WO2019043741A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2019043741A1
WO2019043741A1 PCT/JP2017/030659 JP2017030659W WO2019043741A1 WO 2019043741 A1 WO2019043741 A1 WO 2019043741A1 JP 2017030659 W JP2017030659 W JP 2017030659W WO 2019043741 A1 WO2019043741 A1 WO 2019043741A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip seal
scroll
compressor
fixed scroll
curve
Prior art date
Application number
PCT/JP2017/030659
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 ▲高▼村
友寿 松井
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/030659 priority Critical patent/WO2019043741A1/en
Priority to JP2019538751A priority patent/JP6861829B2/en
Publication of WO2019043741A1 publication Critical patent/WO2019043741A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a compressor for compressing a working gas.
  • a scroll compressor is known as one of compressors used for a refrigerator, an air conditioner, and the like.
  • the scroll compressor has a fixed scroll and a rocking scroll, and the rocking scroll performs a revolving orbiting motion with respect to the fixed scroll.
  • the fixed scroll and the oscillating scroll are members in which spiral wraps are formed on surfaces facing each other, and a compression chamber is formed by the combined wraps.
  • a scroll compressor changes the internal volume of a compression chamber by rocking
  • a seal member called a tip seal is fitted to the tip end surface of the spiral wrap portion in the fixed scroll and the swing scroll. The tip seal is lifted by back pressure during operation of the compressor, and the working gas leaks between adjacent compression chambers by filling the gap between the tip end face of the lap portion and the base plate face of the opposing scroll. Play the function to prevent.
  • Patent Document 1 discloses a scroll compressor in which a notch is provided in a portion where a tip seal interferes with a subport, thereby preventing interference between the tip seal and the subport and preventing wear of the tip seal due to catching on the subport. .
  • the subport formed in the fixed scroll has a function of preventing the occurrence of power loss due to overcompression by discharging the working gas from the middle of the scroll during operation under the low compression ratio condition.
  • the larger the diameter of the subport the smaller the flow path resistance, and the reduction effect of the power loss due to over-compression can be obtained.
  • the diameter of the subport is excessively increased, and if the subport straddles the tip seal, the adjacent compression chambers are adjacent to each other through the subport. It will cause a leak of working gas. Therefore, it is necessary to design the diameter of the subport as large as possible without crossing the tip seal.
  • the scroll compressor disclosed in Patent Document 1 does not have the effect of expanding the seal width by the tip seal, and the diameter of the subport or the diameter of the injection port can be expressed by (lap width / 2 + tip seal width / 2). Can not be too big. Therefore, the subport can not secure a sufficient flow passage area, and the compressor may generate an overcompression loss. Further, the injection port can not secure a sufficient flow passage area, and the discharge temperature of the compressor may increase due to the shortage of the injection flow rate.
  • the present invention has been made against the background described above, and an object of the present invention is to provide a compressor which secures a large diameter of a sub port or a diameter of an injection port even when a chip seal is used.
  • a compressor according to the present invention includes a base plate and a fixed scroll provided with a scroll wrap formed on the base plate, and a swing scroll including a base plate and a scroll wrap formed on the base plate.
  • the fixed scroll is formed with at least one subport for discharging the working gas, or at least one injection port for injecting the working fluid in the liquid phase, and the oscillating scroll is
  • the tip seal of the spiral wrap portion includes a tip seal disposed along the spiral direction and in contact with the base plate portion of the fixed scroll, and the tip seal has a portion where the subport or the injection port approaches the width direction of the spiral wrap portion. It is disposed on the edge side with respect to the center.
  • the tip seal is arranged such that the portion approaching the sub port or the injection port is located on the end edge side with respect to the widthwise center of the spiral wrap. That is, the tip seal is disposed on the side away from the sub port or the injection port with respect to the center of the swing scroll wrap. Therefore, the compressor can secure a larger seal width by the tip seal than the case where the tip seal is formed in one involute shape and disposed at the center of the swing lap portion, and the diameter of the sub port or injection port Can be designed large.
  • FIG. 1 is a horizontal cross-sectional view showing the shapes of a rocking scroll, a stationary scroll and a tip seal in the prior art. It is an enlarged view which shows the rocking scroll and fixed scroll which the rocking scroll of FIG. 2 moved. It is a perpendicular direction sectional view which shows the relationship between the tip seal of FIG. 3, and a subport or an injection port. It is a perpendicular direction sectional view of a compression part when a tip seal does not contact with a fixed scroll.
  • FIG. 1 is an axial sectional view showing a compressor 100 according to Embodiment 1 of the present invention.
  • the compressor 100 is a scroll compressor that sucks and compresses a refrigerant circulating in a refrigeration cycle, and discharges the refrigerant in a high temperature and high pressure state.
  • the compressor 100 includes a shell 20, a motor 30, a compression unit 40, and a shaft unit 50.
  • the compressor 100 is a low pressure shell compressor.
  • the shell 20 constitutes an outer shell of the compressor 100 and has pressure resistance.
  • the shell 20 has a bottomed cylindrical shape, and includes a lower shell 20a located at the bottom, a central shell 20b mounted on the lower shell 20a and formed cylindrical, and an upper shell 20c closing the top of the central shell 20b.
  • the shell 20 has an oil sump 21 at its bottom for storing oil.
  • an oil pump 23 disposed in an oil reservoir 21 of the shell 20 is accommodated.
  • the oil pump 23 is attached to one end side of the shaft portion 50, sucks the oil stored in the oil reservoir 21 of the shell 20, and supplies the oil to the oil supply passage 50a in the shaft portion 50.
  • the oil supplied to the oil supply passage 50 a is supplied to the bearing portion inside the compressor 100 and the Oldham ring 41.
  • the oil lubricates and cools the bearing portion and the Oldham ring 41.
  • a suction pipe 27 is provided on the side of the shell 20.
  • the suction pipe 27 is a pipe that sucks the working gas into the interior of the shell 20.
  • a discharge pipe 28 is provided at the top of the shell 20.
  • the discharge pipe 28 is a pipe that discharges the working gas to the outside of the shell 20.
  • the muffler 29 is provided above the fixed scroll 60 described later, and suppresses pulsation of the working gas discharged from the discharge port 65 and the sub port 62.
  • the frame 25 is provided above the motor 30 inside the shell 20 and is fixed to the shell 20.
  • the rocking scroll 70 and the fixed scroll 60 are mounted on the frame 25 in a state in which the spiral wraps are engaged with each other.
  • the fixed scroll 60 can be configured to be fixed to the shell 20 without being fixed to the frame 25.
  • the frame 25 rotatably supports the shaft 50 via the main bearing 54.
  • a suction port 25 a is formed in the frame 25, and the working gas flows into the compression unit 40 through the suction port 25 a.
  • the sub frame 26 is provided below the motor 30 inside the shell 20 and is fixed to the shell 20.
  • the sub-frame 26 rotatably supports the shaft 50 via the sub bearing 55.
  • the oil discharge pipe 24 is a pipe that connects the space between the frame 25 and the oscillating scroll 70 and the space between the frame 25 and the sub-frame 26.
  • the oil discharge pipe 24 causes excess oil out of the oil flowing in the space between the frame 25 and the oscillating scroll 70 to flow out into the space between the frame 25 and the sub-frame 26.
  • the oil that has flowed into the space between the frame 25 and the sub-frame 26 passes through the sub-frame 26 and returns to the oil sump 21.
  • the motor 30 rotates the shaft 50.
  • the motor 30 is provided inside the shell 20 and is installed between the frame 25 and the sub-frame 26.
  • the motor 30 has a rotor 31 and a stator 32.
  • the rotor 31 is provided on the inner peripheral side of the stator 32 and is attached to the shaft 50.
  • the rotor 31 rotates the shaft 50 by its own rotation.
  • the stator 32 is fixed to the shell 20 by shrink fitting or the like.
  • the stator 32 generates a magnetic field by the power supplied from the inverter (not shown) and rotates the rotor 31.
  • the compression unit 40 is provided inside the shell 20 and is driven by the motor 30 to compress the working gas.
  • the compression unit 40 is accommodated in the frame 25 and has a fixed scroll 60 and a swing scroll 70.
  • the fixed scroll 60 is fixed inside the shell 20, and the fixed scroll 60 is provided with a discharge port 65 and a subport 62 for discharging the compressed working gas.
  • the rocking scroll 70 revolves around the fixed scroll 60, and its rotation movement is restricted by the Oldham ring 41.
  • the fixed scroll 60 and the rocking scroll 70 are provided with a spiral fixed spiral wrap portion 61 and a rocking spiral wrap portion 71, which will be described later, on the surfaces facing each other.
  • the compression unit 40 forms a compression chamber in a space in which the fixed spiral wrap unit 61 and the swing spiral wrap unit 71 are engaged.
  • the compression section 40 when the swing scroll 70 is swung by the rotation of the shaft section 50, the working gas is compressed in the compression chamber.
  • the detailed configuration of the compression unit 40 will be described later.
  • the Oldham ring 41 is an annular member attached to the rocking scroll 70 and regulates the rotational movement of the rocking scroll 70.
  • the Oldham ring 41 is attached to an Oldham groove 41 a formed on the thrust lower surface of the oscillating scroll 70.
  • the slider 42 is a cylindrical member attached to the outer peripheral surface of the upper portion of the shaft portion 50, and is located on the inner surface of the lower portion of the oscillating scroll 70. That is, the rocking scroll 70 is attached to the shaft portion 50 via the slider 42, and the rocking scroll 70 also rotates with the rotation of the shaft portion 50.
  • a swing bearing 43 is provided between the swing scroll 70 and the slider 42.
  • the sleeve 44 is a cylindrical member provided between the frame 25 and the main bearing 54, and is a member for absorbing the relative inclination of the main bearing 54 and the shaft portion 50.
  • the shaft 50 is supported by the frame 25.
  • the main bearing 54 provided between the shaft 50 and the frame 25 is a bearing structure formed of a slide bearing such as a copper lead alloy, for example, and rotatably supports the shaft 50.
  • the main bearing 54 consists of slide bearings, you may pivotally support the axial part 50 by another well-known bearing structure.
  • the shaft portion 50 has an oil supply passage 50 a formed therein, and connects the motor 30 and the compression portion 40 to transmit the rotational force of the motor 30 to the compression portion 40.
  • a first balancer 52 is attached to the shaft 50.
  • the first balancer 52 is located between the frame 25 and the rotor 31.
  • the first balancer 52 cancels the unbalance generated by the oscillating scroll 70 and the slider 42.
  • the first balancer 52 is accommodated in the balancer cover 52a.
  • the second balancer 53 is attached to the shaft 50 via the rotor 31.
  • the second balancer 53 is located between the rotor 31 and the sub-frame 26 and attached to the lower surface of the rotor 31.
  • the second balancer 53 cancels the unbalance generated by the oscillating scroll 70 and the slider 42.
  • the compression unit 40 has the fixed scroll 60 and the oscillating scroll 70 as described above.
  • the fixed scroll 60 is fixed to the inside of the shell 20, and the outer peripheral edge is mounted on the top of the frame 25.
  • the fixed scroll 60 has a fixed scroll base plate portion 64 and a fixed scroll wrap portion 61 formed on the fixed scroll base plate portion 64.
  • a discharge port 65 and a subport 62 are formed in the fixed scroll base plate portion 64 of the fixed scroll 60.
  • the working gas compressed in the compression chamber is discharged through the discharge port 65 and the sub port 62.
  • the fixed scroll 60 may have an injection port 63 formed instead of the sub port 62.
  • the intermediate pressure working gas discharged from the compressor 100 and passed through the injection circuit (not shown) is introduced into the compression chamber through the injection port 63.
  • the swing scroll 70 has a swing scroll plate portion 74 and a swing scroll wrap portion 71 formed on the swing scroll plate portion 74.
  • Discharge of the compressed gas from the subport 62 is performed under operating conditions where the compression ratio is small. Since the compressed gas passes through the subport 62 and is bypassed into the upper shell 20c before reaching the center of the compression chamber, the compressor 100 can reduce the power loss due to excessive compression.
  • the injection port 63 is used to inject a working fluid in a liquid phase into the compression chamber during operation at a high compression ratio condition.
  • the injection port 63 has a function of reducing the temperature of the discharge gas and preventing damage to the fixed scroll 60 and the oscillating scroll 70 due to thermal expansion.
  • FIG. 2 is a horizontal sectional view showing the shapes of the oscillating scroll 70, the fixed scroll 60 and the tip seal 80 in the prior art.
  • FIG. 3 is an enlarged view showing the swing scroll 70 and the fixed scroll 60 on which the swing scroll 70 of FIG. 2 has moved. The positions of these horizontal cross sections correspond to the line AA in the compressor 100 of FIG.
  • the positions of the discharge port 65, the sub port 62, and the injection port 63 formed in the fixed scroll base plate portion 64 are also shown in a plan view of the compressor.
  • the generic name of the subport 62a and the subport 62b described below is the subport 62
  • the generic name of the injection port 63a and the injection port 63b is the injection port 63.
  • FIGS. 2 and 3 the configurations of the sub port 62 and the injection port 63 common to the compressor 100 will be described using FIGS. 2 and 3.
  • a subport 62 a is formed in the compression chamber 40 a on the outward surface side of the fixed scroll 60, and compression on the inward surface side of the fixed scroll 60 is performed.
  • the subport 62b is formed in the chamber 40b.
  • the sub port 62a and the sub port 62b are disposed at a position where the compression chamber 40a on the fixed scroll outward surface side and the compression chamber 40b on the fixed scroll inward surface side are paired.
  • the injection port 63 is formed instead of the sub port 62 of FIGS.
  • an injection port 63a is formed in the compression chamber 40a on the outward surface side of the fixed scroll 60 in the fixed scroll bed plate portion 64 of the fixed scroll 60
  • an injection port 63b is formed in the compression chamber 40b on the inward surface side of the fixed scroll 60. Is formed.
  • the injection port 63a and the injection port 63b are disposed at a position where the compression chamber 40a on the fixed scroll outward surface side and the compression chamber 40b on the fixed scroll inward surface side are paired.
  • the sub port 62 may be one, or a plurality of paired sub ports 62 may be provided.
  • one injection port 63 may be provided, and a plurality of injection ports 63 serving as a pair may be provided.
  • a tip seal fitting groove 81 having the same shape as the tip seal 80 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 80 is fitted in the tip seal fitting groove 81. It is done.
  • the tip seal 80 of the rocking scroll 70 is disposed at the tip of the rocking scroll wrap 71 along the spiral direction, and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it.
  • a tip seal 80 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61, and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it.
  • the tip seal 80 slides while being pressed against the stationary scroll base plate portion 64 during operation of the compressor 100, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion
  • the gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas.
  • the tip seal 80 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 100 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed.
  • the gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas.
  • the sub port 62 and the injection port 63 are provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approach the tip seal 80 provided on the wrap tip end surface of the oscillating scroll 70.
  • the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 80 is not completely crossed.
  • is the contact area between the tip seal 80 and the fixed scroll 60, and is the seal width between the tip seal 80 and the fixed scroll 60. That is, the compression unit 40 needs to set the diameter of the sub port 62 or the injection port 63 in the fixed scroll 60 so as to satisfy the seal width ⁇ > 0.
  • FIG. 4 is a vertical sectional view showing the relationship between the tip seal 80 and the sub port 62 or the injection port 63 in FIG.
  • FIG. 5 is a vertical cross-sectional view of the compression unit 40 when the tip seal 80 does not contact the fixed scroll 60.
  • FIG. 4 is a vertical direction cross-sectional view of the compression section 40 when the seal width ⁇ by the tip seal 80 and the fixed scroll 60 is formed to be seal width ⁇ > 0.
  • the compression section 40 has a seal width ⁇ at which the tip seal 80 of the oscillating scroll 70 and the fixed scroll bed plate section 64 come into contact, so that no leak from the high pressure chamber 46 to the low pressure chamber 45 occurs.
  • the upper limit of the seal width ⁇ is the width ⁇ of the tip seal 80.
  • FIG. 5 is a vertical direction sectional view of the compression section 40 when the seal width ⁇ by the tip seal 80 and the fixed scroll 60 is formed to be seal width ⁇ ⁇ 0.
  • the high pressure chamber 46 and the low pressure chamber 45 communicate with each other through the subport 62.
  • the working gas leaks to the low pressure chamber 45. Therefore, the diameter of the sub port 62 or the injection port 63 can be increased only in the range satisfying ⁇ > 0, and in order to provide the diameter of the sub port 62 or the injection port 63 large, the tip seal 80 of the oscillating scroll 70 is used. It is necessary to devise the shape.
  • FIG. 6 is an axial sectional view showing the shapes of the orbiting scroll 70, the fixed scroll 60, and the tip seal 82 in the compressor 100 according to Embodiment 1 of the present invention.
  • a tip seal fitting groove 81 having the same shape as the tip seal 82 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 82 is fitted in the tip seal fitting groove 81. It is done.
  • the tip seal 82 of the oscillating scroll 70 is disposed along the spiral direction at the tip of the oscillating scroll wrap 71 and contacts the fixed scroll base plate 64 of the facing fixed scroll 60.
  • a tip seal 82 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61, and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it.
  • the tip seal 82 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 100 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion
  • the gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas.
  • the tip seal 82 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 100 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed.
  • the gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas.
  • the sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 82 provided on the wrap tip end surface of the oscillating scroll 70.
  • the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 82 is not completely crossed.
  • the tip seal 82 is composed of a plurality of curves having different curvatures, and three curves of a first curve portion 82a, a second curve portion 82b, and a third curve portion 82c. The parts are joined together and configured integrally.
  • the tip seal 82 is illustrated as having a cut in order to clearly show the boundary of the curve in FIG. 6, the tip seal 82 is a one-piece without break. That is, in the tip seal 82, a plurality of curves having different curvatures are continuously formed.
  • the portion approaching the sub port 62 or the injection port 63 is on the side of the end edge 71b of the outer periphery and the side of the end edge 71c of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap 71 It is arranged.
  • the tip seal 82 is a first curved portion 82 a where the portion approaching the subport 62 a on the outward surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71.
  • the tip seal 82 may be configured such that a portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has a curved portion 82a.
  • the first curve portion 82 a is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the tip seal 82 is a second curved portion in which the portion approaching the subport 62b on the inward facing surface side of the fixed scroll 60 passes the side of the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 82b.
  • the portion approaching the injection port 63b on the inward surface side of the fixed scroll 60 passes the side of the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 2 curve part 82b.
  • the second curve portion 82 b is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the boundary between the first curve portion 82a and the second curve portion 82b is joined together by a third curve portion 82c formed into a smooth curve, such as an involute curve having a curvature larger than that of the swing scroll 70, for example.
  • the tip seal 82 is formed of three curve portions, but the number of curve portions constituting the tip seal 82 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good.
  • the shape of the tip seal 82 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap 61 of the fixed scroll 60 as in the prior art, and the center 71 a in the width direction of the fixed scroll wrap 61 of the fixed scroll 60 It may be arranged in
  • the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange
  • the compressor 100 can secure a larger seal width ⁇ as compared with the case where the tip seal 82 is configured in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the sub port 62
  • the diameter can be designed large.
  • the diameter of the subport 62 is set to “(wrap portion to satisfy seal width ⁇ > 0
  • the constraint value must be equal to or less than width / 2) + (tip seal width / 2).
  • the tip seal 82 is integrally formed by connecting three curve portions of a first curve portion 82a, a second curve portion 82b, and a third curve portion 82c. Therefore, it is possible to enlarge the diameter of the sub port 62 beyond this restriction value.
  • the injection port 63 can be designed to be large similarly for the compressor 100 in which the injection port 63 is provided instead of the sub port 62.
  • the injection port 63a of the tip seal 82 and the portions approaching the injection port 63b are disposed on the side away from the injection port 63 with respect to the center 71a of the oscillating swirl wrap portion 71, respectively. Therefore, the compressor 100 can secure a large seal width ⁇ as compared with the case where the tip seal 82 is configured in a single involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63.
  • the diameter of can be designed large.
  • the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”.
  • a tip seal 82 is integrally formed by connecting three curve portions of a first curve portion 82a having the above configuration, a second curve portion 82b, and a third curve portion 82c. Therefore, the diameter of the injection port 63 can be expanded beyond the restriction value.
  • the compressor 100 As a result, in the compressor 100, the resistance when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved. Further, in the compressor 100, when the injection port 63 is formed instead of the sub port 62, the flow rate of the liquid phase working fluid to be injected is increased, and the discharge temperature can be lowered more efficiently.
  • the chip seal when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal.
  • the tip seal 82 In the compressor 100, the tip seal 82 is disposed at a position away from the sub port 62 or the injection port 63, and the tip seal 82 is not provided with a notch. Therefore, in the compressor 100, gas leakage does not occur between the compression chambers, and the strength of the tip seal 82 does not decrease due to stress concentration.
  • the tip seal 80 is formed into a spiral shape with a hard resin, and the tip seal 80 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 are fixed respectively to the oscillating scroll wrap 71 It is disposed at the center 71 a of the tip end surface of the spiral wrap portion 61. Therefore, in the conventional compressor, the tip seal 80 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 are alternately attached, which may cause an assembly failure.
  • the tip seal 82 is integrally formed by connecting three curve portions of the first curve portion 82a, the second curve portion 82b, and the third curve portion 82c having the above configuration. It is done.
  • the compressor 100 when the tip seal 80 of the fixed scroll 60 is formed by an involute curve as in the conventional case and disposed at the center 71a of the tip surface of the fixed spiral wrap portion 61, the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 The shape of the tip seal 82 is different. Therefore, the compressor 100 can prevent the tip seal 82 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake.
  • the tip seal 82 of the compressor 100 smoothly connects a plurality of curves, in the swing scroll 70, the fitting groove of the tip seal 82 can be processed at a time by a single stroke, which is an excellent process It is possible to secure the sex.
  • FIG. 7 is an axial sectional view showing the shapes of the oscillating scroll 70, the fixed scroll 60, and the tip seal 83 in the compressor 110 according to Embodiment 2 of the present invention.
  • the parts having the same configuration as that of the compressor 100 in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the compressor 110 is the same as the compressor 100 except that the configuration of the tip seal 83 is different from that of the tip seal 82 of the compressor 100.
  • a tip seal fitting groove 81 having the same shape as the tip seal 83 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70.
  • the tip seal 83 is fitted in the tip seal fitting groove 81. It is done.
  • the tip seal 83 of the rocking scroll 70 is disposed along the spiral direction at the tip of the rocking scroll wrap portion 71 and contacts the fixed scroll base plate portion 64 of the fixed scroll 60 facing it.
  • a tip seal 83 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip end of the fixed spiral wrap portion 61 and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing.
  • the tip seal 83 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 110 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion
  • the gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas.
  • the tip seal 83 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 110 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed.
  • the gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas.
  • the sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 83 provided on the wrap tip end surface of the oscillating scroll 70.
  • the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 83 is not completely crossed.
  • the tip seal 83 is composed of a plurality of curves having different curvatures, and two curve portions of a first curve portion 83a and a second curve portion 83b are It is connected together and is constituted in one.
  • the tip seal 83 is illustrated as having a cut in order to clearly show the boundary of the curve in FIG. 7, the boundary of the two curves is not divided, and the tip seal 83 is a single piece without a break. is there. That is, in the tip seal 83, a plurality of curves having different curvatures are continuously formed.
  • the portion approaching the sub port 62 or the injection port 63 is on the side of the end edge 71b on the outer periphery and the side of the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing scroll wrap 71 It is arranged.
  • the tip seal 83 is a first curved portion 83 a where the portion approaching the subport 62 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71.
  • the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71.
  • It has a curved portion 83a.
  • the first curve portion 83 a is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the tip seal 83 is formed of an involute curve having a curvature larger than that of the swinging scroll 70, and has a second curve portion 83b disposed closer to the inside of the swinging scroll wrap 71 as it approaches the spiral center.
  • the portion approaching the sub-port 62b on the inward facing surface side of the fixed scroll 60 is the end edge 71c side of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. Pass through.
  • the portion approaching the injection port 63b on the inward surface side of the fixed scroll 60 is an edge of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. Pass the part 71c side.
  • the tip seal 83 is formed of two curve portions, but the number of curve portions constituting the tip seal 83 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good.
  • the shape of the tip seal 83 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
  • the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange
  • the compressor 110 can secure a larger seal width ⁇ as compared with the case where the tip seal 83 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the sub port 62
  • the diameter can be designed large.
  • the diameter of the subport 62 is set to “(wrap portion to satisfy seal width ⁇ > 0
  • the constraint value must be equal to or less than width / 2) + (tip seal width / 2).
  • the tip seal 83 is integrally formed by joining the two curved portions of the first curved portion 83a and the second curved portion 83b, the sub port is not less than this restriction value. It is possible to enlarge the diameter of 62.
  • the injection port 63 can be designed to be large similarly for the compressor 110 in which the injection port 63 is provided instead of the sub port 62.
  • the injection port 63 a of the tip seal 83 and the portions approaching the injection port 63 b are disposed on the side away from the injection port 63 with respect to the center 71 a of the oscillating scroll wrap portion 71. Therefore, the compressor 110 can secure a large seal width ⁇ as compared with the case where the tip seal 83 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63.
  • the diameter of can be designed large.
  • the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”.
  • the tip seal 83 is integrally formed by connecting two curve portions of the first curve portion 83a having the above configuration and the second curve portion 83b, the injection is performed in excess of this restriction value.
  • the diameter of the port 63 can be enlarged.
  • the resistance of the compressor 110 when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved.
  • the compressor 110 can increase the flow rate of the liquid phase working fluid to be injected, and can lower the discharge temperature more efficiently.
  • the chip seal when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal.
  • the compressor 110 is disposed at a position where the tip seal 83 is separated from the sub port 62 or the injection port 63, and the tip seal 83 is not provided with a notch. Therefore, in the compressor 110, gas leakage does not occur between the compression chambers, and the strength of the tip seal 83 does not decrease due to stress concentration.
  • the tip seal 83 is integrally formed by connecting two curve portions of a first curve portion 83a having the above configuration and a second curve portion 83b.
  • the compressor 110 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the conventional case and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61.
  • the shape of the tip seal 83 is different. Therefore, the compressor 110 can prevent the tip seal 83 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
  • the tip seal 83 of the compressor 110 smoothly connects a plurality of curves, in the swing scroll 70, the fitting groove of the tip seal 83 can be processed at a time by one-stroke writing, which is excellent processing It is possible to secure the sex.
  • the compressor 110 can reduce the number of curves constituting the tip seal 83 as compared with the compressor 100 according to the first embodiment. Therefore, when processing the fitting groove of the tip seal 83 on the front end surface of the swing scroll wrap portion 71, the compressor 110 reduces the boundary forming the groove, and the fitting groove of the tip seal 83 is formed at this boundary. It becomes difficult to cause processing problems such as step differences.
  • FIG. 8 is an axial sectional view showing the shapes of the oscillating scroll 70, the fixed scroll 60 and the tip seal 84 in the compressor 120 according to Embodiment 3 of the present invention. Parts having the same configurations as those of the compressor 100 and the compressor 110 in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the configuration of the tip seal 84 of the compressor 120 is different from that of the tip seal 82 of the compressor 100, and the other configuration of the compressor 120 is the same as that of the compressor 100.
  • a tip seal fitting groove 81 having the same shape as the tip seal 84 is formed on the wrap tip end surface of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 84 is fitted in the tip seal fitting groove 81. It is done.
  • the tip seal 84 of the oscillating scroll 70 is disposed along the spiral direction at the tip of the oscillating scroll wrap 71 and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it.
  • a tip seal 84 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip end of the fixed spiral wrap portion 61 and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it.
  • the tip seal 84 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 120 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion
  • the gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas.
  • the tip seal 84 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 120 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed.
  • the gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas.
  • the sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 84 provided on the wrap tip end surface of the oscillating scroll 70.
  • the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 84 is not completely crossed.
  • the tip seal 84 is composed of a plurality of curves having different curvatures, and a first curve portion 84a, a second curve portion 84b, and a third curve portion 84c. , And a fourth curved portion 84d and a fifth curved portion 84e.
  • the tip seal 84 has a first curved portion 84a, a second curved portion 84b, a third curved portion 84c, a fourth curved portion 84d, and a fifth curved portion 84e.
  • the five curve parts of are connected together to form an integral unit.
  • the tip seal 84 is illustrated as having a cut in order to clearly show the boundary of the curve in FIG. 8, the boundary of the five curves is not divided, and the tip seal 84 is a single piece without a break. is there. That is, in the tip seal 84, a plurality of curves having different curvatures are continuously formed.
  • the tip seal 84 is a first curved portion 84 a where the portion approaching the subport 62 a on the outward surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing scroll wrap portion 71.
  • the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b on the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71.
  • It has a curved portion 84a.
  • the first curve portion 84 a is formed of, for example, an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the tip seal 84 has a second curved portion in which a portion approaching the subport 62b on the inward facing surface side of the fixed scroll 60 passes through the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 84b.
  • the portion approaching the injection port 63b on the inward facing surface side of the fixed scroll 60 passes through the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap 71 It has a two-curved portion 84b.
  • the second curve portion 84 b is formed of, for example, an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the boundary between the first curve portion 84a and the second curve portion 84b is joined together by a third curve portion 84c formed into a smooth curve, such as an involute curve having a curvature larger than that of the oscillating scroll 70, for example.
  • the fourth curve portion 84d of the tip seal 84 connects the end portions of the first curve portion 84a and the fifth curve portion 84e, which are adjacent curves, smoothly using an involute curve or the like having a smaller pitch than the swing scroll 70.
  • the fifth curved portion 84 e of the tip seal 84 is formed by an involute curve passing through the center of the swinging spiral wrap portion 71.
  • the tip seal 84 is formed of five curve portions, but the number of curve portions constituting the tip seal 84 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good.
  • the shape of the tip seal 84 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
  • the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange
  • the compressor 120 can secure a larger seal width ⁇ as compared with the case where the tip seal 84 is configured in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the sub port 62
  • the diameter can be designed large.
  • the diameter of the subport 62 is set to “(wrap portion to satisfy seal width ⁇ > 0
  • the constraint value must be equal to or less than width / 2) + (tip seal width / 2).
  • the tip seal 84 has five of the first curved portion 84a, the second curved portion 84b, the third curved portion 84c, the fourth curved portion 84d, and the fifth curved portion 84e.
  • the curved portions are connected together to form an integral unit. Therefore, the compressor 120 can enlarge the diameter of the sub port 62 more than this restriction value.
  • the injection port 63 can be designed to be large similarly for the compressor 120 in which the injection port 63 is provided instead of the sub port 62.
  • the compressor 120 is disposed on the side of the tip seal 84 where the injection port 63 a and the injection port 63 b approach each other with respect to the center 71 a of the swing scroll wrap portion 71 away from the injection port 63. Therefore, the compressor 120 can secure a large seal width ⁇ as compared with the case where the tip seal 84 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63 The diameter of can be designed large.
  • the tip seal 84 when the tip seal 84 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, in order to satisfy the seal width ⁇ > 0, the diameter of the injection port 63
  • the restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”.
  • the tip seal 84 has five components, a first curve portion 84a having the above configuration, a second curve portion 84b, a third curve portion 84c, a fourth curve portion 84d, and a fifth curve portion 84e.
  • the curved portions are connected together to form an integral unit. Therefore, the compressor 120 can enlarge the diameter of the injection port 63 more than this restriction value.
  • the resistance of the compressor 120 when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved.
  • the flow rate of the liquid phase working fluid to be injected is increased, and the discharge temperature can be lowered more efficiently.
  • the chip seal when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal.
  • the compressor 120 is disposed at a position where the tip seal 84 is separated from the sub port 62 or the injection port 63, and the tip seal 84 is not provided with a notch. Therefore, in the compressor 120, gas leakage does not occur between the compression chambers, and the strength of the tip seal 84 is not reduced due to stress concentration.
  • the tip seal 84 includes the first curved portion 84a, the second curved portion 84b, the third curved portion 84c, the fourth curved portion 84d, and the fifth curved portion 84e having the above configuration.
  • the five curve parts are connected together and configured integrally.
  • the compressor 120 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the prior art and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61.
  • the shape of the tip seal 84 is different. Therefore, the compressor 120 can prevent the tip seal 84 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
  • the tip seal 84 of the compressor 120 smoothly connects a plurality of curves, in the swing scroll 70, the fitting groove of the tip seal 84 can be processed at a time by one-stroke writing, which is excellent processing It is possible to secure the sex.
  • a portion where the tip seal is not fitted is a leak flow path between adjacent compression chambers. If the tip seal is offset from the center of the tip end face of the wrap, pressure leakage will occur in the two compression chambers in symmetrical positions due to different leak flow rates between the inside and the outside of the tip seal. The unbalance of pressure generates a force to rotate the spiral, which may affect the reliability of the spiral and the Oldham ring 41.
  • the tip seal 84 of the compressor 120 the fourth curve portion 84d and the fifth curve portion 84e located on the outer side of the first curve portion 84a approaching the subport 62a of the fixed scroll 60 on the outward surface side.
  • FIG. 9 is an axial sectional view showing the shapes of the orbiting scroll 70, the fixed scroll 60, and the tip seal 85 in the compressor 130 according to Embodiment 4 of the present invention.
  • the parts having the same configuration as the compressor 100, the compressor 110, and the compressor 120 in FIGS. 1 to 8 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the configuration of the tip seal 85 of the compressor 130 is different from that of the tip seal 82 of the compressor 100, and the other configuration of the compressor 130 is the same as that of the compressor 100.
  • a tip seal fitting groove 81 having the same shape as the tip seal 85 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 85 is fitted in the tip seal fitting groove 81. It is done.
  • the tip seal 85 of the rocking scroll 70 is disposed along the spiral direction at the tip of the rocking scroll wrap 71 and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it.
  • a tip seal 85 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61, and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it.
  • the tip seal 85 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 130 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion
  • the gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas.
  • the tip seal 85 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 130 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed.
  • the gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas.
  • the sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 85 provided on the wrap tip end surface of the oscillating scroll 70.
  • the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 85 is not completely crossed.
  • the tip seal 85 is composed of a plurality of curves having different curvatures, and is configured to have two curve portions of a first curve portion 85a and a second curve portion 85b. ing.
  • the portion approaching the sub port 62 or the injection port 63 is on the side of the end edge 71b of the outer periphery and the side of the end edge 71c of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It is arranged.
  • the tip seal 85 is formed in a structure in which a first curved portion 85 a and a second curved portion 85 b are divided.
  • the tip seal 85 is configured to be divided into a plurality of curves having different curvatures.
  • the first curve portion 85a and the second curve portion 85b may overlap in the spiral curve direction, or may be disposed with a slight gap.
  • the tip seal 85 is a first curved portion 85 a where the portion approaching the subport 62 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71.
  • the tip seal 85 may be configured such that the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has a curved portion 85a.
  • the first curve portion 85 a is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the tip seal 85 is a second curved portion in which the portion approaching the subport 62b on the inward facing surface side of the fixed scroll 60 passes the end edge 71c side of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 85b.
  • the portion approaching the injection port 63b on the inward facing surface side of the fixed scroll 60 passes through the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has a two-curved portion 85b.
  • the second curve portion 85 b is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
  • the tip seal 85 is formed of two curved portions, but the number of curved portions constituting the tip seal 85 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good.
  • the shape of the tip seal 85 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
  • the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It is arrange
  • the compressor 130 can secure a larger seal width ⁇ as compared with the case where the tip seal 85 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the subport 62
  • the diameter can be designed large.
  • the diameter of the subport 62 is set to “(wrap portion to satisfy seal width ⁇ > 0
  • the constraint value must be equal to or less than width / 2) + (tip seal width / 2).
  • the tip seal 85 is configured to have two curved portions of a first curved portion 85a and a second curved portion 85b. Therefore, the compressor 130 can enlarge the diameter of the subport 62 more than this restriction value.
  • the injection port 63 can be designed to be large similarly for the compressor 130 in which the injection port 63 is provided instead of the sub port 62.
  • the injection port 63 a of the tip seal 85 and the portions approaching the injection port 63 b are disposed on the side away from the injection port 63 with respect to the center 71 a of the oscillating scroll wrap portion 71. Therefore, the compressor 130 can secure a large seal width ⁇ as compared with the case where the tip seal 85 is configured in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63 The diameter of can be designed large.
  • the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”.
  • the compressor 130 is configured such that the tip seal 85 includes two curved portions, a first curved portion 85a having the above configuration and a second curved portion 85b. Therefore, the compressor 130 can enlarge the diameter of the injection port 63 more than this restriction value.
  • the compressor 130 can increase the flow rate of the liquid phase working fluid to be injected, and can lower the discharge temperature more efficiently.
  • the chip seal when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal.
  • the compressor 130 is disposed at a position where the tip seal 85 is separated from the sub port 62 or the injection port 63, and the tip seal 85 is not provided with a notch. Therefore, in the compressor 130, gas leakage does not occur between the compression chambers, and the strength of the tip seal 85 does not decrease due to stress concentration.
  • the tip seal 85 is configured to have two curve portions of a first curve portion 85a having the above configuration and a second curve portion 85b.
  • the compressor 130 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the prior art and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61.
  • the shape of the tip seal 85 is different. Therefore, the compressor 130 can prevent the tip seal 85 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
  • the compressor 130 since there is no joint of different curve in the fitting groove of the tip seal 85 provided in the swinging scroll wrap portion 71, the processing is easy. Therefore, in the compressor 130, a manufacturing defect such as a level difference at the boundary of the curve of the fitting groove of the tip seal 85 does not occur. In addition, the compressor 130 facilitates the production of a die for the tip seal 85.
  • FIG. 10 is an axial sectional view showing the shapes of the orbiting scroll 70, the fixed scroll 60 and the tip seal 86 in the compressor 140 according to Embodiment 5 of the present invention. Parts having the same configurations as those of the compressor 100, the compressor 110, the compressor 120, and the compressor 130 in FIGS. 1 to 9 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the compressor 140 is the same as the compressor 100 except that the configuration of the tip seal 86 is different from that of the tip seal 82 of the compressor 100.
  • a tip seal fitting groove 81 having the same shape as the tip seal 86 is formed on the wrap tip end surface of the fixed scroll 60 and the oscillating scroll 70.
  • the tip seal 86 is fitted in the tip seal fitting groove 81. It is done.
  • the tip seal 86 of the rocking scroll 70 is disposed at the tip of the rocking scroll wrap 71 along the spiral direction, and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it.
  • a tip seal 86 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61 and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing.
  • the tip seal 86 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 140 is in operation, so that the gap between the swinging scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion
  • the gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas.
  • the tip seal 86 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 140 is in operation, whereby the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 and the fixing are fixed.
  • the gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas.
  • the sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 86 provided on the wrap tip end surface of the oscillating scroll 70.
  • the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 86 is not completely crossed.
  • the tip seal 86 of the oscillating scroll 70 is formed of a plurality of curves having different curvatures, and is configured to have an involute portion 86a and an R portion 86b.
  • the tip seal 86 is formed by continuously forming a plurality of curves having different curvatures.
  • the R portion 86 b of the tip seal 86 is disposed at a position approaching the sub port 62 or the injection port 63, and is formed in a curved arc shape so as to avoid the sub port 62 or the injection port 63.
  • the tip seal 86 is configured such that the portion other than the R portion 86 b is an involute portion 86 a.
  • the involute portion 86 a is disposed on the wrap tip end surface of the oscillating scroll 70 and is formed of an involute curve having the same curvature as that of the oscillating scroll wrap portion 71 through the center 71 a in the width direction of the oscillating scroll wrap portion 71.
  • the width of the R portion 86b is the same as the width of the involute portion 86a, but may be different.
  • the tip seal 86 has an R portion 86 b 1 where the portion approaching the subport 62 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing scroll wrap 71 .
  • the tip seal 86 has a portion where the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has 86b1.
  • the R portion 86b2 passes through the end portion 71c on the inner circumferential side with respect to the center 71a in the width direction of the swing scroll wrap portion 71 at a location where the tip seal 86 approaches the subport 62b on the inward facing side Have.
  • the tip seal 86 has a location where an injection port 63 b on the inward surface side of the fixed scroll 60 approaches the end edge 71 c on the inner periphery with respect to the center 71 a in the width direction of the swing scroll wrap 71 It has a portion 86b2.
  • the tip seal 86 includes two R portions 86 b, but the number of R portions 86 b constituting the tip seal 86 according to the number of sub ports 62 or injection ports 63. It goes without saying that it is good to change.
  • the shape of the tip seal 86 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
  • the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange
  • the compressor 140 can secure a larger seal width ⁇ as compared with the case where the tip seal 86 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the subport 62
  • the diameter can be designed large.
  • the diameter of the subport 62 is set to “(wrap portion to satisfy seal width ⁇ > 0
  • the constraint value must be equal to or less than width / 2) + (tip seal width / 2).
  • the tip seal 86 is configured to include an R portion 86b curved in an arc shape so as to avoid the sub port 62 or the injection port 63, and an involute portion 86a. . Therefore, the compressor 140 can enlarge the diameter of the sub port 62 more than this restriction value.
  • the injection port 63 can be designed to be large similarly for the compressor 140 in which the injection port 63 is provided instead of the sub port 62.
  • the compressor 140 is disposed on the side of the tip seal 86 where the injection port 63 a and the injection port 63 b approach each other with respect to the center 71 a of the swing scroll wrap portion 71 away from the injection port 63. Therefore, the compressor 140 can secure a large seal width ⁇ as compared with the case where the tip seal 86 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63.
  • the diameter of can be designed large.
  • the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”.
  • the tip seal 86 includes an R portion 86b curved in an arc shape so as to avoid the sub port 62 or the injection port 63, and an involute portion 86a. Therefore, the compressor 140 can enlarge the diameter of the injection port 63 more than this restriction value.
  • the resistance of the compressor 140 when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved.
  • the compressor 140 can increase the flow rate of the liquid phase working fluid to be injected, and can lower the discharge temperature more efficiently.
  • the chip seal when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal.
  • the compressor 140 is disposed at a position where the tip seal 86 is separated from the sub port 62 or the injection port 63, and the tip seal 86 is not provided with a notch. Therefore, in the compressor 140, gas leakage does not occur between the compression chambers, and the strength of the tip seal 86 is not reduced due to stress concentration.
  • the compressor 140 is configured to have a tip seal 86 including an R portion 86 b curved in an arc shape so as to avoid the sub port 62 or the injection port 63 and an involute portion 86 a.
  • the compressor 140 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the prior art and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61.
  • the shape of the tip seal 86 is different. Therefore, the compressor 140 can prevent the tip seal 86 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
  • the compressor 140 also has an R portion 86 b which is curved in an arc shape so as to avoid the sub port 62 or the injection port 63. Therefore, the compressor 140 can arrange the tip seal 86 away from the sub port 62 or the injection port 63 only in the minimum range approaching the sub port 62 or the injection port 63.
  • the involute portion 86 a is disposed at the center 71 a of the tip end surface of the swinging scroll wrap portion 71 in places other than the R portion 86 b. Therefore, the compressor 140 has high reliability because the unbalance of the leak amount between the inside and the outside of the tip seal 86 is minimized and the unbalance of the pressure of the compression chamber in the symmetrical position is also minimized.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the above embodiment illustrates the case where the compressor 100 is a low pressure shell type
  • the compressor 100 may be a high pressure shell type.

