described later. The RAM 93 temporarily stores various values. The storage device 94 is non-volatile.

I/O45は駆動回路81〜83に接続する。駆動回路81は主モータ27に接続する。駆動回路82は送りモータ123に接続する。駆動回路83は糸調子モータ16に接続する。主モータ27、送りモータ123、糸調子モータ16は、夫々、エンコーダ27A、123A、16Aを備える。エンコーダ27Aは、主モータ27の出力軸の回転位置を検出する。即ち、エンコーダ27Aの検出結果は上軸15の回転角位相である上軸位相を示す。エンコーダ123Aは、送りモータ123の出力軸の回動位置を検出する。エンコーダ16Aは、糸調子モータ16の出力軸18の回動位置を検出する。CPU91は、エンコーダ27A、123A、16Aの検出結果を取得し、駆動回路81〜83に制御信号を送信する。故にCPU91は、主モータ27、送りモータ123、糸調子モータ16を駆動制御する。以下、主モータ27と送りモータ123を総称する時、駆動モータと称す。 The I/O 45 is connected to the drive circuits 81 to 83. The drive circuit 81 is connected to the main motor 27. The drive circuit 82 is connected to the feed motor 123. The drive circuit 83 is connected to the thread tension motor 16. The main motor 27, the feed motor 123, and the thread tension motor 16 include encoders 27A, 123A, and 16A, respectively. The encoder 27A detects the rotational position of the output shaft of the main motor 27. That is, the detection result of the encoder 27A indicates the upper shaft phase which is the rotation angle phase of the upper shaft 15. The encoder 123A detects the rotational position of the output shaft of the feed motor 123. The encoder 16A detects the rotational position of the output shaft 18 of the thread tension motor 16. The CPU 91 acquires the detection results of the encoders 27A, 123A, 16A, and sends a control signal to the drive circuits 81-83. Therefore, the CPU 91 drives and controls the main motor 27, the feed motor 123, and the thread tension motor 16. Hereinafter, the main motor 27 and the feed motor 123 are collectively referred to as a drive motor.

I/O45は駆動回路84、85、入力部24、ペダル38に接続する。駆動回路84は糸切ソレノイド17Aに接続する。駆動回路85は表示部25に接続する。CPU91は、駆動回路84、85に制御信号を送信することで、糸切ソレノイド17Aと表示部25を制御する。入力部24は、作業者による入力部24への入力結果をCPU91に出力する。ペダル38は、作業者によるペダル38の操作方向と操作量を夫々CPU91に出力する。 The I/O 45 is connected to the drive circuits 84 and 85, the input section 24, and the pedal 38. The drive circuit 84 is connected to the thread cutting solenoid 17A. The drive circuit 85 is connected to the display unit 25. The CPU 91 controls the thread cutting solenoid 17A and the display unit 25 by transmitting a control signal to the drive circuits 84 and 85. The input unit 24 outputs the result input by the worker to the input unit 24 to the CPU 91. The pedal 38 outputs the operation direction and the operation amount of the pedal 38 by the operator to the CPU 91, respectively.

I/O45は基板135のCPU135Aに接続する。基板135は、CPU135A、RAM135B、記憶装置135C、増幅回路151、減算回路152、タイマ35を備える。CPU135Aは、RAM135B、増幅回路151、減算回路152、タイマ35と接続する。タイマ35は、計時結果をCPU135Aに出力する。増幅回路151と減算回路152は互いに接続し、減算回路152は磁気センサ105に接続する。図6で示す二つのグラフは夫々、横軸を時間とし縦軸を電圧とする。図6の左側で示すグラフは、磁石58の磁束密度の変化を検出する磁気センサ105の出力電圧の時間的な変化を示す。磁気センサ105は該出力電圧を減算回路152に出力する。減算回路152は、磁気センサ105の出力電圧のうちで、基準電圧Vtに対してΔVとなる範囲の電圧を抽出し、抽出結果を増幅回路151に出力する。基準電圧Vtは、上糸張力が0になる時の磁気センサ105の出力電圧であり、磁気センサ105の基準となる出力電圧である。図6の右側で示すグラフは、増幅回路151が、減算回路152の抽出結果を増幅した出力電圧の時間的な変化を示す。増幅回路151は増幅した出力電圧をCPU135Aに出力する。以下、増幅回路151の出力結果を、磁気センサ105の検出結果と称す。CPU135Aは、減算回路152に対してゼロ点調整(オフセット調整とも謂う)を実行可能である。ゼロ点調整は、磁気センサ105の基準電圧Vtを設定し直す調整である。ゼロ点調整の実行時機は、上糸張力が0である時が好ましい。 The I/O 45 is connected to the CPU 135A of the board 135. The substrate 135 includes a CPU 135A, a RAM 135B, a storage device 135C, an amplification circuit 151, a subtraction circuit 152, and a timer 35. The CPU 135A is connected to the RAM 135B, the amplification circuit 151, the subtraction circuit 152, and the timer 35. The timer 35 outputs the time measurement result to the CPU 135A. The amplification circuit 151 and the subtraction circuit 152 are connected to each other, and the subtraction circuit 152 is connected to the magnetic sensor 105. In each of the two graphs shown in FIG. 6, the horizontal axis represents time and the vertical axis represents voltage. The graph shown on the left side of FIG. 6 shows a temporal change in the output voltage of the magnetic sensor 105 that detects a change in the magnetic flux density of the magnet 58. The magnetic sensor 105 outputs the output voltage to the subtraction circuit 152. The subtraction circuit 152 extracts, from the output voltage of the magnetic sensor 105, a voltage in a range of ΔV with respect to the reference voltage Vt, and outputs the extraction result to the amplification circuit 151. The reference voltage Vt is the output voltage of the magnetic sensor 105 when the needle thread tension becomes 0, and is the reference output voltage of the magnetic sensor 105. The graph shown on the right side of FIG. 6 shows a temporal change in the output voltage obtained by amplifying the extraction result of the subtraction circuit 152 by the amplification circuit 151. The amplifier circuit 151 outputs the amplified output voltage to the CPU 135A. Hereinafter, the output result of the amplifier circuit 151 will be referred to as the detection result of the magnetic sensor 105. The CPU 135A can execute zero point adjustment (also called offset adjustment) on the subtraction circuit 152. The zero point adjustment is an adjustment for resetting the reference voltage Vt of the magnetic sensor 105. The zero point adjustment is preferably performed when the needle thread tension is zero.

記憶装置135Cは、糸切れフラグ、目飛びフラグ、糸締りフラグを記憶する。糸切れフラグ、目飛びフラグ、糸締りフラグは夫々、0又は1の何れかに切り替わる。糸切れ、目飛び、糸締り不良については後述する。記憶装置135Cは、第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値、糸締り不良特定閾値、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を記憶する。これらの閾値は、後述する縫製不良の発生の有無を判断する為の値である。記憶装置135Cは、これらの閾値の初期値を記憶する。後述の縫製不良判断処理(図17参照)では、CPU135Aは、記憶装置135Cに記憶するこれらの閾値を、上軸15の回転速度である上軸回転速度又は上軸15の回転加速度に応じて、変更可能である。記憶装置135Cが記憶する閾値の詳細は後述する。 The storage device 135C stores a thread break flag, a skipped flag, and a thread tightening flag. The thread break flag, the skipped flag, and the thread tightening flag are switched to either 0 or 1. The thread breakage, skipping, and defective thread tightening will be described later. The storage device 135C stores a first yarn breakage threshold value, a second yarn breakage threshold value, a first stitch skipping threshold value, a second stitch skipping threshold value, a thread tightening defect identification threshold value, a first yarn breakage identification threshold value, a second yarn breakage identification threshold value, The one-eye skip identification threshold and the second-eye skip identification threshold are stored. These thresholds are values for determining whether or not a sewing failure described below has occurred. The storage device 135C stores the initial values of these threshold values. In a sewing failure determination process (see FIG. 17) described later, the CPU 135A sets these threshold values stored in the storage device 135C according to the upper shaft rotation speed that is the rotation speed of the upper shaft 15 or the rotation acceleration of the upper shaft 15. Can be changed. The details of the threshold stored in the storage device 135C will be described later.

図1〜図3を参照し、ミシン1の動作概要を説明する。以下の説明では、作業者は、針板7に布を載置する。駆動モータが駆動することで、上軸15は、針棒11と天秤23を上下動し、釜は回動する。縫針10が、布に刺さって下死点まで下降後に上昇する時、釜は、縫針10の目孔が保持する環状の上糸6を剣先で捕捉して下糸と絡める。縫針10は布から上方へ抜ける。該時、送りモータ123と主モータ27の駆動により、送り歯が送り歯穴14から上方に突出して後方に揺動する。故に布は後方に移動する。天秤23は、釜が下糸と絡めた上糸6を引き上げることで、布に縫目を形成する。上軸15、縫針10、釜、天秤23、布送り機構が上記動作を繰り返すことで、布を縫製する。一針分の縫製は、一周期分の縫製である。 An outline of the operation of the sewing machine 1 will be described with reference to FIGS. In the following description, the operator places the cloth on the needle plate 7. When the drive motor is driven, the upper shaft 15 moves the needle bar 11 and the balance 23 up and down, and the shuttle rotates. When the sewing needle 10 pierces the cloth and descends to the bottom dead center and then rises, the hook catches the annular upper thread 6 held by the eye hole of the sewing needle 10 with the tip of the sword and entangles it with the lower thread. The sewing needle 10 is pulled upward from the cloth. At this time, by driving the feed motor 123 and the main motor 27, the feed dog projects upward from the feed dog hole 14 and swings backward. Therefore, the cloth moves backward. The balance 23 forms a stitch on the cloth by pulling up the upper thread 6 entwined with the lower thread by the hook. The upper shaft 15, the sewing needle 10, the shuttle, the balance 23, and the cloth feed mechanism repeat the above-mentioned operations to sew cloth. The sewing for one stitch is the sewing for one cycle.

ミシン1の縫製不良を説明する。縫製不良は縫製動作中に正常な縫目が形成できなかったことを示す。縫製不良は、糸締り不良、糸切れ、及び目飛びを含む。糸締り不良は、天秤23が上糸6を引き上げた時に布に縫目を形成する上糸6と下糸のバランス不良である。例えば、上糸6が下糸に強固に絡まり過ぎると、縫目近くの布は縮む。糸切れは、縫製中に上糸6が切れる不良であり、布に縫目が形成できない不良である。目飛びは、縫製中における釜による上糸6の捕捉の失敗であり、布に正常な縫目が形成できない不良である。 The sewing failure of the sewing machine 1 will be described. Poor sewing indicates that normal stitches could not be formed during the sewing operation. Poor sewing includes poor thread tightening, thread breakage, and stitch skipping. The thread tightening failure is a poor balance between the upper thread 6 and the lower thread that form a stitch on the cloth when the balance 23 pulls up the upper thread 6. For example, if the upper thread 6 is too tightly entangled with the lower thread, the cloth near the seam shrinks. The thread breakage is a failure in which the upper thread 6 is cut during sewing, and a seam cannot be formed on the cloth. The stitch skipping is a failure to catch the upper thread 6 by the hook during sewing, which is a defect in which normal stitches cannot be formed on the cloth.

ミシン1の一周期分の縫製期間では、出合い、釜捕捉期間、天秤引上期間が順に生じる。出合いは、縫針10が下死点から上昇し、釜が剣先で上糸6を捕捉する高さ位置である針下位置近傍に到達する時機である。釜捕捉期間は、釜が剣先で上糸6を捕捉し、上糸6が釜をくぐり抜ける期間である。天秤引上期間は、釜から上糸6が抜けた時点から天秤23が上糸6を引き上げる期間である。 In the sewing period for one cycle of the sewing machine 1, encounter, hook catching period, and balance lifting period occur sequentially. The encounter is when the sewing needle 10 rises from the bottom dead center and reaches the vicinity of the needle lower position, which is the height position where the hook catches the upper thread 6 with the tip of the sword. The hook catching period is a period in which the hook catches the upper thread 6 with the tip of the sword and the upper thread 6 passes through the hook. The balance pull-up period is a period in which the balance 23 pulls up the upper thread 6 from the time when the upper thread 6 is removed from the hook.

図7は、横軸を時間とし且つ縦軸を上糸張力としたグラフであり、該グラフは変動張力を示す。変動張力は、単位を時間とした周期で変動を繰り返す上糸張力であり、本例では一周期分の縫製期間を単位周期として繰り返し変動する上糸張力である。即ち、変動張力は、N周期目(Nは自然数)において変動する上糸張力であり、図7では、第三周期、第四周期、第五周期分の変動張力を示す。後述の如く、第一周期、第二周期における変動張力(図示略)は生じ難い。尚、上軸回転速度が速い程、各周期の期間(図7の横寸法)は短くなる。図7では、第三周期、第四周期、第五周期における各周期の期間は互いに異なる。 FIG. 7 is a graph in which the horizontal axis represents time and the vertical axis represents needle thread tension, and the graph shows variable tension. The fluctuating tension is a needle thread tension that repeatedly changes in a cycle with a unit of time, and in this example, is a needle thread tension that repeatedly changes in a unit of a sewing period for one cycle. That is, the fluctuating tension is the needle thread tension that fluctuates in the Nth cycle (N is a natural number), and in FIG. 7, the fluctuating tensions for the third cycle, the fourth cycle, and the fifth cycle are shown. As will be described later, variable tension (not shown) in the first cycle and the second cycle is unlikely to occur. The faster the upper shaft rotation speed, the shorter the period of each cycle (horizontal dimension in FIG. 7). In FIG. 7, the periods of the third period, the fourth period, and the fifth period are different from each other.

