WO2019042291A1 - 一种发送信号的方法及设备 - Google Patents

一种发送信号的方法及设备 Download PDF

Info

Publication number
WO2019042291A1
WO2019042291A1 PCT/CN2018/102782 CN2018102782W WO2019042291A1 WO 2019042291 A1 WO2019042291 A1 WO 2019042291A1 CN 2018102782 W CN2018102782 W CN 2018102782W WO 2019042291 A1 WO2019042291 A1 WO 2019042291A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
unlicensed carrier
carrier
parameter
Prior art date
Application number
PCT/CN2018/102782
Other languages
English (en)
French (fr)
Inventor
刘劲楠
李德建
陈佳民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18852219.7A priority Critical patent/EP3667996A4/en
Publication of WO2019042291A1 publication Critical patent/WO2019042291A1/zh
Priority to US16/805,210 priority patent/US20200204325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of wireless communications technologies, and in particular, to a method and an apparatus for transmitting a signal.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is a commonly used technology for wireless communication, and is widely used in different communication systems, such as the 3rd Generation Partnership Project (3GPP) using licensed spectrum. ) systems, and wireless Fidelity (WIFI) systems that use unlicensed spectrum.
  • 3GPP 3rd Generation Partnership Project
  • WIFI wireless Fidelity
  • LTE 3rd Generation Partnership Project Long Term Evolution
  • SC-FDMA Single Carrier-Frequency Division Multiplex Access
  • 5G fifth generation new radio
  • IEEE 802.11 series of standards began to adopt OFDM waveforms from IEEE 802.11a. Subsequent evolved versions of IEEE 802.11n, IEEE 802.11ac, and IEEE 802.11ax have been using OFDM waveforms.
  • LAA License Assistant Access
  • 3GPP systems that use licensed spectrum
  • mechanisms are introduced that can use unlicensed spectrum.
  • both the LTE system and the WIFI system use OFDM waveforms, and both use a 20 MHz system bandwidth.
  • the LAA technology and the eLAA (Enhanced LAA) technology in LTE follow the parameters of OFDM in LTE, that is, the system bandwidth is 20 MHz, the subcarrier spacing is 15 kHz, and the inverse Fourier transform (IFFT) point is 2048 points.
  • IFFT inverse Fourier transform
  • the 5G standard further expands the range of licensed spectrum that can be used, not only introducing new bands below 6 GHz, but also introducing new licensed bands above 6 GHz.
  • the NR uses a maximum system bandwidth of only 400 MHz in the licensed band.
  • the OFDM transmission parameters also support the following 5 seed carrier intervals, respectively 30KHz, 60KHz, 120KHz, 240KHz, 480KHz, and the maximum number of IFFTs supported, the current passing capacity is at least Support is extended to 4096.
  • NR Unlicence NR-U
  • 5G 5G
  • NR-U NR Unlicence
  • devices that already exist in 60 GHz such as IEEE 802.11ad, have a system bandwidth of 2.16 GHz.
  • the mandatory single-carrier waveform is the only OFDM waveform.
  • the single carrier waveform in IEEE 802.11ad refers to the transmission parameter is the sampling frequency is 1760MHz, forming a single carrier block every 512 sampling points, 64 sampling points in each single carrier block are reference signals, leaving 448 sampling points transfer data.
  • the OFDM waveform in IEEE 802.11ad means that the transmission parameters are subcarrier spacing is 5.15625 MHz, IFFT points are 512 points, available subcarriers are 355 subcarriers, and the 355 subcarriers include 336 data subcarriers and 16 pilot subcarriers. , 3 DC subcarriers.
  • the NR-U device uses a 60 GHz unlicensed band, the parameters in the OFDM waveform in the 5G licensed spectrum are used, causing the 2.16 GHz bandwidth to be split into multiple 400 MHz bandwidths, or bandwidths below 400 MHz.
  • the IEEE 802.11ad device with only 2.16 GHz bandwidth energy detection cannot accurately obtain the spectrum occupancy or idle condition, and affects the existing device IEEE 802.11ad using the 60 GHz spectrum. If the NR-U inherits the single carrier parameter or the OFDM parameter in the 60 GHz unlicensed spectrum, the parameters do not have any relationship with the 5G licensed spectrum OFDM parameters, and the hardware or software in the 5G licensed band cannot be multiplexed.
  • the application provides a method and a device for transmitting signals to multiplex hardware or software in a 5G licensed frequency band on the premise of meeting the coexistence requirement of the 60 GHz band.
  • the first aspect provides a method for transmitting a signal, including: the first device generates at least one first signal according to the i-th set parameter in the first parameter, where the first parameter includes an I-set parameter, and the ith
  • the set of parameters includes a subcarrier spacing N1 i Hz, a number of available subcarriers N2 i , a discrete Fourier transform IDFT point number N3 i , I ⁇ i ⁇ 1;
  • the first device transmits the said device to the second device on the unlicensed carrier At least one first signal;
  • the first device generates at least one second signal according to the jth parameter of the second parameter, where the second parameter includes J sets of parameters, and the jth set of parameters includes subcarrier spacing N4 j , the number of available subcarriers N5 j , IDFT points N6 j , J ⁇ j ⁇ 1;
  • the first device transmits the at least one second signal to the second device according to the licensed carrier, the N1 i ,
  • the first signal generated by the above parameters can be used to multiplex the hardware and software requirements in the 5G licensed band under the premise of meeting the coexistence requirement of the 60 GHz unlicensed band.
  • the first device is a network device
  • the second device is a terminal device; before the first device sends the at least one first signal to the second device on the unlicensed carrier
  • the method further includes: the network device sending the first indication information to the terminal device on the authorized carrier or the unlicensed carrier, where the first indication information is used to indicate that the terminal device receives the unlicensed carrier The granularity of the first signal.
  • the method before the first device sends the at least one first signal to the second device on the unlicensed carrier, the method further includes: the network device is on the unlicensed carrier The terminal device sends the second indication information, where the second indication information is used to indicate the available subcarriers X i of the terminal device in the frequency domain, and the N1 i *X i ⁇ 400 MHz.
  • the first device is a network device
  • the second device is a terminal device; before the first device sends the at least one first signal to the second device on the unlicensed carrier
  • the method further includes: the network device receiving the report information of the terminal device on the authorized carrier, where the report information carries a field that the terminal device supports the unlicensed carrier capability, and the terminal device supports the unauthorized device.
  • the field of the carrier capability includes at least one of a parameter of the terminal device supporting an unlicensed channel range, a parameter of the terminal device supporting a transmission bandwidth capability, and a parameter of the terminal device supporting a receiving bandwidth capability; the first device is at And sending, by the network device, the at least one first signal to the second device, where the network device sends the at least one first signal to the terminal device on an unlicensed channel supported by the terminal device, where The unlicensed channel includes an unlicensed carrier, and the frequency domain of the first signal is less than or equal to the receiving supported by the terminal device. Wide capacity.
  • the terminal equipment with limited capability can also be successfully used to communicate using the unlicensed spectrum, thereby improving the utilization of the unlicensed spectrum.
  • the first device is a network device, and the second device is a terminal device.
  • the first signal is multiple, the first signal includes a discovery signal, and the discovery is The signal includes a sync block signal SS-Block, the N2 i being greater than or equal to 256; the first device transmitting the at least one first signal to the second device on the unlicensed carrier, including: the network device utilizing the The 256 subcarriers of the N2 i available subcarrier centers in the unlicensed carrier, and the SS-Block is sent to the terminal device.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal includes a discovery signal
  • the discovery is The signal includes an SS-Block
  • the N2 i available subcarriers in the unlicensed carrier include at least one subband, and the number of subcarriers included in each subband is greater than or equal to 256; the first device is on an unlicensed carrier.
  • Transmitting the at least one first signal to the second device includes: the network device transmitting the SS-Block to the terminal device by using 256 subcarriers of each subband center.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes multiple primary synchronization signals PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH. Determining at least a first sub-band and a second sub-band among the N2 i available sub-carriers in the unlicensed carrier;
  • Sending, by the first device, the at least one first signal to the second device on the unlicensed carrier including: the first device adopting the first antenna array in the first subband, and sending the PSS, SSS And the PBCH; the first device sends the PSS, the SSS, and the PBCH in the second sub-band by using a second antenna array, where the first antenna array is different from the second antenna array, the first The sub-band is different from the second sub-band.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes at least a PBCH
  • the first device sends the second device to an unlicensed carrier.
  • the at least one first signal includes: the network device sends the PBCH to the terminal device on an unlicensed carrier, where the PBCH carries a first field, where the first field is that the network device is a field not carried in the PBCH sent on the authorized carrier, or the first field is different from the second field, where the second field is carried by the PBCH sent by the network device on the authorized carrier The field corresponding to the first field.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes a scheduling signal
  • the network device sending, on the unlicensed carrier, a scheduling signal to the multiple terminal devices, where the scheduling signal is used And indicating that the total bandwidth of the uplink signal sent by the multiple terminal devices on the unlicensed carrier is greater than or equal to 70% of 2.16 GHz; or the first device is a network device, and the second device is a terminal device, The second signal includes a scheduling signal;
  • the total bandwidth of the uplink signals sent by the multiple terminal devices on the unlicensed carrier is greater than or equal to 70% of 2.16 GHz.
  • the method further includes: receiving, by the network device, the sixth signal sent by the terminal device on the unlicensed carrier, where The bandwidth of the sixth signal is greater than or equal to 70% of 2.16 GHz; the network device despreads the received sixth signal to obtain a fifth signal, and the despreading despreading factor is W, and the fifth signal A consecutive P available subcarriers are occupied, the P being less than or equal to N2 i /W, and the P and W are integers.
  • the first device is a terminal device
  • the second device is a network device
  • the first signal includes an uplink beam training signal
  • a second aspect includes: receiving, by a second device, at least one first signal sent by a first device on an unlicensed carrier, where the first signal is based on an i-th parameter in the first parameter
  • the generated first parameter includes a set of parameters, and the i-th set of parameters includes a subcarrier spacing N1 i Hz, a number of available subcarriers N2 i , a discrete Fourier transform IDFT point N3 i , I ⁇ i ⁇
  • the second device receives the at least one second signal sent by the first device on the authorized carrier, where the second signal is generated according to the jth parameter in the second parameter, the second parameter
  • the J sets of parameters are included, and the jth set of parameters includes a subcarrier spacing N4 j , a number of available subcarriers N5 j , an IDFT point number N6 j , J ⁇ j ⁇ 1, and the N1 i , N2 i , N3 i , N4 j
  • the first device is a network device
  • the second device is a terminal device; before the second device receives the at least one first signal sent by the first device on the unlicensed carrier, The method further includes: the terminal device receiving first indication information sent by the network device on an authorized carrier or an unlicensed carrier, where the first indication information is used to indicate that the terminal device receives in an unlicensed carrier
  • the at least one first signal includes: the terminal device receiving the first signal on an unlicensed carrier according to the granularity indicated by the first indication information
  • the first device is a network device
  • the second device is a terminal device; before the second device receives the at least one first signal sent by the first device on the unlicensed carrier, The method further includes: the terminal device receiving the second indication information sent by the network device on an unlicensed carrier, where the second indication information is used to indicate the available subcarrier X i of the terminal device in the frequency domain , the N1 i *X i ⁇ 400MHz.
  • the first device is a network device
  • the second device is a terminal device; before the second device receives the at least one first signal sent by the first device on the unlicensed carrier, The method further includes: the terminal device transmitting the report information on the authorized carrier, where the report information carries the parameter that the terminal device supports the unlicensed channel range, and the terminal device supports the parameter of the transmit bandwidth capability and the The terminal device supports at least one of parameters for receiving bandwidth capability; the second device receives the at least one first signal sent by the first device on the unlicensed carrier, including: the terminal device receives on the supported unlicensed channel
  • the at least one first signal sent by the first device, the unlicensed channel includes an unlicensed carrier, and the frequency domain of the second signal is less than or equal to a receiving bandwidth capability supported by the terminal device.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal includes a discovery signal
  • the discovery is The signal includes a sync block signal SS-Block, where the N2 i is greater than or equal to 256;
  • the second device receives the at least one first signal sent by the first device on the unlicensed carrier, including: the terminal device uses the unlicensed carrier Receiving, by the 256 subcarriers of the N2 i available subcarrier centers, the SS-Block sent by the first device.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal includes a discovery signal
  • the discovery is The signal includes an SS-Block
  • the N2 i available subcarriers in the unlicensed carrier include at least one subband, and the number of subcarriers included in each subband is greater than or equal to 256; the second device is on an unlicensed carrier.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes at least a physical broadcast channel PBCH
  • the second device receives an unlicensed carrier.
  • At least one first signal sent by a device the terminal device receiving, on an unlicensed carrier, a PBCH sent by the network device, where the PBCH carries a first field, where the first field is authorized by the network device a word band not carried in the PBCH sent on the carrier, or the first field is different from the second field, where the second field is carried by the PBCH sent by the network device on the authorized carrier
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes a scheduling signal
  • the second device receives the first device to send on an unlicensed carrier.
  • At least one first signal comprising: the terminal device receiving, on an unlicensed carrier, a scheduling signal sent by the network device, where the scheduling signal is used to indicate that the multiple terminal devices are sent on an unlicensed carrier
  • the total bandwidth of the uplink signal is greater than or equal to 70% of 2.16 GHz; or, the first device is a network device, the second device is a terminal device, the second signal includes a scheduling signal; and the second device is authorized Receiving, by the carrier, the at least one second signal sent by the first device, the terminal device receiving, on the authorized carrier, a scheduling signal sent by the network device, where the scheduling signal is used to indicate that the multiple terminal devices are
  • the total bandwidth of the uplink signal transmitted on the unlicensed carrier is greater than or equal to 70% of 2.16 GHz.
  • the method further includes: after receiving the scheduling signal, the terminal device obtains a fifth signal, where the fifth signal occupies consecutive P available subcarriers; the terminal device Performing direct spreading on the fifth signal to obtain a sixth signal, where the spreading factor of the direct spreading is W, the bandwidth of the sixth signal is greater than or equal to 70% of 2.16 GHz, and the P is less than or equal to N2i/ W, the P and W are integers; the terminal device sends the sixth signal to the network device on an unlicensed carrier.
  • the method further includes: at least one sub-dispatched by the terminal device in the scheduling signal
  • the transmit subband signal is carried, the subband signal having a bandwidth of less than 70% of 2.16 GHz.
  • the terminal device sends a subband signal on at least one subband scheduled by the scheduling signal, including: the terminal device detecting whether a subband signal scheduled by the scheduling signal is idle; The terminal device transmits a subband signal to the network device on the subband when the subband is idle.
  • the first device is a terminal device
  • the second device is a network device
  • the first signal includes an uplink beam training signal
  • a first device including: a processor, configured to generate at least one first signal according to an i-th set parameter in the first parameter, where the first parameter includes a set of parameters, where the The set of parameters includes a subcarrier spacing N1 i Hz, a number of available subcarriers N2 i , a discrete Fourier transform IDFT point number N3 i , I ⁇ i ⁇ 1; a transceiver for transmitting to the second device on the unlicensed carrier Decoding at least one first signal; the processor is further configured to generate at least one second signal according to the jth set parameter in the second parameter, where the second parameter includes J sets of parameters, and the jth set of parameters The subcarrier spacing N4 j , the number of available subcarriers N5 j , the number of IDFT points N6 j , J ⁇ j ⁇ 1; the transceiver is further configured to send the at least one to the second device according to the licensed carrier The two signals, the N
  • the first device is a network device
  • the second device is a terminal device
  • the transceiver is further configured to: send the first device to the terminal device on an authorized carrier or an unlicensed carrier
  • An indication information the first indication information is used to indicate that the terminal device receives the granularity of the first signal in an unlicensed carrier.
  • the transceiver is further configured to: send, to the terminal device, second indication information on the unlicensed carrier, where the second indication information is used to indicate that the terminal device is available in the frequency domain.
  • Carrier X i said N1 i *X i ⁇ 400MHz.
  • the first device is a network device
  • the second device is a terminal device
  • the transceiver is further configured to: receive, by the authorized carrier, report information of the terminal device, where the report is The information carries a field in which the terminal device supports the unlicensed carrier capability, and the field that the terminal device supports the unlicensed carrier capability includes the parameter that the terminal device supports the unlicensed channel range, and the terminal device supports the transmission bandwidth capability.
  • the parameter and the terminal device support at least one of a parameter for receiving a bandwidth capability; when the transceiver sends the at least one first signal to the second device on the unlicensed carrier, specifically for: at the terminal device Transmitting, by the terminal device, the at least one first signal on the unlicensed channel, where the unlicensed channel includes an unlicensed carrier, and the frequency domain of the first signal is less than or equal to the receiving supported by the terminal device.
  • Bandwidth capability bandwidth capability.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal is multiple
  • the first signal includes a discovery signal
  • the discovery is The signal includes a sync block signal SS-Block
  • the N2 i is greater than or equal to 256.
  • the transceiver sends the at least one first signal to the second device on the unlicensed carrier, the specific use is: using the unauthorized
  • the NS subcarriers of the N2 i available subcarrier centers in the carrier transmit the SS-Block to the terminal device.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal includes a discovery signal
  • the discovery is The signal includes an SS-Block
  • the N2 i available subcarriers in the unlicensed carrier include at least one subband, and the number of subcarriers included in each subband is greater than or equal to 256; the transceiver is on an unlicensed carrier
  • the method is specifically configured to: send the SS-Block to the terminal device by using 256 subcarriers of each subband center.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes multiple primary synchronization signals PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH.