Abstract

This compressor has: a stationary scroll provided with a base plate and a spiral wrap which is formed on the base plate; and an orbiting scroll provided with a base plate and a spiral wrap which is formed on the base plate. The stationary scroll has formed therein at least one sub-port for discharging an operating gas, or at least one injection port for injecting a liquid-phase operating fluid. The orbiting scroll is provided with a tip seal disposed at the tip of the spiral wrap in the spiral direction and in contact with the base plate of the stationary scroll, toward which the tip seal faces. The portion of the tip seal, which moves toward the sub-port or the injection port, is disposed offset to the edge side with respect to the center of the spiral wrap in the width direction thereof.

Description

圧縮機Compressor
 本発明は、作動ガスを圧縮する圧縮機に関する。 The present invention relates to a compressor for compressing a working gas.
 従来より、冷凍機又は空調機等に用いられる圧縮機の1つとして、スクロール圧縮機が知られている。スクロール圧縮機は、固定スクロールと揺動スクロールとを有しており、揺動スクロールは、固定スクロールに対して公転旋回運動を行う。固定スクロールと揺動スクロールとは、互いに向き合った面に渦巻き状のラップ部が形成された部材であり、組み合わされた双方のラップ部により圧縮室が形成されている。そして、スクロール圧縮機は、揺動スクロールが揺動することにより、圧縮室の内部容積を変化させて、圧縮室に流入した作動ガスを圧縮する。固定スクロール及び揺動スクロールにおける渦巻ラップ部の先端面には、チップシールと呼ばれるシール部材が嵌合されている。チップシールは、圧縮機の運転中において背圧を受けて浮き上がり、ラップ部の先端面と、相手側スクロールの台板面との隙間を埋めることにより、隣り合う圧縮室間の作動ガスの漏れを防止する機能を果たしている。 Conventionally, a scroll compressor is known as one of compressors used for a refrigerator, an air conditioner, and the like. The scroll compressor has a fixed scroll and a rocking scroll, and the rocking scroll performs a revolving orbiting motion with respect to the fixed scroll. The fixed scroll and the oscillating scroll are members in which spiral wraps are formed on surfaces facing each other, and a compression chamber is formed by the combined wraps. And a scroll compressor changes the internal volume of a compression chamber by rocking | fluctuation scroll rock | fluctuating, and compresses the working gas which flowed in into the compression chamber. A seal member called a tip seal is fitted to the tip end surface of the spiral wrap portion in the fixed scroll and the swing scroll. The tip seal is lifted by back pressure during operation of the compressor, and the working gas leaks between adjacent compression chambers by filling the gap between the tip end face of the lap portion and the base plate face of the opposing scroll. Play the function to prevent.
 特許文献1には、チップシールにおいてサブポートと干渉する箇所に切欠きを設け、チップシールとサブポートの干渉を防止し、サブポートへの引っ掛かりによるチップシールの摩耗を防止するスクロール圧縮機が開示されている。 Patent Document 1 discloses a scroll compressor in which a notch is provided in a portion where a tip seal interferes with a subport, thereby preventing interference between the tip seal and the subport and preventing wear of the tip seal due to catching on the subport. .
実開昭61-41882号公報Japanese Utility Model Publication No. 61-41882
 固定スクロールに形成されたサブポートは、低圧縮比条件での運転時に、スクロールの途中から作動ガスを吐出することで、過圧縮による動力損失の発生を防止するという機能を持つ。圧縮機は、サブポートの径が大きいほど、流路抵抗が小さくなり、過圧縮による動力損失の低減効果が大きく得られる。しかし、サブポートは、揺動スクロールに設けられたチップシールと接近する箇所に設けられているので、サブポートの径を大きくし過ぎ、サブポートがチップシールを跨いでしまうとサブポートを通じて隣接する圧縮室間の作動ガスの漏れを発生させてしまう。そのため、サブポートの径はチップシールを跨がない範囲でできるだけ大きく設計する必要がある。 The subport formed in the fixed scroll has a function of preventing the occurrence of power loss due to overcompression by discharging the working gas from the middle of the scroll during operation under the low compression ratio condition. In the compressor, the larger the diameter of the subport, the smaller the flow path resistance, and the reduction effect of the power loss due to over-compression can be obtained. However, since the subport is provided at a position approaching the tip seal provided on the oscillating scroll, the diameter of the subport is excessively increased, and if the subport straddles the tip seal, the adjacent compression chambers are adjacent to each other through the subport. It will cause a leak of working gas. Therefore, it is necessary to design the diameter of the subport as large as possible without crossing the tip seal.
 特許文献1に開示されたスクロール圧縮機は、チップシールによるシール幅を拡大する効果を持っておらず、サブポートの径又はインジェクションポートの径を、(ラップ部幅/2+チップシール幅/2)よりも大きく出来ない。そのため、サブポートは、十分な流路面積が確保できず、圧縮機は過圧縮損失が発生してしまう場合がある。また、インジェクションポートは、十分な流路面積が確保できず、圧縮機はインジェクション流量が不足することにより吐出温度が増加してしまう場合がある。 The scroll compressor disclosed in Patent Document 1 does not have the effect of expanding the seal width by the tip seal, and the diameter of the subport or the diameter of the injection port can be expressed by (lap width / 2 + tip seal width / 2). Can not be too big. Therefore, the subport can not secure a sufficient flow passage area, and the compressor may generate an overcompression loss. Further, the injection port can not secure a sufficient flow passage area, and the discharge temperature of the compressor may increase due to the shortage of the injection flow rate.
 本発明は、上記のような課題を背景としてなされたもので、チップシールを用いた場合でも、サブポートの径又はインジェクションポートの径を大きく確保する圧縮機の提供を目的とする。 The present invention has been made against the background described above, and an object of the present invention is to provide a compressor which secures a large diameter of a sub port or a diameter of an injection port even when a chip seal is used.
 本発明に係る圧縮機は、台板部及び台板部に形成された渦巻ラップ部を備えた固定スクロールと、台板部及び台板部に形成された渦巻ラップ部を備えた揺動スクロールと、を有し、固定スクロールには、作動ガスを吐出する為の少なくも1つのサブポート、もしくは液相の作動流体を注入する為の少なくとも1つのインジェクションポートが形成されており、揺動スクロールは、渦巻ラップ部の先端に渦巻方向に沿って配置され、対面する固定スクロールの台板部と接するチップシールを備え、チップシールは、サブポートもしくはインジェクションポートと接近する箇所が、渦巻ラップ部の幅方向の中央に対して、端縁部側に配置されているものである。 A compressor according to the present invention includes a base plate and a fixed scroll provided with a scroll wrap formed on the base plate, and a swing scroll including a base plate and a scroll wrap formed on the base plate. The fixed scroll is formed with at least one subport for discharging the working gas, or at least one injection port for injecting the working fluid in the liquid phase, and the oscillating scroll is The tip seal of the spiral wrap portion includes a tip seal disposed along the spiral direction and in contact with the base plate portion of the fixed scroll, and the tip seal has a portion where the subport or the injection port approaches the width direction of the spiral wrap portion. It is disposed on the edge side with respect to the center.
 本発明によれば、チップシールは、サブポートもしくはインジェクションポートと接近する箇所が、渦巻ラップ部の幅方向の中央に対して、端縁部側に配置されているものである。すなわち、チップシールは、揺動渦巻ラップ部の中央に対し、サブポートもしくはインジェクションポートから離れる側に配置されている。そのため、圧縮機は、チップシールを1つのインボリュート形状で構成し、揺動ラップ部の中央に配置した場合と比較し、チップシールによるシール幅を大きく確保でき、かつ、サブポートもしくはインジェクションポートの径を大きく設計できる。 According to the present invention, the tip seal is arranged such that the portion approaching the sub port or the injection port is located on the end edge side with respect to the widthwise center of the spiral wrap. That is, the tip seal is disposed on the side away from the sub port or the injection port with respect to the center of the swing scroll wrap. Therefore, the compressor can secure a larger seal width by the tip seal than the case where the tip seal is formed in one involute shape and disposed at the center of the swing lap portion, and the diameter of the sub port or injection port Can be designed large.
本発明の実施の形態1に係る圧縮機を示す軸方向断面図である。It is an axial sectional view showing the compressor concerning Embodiment 1 of the present invention. 先行技術における揺動スクロールと固定スクロールとチップシールの形状とを示す水平方向断面図である。FIG. 1 is a horizontal cross-sectional view showing the shapes of a rocking scroll, a stationary scroll and a tip seal in the prior art. 図2の揺動スクロールが移動した揺動スクロールと固定スクロールとを示す拡大図である。It is an enlarged view which shows the rocking scroll and fixed scroll which the rocking scroll of FIG. 2 moved. 図3のチップシールとサブポート又はインジェクションポートとの関係を示す鉛直方向断面図である。It is a perpendicular direction sectional view which shows the relationship between the tip seal of FIG. 3, and a subport or an injection port. チップシールが固定スクロールと接しない場合の圧縮部の鉛直方向断面図である。It is a perpendicular direction sectional view of a compression part when a tip seal does not contact with a fixed scroll. 本発明の実施の形態1に係る圧縮機における揺動スクロールと固定スクロールとチップシールの形状とを示す軸方向断面図である。It is an axial sectional view showing the shape of a rocking scroll, a fixed scroll, and a tip seal in a compressor according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る圧縮機における揺動スクロールと固定スクロールとチップシールの形状とを示す軸方向断面図である。It is an axial sectional view showing the shape of a rocking scroll, a fixed scroll, and a tip seal in a compressor according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る圧縮機における揺動スクロールと固定スクロールとチップシールの形状とを示す軸方向断面図である。It is an axial sectional view showing the shape of a rocking scroll, a fixed scroll, and a tip seal in a compressor according to Embodiment 3 of the present invention. 本発明の実施の形態4に係る圧縮機における揺動スクロールと固定スクロールとチップシールの形状とを示す軸方向断面図である。It is an axial sectional view showing the shape of a rocking scroll, a fixed scroll and a tip seal in a compressor according to a fourth embodiment of the present invention. 本発明の実施の形態5に係る圧縮機における揺動スクロールと固定スクロールとチップシールの形状とを示す軸方向断面図である。It is an axial sectional view showing the shape of a rocking scroll, a fixed scroll, and a tip seal in a compressor according to Embodiment 5 of the present invention.
 以下、本発明の実施の形態に係る圧縮機について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, a compressor according to an embodiment of the present invention will be described with reference to the drawings and the like. In the following drawings including FIG. 1, the relative dimensional relationships, shapes, and the like of the respective constituent members may differ from the actual ones. Moreover, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds to this, and this shall be common in the whole text of a specification. In addition, terms that indicate direction (for example, "upper", "lower", "right", "left", "front", "rear", etc.) are appropriately used to facilitate understanding, but their notation is For the convenience of the description, it is only described as such, and does not limit the arrangement and orientation of the device or parts.
実施の形態1.
[圧縮機100]
 図1は、本発明の実施の形態1に係る圧縮機100を示す軸方向断面図である。圧縮機100は、冷凍サイクルを循環する冷媒を吸入して圧縮し、高温高圧の状態にして吐出するスクロール圧縮機である。圧縮機100は、図1に示すように、シェル20と、モータ30と、圧縮部40と、軸部50とを有している。圧縮機100は、低圧シェル型の圧縮機である。
Embodiment 1
[Compressor 100]
FIG. 1 is an axial sectional view showing a compressor 100 according to Embodiment 1 of the present invention. The compressor 100 is a scroll compressor that sucks and compresses a refrigerant circulating in a refrigeration cycle, and discharges the refrigerant in a high temperature and high pressure state. As shown in FIG. 1, the compressor 100 includes a shell 20, a motor 30, a compression unit 40, and a shaft unit 50. The compressor 100 is a low pressure shell compressor.
[シェル20]
 シェル20は、圧縮機100の外殻を構成し、耐圧性を有している。シェル20は、有底円筒状をなしており、底部に位置するロアーシェル20aと、ロアーシェル20aに載置され円筒状に形成された中央シェル20bと、中央シェル20bの上部を塞ぐアッパーシェル20cとを有する。シェル20は、油を貯留するための油溜り21を底部に有する。シェル20の下部には、シェル20の油溜り21に配置された、油ポンプ23が収容されている。油ポンプ23は、軸部50の一端側に取り付けられており、シェル20の油溜り21に貯留された油を吸引して軸部50内の給油路50aに供給するものである。給油路50aに供給された油は、圧縮機100の内部の軸受部及びオルダムリング41に供給される。この油は、軸受部及びオルダムリング41を潤滑すると共に冷却する。シェル20の側部には、吸入管27が設けられている。吸入管27は、作動ガスをシェル20の内部に吸入する管である。シェル20の上部には吐出管28が設けられている。吐出管28は、作動ガスをシェル20の外部に吐出する管である。マフラー29は、後述する固定スクロール60の上方に設けられており、吐出ポート65及びサブポート62から吐出された作動ガスの脈動を抑えるものである。
[Shell 20]
The shell 20 constitutes an outer shell of the compressor 100 and has pressure resistance. The shell 20 has a bottomed cylindrical shape, and includes a lower shell 20a located at the bottom, a central shell 20b mounted on the lower shell 20a and formed cylindrical, and an upper shell 20c closing the top of the central shell 20b. Have. The shell 20 has an oil sump 21 at its bottom for storing oil. At a lower portion of the shell 20, an oil pump 23 disposed in an oil reservoir 21 of the shell 20 is accommodated. The oil pump 23 is attached to one end side of the shaft portion 50, sucks the oil stored in the oil reservoir 21 of the shell 20, and supplies the oil to the oil supply passage 50a in the shaft portion 50. The oil supplied to the oil supply passage 50 a is supplied to the bearing portion inside the compressor 100 and the Oldham ring 41. The oil lubricates and cools the bearing portion and the Oldham ring 41. A suction pipe 27 is provided on the side of the shell 20. The suction pipe 27 is a pipe that sucks the working gas into the interior of the shell 20. A discharge pipe 28 is provided at the top of the shell 20. The discharge pipe 28 is a pipe that discharges the working gas to the outside of the shell 20. The muffler 29 is provided above the fixed scroll 60 described later, and suppresses pulsation of the working gas discharged from the discharge port 65 and the sub port 62.
 フレーム25は、シェル20の内部において、モータ30の上方に設けられ、シェル20に固定されている。フレーム25には、揺動スクロール70と固定スクロール60とが互いの渦巻ラップ部を互いに噛みあうように組み合わせた状態で実装されている。なお、実施の形態1では、固定スクロール60がフレーム25と固定された例について説明するが、固定スクロール60は、フレーム25とは固定されずにシェル20と固定された構成とすることができる。フレーム25は、主軸受54を介して軸部50を回転自在に支持している。フレーム25には、吸入ポート25aが形成されており、作動ガスは、吸入ポート25aを通って圧縮部40に流入する。サブフレーム26は、シェル20の内部において、モータ30の下方に設けられ、シェル20に固定されている。サブフレーム26は、副軸受55を介して軸部50を回転自在に支持するものである。 The frame 25 is provided above the motor 30 inside the shell 20 and is fixed to the shell 20. The rocking scroll 70 and the fixed scroll 60 are mounted on the frame 25 in a state in which the spiral wraps are engaged with each other. In the first embodiment, an example in which the fixed scroll 60 is fixed to the frame 25 will be described, but the fixed scroll 60 can be configured to be fixed to the shell 20 without being fixed to the frame 25. The frame 25 rotatably supports the shaft 50 via the main bearing 54. A suction port 25 a is formed in the frame 25, and the working gas flows into the compression unit 40 through the suction port 25 a. The sub frame 26 is provided below the motor 30 inside the shell 20 and is fixed to the shell 20. The sub-frame 26 rotatably supports the shaft 50 via the sub bearing 55.
 排油パイプ24は、フレーム25と揺動スクロール70との間の空間と、フレーム25とサブフレーム26との間の空間とを接続する管である。排油パイプ24は、フレーム25と揺動スクロール70との間の空間に流通する油のうち、過剰な油を、フレーム25とサブフレーム26との間の空間に流出させる。フレーム25とサブフレーム26との間の空間に流出した油は、サブフレーム26を通過して油溜り21に戻る。 The oil discharge pipe 24 is a pipe that connects the space between the frame 25 and the oscillating scroll 70 and the space between the frame 25 and the sub-frame 26. The oil discharge pipe 24 causes excess oil out of the oil flowing in the space between the frame 25 and the oscillating scroll 70 to flow out into the space between the frame 25 and the sub-frame 26. The oil that has flowed into the space between the frame 25 and the sub-frame 26 passes through the sub-frame 26 and returns to the oil sump 21.
[モータ30]
 モータ30は、軸部50を回転させるものである。モータ30は、シェル20の内部に設けられ、フレーム25とサブフレーム26との間に設置されている。モータ30は、ロータ31とステータ32とを有している。ロータ31は、ステータ32の内周側に設けられており、軸部50に取り付けられている。ロータ31は、自らが回転することにより、軸部50を回転させる。ステータ32は、焼嵌め等によりシェル20に固定されている。ステータ32は、インバータ(図示せず)から供給された電力によって磁界を発生させ、ロータ31を回転させる。
[Motor 30]
The motor 30 rotates the shaft 50. The motor 30 is provided inside the shell 20 and is installed between the frame 25 and the sub-frame 26. The motor 30 has a rotor 31 and a stator 32. The rotor 31 is provided on the inner peripheral side of the stator 32 and is attached to the shaft 50. The rotor 31 rotates the shaft 50 by its own rotation. The stator 32 is fixed to the shell 20 by shrink fitting or the like. The stator 32 generates a magnetic field by the power supplied from the inverter (not shown) and rotates the rotor 31.
[圧縮部40]
 圧縮部40は、シェル20の内部に設けられ、モータ30によって駆動して作動ガスを圧縮するものである。圧縮部40は、フレーム25に収容されており、固定スクロール60と揺動スクロール70とを有している。固定スクロール60は、シェル20の内部に固定されており、固定スクロール60には、圧縮された作動ガスを吐出させる吐出ポート65及びサブポート62が形成されている。揺動スクロール70は、固定スクロール60に対して公転旋回運動を行い、オルダムリング41によって自転運動が規制されている。固定スクロール60と揺動スクロール70とは、夫々互いに向き合った面に、後述する渦巻状の固定渦巻ラップ部61と揺動渦巻ラップ部71とが形成されている。圧縮部40は、固定渦巻ラップ部61及び揺動渦巻ラップ部71が噛み合った空間に圧縮室を形成させている。圧縮部40は、揺動スクロール70が軸部50の回転によって揺動されると、圧縮室において作動ガスが圧縮される。なお、圧縮部40の詳細な構成については後述する。
[Compressing unit 40]
The compression unit 40 is provided inside the shell 20 and is driven by the motor 30 to compress the working gas. The compression unit 40 is accommodated in the frame 25 and has a fixed scroll 60 and a swing scroll 70. The fixed scroll 60 is fixed inside the shell 20, and the fixed scroll 60 is provided with a discharge port 65 and a subport 62 for discharging the compressed working gas. The rocking scroll 70 revolves around the fixed scroll 60, and its rotation movement is restricted by the Oldham ring 41. The fixed scroll 60 and the rocking scroll 70 are provided with a spiral fixed spiral wrap portion 61 and a rocking spiral wrap portion 71, which will be described later, on the surfaces facing each other. The compression unit 40 forms a compression chamber in a space in which the fixed spiral wrap unit 61 and the swing spiral wrap unit 71 are engaged. In the compression section 40, when the swing scroll 70 is swung by the rotation of the shaft section 50, the working gas is compressed in the compression chamber. The detailed configuration of the compression unit 40 will be described later.
 オルダムリング41は、揺動スクロール70に取り付けられた環状の部材であり、揺動スクロール70の自転運動を規制するものである。オルダムリング41は、揺動スクロール70のスラスト下面に形成されたオルダム溝41aに取り付けられている。スライダ42は、軸部50の上部の外周面に取り付けられた筒状の部材であり、揺動スクロール70の下部の内面に位置している。即ち、揺動スクロール70は、スライダ42を介して軸部50に取り付けられており、軸部50の回転に伴って揺動スクロール70も回転する。なお、揺動スクロール70とスライダ42との間には、揺動軸受43が設けられている。スリーブ44は、フレーム25と主軸受54との間に設けられた筒状の部材であり、主軸受54と軸部50の相対的な傾斜を吸収する為の部材である。 The Oldham ring 41 is an annular member attached to the rocking scroll 70 and regulates the rotational movement of the rocking scroll 70. The Oldham ring 41 is attached to an Oldham groove 41 a formed on the thrust lower surface of the oscillating scroll 70. The slider 42 is a cylindrical member attached to the outer peripheral surface of the upper portion of the shaft portion 50, and is located on the inner surface of the lower portion of the oscillating scroll 70. That is, the rocking scroll 70 is attached to the shaft portion 50 via the slider 42, and the rocking scroll 70 also rotates with the rotation of the shaft portion 50. A swing bearing 43 is provided between the swing scroll 70 and the slider 42. The sleeve 44 is a cylindrical member provided between the frame 25 and the main bearing 54, and is a member for absorbing the relative inclination of the main bearing 54 and the shaft portion 50.
[軸部50]
 軸部50は、フレーム25に支持されている。軸部50とフレーム25との間に設けられた主軸受54は、例えば銅鉛合金等の滑り軸受からなる軸受構造であり、軸部50を回転自在に軸支している。なお、主軸受54が滑り軸受からなる場合について例示しているが、別の公知の軸受構造によって軸部50を軸支してもよい。軸部50は、給油路50aが内部に形成されており、モータ30と圧縮部40とを接続してモータ30の回転力を圧縮部40に伝達する。
[Shaft 50]
The shaft 50 is supported by the frame 25. The main bearing 54 provided between the shaft 50 and the frame 25 is a bearing structure formed of a slide bearing such as a copper lead alloy, for example, and rotatably supports the shaft 50. In addition, although illustrated about the case where the main bearing 54 consists of slide bearings, you may pivotally support the axial part 50 by another well-known bearing structure. The shaft portion 50 has an oil supply passage 50 a formed therein, and connects the motor 30 and the compression portion 40 to transmit the rotational force of the motor 30 to the compression portion 40.
 軸部50には、第1のバランサ52が取り付けられている。第1のバランサ52は、フレーム25とロータ31との間に位置している。第1のバランサ52は、揺動スクロール70及びスライダ42によって生じるアンバランスを相殺するものである。第1のバランサ52は、バランサカバー52aに収容されている。また、第2のバランサ53は、ロータ31を介して軸部50に取り付けられている。第2のバランサ53は、ロータ31とサブフレーム26との間に位置し、ロータ31の下面に取り付けられている。第2のバランサ53は、揺動スクロール70及びスライダ42によって生じるアンバランスを相殺するものである。 A first balancer 52 is attached to the shaft 50. The first balancer 52 is located between the frame 25 and the rotor 31. The first balancer 52 cancels the unbalance generated by the oscillating scroll 70 and the slider 42. The first balancer 52 is accommodated in the balancer cover 52a. The second balancer 53 is attached to the shaft 50 via the rotor 31. The second balancer 53 is located between the rotor 31 and the sub-frame 26 and attached to the lower surface of the rotor 31. The second balancer 53 cancels the unbalance generated by the oscillating scroll 70 and the slider 42.
[圧縮部40の詳細]