第三周期内における釜捕捉期間、天秤引上期間は夫々、T1、T2である。N周期目の期間内において、釜捕捉期間は上糸張力の一回目のピークが生じる期間であり、天秤引上期間は上糸張力の二回目のピークが生じる期間である。以下、釜捕捉期間における上糸張力のピーク値を第一上糸張力と称し、天秤引上期間における上糸張力のピーク値を第二上糸張力と称し、釜捕捉期間と天秤引上期間の間となる期間における上糸張力を第三上糸張力と称す。第三上糸張力は略0になる。以下、N−1周期目の第一上糸張力からN周期目の第一上糸張力を差引いた値を、第一上糸張力差と称し、N−1周期目の第二上糸張力からN周期目の第二上糸張力を差引いた値を、第二上糸張力差と称す。 The kettle capture period and the balance lifting period in the third cycle are T1 and T2, respectively. In the period of the Nth cycle, the hook catching period is a period in which the first peak of the upper thread tension occurs, and the balance lifting period is a period in which the second peak of the upper thread tension occurs. Hereinafter, the peak value of the upper thread tension during the hook catching period will be referred to as the first upper thread tension, and the peak value of the upper thread tension during the balance lifting period will be referred to as the second upper thread tension. The upper thread tension in the period between the two is called the third upper thread tension. The third upper thread tension becomes almost zero. Hereinafter, a value obtained by subtracting the first upper thread tension of the Nth cycle from the first upper thread tension of the N-1th cycle is referred to as a first upper thread tension difference, and is calculated from the second upper thread tension of the N-1th cycle. A value obtained by subtracting the second upper thread tension in the Nth cycle is referred to as a second upper thread tension difference.

図8では、N−1周期目で正常に縫目を形成した時の変動張力を二点鎖線で示し、N周期目で糸締り不良が発生した時の変動張力を実線で示す。糸締り不良の発生時、第二上糸張力の発生時機と基準上糸張力における第二上糸張力の発生時機との差分が、後述の糸締り不良特定閾値以上になる。基準上糸張力は、一周期における基準となる変動張力である。二周期目以降の縫製時、N周期目縫製時における基準上糸張力は、N−1周期目の変動張力が基準上糸張力となる。一周期目の縫製時、記憶装置135Cで記憶する基準データが示す変動張力が基準上糸張力となる。基準データが示す変動張力は、正常に一周期目の縫製を実行する時に生じる変動張力を示す。後述する如く、縫い始めにおける変動張力は小さくなるのが正常であるので、基準データが示す該変動張力は、三周期目以降の縫製を実行する時の変動張力よりも小さい。糸締り不良特定閾値は、糸締り不良判断処理(図17のS111)の実行に伴いCPU135Aが糸締り不良の発生の有無を判断する為の閾値である。 In FIG. 8, the fluctuating tension when the stitch is normally formed in the (N-1)th cycle is shown by a chain double-dashed line, and the fluctuating tension when the thread tightening failure occurs at the Nth cycle is shown by a solid line. When the thread tightening failure occurs, the difference between the time when the second upper thread tension occurs and the time when the second upper thread tension occurs at the reference needle thread tension is equal to or more than the thread tightening failure identification threshold value described later. The reference needle thread tension is a variable tension that serves as a reference in one cycle. Regarding the reference needle thread tension at the time of sewing in the second cycle and thereafter and at the time of sewing in the N cycle, the variable tension in the N-1 cycle becomes the reference needle thread tension. At the time of sewing in the first cycle, the variable tension indicated by the reference data stored in the storage device 135C becomes the reference needle thread tension. The fluctuating tension indicated by the reference data indicates a fluctuating tension that occurs when the sewing of the first cycle is normally executed. As will be described later, since it is normal that the variable tension at the beginning of sewing becomes small, the variable tension indicated by the reference data is smaller than the variable tension at the time of performing the sewing in the third cycle and thereafter. The thread tightening defect identification threshold value is a threshold value for the CPU 135A to determine whether or not the thread tightening defect occurs with the execution of the thread tightening defect determination processing (S111 in FIG. 17).

図示しないが、糸切れの発生時、上糸張力は、一周期分の縫製期間に亘って略0でほとんど変動しない。故に、第一上糸張力と第二上糸張力は何れも、正常時に比べて極端に小さくなる。糸切れが生じると、第一上糸張力は第一糸切れ閾値以下となり、且つ第二上糸張力は第二糸切れ閾値以下となる。また、糸切れが生じると、第一上糸張力差は第一糸切れ特定閾値以上となり、第二上糸張力差は第二糸切れ特定閾値以上となる。第一糸切れ閾値と第二糸切れ閾値は、糸切れ判断処理(図17のS117)の実行に伴いCPU135Aが糸切れの発生の有無を判断する為の閾値である。第一糸切れ特定閾値と第二糸切れ特定閾値は、特定糸切れ判断処理(図17のS113)の実行に伴いCPU135Aが糸切れの発生の有無を判断する為の閾値である。 Although not shown, when a thread breakage occurs, the needle thread tension is substantially zero and does not fluctuate over a sewing period of one cycle. Therefore, both the first upper thread tension and the second upper thread tension become extremely smaller than in the normal state. When thread breakage occurs, the first upper thread tension becomes less than or equal to the first thread break threshold and the second upper thread tension becomes less than or equal to the second thread break threshold. Further, when thread breakage occurs, the first upper thread tension difference becomes equal to or larger than the first thread break specific threshold value, and the second upper thread tension difference becomes equal to or larger than the second thread break specific threshold value. The first thread breakage threshold value and the second thread breakage threshold value are threshold values for the CPU 135A to determine whether or not a thread breakage has occurred with the execution of the thread breakage determination process (S117 in FIG. 17). The first yarn breakage specific threshold and the second yarn breakage specific threshold are thresholds for the CPU 135A to determine whether or not the yarn breakage occurs with the execution of the specific yarn breakage determination process (S113 in FIG. 17).

図9に示す如く、目飛びの発生時、第一上糸張力は正常時に比べて極端に小さくなり、第二上糸張力は正常時に近い値となる。故に、目飛びが生じると、第一上糸張力は第一目飛び閾値以下となり、第二上糸張力は第二目飛び閾値以上となる。また、目飛びが生じると、第一上糸張力差は第一目飛び特定閾値以上となり、第二上糸張力差は第二目飛び特定閾値以下となる。第一目飛び閾値、第二目飛び閾値は、目飛び判断処理(図17のS119)の実行に伴いCPU135Aが目飛びの発生の有無を判断する為の閾値である。第一目飛び特定閾値、第二目飛び特定閾値は、特定目飛び判断処理(図17のS115)の実行に伴いCPU135Aが目飛びの発生の有無を判断する為の閾値である。 As shown in FIG. 9, when stitch skipping occurs, the first upper thread tension becomes extremely smaller than that in the normal state, and the second upper thread tension becomes a value close to that in the normal state. Therefore, when skipping occurs, the first needle thread tension becomes equal to or less than the first stitch skipping threshold and the second needle thread tension becomes equal to or more than the second stitch skipping threshold. When skipping occurs, the first needle thread tension difference becomes equal to or larger than the first stitch skip identification threshold value, and the second needle thread tension difference becomes equal to or less than the second stitch skip identification threshold value. The first-eye-skip threshold and the second-eye-skip threshold are thresholds for the CPU 135A to determine whether or not the eye-skip has occurred along with the execution of the eye-skip determination processing (S119 in FIG. 17). The first-eye-skip identification threshold value and the second-eye-skip identification threshold value are threshold values for the CPU 135A to determine whether or not the eye-eye skip has occurred along with the execution of the specific eye skip determination process (S115 of FIG. 17).

CPU135Aは、第一上糸張力、第二上糸張力を周期単位で取得する為に、変動張力を周期単位で取得する必要がある。後述の張力取得処理(図16参照)では、CPU135Aは、磁気センサ105の検出結果を取得することで、変動張力を継続的に取得してRAM135Bに順次記憶する。CPU135Aは、RAM135Bに順次記憶した変動張力に対して自己相関解析を実行することにより、一周期単位の変動張力を取得できる。自己相関解析は、比較基準となるデータと別のデータとの相関の程度を示す相関係数を取得し、データの周期性を見出す公知の解析手法である。相関係数は−1から1までの間で変動し、相関係数の絶対値が1に近い程、二つのデータの同一度は高くなる。本例ではCPU135Aは基準上糸張力を比較基準となるデータに設定する。CPU135Aは、周期単位で取得した変動張力をRAM135Bに記憶する。 The CPU 135A needs to acquire the variable tension in cycle units in order to acquire the first upper thread tension and the second upper thread tension in cycle units. In the tension acquisition process (see FIG. 16) described later, the CPU 135A acquires the detection result of the magnetic sensor 105 to continuously acquire the variable tension and sequentially store the variable tension in the RAM 135B. The CPU 135A can obtain the variable tension in units of one cycle by performing autocorrelation analysis on the variable tension sequentially stored in the RAM 135B. The autocorrelation analysis is a well-known analysis method that finds the periodicity of data by acquiring a correlation coefficient that indicates the degree of correlation between data that is a reference for comparison and another data. The correlation coefficient fluctuates between -1 and 1, and the closer the absolute value of the correlation coefficient is to 1, the higher the degree of identity between the two data. In this example, the CPU 135A sets the reference needle thread tension to data serving as a comparison reference. The CPU 135A stores the variable tension acquired on a cycle-by-cycle basis in the RAM 135B.

図10〜図13は、横軸を時間(ms)とし、縦軸を相関係数としたグラフを示す。図10のグラフでは、正常に縫目を形成した時の相関係数を示す。CPU135Aが取得する変動張力と、基準上糸張力との相関係数は、時間の経過に応じて変動する。25ms近くにおいて相関係数は1近くでピークに達する。故に、相関係数が1近くでピークに達したことに基づき、CPU135Aは、一周期分の変動張力を取得したと判断できる。 10 to 13 are graphs in which the horizontal axis represents time (ms) and the vertical axis represents a correlation coefficient. The graph of FIG. 10 shows the correlation coefficient when the seams are formed normally. The correlation coefficient between the variable tension acquired by the CPU 135A and the reference needle thread tension varies with the passage of time. The correlation coefficient reaches a peak near 1 near 25 ms. Therefore, based on the correlation coefficient reaching the peak near 1, the CPU 135A can determine that the variable tension for one cycle is acquired.

図11では、糸締り不良が生じた時の相関係数を示し、図12では、目飛びが生じた時の相関係数を示す。糸締り不良と目飛びが生じた時でも、25ms近くにおいて相関係数は1近くでピークに達する。故に、正常に縫目を形成した時と同様の判断基準で、CPU135Aは、一周期分の変動張力を取得したと判断する。 FIG. 11 shows the correlation coefficient when the thread tightening failure occurs, and FIG. 12 shows the correlation coefficient when the stitch skipping occurs. Even when defective thread tightening and skipping occur, the correlation coefficient reaches a peak near 1 near 25 ms. Therefore, the CPU 135A determines that the variable tension for one cycle has been acquired based on the same determination criteria as when the stitches are normally formed.

図13では、糸切れが生じた時の相関係数を示す。糸切れが生じた時、相関係数は、25ms近くにおいて1近くでピークに達しない。即ち、一周期分の縫製が完了する時機で相関係数は1近くでピークに達することはない。該時、CPU135Aは、一周期相当分の時間が経過したことに基づき、一周期分の変動張力を取得したと判断する。一周期相当分は、一周期前における一周期期間に数ms分の期間を追加した期間を示す。 FIG. 13 shows the correlation coefficient when yarn breakage occurs. When yarn breakage occurs, the correlation coefficient does not peak near 1 near 25 ms. That is, the correlation coefficient does not reach a peak near 1 when sewing for one cycle is completed. At this time, the CPU 135A determines that the variable tension for one cycle is acquired based on the lapse of the time for one cycle. The period corresponding to one cycle indicates a period obtained by adding a period of several ms to the period of one cycle before.

図14を参照し、縫製処理を説明する。作業者がミシン1の電源をオンすると、CPU91はROM92からプログラムを読み出して縫製処理を開始する。 The sewing process will be described with reference to FIG. When the worker turns on the power of the sewing machine 1, the CPU 91 reads the program from the ROM 92 and starts the sewing process.

図7、図14〜図17に示す如く、CPU91は、ミシン1の縫製動作を開始するか否かをペダル38の検出結果に基づき判断する(S11)。作業者がペダル38を踏込む前、CPU91は縫製動作を開始しないと判断し(S11:NO)、待機する。作業者は、CPU91の待機中に、針板7に布を載置する。布の載置後、作業者がペダル38を踏込むと(S11:YES)、CPU91は、糸調子モータ16を駆動して、上糸張力を所定の上糸張力とする(S12)。 As shown in FIGS. 7 and 14 to 17, the CPU 91 determines whether to start the sewing operation of the sewing machine 1 based on the detection result of the pedal 38 (S11). Before the operator depresses the pedal 38, the CPU 91 determines that the sewing operation is not started (S11: NO) and waits. The operator places the cloth on the needle plate 7 while the CPU 91 is on standby. When the worker depresses the pedal 38 after placing the cloth (S11: YES), the CPU 91 drives the thread tension motor 16 to set the upper thread tension to a predetermined upper thread tension (S12).

CPU91は、駆動モータの駆動を開始し(S13)、布への縫製動作を開始する。該時、CPU91は、RAM93に記憶のMを0に上書きする。Mは、後述の縫製処理でCPU91が縫製動作を終了すると判断した時、該判断をしてから上糸6と下糸の切断である糸切りを実行する迄の所定周期を計数する為のカウンタである。所定周期は予め記憶装置94に記憶する。CPU91は、糸調子モータ16を駆動して所定の上糸張力を維持する。 The CPU 91 starts driving the drive motor (S13), and starts the sewing operation on the cloth. At this time, the CPU 91 overwrites M stored in the RAM 93 with 0. M is a counter for counting a predetermined period from when the CPU 91 determines that the sewing operation is to be ended in the later-described sewing processing until the thread cutting, which is the cutting of the upper thread 6 and the lower thread, is executed. Is. The predetermined cycle is stored in the storage device 94 in advance. The CPU 91 drives the thread tension motor 16 to maintain a predetermined upper thread tension.

CPU91は、エンコーダ27Aの検出結果に基づき、上軸回転速度を取得する(S15)。CPU91は、二回に亘りエンコーダ27Aの検出結果を取得することで上軸回転速度を取得する。 The CPU 91 acquires the upper shaft rotation speed based on the detection result of the encoder 27A (S15). The CPU 91 acquires the upper shaft rotation speed by acquiring the detection result of the encoder 27A twice.