  • the N2 i available subcarriers in the unlicensed carrier include at least a first subband and a second subband; and when the transceiver sends the at least one first signal to the second device on the unlicensed carrier, specifically Transmitting, by using the first antenna array, the PSS, SSS, and PBCH in the first subband, and transmitting the PSS, SSS, and PBCH in the second subband by using a second antenna array,
  • the first antenna array is different from the second antenna array, the first sub-band being different from the second sub-band.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes at least a PBCH
  • the transceiver sends the device to the second device on an unlicensed carrier.
  • the method is specifically configured to: send the PBCH to the terminal device on an unlicensed carrier, where the PBCH carries a first field, where the first field is an authorized carrier of the network device a field that is not carried in the PBCH that is sent, or the first field is different from the second field, where the second field is carried by the PBCH sent by the network device on the authorized carrier, and the first The field corresponding to the field.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes a scheduling signal
  • the transceiver sends the second device to an unlicensed carrier.
  • the at least one first signal is used to: send, on an unlicensed carrier, a scheduling signal to the multiple terminal devices, where the scheduling signal is used to indicate that the multiple terminal devices send uplink signals on the unlicensed carrier.
  • the total bandwidth is greater than or equal to 70% of 2.16 GHz; or the first device is a network device, the second device is a terminal device, and the second signal includes a scheduling signal; the transceiver is on the authorized carrier
  • the method is specifically configured to: send, on the authorized carrier, a scheduling signal to the multiple terminal devices, where the scheduling signal is used to indicate that the multiple terminal devices are sent on the unlicensed carrier
  • the total bandwidth of the upstream signal is greater than or equal to 70% of 2.16 GHz.
  • the transceiver is further configured to: receive, on an unlicensed carrier, a sixth signal sent by the terminal device, where the bandwidth of the sixth signal is greater than or equal to 70% of 2.16 GHz;
  • the processor is further configured to perform despreading on the received sixth signal to obtain a fifth signal, where the despreading despreading factor is W, and the fifth signal occupies consecutive P available subcarriers, where the P Less than or equal to N2 i /W, both P and W are integers.
  • the first device is a terminal device
  • the second device is a network device
  • the first signal includes an uplink beam training signal
  • a second device includes: a transceiver, configured to receive, on an unlicensed carrier, at least one first signal sent by the first device, where the first signal is according to an i-th set in the first parameter
  • the first parameter includes a set of parameters, and the ith set of parameters includes a subcarrier spacing N1 i Hz, a number of available subcarriers N2 i , a discrete Fourier transform IDFT point N3 i , I ⁇ i ⁇ 1;
  • the transceiver is further configured to receive, on the authorized carrier, the at least one second signal sent by the first device, where the second signal is generated according to the jth parameter in the second parameter, where
  • the second parameter includes J sets of parameters, and the jth set of parameters includes a subcarrier interval N4 j , a number of available subcarriers N5 j , an IDFT point number N6 j , J ⁇ j ⁇ 1, and the N1 i , N2 i , N3 i
  • the first device is a network device
  • the second device is a terminal device
  • the transceiver is further configured to: receive, send, by the network device on an authorized carrier or an unlicensed carrier.
  • First indication information the first indication information is used to indicate that the terminal device receives the granularity of the first signal in an unlicensed carrier, and the interval of adjacent granularity is 1/2 k4 ms, the phase
  • the k3 OFDM symbols k2*k3 k; when the transceiver receives the at least one first signal sent by the terminal device on the unlicensed carrier, the transceiver is specifically configured to: according to the granularity indicated by the first indication information Receiving the first signal on an unlicensed carrier.
  • the first device is a network device
  • the second device is a terminal device
  • the transceiver is further configured to: receive, by using an unlicensed carrier, a second indication sent by the network device Information, the second indication information is used to indicate the available subcarriers X i of the terminal device in the frequency domain, and the N1 i *X i ⁇ 400 MHz.
  • the first device is a network device
  • the second device is a terminal device
  • the transceiver is further configured to: send the report information on the authorized carrier, where the report information carries The terminal device supports a parameter of an unlicensed channel range, the terminal device supports at least one of a parameter for transmitting a bandwidth capability and a parameter for the terminal device to support a bandwidth capability; the transceiver receives the first on an unlicensed carrier And transmitting, by the device, the at least one first signal, where the at least one first signal sent by the first device is received, where the unlicensed channel includes an unlicensed carrier, where The frequency domain range of the second signal is less than or equal to the receiving bandwidth capability supported by the terminal device.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal is multiple
  • the first signal includes a discovery signal
  • the discovery is The signal includes a sync block signal SS-Block
  • the N2 i is greater than or equal to 256.
  • the transceiver receives the at least one first signal sent by the first device on the unlicensed carrier, the transceiver is specifically configured to: use the unlicensed carrier Receiving, by the 256 subcarriers of the N2 i available subcarrier centers, the SS-Block sent by the first device.
  • the first device is a network device
  • the second device is a terminal device.
  • the first signal includes a discovery signal
  • the discovery is The signal includes an SS-Block
  • the N2 i available subcarriers in the unlicensed carrier include at least one subband, and the number of subcarriers included in each subband is greater than or equal to 256; the transceiver receives on an unlicensed carrier
  • the SS-Block sent by the network device is received by using 256 subcarriers of each subband center.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes at least a physical broadcast channel PBCH
  • the transceiver receives the first on an unlicensed carrier.
  • the method is specifically configured to: receive the PBCH sent by the network device on the unlicensed carrier, where the PBCH carries a first field, where the first field is that the network device is on the authorized carrier a word band that is not carried in the transmitted PBCH, or the first field is different from the second field, where the second field is carried by the PBCH sent by the network device on the authorized carrier, and the first The field corresponding to the field.
  • the first device is a network device
  • the second device is a terminal device
  • the first signal includes a scheduling signal
  • the transceiver receives the first device sent on the unlicensed carrier.
  • the at least one first signal is used to: receive, on an unlicensed carrier, a scheduling signal sent by the network device, where the scheduling signal is used to indicate that the multiple terminal devices send an uplink signal on an unlicensed carrier
  • the total bandwidth is greater than or equal to 70% of 2.16 GHz; or, the first device is a network device, the second device is a terminal device, and the second signal includes a scheduling signal;
  • the method is specifically configured to: receive, on the authorized carrier, a scheduling signal sent by the network device, where the scheduling signal is used to indicate the The total bandwidth of uplink signals transmitted by multiple terminal devices on an unlicensed carrier is greater than or equal to 70% of 2.16 GHz.
  • the device further includes: a processor, configured to obtain a fifth signal after receiving the scheduling signal, where the fifth signal occupies consecutive P available subcarriers; And performing direct spreading on the fifth signal to obtain a sixth signal, where the spreading factor of the direct spreading is W, and the bandwidth of the sixth signal is greater than or equal to 70% of 2.16 GHz.
  • P is less than or equal to N2i/W, and the P and W are integers; the transceiver is further configured to send the sixth signal to the network device on an unlicensed carrier.
  • the transceiver is further configured to: at least one subband scheduled by the scheduling signal A subband signal is transmitted, the subband signal having a bandwidth of less than 70% of 2.16 GHz.
  • the processor is further configured to detect whether a subband signal scheduled by the scheduling signal is idle; the transceiver is further configured to: when the subband is idle, in the sub Bring a subband signal to the network device.
  • the first device is a terminal device
  • the second device is a network device
  • the first signal includes an uplink beam training signal
  • a readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • a chip comprising an input interface, an output interface, at least one processor, and at least one memory, the at least one memory for storing code, the at least one processor for executing the memory
  • the code when the code is executed, the processor implements the method of any of the above aspects.
  • a communication system comprising the first device as described in any of the above third aspect and the third aspect, and the fourth aspect, the fourth aspect, and the fourth aspect Two devices.
  • the transmitting node Since there are multiple systems in the unlicensed spectrum, such as the WIFI system and the NR system, in order to coexist between different systems, the transmitting node adopts a channel access mechanism that is said to be heard first, that is, the transmitting node performs the channel before transmitting the information. Listening, listening to the channel is idle, and then occupying the channel to send information.
  • the first signal transmitted on the unlicensed carrier satisfies that N1 i *N3 i is greater than or equal to 1.512 GHz
  • other systems operating in the unlicensed spectrum such as the WIFI system, may detect the first signal. Therefore, the unlicensed channel transmission information is no longer occupied, thereby meeting the requirement of coexistence in the 60 GHz band.
  • the first signal also satisfies the requirements of max(N1 i ) ⁇ max(N4 j ), max(N3 i ) ⁇ max(N6 j ), and it can be seen that the IDFT point number N3 i of the first signal is smaller than the licensed spectrum. in the maximum supported IDFT points N6 j, then reusable 5G unlicensed band prior hardware or software to generate a first signal, reducing the complexity of the whole.
  • Figure 1 is a system frame diagram provided by the present application.
  • FIG. 2 is a flowchart of a method for transmitting a signal provided by the present application
  • Figure 3a is a frame diagram of transmitting a first signal provided by the present application.
  • Figure 3b is a frame diagram of receiving the first signal provided by the present application.
  • FIG. 4 to FIG. 10 are flowcharts of a method for transmitting a signal provided by the present application.
  • FIG. 11 is a schematic diagram of an OFDM signal provided by the present application.
  • FIG. 12 is a schematic structural diagram of a first device provided by the present application.
  • FIG. 13 is a schematic structural diagram of a second device provided by the present application.
  • FIG. 14 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by the present application.
  • a base station (BS) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and the device that provides the base station function in the 3G network includes a Node B (NodeB) and the wireless device.
  • a radio network controller (RNC) which provides a base station function in a 4G network, includes an evolved NodeB (eNB).
  • a device that provides a base station function is an access point (AP). ).
  • devices providing base station functions include Node B (gNB), TRP (transmission and reception point), or TP (transmission point). point).
  • gNB Node B
  • TRP transmission and reception point
  • TP transmission point
  • the TRP or TP may not include the baseband portion, only the radio frequency portion, and may also include the baseband portion and the radio frequency portion.
  • the terminal device is a user equipment (UE), and may be a mobile terminal device or a non-mobile terminal device.
  • the device is mainly used to receive or send business data.
  • User equipment can be distributed in the network.
  • User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees.
  • the user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a network-side device is a device located on the network side in a wireless communication network, and may be an access network element, such as a base station or a controller (if any), or may be a core network element or other network. yuan.
  • FIG. 1 shows a possible system network diagram of the present application.
  • a terminal UE is in a coverage range of a primary cell (Pcell) base station and a secondary cell (Scell) base station.
  • the Pcell base station works in the licensed frequency band
  • the Scell base station works in the unlicensed frequency band
  • the Pcell base station and the Scell base station have an ideal backhaul.
  • the present application provides a process for sending a signal, where the process may be specifically applied to a Pcell base station and/or an Scell base station to send a signal to a terminal, where the first device in the process corresponds to In the Pcell base station or the Scell base station in FIG. 1, the second device corresponds to the UE in FIG.
  • the process is specifically as follows:
  • Step S21 The first device generates at least one first signal according to the i-th set parameter in the first parameter.
  • the first parameter includes a set of parameters, and the i-th parameter includes a sub-carrier interval N1 i Hz, and the number of available sub-carriers N2 i occupies X i sub-carriers in N1 i available sub-carriers, and is discrete.
  • the Fourier transform IDFT point number N3 i , I ⁇ i ⁇ 1; the first signal may be an orthogonal frequency division multiplex (OFDM) signal.
  • OFDM orthogonal frequency division multiplex
  • the process of generating the first signal according to the ith parameter of the first parameter may be specifically as follows: acquiring a first frequency domain signal to be transmitted, where the first frequency domain signal to be transmitted may be a data signal or a reference signal. And mapping the first to-be-transmitted frequency domain signal to the X i subcarriers to obtain the first mapping signal; and passing the first mapping signal to the IDFT of the N3 i point to obtain the first signal.
  • the process of transmitting the first signal may be specifically: acquiring a first to-be-transmitted frequency domain signal, where the first to-be-transmitted frequency domain signal may be specifically a reference signal or a data signal,
  • the first to-be-transmitted frequency domain signal is sequentially subjected to subcarrier mapping and IDFT conversion to obtain a first signal, and then subjected to parallel-to-serial conversion (P/S), digital-to-analog conversion (DAC), and mixer processing on the first signal.
  • P/S parallel-to-serial conversion
  • DAC digital-to-analog conversion
  • Step S22 The first device sends the at least one first signal to the second device on the unlicensed carrier.
  • the unlicensed carrier may specifically refer to a carrier in a 60 GHz unlicensed frequency band, and the center frequency points are one of 58.32 GHz, 60.48 GHz, 62.64 GHz, 64.8 GHz, 66.96 GHz, 69.12 GHz, and 71.28 GHz, respectively. Multiple.
  • the bandwidth of the channel corresponding to the unlicensed carrier may be 2.16 GHz, for example, 57.24 to 59.4 GHz, 59.4 to 61.56 GHz, 61.56 to 63.72 GHz, 63.72 to 65.88 GHz, 65.88 to 68.04 GHz, 68.04 to 70.2 GHz, 70.2. ⁇ 72.36 GHz.
  • the second device can obtain the received data through processing such as an antenna, a receiving RF channel, a mixer, an analog-to-digital conversion (ADC), and a serial-to-parallel conversion (S/P).
  • the first signal is then processed by the DFT and the subcarrier mapping on the received first signal to obtain the first received frequency domain signal.
  • the received first signal in Fig. 3b is that the transmitted first signal shown in Fig. 3a passes through the wireless channel and the noised signal is superimposed.
  • FIG. 3b shows that the transmitted first signal shown in Fig. 3a passes through the wireless channel and the noised signal is superimposed.
  • the reference sub-carrier is a reference signal
  • the reference signal received in the corresponding sub-carrier needs to be extracted by demapping, and channel estimation, synchronization, and phase tracking are performed according to the reference signal. operating.
  • the corresponding subcarrier is a data signal
  • the data signal in the corresponding subcarrier can be extracted by demapping, the channel estimation obtained according to the reference signal, the synchronization and phase tracking parameters, the demodulated data, and finally the data signal.
  • the receiver may sample the super-extrapolation structure, that is, there are two mixers, and there is an intermediate frequency channel between the two mixers.
  • Step S23 The first device generates at least one second signal according to the jth set parameter in the second parameter.
  • the second parameter includes J sets of parameters
  • the jth set of parameters includes a subcarrier spacing N4 j , a number of available subcarriers N5 j , and Y j subcarriers are occupied in the N 5 j available subcarriers
  • the IDFT point number N6 j , J ⁇ j ⁇ 1, and the second signal may be an OFDM signal.
  • the process of generating the second signal according to the jth parameter of the second parameter may be specifically as follows: acquiring a second frequency domain signal to be transmitted, where the second frequency domain signal to be transmitted may be a data signal or a reference. a signal; mapping the second to-be-transmitted frequency domain signal to Y j subcarriers to obtain a second mapping signal; and passing the second mapping signal to an IDFT of the N6 j point to obtain a second signal.
  • the process of generating the second signal by the first device is similar to the process of generating the first signal by the first device, and details are not described herein again.
  • Step S24 The first device sends the at least one second signal to the second device on the authorized carrier.
  • the processing of the second signal by the first device is similar to the processing of the first signal by the first device, and details are not described herein again.
  • the authorized carrier may specifically include an authorized carrier frequency point above 6 GHz or below 6 GHz, and the central frequency point is determined according to a frequency point for global mobile communication promulgated by the International Telecommunication Union (ITU).
  • the OFDM parameters of the second signal include parameters specified in LTE, that is, the subcarrier spacing is 7.5 KHz, the IFFT point is 4096, the subcarrier spacing is 15 KHz, and the IFFT point is 2048.
  • the currently adopted parameters include 2 sets of parameters in the frequency band below 6 GHz and 4 sets of parameters in the frequency band above 6 GHz.
  • the subcarrier spacing is 30 kHz
  • the IFFT point is 1024
  • the subcarrier spacing is 60 kHz
  • the IFFT point is 512.
  • the four sets of parameters in the frequency band above 6 GHz specifically, the subcarrier spacing is 60 kHz, IFFT points are 4096; subcarrier spacing is 120KHz, IFFT points are 4096; subcarrier spacing is 240KHz, IFFT points are 4096; and subcarrier spacing is 480KHz, and IFFT points are 4096.
  • the N1 i , N2 i , N3 i , N4 j , N5 j , N6 j , X i , Y j , I, and J are integers.
  • the waveform of the NR-U device and the device occupied bandwidth of the IEEE 802.11ad are kept close.
  • the IEEE 802.11ay standard being developed introduces multiple 2.16 GHz Channel Bonding (CB) transmission modes, allowing IEEE 802.11ay devices with center frequencies of 58.32 GHz, 60.48 GHz, and 62.64 GHz. , 64.8 GHz, 66.96 GHz, 69.12 GHz, 7 consecutive 2.16 GHz channels of 71.28 GHz, occupying 1 to 4 consecutive 2.16 GHz channels.
  • CB 2.16 GHz Channel Bonding
  • six channels having a bandwidth of 2.16 GHz are 57.24 to 59.4 GHz, 59.4 to 61.56 GHz, 61.56 to 63.72 GHz, 63.72 to 65.88 GHz, 65.88 to 68.04 GHz, and 68.04 to 70.2 GHz.
  • the five channels having a bandwidth of 4.32 GHz that is, 57.24 to 61.56 GHz, 61.56 to 65.88 GHz, 65.88 to 70.2 GHz, 59.4 GHz to 63.72 GHz, and 63.72 to 68.04 GHz.
  • NR-U devices should be supported to support similar scalability to IEEE 802.11ay devices.
  • N6j can be less than 4096 or 8192, etc.
  • N4j*N5j is less than or equal to 400 MHz.
  • the NR-U uses an OFDM waveform in the 60 GHz unlicensed band, so that the OFDM baseband signal generation module can be multiplexed.