 次に、圧縮部40の詳細について詳細に説明する。圧縮部40は、前述の如く、固定スクロール60と揺動スクロール70とを有している。固定スクロール60は、シェル20の内部に固定され、外周縁部がフレーム25の上部に載置されている。固定スクロール60は、固定渦巻台板部64と、固定渦巻台板部64に形成された固定渦巻ラップ部61とを有する。固定スクロール60の固定渦巻台板部64には、吐出ポート65とサブポート62が形成されている。圧縮室で圧縮された作動ガスは、吐出ポート65とサブポート62とを通り吐出される。あるいは、固定スクロール60には、サブポート62の代わりにインジェクションポート63が形成されていてもよい。圧縮機100から吐出され、インジェクション回路(図示せず)を通過した中間圧の作動ガスが、インジェクションポート63を通じて、圧縮室に導入される。揺動スクロール70は、揺動渦巻台板部74と、揺動渦巻台板部74に形成された揺動渦巻ラップ部71とを有する。
[Details of the compression unit 40]
Next, the details of the compression unit 40 will be described in detail. The compression unit 40 has the fixed scroll 60 and the oscillating scroll 70 as described above. The fixed scroll 60 is fixed to the inside of the shell 20, and the outer peripheral edge is mounted on the top of the frame 25. The fixed scroll 60 has a fixed scroll base plate portion 64 and a fixed scroll wrap portion 61 formed on the fixed scroll base plate portion 64. A discharge port 65 and a subport 62 are formed in the fixed scroll base plate portion 64 of the fixed scroll 60. The working gas compressed in the compression chamber is discharged through the discharge port 65 and the sub port 62. Alternatively, the fixed scroll 60 may have an injection port 63 formed instead of the sub port 62. The intermediate pressure working gas discharged from the compressor 100 and passed through the injection circuit (not shown) is introduced into the compression chamber through the injection port 63. The swing scroll 70 has a swing scroll plate portion 74 and a swing scroll wrap portion 71 formed on the swing scroll plate portion 74.
 サブポート62からの圧縮ガスの吐出は、圧縮比の小さい運転条件の際に行われる。圧縮ガスは、圧縮室中央にたどり付く前にサブポート62を通り、アッパーシェル20c内にバイパスされる為、圧縮機100は、過剰な圧縮による動力損失を低減することができる。 Discharge of the compressed gas from the subport 62 is performed under operating conditions where the compression ratio is small. Since the compressed gas passes through the subport 62 and is bypassed into the upper shell 20c before reaching the center of the compression chamber, the compressor 100 can reduce the power loss due to excessive compression.
 インジェクションポート63は、圧縮比の高い条件での運転時に圧縮室内に液相の作動流体を注入する際に利用される。インジェクションポート63は、吐出ガスの温度を低下させ、固定スクロール60、揺動スクロール70の熱膨張による破損を防止する機能を持つものである。 The injection port 63 is used to inject a working fluid in a liquid phase into the compression chamber during operation at a high compression ratio condition. The injection port 63 has a function of reducing the temperature of the discharge gas and preventing damage to the fixed scroll 60 and the oscillating scroll 70 due to thermal expansion.
 図2は、先行技術における揺動スクロール70と固定スクロール60とチップシール80の形状とを示す水平方向断面図である。図3は、図2の揺動スクロール70が移動した揺動スクロール70と固定スクロール60とを示す拡大図である。これらの水平方向断面の位置は、図1の圧縮機100におけるA-A線部分に相当する。なお、以下の図面では、圧縮機の平面視において、固定渦巻台板部64に形成された吐出ポート65、サブポート62もしくはインジェクションポート63の位置も示している。また、以下に説明するサブポート62a及びサブポート62bの総称はサブポート62であり、インジェクションポート63a及びインジェクションポート63bの総称はインジェクションポート63である。まず、図2及び図3を用いて、圧縮機100と共通するサブポート62及びインジェクションポート63の構成について説明する。図2及び図3に示すように、固定スクロール60の固定渦巻台板部64には、固定スクロール60の外向面側の圧縮室40aにサブポート62aが形成され、固定スクロール60の内向面側の圧縮室40bにサブポート62bが形成されている。サブポート62aと、サブポート62bとは、固定スクロール外向面側の圧縮室40aと固定スクロール内向面側の圧縮室40bの対になる位置に配置されている。固定スクロール60にサブポート62ではなくインジェクションポート63が形成されている場合には、図2及び図3のサブポート62の代わりにインジェクションポート63が形成される。この場合、固定スクロール60の固定渦巻台板部64には、固定スクロール60の外向面側の圧縮室40aにインジェクションポート63aが形成され、固定スクロール60の内向面側の圧縮室40bにインジェクションポート63bが形成されている。インジェクションポート63aと、インジェクションポート63bとは、固定スクロール外向面側の圧縮室40aと固定スクロール内向面側の圧縮室40bの対になる位置に配置されている。サブポート62は、1つでもよく、対となるサブポート62を複数設けても良い。同様に、インジェクションポート63は、1つでもよく、対となるインジェクションポート63を複数設けてもよい。 FIG. 2 is a horizontal sectional view showing the shapes of the oscillating scroll 70, the fixed scroll 60 and the tip seal 80 in the prior art. FIG. 3 is an enlarged view showing the swing scroll 70 and the fixed scroll 60 on which the swing scroll 70 of FIG. 2 has moved. The positions of these horizontal cross sections correspond to the line AA in the compressor 100 of FIG. In the following drawings, the positions of the discharge port 65, the sub port 62, and the injection port 63 formed in the fixed scroll base plate portion 64 are also shown in a plan view of the compressor. Also, the generic name of the subport 62a and the subport 62b described below is the subport 62, and the generic name of the injection port 63a and the injection port 63b is the injection port 63. First, the configurations of the sub port 62 and the injection port 63 common to the compressor 100 will be described using FIGS. 2 and 3. As shown in FIGS. 2 and 3, in the fixed scroll bed portion 64 of the fixed scroll 60, a subport 62 a is formed in the compression chamber 40 a on the outward surface side of the fixed scroll 60, and compression on the inward surface side of the fixed scroll 60 is performed. The subport 62b is formed in the chamber 40b. The sub port 62a and the sub port 62b are disposed at a position where the compression chamber 40a on the fixed scroll outward surface side and the compression chamber 40b on the fixed scroll inward surface side are paired. When the fixed scroll 60 is formed with the injection port 63 instead of the sub port 62, the injection port 63 is formed instead of the sub port 62 of FIGS. In this case, an injection port 63a is formed in the compression chamber 40a on the outward surface side of the fixed scroll 60 in the fixed scroll bed plate portion 64 of the fixed scroll 60, and an injection port 63b is formed in the compression chamber 40b on the inward surface side of the fixed scroll 60. Is formed. The injection port 63a and the injection port 63b are disposed at a position where the compression chamber 40a on the fixed scroll outward surface side and the compression chamber 40b on the fixed scroll inward surface side are paired. The sub port 62 may be one, or a plurality of paired sub ports 62 may be provided. Similarly, one injection port 63 may be provided, and a plurality of injection ports 63 serving as a pair may be provided.
 次に、チップシール80について説明する。固定スクロール60と揺動スクロール70のラップ先端面には、チップシール80と同形状のチップシール嵌合用溝81が形成されており、このチップシール嵌合用溝81には、チップシール80が嵌合されている。揺動スクロール70のチップシール80は、揺動渦巻ラップ部71の先端に渦巻方向に沿って配置され、対面する固定スクロール60の固定渦巻台板部64と接する。また、固定スクロール60のチップシール80(図示せず)は、固定渦巻ラップ部61の先端に渦巻方向に沿って配置され、対面する揺動スクロール70の揺動渦巻台板部74と接する。チップシール80は、圧縮機100の運転中に、固定渦巻台板部64に押付けられながら摺動することで、揺動渦巻ラップ部71と固定渦巻台板部64の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。または、チップシール80は、圧縮機100の運転中に、揺動渦巻台板部74に押付けられながら摺動することで、固定渦巻ラップ部61と揺動渦巻台板部74の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。サブポート62及びインジェクションポート63は固定スクロール60の固定渦巻台板部64に設けられており、揺動スクロール70のラップ先端面に設けられたチップシール80と接近する。チップシール80のシール性を確保する為に、サブポート62又はインジェクションポート63の直径は、チップシール80を完全に跨がない範囲で設定する必要がある。 Next, the tip seal 80 will be described. A tip seal fitting groove 81 having the same shape as the tip seal 80 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 80 is fitted in the tip seal fitting groove 81. It is done. The tip seal 80 of the rocking scroll 70 is disposed at the tip of the rocking scroll wrap 71 along the spiral direction, and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it. Further, a tip seal 80 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61, and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it. The tip seal 80 slides while being pressed against the stationary scroll base plate portion 64 during operation of the compressor 100, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion The gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas. Alternatively, the tip seal 80 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 100 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed. The gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas. The sub port 62 and the injection port 63 are provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approach the tip seal 80 provided on the wrap tip end surface of the oscillating scroll 70. In order to ensure the sealability of the tip seal 80, the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 80 is not completely crossed.
 ここで、サブポート62又はインジェクションポート63を設ける場合の寸法的制約について説明する。サブポート62又はインジェクションポート63は揺動スクロール70のチップシール80と重なる位置に配置されている為、サブポート62又はインジェクションポート63が完全に揺動スクロール70のチップシール80を跨がない寸法にする必要がある。図3において、δは、チップシール80と固定スクロール60との接触範囲であり、チップシール80と固定スクロール60とによるシール幅である。すなわち、圧縮部40は、シール幅δ>0を満足する様に固定スクロール60にサブポート62又はインジェクションポート63の径を設定する必要がある。 Here, dimensional limitations in the case of providing the sub port 62 or the injection port 63 will be described. Since the sub port 62 or the injection port 63 is disposed at a position overlapping with the tip seal 80 of the oscillating scroll 70, the sub port 62 or the injection port 63 needs to be completely sized so that the tip seal 80 of the oscillating scroll 70 is not straddled. There is. In FIG. 3, δ is the contact area between the tip seal 80 and the fixed scroll 60, and is the seal width between the tip seal 80 and the fixed scroll 60. That is, the compression unit 40 needs to set the diameter of the sub port 62 or the injection port 63 in the fixed scroll 60 so as to satisfy the seal width δ> 0.
 図4は、図3のチップシール80とサブポート62又はインジェクションポート63との関係を示す鉛直方向断面図である。図5は、チップシール80が固定スクロール60と接しない場合の圧縮部40の鉛直方向断面図である。図4は、チップシール80と固定スクロール60とによるシール幅δを、シール幅δ>0に形成した場合の圧縮部40の鉛直方向断面図である。この時、圧縮部40は、揺動スクロール70のチップシール80と固定渦巻台板部64とが接触するシール幅δが存在する為、高圧室46から低圧室45への漏れが発生しない。なお、シール幅δの上限値は、チップシール80の幅γである。図5は、チップシール80と固定スクロール60とによるシール幅δを、シール幅δ<0に形成した場合の圧縮部40の鉛直方向断面図である。この時、揺動スクロール70のチップシール80と固定渦巻台板部64とが接触するシール幅δが存在しない為、高圧室46と低圧室45がサブポート62を通じて連通してしまい、高圧室46から低圧室45へと作動ガスの漏れが発生してしまう。従って、サブポート62又はインジェクションポート63の径はδ>0を満足する範囲でしか大きくすることができず、サブポート62又はインジェクションポート63の径を大きく設ける為には揺動スクロール70のチップシール80の形状を工夫する必要がある。 FIG. 4 is a vertical sectional view showing the relationship between the tip seal 80 and the sub port 62 or the injection port 63 in FIG. FIG. 5 is a vertical cross-sectional view of the compression unit 40 when the tip seal 80 does not contact the fixed scroll 60. FIG. 4 is a vertical direction cross-sectional view of the compression section 40 when the seal width δ by the tip seal 80 and the fixed scroll 60 is formed to be seal width δ> 0. At this time, the compression section 40 has a seal width δ at which the tip seal 80 of the oscillating scroll 70 and the fixed scroll bed plate section 64 come into contact, so that no leak from the high pressure chamber 46 to the low pressure chamber 45 occurs. The upper limit of the seal width δ is the width γ of the tip seal 80. FIG. 5 is a vertical direction sectional view of the compression section 40 when the seal width δ by the tip seal 80 and the fixed scroll 60 is formed to be seal width δ <0. At this time, since there is no seal width δ at which the tip seal 80 of the swing scroll 70 contacts the fixed scroll table portion 64, the high pressure chamber 46 and the low pressure chamber 45 communicate with each other through the subport 62. The working gas leaks to the low pressure chamber 45. Therefore, the diameter of the sub port 62 or the injection port 63 can be increased only in the range satisfying δ> 0, and in order to provide the diameter of the sub port 62 or the injection port 63 large, the tip seal 80 of the oscillating scroll 70 is used. It is necessary to devise the shape.
 図6は、本発明の実施の形態1に係る圧縮機100における揺動スクロール70と固定スクロール60とチップシール82の形状とを示す軸方向断面図である。固定スクロール60と揺動スクロール70のラップ先端面には、チップシール82と同形状のチップシール嵌合用溝81が形成されており、このチップシール嵌合用溝81には、チップシール82が嵌合されている。揺動スクロール70のチップシール82は、揺動渦巻ラップ部71の先端に渦巻方向に沿って配置され、対面する固定スクロール60の固定渦巻台板部64と接する。また、固定スクロール60のチップシール82(図示せず)は、固定渦巻ラップ部61の先端に渦巻方向に沿って配置され、対面する揺動スクロール70の揺動渦巻台板部74と接する。チップシール82は、圧縮機100の運転中に、固定渦巻台板部64に押付けられながら摺動することで、揺動渦巻ラップ部71と固定渦巻台板部64の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。または、チップシール82は、圧縮機100の運転中に、揺動渦巻台板部74に押付けられながら摺動することで、固定渦巻ラップ部61と揺動渦巻台板部74の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。サブポート62又はインジェクションポート63は固定スクロール60の固定渦巻台板部64に設けられており、揺動スクロール70のラップ先端面に設けられたチップシール82と接近する。チップシール82のシール性を確保する為に、サブポート62又はインジェクションポート63の直径は、チップシール82を完全に跨がない範囲で設定する必要がある。 FIG. 6 is an axial sectional view showing the shapes of the orbiting scroll 70, the fixed scroll 60, and the tip seal 82 in the compressor 100 according to Embodiment 1 of the present invention. A tip seal fitting groove 81 having the same shape as the tip seal 82 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 82 is fitted in the tip seal fitting groove 81. It is done. The tip seal 82 of the oscillating scroll 70 is disposed along the spiral direction at the tip of the oscillating scroll wrap 71 and contacts the fixed scroll base plate 64 of the facing fixed scroll 60. Further, a tip seal 82 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61, and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it. The tip seal 82 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 100 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion The gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas. Alternatively, the tip seal 82 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 100 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed. The gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas. The sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 82 provided on the wrap tip end surface of the oscillating scroll 70. In order to ensure the sealability of the tip seal 82, the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 82 is not completely crossed.
 図6に示すように、チップシール82は、異なる曲率を有する複数の曲線で構成されており、第1曲線部82aと、第2曲線部82bと、第3曲線部82cと、の3つの曲線部分を繋ぎ合わせて一体に構成されている。チップシール82は、図6において、曲線の境目を明示する為、切れ目がある様に図示しているが、チップシール82は切れ目の無い一体物である。すなわち、チップシール82は、異なる曲率を有する複数の曲線が連続して形成されている。チップシール82は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。 As shown in FIG. 6, the tip seal 82 is composed of a plurality of curves having different curvatures, and three curves of a first curve portion 82a, a second curve portion 82b, and a third curve portion 82c. The parts are joined together and configured integrally. Although the tip seal 82 is illustrated as having a cut in order to clearly show the boundary of the curve in FIG. 6, the tip seal 82 is a one-piece without break. That is, in the tip seal 82, a plurality of curves having different curvatures are continuously formed. With respect to the tip seal 82, the portion approaching the sub port 62 or the injection port 63 is on the side of the end edge 71b of the outer periphery and the side of the end edge 71c of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap 71 It is arranged.
 チップシール82は、固定スクロール60の外向面側のサブポート62aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部82aを有する。もしくは、チップシール82は、固定スクロール60の外向面側のインジェクションポート63aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部82aを有する。第1曲線部82aは、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 82 is a first curved portion 82 a where the portion approaching the subport 62 a on the outward surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. Have. Alternatively, the tip seal 82 may be configured such that a portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has a curved portion 82a. The first curve portion 82 a is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 チップシール82は、固定スクロール60の内向面側のサブポート62bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る第2曲線部82bを有する。もしくは、チップシール82は、固定スクロール60の内向面側のインジェクションポート63bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る第2曲線部82bを有する。第2曲線部82bは、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 82 is a second curved portion in which the portion approaching the subport 62b on the inward facing surface side of the fixed scroll 60 passes the side of the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 82b. Alternatively, in the tip seal 82, the portion approaching the injection port 63b on the inward surface side of the fixed scroll 60 passes the side of the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 2 curve part 82b. The second curve portion 82 b is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 第1曲線部82aと第2曲線部82bとの境目は、たとえば、揺動スクロール70よりも大きな曲率のインボリュート曲線等、滑らかな曲線に形成された第3曲線部82cで繋ぎ合わされている。実施の形態1に係る圧縮機100では、チップシール82が、3つの曲線部分で構成されているが、サブポート62又はインジェクションポート63の数に応じてチップシール82を構成する曲線部分の数を変更すると良いことは言うまでもない。なお、固定スクロール60のチップシール82の形状は、従来通り、固定スクロール60の固定渦巻ラップ部61と同じ曲率のインボリュート曲線で形成され、固定スクロール60の固定渦巻ラップ部61の幅方向において中央71aに配置されていてもよい。 The boundary between the first curve portion 82a and the second curve portion 82b is joined together by a third curve portion 82c formed into a smooth curve, such as an involute curve having a curvature larger than that of the swing scroll 70, for example. In the compressor 100 according to the first embodiment, the tip seal 82 is formed of three curve portions, but the number of curve portions constituting the tip seal 82 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good. The shape of the tip seal 82 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap 61 of the fixed scroll 60 as in the prior art, and the center 71 a in the width direction of the fixed scroll wrap 61 of the fixed scroll 60 It may be arranged in
 以上のように、圧縮機100のチップシール82は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。すなわち、チップシール82の固定スクロール60の外向面側のサブポート62aと固定スクロール60の内向面側のサブポート62bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、サブポート62から離れる側に配置されている。そのため、圧縮機100は、チップシール82を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、サブポート62の径を大きく設計できる。 As described above, in the tip seal 82 of the compressor 100, the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange | positioned at the edge part 71c side of inner periphery. That is, the portions of the tip seal 82 approaching the subport 62a on the outward facing surface side of the fixed scroll 60 and the subport 62b on the inward facing surface side of the fixed scroll 60 separate from the subport 62 with respect to the center 71a of the oscillating scroll wrap portion 71. It is arranged on the side. Therefore, the compressor 100 can secure a larger seal width δ as compared with the case where the tip seal 82 is configured in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the sub port 62 The diameter can be designed large.
 具体的には、従来通り、チップシール82を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、サブポート62の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。これに対し、圧縮機100は、チップシール82が、第1曲線部82aと、第2曲線部82bと、第3曲線部82cと、の3つの曲線部分を繋ぎ合わせて一体に構成されているため、この制約値以上にサブポート62の径を拡大することが可能である。 Specifically, when the tip seal 82 is disposed at the center 71 a of the tip end face of the swing scroll wrap portion 71 as in the prior art, the diameter of the subport 62 is set to “(wrap portion to satisfy seal width δ> 0 The constraint value must be equal to or less than width / 2) + (tip seal width / 2). On the other hand, in the compressor 100, the tip seal 82 is integrally formed by connecting three curve portions of a first curve portion 82a, a second curve portion 82b, and a third curve portion 82c. Therefore, it is possible to enlarge the diameter of the sub port 62 beyond this restriction value.
 また、サブポート62の代わりにインジェクションポート63を設ける圧縮機100について同様にインジェクションポート63を大きく設計できる。圧縮機100は、チップシール82のインジェクションポート63aと、インジェクションポート63bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、インジェクションポート63から離れる側に配置されている。そのため、圧縮機100は、チップシール82を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、インジェクションポート63の径を大きく設計できる。 Further, the injection port 63 can be designed to be large similarly for the compressor 100 in which the injection port 63 is provided instead of the sub port 62. In the compressor 100, the injection port 63a of the tip seal 82 and the portions approaching the injection port 63b are disposed on the side away from the injection port 63 with respect to the center 71a of the oscillating swirl wrap portion 71, respectively. Therefore, the compressor 100 can secure a large seal width δ as compared with the case where the tip seal 82 is configured in a single involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63. The diameter of can be designed large.
 具体的には、従来通り、チップシール82を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、インジェクションポート63の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。圧縮機100は、チップシール82が、上記構成を有する第1曲線部82aと、第2曲線部82bと、第3曲線部82cと、の3つの曲線部分を繋ぎ合わせて一体に構成されているため、この制約値以上にインジェクションポート63の径を拡大することができる。 Specifically, when the tip seal 82 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”. In the compressor 100, a tip seal 82 is integrally formed by connecting three curve portions of a first curve portion 82a having the above configuration, a second curve portion 82b, and a third curve portion 82c. Therefore, the diameter of the injection port 63 can be expanded beyond the restriction value.