CPU91は、上糸巻取処理を実行する(S16)。CPU91は、S15で取得した上軸回転速度が第一速度以下であるか否かを判断する(S81)。上軸回転速度の回転速度が第一速度よりも大きい時(S81:NO)、CPU91は上糸巻取処理を終了する。上軸回転速度が第一速度以下である時(S81:YES)、CPU91は、糸調子モータ16を制御して糸調子皿69を巻取方向に回転することで、上糸6を巻取る(S83)。巻取方向は、上糸6を供給経路に沿って供給する方向と反対方向となる、糸調子皿69の回転方向である。本例では、CPU91は、糸調子皿69を所定回転量、巻取方向に回転する。故に、ミシン1は上糸6の緩みを抑制できる。CPU91は、上糸巻取処理を終了して縫製処理に戻る。 The CPU 91 executes the upper thread winding process (S16). The CPU 91 determines whether the upper shaft rotation speed acquired in S15 is less than or equal to the first speed (S81). When the rotation speed of the upper shaft rotation speed is higher than the first speed (S81: NO), the CPU 91 ends the upper thread winding process. When the upper shaft rotation speed is equal to or lower than the first speed (S81: YES), the CPU 91 controls the thread tension motor 16 to rotate the thread tension disc 69 in the winding direction to wind the upper thread 6 ( S83). The winding direction is the direction of rotation of the thread tension disc 69, which is opposite to the direction in which the upper thread 6 is supplied along the supply path. In this example, the CPU 91 rotates the thread tension disc 69 in the winding direction by a predetermined rotation amount. Therefore, the sewing machine 1 can suppress the looseness of the upper thread 6. The CPU 91 ends the upper thread winding process and returns to the sewing process.

CPU91は、縫製不良が発生したか否かを判断する(S17)。縫製不良が発生したか否かは、後述の張力取得処理でCPU135Aが送信した縫製不良情報に基づき判断する。糸切れフラグ、目飛びフラグ、糸締りフラグの少なくとも一つが1である時、縫製不良が発生したとCPU91は判断し(S17:YES)、処理をS23に移行する。糸切れフラグ、目飛びフラグ、糸締りフラグが何れも0である時、CPU91は縫製不良が発生していないと判断する(S17:NO)。CPU91は、縫製を終了するか否かをペダル38の検出結果に基づき判断する(S18)。作業者がペダル38を踏み返さない時、CPU91は縫製を終了しないと判断し(S18:NO)、処理をS15に移行する。 The CPU 91 determines whether or not a sewing failure has occurred (S17). Whether or not a sewing failure has occurred is determined based on the sewing failure information transmitted by the CPU 135A in the tension acquisition process described later. When at least one of the thread breakage flag, the skip stitch flag, and the thread tightening flag is 1, the CPU 91 determines that a sewing failure has occurred (S17: YES), and moves the process to S23. When all of the thread breakage flag, stitch skipping flag, and thread tightening flag are 0, the CPU 91 determines that no sewing failure has occurred (S17: NO). The CPU 91 determines whether or not to finish sewing based on the detection result of the pedal 38 (S18). When the operator does not depress the pedal 38, the CPU 91 determines that the sewing is not completed (S18: NO), and the process proceeds to S15.

例えば、作業者がペダル38を踏み返すと、CPU91は縫製動作を終了すると判断し(S18:YES)、RAM93に記憶のMが所定周期に到達したか否か判断する(S19)。Mが所定周期未満の場合(S19:NO)、Mを1増加させ(S71)、処理をS72に移行する。CPU91は、エンコーダ27Aの検出結果に基づき、上軸回転速度を取得し(S72)、上糸巻取処理を実行する(S73)。S72、S73の処理は、S15、S16の処理と同様の処理である。CPU91は、縫製不良が発生したか否かを判断する(S74)。CPU91は縫製不良が発生したと判断した時(S74:YES)、処理をS75に移行する。CPU91は縫製不良が発生していないと判断した時(S74:NO)、処理をS19に移行する。CPU91は、Mが所定周期に到達する迄処理を繰り返す(S19:NO、S71、S72、S73、S74)。 For example, when the worker depresses the pedal 38, the CPU 91 determines that the sewing operation is finished (S18: YES), and determines whether M stored in the RAM 93 has reached a predetermined cycle (S19). If M is less than the predetermined period (S19: NO), M is incremented by 1 (S71), and the process proceeds to S72. The CPU 91 acquires the upper shaft rotation speed based on the detection result of the encoder 27A (S72), and executes the upper thread winding process (S73). The processes of S72 and S73 are the same as the processes of S15 and S16. The CPU 91 determines whether or not a sewing failure has occurred (S74). When the CPU 91 determines that a sewing failure has occurred (S74: YES), the process proceeds to S75. When the CPU 91 determines that no sewing failure has occurred (S74: NO), the process proceeds to S19. The CPU 91 repeats the process until M reaches a predetermined cycle (S19: NO, S71, S72, S73, S74).

Mが所定周期に到達した場合(S19:YES)、CPU91は、糸切ソレノイド17Aを制御することで、糸切りを実行する(S20)。上糸6の切断後、上糸張力は略0になる。CPU91は、駆動モータの駆動を停止する(S21)。 If M has reached the predetermined cycle (S19: YES), the CPU 91 controls the thread cutting solenoid 17A to execute thread cutting (S20). After cutting the upper thread 6, the upper thread tension becomes substantially zero. The CPU 91 stops driving the drive motor (S21).

CPU91は、磁気センサ105の出力電圧のゼロ点調整を実行する指示をCPU135Aに送信する(S22)。CPU91は処理をS220に移行する。 The CPU 91 transmits an instruction to execute the zero point adjustment of the output voltage of the magnetic sensor 105 to the CPU 135A (S22). The CPU 91 shifts the processing to S220.

CPU91は、ミシン1の電源をオフにする操作があるか否かを判断する(S220)。作業者が、ミシン1の電源をオフにする操作をしない場合(S220:NO)、CPU91は、処理をS11に移行する。CPU91の待機中(S11:NO)、作業者は、縫製後の布に代えて、未縫製の布を針板7に載置し、ペダル38を踏込む(S11:YES)。作業者がミシン1の電源をオフにする操作をすると(S220:YES)、CPU91は、縫製処理を終了する。 The CPU 91 determines whether or not there is an operation to turn off the power of the sewing machine 1 (S220). When the worker does not perform the operation of turning off the power of the sewing machine 1 (S220: NO), the CPU 91 shifts the processing to S11. While the CPU 91 is on standby (S11: NO), the worker places an unsewn cloth on the needle plate 7 instead of the cloth after sewing, and depresses the pedal 38 (S11: YES). When the operator turns off the power of the sewing machine 1 (S220: YES), the CPU 91 ends the sewing process.

図16〜図22を参照し、張力取得処理を説明する。張力取得処理は、縫製処理と並行してCPU135Aが実行する処理である。張力処理では、CPU135Aは取得した上糸張力に基づいて縫製不良の発生の有無を判断する。作業者がミシン1の電源をオンすると、CPU135Aは張力取得処理を開始する。 The tension acquisition process will be described with reference to FIGS. The tension acquisition process is a process executed by the CPU 135A in parallel with the sewing process. In the tension processing, the CPU 135A determines whether or not a sewing failure has occurred based on the acquired needle thread tension. When the worker turns on the power of the sewing machine 1, the CPU 135A starts the tension acquisition process.

CPU135Aは、初期化処理を実行する(S30)。CPU135Aは、記憶装置135Cに記憶の糸切れフラグ、目飛びフラグ、糸締りフラグを夫々0にする。CPU135Aは、タイマ35を0に初期化する。CPU135Aは、RAM135Bに記憶のNを1に上書きする(S31)。CPU135Aは、磁気センサ105の検出結果に基づく上糸張力を取得する(S33)。磁気センサ105の検出結果は、例えば、図6の右側のグラフのt1における出力電圧である。CPU135Aは、磁気センサ105の検出結果である出力電圧と所定の関係式とに基づき上糸張力を取得する。CPU135Aは、取得した上糸張力を変動張力としてRAM135Bに順次記憶する。 The CPU 135A executes an initialization process (S30). The CPU 135A sets the thread break flag, the skipped stitch flag, and the thread tightening flag stored in the storage device 135C to 0, respectively. The CPU 135A initializes the timer 35 to 0. The CPU 135A overwrites N stored in the RAM 135B with 1 (S31). The CPU 135A acquires the needle thread tension based on the detection result of the magnetic sensor 105 (S33). The detection result of the magnetic sensor 105 is, for example, the output voltage at t1 in the graph on the right side of FIG. The CPU 135A acquires the needle thread tension based on the output voltage that is the detection result of the magnetic sensor 105 and a predetermined relational expression. The CPU 135A sequentially stores the obtained needle thread tension as a variable tension in the RAM 135B.

CPU135Aは、ミシン1の縫製動作が開始したか否かを判断する(S35)。該判断は、縫製開始時の変動張力のデータが示す上糸張力と、S33でRAM135Bに記憶した変動張力との自己相関解析により比較する。縫製動作が開始していない場合、上糸張力はほとんど変動しない。故に自己相関解析で上糸張力と変動張力とを比較しても、相関係数は1近傍でピークにならない。相関係数が1近傍でピークになっていない時、CPU135Aは縫製動作が開始していないと判断し(S35:NO)、処理をS33に移行する。相関係数が1近傍でピークになった時(S35:YES)、CPU135Aは縫製動作が開始したと判断し処理をS37に移行する。CPU135Aは、タイマ35の計時を開始する(S37)。タイマ35は縫製動作開始から経過した時間(以下、経過時間と称す)を計時する。 The CPU 135A determines whether or not the sewing operation of the sewing machine 1 has started (S35). The determination is compared by an autocorrelation analysis of the needle thread tension indicated by the variable tension data at the start of sewing and the variable tension stored in the RAM 135B in S33. When the sewing operation has not started, the needle thread tension hardly changes. Therefore, even if the needle thread tension and the fluctuating tension are compared by the autocorrelation analysis, the correlation coefficient does not peak near 1. When the correlation coefficient does not peak near 1, the CPU 135A determines that the sewing operation has not started (S35: NO), and moves the process to S33. When the correlation coefficient has a peak in the vicinity of 1 (S35: YES), the CPU 135A determines that the sewing operation has started and shifts the processing to S37. The CPU 135A starts counting the time of the timer 35 (S37). The timer 35 measures the time elapsed from the start of the sewing operation (hereinafter referred to as the elapsed time).

CPU135Aは、磁気センサ105の検出結果に基づく上糸張力と、タイマ35の計時結果に基づく経過時間とを取得する(S43)。CPU135Aはタイマ35の計時結果に基づく経過時間を取得する。CPU135Aは、取得した経過時間と上糸張力とを対応付けて変動張力としてRAM135Bに記憶する。CPU135AはN周期目の変動張力を取得し終えたか否かを判断する(S45)。該判断は、基準上糸張力と、S43でRAM135Bに記憶した変動張力との自己相関解析により比較する。相関係数が1近傍でピークになっていない時、CPU135Aは一周期目の変動張力を取得し終えていないと判断し(S45:NO)、処理をS43に移行する。相関係数が1近傍でピークになった時(S45:YES)、CPU135Aは処理をS47に移行する。尚、S45では、所定時間に亘り相関係数が1近傍でピークにならなかった時も、CPU135AはN周期目の変動張力を取得し終えたと判断する(S45:YES)。故に、糸切れが生じた時でも、CPU135AはN周期目の変動張力を取得し終えたか否かを判断できる。 The CPU 135A acquires the needle thread tension based on the detection result of the magnetic sensor 105 and the elapsed time based on the timing result of the timer 35 (S43). The CPU 135A acquires the elapsed time based on the time measurement result of the timer 35. The CPU 135A stores the acquired elapsed time and the needle thread tension in the RAM 135B as variable tension in association with each other. The CPU 135A determines whether or not the acquisition of the fluctuating tension in the Nth cycle has been completed (S45). The determination is compared by autocorrelation analysis of the reference needle thread tension and the fluctuating tension stored in the RAM 135B in S43. When the correlation coefficient does not peak near 1, the CPU 135A determines that the variable tension for the first cycle has not been acquired (S45: NO), and the process proceeds to S43. When the correlation coefficient peaks near 1 (S45: YES), the CPU 135A shifts the processing to S47. In S45, the CPU 135A determines that the acquisition of the fluctuating tension of the Nth cycle is completed even when the correlation coefficient does not peak near 1 for a predetermined time (S45: YES). Therefore, even when thread breakage occurs, the CPU 135A can determine whether or not the variable tension of the Nth cycle has been acquired.

CPU135Aは、S43、S45を繰返す度に、経過時間と上糸張力(即ち変動張力)をRAM135Bに蓄積して記憶する(S43)。相関係数が1近傍でピークに達した時、又は、相関係数が所定時間に亘り1近傍でピークに達しなかった時(S45:YES)、CPU135Aは、N周期目における変動張力、第一上糸張力、第二上糸張力を取得する(S47)。CPU135Aは、N周期目の変動張力をRAM135Bから抽出して取得する。更にCPU135Aは、N周期目の変動張力における第三上糸張力を特定し、特定した第三上糸張力に基づき、第一上糸張力と第二上糸張力を特定する。S43で取得する上糸張力は、磁気センサ105の検出結果に基づく上糸張力である。故に、CPU135Aは、糸張力検出機構130の検出結果に基づき、N周期目における変動張力、第一上糸張力、第二上糸張力を取得する(S47)。尚、一周期目縫製時においては、上糸6は緩み易い。故に、一周期目における第一上糸張力と第二上糸張力(図示略)は、図7で示す程度の高い値にはなり難い。CPU135Aは縫製不良判断処理を実行する(S51)。 Each time the CPU 135A repeats S43 and S45, the elapsed time and the needle thread tension (that is, the variable tension) are accumulated and stored in the RAM 135B (S43). When the correlation coefficient reaches the peak in the vicinity of 1 or when the correlation coefficient does not reach the peak in the vicinity of 1 for a predetermined time (S45: YES), the CPU 135A causes the variable tension in the Nth cycle, The upper thread tension and the second upper thread tension are acquired (S47). The CPU 135A extracts and acquires the variable tension of the Nth cycle from the RAM 135B. Further, the CPU 135A specifies the third upper thread tension in the variable tension of the Nth cycle, and specifies the first upper thread tension and the second upper thread tension based on the specified third upper thread tension. The upper thread tension acquired in S43 is the upper thread tension based on the detection result of the magnetic sensor 105. Therefore, the CPU 135A acquires the variable tension, the first upper thread tension, and the second upper thread tension in the Nth cycle based on the detection result of the thread tension detection mechanism 130 (S47). The upper thread 6 is easily loosened during the first cycle of sewing. Therefore, it is difficult for the first upper thread tension and the second upper thread tension (not shown) in the first cycle to have high values as shown in FIG. 7. The CPU 135A executes the sewing failure determination processing (S51).