  • the generation of an OFDM baseband signal may include at least the following process:
  • the value on the effective subcarrier of each OFDM symbol can be either encoded or modulated data, or a modulated reference signal. There may be only a reference signal or only data on a certain OFDM, and there may be both a reference signal and a data signal.
  • Common modulation methods are ⁇ /2BPSK, QPSK, 64QAM, 256QAM and some non-uniform constellation modulation.
  • Common codes include RS code, Turbo code, LDPC code, and Polar code.
  • the process of the frequency domain signal of the fourth step to the time domain signal is implemented by IDFT.
  • IDFT is an integer power of 2
  • a fast algorithm using Radix-2 can be used.
  • Radix-4 can be used when the power is 4.
  • SC-FDMA when SC-FDMA is introduced in the uplink, a DFT point transmission signal that can be decomposed into an integer power of 2, 3, and 5 is used, and the receiving end receives the signal by using the corresponding IDFT point. Therefore, the number of OFDM waveform bits used by the NR-U in the unlicensed carrier does not exceed the parameters in the LTE and NR design ranges, and the IDFT module can be multiplexed to a large extent.
  • the IEEE 802.11ad device, and the IEEE 802.11ay device coexist in the 60 GHz band.
  • Ncb represents the number of consecutive transmissions of 2.16 GHz channels
  • N1 i *N2 i is close to the sampling rate of 1.760*NcbGHz.
  • N3 i The size of N3 i is directly related to the complexity of implementing IDFT or DFT. In order to achieve a similar implementation complexity on the licensed carrier and the unlicensed carrier, max(N3 i ) ⁇ max(N6 j ) should be satisfied.
  • N1 i *N3 i and N4 j *N6 j represent the sampling rate of the unlicensed carrier and the sampling rate of the licensed carrier, respectively, which determine the ADC and DAC clocks used in the authorized and unlicensed carriers in the transceiver. frequency.
  • N1 i *N3 i /N4 j *N6 j is an integer, such authorized carrier and unlicensed carrier can use the same primary crystal oscillator, then the same primary crystal oscillator can be used to transmit signals in the licensed frequency band and transmit signals in the unlicensed frequency band. Frequency, reduction requires maintenance of different clock complexity.
  • step S21 and step S22 may be performed first, a first signal is generated, and the first signal is sent on the authorized carrier.
  • the signal can also be a second signal and the second signal is transmitted on the unlicensed carrier.
  • the N1 i 15*2 k KHz
  • the k may be an integer greater than or equal to 4 and less than or equal to 8
  • the N3 i may be an integer power of 2.
  • N1 i , N2 i , and N3 i the following correspondence may exist between N1 i , N2 i , and N3 i :
  • Subcarrier spacing N1i
  • Number of available subcarriers N2i
  • IDFT points N3i
  • Sampling rate 480KHz 3744 4096 1.96 960kHz 1872 2048 1.96 1.92MHz 936 1024 1.96 3.84MHz 468 512 1.96 480KHz 7488 8192 3.93 960kHz 3744 4096 3.93 1.92MHz 1872 2048 3.93 3.84MHz 936 1024 3.93 960kHz 4800/6400 8192 7.86 1.92MHz 2400/3200 4096 7.86
  • the sampling rate subcarrier spacing N1 i * IDFT points N3 i .
  • the signal bandwidth that can be supported is larger and two consecutive 2.16 GHz adjacent 400 MHz bandwidths can be utilized.
  • N6 j 8192
  • N5 j 6600.
  • a spectrum utilization similar to the IEEE 802.11ay standard can be achieved.
  • the sampling rate is 7.86 GHz, which can handle the channel binding of 3*2.16 GHz and 4*2.14 GHz, and take the number of available subcarriers respectively.
  • the N1 i 15 * 2 k KHz
  • the k may be an integer greater than or equal to 4 and less than or equal to 8
  • the N3 may be a common multiple of 2 and 3.
  • N3 is less than or equal to the maximum value of N6.
  • the sampling rate in Table 1 may be ⁇ 2.16*Ncb GHz bandwidth
  • it is solved by expanding N3 i . Therefore, a constraint that N3 i is a common multiple of 2 and 3 is introduced. Therefore, the LTE uplink transmission can be multiplexed, and the DFT module is adopted in the SC-FDMA technology.
  • the factor of 3 can be used to further downsample on the terminal side, reducing the complexity of terminal implementation.
  • the number of specific available subcarriers is determined similarly to that of Table 1, and is kept close to the number of available subcarriers in the corresponding subcarrier spacing in Table 1.
  • the first row may have a subcarrier parameter and the first row in Table 1 may be close to the subcarrier parameter, satisfying a multiple of 36.
  • N1 i , N2 i , and N3 i the following correspondence may exist between N1 i , N2 i , and N3 i :
  • Subcarrier spacing N1 i
  • Number of available subcarriers N2 i
  • IDFT points N3 i
  • Sampling rate 480KHz 3456 5120 2.46
  • the sampling rate subcarrier spacing N1 i * IDFT points N3 i .
  • the N1 i 15*2 k KHz
  • the k may be an integer greater than or equal to 4 and less than or equal to 8
  • the N3 i may be a common multiple of 2 and 5.
  • N3 i is less than or equal to the maximum value of N6.
  • the sampling rate in Table 1 may be ⁇ 2.16*Ncb GHz bandwidth
  • N3 i is a common multiple of 2 and 5. Therefore, the LTE uplink transmission can be multiplexed, and the DFT module is adopted in the SC-FDMA technology.
  • the factor of 5 can be used to further downsample on the terminal side, reducing the complexity of terminal implementation.
  • the number of specific available subcarriers is determined similarly to that of Table 1, and is kept close to the number of available subcarriers in the corresponding subcarrier spacing in Table 1.
  • the first row may have a subcarrier parameter and the first row in Table 1 may be close to the subcarrier parameter, satisfying a multiple of 60.
  • N1 i , N2 i , and N3 i the following correspondence may exist between N1 i , N2 i , and N3 i :
  • Subcarrier spacing N1 i
  • Number of available subcarriers N2 i
  • IDFT points N3 i
  • Sampling rate 480KHz 3600 6144 2.95 960kHz 1800 3072 2.95 1.92MHz 900 1536 2.95 3.84MHz 450 768 2.95 960kHz 3600 6144 5.90 1.92MHz 1800 3072 5.90
  • the sampling rate subcarrier spacing N1 i * IDFT points N3 i .
  • the subcarrier spacing is 960KHz, which is suitable for 1.92MHz. Since 2160/1.992 and 2160/0.96 are integers, when a larger FFT point is used to expand multiple 2.16 GHz channels, only the number of occupied subcarriers can be changed, which can be reduced. Inter-subcarrier interference. In addition, due to the limitations of ADC and DAC, the resolution accuracy of ADCs and DACs that can reach sampling rates above 10 GHz is generally lower than that of ADCs and DACs with sampling rates around 1 GHz. Therefore, quantization errors are introduced, and therefore, OFDM parameters of a higher sampling rate are not provided.
  • the present application provides a flow of a method for transmitting a signal, where the network device in the flow corresponds to the Pcell base station or the Scell base station in FIG. 1, or corresponds to the first device in FIG.
  • the device may correspond to the UE in FIG. 1, or, corresponding to the second device in FIG.
  • the process is specifically as follows:
  • Step S31 The network device sends the first indication information to the terminal device on the authorized carrier or the unlicensed carrier.
  • the scheduling of the NR-U unlicensed carrier of the present application is different from the scheduling of the NR authorized carrier in:
  • the OFDM transmission parameters N1 i , N2 i , N3 i and the OFDM transmission parameters N4 j , N5 j , N6 j in the licensed carrier are different in the unlicensed carrier.
  • N1 i *N3 i >N4 j *N6 j it is suitable to introduce fine granularity in time and increase the chance of accessing the licensed spectrum.
  • the signaling overhead is increased.
  • the scheduling granularity in the unlicensed carrier is finer than the authorized spectrum, the resources of the unlicensed carrier can only be scheduled by scheduling signaling in the unlicensed carrier. Therefore, the corresponding scheduling signaling is sent in a certain scheduling period. To match the corresponding scheduling resources.
  • the number of OFDM that may also exist may be greater than the number of OFDMs in one of the scheduled particles in the NR. Therefore, this situation requires an extended indication of the chance of an OFDM symbol that may specifically start in the scheduling period. It can be pre-configured with high-level signaling. The way the physical layer is specifically activated. It can also be related to the type of business. For those that are demanding, match more chances of initial transmission of OFDM.
  • the range of OFDM symbols is changed from 1 to 14 OFDM to 1 to 14*2 5 , 1 to 14* on the 1 ms scheduling granularity of the access channel over time. 2 6 , 1 to 14 * 2 8 range. Then indicating that the downlink signal starts to have a larger range of symbols within 1 ms.
  • the specific indication method can be divided into multiple levels of instructions, specifically occupying 7 bits.
  • the original indication indicating 1 to 14 OFDM is multiplexed, and the coefficient indication related to the sampling rate is added, and 3 bits respectively indicate which segment in the specific processing compressed segment, and which symbol in each segment still uses the original indication. If it is specifically an even or odd time slot, it is represented by 1 bit, and specifically belongs to 1 to 7 ofdm symbols, and 3 bits are used.
  • the original indication of 1 to 14 OFDM indications may be omitted, and 6 or 7 bits may be directly used to indicate a specific symbol number. This saves 1 bit for a 5x sampling rate.
  • each OFDM symbol is too short in time.
  • the Cyclic Prefix (CP) length is characterized by the extended delay of the propagation channel and is not suitable for infinite compression. Therefore, a range of more CPs than the authorized carrier may be employed in the unlicensed carrier. That is, after the IDFT and P/S conversion modules described in FIG. 3a, there is also a module for inserting a CP. For the ADC module described in Figure 3b, there is also a module for de-CP. Unlike the normal CP in the licensed carrier, which occupies less than 10% of the overhead, the proportion of the CP of the unlicensed carrier in one OFDM symbol may be greater.
  • a case similar to the extended CP in LTE is given, that is, a case where there are 1 to 12 OFDM symbols in one slot, and a ratio of CP is 1/4. Since the subcarrier spacing is widened, the OFDM symbol changes in 1 ms to 1 to 12 * 2 5 , or 1 to 12 * 2 6 or 1 to 12 * 2 8 , and the indication range is similar.
  • the available subcarrier range is larger than the range in the licensed band. Therefore, this situation needs to extend the indication, the information bits of the frequency domain resources in the unlicensed frequency band.
  • the length of the code block transmitted in the corresponding resource is different:
  • the code block that can be transmitted in the transmission resource exceeds the maximum code block length in the licensed frequency band. This requires additional resources for control, storage, encoding or decoding. If it is desired to multiplex hardware or software resources in the NR licensed band, it is necessary to limit the code block length of the unlicensed carrier to the maximum code block length of the licensed carrier.
  • Step S32 The network device sends the second indication information to the terminal device on the unlicensed carrier.
  • the second indication information indicates the available subcarriers X i , N1 i *X i ⁇ 400 MHz of the terminal device in the frequency domain.
  • Step S32 The network device generates at least one first signal.
  • the process of generating the first signal by the network device can be referred to the description of generating the first signal in FIG. 2 above, and details are not described herein again.
  • Step S33 The network device sends the at least one first signal to the terminal device on the unlicensed carrier.
  • Step S34 The terminal device receives the first signal according to the granularity indicated by the first indication information.
  • Step S35 The terminal device sends a third signal to the network device according to the granularity indicated by the first indication information and the available subcarriers indicated by the second indication information.
  • the terminal device may send the third signal on the available subcarriers indicated by the second indication information, according to the granularity indicated by the first indication information.
  • the time-frequency resources of a certain terminal may be limited to be within a scheduling configuration granularity and indication range of the authorized carrier. .
  • a terminal does not support the scheduling granularity of 0.125 ms, then the scheduling signaling of the base station for the terminal does not appear in the scheduling signaling for 0.125 ms, and the terminal does not need to blindly check the physical downlink in the corresponding location.
  • Control Channel Physical Downlink Control Channel, PDCCH.
  • the power consumption of the ADC and DAC is related to the sampling rate.
  • the sampling rate in order for the signal to be received without aliasing, the sampling rate must be greater than the OFDM signal bandwidth. If a terminal ADC and DAC only support a maximum receive channel bandwidth of 400MHz. The base station needs to indicate the resources of the terminal within the 400 MHz bandwidth of the entire bandwidth, and the terminal can multiplex the ADC and DAC modules in the licensed carrier channel. This can greatly reduce the implementation complexity and power consumption of the terminal. Since the authorized carrier is around 30 GHz and the bandwidth is less than 400 MHz, the bandwidth-limited terminal can now completely multiplex the intermediate frequency of the licensed carrier, and the baseband processing unit receives the 60 GHz signal, requiring only an additional 60 GHz RF module. Greatly multiplex the authorized carrier hardware resources in the terminal equipment.
  • the subband size may be determined according to resources in the maximum bandwidth in the licensed frequency band, and 2.16 GHz is divided into multiple subbands that do not overlap.
  • the subcarrier spacing in the licensed spectrum is small, and the subcarrier spacing in 60 GHz is not large in the non-authorized frequency band, and the number of IDFTs may be the same or different.
  • the parameter conversion relationship between the sub-bands and the sub-bands is the same as that of the sub-carriers in the sub-band, that is, the sub-carrier spacing in the licensed spectrum is consistent, and the sampling rate is consistent with the configuration in the licensed spectrum.
  • the entire bandwidth is divided into six sub-bands, and the number of available sub-carriers in each sub-band can be divided into the middle division of LTE. For example, if there is 12 sub-carriers in the frequency of one RB, then 50 RBs are occupied here. .
  • the constraint on the licensed spectrum can support the Ndft points in the unlicensed spectrum (unlicensed spectrum sampling rate/authorized spectrum sampling rate), then each partition can be fixed, and the range of the sequence number can be determined. Which sub-band works.
  • a secondary indication is required to illustrate the subband.
  • Specific frequency resource location In the present application, a preferred indication method first indicates a resource of a subband, and indicates a resource in a specific subband.
  • the representation of the generated OFDM symbol in the frequency domain can be seen in FIG. It can be seen that the signal transmitted by the base station includes 6144 subcarriers, but only occupies 3600 subcarriers in the center, and uses an effective bandwidth of 1.728 GHz (slightly lower than the 1.83 GHz used in 11ad, so it can actually be used. More subcarriers, for example, consider 660 subcarriers per subband, sharing 3960 subcarriers, occupying an effective bandwidth of 1.9 GHz).
  • the terminal can occupy one or more of the 6 sub-bands that are fixedly divided, and the available sub-carriers of each sub-band are not overlapped (divided into 6 sub-areas by long dashed lines).
  • the base station directly divides 2.16 GHz into multiple sub-band partitions to transmit different schemes (the sub-bands do not overlap, and the guard bands are required between the sub-bands and the sub-bands), where the multiple sub-bands overlap each other. That is, the actual filter is filtered according to the dashed box. Although adjacent subcarrier signals are also received in the subband, the OFDM symbol subcarriers are mutually orthogonal. Therefore, after the time-frequency transform, the center of the 600 subcarriers is directly taken without introducing inter-subcarrier interference. This is also beneficial for terminals with broadband capabilities.
  • a 2.16 GHz filter can be used to obtain useful signals without the need for many sub-filters.
  • the useful sub-bands are OFDM-orthogonal.
  • the initial frequency sequence number and the occupied bandwidth may also be indicated.
  • the occupied bandwidth is matched with the maximum sampling rate that can be supported in the licensed spectrum, and may be 400 MHz, 200 MHz, 100 MHz, and the like.
  • the number of valid subcarriers occupied in the indicated divided bandwidth may be 400 MHz, 200 MHz, 100 MHz, and the like.
  • the method of fixed partitioning is relatively simple, and for equipment capabilities, the partitioning is pre-divided. It is indicated by the starting frequency sequence number and occupied bandwidth, which is flexible and does not require two-level indication.
  • step S31 may be performed earlier than step S32, or may be performed later than step S32.
  • the present application provides a flow of a method for transmitting a signal, where the network device in the flow corresponds to the Pcell base station or the Scell base station in FIG. 1, or corresponds to the first device in FIG.
  • the device may correspond to the UE in FIG. 1, or, corresponding to the second device in FIG.
  • the process is specifically as follows:
  • Step S41 The terminal device sends the report information to the network device on the authorized carrier.
  • the reporting information carries a field in which the terminal device supports an unlicensed carrier capability, and the field in which the terminal device supports the unlicensed carrier capability includes a parameter, a Determining, by the terminal device, at least one of a parameter for transmitting a bandwidth capability and a parameter for the terminal device supporting a capability for receiving a bandwidth;
  • the terminal device supports parameters of an unlicensed channel range, and may be specifically used to identify an unlicensed channel supported by the terminal device.
  • the center frequency points are 58.32 GHz, 60.48 GHz, 62.64 GHz, 64.8 GHz, 66.96 GHz, 69.12 GHz, and 7 consecutive 2.16 GHz channels of 71.28 GHz.
  • Some terminal devices have limited functions, such as smart wearable devices, and may only support some unlicensed channels. Therefore, the terminal device needs to report the unlicensed channels supported by the terminal devices to the network devices, so that the network devices are supported by the terminal devices.
  • the first signal is transmitted on the unlicensed channel.
  • the terminal device supports the parameter of the transmission bandwidth capability, and can be specifically used to describe the capability of the maximum supported transmission bandwidth of the terminal device, and the terminal device supports the parameter of the receiving bandwidth capability, which can be specifically used to represent the maximum of the terminal device.
  • the ability to receive bandwidth is supported so that the network device can schedule information for the terminal device within the capability of the terminal device to transmit/receive.
  • Step S42 The network device generates at least one first signal.