 これにより、圧縮機100は、サブポート62から作動ガスが吐出する際の抵抗が低下し、性能改善が可能である。また、圧縮機100は、サブポート62の代わりにインジェクションポート63が形成されている場合は、注入される液相の作動流体の流量が増え、吐出温度をより効率的に下げることが可能である。 As a result, in the compressor 100, the resistance when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved. Further, in the compressor 100, when the injection port 63 is formed instead of the sub port 62, the flow rate of the liquid phase working fluid to be injected is increased, and the discharge temperature can be lowered more efficiently.
 また、例えば、従来技術のようにチップシールに切り欠きを設けると、切り欠きから隣接する圧縮室間へのガス漏れが発生し、圧縮機の性能が大きく低下する場合がある。さらに、チップシールの切欠部への応力集中により、チップシールの強度が低下する場合がある。圧縮機100は、チップシール82がサブポート62もしくはインジェクションポート63から離れる位置に配置されているものでありチップシール82には切り欠きが設けられていない。そのため、圧縮機100は、圧縮室間でガス漏れが発生することはなく、また、チップシール82の強度が応力集中により低下することもない。 In addition, for example, when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal. In the compressor 100, the tip seal 82 is disposed at a position away from the sub port 62 or the injection port 63, and the tip seal 82 is not provided with a notch. Therefore, in the compressor 100, gas leakage does not occur between the compression chambers, and the strength of the tip seal 82 does not decrease due to stress concentration.
 また、従来の圧縮機は、チップシール80を硬質の樹脂で渦巻型に成形し、かつ揺動スクロール70のチップシール80と固定スクロール60のチップシール80とをそれぞれ揺動渦巻ラップ部71と固定渦巻ラップ部61の先端面の中央71aに配置する。そのため、従来の圧縮機は、揺動スクロール70のチップシール80と、固定スクロール60のチップシール80とを互い違いに取り付けてしまい組立不具合が発生する可能性がある。これに対し圧縮機100は、チップシール82が、上記構成を有する第1曲線部82aと、第2曲線部82bと、第3曲線部82cと、の3つの曲線部分を繋ぎ合わせて一体に構成されている。圧縮機100は、固定スクロール60のチップシール80を従来と同じくインボリュート曲線で形成し、固定渦巻ラップ部61の先端面の中央71aに配置する場合、固定スクロール60のチップシール80と揺動スクロール70のチップシール82の形状が異なる。そのため、圧縮機100は、揺動スクロール70のチップシール82と、固定スクロール60のチップシール80とを互い違いに誤って組立することを防止することができる。 Further, in the conventional compressor, the tip seal 80 is formed into a spiral shape with a hard resin, and the tip seal 80 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 are fixed respectively to the oscillating scroll wrap 71 It is disposed at the center 71 a of the tip end surface of the spiral wrap portion 61. Therefore, in the conventional compressor, the tip seal 80 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 are alternately attached, which may cause an assembly failure. On the other hand, in the compressor 100, the tip seal 82 is integrally formed by connecting three curve portions of the first curve portion 82a, the second curve portion 82b, and the third curve portion 82c having the above configuration. It is done. In the compressor 100, when the tip seal 80 of the fixed scroll 60 is formed by an involute curve as in the conventional case and disposed at the center 71a of the tip surface of the fixed spiral wrap portion 61, the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 The shape of the tip seal 82 is different. Therefore, the compressor 100 can prevent the tip seal 82 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake.
 また、圧縮機100のチップシール82は、複数の曲線同士を滑らかに繋いでいる為、揺動スクロール70において、チップシール82の嵌合用溝を一筆書きで一度に加工可能であり、優れた加工性を確保することができる。 Further, since the tip seal 82 of the compressor 100 smoothly connects a plurality of curves, in the swing scroll 70, the fitting groove of the tip seal 82 can be processed at a time by a single stroke, which is an excellent process It is possible to secure the sex.
実施の形態2.
 図7は、本発明の実施の形態2に係る圧縮機110における揺動スクロール70と固定スクロール60とチップシール83の形状とを示す軸方向断面図である。図1~図6の圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。圧縮機110は、チップシール83の構成が圧縮機100のチップシール82の構成が異なるだけであり、圧縮機110を構成する他の構成は圧縮機100と同じである。
Second Embodiment
FIG. 7 is an axial sectional view showing the shapes of the oscillating scroll 70, the fixed scroll 60, and the tip seal 83 in the compressor 110 according to Embodiment 2 of the present invention. The parts having the same configuration as that of the compressor 100 in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof will be omitted. The compressor 110 is the same as the compressor 100 except that the configuration of the tip seal 83 is different from that of the tip seal 82 of the compressor 100.
 固定スクロール60と揺動スクロール70のラップ先端面には、チップシール83と同形状のチップシール嵌合用溝81が形成されており、このチップシール嵌合用溝81には、チップシール83が嵌合されている。揺動スクロール70のチップシール83は、揺動渦巻ラップ部71の先端に渦巻方向に沿って配置され、対面する固定スクロール60の固定渦巻台板部64と接する。また、固定スクロール60のチップシール83(図示せず)は、固定渦巻ラップ部61の先端に渦巻方向に沿って配置され、対面する揺動スクロール70の揺動渦巻台板部74と接する。チップシール83は、圧縮機110の運転中に、固定渦巻台板部64に押付けられながら摺動することで、揺動渦巻ラップ部71と固定渦巻台板部64の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。または、チップシール83は、圧縮機110の運転中に、揺動渦巻台板部74に押付けられながら摺動することで、固定渦巻ラップ部61と揺動渦巻台板部74の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。サブポート62又はインジェクションポート63は固定スクロール60の固定渦巻台板部64に設けられており、揺動スクロール70のラップ先端面に設けられたチップシール83と接近する。チップシール83のシール性を確保する為に、サブポート62又はインジェクションポート63の直径は、チップシール83を完全に跨がない範囲で設定する必要がある。 A tip seal fitting groove 81 having the same shape as the tip seal 83 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70. The tip seal 83 is fitted in the tip seal fitting groove 81. It is done. The tip seal 83 of the rocking scroll 70 is disposed along the spiral direction at the tip of the rocking scroll wrap portion 71 and contacts the fixed scroll base plate portion 64 of the fixed scroll 60 facing it. Further, a tip seal 83 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip end of the fixed spiral wrap portion 61 and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing. The tip seal 83 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 110 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion The gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas. Alternatively, the tip seal 83 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 110 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed. The gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas. The sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 83 provided on the wrap tip end surface of the oscillating scroll 70. In order to ensure the sealability of the tip seal 83, the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 83 is not completely crossed.
 圧縮機110は、図7に示すように、チップシール83が、異なる曲率を有する複数の曲線で構成されており、第1曲線部83aと、第2曲線部83bと、の2つの曲線部分を繋ぎ合わせて一体に構成されている。チップシール83は、図7において、曲線の境目を明示する為、切れ目がある様に図示しているが、二つの曲線の境目は分断されておらず、チップシール83は切れ目の無い一体物である。すなわち、チップシール83は、異なる曲率を有する複数の曲線が連続して形成されている。チップシール83は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。 In the compressor 110, as shown in FIG. 7, the tip seal 83 is composed of a plurality of curves having different curvatures, and two curve portions of a first curve portion 83a and a second curve portion 83b are It is connected together and is constituted in one. Although the tip seal 83 is illustrated as having a cut in order to clearly show the boundary of the curve in FIG. 7, the boundary of the two curves is not divided, and the tip seal 83 is a single piece without a break. is there. That is, in the tip seal 83, a plurality of curves having different curvatures are continuously formed. With respect to the tip seal 83, the portion approaching the sub port 62 or the injection port 63 is on the side of the end edge 71b on the outer periphery and the side of the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing scroll wrap 71 It is arranged.
 チップシール83は、固定スクロール60の外向面側のサブポート62aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部83aを有する。もしくは、チップシール83は、固定スクロール60の外向面側のインジェクションポート63aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部83aを有する。第1曲線部83aは、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 83 is a first curved portion 83 a where the portion approaching the subport 62 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. Have. Alternatively, in the tip seal 83, the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has a curved portion 83a. The first curve portion 83 a is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 チップシール83は、揺動スクロール70より大きな曲率のインボリュート曲線で構成され、渦巻中央部に近づくに従って、揺動渦巻ラップ部71の内側よりに配置される第2曲線部83bを有する。チップシール83の第2曲線部83bは、固定スクロール60の内向面側のサブポート62bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る。もしくは、チップシール83の第2曲線部83bは、固定スクロール60の内向面側のインジェクションポート63bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る。 The tip seal 83 is formed of an involute curve having a curvature larger than that of the swinging scroll 70, and has a second curve portion 83b disposed closer to the inside of the swinging scroll wrap 71 as it approaches the spiral center. In the second curved portion 83b of the tip seal 83, the portion approaching the sub-port 62b on the inward facing surface side of the fixed scroll 60 is the end edge 71c side of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. Pass through. Alternatively, in the second curved portion 83b of the tip seal 83, the portion approaching the injection port 63b on the inward surface side of the fixed scroll 60 is an edge of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. Pass the part 71c side.
 実施の形態2に係る圧縮機110では、チップシール83が、2つの曲線部分で構成されているが、サブポート62又はインジェクションポート63の数に応じてチップシール83を構成する曲線部分の数を変更すると良いことは言うまでもない。なお、固定スクロール60のチップシール83の形状は、従来通り、固定スクロール60の固定渦巻ラップ部61と同じ曲率のインボリュート曲線で形成され、固定スクロール60の固定渦巻ラップ部61の幅方向において中央71aに配置されていてもよい。 In the compressor 110 according to the second embodiment, the tip seal 83 is formed of two curve portions, but the number of curve portions constituting the tip seal 83 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good. The shape of the tip seal 83 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
 以上のように、圧縮機110のチップシール83は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。すなわち、チップシール83の固定スクロール60の外向面側のサブポート62aと固定スクロール60の内向面側のサブポート62bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、サブポート62から離れる側に配置されている。そのため、圧縮機110は、チップシール83を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、サブポート62の径を大きく設計できる。 As described above, in the tip seal 83 of the compressor 110, the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange | positioned at the edge part 71c side of inner periphery. That is, the sub-ports 62a on the outward facing surface side of the fixed scroll 60 of the tip seal 83 and the sub-ports 62b on the inward facing surface side of the fixed scroll 60 move away from the subport 62 with respect to the center 71a of the oscillating scroll wrap 71, respectively. It is arranged on the side. Therefore, the compressor 110 can secure a larger seal width δ as compared with the case where the tip seal 83 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the sub port 62 The diameter can be designed large.
 具体的には、従来通り、チップシール83を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、サブポート62の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。これに対し、圧縮機110は、チップシール83が、第1曲線部83aと、第2曲線部83bとの2つの曲線部分を繋ぎ合わせて一体に構成されているため、この制約値以上にサブポート62の径を拡大することが可能である。 Specifically, when the tip seal 83 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, the diameter of the subport 62 is set to “(wrap portion to satisfy seal width δ> 0 The constraint value must be equal to or less than width / 2) + (tip seal width / 2). On the other hand, in the compressor 110, since the tip seal 83 is integrally formed by joining the two curved portions of the first curved portion 83a and the second curved portion 83b, the sub port is not less than this restriction value. It is possible to enlarge the diameter of 62.
 また、サブポート62の代わりにインジェクションポート63を設ける圧縮機110について同様にインジェクションポート63を大きく設計できる。圧縮機110は、チップシール83のインジェクションポート63aと、インジェクションポート63bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、インジェクションポート63から離れる側に配置されている。そのため、圧縮機110は、チップシール83を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、インジェクションポート63の径を大きく設計できる。 Further, the injection port 63 can be designed to be large similarly for the compressor 110 in which the injection port 63 is provided instead of the sub port 62. In the compressor 110, the injection port 63 a of the tip seal 83 and the portions approaching the injection port 63 b are disposed on the side away from the injection port 63 with respect to the center 71 a of the oscillating scroll wrap portion 71. Therefore, the compressor 110 can secure a large seal width δ as compared with the case where the tip seal 83 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63. The diameter of can be designed large.
 具体的には、従来通り、チップシール83を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、インジェクションポート63の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。圧縮機110は、チップシール83が、上記構成を有する第1曲線部83aと、第2曲線部83bとの2つの曲線部分を繋ぎ合わせて一体に構成されているため、この制約値以上にインジェクションポート63の径を拡大することができる。 Specifically, when the tip seal 83 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”. In the compressor 110, since the tip seal 83 is integrally formed by connecting two curve portions of the first curve portion 83a having the above configuration and the second curve portion 83b, the injection is performed in excess of this restriction value. The diameter of the port 63 can be enlarged.
 これにより、圧縮機110は、サブポート62から作動ガスが吐出する際の抵抗が低下し、性能改善が可能である。また、圧縮機110は、サブポート62の代わりにインジェクションポート63が形成されている場合は、注入される液相の作動流体の流量が増え、吐出温度をより効率的に下げることが可能である。 As a result, the resistance of the compressor 110 when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved. Further, when the injection port 63 is formed instead of the sub port 62, the compressor 110 can increase the flow rate of the liquid phase working fluid to be injected, and can lower the discharge temperature more efficiently.
 また、例えば、従来技術のようにチップシールに切欠きを設けると、切欠きから隣接する圧縮室間へのガス漏れが発生し、圧縮機の性能が大きく低下する場合がある。さらに、チップシールの切欠部への応力集中により、チップシールの強度が低下する場合がある。圧縮機110は、チップシール83がサブポート62もしくはインジェクションポート63から離れる位置に配置されているものでありチップシール83には切り欠きが設けられていない。そのため、圧縮機110は、圧縮室間でガス漏れが発生することはなく、また、チップシール83の強度が応力集中により低下することもない。 Further, for example, when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal. The compressor 110 is disposed at a position where the tip seal 83 is separated from the sub port 62 or the injection port 63, and the tip seal 83 is not provided with a notch. Therefore, in the compressor 110, gas leakage does not occur between the compression chambers, and the strength of the tip seal 83 does not decrease due to stress concentration.
 また、圧縮機110は、チップシール83が、上記構成を有する第1曲線部83aと、第2曲線部83bの2つの曲線部分を繋ぎ合わせて一体に構成されている。圧縮機110は、固定スクロール60のチップシール80を従来と同じくインボリュート曲線で形成し、固定渦巻ラップ部61の先端面の中央71aに配置する場合、固定スクロール60のチップシール80と揺動スクロール70のチップシール83の形状が異なる。そのため、圧縮機110は、揺動スクロール70のチップシール83と、固定スクロール60のチップシール80とを互い違いに誤って組立することを防止することができる。 Further, in the compressor 110, the tip seal 83 is integrally formed by connecting two curve portions of a first curve portion 83a having the above configuration and a second curve portion 83b. The compressor 110 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the conventional case and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61. The shape of the tip seal 83 is different. Therefore, the compressor 110 can prevent the tip seal 83 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
 また、圧縮機110のチップシール83は、複数の曲線同士を滑らかに繋いでいる為、揺動スクロール70において、チップシール83の嵌合用溝を一筆書きで一度に加工可能であり、優れた加工性を確保することができる。 Further, since the tip seal 83 of the compressor 110 smoothly connects a plurality of curves, in the swing scroll 70, the fitting groove of the tip seal 83 can be processed at a time by one-stroke writing, which is excellent processing It is possible to secure the sex.
 また、圧縮機110は、チップシール83を構成する曲線の数を実施の形態1に係る圧縮機100よりも少なくできる。そのため、圧縮機110は、揺動渦巻ラップ部71の先端面のチップシール83の嵌合用溝を加工する際に、溝を構成する境目が少なくなるので、この境目においてチップシール83の嵌合用溝に段差が生じるなどの加工不具合が起きにくくなる。 Further, the compressor 110 can reduce the number of curves constituting the tip seal 83 as compared with the compressor 100 according to the first embodiment. Therefore, when processing the fitting groove of the tip seal 83 on the front end surface of the swing scroll wrap portion 71, the compressor 110 reduces the boundary forming the groove, and the fitting groove of the tip seal 83 is formed at this boundary. It becomes difficult to cause processing problems such as step differences.
実施の形態3.
 図8は、本発明の実施の形態3に係る圧縮機120における揺動スクロール70と固定スクロール60とチップシール84の形状とを示す軸方向断面図である。図1~図7の圧縮機100及び圧縮機110と同一の構成を有する部位には同一の符号を付してその説明を省略する。圧縮機120は、チップシール84の構成が圧縮機100のチップシール82の構成が異なるだけであり、圧縮機120を構成する他の構成は圧縮機100と同じである。
Third Embodiment
FIG. 8 is an axial sectional view showing the shapes of the oscillating scroll 70, the fixed scroll 60 and the tip seal 84 in the compressor 120 according to Embodiment 3 of the present invention. Parts having the same configurations as those of the compressor 100 and the compressor 110 in FIGS. 1 to 7 are denoted by the same reference numerals, and the description thereof will be omitted. The configuration of the tip seal 84 of the compressor 120 is different from that of the tip seal 82 of the compressor 100, and the other configuration of the compressor 120 is the same as that of the compressor 100.
 固定スクロール60と揺動スクロール70のラップ先端面には、チップシール84と同形状のチップシール嵌合用溝81が形成されており、このチップシール嵌合用溝81には、チップシール84が嵌合されている。揺動スクロール70のチップシール84は、揺動渦巻ラップ部71の先端に渦巻方向に沿って配置され、対面する固定スクロール60の固定渦巻台板部64と接する。また、固定スクロール60のチップシール84(図示せず)は、固定渦巻ラップ部61の先端に渦巻方向に沿って配置され、対面する揺動スクロール70の揺動渦巻台板部74と接する。チップシール84は、圧縮機120の運転中に、固定渦巻台板部64に押付けられながら摺動することで、揺動渦巻ラップ部71と固定渦巻台板部64の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。または、チップシール84は、圧縮機120の運転中に、揺動渦巻台板部74に押付けられながら摺動することで、固定渦巻ラップ部61と揺動渦巻台板部74の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。サブポート62又はインジェクションポート63は固定スクロール60の固定渦巻台板部64に設けられており、揺動スクロール70のラップ先端面に設けられたチップシール84と接近する。チップシール84のシール性を確保する為に、サブポート62又はインジェクションポート63の直径は、チップシール84を完全に跨がない範囲で設定する必要がある。 A tip seal fitting groove 81 having the same shape as the tip seal 84 is formed on the wrap tip end surface of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 84 is fitted in the tip seal fitting groove 81. It is done. The tip seal 84 of the oscillating scroll 70 is disposed along the spiral direction at the tip of the oscillating scroll wrap 71 and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it. Further, a tip seal 84 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip end of the fixed spiral wrap portion 61 and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it. The tip seal 84 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 120 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion The gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas. Alternatively, the tip seal 84 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 120 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed. The gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas. The sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 84 provided on the wrap tip end surface of the oscillating scroll 70. In order to ensure the sealability of the tip seal 84, the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 84 is not completely crossed.
 圧縮機120は、図8に示すように、チップシール84が、異なる曲率を有する複数の曲線で構成されており、第1曲線部84aと、第2曲線部84bと、第3曲線部84cと、第4曲線部84dと、第5曲線部84eとを有する。圧縮機120は、図8に示すように、チップシール84が、第1曲線部84aと、第2曲線部84bと、第3曲線部84cと、第4曲線部84dと、第5曲線部84eとの5つの曲線部分を繋ぎ合わせて一体に構成されている。チップシール84は、図8において、曲線の境目を明示する為、切れ目がある様に図示しているが、5つの曲線の境目は分断されておらず、チップシール84は切れ目の無い一体物である。すなわち、チップシール84は、異なる曲率を有する複数の曲線が連続して形成されている。 In the compressor 120, as shown in FIG. 8, the tip seal 84 is composed of a plurality of curves having different curvatures, and a first curve portion 84a, a second curve portion 84b, and a third curve portion 84c. , And a fourth curved portion 84d and a fifth curved portion 84e. In the compressor 120, as shown in FIG. 8, the tip seal 84 has a first curved portion 84a, a second curved portion 84b, a third curved portion 84c, a fourth curved portion 84d, and a fifth curved portion 84e. The five curve parts of are connected together to form an integral unit. Although the tip seal 84 is illustrated as having a cut in order to clearly show the boundary of the curve in FIG. 8, the boundary of the five curves is not divided, and the tip seal 84 is a single piece without a break. is there. That is, in the tip seal 84, a plurality of curves having different curvatures are continuously formed.