縫製不良判断処理は、糸切れ、目飛び、糸締り不良の夫々の発生の有無を、S47で取得した変動張力に基づき判断する処理である。CPU135Aは、発生した縫製不良に応じて、糸切れフラグ、目飛びフラグ、糸締りフラグを0から1に切替える。CPU135Aは、縫い始めの最中であるか否かを判断する(S100)。縫い始めは、縫製開始(S13)から所定針目までの縫製である。本例の縫い始めは、縫製開始から二針目までの縫製であり、二周期目(N=2)までの縫製に相当する。Nが2以下である時(S100:YES)、CPU135Aは縫製不良判断処理を終了し、張力取得処理に戻る。 The sewing failure determination processing is processing for determining whether or not each of thread breakage, skipped stitches, and thread tightening failure has occurred, based on the variable tension acquired in S47. The CPU 135A switches the thread break flag, the skip stitch flag, and the thread tightening flag from 0 to 1 according to the sewing failure that has occurred. The CPU 135A determines whether or not the sewing is being started (S100). The sewing start is the sewing from the sewing start (S13) to a predetermined stitch. The sewing start of this example is the sewing from the start of sewing to the second stitch, and corresponds to the sewing of the second cycle (N=2). When N is 2 or less (S100: YES), the CPU 135A ends the sewing failure determination process and returns to the tension acquisition process.

CPU135Aは、縫製不良の有無を示す縫製不良情報をCPU91に送信する(S53)。本例の縫製不良情報は、糸切れフラグ、目飛びフラグ、糸締りフラグである。CPU135Aは、磁気センサ105の出力電圧のゼロ点調整を実行する指示を受信したか否か判断する(S55)。縫製処理のS21でCPU91がゼロ点調整を実行する指示を送信すると、CPU135Aは、ゼロ点調整を実行する指示を受信したと判断する(S55:YES)。CPU135Aは、基準電圧Vt(図6参照)を再設定する指示を減算回路152に入力することで、ゼロ点調整を実行する(S57)。上糸6の切断後、上糸張力が略0になるので、基準電圧Vtは、上糸張力が0の時の磁気センサ105の出力電圧にできる。ゼロ点調整を実行する指示を受信した時、ミシン1は縫製処理を終了している。CPU135Aは処理をS30に移行する。 The CPU 135A transmits the sewing defect information indicating the presence or absence of the sewing defect to the CPU 91 (S53). The sewing failure information in this example includes a thread break flag, a skipped stitch flag, and a thread tightening flag. The CPU 135A determines whether or not the instruction to execute the zero-point adjustment of the output voltage of the magnetic sensor 105 is received (S55). When the CPU 91 transmits the instruction to execute the zero point adjustment in S21 of the sewing process, the CPU 135A determines that the instruction to execute the zero point adjustment has been received (S55: YES). The CPU 135A executes the zero point adjustment by inputting an instruction to reset the reference voltage Vt (see FIG. 6) to the subtraction circuit 152 (S57). After the upper thread 6 is cut, the upper thread tension becomes substantially 0, so that the reference voltage Vt can be the output voltage of the magnetic sensor 105 when the upper thread tension is 0. When the instruction to execute the zero point adjustment is received, the sewing machine 1 has finished the sewing process. CPU135A transfers a process to S30.

ゼロ点調整を実行する指示を受信していない時(S55:NO)、CPU135Aは駆動モータが駆動停止しているか否かを判断する(S59)。該判断は、S47で取得した変動張力に基づき、上糸張力がほとんど変動していない場合に駆動モータが駆動停止していると判断する。CPU135Aは駆動モータが駆動停止していると判断した時(S59:YES)、処理をS30に移行する。CPU135Aは駆動モータが駆動停止していないと判断した時(S59:NO)、CPU135AはNを1増加し(S61)、処理をS43に移行し、S43、S45を繰返す。例えばCPU135Aは、二周期目の変動張力を取得し終えた後(S45:YES)、二周期目の変動張力、第一上糸張力、第二上糸張力をRAM135Bに記憶する(S47)。本例では、二周期目の縫製は縫い始めに含まれ、二周期目における第一上糸張力と第二上糸張力(図示略)は、図7で示す程度の高い値にはなり難い。同様の処理により、CPU135Aは、三周期目の変動張力を取得し終えた後(S45:YES)、三周期目の変動張力、第一上糸張力、第二上糸張力をRAM135Bに記憶する(S47)。図7では、三周期目の変動張力を符号203で示す。CPU135Aは、縫製不良判断処理を実行する(S51)。S101以降の縫製不良判断処理の詳細は後述する。CPU135Aは、上記処理を繰り返すことで、四周期目以降の変動張力、第一上糸張力、第二上糸張力を取得する(S47)。図7では、四周期目の変動張力を符号204で示す。 When the instruction to execute the zero point adjustment has not been received (S55: NO), the CPU 135A determines whether or not the driving of the drive motor is stopped (S59). The determination is based on the variable tension acquired in S47, and it is determined that the drive motor is stopped when the needle thread tension hardly changes. When the CPU 135A determines that the drive motor has stopped driving (S59: YES), the process proceeds to S30. When the CPU 135A determines that the drive motor has not stopped driving (S59: NO), the CPU 135A increments N (S61), shifts the processing to S43, and repeats S43 and S45. For example, the CPU 135A stores the variable tension of the second cycle, the first upper thread tension, and the second upper thread tension in the RAM 135B after completing the acquisition of the variable tension of the second cycle (S45: YES) (S47). In this example, the sewing in the second cycle is included at the start of sewing, and the first upper thread tension and the second upper thread tension (not shown) in the second cycle are unlikely to have high values as shown in FIG. 7. By the same process, the CPU 135A stores the variable tension, the first upper thread tension, and the second upper thread tension in the third cycle in the RAM 135B after completing the acquisition of the variable tension in the third cycle (S45: YES). S47). In FIG. 7, the variable tension in the third cycle is indicated by reference numeral 203. The CPU 135A executes the sewing failure determination processing (S51). Details of the sewing failure determination process after S101 will be described later. The CPU 135A obtains the variable tension, the first upper thread tension, and the second upper thread tension after the fourth cycle by repeating the above processing (S47). In FIG. 7, the variable tension in the fourth cycle is indicated by reference numeral 204.

図14、図17〜図22を参照し、S101以降の縫製不良判断処理の詳細を説明する。縫い始めでない時(S100:NO)、CPU135Aは、上軸回転速度を取得する(S101)。CPU135Aは、RAM135Bに記憶のN周期目の経過時間に基づいて、N周期目の縫製開始時から縫製終了時までの時間を取得する。N周期目の縫製期間で上軸15が回転する角度は予め決まっている。故に、CPU135Aは、取得した時間と、所定の関係式とを用いることで、上軸回転速度を取得できる。CPU135Aは、S101で取得した上軸回転速度が第二速度以下であるか否かを判断する(S103)。第二速度は予め設定した速度であり記憶装置135Cに記憶する。本例の第二速度は第一速度よりも遅い。上軸回転速度が第二速度以下である時(S103:YES)、CPU135Aは縫製不良判断処理を終了する。 The details of the sewing failure determination processing after S101 will be described with reference to FIGS. 14 and 17 to 22. When it is not the start of sewing (S100: NO), the CPU 135A acquires the upper shaft rotation speed (S101). The CPU 135A acquires the time from the start of sewing of the Nth cycle to the end of sewing based on the elapsed time of the Nth cycle stored in the RAM 135B. The angle at which the upper shaft 15 rotates in the sewing period of the Nth cycle is predetermined. Therefore, the CPU 135A can acquire the upper shaft rotation speed by using the acquired time and the predetermined relational expression. The CPU 135A determines whether the upper shaft rotation speed acquired in S101 is equal to or lower than the second speed (S103). The second speed is a preset speed and is stored in the storage device 135C. The second speed in this example is slower than the first speed. When the upper shaft rotation speed is equal to or lower than the second speed (S103: YES), the CPU 135A ends the sewing failure determination process.

上軸回転速度が第二速度よりも大きい時(S103:NO)、CPU135Aは、上軸15の回転に加減速が生じたか否かを判断する(S105)。CPU135Aは、S101と同様の方法により、N−1周期目の縫製とN周期目の縫製における夫々の上軸回転速度を取得する。夫々の上軸回転速度の差が所定範囲以上となる時、加減速は生じていると見なすことが可能であり、夫々の上軸回転速度の差が所定範囲未満となる時、加減速は生じていないと見なすことが可能である。CPU135Aは、上軸回転速度に加減速が生じていると判断した時(S105:YES)、上軸15の回転の加減速に応じて糸締り不良特定閾値を変更する(S121)。CPU135Aは、N−1周期目の縫製とN周期目の縫製における夫々の上軸回転速度に基づき、上軸15の回転の加速度を特定する。CPU135Aは、上軸15の加速度が大きくなる程、糸締り不良特定閾値が小さくなるように糸締り不良特定閾値を変更する(S121)。尚、上軸15が減速する時、CPU135Aは、糸締り不良特定閾値を大きくする(S121)。該時の糸締り不良特定閾値は正の値である。 When the upper shaft rotation speed is higher than the second speed (S103: NO), the CPU 135A determines whether the rotation of the upper shaft 15 is accelerated or decelerated (S105). The CPU 135A acquires the respective upper shaft rotation speeds in the N-1th cycle sewing and the Nth cycle sewing by the same method as in S101. Acceleration/deceleration can be considered to occur when the difference between the upper shaft rotation speeds exceeds a predetermined range, and acceleration/deceleration occurs when the difference between the upper shaft rotation speeds falls below the predetermined range. It can be considered not. When the CPU 135A determines that the upper shaft rotation speed is accelerated or decelerated (S105: YES), the CPU 135A changes the thread tightening defect identification threshold according to the acceleration or deceleration of the rotation of the upper shaft 15 (S121). The CPU 135A specifies the acceleration of rotation of the upper shaft 15 based on the respective upper shaft rotation speeds in the N-1th cycle sewing and the Nth cycle sewing. The CPU 135A changes the thread tightening defect identification threshold so that the thread tightening defect identification threshold becomes smaller as the acceleration of the upper shaft 15 increases (S121). When the upper shaft 15 decelerates, the CPU 135A increases the thread tightening failure identification threshold value (S121). The thread tightening failure identification threshold value at that time is a positive value.

上軸15の回転に加減速が生じていない時(S105:NO)、CPU135Aは、S101で取得した上軸回転速度に応じて、記憶装置135Cに記憶の第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値を変更する(S109)。例えば、CPU135Aは、第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値の夫々に、上軸回転速度と比例関係を有する正の係数を乗じる。即ち、上軸回転速度が大きくなる程、第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値は大きくなるように変更する(S109)。 When acceleration/deceleration does not occur in the rotation of the upper shaft 15 (S105: NO), the CPU 135A determines the first yarn breakage threshold value and the second yarn breakage stored in the storage device 135C according to the upper shaft rotation speed acquired in S101. The threshold, the first skip threshold, and the second skip threshold are changed (S109). For example, the CPU 135A multiplies each of the first yarn breakage threshold value, the second yarn breakage threshold value, the first stitch skipping threshold value, and the second stitch skipping threshold value by a positive coefficient having a proportional relationship with the upper shaft rotation speed. That is, as the upper shaft rotation speed increases, the first yarn breakage threshold value, the second yarn breakage threshold value, the first stitch skipping threshold value, and the second stitch skipping threshold value are increased (S109).

CPU135Aは、糸締り不良判断処理を実行する(S111)。CPU135Aは、RAM135Bを参照することにより、N−1周期の第二上糸張力の発生時機(即ち基準上糸張力の第二上糸張力の発生時機)と、N周期目の第二上糸張力の発生時機を取得する(S124)。CPU135Aは、S124で取得したN周期目の第二上糸張力の発生時機と、S124で取得したN−1周期目の第二上糸張力の発生時機との差分が、糸締り不良特定閾値以上であるか否かを判断する(S125)。該時の糸締り不良特定閾値は、S121で変更した糸締り不良特定閾値である。N周期目の第二上糸張力の発生時機と、N−1周期目の第二上糸張力の発生時機との差分が、糸締り不良特定閾値未満の時(S125:NO)、CPU135Aは糸締り不良が発生していないと判断し、糸締り不良判断処理を終了する。N周期目の第二上糸張力の発生時機と、N−1周期目の第二上糸張力の発生時機との差分が糸締り不良特定閾値以上の時(S125:YES)、CPU135Aは、糸締り不良が生じたと判断し、糸締りフラグを1に変更し(S127)、糸締り不良判断処理を終了し、縫製不良判断処理に戻る。 The CPU 135A executes the thread tightening defect determination processing (S111). The CPU 135A refers to the RAM 135B to determine when the second upper thread tension of the N-1 cycle is generated (that is, when the second upper thread tension of the reference upper thread tension is generated) and the second upper thread tension of the Nth cycle. The timing of occurrence of is acquired (S124). The CPU 135A determines that the difference between the Nth cycle second upper thread tension generation timing acquired in S124 and the N-1th cycle second upper thread tension generation timing acquired in S124 is greater than or equal to the thread tightening failure identification threshold value. Or not (S125). The thread tightening defect identification threshold value at that time is the thread tightening defect identification threshold value changed in S121. When the difference between the occurrence timing of the second upper thread tension in the Nth cycle and the occurrence timing of the second upper thread tension in the N-1th cycle is less than the thread tightening failure specific threshold value (S125: NO), the CPU 135A causes the thread It is determined that the tightness failure has not occurred, and the thread tightness determination processing is ended. When the difference between the occurrence timing of the second upper thread tension in the Nth cycle and the occurrence timing of the second upper thread tension in the (N-1)th cycle is equal to or higher than the thread tightening failure specific threshold value (S125: YES), the CPU 135A When it is determined that the tightening failure has occurred, the thread tightening flag is changed to 1 (S127), the thread tightening failure determination processing ends, and the processing returns to the sewing failure determination processing.