  • the frequency domain range of the first signal is less than or equal to the receiving bandwidth capability supported by the terminal device.
  • Step S43 The network device sends the at least one first signal to the terminal device on an unlicensed channel supported by the terminal device, where the unlicensed channel includes an unlicensed carrier.
  • the network device may determine an unlicensed channel supported by the terminal device according to the parameter that the terminal device supports the unlicensed channel range in the report information of the terminal device, and then, on the unlicensed channel supported by the terminal device, Sending at least one first signal. For example, if the terminal device in the report information supports the parameter of the unlicensed channel range, and the indicated unlicensed channel is 57.24-59.4 GHz, the network device may send the first signal on the unlicensed channel of 57.24-59.4 GHz.
  • the above method can enable the terminal equipment with limited capability to successfully use the unlicensed spectrum for communication, thereby improving the utilization rate of the unlicensed spectrum.
  • the present application provides a flow of a method for transmitting a signal, where a network device in the flow may correspond to the first device in FIG. 2, and the terminal device may correspond to the second device in FIG.
  • the burst signal SS-Burst may correspond to the first signal in FIG.
  • the process includes:
  • Step S51 The network device generates SS-Burst
  • SS-Burst consists of L L SS-Blocks, one SS-Block consists of primary synchronization signal (PSS), secondary synchronization signal (SSS) and physical broadcast channel (PBCH). composition.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the process of SS-Block is similar to the process of generating other OFDM symbols.
  • the first is to obtain the value on the effective subcarrier in the OFDM symbol.
  • the corresponding carrier in the OFDM symbol including the SS-Burst may be corresponding content data in the PSS, SSS or PBCH channel.
  • the design of the PSS and SSS sequences can be used in the design of the licensed spectrum.
  • the PSS can be generated by a 127-length m-sequence, and the corresponding generator polynomial can be x 7 + x 4 +1;
  • SSS It can be generated for two 127-length m-sequences, and the generator polynomials of the two m-polynomial x 7 +x+1, x 7 +x 4 +1.
  • the physical broadcast channel carries a first field, where the first field is a field that is not carried by the physical broadcast channel sent by the network device on the authorized carrier, or the first field is The second field is different, and the second field is a field corresponding to the first field carried by the physical broadcast channel sent by the network device on the authorized carrier.
  • the first field may indicate, for example, part of the important information indicated in the PDDCH, SIB1, or SIB2 in the authorized carrier. For example, in the current subframe, which are uplink resources and which are downlink resources. For example, information of a physical random access channel (PRACH) channel resource.
  • PRACH physical random access channel
  • the PBCH channel in the licensed spectrum may carry the System Frame Number (SFN), the time information in a radio frame, and the control resource set (Control Resourse Set). , CORESET) information, PDSCH scheduling information, UE fast camping information, cell ID extension information, tracking RS information, and the like.
  • SFN System Frame Number
  • CORESET Control Resourse Set
  • PDSCH scheduling information UE fast camping information
  • cell ID extension information cell ID extension information
  • tracking RS information tracking RS information
  • the SFN, the UE fast camping information, and the cell ID extension information may be notified to the terminal by the authorized carrier in the unlicensed carrier.
  • a larger subcarrier spacing may be used in the unlicensed carrier, and there may be more OFDM symbols in 1 ms. It is necessary to compensate for high-frequency path loss and it is necessary to train more beams. Therefore provide more SS-Block position in time. For a case where there are 14 or 12 symbols in a time slot, there are more possible transmission locations in the 5ms, 10ms period. However, considering that the unlisted spectrum is idle, it may occupy the first one or two OFDM symbols in each slot. Therefore, it is also necessary to allow the network device to transmit only part of the OFDM symbols, or the licensed carrier. The starting symbol is 1 OFDM symbol later. This makes it possible that the SS-Block cannot be sent completely.
  • the SS-Burst, PSS, SSS, PBCH arrangement relationship is also multiplexed with the definition in the NR-licensed carrier.
  • the PBCH may not be transmitted.
  • the network device Since the carrier transmission order PSS-PBCH-SSS-PBCH is currently authorized, if there are only 2 OFDM transmission opportunities, the network device is allowed to transmit a partial SS-Block containing only the PSS-SSS in the unlicensed carrier.
  • some SS-Blocks mainly indicate that this SS-Block occupies only 2 OFDM numbers, and the ordinary SS-Block occupies 4 OFDM numbers to distinguish.
  • Step S52 The network device sends the SS-Burst to the terminal device on the unlicensed carrier.
  • the network device may send the SS-Block by using 256 subcarriers of N2 available subcarrier centers in an unlicensed carrier, where N2 is an integer greater than or equal to 256.
  • the N2 i available subcarriers in the unlicensed carrier include at least one subband, and each subband includes a number of subcarriers greater than or equal to 256.
  • the network device may specifically send the SS-Block to the terminal device by using 256 subcarriers of each subband center.
  • the network device may use different antenna arrays to transmit PSS, SSS, and PBCH in multiple subbands.
  • N2 i available subcarriers in the unlicensed carrier include at least a first subband and a second subcarrier.
  • the network device may use the first antenna array in the first sub-band, send the PSS, SSS, and PBCH, and use the second antenna array in the second sub-band to send the PSS, SSS, and PBCH, the first antenna array is different from the second antenna array, and the first sub-band is different from the second sub-band.
  • the network device may adopt a third antenna array in the third subband,
  • the PSS, the SSS, and the PBCH are transmitted, and the PSS, the SSS, the PBCH, and the like are sent in the fourth sub-band by using the fourth antenna array, and details are not described herein.
  • the foregoing various situations are protected in the present application. Within the scope.
  • Method 1 The network device symmetrically transmits PSS and SSS in the DC carrier of the entire system, wherein the PSS and the SSS occupy 127 subcarriers.
  • the method of truncating reception is adopted. With the above method 1, the design in LTE can be reused.
  • Method 2 The network device transmits PSS and SSS at the center of each subband corresponding to the effective subcarrier, and the PSS and SSS occupy 127 subcarriers.
  • the PSS and SSS signals in each sub-band may have coefficients of +1, -1, +j, -j, and reduce the PAPR-Peak to Average Power Ratio (PAPR).
  • PAPR PAPR-Peak to Average Power Ratio
  • Method 3 The network device transmits the PSS and the SSS in a frequency hopping frequency according to a certain rule in the center of the effective subcarrier corresponding to each subband.
  • the number of available subcarriers in each subband is greater than 127 subcarriers.
  • the terminal device can receive the synchronization signal in the sub-band that works by itself, without performing frequency adjustment.
  • the discovery signal is transmitted using the Cat2 Listening Before Talk (LBT) method, that is, after detecting 25 ⁇ s of idle, the signal is sent immediately.
  • LBT Cat2 Listening Before Talk
  • the PSS/SSS/PBCH signals form an SS-Block, in which the PSS/SSS obtains the Physical Cell Identification (PCID), and the PBCH uses the beam identification to complete the downlink beam training.
  • PCID Physical Cell Identification
  • a total of 4 OFDM is required, and beam scanning requires multiple SS-Blocks to be sent in multiple beam directions.
  • the base station transmits an SS-Block, and the detection is sent if 25 ⁇ s is detected before sending each SS-Block. This causes a lot of beam directions to fail to complete transmission due to beam collisions. Therefore, channel idle needs to be detected in units of SS-Burst. In an SS-Burst, the channel is detected to be idle only before the first SS-Block is transmitted. The channel idle is no longer detected until multiple SS-Blocks in the SS-Burst are transmitted.
  • the time taken by the SS-burst at 60 GHz can not exceed the maximum occupied channel time, such as 1 ms, 2 ms, 5 ms, 10 ms.
  • the maximum number of SS-Blocks may be limited during the maximum occupied channel time.
  • the above two problems have the following solutions: For SS-Burst, different maximum channel occupation times are adopted, and different priority LBTs are used.
  • the maximum occupancy time in SS-burst is a function of the number of SS-Blocks. Assume that in 1ms, the maximum number of SS-blocks allowed to be transmitted is L.
  • the beam that the base station needs to train is LgNB. When LgNB>L, the base station needs to take the resource period of LgNB/L ms after training all the beams. If the base station wants to complete all the beams in one training, it needs to detect according to the detection method of the maximum channel constraint. Refer to the method of designing different priority levels in Cat-4.
  • the time window for waiting for detection is also selected. The bigger. It is also possible to distribute the beam LgNR to be trained by the base station in different time periods, each time period is the maximum occupied channel time of 1 ms, and then, in each time period, multiple SS-Blocks sent need not be detected, only The detection mode of Cat2 is used when the first SS-Block is sent.
  • the terminal device has only one receiving RF channel in the 60 GHz band, and the channel has a bandwidth of less than 2.16 GHz.
  • a more straightforward approach is to not allow such limited capability terminals to send upstream signals. This is more conducive to coexistence.
  • For sub-band terminals that cannot be transmitted using 60 GHz there is no need to design a 60 GHz transmit RF channel.
  • For low-energy equipment further cost savings can be achieved.
  • the present invention also provides a solution for assisting a terminal with limited capability to transmit an uplink signal.
  • the present application provides a flow of a method for transmitting a signal.
  • the network device in the flow may be for the first device in FIG. 2, and the terminal device may correspond to the second device in FIG. It may correspond to the first signal in FIG. 2 or to the second signal in FIG. 2.
  • the process includes:
  • Step S61 The network device generates a scheduling signal, where the scheduling signal is used to indicate that the total bandwidth of the uplink signals sent by the multiple terminal devices on the unlicensed carrier is greater than or equal to 70% of 2.16 GHz;
  • Step S62 The network device sends a scheduling signal to the multiple terminal devices on the unlicensed carrier or the authorized carrier.
  • the network device may schedule a plurality of terminal devices that are close to each other to transmit subband signals, and the total bandwidth of the subband signals transmitted by the plurality of terminal devices is greater than or equal to 70% of the unlicensed channel bandwidth (2.16 GHz).
  • the received beam identifiers are consistent, the energy difference is less than the threshold or the TA difference is less than the threshold. From a positioning point of view, the beam angle and the distance to the base station determine the proximity of these terminal locations. Multiple UEs can be regarded as one UE, so that the terminals of this cluster transmit signals to meet the requirements of channel bandwidth.
  • the above method can be used to make the sub-band signal transmitted by the terminal device meet the requirements of the unlicensed system.
  • the process shown in FIG. 2 may be specifically applied to a terminal device to send a signal to a Pcell base station or an Scell base station.
  • the first device in the process shown in FIG. 2 corresponds to FIG. 1 .
  • the UE, the second device corresponds to the Pcell base station or the Scell base station in FIG.
  • the present application provides a flow of a method for transmitting a signal.
  • the terminal device in the process may be applicable to the first device in FIG. 2, and the network device may correspond to the second device in FIG.
  • the training signal corresponds to the first signal in FIG.
  • the process includes:
  • Step S71 After receiving the network device scheduling signal, the terminal device obtains a fifth signal.
  • the fifth signal may be specifically a reference signal, and the fifth signal occupies consecutive P available subcarriers, and is transformed into a time domain by using an N3 i point IDFT, and the P is less than or equal to N2 i //W , P and W are integers;
  • the reference signal can be designed as a low PAPR signal, such as a Zadeoff-chu sequence, or other low computational complexity signal.
  • Step S72 The terminal device performs direct spreading on the fifth signal to obtain a sixth signal, and the spreading factor of the direct spreading of the terminal device is W.
  • the spread spectrum code used is implemented by a Had code. After spreading, the signal bandwidth satisfies 70% of the unlicensed channel bandwidth (2.16 GHz).
  • Step S73 The terminal device sends the sixth signal to the network device on the unlicensed carrier.
  • the network device may despread the sixth signal to obtain a fifth signal, and the despreading despreading factor may be W.
  • the network device when the fifth signal is a reference signal, the network device performs channel estimation, synchronization, and phase tracking parameters, demodulation data, and the like according to the fifth signal.
  • the terminal device can transmit the subband signals on at least one subband of the scheduling signal schedule, and each subband signal occupies less than 70% of the 2.16 GHz bandwidth. Further, before transmitting the sub-band OFDM signal, the terminal device transmits the reference signal in the preceding K3 OFDM symbols by using an analog baseband sequence direct spreading method, so that the sub-band signal is spread to 2.16 GHz. The role is to allow 11ad devices to perform energy detection at 2.16 GHz bandwidth for coexistence purposes.
  • the process shown in FIG. 2 may be specifically applied to a terminal device to send a signal to a Pcell base station or an Scell base station.
  • the first device in the process shown in FIG. 2 corresponds to FIG. 1 .
  • the UE, the second device corresponds to the Pcell base station or the Scell base station in FIG.
  • the present application provides a flow of a method for transmitting a signal.
  • the terminal device in the process may be applicable to the first device in FIG. 2, and the network device may correspond to the second device in FIG.
  • the training signal corresponds to the first signal in FIG.
  • the process includes:
  • Step S81 The terminal device generates an uplink beam training signal.
  • Step S82 The terminal device sends the uplink beam training signal on an unlicensed carrier.
  • the terminal in high frequencies, the terminal must obtain its own transmission parameters before transmitting the uplink signal.
  • the 60 GHz and other licensed spectrums are far apart. This makes it impossible to fully reuse the transmit parameters in the licensed spectrum. Including the parameters of the uplink transmit power, the uplink TA advance, and the uplink transmit beam. Although these parameters are not re-acquired before each transmission, the equipment that has lost the above parameters is reserved for the terminal to provide initial uplink synchronization resources. Therefore, if the sequence of this channel multiplexes the preamble design in the PRACH channel in the licensed spectrum, there will be a case where the bandwidth of the transmitted signal is less than 2.16*70%.
  • the method in step S61, S62 is required to schedule a plurality of terminals with similar positions to be transmitted in different sub-bands.
  • the preamble spread spectrum signal may also be transmitted by the method of steps S71 and S72. That is, the preamble signal in the licensed spectrum is used as the fifth signal, and the sixth signal after spreading is used to satisfy the bandwidth requirement.
  • the uplink beam training signal can be transmitted multiple times.
  • the bandwidth-limited terminal can also use the unlicensed spectrum, thereby obtaining higher throughput.
  • the terminal device needs to perform channel state detection to obtain the channel idle and occupied before transmitting the uplink data.
  • Terminals with limited capabilities do not have the ability to detect 2.16 GHz channels.
  • the application provides that when a terminal with limited scheduling capability transmits, the uplink resource of the terminal with limited capability can be allocated in the maximum transmission time of the base station transmission.
  • the capability-limited terminal only performs energy detection of the sub-band before transmitting, and transmits the uplink signal in the time-frequency resource allocated by the base station if idle.
  • the present application further provides a process of a method for sending a signal, where a terminal device in the process may correspond to the first device in FIG. 2, and the network device may correspond to the second device in FIG.
  • the authorized carrier includes at least one subband.
  • the process includes:
  • Step S91 The terminal device detects whether a sub-band of the scheduling signal scheduling is idle. If it is idle, step S92 is performed. Otherwise, it continues to detect whether another sub-band of the scheduling signal scheduling is idle, and sequentially cycles until all the sub-scheduled scheduling signals are detected. band.
  • the terminal device can listen through one or more sub-band RF channels to obtain the detected power value. Since the capability-limited terminal does not have the ability to receive the entire 2.16 GHz channel bandwidth at the same time, if the terminal device needs time-sharing or receives signals in each sub-band separately through multiple receiving sub-band RF channels. And comparing the weighted average value of the detected multiple power values with the preset power, when the detected power value is greater than the preset power, the current sub-band RF channel is considered to be busy; otherwise, the current sub-band RF is considered The channel is idle. Since the received signal energy in the 2.16 GHz channel cannot be obtained at one time, it is different from the terminal having the channel bandwidth capability of 2.16 GHz. A terminal with limited capabilities needs to have a longer listening time or a higher preset power.
  • the bandwidth of the sub-band RF channel is consistent with the bandwidth capability of the licensed spectrum, such as 500 MHz, 400 MHz, 200 MHz or 100 MHz.
  • Step S92 The terminal device sends a subband signal to the network device on the subband.
  • a broadband-limited terminal can also communicate using an unlicensed spectrum, thereby making the throughput of the terminal device higher.
  • FIG. 12 is a schematic structural diagram of a first device involved in the foregoing embodiment of the present application.
  • the first device may be the UE, the Pcell base station or the Scell base station in FIG. 1, and the first device in FIG. 2.
  • the first device 120 may include:
  • the processor 121 is configured to generate, according to the ith set of parameters in the first parameter, at least one first signal, where the first parameter includes a set of parameters, and the ith set of parameters includes a subcarrier interval of N1 i Hz, available Number of subcarriers N2 i , discrete Fourier transform IDFT point number N3 i , I ⁇ i ⁇ 1;
  • the transceiver 122 is configured to send the at least one first signal to the second device on the unlicensed carrier;
  • the processor 121 is further configured to generate at least one second signal according to the jth parameter of the second parameter, where the second parameter includes a J set parameter, and the jth set parameter includes a subcarrier interval N4 j , available Number of subcarriers N5 j , number of IDFT points N6 j , J ⁇ j ⁇ 1;
  • the transceiver 122 is further configured to send the at least one second signal to the second device according to the authorized carrier, where the N1 i , N2 i , N3 i , N4 j , N5 j , N6 j , I, and J All are integers, N1 i *N3 i is greater than or equal to 1.512 GHz, max(N1 i ) ⁇ max(N4 j ), max(N3 i ) ⁇ max(N6 j ).
  • FIG. 13 is a schematic diagram of a possible structure of a second device involved in the foregoing embodiment of the present application.
  • the second device may be the UE, the Pcell base station, or the Scell base station in FIG. 1, and the second device in FIG.