 チップシール84は、固定スクロール60の外向面側のサブポート62aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部84aを有する。もしくは、チップシール84は、固定スクロール60の外向面側のインジェクションポート63aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部84aを有する。第1曲線部84aは、例えば、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 84 is a first curved portion 84 a where the portion approaching the subport 62 a on the outward surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing scroll wrap portion 71. Have. Alternatively, in the tip seal 84, the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b on the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has a curved portion 84a. The first curve portion 84 a is formed of, for example, an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 チップシール84は、固定スクロール60の内向面側のサブポート62bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る第2曲線部84bを有する。もしくは、チップシール84は、固定スクロール60の内向面側のインジェクションポート63bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る第2曲線部84bを有する。第2曲線部84bは、例えば、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 84 has a second curved portion in which a portion approaching the subport 62b on the inward facing surface side of the fixed scroll 60 passes through the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 84b. Alternatively, in the tip seal 84, the portion approaching the injection port 63b on the inward facing surface side of the fixed scroll 60 passes through the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap 71 It has a two-curved portion 84b. The second curve portion 84 b is formed of, for example, an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 第1曲線部84aと第2曲線部84bとの境目は、たとえば、揺動スクロール70よりも大きな曲率のインボリュート曲線等、滑らかな曲線に形成された第3曲線部84cで繋ぎ合わされている。チップシール84の第4曲線部84dは、隣接する曲線である第1曲線部84aと第5曲線部84eとの端部を揺動スクロール70よりピッチの小さいインボリュート曲線などを用いて滑らかに繋いでいる。チップシール84の第5曲線部84eは、揺動渦巻ラップ部71の中央を通るインボリュート曲線で形成される。 The boundary between the first curve portion 84a and the second curve portion 84b is joined together by a third curve portion 84c formed into a smooth curve, such as an involute curve having a curvature larger than that of the oscillating scroll 70, for example. The fourth curve portion 84d of the tip seal 84 connects the end portions of the first curve portion 84a and the fifth curve portion 84e, which are adjacent curves, smoothly using an involute curve or the like having a smaller pitch than the swing scroll 70. There is. The fifth curved portion 84 e of the tip seal 84 is formed by an involute curve passing through the center of the swinging spiral wrap portion 71.
 実施の形態3に係る圧縮機120では、チップシール84が、5つの曲線部分で構成されているが、サブポート62又はインジェクションポート63の数に応じてチップシール84を構成する曲線部分の数を変更すると良いことは言うまでもない。なお、固定スクロール60のチップシール84の形状は、従来通り、固定スクロール60の固定渦巻ラップ部61と同じ曲率のインボリュート曲線で形成され、固定スクロール60の固定渦巻ラップ部61の幅方向において中央71aに配置されていてもよい。 In the compressor 120 according to the third embodiment, the tip seal 84 is formed of five curve portions, but the number of curve portions constituting the tip seal 84 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good. The shape of the tip seal 84 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
 以上のように、圧縮機120のチップシール84は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。すなわち、チップシール84の固定スクロール60の外向面側のサブポート62aと固定スクロール60の内向面側のサブポート62bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、サブポート62から離れる側に配置されている。そのため、圧縮機120は、チップシール84を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、サブポート62の径を大きく設計できる。 As described above, in the tip seal 84 of the compressor 120, the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange | positioned at the edge part 71c side of inner periphery. That is, the sub-ports 62a on the outward facing surface side of the fixed scroll 60 of the tip seal 84 and the sub-ports 62b on the inward facing surface side of the fixed scroll 60 are separated from the subport 62 with respect to the center 71a of the oscillating scroll wrap 71, respectively. It is arranged on the side. Therefore, the compressor 120 can secure a larger seal width δ as compared with the case where the tip seal 84 is configured in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the sub port 62 The diameter can be designed large.
 具体的には、従来通り、チップシール84を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、サブポート62の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。これに対し、圧縮機120は、チップシール84が、第1曲線部84aと、第2曲線部84bと、第3曲線部84cと、第4曲線部84dと、第5曲線部84eの5つの曲線部分を繋ぎ合わせて一体に構成されている。そのため、圧縮機120は、この制約値以上にサブポート62の径を拡大することが可能である。 Specifically, when the tip seal 84 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the conventional case, the diameter of the subport 62 is set to “(wrap portion to satisfy seal width δ> 0 The constraint value must be equal to or less than width / 2) + (tip seal width / 2). On the other hand, in the compressor 120, the tip seal 84 has five of the first curved portion 84a, the second curved portion 84b, the third curved portion 84c, the fourth curved portion 84d, and the fifth curved portion 84e. The curved portions are connected together to form an integral unit. Therefore, the compressor 120 can enlarge the diameter of the sub port 62 more than this restriction value.
 また、サブポート62の代わりにインジェクションポート63を設ける圧縮機120について同様にインジェクションポート63を大きく設計できる。圧縮機120は、チップシール84のインジェクションポート63aと、インジェクションポート63bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、インジェクションポート63から離れる側に配置されている。そのため、圧縮機120は、チップシール84を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、インジェクションポート63の径を大きく設計できる。 Further, the injection port 63 can be designed to be large similarly for the compressor 120 in which the injection port 63 is provided instead of the sub port 62. The compressor 120 is disposed on the side of the tip seal 84 where the injection port 63 a and the injection port 63 b approach each other with respect to the center 71 a of the swing scroll wrap portion 71 away from the injection port 63. Therefore, the compressor 120 can secure a large seal width δ as compared with the case where the tip seal 84 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63 The diameter of can be designed large.
 具体的には、従来通り、チップシール84を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、インジェクションポート63の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。圧縮機120は、チップシール84が、上記構成を有する第1曲線部84aと、第2曲線部84bと、第3曲線部84cと、第4曲線部84dと、第5曲線部84eの5つの曲線部分を繋ぎ合わせて一体に構成されている。そのため、圧縮機120は、この制約値以上にインジェクションポート63の径を拡大することができる。 Specifically, when the tip seal 84 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, in order to satisfy the seal width δ> 0, the diameter of the injection port 63 The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”. In the compressor 120, the tip seal 84 has five components, a first curve portion 84a having the above configuration, a second curve portion 84b, a third curve portion 84c, a fourth curve portion 84d, and a fifth curve portion 84e. The curved portions are connected together to form an integral unit. Therefore, the compressor 120 can enlarge the diameter of the injection port 63 more than this restriction value.
 これにより、圧縮機120は、サブポート62から作動ガスが吐出する際の抵抗が低下し、性能改善が可能である。また、圧縮機120は、サブポート62の代わりにインジェクションポート63が形成されている場合は、注入される液相の作動流体の流量が増え、吐出温度をより効率的に下げることが可能である。 As a result, the resistance of the compressor 120 when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved. Further, in the compressor 120, when the injection port 63 is formed instead of the sub port 62, the flow rate of the liquid phase working fluid to be injected is increased, and the discharge temperature can be lowered more efficiently.
 また、例えば、従来技術のようにチップシールに切欠きを設けると、切欠きから隣接する圧縮室間へのガス漏れが発生し、圧縮機の性能が大きく低下する場合がある。さらに、チップシールの切欠部への応力集中により、チップシールの強度が低下する場合がある。圧縮機120は、チップシール84がサブポート62もしくはインジェクションポート63から離れる位置に配置されているものでありチップシール84には切り欠きが設けられていない。そのため、圧縮機120は、圧縮室間でガス漏れが発生することはなく、また、チップシール84の強度が応力集中により低下することもない。 Further, for example, when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal. The compressor 120 is disposed at a position where the tip seal 84 is separated from the sub port 62 or the injection port 63, and the tip seal 84 is not provided with a notch. Therefore, in the compressor 120, gas leakage does not occur between the compression chambers, and the strength of the tip seal 84 is not reduced due to stress concentration.
 また、圧縮機120は、チップシール84が、上記構成を有する第1曲線部84aと、第2曲線部84bと、第3曲線部84cと、第4曲線部84dと、第5曲線部84eの5つの曲線部分を繋ぎ合わせて一体に構成されている。圧縮機120は、固定スクロール60のチップシール80を従来と同じくインボリュート曲線で形成し、固定渦巻ラップ部61の先端面の中央71aに配置する場合、固定スクロール60のチップシール80と揺動スクロール70のチップシール84の形状が異なる。そのため、圧縮機120は、揺動スクロール70のチップシール84と、固定スクロール60のチップシール80とを互い違いに誤って組立することを防止することができる。 In the compressor 120, the tip seal 84 includes the first curved portion 84a, the second curved portion 84b, the third curved portion 84c, the fourth curved portion 84d, and the fifth curved portion 84e having the above configuration. The five curve parts are connected together and configured integrally. The compressor 120 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the prior art and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61. The shape of the tip seal 84 is different. Therefore, the compressor 120 can prevent the tip seal 84 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
 また、圧縮機120のチップシール84は、複数の曲線同士を滑らかに繋いでいる為、揺動スクロール70において、チップシール84の嵌合用溝を一筆書きで一度に加工可能であり、優れた加工性を確保することができる。 Further, since the tip seal 84 of the compressor 120 smoothly connects a plurality of curves, in the swing scroll 70, the fitting groove of the tip seal 84 can be processed at a time by one-stroke writing, which is excellent processing It is possible to secure the sex.
 なお、一般に、渦巻ラップ先端面において、チップシールが嵌合されていない部分は、隣接する圧縮室間の漏れ流路となる。チップシールをラップ先端面の中央からずらして配置すると、チップシールの内側と外側との漏れ流量が異なる為、対称な位置にある二つの圧縮室において圧力のアンバランスが発生する。この圧力のアンバランスにより渦巻を自転させる力が発生する為、渦巻やオルダムリング41の信頼性に影響がある場合がある。これに対し、圧縮機120は、チップシール84において、固定スクロール60の外向面側のサブポート62aと接近する第1曲線部84aより渦巻きの外側に位置する第4曲線部84d及び第5曲線部84eが揺動渦巻ラップ部71の中央71aに配置されている。そのため、圧縮機120は、揺動渦巻ラップ部71に形成されたチップシール84の嵌合用溝の両サイドの幅が均等である為、対称な圧縮室の漏れ量が均等になり、揺動スクロール70の動きが安定し、高い信頼性が得られる。 Generally, in the end face of the spiral wrap, a portion where the tip seal is not fitted is a leak flow path between adjacent compression chambers. If the tip seal is offset from the center of the tip end face of the wrap, pressure leakage will occur in the two compression chambers in symmetrical positions due to different leak flow rates between the inside and the outside of the tip seal. The unbalance of pressure generates a force to rotate the spiral, which may affect the reliability of the spiral and the Oldham ring 41. On the other hand, in the tip seal 84 of the compressor 120, the fourth curve portion 84d and the fifth curve portion 84e located on the outer side of the first curve portion 84a approaching the subport 62a of the fixed scroll 60 on the outward surface side. Are disposed at the center 71 a of the swing scroll wrap 71. Therefore, in the compressor 120, since the width of both sides of the fitting groove of the tip seal 84 formed in the swinging scroll wrap portion 71 is equal, the leakage amount of the symmetrical compression chamber becomes uniform, and the swinging scroll 70 movements are stable and high reliability can be obtained.
実施の形態4.
 図9は、本発明の実施の形態4に係る圧縮機130における揺動スクロール70と固定スクロール60とチップシール85の形状とを示す軸方向断面図である。図1~図8の圧縮機100、圧縮機110、圧縮機120と同一の構成を有する部位には同一の符号を付してその説明を省略する。圧縮機130は、チップシール85の構成が圧縮機100のチップシール82の構成が異なるだけであり、圧縮機130を構成する他の構成は圧縮機100と同じである。
Fourth Embodiment
FIG. 9 is an axial sectional view showing the shapes of the orbiting scroll 70, the fixed scroll 60, and the tip seal 85 in the compressor 130 according to Embodiment 4 of the present invention. The parts having the same configuration as the compressor 100, the compressor 110, and the compressor 120 in FIGS. 1 to 8 are denoted by the same reference numerals, and the description thereof will be omitted. The configuration of the tip seal 85 of the compressor 130 is different from that of the tip seal 82 of the compressor 100, and the other configuration of the compressor 130 is the same as that of the compressor 100.
 固定スクロール60と揺動スクロール70のラップ先端面には、チップシール85と同形状のチップシール嵌合用溝81が形成されており、このチップシール嵌合用溝81には、チップシール85が嵌合されている。揺動スクロール70のチップシール85は、揺動渦巻ラップ部71の先端に渦巻方向に沿って配置され、対面する固定スクロール60の固定渦巻台板部64と接する。また、固定スクロール60のチップシール85(図示せず)は、固定渦巻ラップ部61の先端に渦巻方向に沿って配置され、対面する揺動スクロール70の揺動渦巻台板部74と接する。チップシール85は、圧縮機130の運転中に、固定渦巻台板部64に押付けられながら摺動することで、揺動渦巻ラップ部71と固定渦巻台板部64の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。または、チップシール85は、圧縮機130の運転中に、揺動渦巻台板部74に押付けられながら摺動することで、固定渦巻ラップ部61と揺動渦巻台板部74の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。サブポート62又はインジェクションポート63は固定スクロール60の固定渦巻台板部64に設けられており、揺動スクロール70のラップ先端面に設けられたチップシール85と接近する。チップシール85のシール性を確保する為に、サブポート62又はインジェクションポート63の直径は、チップシール85を完全に跨がない範囲で設定する必要がある。 A tip seal fitting groove 81 having the same shape as the tip seal 85 is formed on the wrap tip end face of the fixed scroll 60 and the oscillating scroll 70, and the tip seal 85 is fitted in the tip seal fitting groove 81. It is done. The tip seal 85 of the rocking scroll 70 is disposed along the spiral direction at the tip of the rocking scroll wrap 71 and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it. Further, a tip seal 85 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61, and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing it. The tip seal 85 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 130 is in operation, so that the gap between the oscillating scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion The gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas. Alternatively, the tip seal 85 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 130 is in operation, so that the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 is fixed. The gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas. The sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 85 provided on the wrap tip end surface of the oscillating scroll 70. In order to ensure the sealability of the tip seal 85, the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 85 is not completely crossed.
 図9に示すように、チップシール85は、異なる曲率を有する複数の曲線で構成されており、第1曲線部85aと、第2曲線部85bと、の2つの曲線部分を有して構成されている。チップシール85は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。チップシール85は、第1曲線部85aと第2曲線部85bとが分割構造された構造で形成されている。すなわち、チップシール85は、異なる曲率を有する複数の曲線毎に分割して構成されている。チップシール85は、第1曲線部85aと第2曲線部85bとが渦巻曲線方向に重なり合わせても良いし、わずかに隙間を設けて配置されても良い。 As shown in FIG. 9, the tip seal 85 is composed of a plurality of curves having different curvatures, and is configured to have two curve portions of a first curve portion 85a and a second curve portion 85b. ing. With respect to the tip seal 85, the portion approaching the sub port 62 or the injection port 63 is on the side of the end edge 71b of the outer periphery and the side of the end edge 71c of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It is arranged. The tip seal 85 is formed in a structure in which a first curved portion 85 a and a second curved portion 85 b are divided. That is, the tip seal 85 is configured to be divided into a plurality of curves having different curvatures. In the tip seal 85, the first curve portion 85a and the second curve portion 85b may overlap in the spiral curve direction, or may be disposed with a slight gap.
 チップシール85は、固定スクロール60の外向面側のサブポート62aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部85aを有する。もしくは、チップシール85は、固定スクロール60の外向面側のインジェクションポート63aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通る第1曲線部85aを有する。第1曲線部85aは、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 85 is a first curved portion 85 a where the portion approaching the subport 62 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. Have. Alternatively, the tip seal 85 may be configured such that the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has a curved portion 85a. The first curve portion 85 a is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 チップシール85は、固定スクロール60の内向面側のサブポート62bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る第2曲線部85bを有する。もしくは、チップシール85は、固定スクロール60の内向面側のインジェクションポート63bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通る第2曲線部85bを有する。第2曲線部85bは、揺動スクロール70の揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で構成されている。 The tip seal 85 is a second curved portion in which the portion approaching the subport 62b on the inward facing surface side of the fixed scroll 60 passes the end edge 71c side of the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has 85b. Alternatively, in the tip seal 85, the portion approaching the injection port 63b on the inward facing surface side of the fixed scroll 60 passes through the end edge 71c on the inner periphery with respect to the center 71a in the width direction of the swing spiral wrap portion 71. It has a two-curved portion 85b. The second curve portion 85 b is formed of an involute curve having the same curvature as the swing spiral wrap portion 71 of the swing scroll 70.
 実施の形態4に係る圧縮機130では、チップシール85が、2つの曲線部分で構成されているが、サブポート62又はインジェクションポート63の数に応じてチップシール85を構成する曲線部分の数を変更すると良いことは言うまでもない。なお、固定スクロール60のチップシール85の形状は、従来通り、固定スクロール60の固定渦巻ラップ部61と同じ曲率のインボリュート曲線で形成され、固定スクロール60の固定渦巻ラップ部61の幅方向において中央71aに配置されていてもよい。 In the compressor 130 according to the fourth embodiment, the tip seal 85 is formed of two curved portions, but the number of curved portions constituting the tip seal 85 is changed according to the number of sub ports 62 or injection ports 63. Needless to say, it is good. The shape of the tip seal 85 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
 以上のように、圧縮機130のチップシール85は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。すなわち、チップシール85の固定スクロール60の外向面側のサブポート62aと固定スクロール60の内向面側のサブポート62bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、サブポート62から離れる側に配置されている。そのため、圧縮機130は、チップシール85を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、サブポート62の径を大きく設計できる。 As described above, in the tip seal 85 of the compressor 130, the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It is arrange | positioned at the edge part 71c side of inner periphery. That is, the sub-ports 62a on the outward facing surface side of the fixed scroll 60 of the tip seal 85 and the sub-ports 62b on the inward facing surface side of the fixed scroll 60 are separated from the subport 62 with respect to the center 71a of the oscillating scroll wrap 71, respectively. It is arranged on the side. Therefore, the compressor 130 can secure a larger seal width δ as compared with the case where the tip seal 85 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the subport 62 The diameter can be designed large.
 具体的には、従来通り、チップシール85を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、サブポート62の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。これに対し、圧縮機130は、チップシール85が、第1曲線部85aと、第2曲線部85bの2つの曲線部分を有して構成されている。そのため、圧縮機130は、この制約値以上にサブポート62の径を拡大することが可能である。 Specifically, when the tip seal 85 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, the diameter of the subport 62 is set to “(wrap portion to satisfy seal width δ> 0 The constraint value must be equal to or less than width / 2) + (tip seal width / 2). On the other hand, in the compressor 130, the tip seal 85 is configured to have two curved portions of a first curved portion 85a and a second curved portion 85b. Therefore, the compressor 130 can enlarge the diameter of the subport 62 more than this restriction value.
 また、サブポート62の代わりにインジェクションポート63を設ける圧縮機130について同様にインジェクションポート63を大きく設計できる。圧縮機130は、チップシール85のインジェクションポート63aと、インジェクションポート63bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、インジェクションポート63から離れる側に配置されている。そのため、圧縮機130は、チップシール85を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、インジェクションポート63の径を大きく設計できる。 Further, the injection port 63 can be designed to be large similarly for the compressor 130 in which the injection port 63 is provided instead of the sub port 62. In the compressor 130, the injection port 63 a of the tip seal 85 and the portions approaching the injection port 63 b are disposed on the side away from the injection port 63 with respect to the center 71 a of the oscillating scroll wrap portion 71. Therefore, the compressor 130 can secure a large seal width δ as compared with the case where the tip seal 85 is configured in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63 The diameter of can be designed large.
 具体的には、従来通り、チップシール85を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、インジェクションポート63の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。圧縮機130は、チップシール85が、上記構成を有する第1曲線部85aと、第2曲線部85bの2つの曲線部分を有して構成されている。そのため、圧縮機130は、この制約値以上にインジェクションポート63の径を拡大することができる。 Specifically, when the tip seal 85 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the prior art, the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”. The compressor 130 is configured such that the tip seal 85 includes two curved portions, a first curved portion 85a having the above configuration and a second curved portion 85b. Therefore, the compressor 130 can enlarge the diameter of the injection port 63 more than this restriction value.