CPU135Aは、特定糸切れ判断処理を実行する(S113)。CPU135Aは、第一上糸張力差が第一糸切れ特定閾値以上か否かを判断する(S131)。CPU135Aは、RAM135Bに記憶のN−1周期目の第一上糸張力とN周期目の第一上糸張力とを取得することで、第一上糸張力差を取得する。第一上糸張力差が第一糸切れ特定閾値未満の時(S131:NO)、CPU135AはN周期目の縫製時に糸切れが発生していないと判断し、特定糸切れ判断処理を終了する。第一上糸張力差が第一糸切れ特定閾値以上の時(S131:YES)、CPU135Aは、第二上糸張力差が第二糸切れ特定閾値以上か否かを判断する(S133)。CPU135Aは、RAM135Bに記憶のN−1周期目の第二上糸張力とN周期目の第二上糸張力とを取得することで、第二上糸張力差を取得する。第二上糸張力差が第二糸切れ特定閾値未満の時(S133:NO)、CPU135AはN周期目の縫製時に糸切れが発生していないと判断し、特定糸切れ判断処理を終了する。第二上糸張力差が第二糸切れ特定閾値以上の時(S133:YES)、CPU135AはN周期目の縫製時に糸切れが発生したと判断する。CPU135Aは、糸切れフラグを1に変更し(S137)、特定糸切れ判断処理を終了し、縫製不良判断処理に戻る。 The CPU 135A executes a specific yarn breakage determination process (S113). The CPU 135A determines whether the first upper thread tension difference is equal to or larger than the first thread breakage specific threshold value (S131). The CPU 135A acquires the first upper thread tension difference by acquiring the N-1th cycle first upper thread tension and the Nth cycle first upper thread tension stored in the RAM 135B. When the first upper thread tension difference is less than the first thread breakage specific threshold value (S131: NO), the CPU 135A determines that no thread breakage has occurred during the Nth cycle of sewing, and ends the specific thread breakage determination process. When the first upper thread tension difference is greater than or equal to the first thread break specific threshold value (S131: YES), the CPU 135A determines whether the second upper thread tension difference is greater than or equal to the second thread break specific threshold value (S133). The CPU 135A acquires the second upper thread tension difference by acquiring the N-1th cycle second upper thread tension and the Nth cycle second upper thread tension stored in the RAM 135B. When the second upper thread tension difference is less than the second thread breakage specific threshold value (S133: NO), the CPU 135A determines that no thread breakage has occurred during the Nth cycle of sewing, and ends the specific thread breakage determination process. When the second needle thread tension difference is equal to or greater than the second thread breakage specific threshold value (S133: YES), the CPU 135A determines that the thread breakage has occurred during the Nth cycle of sewing. The CPU 135A changes the thread breakage flag to 1 (S137), ends the specific thread breakage determination processing, and returns to the sewing failure determination processing.

CPU135Aは、特定目飛び判断処理を実行する(S115)。CPU135Aは、第一上糸張力差が第一目飛び特定閾値以上か否かを判断する(S141)。第一上糸張力差の取得方法は、S131と同様である。第一上糸張力差が第一目飛び特定閾値未満の時(S141:NO)、CPU135AはN周期目の縫製時に目飛びが発生していないと判断し、特定目飛び判断処理を終了する。第一上糸張力差が第一目飛び特定閾値以上の時(S141:YES)、CPU135Aは、第二上糸張力差が第二目飛び特定閾値以下であるか否かを判断する(S143)。第二上糸張力差の取得方法はS133と同様である。第二上糸張力差が第二目飛び特定閾値よりも大きい時(S143:NO)、CPU135AはN周期目の縫製時に目飛びが発生していないと判断し、特定目飛び判断処理を終了する。第二上糸張力差が第二目飛び特定閾値以下である時(S143:YES)、CPU135AはN周期目の縫製時に目飛びが発生したと判断する。CPU135Aは、目飛びフラグを1に変更し(S147)、特定目飛び判断処理を終了して、縫製不良判断処理に戻る。 The CPU 135A executes a specific stitch skipping determination process (S115). The CPU 135A determines whether the first needle thread tension difference is equal to or larger than the first stitch skipping specific threshold value (S141). The method for obtaining the first needle thread tension difference is the same as in S131. When the first needle thread tension difference is less than the first stitch skip identification threshold value (S141: NO), the CPU 135A determines that no stitch skip has occurred during the Nth cycle of sewing, and ends the specific stitch skip determination process. When the first needle thread tension difference is greater than or equal to the first stitch skipping specific threshold value (S141: YES), the CPU 135A determines whether the second needle thread tension difference is less than or equal to the second stitch skipping specific threshold value (S143). .. The method for acquiring the second needle thread tension difference is the same as in S133. When the second needle thread tension difference is larger than the second stitch skipping specific threshold (S143: NO), the CPU 135A determines that no stitch skipping has occurred during the Nth cycle of sewing, and ends the specific stitch skipping determination process. .. When the second needle thread tension difference is less than or equal to the second stitch skipping specific threshold (S143: YES), the CPU 135A determines that stitch skipping has occurred during the Nth cycle of sewing. The CPU 135A changes the stitch skip flag to 1 (S147), ends the specific stitch skip determination process, and returns to the sewing failure determination process.

尚、糸切れが発生した時も、第一上糸張力差は第一目飛び特定閾値以上となる場合がある(S141:YES)。しかし該時、第二上糸張力差は第二目飛び特定閾値よりも大きくなる(S143:NO)。故に、実際には糸切れが発生しているにも関わらず、目飛びが発生しているとCPU135Aが誤って判断するのを、ミシン1は抑制できる。 Even when thread breakage occurs, the first needle thread tension difference may be equal to or greater than the first stitch skipping specific threshold (S141: YES). However, at that time, the second needle thread tension difference becomes larger than the second stitch skipping specific threshold value (S143: NO). Therefore, the sewing machine 1 can prevent the CPU 135A from erroneously determining that a stitch skip has occurred despite the fact that a thread break has actually occurred.

CPU135Aは、糸切れ判断処理を実行する(S117)。CPU135Aは、糸切れフラグが1であるか否かを判断する(S151)。糸切れフラグが1である時(S151:YES)、CPU135Aは、糸切れ判断処理を終了する。糸切れフラグが0である時(S151:NO)、CPU135Aは、RAM135Bに記憶のN周期目の第一上糸張力が第一糸切れ閾値以下であるか否かを判断する(S153)。S153で参照する第一糸切れ閾値は、S109で変更した第一糸切れ閾値である。第一上糸張力が第一糸切れ閾値よりも大きい場合(S153:NO)、CPU135AはN周期目に糸切れが発生していないと判断し、糸切れ判断処理を終了する。第一上糸張力が第一糸切れ閾値以下の時(S153:YES)、CPU135Aは、RAM135Bに記憶のN周期目の第二上糸張力が第二糸切れ閾値以下であるか否かを判断する(S155)。S155で参照する第二糸切れ閾値は、S109で変更した第二糸切れ閾値である。第二上糸張力が第二糸切れ閾値よりも大きい場合(S155:NO)、CPU135AはN周期目に糸切れが発生していないと判断し、糸切れ判断処理を終了する。第二上糸張力が第二糸切れ閾値以下の時(S155:YES)、CPU135AはN周期目に糸切れが発生したと判断し、糸切れフラグを1に変更し(S159)、糸切れ判断処理を終了して、縫製不良判断処理に戻る。 The CPU 135A executes a thread breakage determination process (S117). The CPU 135A determines whether or not the thread breakage flag is 1 (S151). When the thread breakage flag is 1 (S151: YES), the CPU 135A ends the thread breakage determination process. When the thread breakage flag is 0 (S151: NO), the CPU 135A determines whether or not the Nth cycle first upper thread tension stored in the RAM 135B is less than or equal to the first thread breakage threshold value (S153). The first yarn breakage threshold value referred to in S153 is the first yarn breakage threshold value changed in S109. When the first upper thread tension is higher than the first thread breakage threshold value (S153: NO), the CPU 135A determines that thread breakage has not occurred in the Nth cycle, and ends the thread breakage determination process. When the first upper thread tension is less than or equal to the first thread breakage threshold value (S153: YES), the CPU 135A determines whether the second upper thread tension of the Nth cycle stored in the RAM 135B is less than or equal to the second thread breakage threshold value. Yes (S155). The second yarn breakage threshold value referred to in S155 is the second yarn breakage threshold value changed in S109. When the second upper thread tension is larger than the second thread breakage threshold value (S155: NO), the CPU 135A determines that thread breakage has not occurred in the Nth cycle, and ends the thread breakage determination process. When the second upper thread tension is less than or equal to the second thread breakage threshold value (S155: YES), the CPU 135A determines that thread breakage has occurred in the Nth cycle, changes the thread breakage flag to 1 (S159), and judges the thread breakage. The process is terminated and the process returns to the sewing failure determination process.

CPU135Aは、目飛び判断処理を実行する(S119)。CPU135Aは、目飛びフラグが1であるか否かを判断する(S161)。目飛びフラグが1である時(S161:YES)、CPU135Aは、目飛び判断処理を終了する。目飛びフラグが0である時(S161:NO)、CPU135Aは、RAM135Bに記憶のN周期目の第一上糸張力が第一目飛び閾値以下であるか否かを判断する(S163)。S163で参照する第一目飛び閾値はS109で変更した第一目飛び閾値である。第一上糸張力が第一目飛び閾値よりも大きい場合(S163:NO)、CPU135AはN周期目に目飛びが発生していないと判断し、目飛び判断処理を終了する。第一上糸張力が第一目飛び閾値以下の時(S163:YES)、CPU135Aは、RAM135Bに記憶のN周期目の第二上糸張力が第二目飛び閾値以上であるか否かを判断する(S165)。S163で参照する第二目飛び閾値はS109で変更した第二目飛び閾値である。第二上糸張力が第二目飛び閾値よりも小さい場合(S165:NO)、CPU135AはN周期目に目飛びが発生していないと判断し、目飛び判断処理を終了する。第二上糸張力が第二目飛び閾値以上である場合(S165:YES)、CPU135AはN周期目に目飛びが発生していると判断し、目飛びフラグを1に変更し(S169)、目飛び判断処理を終了して、縫製不良判断処理に戻る。 The CPU 135A executes a skipped stitch determination process (S119). The CPU 135A determines whether the skipped flag is 1 (S161). When the stitch skip flag is 1 (S161: YES), the CPU 135A ends the stitch skip determination process. When the stitch skip flag is 0 (S161: NO), the CPU 135A determines whether the first needle thread tension at the Nth cycle stored in the RAM 135B is equal to or less than the first stitch skip threshold (S163). The first skip threshold value referred to in S163 is the first skip threshold value changed in S109. When the first needle thread tension is larger than the first stitch skip threshold value (S163: NO), the CPU 135A determines that the stitch skip has not occurred in the Nth cycle, and ends the stitch skip determination process. When the first needle thread tension is equal to or lower than the first stitch skip threshold value (S163: YES), the CPU 135A determines whether the second cycle of the second needle thread tension of the Nth cycle stored in the RAM 135B is equal to or higher than the second stitch skip threshold value. Yes (S165). The second skip threshold value referred to in S163 is the second skip threshold value changed in S109. When the second needle thread tension is smaller than the second stitch skip threshold value (S165: NO), the CPU 135A determines that the stitch skip has not occurred in the Nth cycle, and ends the stitch skip determination process. When the second needle thread tension is equal to or higher than the second stitch skip threshold (S165: YES), the CPU 135A determines that the stitch skip has occurred in the Nth cycle, and changes the stitch skip flag to 1 (S169). The stitch skipping determination processing is ended, and the processing returns to the sewing failure determination processing.

尚、糸切れが発生した時も、第一上糸張力は第一目飛び閾値以下となる場合がある(S163:YES)。しかし該時、第二上糸張力は第二目飛び閾値よりも小さくなる(S165:NO)。故に、実際には目飛びが発生しているにも関わらず、糸切れが発生しているとCPU135Aが誤って判断するのを、ミシン1は抑制できる。 Even when thread breakage occurs, the first upper thread tension may be less than or equal to the first stitch skip threshold value (S163: YES). However, at that time, the second needle thread tension becomes smaller than the second stitch skip threshold value (S165: NO). Therefore, the sewing machine 1 can prevent the CPU 135A from erroneously determining that thread breakage has occurred, even though skipping has actually occurred.

CPU135Aは、閾値初期化処理を実行する(S120)。CPU135Aは、記憶装置135Cに記憶の第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値、糸締り不良特定閾値、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を初期値に戻す。CPU135Aは、縫製不良判断処理を終了して、張力取得処理に戻る。 The CPU 135A executes a threshold initialization process (S120). The CPU 135A stores the first yarn breakage threshold value, the second yarn breakage threshold value, the first stitch skipping threshold value, the second stitch skipping threshold value, the thread tightening defect identification threshold value, the first yarn breakage identification threshold value, and the second yarn breakage value stored in the storage device 135C. The specific threshold, the first skip jump specific threshold, and the second skip jump specific threshold are returned to the initial values. The CPU 135A ends the sewing failure determination process and returns to the tension acquisition process.