  • the second device 130 includes:
  • the transceiver 131 is configured to receive, on the unlicensed carrier, the at least one first signal sent by the first device, where the first signal is generated according to the i-th parameter in the first parameter, where the first parameter includes a set of parameters, the i-th set of parameters including subcarrier spacing N1 i Hz, the number of available subcarriers N2 i , discrete Fourier transform IDFT points N3 i , I ⁇ i ⁇ 1;
  • the transceiver 131 is further configured to receive, on the authorized carrier, the at least one second signal sent by the first device, where the second signal is generated according to the jth parameter in the second parameter, the second parameter
  • the J sets of parameters are included, and the jth set of parameters includes a subcarrier spacing N4 j , a number of available subcarriers N5 j , an IDFT point number N6 j , J ⁇ j ⁇ 1, and the N1 i , N2 i , N3 i , N4 j , N5 j , N6 j , I and J are integers, N1 i * N3 i is greater than or equal to 1.512 GHz, max(N1 i ) ⁇ max(N4 j ), max(N3 i ) ⁇ max(N6 j );
  • the processor 132 is configured to process the first signal and the second signal.
  • FIG. 14 is a schematic diagram showing a possible structure of a base station according to the foregoing embodiment of the present application.
  • the base station may be the Pcell base station or the Scell base station in FIG. 1, the first device or the second device in FIG.
  • the base station includes a transceiver 141 and a controller/processor 142.
  • the transceiver 141 can be used to support the base station to send and receive information with the terminal device in the foregoing embodiment, and to support radio communication between the base station and the core network device.
  • the controller/processor 142 is configured to perform various functions for communicating with terminal devices and core network devices.
  • the uplink signal from the terminal device is received via the antenna, demodulated by the transceiver 141, and further processed by the controller/processor 142 to recover the service data and signaling information transmitted by the terminal device.
  • traffic data and signaling messages are processed by controller/processor 142 and mediated by transceiver 141 to generate downlink signals for transmission to the UE via the antenna.
  • the controller/processor 142 is further configured to perform a method for transmitting a signal as described in the foregoing embodiment, generating at least one first signal according to an i-th set parameter in the first parameter, and transmitting the at least one on an unlicensed carrier
  • the first signal generates at least one second signal according to the jth parameter of the two parameters, and the at least one second signal is developed on the authorized carrier; or the method for receiving the signal described in the foregoing embodiment is performed, and the method is not authorized.
  • the controller/processor 142 is also operative to perform the processes involved in the base station of Figures 4-10 and/or other processes for the techniques described herein.
  • the base station can also include a memory 143 that can be used to store program codes and data for the base station.
  • the base station may also include a communication unit 144 for supporting the base station to communicate with other network entities, for example, with a core network device.
  • Figure 14 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present application are within the scope of the present application.
  • FIG. 15 is a simplified schematic diagram showing a possible design structure of a terminal device according to an embodiment of the present application.
  • the terminal device may be the Pcell base station or the Scell base station in FIG. 1, and the first device or the second device in FIG. device.
  • the terminal device includes a transceiver 151, a controller/processor 152, and a memory 153 and a modem processor 154.
  • Transceiver 151 conditions (e.g., analog conversion, filtering, amplifying, upconverting, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Transceiver 151 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1541 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1542 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • the decoder 1543 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal device.
  • Demodulator 1544 processes (e. g., demodulates) the input samples and provides symbol estimates.
  • Encoder 1541, modulator 1542, decoder 1543, and demodulator 1544 may be implemented by a composite modem processor 154. These units are processed according to the wireless technology employed by the radio access network (eg, access technologies for LTE and other evolved systems).
  • the controller/processor 152 controls and manages the actions of the terminal device for performing the processing performed by the terminal device in the above embodiment.
  • the terminal device may be configured to perform the method for transmitting a signal as described in the foregoing embodiment, generate at least one first signal according to the i-th set parameter in the first parameter, and send the at least one first signal on the unlicensed carrier, according to The j-th set of the two parameters, the at least one second signal is generated, and the at least one second signal is developed on the authorized carrier; or the method for receiving the signal described in the foregoing embodiment is performed, and the method is received on the unlicensed carrier Determining the at least one first signal, receiving the at least one second signal on the authorized carrier, and performing corresponding processing on the first signal and the second signal.
  • the controller/processor 152 can be used to support the terminal device in performing the content of the terminal devices involved in Figures 4-10.
  • the memory 153 is used to store program codes and data for the terminal device.
  • Embodiments of the present application also provide a readable storage medium comprising instructions, when executed on a communication device, causing the communication device to perform the method of transmitting a signal as described above, or a method of receiving a signal.
  • Embodiments of the present application also provide a chip connected to a memory for reading and executing a software program stored in the memory to implement the above method of receiving a signal.
  • Embodiments of the present application also provide a chip connected to a memory for reading and executing a software program stored in the memory to implement the above method of transmitting a signal.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种发送信号的方法及设备,该方法包括:第一设备根据第一参数中的第i套参数,生成至少一个第一信号;所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号;所述第一设备根据第二参数中的第j套参数,生成至少一个第二信号;所述第一设备根据在授权载波上向所述第二设备发送所述至少一个第二信号,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j);采用本申请的方法及设备,可在满足60GHz频段共存要求的前提下,复用5G授权频段中的硬件或软件。

Description

一种发送信号的方法及设备
本申请要求在2017年8月29日提交中国专利局、申请号为201710756460.0、发明名称为“一种发送信号的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种发送信号的方法及设备。
背景技术
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术是无线通信常用的技术,并且广泛的应用在不同的通信系统中,比如使用授权频谱的第3代合作计划(3rd Generation Partnership Project,3GPP)系统,以及使用非授权频谱的无线高保真(Wireless Fidelity,WIFI)系统等。其中,在3GPP的长期演进(Long Term Evolution,LTE)系统中,下行信号采用OFDM波形,上行信号采用单载波频分复用(Single Carrier–Frequency Division Multiplex Access,SC-FDMA)波形。而在第五代(5 Generation,5G)的新无线电(New Radio,NR)中,提出上行波形和下行波形都采用OFDM波形的架构。而电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11系列标准,从IEEE 802.11a开始采用OFDM波形。后续演进的版本IEEE 802.11n,IEEE 802.11ac以及IEEE 802.11ax一直沿用OFDM波形。
随着移动通信技术的发展,对带宽的需求日益扩大。在LTE演进过程中,提出授权辅助接入(License Assistant Access,LAA)的研究课题,所谓LAA即利用授权载波辅助非授权载波的接入。在使用授权频谱的3GPP系统中,引入了可以使用非授权频谱的机制。其中,针对6GHz以下频谱中LAA技术和增强的LAA(Enhanced LAA,eLAA)技术,LTE系统和WIFI系统都使用了OFDM波形,且都使用了20MHz系统带宽。LTE中的LAA技术和eLAA(Enhanced LAA)技术沿用LTE中OFDM的参数,即系统带宽为20MHz,子载波间隔为15KHz,逆傅里叶变换(IFFT)点数为2048点。这样的设计可以使得基站和终端无论在授权载波上工作,还是非授权载波上工作,都可以采用相同的基带处理单元,尽量的复用LTE软件和硬件。
为了进一步提高5G的峰值速率,5G标准中进一步扩大了可使用的授权频谱范围,不仅引入了新的6GHz以下频段,还引入了6GHz以上新的授权频段。但由于授权频谱的稀缺性,在授权频段中,NR采用最大的系统带宽仅为400MHz。OFDM的传输参数除了支持LTE中所支持的15KHz的子载波间隔,还支持以下5种子载波间隔,分别为30KHz,60KHz,120KHz,240KHz,480KHz,而支持的IFFT最大点数,目前通过的能力为至少支持扩展到4096。
类似的,在5G中NR非授权(NR Unlicence,NR-U)课题中,也希望在5G授权频谱的基础上,引入使用非授权频谱的机制。并且把使用非授权的频谱范围扩大,由原来LAA和eLAA中支持的6GHz以下的5GHz,扩展到6GHz以上的非授权频谱,比如37GHz和60GHz等。和其他频段不同,60GHz中已经存在的设备如IEEE 802.11ad的设备的系统带 宽是2.16GHz,必选项是单载波波形,OFDM波形仅为可选波形。其中,IEEE 802.11ad中单载波波形是指传输参数为采样频率是1760MHz,每512个采样点形成一个单载波块,每个单载波块中64个采样点为参考信号,剩下448个采样点传输数据。IEEE 802.11ad中OFDM波形是指传输参数为子载波间隔是5.15625MHz,IFFT点数为512点,可用子载波为355个子载波,所述355个子载波包括336个数据子载波,16个导频子载波,3个直流子载波。
如果NR-U设备使用60GHz非授权频段,沿用5G授权频谱中OFDM波形中的参数,造成2.16GHz带宽被分成多个400MHz带宽,或者400MHz以下的带宽。使得仅具有2.16GHz带宽能量检测的IEEE 802.11ad设备无法准确获得频谱占用或空闲的情况,对现有设备IEEE 802.11ad使用60GHz频谱造成影响。如果NR-U沿用60GHz非授权频谱中单载波参数或OFDM参数,造成参数和5G授权频谱OFDM参数没有任何关系,无法复用5G授权频段中硬件或软件。
因此需要在NR-U给出一种波形参数,使得既满足60GHz频段共存要求,又可以复用5G授权频段中的硬件或软件。
发明内容
本申请提供一种发送信号的方法及设备,以在满足60GHz频段共存要求的前提下,复用5G授权频段中的硬件或软件。
第一方面,提供一种发送信号的方法,包括:第一设备根据第一参数中的第i套参数,生成至少一个第一信号,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号;所述第一设备根据第二参数中的第j套参数,生成至少一个第二信号,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1;所述第一设备根据在授权载波上向所述第二设备发送所述至少一个第二信号,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
在一种可能的设计中,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2的整数次幂;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和3的公倍数;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和5的公倍数。、
应当指出,在本申请中,采用上述参数所生成的第一信号,可在满足60GHz非授权频段共存的要求的前提下,复用5G授权频段中的硬件和软件要求。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;在所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号之前,所述方法还包括:所述网络设备在授权载波上或非授权载波上向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度。
应当指出,在本申请中,可通过限制某个终端被调度时频资源都处于不超过授权载波中的调度配置颗粒度和指示范围内。复用现有的动态调度信息,和终端的授权载波的硬件资源。
在一种可能的设计中,在所述第一设备在非授权载波上向第二设备发送所述至少一个 第一信号之前,所述方法还包括:所述网络设备在非授权载波上向所述终端设备发送第二指示信息,所述第二指示信息用于指示终端设备在频域上的可用子载波X i,所述N1 i*X i<400MHz。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;在所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号之前,所述方法还包括:所述网络设备在授权载波上接收所述终端设备的上报信息,所述上报信息中携带有所述终端设备支持非授权载波能力的字段,所述终端设备支持非授权载波能力的字段中包括所述终端设备支持非授权信道范围的参数、所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:所述网络设备在所述终端设备所支持的非授权信道上向所述终端设备发送所述至少一个第一信号,所述非授权信道中包括非授权载波,所述第一信号的频域范围小于等于所述终端设备所支持的接收带宽能力。