 これにより、圧縮機130は、サブポート62から作動ガスが吐出する際の抵抗が低下し、性能改善が可能である。また、圧縮機130は、サブポート62の代わりにインジェクションポート63が形成されている場合は、注入される液相の作動流体の流量が増え、吐出温度をより効率的に下げることが可能である。 Thereby, the resistance at the time of discharge of the working gas from the sub port 62 is reduced, and the performance of the compressor 130 can be improved. Further, when the injection port 63 is formed instead of the sub port 62, the compressor 130 can increase the flow rate of the liquid phase working fluid to be injected, and can lower the discharge temperature more efficiently.
 また、例えば、従来技術のようにチップシールに切欠きを設けると、切欠きから隣接する圧縮室間へのガス漏れが発生し、圧縮機の性能が大きく低下する場合がある。さらに、チップシールの切欠部への応力集中により、チップシールの強度が低下する場合がある。圧縮機130は、チップシール85がサブポート62もしくはインジェクションポート63から離れる位置に配置されているものでありチップシール85には切り欠きが設けられていない。そのため、圧縮機130は、圧縮室間でガス漏れが発生することはなく、また、チップシール85の強度が応力集中により低下することもない。 Further, for example, when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal. The compressor 130 is disposed at a position where the tip seal 85 is separated from the sub port 62 or the injection port 63, and the tip seal 85 is not provided with a notch. Therefore, in the compressor 130, gas leakage does not occur between the compression chambers, and the strength of the tip seal 85 does not decrease due to stress concentration.
 また、圧縮機130は、チップシール85が、上記構成を有する第1曲線部85aと、第2曲線部85bの2つの曲線部分を有して構成されている。圧縮機130は、固定スクロール60のチップシール80を従来と同じくインボリュート曲線で形成し、固定渦巻ラップ部61の先端面の中央71aに配置する場合、固定スクロール60のチップシール80と揺動スクロール70のチップシール85の形状が異なる。そのため、圧縮機130は、揺動スクロール70のチップシール85と、固定スクロール60のチップシール80とを互い違いに誤って組立することを防止することができる。 Further, in the compressor 130, the tip seal 85 is configured to have two curve portions of a first curve portion 85a having the above configuration and a second curve portion 85b. The compressor 130 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the prior art and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61. The shape of the tip seal 85 is different. Therefore, the compressor 130 can prevent the tip seal 85 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
 実施の形態4に係る圧縮機130よると、揺動渦巻ラップ部71に設けられたチップシール85の嵌合用溝に異なる曲線の繋ぎ目が存在しない為、加工が容易である。そのため、圧縮機130は、チップシール85の嵌合用溝の曲線の境目に段差が生じる等の製造不具合が発生しない。また、圧縮機130は、チップシール85用の金型の製作も容易である。 According to the compressor 130 according to the fourth embodiment, since there is no joint of different curve in the fitting groove of the tip seal 85 provided in the swinging scroll wrap portion 71, the processing is easy. Therefore, in the compressor 130, a manufacturing defect such as a level difference at the boundary of the curve of the fitting groove of the tip seal 85 does not occur. In addition, the compressor 130 facilitates the production of a die for the tip seal 85.
実施の形態5.
 図10は、本発明の実施の形態5に係る圧縮機140における揺動スクロール70と固定スクロール60とチップシール86の形状とを示す軸方向断面図である。図1~図9の圧縮機100、圧縮機110、圧縮機120、圧縮機130と同一の構成を有する部位には同一の符号を付してその説明を省略する。圧縮機140は、チップシール86の構成が圧縮機100のチップシール82の構成が異なるだけであり、圧縮機140を構成する他の構成は圧縮機100と同じである。
Embodiment 5
FIG. 10 is an axial sectional view showing the shapes of the orbiting scroll 70, the fixed scroll 60 and the tip seal 86 in the compressor 140 according to Embodiment 5 of the present invention. Parts having the same configurations as those of the compressor 100, the compressor 110, the compressor 120, and the compressor 130 in FIGS. 1 to 9 are denoted by the same reference numerals, and the description thereof will be omitted. The compressor 140 is the same as the compressor 100 except that the configuration of the tip seal 86 is different from that of the tip seal 82 of the compressor 100.
 固定スクロール60と揺動スクロール70のラップ先端面には、チップシール86と同形状のチップシール嵌合用溝81が形成されており、このチップシール嵌合用溝81には、チップシール86が嵌合されている。揺動スクロール70のチップシール86は、揺動渦巻ラップ部71の先端に渦巻方向に沿って配置され、対面する固定スクロール60の固定渦巻台板部64と接する。また、固定スクロール60のチップシール86(図示せず)は、固定渦巻ラップ部61の先端に渦巻方向に沿って配置され、対面する揺動スクロール70の揺動渦巻台板部74と接する。チップシール86は、圧縮機140の運転中に、固定渦巻台板部64に押付けられながら摺動することで、揺動渦巻ラップ部71と固定渦巻台板部64の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。または、チップシール86は、圧縮機140の運転中に、揺動渦巻台板部74に押付けられながら摺動することで、固定渦巻ラップ部61と揺動渦巻台板部74の隙間、及び固定渦巻ラップ部61と揺動渦巻ラップ部71の隙間を埋め、作動ガスの漏れを防止する。サブポート62又はインジェクションポート63は固定スクロール60の固定渦巻台板部64に設けられており、揺動スクロール70のラップ先端面に設けられたチップシール86と接近する。チップシール86のシール性を確保する為に、サブポート62又はインジェクションポート63の直径は、チップシール86を完全に跨がない範囲で設定する必要がある。 A tip seal fitting groove 81 having the same shape as the tip seal 86 is formed on the wrap tip end surface of the fixed scroll 60 and the oscillating scroll 70. The tip seal 86 is fitted in the tip seal fitting groove 81. It is done. The tip seal 86 of the rocking scroll 70 is disposed at the tip of the rocking scroll wrap 71 along the spiral direction, and contacts the fixed scroll base plate 64 of the fixed scroll 60 facing it. Further, a tip seal 86 (not shown) of the fixed scroll 60 is disposed along the spiral direction at the tip of the fixed spiral wrap portion 61 and contacts the swing scroll base plate portion 74 of the swing scroll 70 facing. The tip seal 86 slides while being pressed against the stationary scroll base plate portion 64 while the compressor 140 is in operation, so that the gap between the swinging scroll wrap portion 71 and the stationary scroll base plate portion 64 and the stationary scroll wrap portion The gap between the upper portion 61 and the swinging swirl wrap portion 71 is filled to prevent the leakage of the working gas. Alternatively, the tip seal 86 slides while being pressed against the swing scroll bed plate portion 74 while the compressor 140 is in operation, whereby the gap between the fixed scroll wrap portion 61 and the swing scroll bed plate portion 74 and the fixing are fixed. The gap between the spiral wrap portion 61 and the swing spiral wrap portion 71 is filled to prevent the leakage of the working gas. The sub port 62 or the injection port 63 is provided on the fixed scroll base plate portion 64 of the fixed scroll 60 and approaches a tip seal 86 provided on the wrap tip end surface of the oscillating scroll 70. In order to ensure the sealability of the tip seal 86, the diameter of the sub port 62 or the injection port 63 needs to be set within a range in which the tip seal 86 is not completely crossed.
 圧縮機140は、揺動スクロール70のチップシール86が、異なる曲率を有する複数の曲線で構成されており、インボリュート部86aとR部86bとを有して構成されている。チップシール86は、異なる曲率を有する複数の曲線が連続して形成されている。チップシール86のR部86bは、サブポート62又はインジェクションポート63と接近する箇所に配置されており、サブポート62又はインジェクションポート63を避けるように湾曲して円弧形状に形成されている。チップシール86は、R部86b以外の部分がインボリュート部86aで構成されている。インボリュート部86aは、揺動スクロール70のラップ先端面に配置され、揺動渦巻ラップ部71の幅方向において中央71aを通り揺動渦巻ラップ部71と同じ曲率のインボリュート曲線で形成されている。なお、R部86bの幅は、インボリュート部86aの幅と同じであるが、異なっていてもよい。 In the compressor 140, the tip seal 86 of the oscillating scroll 70 is formed of a plurality of curves having different curvatures, and is configured to have an involute portion 86a and an R portion 86b. The tip seal 86 is formed by continuously forming a plurality of curves having different curvatures. The R portion 86 b of the tip seal 86 is disposed at a position approaching the sub port 62 or the injection port 63, and is formed in a curved arc shape so as to avoid the sub port 62 or the injection port 63. The tip seal 86 is configured such that the portion other than the R portion 86 b is an involute portion 86 a. The involute portion 86 a is disposed on the wrap tip end surface of the oscillating scroll 70 and is formed of an involute curve having the same curvature as that of the oscillating scroll wrap portion 71 through the center 71 a in the width direction of the oscillating scroll wrap portion 71. The width of the R portion 86b is the same as the width of the involute portion 86a, but may be different.
 チップシール86は、固定スクロール60の外向面側のサブポート62aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通るR部86b1を有する。もしくは、チップシール86は、固定スクロール60の外向面側のインジェクションポート63aと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して外周の端縁部71b側を通るR部86b1を有する。 The tip seal 86 has an R portion 86 b 1 where the portion approaching the subport 62 a on the outward facing surface side of the fixed scroll 60 passes the side of the end edge 71 b of the outer periphery with respect to the center 71 a in the width direction of the swing scroll wrap 71 . Alternatively, the tip seal 86 has a portion where the portion approaching the injection port 63 a on the outward facing surface side of the fixed scroll 60 passes the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap portion 71. It has 86b1.
 チップシール86は、固定スクロール60の内向面側のサブポート62bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通るR部86b2を有する。もしくは、チップシール86は、固定スクロール60の内向面側のインジェクションポート63bと接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して内周の端縁部71c側を通るR部86b2を有する。 In the tip seal 86, the R portion 86b2 passes through the end portion 71c on the inner circumferential side with respect to the center 71a in the width direction of the swing scroll wrap portion 71 at a location where the tip seal 86 approaches the subport 62b on the inward facing side Have. Alternatively, the tip seal 86 has a location where an injection port 63 b on the inward surface side of the fixed scroll 60 approaches the end edge 71 c on the inner periphery with respect to the center 71 a in the width direction of the swing scroll wrap 71 It has a portion 86b2.
 実施の形態5に係る圧縮機140では、チップシール86が、2つのR部86bを有しているが、サブポート62又はインジェクションポート63の数に応じてチップシール86を構成するR部86bの数を変更すると良いことは言うまでもない。なお、固定スクロール60のチップシール86の形状は、従来通り、固定スクロール60の固定渦巻ラップ部61と同じ曲率のインボリュート曲線で形成され、固定スクロール60の固定渦巻ラップ部61の幅方向において中央71aに配置されていてもよい。 In the compressor 140 according to the fifth embodiment, the tip seal 86 includes two R portions 86 b, but the number of R portions 86 b constituting the tip seal 86 according to the number of sub ports 62 or injection ports 63. It goes without saying that it is good to change. The shape of the tip seal 86 of the fixed scroll 60 is formed by an involute curve having the same curvature as that of the fixed scroll wrap portion 61 of the fixed scroll 60 as before, and the center 71 a in the width direction of the fixed scroll wrap portion 61 of the fixed scroll 60 It may be arranged in
 以上のように、圧縮機140のチップシール86は、サブポート62もしくはインジェクションポート63と接近する箇所が、揺動渦巻ラップ部71の幅方向の中央71aに対して、外周の端縁部71b側及び内周の端縁部71c側に配置されている。すなわち、チップシール86の固定スクロール60の外向面側のサブポート62aと固定スクロール60の内向面側のサブポート62bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、サブポート62から離れる側に配置されている。そのため、圧縮機140は、チップシール86を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、サブポート62の径を大きく設計できる。 As described above, in the tip seal 86 of the compressor 140, the portion approaching the sub port 62 or the injection port 63 is the end edge 71 b side of the outer periphery with respect to the center 71 a in the width direction of the swing spiral wrap 71 It is arrange | positioned at the edge part 71c side of inner periphery. That is, portions of the tip seal 86 closer to the subport 62a on the outward facing surface side of the fixed scroll 60 and the subport 62b on the inward facing surface side of the fixed scroll 60 separate from the subport 62 with respect to the center 71a of the oscillating scroll wrap portion 71. It is arranged on the side. Therefore, the compressor 140 can secure a larger seal width δ as compared with the case where the tip seal 86 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the subport 62 The diameter can be designed large.
 具体的には、従来通り、チップシール86を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、サブポート62の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。これに対し、圧縮機140は、チップシール86が、サブポート62又はインジェクションポート63を避けるように湾曲して円弧形状に形成されたR部86bと、インボリュート部86aとを有して構成されている。そのため、圧縮機140は、この制約値以上にサブポート62の径を拡大することが可能である。 Specifically, when the tip seal 86 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the conventional case, the diameter of the subport 62 is set to “(wrap portion to satisfy seal width δ> 0 The constraint value must be equal to or less than width / 2) + (tip seal width / 2). On the other hand, in the compressor 140, the tip seal 86 is configured to include an R portion 86b curved in an arc shape so as to avoid the sub port 62 or the injection port 63, and an involute portion 86a. . Therefore, the compressor 140 can enlarge the diameter of the sub port 62 more than this restriction value.
 また、サブポート62の代わりにインジェクションポート63を設ける圧縮機140について同様にインジェクションポート63を大きく設計できる。圧縮機140は、チップシール86のインジェクションポート63aと、インジェクションポート63bと接近する箇所がそれぞれ、揺動渦巻ラップ部71の中央71aに対し、インジェクションポート63から離れる側に配置されている。そのため、圧縮機140は、チップシール86を1つのインボリュート形状で構成し、揺動渦巻ラップ部71の中央71aに配置した場合と比較して、シール幅δを大きく確保でき、かつ、インジェクションポート63の径を大きく設計できる。 Further, the injection port 63 can be designed to be large similarly for the compressor 140 in which the injection port 63 is provided instead of the sub port 62. The compressor 140 is disposed on the side of the tip seal 86 where the injection port 63 a and the injection port 63 b approach each other with respect to the center 71 a of the swing scroll wrap portion 71 away from the injection port 63. Therefore, the compressor 140 can secure a large seal width δ as compared with the case where the tip seal 86 is formed in one involute shape and disposed at the center 71 a of the swing scroll wrap portion 71, and the injection port 63. The diameter of can be designed large.
 具体的には、従来通り、チップシール86を揺動渦巻ラップ部71の先端面の中央71aに配置した場合、シール幅δ>0を満足する為には、インジェクションポート63の径を『(ラップ部幅/2)+(チップシール幅/2)』以下の制約値にしなければならない。圧縮機140は、チップシール86が、サブポート62又はインジェクションポート63を避けるように湾曲して円弧形状に形成されたR部86bと、インボリュート部86aとを有して構成されている。そのため、圧縮機140は、この制約値以上にインジェクションポート63の径を拡大することができる。 Specifically, when the tip seal 86 is disposed at the center 71 a of the tip end surface of the swing scroll wrap portion 71 as in the conventional case, the diameter of the injection port 63 is set to “(wrap The restriction value must be equal to or less than “part width / 2) + (tip seal width / 2)”. In the compressor 140, the tip seal 86 includes an R portion 86b curved in an arc shape so as to avoid the sub port 62 or the injection port 63, and an involute portion 86a. Therefore, the compressor 140 can enlarge the diameter of the injection port 63 more than this restriction value.
 これにより、圧縮機140は、サブポート62から作動ガスが吐出する際の抵抗が低下し、性能改善が可能である。また、圧縮機140は、サブポート62の代わりにインジェクションポート63が形成されている場合は、注入される液相の作動流体の流量が増え、吐出温度をより効率的に下げることが可能である。 As a result, the resistance of the compressor 140 when the working gas is discharged from the sub port 62 is reduced, and the performance can be improved. Further, when the injection port 63 is formed instead of the sub port 62, the compressor 140 can increase the flow rate of the liquid phase working fluid to be injected, and can lower the discharge temperature more efficiently.
 また、例えば、従来技術のようにチップシールに切欠きを設けると、切欠きから隣接する圧縮室間へのガス漏れが発生し、圧縮機の性能が大きく低下する場合がある。さらに、チップシールの切欠部への応力集中により、チップシールの強度が低下する場合がある。圧縮機140は、チップシール86がサブポート62もしくはインジェクションポート63から離れる位置に配置されているものでありチップシール86には切り欠きが設けられていない。そのため、圧縮機140は、圧縮室間でガス漏れが発生することはなく、また、チップシール86の強度が応力集中により低下することもない。 Further, for example, when the chip seal is provided with a notch as in the prior art, gas leakage from the notch to the adjacent compression chamber may occur, which may significantly reduce the performance of the compressor. Furthermore, the stress concentration in the notch of the tip seal may reduce the strength of the tip seal. The compressor 140 is disposed at a position where the tip seal 86 is separated from the sub port 62 or the injection port 63, and the tip seal 86 is not provided with a notch. Therefore, in the compressor 140, gas leakage does not occur between the compression chambers, and the strength of the tip seal 86 is not reduced due to stress concentration.
 また、圧縮機140は、チップシール86が、サブポート62又はインジェクションポート63を避けるように湾曲して円弧形状に形成されたR部86bと、インボリュート部86aとを有して構成されている。圧縮機140は、固定スクロール60のチップシール80を従来と同じくインボリュート曲線で形成し、固定渦巻ラップ部61の先端面の中央71aに配置する場合、固定スクロール60のチップシール80と揺動スクロール70のチップシール86の形状が異なる。そのため、圧縮機140は、揺動スクロール70のチップシール86と、固定スクロール60のチップシール80とを互い違いに誤って組立することを防止することができる。 Further, the compressor 140 is configured to have a tip seal 86 including an R portion 86 b curved in an arc shape so as to avoid the sub port 62 or the injection port 63 and an involute portion 86 a. The compressor 140 forms the tip seal 80 of the fixed scroll 60 with an involute curve as in the prior art and arranges the tip seal 80 of the fixed scroll 60 and the oscillating scroll 70 when arranging the tip seal 80 at the center 71 a of the tip surface of the fixed spiral wrap portion 61. The shape of the tip seal 86 is different. Therefore, the compressor 140 can prevent the tip seal 86 of the oscillating scroll 70 and the tip seal 80 of the fixed scroll 60 from being assembled by mistake in an alternate manner.
 また、圧縮機140は、サブポート62又はインジェクションポート63を避けるように湾曲して円弧形状に形成されたR部86bを有している。そのため、圧縮機140は、サブポート62又はインジェクションポート63と接近する最低限の範囲のみ、サブポート62又はインジェクションポート63から離してチップシール86を配置することができる。そして、圧縮機140は、R部86b以外の箇所はインボリュート部86aを揺動渦巻ラップ部71の先端面の中央71aに配置している。そのため、圧縮機140は、チップシール86の内側と外側との漏れ量のアンバランスが最小限に抑えられ、対称位置にある圧縮室の圧力のアンバランスも小さく抑えられる為、高い信頼性が得られる。 The compressor 140 also has an R portion 86 b which is curved in an arc shape so as to avoid the sub port 62 or the injection port 63. Therefore, the compressor 140 can arrange the tip seal 86 away from the sub port 62 or the injection port 63 only in the minimum range approaching the sub port 62 or the injection port 63. In the compressor 140, the involute portion 86 a is disposed at the center 71 a of the tip end surface of the swinging scroll wrap portion 71 in places other than the R portion 86 b. Therefore, the compressor 140 has high reliability because the unbalance of the leak amount between the inside and the outside of the tip seal 86 is minimized and the unbalance of the pressure of the compression chamber in the symmetrical position is also minimized. Be
 本発明は、上記実施の形態に限らず種々の変形が可能である。例えば、上記実施の形態は、圧縮機100が低圧シェル型である場合を例示しているが、圧縮機100を高圧シェル型としてもよい。 The present invention is not limited to the above embodiment, and various modifications are possible. For example, although the above embodiment illustrates the case where the compressor 100 is a low pressure shell type, the compressor 100 may be a high pressure shell type.
 20 シェル、20a ロアーシェル、20b 中央シェル、20c アッパーシェル、21 油溜り、23 油ポンプ、24 排油パイプ、25 フレーム、25a 吸入ポート、26 サブフレーム、27 吸入管、28 吐出管、29 マフラー、30 モータ、31 ロータ、32 ステータ、40 圧縮部、40a 圧縮室、40b 圧縮室、41 オルダムリング、41a オルダム溝、42 スライダ、43 揺動軸受、44 スリーブ、45 低圧室、46 高圧室、50 軸部、50a 給油路、52 第1のバランサ、52a バランサカバー、53 第2のバランサ、54 主軸受、55 副軸受、60 固定スクロール、61 固定渦巻ラップ部、62 サブポート、62a サブポート、62b サブポート、63 インジェクションポート、63a インジェクションポート、63b インジェクションポート、64 固定渦巻台板部、65 吐出ポート、70 揺動スクロール、71 揺動渦巻ラップ部、71a 中央、71b 端縁部、71c 端縁部、74 揺動渦巻台板部、80 チップシール、81 チップシール嵌合用溝、82 チップシール、82a 第1曲線部、82b 第2曲線部、82c 第3曲線部、83 チップシール、83a 第1曲線部、83b 第2曲線部、84 チップシール、84a 第1曲線部、84b 第2曲線部、84c 第3曲線部、84d 第4曲線部、84e 第5曲線部、85 チップシール、85a 第1曲線部、85b 第2曲線部、86 チップシール、86a インボリュート部、86b R部、86b1 R部、86b2 R部、100 圧縮機、110 圧縮機、120 圧縮機、130 圧縮機、140 圧縮機。 Reference Signs List 20 shell, 20a lower shell, 20b central shell, 20c upper shell, 21 oil reservoir, 23 oil pump, 24 oil discharge pipe, 25 frame, 25a suction port, 26 subframe, 27 suction pipe, 28 discharge pipe, 29 muffler, 30 Motor, 31 rotor, 32 stator, 40 compression unit, 40a compression chamber, 40b compression chamber, 41 oldham ring, 41a oldham groove, 42 slider, 43 swing bearing, 44 sleeve, 45 low pressure chamber, 46 high pressure chamber, 50 shaft portion , 50a oil supply passage, 52 first balancer, 52a balancer cover, 53 second balancer, 54 main bearing, 55 secondary bearing, 60 fixed scroll, 61 fixed scroll wrap portion, 62 subport, 62a subport, 62b subport, Reference Signs List 3 injection port, 63a injection port, 63b injection port, 64 fixed scroll base plate portion, 65 discharge port, 70 rocking scroll, 71 rocking scroll wrap portion, 71a center, 71b end edge, 71c end edge, 74 rocking Moving scroll base plate section 80 chip seal 81 chip seal fitting groove 82 chip seal 82a first curve section 82b second curve section 82c third curve section 83 chip seal 83a first curve section 83b Second curve section, 84 tip seal, 84a first curve section, 84b second curve section, 84c third curve section, 84d fourth curve section, 84e fifth curve section, 85 tip seal, 85a first curve section, 85b Second curve, 86 tip seal, 86a involute, 86 R unit, 86B1 R unit, 86B2 R unit, 100 compressor, 110 compressor, 120 compressor, 130 compressor, 140 compressor.