図16に示す如く、CPU135Aは、縫製不良情報を送信する(S53)。図14に示す如く、CPU91は、縫製不良が発生したと判断した時(S17:YES)、発生した縫製不良を特定する(S23)。例えば、CPU91は、糸切れフラグ、目飛びフラグ、糸締りフラグの内で1になっているフラグを特定することで、発生した縫製不良を特定する。CPU91は特定した縫製不良を報知する(S24)。例えばCPU91は、特定した縫製不良を表示部25に表示する。CPU91は駆動モータを駆動停止するか否かを判断する(S25)。CPU91は、特定した縫製不良が糸切れ又は目飛びの時、駆動モータを駆動停止すると判断する。駆動モータを駆動停止すると判断した時(S25:YES)、CPU91は駆動モータを駆動停止し(S26)、処理をS220に移行する。駆動モータを駆動停止しないと判断した時(S25:NO)、CPU91は処理をS18に移行する。本実施形態では、糸締り不良が発生しても(S17:YES)、駆動モータは停止しない(S25:NO)。作業者は、表示部25にて糸締り不良の発生を確認した上で、ペダル38を踏込んでもよいし(S18:NO)、ペダル38を踏み返してもよい(S18:YES)。 As shown in FIG. 16, the CPU 135A transmits the sewing defect information (S53). As shown in FIG. 14, when the CPU 91 determines that a sewing failure has occurred (S17: YES), the CPU 91 identifies the sewing failure that has occurred (S23). For example, the CPU 91 specifies the flag that is 1 out of the thread breakage flag, the stitch skipping flag, and the thread tightening flag to specify the sewing failure that has occurred. The CPU 91 notifies the specified sewing failure (S24). For example, the CPU 91 displays the identified defective sewing on the display unit 25. The CPU 91 determines whether to stop driving the drive motor (S25). The CPU 91 determines to stop driving the drive motor when the specified sewing failure is thread breakage or stitch skipping. When it is determined to stop driving the drive motor (S25: YES), the CPU 91 stops driving the drive motor (S26), and the process proceeds to S220. When it is determined that the drive motor will not be stopped (S25: NO), the CPU 91 shifts the processing to S18. In the present embodiment, the drive motor does not stop even if the thread tightening failure occurs (S17: YES) (S25: NO). The operator may depress the pedal 38 (S18: NO) or depress the pedal 38 (S18: YES) after confirming the occurrence of the thread tightening failure on the display unit 25.

CPU91は、縫製終了時であってMが所定周期到達前に縫製不良が発生したと判断した時(S74:YES)、発生した縫製不良を特定し(S75)、特定した縫製不良を報知する(S76)。CPU91は駆動モータを駆動停止するか否かを判断する(S77)。CPU91は、駆動モータを駆動停止すると判断した時(S77:YES)、駆動モータを駆動停止し(S78)、処理をS220に移行する。CPU91は、駆動モータを駆動停止しないと判断した時(S77:NO)、処理をS19に移行する。S75〜S78の処理は、S23〜S26の処理と同様である。上記と同様、糸締り不良が発生しても(S74:YES)、駆動モータは停止しない(S77:NO)。該時、CPU91はMが所定周期に到達する迄処理を継続すればよい。 When the CPU 91 determines that a sewing failure has occurred at the end of sewing and before M reaches the predetermined period (S74: YES), the sewing failure that has occurred is identified (S75), and the identified sewing failure is notified ( S76). The CPU 91 determines whether to stop driving the drive motor (S77). When the CPU 91 determines to stop driving the drive motor (S77: YES), it stops driving the drive motor (S78) and shifts the processing to S220. When the CPU 91 determines not to stop driving the drive motor (S77: NO), the process proceeds to S19. The processing of S75 to S78 is the same as the processing of S23 to S26. Similarly to the above, even if the thread tightening failure occurs (S74: YES), the drive motor does not stop (S77: NO). At this time, the CPU 91 may continue the process until M reaches a predetermined cycle.

以上説明の如く、CPU135Aは、糸張力検出機構130の磁気センサ105の検出結果に基づき、変動張力を取得する(S47)。CPU135Aは、糸締り不良判断処理(S111)、特定糸切れ判断処理(S113)、特定目飛び判断処理(S115)を実行する。該処理では、N周期目の上糸張力と、基準上糸張力であるN−1周期目の上糸張力を比較することで、縫製不良の有無を判断する。より詳細には、CPU135Aは、S47で取得したN周期目の変動張力と、基準上糸張力であるN−1周期目の変動張力とを、糸締り不良特定閾値、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を用いて比較することで、縫製不良が発生したか否かを判断する。糸締り不良特定閾値は糸締り不良に対応して予め設定した閾値であり、第一糸締り不良特定閾値、第二糸切れ特定閾値は糸切れに対応して予め設定した閾値であり、第一目飛び特定閾値、第二目飛び特定閾値は目飛びに対応して予め設定した閾値である。CPU135Aは、これらの特定閾値を用いて、縫製不良の有無を判断する。故に、ミシン1は具体的な縫製不良を識別できる。故にミシン1は、上糸張力の変化に基づき縫製不良を識別できる。 As described above, the CPU 135A acquires the variable tension based on the detection result of the magnetic sensor 105 of the yarn tension detecting mechanism 130 (S47). The CPU 135A executes a thread tightening defect determination processing (S111), a specific thread breakage determination processing (S113), and a specific stitch skipping determination processing (S115). In this process, the presence or absence of a sewing failure is determined by comparing the Nth cycle upper thread tension with the N-1th cycle upper thread tension, which is the reference upper thread tension. More specifically, the CPU 135A sets the variable tension of the Nth cycle and the variable tension of the N−1th cycle, which is the reference upper thread tension, acquired in S47, to the thread tightening failure identification threshold value, the first thread breakage identification threshold value, By using the second yarn breakage identification threshold value, the first stitch skip identification threshold value, and the second stitch skip identification threshold value, it is determined whether or not a sewing failure has occurred. The thread tightening failure specific threshold is a threshold value set in advance corresponding to thread tightening failure, the first thread tightening failure specific threshold value and the second thread breakage specific threshold value are preset threshold values corresponding to thread breakage, and The stitch skipping specific threshold value and the second stitch skipping specific threshold value are preset threshold values corresponding to the stitch skipping. The CPU 135A determines whether or not there is a sewing failure by using these specific threshold values. Therefore, the sewing machine 1 can identify a specific sewing failure. Therefore, the sewing machine 1 can identify the sewing failure based on the change in the needle thread tension.

CPU135Aは、第三上糸張力を基準として、第一上糸張力と第二上糸張力を取得する(S47)。第三上糸張力は、第一上糸張力と第二上糸張力とに対して小さく、0になり易い。第三上糸張力を基準とした第一上糸張力と第二上糸張力は大きくなり易い。故にミシン1は、第一上糸張力と第二上糸張力とを高い精度で取得できる。 The CPU 135A acquires the first upper thread tension and the second upper thread tension based on the third upper thread tension (S47). The third upper thread tension is smaller than the first upper thread tension and the second upper thread tension, and tends to be zero. The first and second upper thread tensions based on the third upper thread tension tend to be large. Therefore, the sewing machine 1 can acquire the first upper thread tension and the second upper thread tension with high accuracy.

糸切れが発生すると、第一上糸張力は第一糸切れ閾値以下となり、且つ第二上糸張力は第二糸切れ閾値以下となる。糸切れ判断処理(S117)では、N周期目の第一上糸張力が第一糸切れ閾値以下であり(S153:YES)、且つN周期目の第二上糸張力が第二糸切れ閾値以下である時に(S155:YES)、CPU135Aは、糸切れが発生したと判断して糸切れフラグを1に変更する(S159)。CPU135Aが糸切れの発生の有無を判断できるので、ミシン1は、縫製不良として糸切れを識別できる。 When thread breakage occurs, the first upper thread tension becomes less than or equal to the first thread break threshold and the second upper thread tension becomes less than or equal to the second thread break threshold. In the thread breakage determination process (S117), the first upper thread tension in the Nth cycle is less than or equal to the first thread breakage threshold (S153: YES), and the second upper thread tension in the Nth cycle is less than or equal to the second thread breakage threshold. If (YES in S155), the CPU 135A determines that a thread break has occurred and changes the thread break flag to 1 (S159). Since the CPU 135A can determine whether thread breakage has occurred, the sewing machine 1 can identify thread breakage as a sewing failure.

目飛びが発生すると、第一上糸張力は第一目飛び閾値以下となり、第二上糸張力は第二目飛び閾値以上となる。目飛び判断処理(S119)では、N周期目の第一上糸張力が第一目飛び閾値以下であり(S163:YES)、且つN周期目の第二上糸張力が第二目飛び閾値以下である時(S165:YES)、CPU135Aは、目飛びが発生したと判断して目飛びフラグを1に変更する(S169)。CPU135Aが目飛びの有無を判断できるので、ミシン1は縫製不良として目飛びを識別できる。 When the skipping occurs, the first needle thread tension becomes equal to or lower than the first stitch skipping threshold, and the second needle thread tension becomes equal to or higher than the second stitch skipping threshold. In the stitch skipping determination process (S119), the first upper thread tension in the Nth cycle is less than or equal to the first stitch skipping threshold (S163: YES), and the second upper thread tension in the Nth cycle is less than or equal to the second stitch skipping threshold. If YES (S165: YES), the CPU 135A determines that the stitch skip has occurred and changes the stitch skip flag to 1 (S169). Since the CPU 135A can determine the presence or absence of skipped stitches, the sewing machine 1 can identify skipped stitches as defective sewing.

糸締り不良が発生すると、上糸6を消費する消費量が増えるので、第二上糸張力の発生時機は早くなる。糸締り不良判断処理(S111)では、N周期目の第二上糸張力の発生時機が、N−1周期目の第二上糸張力の発生時機に対して糸締り不良特定閾値以上に早い時に(S125:YES)、CPU135Aは、糸締り不良が発生したと判断して糸締りフラグを1に変更する(S127)。CPU135Aは糸締り不良の発生の有無を判断できるので、ミシン1は縫製不良として糸締り不良を識別できる。 When the thread tightening failure occurs, the amount of consumption of the upper thread 6 increases, so that the timing of generation of the second upper thread tension becomes earlier. In the thread tightening defect determination processing (S111), when the second upper thread tension occurrence time of the Nth cycle is earlier than the thread tightening failure specific threshold value with respect to the N-1th cycle second needle thread tension occurrence time. (S125: YES), the CPU 135A determines that the thread tightening defect has occurred, and changes the thread tightening flag to 1 (S127). Since the CPU 135A can determine whether or not the thread tightening failure has occurred, the sewing machine 1 can identify the thread tightening failure as the sewing failure.

ミシン1による縫製速度が遅い時、上糸6の消費量が低いので、第一上糸張力及び第二上糸張力は低くなる。S15で取得した上軸回転速度が第一速度以下の時(S81:YES)、CPU91は、糸調子モータ16を制御して糸調子皿69を巻取方向に回転し、上糸6を巻取る(S83)。故に上糸6の緩みは生じ難い。故にミシン1は、第一上糸張力と第二上糸張力を生じ易くできる。 When the sewing speed by the sewing machine 1 is low, the consumption amount of the upper thread 6 is low, so that the first upper thread tension and the second upper thread tension are low. When the upper shaft rotation speed acquired in S15 is equal to or lower than the first speed (S81: YES), the CPU 91 controls the thread tension motor 16 to rotate the thread tension disc 69 in the winding direction to wind the upper thread 6. (S83). Therefore, the looseness of the upper thread 6 is unlikely to occur. Therefore, the sewing machine 1 can easily generate the first upper thread tension and the second upper thread tension.

回転する上軸15が加減速することに伴い上軸回転速度に変化が生じた時(S105:YES)、CPU135Aは、上軸15の加速度に応じて糸締り不良特定閾値を変更し(S121)、変更した糸締り不良特定閾値をS125で用いる。上軸回転速度に変化が生じると、加速度に応じて上糸張力は変化し、縫製不良が生じる時の上糸張力も変化する。より詳細には糸締り不良の発生時に上軸15が増速していると、第二上糸張力の発生時機は、上軸15が低速で回転する時の第二上糸張力の発生時機よりも遅くなる。該時でも、CPU135Aが、上軸回転速度の変化に応じて糸締り不良特定閾値を変更するので、ミシン1は糸締り不良を適正に検出できる。 When the rotating speed of the upper shaft changes due to the acceleration and deceleration of the rotating upper shaft 15 (S105: YES), the CPU 135A changes the thread tightening failure identification threshold value according to the acceleration of the upper shaft 15 (S121). The changed thread tightening defect identification threshold is used in S125. When the upper shaft rotation speed changes, the upper thread tension changes according to the acceleration, and the upper thread tension changes when sewing failure occurs. More specifically, if the upper shaft 15 is accelerated when the thread tightening failure occurs, the second upper thread tension is generated when the second upper thread tension is generated when the upper shaft 15 is rotated at a lower speed. Will also be late. Even at this time, the CPU 135A changes the thread tightening defect identification threshold according to the change in the upper shaft rotation speed, so that the sewing machine 1 can properly detect the thread tightening defect.

上軸回転速度が変化すると、上糸張力は変化し、縫製不良が生じた時の上糸張力も変化する。具体的には、上軸15が比較的低速で回転する時、変動張力は小さくなり、縫製不良が生じた時の上糸張力も小さくなり、上軸15が比較的高速で回転する時、変動張力は大きくなり、縫製不良が生じた時の上糸張力も大きくなる。縫製不良が生じた時の上糸張力が変化する時でも、CPU135Aは、S100で取得した上軸回転速度に応じて閾値を変更するので(S109)、CPU135Aは縫製不良を適正に検出できる。 When the upper shaft rotation speed changes, the needle thread tension changes, and the needle thread tension also changes when a sewing failure occurs. Specifically, when the upper shaft 15 rotates at a relatively low speed, the fluctuating tension becomes small, and when the sewing failure occurs, the needle thread tension also becomes small, and when the upper shaft 15 rotates at a relatively high speed, it fluctuates. The tension increases, and the needle thread tension also increases when a sewing failure occurs. Even when the needle thread tension changes when a sewing failure occurs, the CPU 135A changes the threshold value according to the upper shaft rotation speed acquired in S100 (S109), so that the CPU 135A can properly detect the sewing failure.

縫製不良判断処理では、CPU135Aは、縫い始めよりも後に(S100:NO)、S111〜S120を実行する。縫い始め時、上糸6は緩み易い。即ち、第一上糸張力と第二上糸張力は適正な値になり難い。故に、CPU135Aが縫い始め時に縫製不良の有無を判断すると、縫製不良が発生していないにも関わらず縫製不良が発生したと判断する虞がある。CPU135Aは、縫い始めにおける縫製不良の有無を判断しない(S100:YES)。故に、縫製不良が発生したと誤って判断するのをミシン1は抑制できる。 In the sewing failure determination process, the CPU 135A executes S111 to S120 after the start of sewing (S100: NO). At the start of sewing, the upper thread 6 is easily loosened. That is, it is difficult for the first upper thread tension and the second upper thread tension to be proper values. Therefore, if the CPU 135A determines whether or not there is a sewing failure at the start of sewing, there is a possibility that it may be determined that a sewing failure has occurred even though no sewing failure has occurred. The CPU 135A does not determine whether there is a sewing failure at the start of sewing (S100: YES). Therefore, the sewing machine 1 can suppress erroneously determining that a sewing failure has occurred.