应当指出,在本申请中,可使得能力受限的终端设备,也可成功利用非授权频谱进行通信,从而提高非授权频谱的利用率。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号中包括同步块信号SS-Block,所述N2 i大于等于256;所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:所述网络设备利用所述非授权载波中N2 i个可用子载波中心的256个子载波,向所述终端设备发送所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号包括SS-Block,且所述非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带所包括子载波的数目大于等于256;所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:所述网络设备利用每个子带中心的256个子载波向所述终端设备发送所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括多个主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH,所述非授权载波中的N2 i个可用子载波中至少包括第一子带和第二子带;
所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:所述第一设备采用第一天线阵列在所述第一子带中,发送所述PSS、SSS以及PBCH;所述第一设备采用第二天线阵列在所述第二子带中,发送所述PSS、SSS以及PBCH,所述第一天线阵列与所述第二天线阵列不同,所述第一子带与所述第二子带不同。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号至少包括PBCH;所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:所述网络设备在非授权载波上向所述终端设备发送所述PBCH,所述PBCH中携带有第一字段,所述第一字段为所述网络设备在授权载波上所发送的PBCH中未携带的字段,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的PBCH所携带的与所述第一字段所对应的字段。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括调度信号;
所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:所述网 络设备在非授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;或者,所述第一设备为网络设备,所述第二设备为终端设备,所述第二信号包括调度信号;
所述第一设备在授权载波上向第二设备发送所述至少一个第二信号,包括:所述网络设备在授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%。
在一种可能的设计中,所述网络设备在向多个终端设备发送调度信号后,所述方法还包括:所述网络设备在非授权载波上接收所述终端设备发送的第六信号,所述第六信号的带宽大于等于70%的2.16GHz;所述网络设备对接收到的第六信号进行解扩,获得第五信号,所述解扩的解扩因子为W,所述第五信号占用连续的P个可用子载波,所述P小于等于N2 i/W,所述P和W均为整数。
在一种可能的设计中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一信号包括上行波束训练信号。
第二方面,提供一种接收信号的方法,包括:第二设备在非授权载波上接收第一设备发送的至少一个第一信号,所述第一信号为根据第一参数中的第i套参数所生成的,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;所述第二设备在授权载波上接收所述第一设备发送的至少一个第二信号,所述第二信号为根据第二参数中的第j套参数所生成的,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1,且所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
在一种可能的设计中,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2的整数次幂;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和3的公倍数;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和5的公倍数。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;在所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号之前,所述方法还包括:所述终端设备在授权载波上或非授权载波上接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度,相邻颗粒度的间隔为1/2 k4ms,所述相邻颗粒度的间隔中包括12*2 k5个OFDM符号,所述k4*k5=k,或相邻颗粒度的间隔为1/2 k2ms,所述相邻颗粒度的间隔中包括14*2 k3个OFDM符号k2*k3=k;所述终端设备在非授权载波上接收所述终端设备发送的至少一个第一信号,包括:所述终端设备根据所述第一指示信息所指示的颗粒度,在非授权载波上接收所述第一信号。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;在所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号之前,所述方法还包括:所述终端设备在非授权载波上接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备在频域上的可用子载波X i,所述N1 i*X i<400MHz。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;在所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号之前,所述方法还包括: 所述终端设备在授权载波上发送上报信息,所述上报信息中携带有所述终端设备支持非授权信道范围的参数,所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号,包括:所述终端设备在所支持的非授权信道上接收所述第一设备发送的所述至少一个第一信号,所述非授权信道中包括非授权载波,所述第二信号的频域范围小于等于所述终端设备所支持的接收带宽能力。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号中包括同步块信号SS-Block,所述N2 i大于等于256;第二设备在非授权载波上接收第一设备发送的至少一个第一信号,包括:所述终端设备利用所述非授权载波中N2 i个可用子载波中心的256个子载波,接收所述第一设备发送的所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号包括SS-Block,且所述非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带所包括子载波的数目大于等于256;所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号,包括:所述终端设备利用每个子带中心的256个子载波,接收所述网络设备发送的所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号至少包括物理广播信道PBCH;所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号,包括:所述终端设备在非授权载波上接收所述网络设备发送的PBCH,所述PBCH中携带有第一字段,所述第一字段为网络设备在授权载波上所发送的PBCH中未携带的字带,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的PBCH所携带的与所述第一字段所对应的字段。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括调度信号;所述第二设备在非授权载波上接收第一设备发送的至少一个第一信号,包括:所述终端设备在非授权载波上,接收所述网络设备所发送的调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;或者,所述第一设备为网络设备,所述第二设备为终端设备,所述第二信号包括调度信号;所述第二设备在授权载波上接收第一设备发送的至少一个第二信号,包括:所述终端设备在授权载波上,接收所述网络设备所发送的调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%。
在一种可能的设计中,所述方法还包括:所述终端设备在接收到所述调度信号后,获得第五信号,所述第五信号占用连续的P个可用子载波;所述终端设备对所述第五信号进行直接扩频,获得第六信号,所述直接扩频的扩频因子为W,所述第六信号的带宽大于等于70%的2.16GHz,所述P小于等于N2i/W,所述P和W均为整数;所述终端设备在非授权载波上向所述网络设备发送所述第六信号。
在一种可能的设计中,所述终端设备在非授权载波上向所述终端设备发送所述第六信号后,所述方法还包括:所述终端设备在所述调度信号调度的至少一个子带上发送子带信号,所述子带信号的带宽小于70%的2.16GHz。
在一种可能的设计中,所述终端设备在所述调度信号调度的至少一个子带上发送子带 信号,包括:所述终端设备检测所述调度信号调度的一子带信号是否空闲;所述终端设备在所述子带空闲时,在所述子带上向网络设备发送子带信号。
在一种可能的设计中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一信号包括上行波束训练信号。
第三方面,提供一种第一设备,包括:处理器,用于根据第一参数中的第i套参数,生成至少一个第一信号,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;收发器,用于在非授权载波上向第二设备发送所述至少一个第一信号;所述处理器,还用于根据第二参数中的第j套参数,生成至少一个第二信号,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1;所述收发器,还用于根据在授权载波上向所述第二设备发送所述至少一个第二信号,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
在一种可能的设计中,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2的整数次幂;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和3的公倍数;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和5的公倍数。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;所述收发器还用于:在授权载波上或非授权载波上向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度。
在一种可能的设计中,所述收发器还用于:在非授权载波上向所述终端设备发送第二指示信息,所述第二指示信息用于指示终端设备在频域上的可用子载波X i,所述N1 i*X i<400MHz。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;所述收发器还用于:在授权载波上接收所述终端设备的上报信息,所述上报信息中携带有所述终端设备支持非授权载波能力的字段,所述终端设备支持非授权载波能力的字段中包括所述终端设备支持非授权信道范围的参数、所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:在所述终端设备所支持的非授权信道上向所述终端设备发送所述至少一个第一信号,所述非授权信道中包括非授权载波,所述第一信号的频域范围小于等于所述终端设备所支持的接收带宽能力。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号中包括同步块信号SS-Block,所述N2 i大于等于256;所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:利用所述非授权载波中N2 i个可用子载波中心的256个子载波,向所述终端设备发送所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号包括SS-Block,且所述非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带所包括子载波的数目大于等于256;所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体 用于:利用每个子带中心的256个子载波向所述终端设备发送所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括多个主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH,所述非授权载波中的N2 i个可用子载波中至少包括第一子带和第二子带;所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:采用第一天线阵列在所述第一子带中,发送所述PSS、SSS以及PBCH;采用第二天线阵列在所述第二子带中,发送所述PSS、SSS以及PBCH,所述第一天线阵列与所述第二天线阵列不同,所述第一子带与所述第二子带不同。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号至少包括PBCH;所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:在非授权载波上向所述终端设备发送所述PBCH,所述PBCH中携带有第一字段,所述第一字段为所述网络设备在授权载波上所发送的PBCH中未携带的字段,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的PBCH所携带的与所述第一字段所对应的字段。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括调度信号;所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:在非授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;或者,所述第一设备为网络设备,所述第二设备为终端设备,所述第二信号包括调度信号;所述收发器在授权载波上向第二设备发送所述至少一个第二信号时,具体用于:在授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%。
在一种可能的设计中,所述收发器,还用于:在非授权载波上接收所述终端设备发送的第六信号,所述第六信号的带宽大于等于70%的2.16GHz;所述处理器,还用于对接收到的第六信号进行解扩,获得第五信号,所述解扩的解扩因子为W,所述第五信号占用连续的P个可用子载波,所述P小于等于N2 i/W,所述P和W均为整数。
在一种可能的设计中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一信号包括上行波束训练信号。
第四方面,提供一种第二设备,包括:收发器,用于在非授权载波上接收第一设备发送的至少一个第一信号,所述第一信号为根据第一参数中的第i套参数所生成的,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;所述收发器,还用于在授权载波上接收所述第一设备发送的至少一个第二信号,所述第二信号为根据第二参数中的第j套参数所生成的,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1,且所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j);处理器,用于对所述第一信号和所述第二信号进行处理。
在一种可能的设计中,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2的整数次幂;或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和3的公倍数;或者,所述N1 i=15*2 kKHz,所述k为大于等于4, 小于等于8的整数,所述N3 i为2和5的公倍数。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;所述收发器,还用于:在授权载波上或非授权载波上接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度,相邻颗粒度的间隔为1/2 k4ms,所述相邻颗粒度的间隔中包括12*2 k5个OFDM符号,所述k4*k5=k,或相邻颗粒度的间隔为1/2 k2ms,所述相邻颗粒度的间隔中包括14*2 k3个OFDM符号k2*k3=k;所述收发器在在非授权载波上接收所述终端设备发送的至少一个第一信号时,具体用于:根据所述第一指示信息所指示的颗粒度,在非授权载波上接收所述第一信号。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;所述收发器,还用于:在非授权载波上接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备在频域上的可用子载波X i,所述N1 i*X i<400MHz。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备;所述收发器,还用于:在授权载波上发送上报信息,所述上报信息中携带有所述终端设备支持非授权信道范围的参数,所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;所述收发器在非授权载波上接收第一设备发送的至少一个第一信号时,具体用于:在所支持的非授权信道上接收所述第一设备发送的所述至少一个第一信号,所述非授权信道中包括非授权载波,所述第二信号的频域范围小于等于所述终端设备所支持的接收带宽能力。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号中包括同步块信号SS-Block,所述N2 i大于等于256;所述收发器在非授权载波上接收第一设备发送的至少一个第一信号时,具体用于:利用所述非授权载波中N2 i个可用子载波中心的256个子载波,接收所述第一设备发送的所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号包括SS-Block,且所述非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带所包括子载波的数目大于等于256;所述收发器在非授权载波上接收第一设备发送的至少一个第一信号时,具体用于:利用每个子带中心的256个子载波,接收所述网络设备发送的所述SS-Block。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号至少包括物理广播信道PBCH;所述收发器在非授权载波上接收第一设备发送的至少一个第一信号时,具体用于:在非授权载波上接收所述网络设备发送的PBCH,所述PBCH中携带有第一字段,所述第一字段为网络设备在授权载波上所发送的PBCH中未携带的字带,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的PBCH所携带的与所述第一字段所对应的字段。
在一种可能的设计中,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括调度信号;所述收发器在非授权载波上接收第一设备发送的至少一个第一信号时,具体用于:在非授权载波上,接收所述网络设备所发送的调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;或者,所述第一设备为网络设备,所述第二设备为终端设备,所述第二信号包括调 度信号;
所述收发器在授权载波上接收第一设备发送的至少一个第二信号时,具体用于:在授权载波上,接收所述网络设备所发送的调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%。
在一种可能的设计中,所述设备还包括:处理器,用于在接收到所述调度信号后,获得第五信号,所述第五信号占用连续的P个可用子载波;所述处理器,还用于对所述第五信号进行直接扩频,获得第六信号,所述直接扩频的扩频因子为W,所述第六信号的带宽大于等于70%的2.16GHz,所述P小于等于N2i/W,所述P和W均为整数;所述收发器,还用于在非授权载波上向所述网络设备发送所述第六信号。
在一种可能的设计中,所述终端设备在非授权载波上向所述终端设备发送所述第六信号后,所述收发器还用于:在所述调度信号调度的至少一个子带上发送子带信号,所述子带信号的带宽小于70%的2.16GHz。
在一种可能的设计中,所述处理器,还用于检测所述调度信号调度的一子带信号是否空闲;所述收发器,还用于在所述子带空闲时,在所述子带上向网络设备发送子带信号。
在一种可能的设计中,所述第一设备为终端设备,所述第二设备为网络设备,所述第一信号包括上行波束训练信号。
第五方面,还提供一种可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
第六方面,提供一种芯片,所述芯片包括输入接口、输出接口、至少一个处理器和至少一个存储器,所述至少一个存储器用于存储代码,所述至少一个处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现上述任一方面所述的方法。
第七方面,提供一种通信系统,所述通信系统包括上述第三方面以及第三方面任一种可能所述的第一设备和上述第四方面以及第四方面任一种可能所述的第二设备。
由于非授权频谱中存在多个系统,比如WIFI系统以及NR系统等,为了不同系统间的共存,发送节点采用先听后说的信道接入机制,即发送节点在传输信息前,先对信道进行侦听,侦听到信道空闲后,再占用信道发送信息。而在本申请中,由于在非授权载波上发送的第一信号满足N1 i*N3 i大于等于1.512GHz,可使得在非授权频谱中工作的其它系统,比如WIFI系统,检测到第一信号,从而不再占用非授权信道发送信息,进而满足60GHz频段共存的要求。同时,在本申请中,第一信号还满足max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)的要求,可见第一信号的IDFT点数N3 i小于授权频谱中所支持的最大IDFT点数N6 j,那么,可复用现有5G授权频段中的硬件或软件生成第一信号,降低整体的复杂度。