Claims (14)

  1.  台板部及び前記台板部に形成された渦巻ラップ部を備えた固定スクロールと、
     台板部及び前記台板部に形成された渦巻ラップ部を備えた揺動スクロールと、
    を有し、
     前記固定スクロールには、作動ガスを吐出する為の少なくも1つのサブポート、もしくは液相の作動流体を注入する為の少なくとも1つのインジェクションポートが形成されており、
     前記揺動スクロールは、
     前記渦巻ラップ部の先端に渦巻方向に沿って配置され、対面する前記固定スクロールの前記台板部と接するチップシールを備え、
     前記チップシールは、前記サブポートもしくは前記インジェクションポートと接近する箇所が、前記渦巻ラップ部の幅方向の中央に対して、端縁部側に配置されている圧縮機。
    A fixed scroll provided with a base plate portion and a spiral wrap portion formed on the base plate portion;
    A swinging scroll provided with a base plate portion and a spiral wrap portion formed on the base plate portion;
    Have
    The fixed scroll is formed with at least one subport for discharging a working gas, or at least one injection port for injecting a working fluid in a liquid phase,
    The oscillating scroll is
    The tip end of the spiral wrap portion includes a tip seal disposed along the spiral direction and in contact with the base plate portion of the fixed scroll facing the tip end.
    The said tip seal is a compressor by which the location which approaches the said subport or the said injection port is arrange | positioned with respect to the center of the width direction of the said spiral wrap part at the edge part side.
  2.  前記チップシールは、異なる曲率を有する複数の曲線で構成されている請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the tip seal comprises a plurality of curves having different curvatures.
  3.  前記チップシールは、異なる曲率を有する複数の曲線が連続して形成されている請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the tip seal is formed by continuously forming a plurality of curves having different curvatures.
  4.  前記チップシールは、異なる曲率を有する複数の曲線毎に分割して構成されている請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the tip seal is divided into a plurality of curves having different curvatures.
  5.  前記チップシールは、
     前記サブポートもしくは前記インジェクションポートと接近する箇所が、前記渦巻ラップ部の幅方向の中央に対して外周の端縁部側を通る第1曲線部を有する請求項1~4のいずれか1項に記載の圧縮機。
    The tip seal is
    The portion according to any one of claims 1 to 4, wherein the portion approaching the sub port or the injection port has a first curve portion passing an end edge side of the outer periphery with respect to the widthwise center of the spiral wrap portion. Compressor.
  6.  前記第1曲線部は、前記渦巻ラップ部と同じ曲率のインボリュート曲線で形成されている請求項5に記載の圧縮機。 The compressor according to claim 5, wherein the first curve portion is formed of an involute curve having the same curvature as that of the spiral wrap portion.
  7.  前記チップシールは、
     前記サブポートもしくは前記インジェクションポートと接近する箇所が、前記渦巻ラップ部の幅方向の中央に対して内周の端縁部側を通る第2曲線部を有する請求項1~6のいずれか1項に記載の圧縮機。
    The tip seal is
    7. The second curved portion according to any one of claims 1 to 6, wherein the portion approaching the sub port or the injection port has a second curved portion passing the end edge side of the inner periphery with respect to the widthwise center of the spiral wrap portion. Description compressor.
  8.  前記第2曲線部は、前記渦巻ラップ部と同じ曲率のインボリュート曲線で形成されている請求項7に記載の圧縮機。 The compressor according to claim 7, wherein the second curve portion is formed of an involute curve having the same curvature as that of the spiral wrap portion.
  9.  前記第2曲線部は、前記渦巻ラップ部より大きな曲率のインボリュート曲線で形成されている請求項7に記載の圧縮機。 The compressor according to claim 7, wherein the second curve portion is formed of an involute curve having a curvature larger than that of the spiral wrap portion.
  10.  前記チップシールは、
     前記渦巻ラップ部より大きな曲率のインボリュート曲線で形成された第3曲線部を更に有する請求項5~9のいずれか1項に記載の圧縮機。
    The tip seal is
    The compressor according to any one of claims 5 to 9, further comprising a third curve portion formed of an involute curve having a curvature larger than that of the spiral wrap portion.
  11.  前記チップシールは、
     前記渦巻ラップ部より小さな曲率のインボリュート曲線で形成された第4曲線部を更に有する請求項10に記載の圧縮機。
    The tip seal is
    The compressor according to claim 10, further comprising a fourth curve portion formed of an involute curve having a curvature smaller than that of the spiral wrap portion.
  12.  前記チップシールは、
     前記渦巻ラップ部の幅方向の中央を通る第5曲線部を更に有する請求項11に記載の圧縮機。
    The tip seal is
    The compressor according to claim 11, further comprising a fifth curve portion passing through the center in the width direction of the spiral wrap portion.
  13.  前記チップシールは、
     前記サブポートもしくは前記インジェクションポートに接近する箇所が湾曲して円弧形状に形成されたR部と、前記渦巻ラップ部の幅方向において中央を通り前記渦巻ラップ部と同じ曲率のインボリュート曲線で形成されているインボリュート部とを有する請求項1~4のいずれか1項に記載の圧縮機。
    The tip seal is
    The portion approaching the sub port or the injection port is curved and formed into an arc shape, and an involute curve having the same curvature as the spiral wrap portion passing through the center in the width direction of the spiral wrap portion The compressor according to any one of claims 1 to 4, further comprising an involute part.
  14.  前記固定スクロールは、
     前記渦巻ラップ部の先端に渦巻方向に沿って配置され、対面する前記揺動スクロールの前記台板部と接するチップシールを備え、
     前記固定スクロールの前記チップシールは、前記固定スクロールの前記渦巻ラップ部と同じ曲率のインボリュート曲線で形成され、前記固定スクロールの前記渦巻ラップ部の幅方向において中央に配置された請求項1~13のいずれか1項に記載の圧縮機。
    The fixed scroll is
    The tip end of the spiral wrap portion is provided along a spiral direction, and includes a tip seal in contact with the base plate portion of the swinging scroll facing the tip portion.
    The tip seal of the fixed scroll is formed of an involute curve having the same curvature as the spiral wrap portion of the fixed scroll, and is disposed at the center in the width direction of the spiral wrap portion of the fixed scroll. The compressor according to any one of the items.
PCT/JP2017/030659 2017-08-28 2017-08-28 Compressor WO2019043741A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/030659 WO2019043741A1 (en) 2017-08-28 2017-08-28 Compressor
JP2019538751A JP6861829B2 (en) 2017-08-28 2017-08-28 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030659 WO2019043741A1 (en) 2017-08-28 2017-08-28 Compressor