S101で取得した上軸回転速度が第二速度よりも大きい時(S103:NO)、CPU135Aは、S111〜S119を実行して縫製不良の有無を判断する。ミシン1による縫製速度が遅い時、第一上糸張力及び第二上糸張力は低くなり、第一上糸張力と第二上糸張力が適正に生じ難い。故にミシン1は上糸張力に基づいた縫製不良を検出し難い。本実施形態では、上軸回転速度が第二速度以下の時(S103:YES)、CPU135Aは縫製不良の有無を判断しない。故にミシン1は、縫製不良の有無を更に適正に判断できる。 When the upper shaft rotation speed acquired in S101 is higher than the second speed (S103: NO), the CPU 135A executes S111 to S119 to determine whether there is a sewing failure. When the sewing speed by the sewing machine 1 is low, the first upper thread tension and the second upper thread tension are low, and it is difficult to properly generate the first upper thread tension and the second upper thread tension. Therefore, it is difficult for the sewing machine 1 to detect a sewing failure based on the needle thread tension. In the present embodiment, when the upper shaft rotation speed is equal to or lower than the second speed (S103: YES), the CPU 135A does not determine whether there is a sewing failure. Therefore, the sewing machine 1 can more properly determine the presence or absence of sewing failure.

糸切りの実行時(S20)、ゼロ点調整の指示(S22)をCPU91から受信したCPU135Aはゼロ点調整を実行する(S57)。縫製動作を繰り返すと、上糸6とテンション板50との摺動の繰返しにより、磁気センサ105の温度は上昇する。磁気センサ105の出力電圧は、基準電圧Vtに対して大きく変動する虞がある。該時でも、上糸張力が糸切りの実行に伴って低減して磁気センサ105の出力電圧が低下した時に、CPU135Aはゼロ点調整を実行し(S57)、ミシン1は磁気センサ105の基準電圧Vtを設定し直す。故にミシン1は、磁気センサ105の出力電圧に基づき上糸張力を継続的に精度良く取得できる。ゼロ点調整実行時、CPU135Aは縫製不良の有無を判断しない。故に、縫製不良が発生したと誤って判断するのをミシン1は抑制できる。 Upon execution of thread trimming (S20), the CPU 135A which has received the zero point adjustment instruction (S22) from the CPU 91 executes zero point adjustment (S57). When the sewing operation is repeated, the temperature of the magnetic sensor 105 rises due to the repeated sliding of the needle thread 6 and the tension plate 50. The output voltage of the magnetic sensor 105 may change significantly with respect to the reference voltage Vt. Even at that time, when the needle thread tension is reduced with the execution of thread trimming and the output voltage of the magnetic sensor 105 is reduced, the CPU 135A executes the zero point adjustment (S57), and the sewing machine 1 causes the reference voltage of the magnetic sensor 105 to be adjusted. Reset Vt. Therefore, the sewing machine 1 can continuously and accurately obtain the needle thread tension based on the output voltage of the magnetic sensor 105. At the time of executing the zero point adjustment, the CPU 135A does not judge whether there is a sewing failure. Therefore, the sewing machine 1 can suppress erroneously determining that a sewing failure has occurred.

以上説明にて、主糸調子器60は本発明の糸調子機構の一例である。テンション板50は本発明の可動部材の一例である。S13、S21を実行するCPU91は本発明の縫製制御部の一例である。S47を実行するCPU135Aは本発明の張力取得部の一例である。S51を実行するCPU135Aは本発明の判断部の一例である。S117を実行するCPU135Aは本発明の糸切れ判断部の一例である。S119を実行するCPU135Aは本発明の目飛び判断部の一例である。S111を実行するCPU135Aは本発明の糸締り不良判断部の一例である。S15、S72、S101を実行するCPU91、135Aは本発明の速度取得部の一例である。S83を実行するCPU91は本発明の糸調子制御部の一例である。S121を実行するCPU135Aは本発明の加速度対応変更部の一例である。S109を実行するCPU135Aは本発明の速度対応変更部の一例である。S20を実行するCPU91は本発明の糸切制御部の一例である。S57を実行するCPU135Aは本発明の調整制御部の一例である。糸締り不良特定閾値、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値は、本発明の特定閾値の一例である。糸締り不良特定閾値は、第一特定閾値の一例である。第一糸切れ閾値は本発明の第一閾値の一例である。第二糸切れ閾値は本発明の第二閾値の一例である。第一目飛び閾値は本発明の第三閾値の一例である。第二目飛び閾値は本発明の第四閾値の一例である。 In the above description, the main thread tension device 60 is an example of the thread tension mechanism of the present invention. The tension plate 50 is an example of the movable member of the present invention. CPU91 which performs S13 and S21 is an example of a sewing control part of the present invention. CPU135A which performs S47 is an example of the tension acquisition part of the present invention. The CPU 135A that executes S51 is an example of the determination unit of the present invention. CPU135A which performs S117 is an example of the thread breakage judgment part of this invention. The CPU 135A that executes S119 is an example of the skipped stitch determination unit of the present invention. CPU135A which performs S111 is an example of the thread tightness judging part of the present invention. CPU91,135A which performs S15, S72, and S101 is an example of the speed acquisition part of this invention. CPU91 which performs S83 is an example of the thread tension control part of the present invention. The CPU 135A that executes S121 is an example of the acceleration correspondence changing unit of the present invention. The CPU 135A that executes S109 is an example of the speed correspondence changing unit of the present invention. CPU91 which performs S20 is an example of the thread trimming control part of the present invention. CPU135A which performs S57 is an example of the adjustment control part of this invention. The thread tightening failure identification threshold value, the first thread breakage identification threshold value, the second thread breakage identification threshold value, the first stitch skip identification threshold value, and the second stitch skip identification threshold value are examples of the particular threshold value of the present invention. The thread tightening failure identification threshold is an example of a first identification threshold. The first yarn breakage threshold value is an example of the first threshold value of the present invention. The second yarn breakage threshold value is an example of the second threshold value of the present invention. The first skip threshold is an example of the third threshold of the present invention. The second skip threshold is an example of the fourth threshold of the present invention.

本発明は、上記実施例に限定しない。CPU135Aは、上軸回転速度の加速度に応じて、第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を変更してもよい(S121)。例えば、上軸15が減速する時に(S105:YES)、変動張力は小さくなり易いので、CPU135Aは、第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値を夫々小さくなるように変更し(S121)、且つ、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を夫々大きくなるように変更してもよい(S121)。 The present invention is not limited to the above embodiment. The CPU 135A determines the first yarn breakage threshold value, the second yarn breakage threshold value, the first stitch skipping threshold value, the second stitch skipping threshold value, the first yarn breakage specific threshold value, and the second yarn breakage specific threshold value according to the acceleration of the upper shaft rotation speed. , The first skipping specific threshold and the second skipping specific threshold may be changed (S121). For example, when the upper shaft 15 is decelerating (S105: YES), the fluctuating tension tends to be small, so the CPU 135A sets the first yarn breakage threshold value, the second yarn breakage threshold value, the first stitch skipping threshold value, and the second stitch skipping threshold value. Even if it is changed so as to be smaller (S121) and the first yarn breakage specific threshold value, the second yarn breakage specific threshold value, the first stitch skipping specific threshold value, and the second stitch skipping specific threshold value are respectively increased. Good (S121).

CPU135Aは、第一閾値、第二閾値、第三閾値に加えて、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を、上軸回転速度の速度に応じて変更してもよい(S109)。また、CPU135Aは、第一特定閾値に加えて、第一閾値、第二閾値、第三閾値を、上軸15の回転加速度に応じて変更してもよい(S121)。 In addition to the first threshold value, the second threshold value, and the third threshold value, the CPU 135A rotates the first yarn breakage specific threshold value, the second yarn breakage specific threshold value, the first stitch skipping specific threshold value, and the second stitch skipping specific threshold value with the upper axis rotation. The speed may be changed according to the speed (S109). In addition to the first specific threshold, the CPU 135A may change the first threshold, the second threshold, and the third threshold according to the rotational acceleration of the upper shaft 15 (S121).

上軸回転速度の加減速が生じている時(S105:YES)、CPU135Aは、糸締り不良特定閾値に代えて、第一糸切れ閾値、第二糸切れ閾値、第一目飛び閾値、第二目飛び閾値、第一糸切れ特定閾値、第二糸切れ特定閾値、第一目飛び特定閾値、第二目飛び特定閾値を変更してもよい(S121)。例えば、上軸15が減速している時(S105:YES)、CPU135Aは、第一糸切れ閾値を低くしてもよい。縫い始めは、縫製開始から一周期目の縫製まででもよいし、三周期目までの縫製まででもよい。縫い始めを規定する所定針数は縫製不良に応じて異なってもよい。例えば、目飛び判断の有無を判断する時、二周期目までを縫い始めとして、三周期目以降の縫製時に目飛びの有無を判断し(S115、S119)、糸締りの有無を判断する時、一周期目までを縫い始めとして、二周期目以降の縫製時に糸締りの有無を判断してもよい。 When acceleration/deceleration of the upper shaft rotation speed is occurring (S105: YES), the CPU 135A replaces the thread tightening failure identification threshold value with the first thread breakage threshold value, the second thread breakage threshold value, the first stitch skipping threshold value, and the second skipping threshold value. The stitch skipping threshold, the first yarn breakage specifying threshold, the second yarn breakage specifying threshold, the first stitch skipping specifying threshold, and the second stitch skipping specifying threshold may be changed (S121). For example, when the upper shaft 15 is decelerating (S105: YES), the CPU 135A may lower the first yarn breakage threshold value. The start of sewing may be from the start of sewing to the first cycle of sewing or up to the third cycle of sewing. The predetermined number of stitches that defines the start of sewing may differ depending on poor sewing. For example, when determining the presence or absence of skipped stitches, the presence of skipped stitches is determined at the time of sewing from the third cycle onward, starting from the second cycle (S115, S119), and when determining the presence or absence of thread tightening, The sewing may be started up to the first cycle and the presence or absence of thread tightening may be determined at the time of sewing after the second cycle.

CPU135Aは、一周期目の変動張力を取得したか否かを、タイマ35の計時結果に基づき判断してもよい(S45)。例えばRAM135Bが、一周期目の変動張力の取得が完了し終える所要時間を記憶し、CPU135Aは、タイマ35の計時結果に、該所要時間が経過したか否かを判断することで、一周期目の変動張力をし終えたか否かを判断してもよい。CPU91は、針棒11の上下動に伴い、エンコーダ27Aの検出結果に基づき針上位置又は針下位置の信号をCPU135Aに出力してもよい。針上位置は縫針10の上死点近傍の位置である。該時、CPU135Aは、針上位置又は針下位置の信号に基づき、S35の処理で縫製動作が開始したか否か判断してもよいし、S45の処理でN周期目の変動張力を取得し終えたか否かを判断してもよいし、S101の処理で上軸回転速度を取得してもよい。 The CPU 135A may determine whether or not the fluctuating tension in the first cycle has been acquired based on the timing result of the timer 35 (S45). For example, the RAM 135B stores the time required to complete the acquisition of the fluctuating tension in the first cycle, and the CPU 135A determines from the time measurement result of the timer 35 whether or not the time has elapsed, thereby determining the first cycle. It may be determined whether or not the variable tension has been finished. The CPU 91 may output a signal of the needle up position or the needle down position to the CPU 135A based on the detection result of the encoder 27A as the needle bar 11 moves up and down. The needle up position is a position near the top dead center of the sewing needle 10. At this time, the CPU 135A may determine whether or not the sewing operation has started in the process of S35 based on the signal of the needle up position or the needle down position, or obtain the variable tension of the Nth cycle in the process of S45. It may be determined whether or not it has been finished, or the upper shaft rotation speed may be acquired in the process of S101.

上記実施形態では、作業者がペダル38を踏み返すと、CPU91は縫製動作を終了すると判断する(S18:YES)。ミシンは、N周期分の縫製データを記憶装置94に記憶し、N周期分の縫製データを縫製後、縫製動作を終了してもよい。該時、S19、S71〜S78の処理は省略してもよい。 In the above embodiment, when the worker depresses the pedal 38, the CPU 91 determines that the sewing operation is finished (S18: YES). The sewing machine may store the sewing data for N cycles in the storage device 94, finish the sewing operation after sewing the sewing data for N cycles. At this time, the processing of S19 and S71 to S78 may be omitted.

CPU91は、所定回転量に代えて、上軸回転速度に応じた回転量、糸調子皿69を巻取方向に回転してもよい(S83)。磁気センサ105は、ホール素子に代えて、磁気インピーダンス素子、磁気抵抗効果素子等を含んでもよい。該時でも、磁気センサ105は、磁石58の磁束密度の変化を検出できる。 Instead of the predetermined rotation amount, the CPU 91 may rotate the thread tension disc 69 in the winding direction by a rotation amount according to the upper shaft rotation speed (S83). The magnetic sensor 105 may include a magnetic impedance element, a magnetoresistive effect element, or the like instead of the Hall element. Even at that time, the magnetic sensor 105 can detect a change in the magnetic flux density of the magnet 58.