附图说明
图1为本申请提供的系统框架图;
图2为本申请提供的发送信号的方法的一流程图;
图3a为本申请提供的发送第一信号的框架图;
图3b为本申请提供的接收第一信号的框架图;
图4至图10为本申请提供的发送信号的方法的一流程图;
图11为本申请提供的OFDM信号的示意图;
图12为本申请提供的第一设备的结构示意图;
图13为本申请提供的第二设备的结构示意图;
图14为本申请提供的基站的结构示意图;
图15为本申请提供的终端设备的结构示意图。
具体实施方式
为了便于理解,示例的给出了与本申请相关概念的说明以供参考,如下所示:
基站(base station,BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基站无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在WLAN中,提供基站功能的设备为接入点(access point,AP)。在未来5G网络如新无线(New Radio,NR)或LTE+中,提供基站功能的设备包括继续演进的节点B(gNB),TRP(transmission and reception point,收发点),或TP(transmission point,传输点)。其中,TRP或TP可以不包括基带部分,仅包括射频部分,也可以包括基带部分和射频部分。
终端设备是一种用户设备(user equipment,UE),可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台,车载设备等。该用户设备可以经无线接入网(radio access network,RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
网络侧设备,是指位于无线通信网络中位于网络侧的设备,可以为接入网网元,如基站或控制器(如有),或者,也可以为核心网网元,还可以为其他网元。
下面结合附图,对本申请的技术方案进行介绍:
图1示出了本申请的一种可能的系统网络示意图。如图1所示,一终端UE处于主小区(primary cell,Pcell)基站和辅小区(secondary cell,Scell)基站的覆盖范围。其中,Pcell基站工作在授权频段,Scell基站工作在非授权频段,Pcell基站和Scell基站之有理想回传。
基于上述应用场景,如图2所示,本申请提供了一种发送信号的方法的流程,该流程可具体应用于Pcell基站和/或Scell基站向终端发送信号,该流程中的第一设备对应于图1中的Pcell基站或Scell基站,所述第二设备对应于图1中的UE。如图2所示,该流程具体为:
步骤S21:第一设备根据第一参数中的第i套参数,生成至少一个第一信号。
在本申请中,所述第一参数中包括I套参数,第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,在N1 i个可用子载波中占用X i个子载波,离散傅里叶变换IDFT点数N3 i,I≥i≥1;所述第一信号可为正交频分复用(orthogonal frequency division multiplex,OFDM)信号。
在本申请中,根据第一参数中第i套参数生成第一信号的过程,可具体如下:获取第一待发送频域信号,该第一待发送频域信号可具体为数据信号或参考信号;将第一待发送 频域信号映射到X i个子载波,获取第一映射信号;将第一映射信号经过N3 i点的IDFT,获得第一信号。
更具体的,如图3a所示,发送第一信号的过程,可具体为:获取第一待发送频域信号,该第一待发送频域信号可具体为参考信号或数据信号,对所述第一待发送频域信号依次经过子载波映射和IDFT变换,获取第一信号,然后对第一信号再经过并串转换(P/S)、数模转换(DAC)和混频器的处理,经过发射射频通道,发送至第二设备。
步骤S22:所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号。
在本申请中,所述非授权载波可具体指60GHz非授权频段中的载波,中心频点分别为58.32GHz,60.48GHz,62.64GHz,64.8GHz,66.96GHz,69.12GHz和71.28GHz中的一个或多个。所述非授权载波所对应信道的带宽可为2.16GHz,比如可分别为57.24~59.4GHz,59.4~61.56GHz,61.56~63.72GHz,63.72~65.88GHz,65.88~68.04GHz,68.04~70.2GHz,70.2~72.36GHz。
在本申请中,如图3b所示,第二设备可通过天线、接收射频通道、混频器、模数转换(ADC)和串并转换(S/P)等的处理,获取到接收到的第一信号,然后对接收到的第一信号再经过DFT和子载波映射的处理,获取第一接收频域信号。可以理解的是,图3b中的接收到的第一信号为图3a中所示的发送的第一信号经过了无线信道,并且叠加了噪声后的信号。在本申请中,仍可参照图3b所示,如果对应子载波中为参考信号,则需要通过解映射抽取对应子载波中接收的参考信号、并根据参考信号进行信道估计、同步以及相位跟踪的操作。类似的,如果对应子载波中为数据信号,那么可以通过解映射抽取对应子载波中的数据信号,根据参考信号获得的信道估计,同步以及相位跟踪参数、解调数据,最终获取数据信号。可以理解的是,接收机除了采用上面提到的零中频的结构,也可能采样超外插结构,即存存在2个混频器,两个混频器间存在中频通道。
步骤S23:所述第一设备根据第二参数中的第j套参数,生成至少一个第二信号。
在本申请中,所述第二参数中包括J套参数,第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,在所述N5 j个可用子载波中占用Y j个子载波,IDFT点数N6 j,J≥j≥1,所述第二信号可为OFDM信号。
在本申请中,根据第二参数中的第j套参数生成第二信号的过程,可具体如下:获取第二待发送频域信号,该第二待发送频域信号可具体为数据信号或参考信号;将第二待发送频域信号映射到Y j个子载波,获取第二映射信号;将第二映射信号经过N6 j点的IDFT,获得第二信号。其中,所述第一设备生成第二信号的过程与第一设备生成第一信号的过程,相类似,在此不再赘述。
步骤S24:所述第一设备在授权载波上向所述第二设备发送所述至少一个第二信号。
其中,第一设备对所述第二信号的处理过程,与所述第一设备对所述第一信号的处理过程相类似,在此不再赘述。
在本申请中,授权载波具体可以包括6GHz以上或6GHz以下的授权载波频点,中心频点根据国际电信联盟(International Telecommunication Union,ITU)颁布的用于全球移动通信的频点确定。其中第二信号的OFDM参数包括在LTE中规范的参数,即子载波间隔为7.5KHz,IFFT点数4096;子载波间隔为15KHz,IFFT点数2048。以及NR在授权频谱中最大传输带宽不超过400MHz的传输参数。目前通过的参数包括6GHz以下频段中的2套参数以及6GHz以上的频段中4套参数。其中,6GHz以下频段中的2套参数:具 体为子载波间隔为30KHz,IFFT点数1024;和子载波间隔为60KH,IFFT点数512。6GHz以上的频段中4套参数:具体为子载波间隔为60KHz,IFFT点数4096;子载波间隔为120KHz,IFFT点数4096;子载波间隔为240KHz,IFFT点数4096;和子载波间隔为480KHz,IFFT点数4096。
需要说明的是,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、X i、Y j、I和J均为整数,在本申请中,所述非授权系统信道带宽可为2.16GHz,因此,N1 i*N3 i可具体大于等于1.512GHz,所述1.512GHz=70%*2.16GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
在本申请中,为了使得NR-U的设备可以和IEEE 802.11ad的设备共存,保持使得NR-U设备的波形和IEEE 802.11ad的设备占用带宽保持接近。IEEE 802.11ad的设备单载波波形设备占用带宽为1.760GHz,而OFDM波形设备占用带宽为5.15626*355=1.8734723GHz。
另外而正在制定的IEEE 802.11ay标准中,引入了多个2.16GHz信道绑定(Channel Bonding,CB)的传输模式,允许IEEE 802.11ay的设备,中心频点分别为58.32GHz,60.48GHz,62.64GHz,64.8GHz,66.96GHz,69.12GHz,71.28GHz的7个连续的2.16GHz信道中,占用连续的1~4个2.16GHz信道。即带宽为2.16GHz的6个信道57.24~59.4GHz、59.4~61.56GHz、61.56~63.72GHz、63.72~65.88GHz、65.88~68.04GHz、68.04~70.2GHz。带宽为4.32GHz的5个信道,即57.24~61.56GHz、61.56~65.88GHz、65.88~70.2GHz、59.4GHz~63.72GHz、63.72~68.04GHz。带宽为6.48GHz的4个信道,即57.24~63.72GHz、61.56~70.2GHz、59.4~65.88GHz、63.72~70.2GHz.以及带宽为8.64GHz的3个信道,即57.24~65.88GHz、59.4~68.04GHz、61.56~70.2GHz。考虑NR-U设备的频谱效率,应该使得NR-U的设备,支持和IEEE 802.11ay设备类似的可扩展性。
为了使得NR-U的设备在60GHz频段上可以复用NR-U设备在授权频段上的硬件或软件,需要使得的NR-U的参数尽量复用NR-U设备在授权频段上的参数。即NR-U设备在授权频段上为OFDM波形,子载波间隔满足N4j=15*2k1KHz,所述k1可为大于等于1,小于等于5的整数,N6j小于等于授权频谱中最大使用的FFT的大小,比如N6j可小于4096或8192等,N4j*N5j小于等于400MHz。NR-U在60GHz非授权频段中采用OFDM波形,这样可以复用OFDM基带信号的产生模块。
在本申请中,对于一个OFDM基带信号的产生可至少包括以下过程:
1、获得每个OFDM符号的有效子载波上的值。在通信系统中,每个OFDM符号的有效子载波上的值可以为编码和调制过的数据,或调制过的参考信号两类。在某一个OFDM上可以仅有参考信号,或者仅有数据,也可既有参考信号又有数据信号。
常见的调制方法有π/2BPSK,QPSK,64QAM,256QAM以及一些非非均匀星座调制。常见编码有RS码,Turbo码,LDPC码,以及Polar码。
2、把每个OFDM符号的有效子载波上的值,映射到有效子载波范围内。
3、在IDFT点数范围内,有效子载波范围外的子载波中填充0。
4、将-Nfft/2,到Nfft/2个子载波上的频域信号变换到时域信号。
在实际系统中,第4步的频域信号到时域信号的过程用IDFT实现快速运算。当IDFT为2的整数次幂的时候,可用采用Radix-2的快速算法,同理在为4的整数次幂的时候可用采用Radix-4的快速算法。在LTE中,上行引入SC-FDMA时,采用了可以分解为2,3,5的整数次幂的DFT点数发射信号,接收端采用相应的IDFT点数接收信号。因此,NR-U在非授权载波中使用的OFDM波形点数不超过LTE和NR设计范围中的参数,都可以极 大程度复用IDFT模块。
为了使得NR-U的设备、IEEE 802.11ad的设备以及IEEE 802.11ay的设备在60GHz频段上共存。在NR-U的设备和IEEE 802.11ad的设备中,使得N1 i*N3 i大于等于70%*2.16GHz=1.512GHz或N1 i*N2 i接近于1.760GHz。如果NR-U设备具有和IEEE 802.11ay设备类似的传输带宽,需要满足N1 i*N3 i大于等于70%*2.16*NcbGHz=1.512*NcbGHz,其中Ncb表示连续传输2.16GHz信道个数,或N1 i*N2 i接近于1.760*NcbGHz的采样率。适应检测到连续空闲的多个2.16GHz信道时,接入更宽的空闲信道。
而N3 i的大小直接关系到实现IDFT或DFT的复杂度,为了授权载波和非授权载波上的实现复杂度相差不大,应该满足max(N3 i)≤max(N6 j)。
可以看到N1 i*N3 i和N4 j*N6 j分别代表非授权载波的采样率和授权载波的采样率,也就决定了收发装置中的在授权和非授权载波中使用的ADC和DAC时钟频率。当N1 i*N3 i/N4 j*N6 j为整数时,这样授权载波和非授权载波可以用相同的主晶振,那么在是授权频段发送信号和在非授权频段发送信号可使用相同的主晶振频率,减少需要维护不同时钟复杂度。
应当指出,在本申请中,并不限定步骤S21至步骤S24的先后执行顺序,比如,在本申请中,可先执步骤S21和步骤S22,生成第一信号,且在授权载波上发送第一信号,也可先生成第二信号,且在非授权载波上发送第二信号。
在本申请中,所述N1 i=15*2 kKHz,所述k可为大于等于4,小于等于8的整数,所述N3 i可为2的整数次幂。
在一示例中,如表1所示,N1 i、N2 i和N3 i间可存在下述对应关系:
子载波间隔(N1i) 可用子载波数(N2i) IDFT点数(N3i) 采样率(GHz)
480KHz 3744 4096 1.96
960kHz 1872 2048 1.96
1.92MHz 936 1024 1.96
3.84MHz 468 512 1.96
480KHz 7488 8192 3.93
960kHz 3744 4096 3.93
1.92MHz 1872 2048 3.93
3.84MHz 936 1024 3.93
960kHz 4800/6400 8192 7.86
1.92MHz 2400/3200 4096 7.86
3.84MHz 1200/1600 2048 7.86
表1
应当指出,在上述表1中,采样率=子载波间隔N1 i*IDFT点数N3 i
可以观察到采用上表的参数,由于采样率小于2.16*Ncb GHz带宽。如果延用LTE或NR中有效子载波的参数,即N2 i=(N3 i*N5 j)N6 j会使得频谱占用率偏低。例如如果仅仅扩大子载波间隔,完全复用授权载波中N6 j=4096,N5 j=3300时,有效带宽为3300*0.48=1580MHz。比WIFI中11ad的频谱占率都低,目前11ad中单载波信号占用带宽是1760MHz,而11ad中关于OFDM的带宽为1830MHz。弥补的方法采用,更多的可以用子载波个数,指定可用有效子载波个数和授权频谱中相同的FFT size不同。根据11ad中的计算,1800/0.48=3750个子载波左右,为了保持12个子载波构成一个RB,可以设为312个RB左右。
对于表1中3.93GHz采样率,可以支持的信号带宽更大,并且可以利用两个连续的2.16GHz相邻的400MHz的带宽。而对于NR中是等比例扩展的6600个子载波,即N6 j=8192,N5 j=6600。在IEEE 802.11ay中对于2*2.16GHz的情况,可用信道带宽达到(419*5.15625+355*5.15625)=3990MHz,但是这样已经超过3.93GHz的采样率了,因此,在2*2.16GHz的情况,NR-U可以用至少可以用312*2=624个RB,即624*12=7488个子载波。可以达到和IEEE 802.11ay标准类似的频谱利用率。
采样率7.86GHz,可以处理3*2.16GHz和4*2.14GHz的信道绑定的情况,分别取不同可用子载波个数。在IEEE 802.11ay中对于3*2.16GHz的情况,可用信道带宽达到(419*2*5.15625+355*5.15625)=6151MHz,可以根据子载波间隔大致计算到上表中的参数。3*2.16GHz的情况,可用信道带宽达到(419*3*5.15625+355*5.15625)=8311MHz,可以根据子载波间隔计算到上表中的参数。
在本申请中,另一个实施例,所述N1 i=15*2 kKHz,所述k可为大于等于4,小于等于8的整数,所述N3可为2和3的公倍数。N3小于等于N6的最大取值。
为了解决表1中采样率可能<2.16*Ncb GHz带宽的问题,采用扩大N3 i来解决。因此,引入了N3 i为2和3的公倍数的约束。因此可以复用LTE上行的发射采用SC-FDMA技术中采用DFT模块。
其中可用子载波个数N2 i的选择满足为36=(3*12)的倍数,复用LTE和NR中频域资源12个子载波为一个RB的调度颗粒度。3的因子可以用于进一步在终端侧做下采样,降低终端实现的复杂度。具体可用子载波数目确定和表1类似,保持和表1中对应子载波间隔中可用子载波个数大小接近。例如第一行可以子载波参数和表1中第一行可以子载波参数接近,满足36的倍数。
在一示例中,如表2所示,N1 i、N2 i和N3 i间可存在下述对应关系:
子载波间隔(N1 i) 可用子载波数(N2 i) IDFT点数(N3 i) 采样率(GHz)
480KHz 3456 5120 2.46
960kHz 1728 2560 2.46
1.92MHz 864 1280 2.46
3.84MHz 432 640 2.46
1.92MHz 1728 2560 4.96
3.84MHz 864 1280 4.96
1.92MHz 864 5120 9.83
3.84MHz 3456 2560 9.83
表2
应当指出,在上述表2中,采样率=子载波间隔N1 i*IDFT点数N3 i
在本申请中,所述N1 i=15*2 kKHz,所述k可为大于等于4,小于等于8的整数,所述N3 i可为2和5的公倍数。N3 i小于等于N6的最大值。
为了解决表1中采样率可能<2.16*Ncb GHz带宽的问题,采用扩大N3 i来解决。类似,也可以引入N3 i为2和5的公倍数的约束。因此可以复用LTE上行的发射采用SC-FDMA技术中采用DFT模块。
其中可用子载波个数N2 i的选择满足为60=(5*12)的倍数,复用LTE和NR中频域资源12个子载波为一个RB的调度颗粒度。5的因子可以用于进一步在终端侧做下采样,降低终端实现的复杂度。具体可用子载波数目确定和表1类似,保持和表1中对应子载波间隔中可用子载波个数大小接近。例如第一行可以子载波参数和表1中第一行可以子载波参数接近,满足60的倍数。
在一示例中,如表3所示,N1 i、N2 i和N3 i间可存在下述对应关系:
子载波间隔(N1 i) 可用子载波数(N2 i) IDFT点数(N3 i) 采样率(GHz)
480KHz 3600 6144 2.95
960kHz 1800 3072 2.95
1.92MHz 900 1536 2.95
3.84MHz 450 768 2.95
960kHz 3600 6144 5.90
1.92MHz 1800 3072 5.90
3.84MHz 900 1536 5.90
表3
应当指出,在上述表3中,采样率=子载波间隔N1 i*IDFT点数N3 i
其中子载波间隔为960KHz,和1.92MHz比较合适,由于2160/1.92,2160/0.96为整数,在采用更大的FFT点数扩展多个2.16GHz信道的时候,可以仅改变占用子载波数,可以减少子载波间干扰。另外由于ADC和DAC的限制,目前能够到达10GHz以上采样率的ADC和DAC的分辨精度普遍比1GHz左右采样率的ADC和DAC的分辨精度低。因此,会引入量化误差,因此,不提供更高采样率的OFDM参数。
如图4所示,本申请提供了一种发送信号的方法的流程,该流程中的网络设备对应于图1中的Pcell基站或Scell基站,或者,对应于图2中的第一设备,终端设备可对应于图1中的UE,或者,对应于图2中的第二设备。如图4所示,该流程具体为:
步骤S31:网络设备在授权载波上或非授权载波上向终端设备发送第一指示信息。
在本申请中,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度,相邻颗粒度的间隔为1/2 k4ms,所述相邻颗粒度的间隔中包括12*2 k5个正交频分复用OFDM符号,k4*k5=k,或者,相邻颗粒度的间隔为1/2 k2ms,所述相邻颗粒度的间隔中包括14*2 k3个OFDM符号k2*k3=k。
本申请的NR-U非授权载波的调度,与NR授权载波的调度不同在于:
时间上区别:
本申请中指出,由于非授权载波中OFDM发送参数N1 i,N2 i,N3 i和授权载波中OFDM发送参数N4 j,N5 j,N6 j不同。N1 i*N3 i>N4 j*N6 j的情况下,适合在时间上引入细的颗粒度,提高接入授权频谱的机会。但是由于非授权频谱中调度的颗粒度特别细,增加了信令开销。需要指出的是,如果非授权载波中调度颗粒度细比授权频谱细,那么非授权载波的资源,只能由非授权载波中调度信令来调度。因此,在某个调度周期中发送相应的调度信令。以匹配相应的调度资源。
当调度颗粒度相同时,也可能存在的OFDM个数会大于NR中的一个调度颗粒中的OFDM的个数。因此,这种情况需要扩展指示,在调度周期中具体可能开始的OFDM符号的机会。可以采用高层信令预先配置。物理层具体激活的方式。也可以和业务类型相关。对于是要要求高的,匹配更多的起始传输OFDM的机会。
由于非授权载波引入了更大的子载波间隔,使得每个OFDM(不含CP)占用时间变为1/N1 i。如果保持相同的OFDM数,那么调度间隔变小,如0.5ms的1/2 k倍的间隔,如0.25ms,0.125ms,k为整数,并且N1=15*2 k
如果保持相同的调度时间,那么在时间上接入信道的1ms的调度颗粒度上,OFDM的符号的范围就由原来的1~14个OFDM,变化为1~14*2 5,1~14*2 6,1~14*2 8的范围。那么指示下行信号在1ms内开始符号数需要更大的范围。
一种折中的方式,是调度的颗粒度也变小,也扩大每个调度颗粒度中的OFDM符号的范围。即调度颗粒度为1ms的1/2 k2倍的间隔中包含的OFDM符号的范围为1~14*2 k3,使得k2*k3=k。
具体指示方法,可以分为多级级指示,具体占用7比特。复用原来指示1~14个OFDM的指示,增加和采样率相关的系数指示,3比特,分别表示在具体处理压缩段中的哪一段, 而每段中具体哪个符号,仍然沿用原来的指示,如具体属于偶数还是奇数时隙,用1bit表示,具体属于其中的1~7个ofdm符号,采用3比特。
当然也可以不复用原来的指示1~14个OFDM的指示,直接用6或者7比特,指示具体的符号编号。这样对于5倍采样率的时候,可以节省1比特。
基于12个符号的假设:由于在60GHz频段中子载波间隔可能比授权载波中更大,造成每个OFDM符号时间上过短。而循环前缀(Cyclic Prefix,CP)长度表征为传播信道的扩展时延,不适合被无限压缩。因此,非授权载波中可能采用比授权载波中更多的CP的范围。即在图3a所述的IDFT和P/S转换模块后,还存在插入CP的模块。对于的图3b所述的ADC模块后,还存在去CP的模块。和授权载波中普通(Normal)CP仅占用不到10%的开销不同,非授权载波的CP在一个OFDM符号中占用的比例可能存在更大的比例。
本申请中,给出一种类似LTE中扩展CP的情况,即一个时隙中有1~12个OFDM符号的情况,及CP的比例为1/4。由于子载波间隔拉大,1ms中OFDM符号变化为1~12*2 5,或1~12*2 6或1~12*2 8的范围,那么指示范围也类似。
类似的,可以采取折中的方式,是调度的颗粒度也变小,也扩大每个调度颗粒度中的OFDM符号的范围。即调度颗粒度为1ms的1/2 k4倍的间隔中包含的OFDM符号的范围为1~12*2 k5,使得k4*k5=k。
频域中区别:
由于60GHz带宽非常大,造成即使采用了更大的子载波间隔,可用子载波范围也大于授权频段中的范围。因此,这种情况需要扩展指示,非授权频段中对应频域资源的信息位。可以复用在该模式下不用的一些物理层信令字段实现。