Publications (1)

Publication Number Publication Date
WO2019043741A1 true WO2019043741A1 (en) 2019-03-07

Family

ID=65526276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030659 WO2019043741A1 (en) 2017-08-28 2017-08-28 Compressor

Country Status (2)

Country Link
JP (1) JP6861829B2 (en)
WO (1) WO2019043741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144875A1 (en) * 2020-01-15 2021-07-22 三菱電機株式会社 Scroll compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141882U (en) * 1984-08-22 1986-03-17 三菱重工業株式会社 Scroll type fluid machine
JP2006291925A (en) * 2005-04-14 2006-10-26 Sanden Corp Scroll type fluid machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141882U (en) * 1984-08-22 1986-03-17 三菱重工業株式会社 Scroll type fluid machine
JP2006291925A (en) * 2005-04-14 2006-10-26 Sanden Corp Scroll type fluid machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144875A1 (en) * 2020-01-15 2021-07-22 三菱電機株式会社 Scroll compressor
JPWO2021144875A1 (en) * 2020-01-15 2021-07-22
JP7241925B2 (en) 2020-01-15 2023-03-17 三菱電機株式会社 scroll compressor

Also Published As

Publication number Publication date
JP6861829B2 (en) 2021-04-21
JPWO2019043741A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6187266B2 (en) Electric compressor
KR101462941B1 (en) Horizontal type scroll compressor
US20120148434A1 (en) Scroll Fluid Machine
JP6302813B2 (en) Scroll compressor and refrigeration cycle apparatus using the same
WO2007000854A1 (en) Fluid machine and refrigeration cycle device
JP2013167168A (en) Scroll compressor
JP2014181617A (en) Scroll compressor
JPWO2013105386A1 (en) Vane type compressor
JP6745992B2 (en) Scroll compressor and refrigeration cycle device
WO2012147239A1 (en) Scroll compressor
JP2011226447A (en) Scroll compressor and refrigerating cycle device
JP2012184709A (en) Scroll compressor
WO2019043741A1 (en) Compressor
JP2011174453A (en) Scroll compressor
KR102004353B1 (en) Scroll compressor with a back pressure chamber
JP2013177867A (en) Scroll compressor and air conditioner
JP5736739B2 (en) Scroll compressor
JP2008175340A (en) Crankshaft
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
JP5979974B2 (en) Scroll compressor and design method thereof
JP2003035282A (en) Scroll type fluid machine
US11603840B2 (en) Scroll compressor having compression chamber oil supplies having stages in which oil supply overlaps and stages in which oil supply does not overlap
WO2023162058A1 (en) Scroll compressor
US20230228267A1 (en) Scroll compressor
US20230279861A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923512

Country of ref document: EP

Kind code of ref document: A1