1 ミシン
10 縫針
11 針棒
15 上軸
16 糸調子モータ
17 糸切機構
23 天秤
50 テンション板
58 磁石
60 主糸調子器
69 糸調子皿
91、135A CPU
105 磁気センサ
130 糸張力検出機構
1 Sewing machine 10 Sewing needle 11 Needle bar 15 Upper shaft 16 Thread tension motor 17 Thread trimming mechanism 23 Balance 50 Tension plate 58 Magnet 60 Main thread tension device 69 Thread tension disc 91, 135A CPU
105 magnetic sensor 130 thread tension detection mechanism

Claims (11)

縫針を装着する上下動可能な針棒と、
前記縫針に挿通する上糸を捕捉して下糸と絡める釜と、
前記釜が前記下糸と絡めた前記上糸を引き上げる天秤と、
前記縫針へと至る前記上糸の供給経路において前記天秤よりも上流側で前記上糸が通る糸調子皿を有し、前記上糸に張力を付与する糸調子機構と、
前記上糸の張力である上糸張力を検出する糸張力検出機構と、
前記針棒、前記釜、及び前記天秤を制御して、布に縫製を実行する縫製制御部と、
前記縫製制御部による縫製に伴い周期的に変動する前記上糸張力を、前記糸張力検出機構の検出結果に基づき取得する張力取得部と、
前記張力取得部に基づき取得した前記上糸張力に基づき、前記縫製制御部による縫製動作中に正常な縫目を形成できない縫製不良が発生したか否かを判断する判断部と
を備え、
前記判断部は、前記張力取得部に基づき取得したN番目(Nは自然数)周期において変動する前記上糸張力と、一周期において変動する基準となる前記上糸張力である基準上糸張力とを比較することで、前記縫製不良が発生したか否かを判断する特定縫製不良判断部を備えるミシンにおいて、
前記張力取得部は、単位を時間とした周期で変動を繰り返す前記上糸張力を周期ごとに取得し、
前記特定縫製不良判断部は、前記N番目周期において変動する前記上糸張力と、前記基準上糸張力とを、複数の前記縫製不良の夫々に対応して予め設定した複数の特定閾値を用いて比較することで、前記縫製不良が発生したか否かを判断することを特徴とするミシン。
A needle bar that can move up and down to attach a sewing needle,
A hook that catches the upper thread that is inserted through the sewing needle and entangles it with the lower thread,
A balance for pulling up the upper thread in which the hook is entangled with the lower thread,
A thread tension mechanism having a thread tension tray through which the upper thread passes on the upstream side of the balance in the supply path of the upper thread leading to the sewing needle, and applying tension to the upper thread;
A thread tension detecting mechanism for detecting the upper thread tension which is the tension of the upper thread,
A sewing control unit that controls the needle bar, the shuttle, and the balance to perform sewing on cloth,
A tension acquisition unit that acquires the upper thread tension that periodically changes with sewing by the sewing control unit based on the detection result of the thread tension detection mechanism,
A determination unit that determines whether or not a sewing failure that cannot form a normal stitch occurs during the sewing operation by the sewing control unit based on the needle thread tension acquired based on the tension acquisition unit,
The determination unit determines the upper thread tension that changes in the Nth cycle (N is a natural number) acquired based on the tension acquisition section and the reference upper thread tension that is the reference upper thread tension that changes in one cycle. By comparing, in a sewing machine including a specific sewing failure determination unit that determines whether or not the sewing failure has occurred,
The tension acquisition unit acquires the upper thread tension that repeats fluctuations in units of time for each cycle,
The specific sewing failure determination unit uses the plurality of specific threshold values that preset the needle thread tension that varies in the Nth cycle and the reference needle thread tension in correspondence with each of the plurality of sewing failures. A sewing machine characterized by determining whether or not the sewing failure has occurred by comparing.
前記張力取得部は、前記N番目周期の期間内において、前記上糸張力の一回目のピークが生じる期間である第一期間と、前記上糸張力の二回目のピークが生じる第二期間との間における前記上糸張力である第三上糸張力を基準として、前記第一期間における前記上糸張力である第一上糸張力と、前記第二期間における前記上糸張力である第二上糸張力とを取得することを特徴とする請求項1に記載のミシン。 The tension acquisition unit includes a first period in which the first peak of the upper thread tension occurs and a second period in which the second peak of the upper thread tension occurs in the Nth cycle. Based on the third upper thread tension which is the upper thread tension between the two, the first upper thread tension which is the upper thread tension in the first period and the second upper thread which is the upper thread tension in the second period The sewing machine according to claim 1, wherein the tension is acquired. 前記縫製不良は、縫製中に前記上糸が切れる糸切れを含み、
前記判断部は、前記糸切れが発生したか否かを判断する糸切れ判断部を備え、
前記第一期間は、前記釜が前記上糸を捕捉する釜捕捉期間であり、
前記第二期間は、前記天秤が前記上糸を引き上げる天秤引上期間であり、
前記糸切れ判断部は、前記第一上糸張力が第一閾値以下であり、且つ、前記第二上糸張力が第二閾値以下となる時に、前記糸切れが発生したと判断することを特徴とする請求項2に記載のミシン。
The poor sewing includes thread breakage in which the upper thread is cut during sewing,
The determination unit includes a yarn breakage determination unit that determines whether or not the yarn breakage has occurred,
The first period is a hook catching period in which the hook catches the upper thread,
The second period is a balance pull-up period in which the balance pulls up the upper thread,
The yarn breakage determination unit determines that the yarn breakage has occurred when the first upper thread tension is less than or equal to a first threshold value and the second upper thread tension is less than or equal to a second threshold value. The sewing machine according to claim 2, wherein
前記縫製不良は、縫製中に前記釜が前記上糸を捕捉し損ねる目飛びを含み、
前記判断部は、前記目飛びが発生したか否かを判断する目飛び判断部を備え、
前記目飛び判断部は、前記第一上糸張力が第三閾値以下であり、且つ、前記第二上糸張力が第四閾値以上となる時に、前記目飛びが発生したと判断することを特徴とする請求項3に記載のミシン。
The poor sewing includes stitch skipping that the hook catches the upper thread and fails during sewing.
The determination unit includes a stitch skipping determination unit that determines whether the stitch skipping has occurred,
The stitch skip determination unit determines that the stitch skip has occurred when the first upper thread tension is equal to or lower than a third threshold value and the second upper thread tension is equal to or higher than a fourth threshold value. The sewing machine according to claim 3, wherein
前記縫製不良は、前記天秤が前記上糸を引き上げた時の縫目を形成する前記上糸と前記下糸のバランス不良である糸締り不良を含み、
前記複数の特定閾値は、第一特定閾値を含み、
前記特定縫製不良判断部は、前記N番目周期における前記上糸張力の二回目のピークの発生時機が、前記基準上糸張力における二回目のピークの発生時機に対して前記第一特定閾値以上に早い時に、前記糸締り不良が発生したと判断する糸締り不良判断部を備えることを特徴とする請求項4に記載のミシン。
The sewing failure includes thread tightening failure, which is a poor balance between the upper thread and the lower thread that form a stitch when the balance pulls up the upper thread,
The plurality of specific thresholds includes a first specific threshold,
The specific sewing failure determination unit determines that the timing of the second peak of the needle thread tension in the Nth cycle is equal to or greater than the first specific threshold with respect to the timing of the second peak of the reference needle thread tension. The sewing machine according to claim 4, further comprising a thread tightening failure determination unit that determines that the thread tightening failure has occurred at an early stage.
前記針棒と前記天秤を上下動する上軸を備え、
前記糸調子機構は、前記糸調子皿を回転する糸調子モータを備え、
前記縫製制御部による縫製時、前記上軸の回転速度を取得する速度取得部と、
前記速度取得部が取得した前記回転速度が第一速度以下の時、前記糸調子モータを駆動して、前記上糸を巻く巻取方向に前記糸調子皿を回転する糸調子制御部と
を備えることを特徴とする請求項5に記載のミシン。
An upper shaft for vertically moving the needle bar and the balance is provided,
The thread tension mechanism includes a thread tension motor that rotates the thread tension tray,
When sewing by the sewing control unit, a speed acquisition unit that acquires the rotation speed of the upper shaft,
A thread tension control section that drives the thread tension motor to rotate the thread tension tray in a winding direction for winding the upper thread when the rotation speed acquired by the speed acquisition section is equal to or lower than a first speed. The sewing machine according to claim 5, wherein:
前記速度取得部が取得した速度に基づく前記回転速度に変化が生じた時、前記複数の特定閾値、前記第一閾値、前記第二閾値、前記第三閾値、及び前記第四閾値の少なくとも一つの閾値を、前記回転速度の加速度に応じて変更する加速度対応変更部を備えることを特徴とする請求項6に記載のミシン。 When a change occurs in the rotation speed based on the speed acquired by the speed acquisition unit, at least one of the plurality of specific thresholds, the first threshold, the second threshold, the third threshold, and the fourth threshold The sewing machine according to claim 6, further comprising an acceleration correspondence changing unit that changes a threshold value according to the acceleration of the rotation speed. 前記速度取得部が取得した前記回転速度に応じて、前記複数の特定閾値、前記第一閾値、前記第二閾値、前記第三閾値、及び前記第四閾値の少なくとも一つの閾値を変更する速度対応変更部を備えることを特徴とする請求項6に記載のミシン。 Speed correspondence that changes at least one threshold value of the plurality of specific threshold values, the first threshold value, the second threshold value, the third threshold value, and the fourth threshold value according to the rotation speed acquired by the speed acquisition unit. The sewing machine according to claim 6, further comprising a changing unit. 前記判断部は、前記縫製制御部による縫製開始から所定針目の縫製までである縫い始めよりも後に、前記縫製不良の発生の有無を判断することを特徴とする請求項6〜8の何れか一つに記載のミシン。 9. The determination unit determines whether or not the sewing failure has occurred after the start of sewing, which is from the start of sewing to the sewing of a predetermined stitch by the sewing control unit. Sewing machine described in one. 前記速度取得部が取得した前記回転速度が第二速度よりも大きい時、前記判断部は、前記縫製不良の発生の有無を判断することを特徴とする請求項6〜9の何れか一つに記載のミシン。 10. When the rotational speed acquired by the speed acquisition unit is higher than a second speed, the determination unit determines whether or not the sewing failure has occurred, according to any one of claims 6 to 9. The listed sewing machine. 前記上糸と前記下糸を切断する糸切機構と、
前記縫製制御部による縫製後、前記糸切機構を制御して前記上糸と前記下糸を切断する糸切制御部を備え、
前記糸張力検出機構は、
前記上糸と接触し、前記上糸張力に応じて移動する可動部材と、
前記可動部材に設けた磁石と、
前記磁石の磁束密度を検出し、検出に応じた電圧を出力する磁気センサと
を備え、
前記張力取得部は、前記磁気センサの出力電圧に基づき、前記上糸張力を取得し、
前記張力取得部は、前記糸切制御部による前記上糸と前記下糸の切断時、前記磁気センサの基準となる出力電圧を設定し直すゼロ点調整を実行する調整制御部を備えることを特徴とする請求項1〜10の何れか一つに記載のミシン。
A thread cutting mechanism for cutting the upper thread and the lower thread,
After sewing by the sewing control section, a thread cutting control section for controlling the thread cutting mechanism to cut the upper thread and the lower thread is provided.
The thread tension detection mechanism,
A movable member that comes into contact with the upper thread and moves according to the upper thread tension;
A magnet provided on the movable member,
A magnetic sensor that detects the magnetic flux density of the magnet and outputs a voltage according to the detection,
The tension acquisition unit acquires the needle thread tension based on the output voltage of the magnetic sensor,
The tension acquisition unit includes an adjustment control unit that executes zero point adjustment for resetting an output voltage that is a reference of the magnetic sensor when the thread cutting control unit cuts the upper thread and the lower thread. The sewing machine according to any one of claims 1 to 10.
JP2019012815A 2019-01-29 2019-01-29 sewing machine Pending JP2020120714A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019012815A JP2020120714A (en) 2019-01-29 2019-01-29 sewing machine
CN202010036051.5A CN111485337B (en) 2019-01-29 2020-01-14 Sewing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012815A JP2020120714A (en) 2019-01-29 2019-01-29 sewing machine

Publications (1)

Publication Number Publication Date
JP2020120714A true JP2020120714A (en) 2020-08-13

Family

ID=71791373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012815A Pending JP2020120714A (en) 2019-01-29 2019-01-29 sewing machine

Country Status (2)

Country Link
JP (1) JP2020120714A (en)
CN (1) CN111485337B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360696A (en) * 1989-07-31 1991-03-15 Juki Corp Sewing condition judging device of ring stitch sewing machine
JP2603463Y2 (en) * 1993-05-25 2000-03-13 ジューキ株式会社 Sewing machine noise suppressor
JPH07185170A (en) * 1993-12-28 1995-07-25 Juki Corp Automatic tension-regulating device for sewing machine
ZA200505774B (en) * 2003-02-12 2006-10-25 Ralph J Koerner Quilting method and apparatus
CN1587480A (en) * 2004-09-06 2005-03-02 周鹤鸣 Crank arm thread take-up mechanism for thick material sewing machine
JP2009077914A (en) * 2007-09-26 2009-04-16 Juki Corp Balance thread guide for sewing machine
CN104372537B (en) * 2014-11-14 2016-08-24 上海鲍麦克斯电子科技有限公司 A kind of industrial sewing machine loose ends control system
CN108978062B (en) * 2017-06-01 2020-12-15 杰克缝纫机股份有限公司 Sewing machine and skip stitch detection device and detection method thereof
JP2019005502A (en) * 2017-06-28 2019-01-17 ブラザー工業株式会社 sewing machine

Also Published As

Publication number Publication date
CN111485337A (en) 2020-08-04
CN111485337B (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP2011120868A (en) Seam skip and thread breakage check device of sewing device
US10472753B2 (en) Bobbin thread winder of sewing machine and sewing machine
JP2006187457A (en) Sewing machine
EP3889334A1 (en) Defect determination device
JP5170914B2 (en) Embroidery machine
CN111065773B (en) Sewing machine
JPH0392192A (en) Needle thread holder of sewing machine
JP2020120714A (en) sewing machine
JP7183824B2 (en) sewing machine
JP2018051147A (en) Sewing machine and control method of sewing machine
JP4913292B2 (en) Embroidery sewing machine with bobbin thread winding device
CN111748915B (en) Sewing machine
JP2019166039A (en) sewing machine
CN111691079B (en) Sewing machine
JP7215295B2 (en) sewing machine
JPH07502178A (en) Jump stitch detection method and device for chain stitch sewing machine
CN111691078B (en) Sewing machine
JP2023098053A (en) Sewing machine and bobbin thread determination means
CN112301575B (en) Sewing machine
JP2021159303A (en) Failure prediction device
JP2021153906A (en) Sewing device
JPS6337024Y2 (en)
JPH0346713Y2 (en)
JPS62612Y2 (en)
JP2788326B2 (en) Needle thread supply device of sewing machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190822