在相应资源中传输的码块长度不同:
由于60GHz带宽非常大,如果调度资源过大,造成传输资源内能传输的码块超过授权频段中最大码块长度。这样需要额外增加资源,进行控制,存储,编码或解码。如果希望复用NR授权频段中的硬件或软件资源,则需要限制非授权载波的码块长度≤授权载波的最大码块长度。
步骤S32:网络设备在非授权载波上向所述终端设备发送第二指示信息;
在本申请中,所述第二指示信息用地指示终端设备在频域上的可用子载波X i,N1 i*X i<400MHz。
步骤S32:网络设备生成至少一个第一信号;
在本申请中,网络设备生成第一信号的过程,可参见上述图2中关于生成第一信号的描述,在此不再赘述。
步骤S33:网络设备在非授权载波上向终端设备发送所述至少一个第一信号;
步骤S34:终端设备根据所述第一指示信息指示的颗粒度,接收所述第一信号。
步骤S35:终端设备根据所述第一指示信息指示的颗粒度以及第二指示信息指示的可用子载波,向网络设备发送第三信号。
在本申请中,所述终端设备可具体在根据第一指示信息所指示的颗粒度,在第二指示信息所指示的可用子载波上,发送第三信号。
由于上面提到的,如果基站发送的信号中引入了时间上,或频率上的不同,可通过限制某个终端被调度时频资源都处于不超过授权载波中的调度配置颗粒度和指示范围内。复用现有的动态调度信息,和终端的授权载波的硬件资源。简单的说,一个终端不支持 0.125ms的调度颗粒度,那么基站对于该终端的调度信令不会出现在针对0.125ms的调度信令中,也终端也不需要在相应的位置盲检物理下行控制信道(Physical Downlink Control Channel,PDCCH)。而ADC和DAC的功耗,和采样率相关。根据耐奎斯特采样率的要求,为了信号能够不混叠的被接收,采样率必须大于OFDM信号带宽。如果一个终端ADC和DAC仅支持最大400MHz的接收通道带宽。基站需要指示终端在整个带宽中的那400MHz带宽内的资源,终端可以复用授权载波通道中ADC和DAC模块。这样可以大大降低终端的实现复杂度和功耗。由于授权载波在30GHz左右,带宽小于400MHz,通过调度的现在可以使得这种带宽受限的终端,完全复用授权载波的中频,基带处理单元接收60GHz的信号,仅需要额外的60GHz射频模块。极大的复用终端设备中的授权载波硬件资源。
在本申请中,可以按照授权频段中最大带宽中资源来确定子带大小,将2.16GHz划分成,不重叠的多个子带。
根据OFDM符号的生成方法中建议的,在授权频谱中子载波间隔较小,而非授权频段中60GHz中子载波间隔较大,IDFT的数目可能相同或不同。那么终端侧看到子带的参数折算关系如下,子带中子载波和基站发送的子载波间隔一致,即和授权频谱中的子载波间隔一致,采样率和授权频谱中的配置一致。N DFT折算,为采样率的倍数关系,如下表4所示,以子载波间隔为480KHz的参数举例,N DFT为6144/(2.95/0.49)=1024。那么可以看到,整个带宽被划分成了6个子带,每个子带中可用子载波数目前可以沿用LTE的中划分,如一个RB中频率上,携带12个子载波,那么这里就是占用50个RB。
可以看到,对授权频谱的约束,能够支持非授权频谱中Ndft点数(非授权频谱采样率/授权频谱采样率),那么每个划分可以固定下来,给出序号的范围,就可以确定具体在哪个子带中工作。
进一步的,由于在NR中,也存在设备的带宽比NR基站支持的带宽小,即才授权频谱能支持的400MHz带宽内,100MHz或200MHz,那么需要二级指示,用以说明在子带中的具体频率资源位置。在本申请中,优选的指示方法,先指示子带的资源,在指示具体子带中的资源。
在本申请中的一示例中,如表4所示,将以子载波间隔为480KHz为例,详细说明本申请的过程:
Figure PCTCN2018102782-appb-000001
表4
根据表4所示的参数,所生成的OFDM符号在频域上的示意,可参见图11所示。可以看出,对于基站发送的信号,包括6144个子载波,但是只占用了中心的3600个子载波,使用了1.728GHz的有效带宽(相比11ad中使用了1.83GHz略低,因此实际上也可以用更多的子载波,例如考虑每个子带用660个子载波,一共用3960个子载波,占用1.9GHz的有效带宽)。而终端可以占用固定划分的6个子带中一个或多个,每个子带的可用子载波是不重叠的(由长虚线分割成6个子区域)。和基站直接将2.16GHz划分成多个子带划分 来发射的方案不同(子带是不重叠的,子带和子带间需要加保护带),这里的多个子带是相互重叠的。即实际滤波器是按照虚线框滤波的。虽然相邻的子载波信号也会被接收到子带中,但由于OFDM符号子载波是相互正交的。因此通过时频变换后,直接取中心的600个子载波,而不会引入子载波间干扰。这样对于有宽带能力的终端也是有益的,可以用一个2.16GHz的滤波器就可以得到有用信号,而不需要很多的子滤波器,有用子带间是OFDM正交的。
需要说明的是,在本申请中,也可以通过起始频率序号和占用带宽来指示。
其中占用带宽是和授权频谱中能够支持的最大采样率匹配的,可以为400MHz,200MHz,100MHz等颗粒度。指示的划分带宽中占用的有效子载波数目。
应当指出,对于固定划分的方法,比较简单,对于设备能力来说,划分是预划分的。而通过起始频率序号和占用带宽来指示,比较灵活,也不需要两级指示。
需要说明的是,在本申请中,并不限定步骤S31至步骤S34执行的先后顺序,步骤S31与步骤S34执行顺序的任何先后组合,均在本申请的保护范围内。比如步骤S31可早于步骤S32执行,也可晚于步骤S32执行。
在本申请中,还提供以下几种OFDM信号的配置参数和子带划分后OFDM参数,可分别如表5、表6和表7所示:
Figure PCTCN2018102782-appb-000002
表5
Figure PCTCN2018102782-appb-000003
表6
Figure PCTCN2018102782-appb-000004
Figure PCTCN2018102782-appb-000005
表7
如图5所示,本申请提供了一种发送信号的方法的流程,该流程中的网络设备对应于图1中的Pcell基站或Scell基站,或者,对应于图2中的第一设备,终端设备可对应于图1中的UE,或者,对应于图2中的第二设备。如图5所示,该流程具体为:
步骤S41:终端设备在授权载波上向网络设备发送上报信息,
在本申请中,所述上报信息中携带有所述终端设备支持非授权载波能力的字段,所述终端设备支持非授权载波能力的字段中包括所述终端设备支持非授权信道范围的参数、所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;
在本申请中,所述终端设备支持非授权信道范围的参数,可具体用于表征终端设备所支持的非授权信道。在实际应用中,由于60GHz非授权频段非常宽,中心频点分别为58.32GHz,60.48GHz,62.64GHz,64.8GHz,66.96GHz,69.12GHz,71.28GHz的7个连续的2.16GHz信道。而有些终端设备的功能有限,比如智能可穿戴设备等,可能仅能支持部分非授权信道,因此,需要终端设备将自身所支持的非授权信道上报至网络设备,以便网络设备在终端设备所支持的非授权信道上发送第一信号。
在本申请中,终端设备支持发送带宽能力的参数,可具体用于表征终端设备所最大支持的发送带宽的能力,所述终端设备支持接收带宽能力的参数,可具体用于表征终端设备所最大支持的接收带宽的能力,以便网络设备在终端设备发送/接收的能力范围内,为终端设备调度信息。
步骤S42:网络设备生成至少一个第一信号。
在本申请中,所述第一信号的频域范围小于等于所述终端设备所支持的接收带宽能力。
步骤S43:网络设备在所述终端设备所支持的非授权信道上向所述终端设备发送所述至少一个第一信号,所述非授权信道中包括非授权载波
在本申请中,所述网络设备可根据所述终端设备上报信息中的终端设备支持非授权信道范围的参数,确定终端设备所支持的非授权信道,然后,终端设备所支持的非授权信道上发送至少一个第一信号。比如,上报信息中的终端设备所支持非授权信道范围的参数,所指示的非授权信道为57.24~59.4GHz,那么网络设备可在57.24~59.4GHz的非授权信道上发送所述第一信号。
由上可见,采用上述方法,可使得能力受限的终端设备,也可成功利用非授权频谱进行通信,从而提高非授权频谱的利用率。
如图6所示,本申请提供了一种发送信号的方法的流程,该流程中的网络设备可对应于图2中的第一设备,终端设备可对应于图2中的第二设备,同步突发信号SS-Burst可对应于图2中的第一信号。如图6所示,该流程包括:
步骤S51:网络设备生成SS-Burst;
SS-Burst由L个L个SS-Block组成,一个SS-Block由主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)组成。
SS-Block的过程和其他OFDM符号产生的过程类似。首先是获得该OFDM符号中有效子载波上的值。包括SS-Burst的OFDM符号中对应载波中可能是PSS,SSS或PBCH信道中对应的内容数据。
在本申请中,关于PSS和SSS序列的设计,可沿用授权谱频中的设计,比如,PSS可为127长的m序列生成,其对应的生成多项式可为x 7+x 4+1;SSS可为两个127长的m序列生成,两个m多项式的生成多项式x 7+x+1,x 7+x 4+1。
在本申请中,所述物理广播信道中携带有第一字段,所述第一字段为所述网络设备在授权载波上所发送的物理广播信道未携带的字段,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的物理广播信道所携带的与所述第一字段所对应的字段。所述第一字段可以指示,如授权载波中通过PDDCH,SIB1,或SIB2中指示的部分重要信息。如在当前子帧中,哪几个是上行资源,哪几个是下行资源。如物理随机接入信道(Physical Random Access Channel,PRACH)信道资源的信息。目前授权频谱中PBCH信道中携带的内容实际也在讨论中,授权频谱中PBCH信道可能携带系统帧号(System Frame Number,SFN),在一个无线帧中的时间信息,控制资源集(Control Resourse Set,CORESET)信息,PDSCH调度信息,UE快速驻留信息,小区ID扩展信息,跟踪RS信息等。其中SFN,UE快速驻留信息,小区ID扩展信息,在非授权载波中都可以通过授权载波通知给终端。
另外和授权载波不同,在非授权载波可能采用了更大的子载波间隔,1ms内可能存在更多OFDM符号。需要补偿高频的路损,需要训练更多波束。因此提供更多的SS-Block在时间上的位置。对于一个时隙有14或12个符号的情况,在5ms,10ms周期中会有更多的可能传输位置。但是考虑到非授权频谱中由于监听频谱是否空闲,可能占用每个时隙中的前1个,或2个OFDM符号,因此,也需要允许网络设备仅发送其中的部分OFDM符号,或者比授权载波开始的符号晚1个OFDM符号。这样有可能SS-Block不能完整的被发送。为了复用NR授权载波中的硬件或软件,SS-Burst中,PSS,SSS,PBCH排列关系也复用NR授权载波中的定义。PSS-PBCH-SSS-PBCH的关系,即PSS所在的OFDM符号后,相邻的OFDM符号中携带第一个PBCH信道,随后相邻的OFDM符号中携带SSS,随后携带第二个PBCH信道。但是在不能完整被发送的SS-Block中,可以不发送PBCH。由于目前授权载波发送顺序PSS-PBCH-SSS-PBCH,如果仅有2个OFDM的传输机会,那允许网络设备在非授权载波中发送仅包含PSS-SSS的部分SS-Block。这里部分SS-Block主要说明这个SS-Block仅占用2个OFDM号,和普通的SS-Block占用4个OFDM号做区分。
步骤S52:网络设备在非授权载波上向终端设备发送所述SS-Burst。
在本申请的一示例中,所述网络设备可利用非授权载波中N2个可用子载波中心的256个子载波,发送所述SS-Block,所述N2为大于等于256的整数。
在本申请的另一示例中,非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带包括子载波的数目大于等于256。网络设备可具体利用每个子带中心的256个子载波向终端设备发送所述SS-Block。
在本申请中,所述网络设备可采用不同的天线阵列发送多个子带中的PSS、SSS和PBCH,比如,非授权载波中的N2 i个可用子载波至少包括第一子带和第二子带,那么网络设备可采用第一天线阵列在所述第一子带中,发送所述PSS、SSS以及PBCH,采用第二天线阵列在所述第二子带中,发送所述PSS、SSS以及PBCH,所述第一天线阵列与所述第二天线阵列不同,所述第一子带与所述第二子带不同。当然的,在本申请中,如果N2 i个可用子载波中还包括第三子带和第四子带等,那么相应的,网络设备可采用第三天线阵列在所述第三子带中,发送所述PSS、SSS以及PBCH,采用第四天线阵列在所述第四子带中,发送所述PSS、SSS以及PBCH等,在此不再赘述,上述各种情况,均在本申请的保护范围内。
在本申请中,还具体公开了发送PSS和SSS的方法,具体如下:
方法1:网络设备在整个系统的直流载波中对称发射PSS和SSS,其中,PSS和SSS占用127个子载波。
应当指出,在本申请中,对于子带系统终端,如果有效子载波数目不到127,则采取截断接收的方式。采用上述方法1,可复用LTE中的设计。
方法2:网络设备在每个子带对应有效子载波的中心发送PSS和SSS,所述PSS和SSS占用127个子载波。
其中,每个子带中的PSS和SSS信号可以有+1、-1,+j,-j的系数,降低发射的峰值平均功率比(PAPR—Peak to Average Power Ratio,PAPR)。
方法3:网络设备将PSS和SSS在每个子带对应有效子载波中心按照一定规则跳频发射。其中,每个子带中可用子载波数目大于127个子载波。
采用上述方法2和方法3,终端设备可以在自己工作的子带中接收到同步信号,无需做频率的调整。
在5GHz信道中,发现信号采用Cat2的先听后说(Listen Before Talk,LBT)方式发送,即检测到25μs空闲后,立即发送信号。这个问题在高频中有变化。由于在低频中发现信号是不包括PBCH,因此,主要为PSS/SSS信号。这两个信号仅占用两个符号。冲突的概率不是很高。而对于高频来说,由于PSS/SSS/PBCH信号组成一个SS-Block,其中PSS/SSS获得物理小区标识PCID(Physical Cell Identification),而PBCH中波束标识来完成下行波束训练。一共需要占用4个OFDM,加上波束扫描需要在多个波束方向上发送多个SS-Block,因此,基站发送SS-Block,检测如果以发送每个SS-Block前都检测25μs的才发送,就造成很多波束方向上由于波束冲突而不能完成发送。因此,需要以SS-burst为单位检测信道空闲,在一个SS-Burst中,仅在头一个SS-Block发送前检测信道空闲。而在SS-Burst内的多个SS-Block发送前,不再检测信道空闲。
这里就存在两个问题:在60GHz的SS-burst一共占用信道的时间不能超过最大占用信道时间,如1ms,2ms,5ms,10ms的限制。最大占用信道时间内,SS-Block的数目可能受到到限制。
有上面两个问题本申请解决方案如下:对于SS-Burst采用不同的最大信道占用时间,采用不同的优先级LBT。而SS-burst中最大占用时间是SS-Block数目的函数。假设1ms中,允许发送SS-block最大为L个。而基站需要训练的波束为LgNB个,当LgNB>L,那么基站训练完所有的波束需要取值LgNB/L ms的资源周期。基站如果希望一次训练完成所有的波束,那么就需要按照最大信道约束的检测方式来检测,可以参考Cat-4中不同优先 等级设计的方法,当最大占用信道时间大,选检测等待的时间窗也越大。也可以将基站要训练的波束LgNR分布在不同的时间段内发送,每个时间段都是1ms的最大占用信道时间,那么每个时间段内,发送的多个SS-Block不需要检测,仅在第一个SS-Block发送时采用Cat2的检测方式。
另外也允许由于基站检测到冲突特别多,需要放弃发送的SS-Burst的情况,这需要进行信道切换。这种情况下,对于已经添加原来的载波的终端来说,需要把这些终端切换到基站检测到的其他载波上。实际上是释放原来的载波配置,添加新的载波配置。但是如果新载波仍然在60GHz频段内,那么终端可以省去下行波束训练和上行初始波束训练的工作。但是仍然免不了要做下行同步和上行的工作,因此,网络设备需要在授权载波通知终端,新激活的载波上,建议终端采用原来的上行波束和下行波束。因此,在配置载波时,需要通知对于的下行波束的SS-Burst的资源,以及其中SS-Block所在的资源,加快终端在新载波上完成下行同步。以及对应的上行波束训练,如PRACH资源,加快完成上行同步。
在本申请中,终端设备仅具有一个60GHz频段的接收射频通道,并且通道的带宽小于2.16GHz。比较直接的方法是不允许这种能力受限终端发送上行信号。这样比较有利于共存。对于子带终端不能利用60GHz发送,就不需要设计60GHz发送射频通道。针对低能能力的设备,可以进一步节约成本。除了禁止能力受限的终端发送上行信号,本发明还提供如下的解决方案,协助能力受限的终端发送上行信号。
如图7所示,本申请提供了一种发送信号的方法的流程,该流程中的网络设备可对于图2中的第一设备,终端设备可对应于图2中的第二设备,调度信号可对应于图2中的第一信号或者对应于图2中的第二信号。如图7所示,该流程包括:
步骤S61:网络设备生成调度信号,所述所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;
步骤S62:网络设备在非授权载波或授权载波上,向多个终端设备发送调度信号。
在本申请中,所述网络设备可调度位置接近的多个终端设备发送子带信号,多个终端设备所发送子带信号的总带宽大于等于非授权信道带宽(2.16GHz)的70%。
接收到的波束标识一致,能量差小于门限或者TA差小于门限。从定位的角度上说,波束角度和到基站的距离决定了这些终端位置接近。可以把多个UE看做一个UE,使得这一簇的终端发送信号满足,占用信道带宽的要求。
在本申请中,采用上述方法,可使得终端设备所发送的子带信号满足非授权系统的要求。
需要说明的是,在本申请中,图2所示的流程可具体应用于终端设备向Pcell基站或Scell基站发送信号,此时,图2所示的流程中的第一设备对应于图1中的UE,第二设备对应于图1中的Pcell基站或Scell基站。
如图8所示,本申请提供了一种发送信号的方法的流程,该流程中的终端设备可对于图2中的第一设备,网络设备可对应于图2中的第二设备,上行波束训练信号对应于图2中的第一信号。如图8所示,该流程包括:
步骤S71:终端设备在接收到网络设备调度信号后,获得第五信号。
在本申请中,所述第五信号可具体为参考信号,所述第五信号占用连续的P个可用子载波,采用N3 i点IDFT变换到时域,所述P小于等于N2 i//W,所述P和W均为整数;
参考信号可以设计为低PAPR的信号,如Zadeoff-chu序列,或其他低运算复杂度的信 号。
步骤S72:所述终端设备对所述第五信号进行直接扩频,获得第六信号,所述终端设备直接扩频的扩频因子为W。
由于是模拟基带实现,不影响DAC的采样率。为了实现简单,采用的扩频码采用哈德码实现。扩频后,信号带宽满足大于等于非授权信道带宽(2.16GHz)的70%。
步骤S73:所述终端设备在非授权载波上向网络设备发送所述第六信号。
在本申请中,网络设备在接收到所述第六信号后,可对第六信号进行解扩,获得第五信号,所述解扩的解扩因子可为W。在本申请中,在所述第五信号为参考信号时,所述网络设备根据第五信号,进行信道估计、同步以及相位跟踪参数和解调数据等。
应当指出,终端设备可在调度信号调度的至少一个子带上发送子带信号,且每个子带信号所占用的带宽小于70%的2.16GHz。进一步的,终端设备在发送子带OFDM信号前,在靠前的K3个OFDM符号发送参考信号采用模拟基带序列直接扩频的方法,使得子带信号扩频到2.16GHz上。作用是为了让11ad的设备进行2.16GHz带宽的能量检测,达到共存的目的。
需要说明的是,在本申请中,图2所示的流程可具体应用于终端设备向Pcell基站或Scell基站发送信号,此时,图2所示的流程中的第一设备对应于图1中的UE,第二设备对应于图1中的Pcell基站或Scell基站。
如图9所示,本申请提供了一种发送信号的方法的流程,该流程中的终端设备可对于图2中的第一设备,网络设备可对应于图2中的第二设备,上行波束训练信号对应于图2中的第一信号。如图9所示,该流程包括:
步骤S81:终端设备生成上行波束训练信号。
步骤S82:所述终端设备在非授权载波上发送所述上行波束训练信号。
应当指出,在高频中,终端在发送上行信号前,必须获得自己的发送参数。而60GHz和其他的授权频谱相隔的比较远。造成无法完全复用授权频谱中的发射参数。包括的参数上行发射功率,上行TA提前量,上行发送波束。这些参数虽然不是每次发送前都要重新获得,但是需要为终端预留丢失了上述参数的设备提供初始上行同步的资源。因此,这个信道的序列如果复用授权频谱中的PRACH信道中的前导preamble设计,就会存在发射信号带宽小于2.16*70%的情况。因此需要步骤S61,S62中的方法调度多个位置相近的终端在不同的子带发射。也可以采用步骤S71,S72的方法发射preamble扩频后的信号。即采用授权频谱中的preamble信号作为第五信号,扩频后第六信号,满足带宽要求。为了训练多个波束方向,上行波束训练信号可以被发送多次。
在本申请中,采用上述方法,可使得带宽受限的终端也能使用非授权频谱,从而获得更高的吞吐量。
在传统的LAA和eLAA技术中,终端设备在发送上行数据前,还需要进行信道状态检测,获得信道空闲和占用的情况。由于能力受限的终端没有检测2.16GHz信道的能力。本申请提供,当调度能力受限的终端发送时,可以将能力受限的终端的上行资源分配在基站传输的最大传输时间内。能力受限的终端在发送前仅作子带的能量检测,如果空闲就在基站分配的时频资源中传输上行信号。
如图10所示,本申请还提供了一种发送信号的方法的流程,该流程中的终端设备可对应于图2中的第一设备,网络设备可对应于图2中第二设备,非授权载波包括至少一个 子带。如图10所示,该流程包括:
步骤S91:终端设备检测调度信号调度的一子带是否空闲,如果空闲,执行步骤S92,否则,继续检测调度信号调度的另一子带是否空闲,依次循环,直至检测完调度信号调度的所有子带。
在本申请中的一示例中,终端设备可以通过一个或多个子带射频通道进行侦听,获取侦听到的功率值。由于能力受限的终端不具有同时接收整个2.16GHz信道带宽能力,因此,如果该终端设备需要分时或通过多个接收子带射频通道分别在每个子带中接收信号。并且将侦听到的多个功率值的加权平均值与预设功率做比较,当侦听到的功率值大于预设功率时,可认为当前子带射频通道忙碌,否则,认为当前子带射频通道空闲。由于不能一次获得2.16GHz信道中的接收信号能量,因此和具有2.16GHz信道带宽能力的终端不同。能力受限的终端要需要有更长的侦听时间,或更高的预设功率。
在本申请中,所述子带射频能道的带宽和授权频谱中带宽能力一致,,比如500MHz、400MHz,200MHz或100MHz等。
步骤S92:终端设备在所述子带上向网络设备发送子带信号;
采用本申请的方法,宽带受限的终端也能使用非授权频谱进行通信,从而使得终端设备的吞吐量更高。
应当指出,本申请中涉及的多个,是指两个或两个以上。本申请描述的第一”、“第二”等词汇,仅用于区分描述,而不用于指示或暗示相对重要性,也不用于指示或暗示顺序。
还应当指出,本申请实施例中部分场景以无线通信网络中4G网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
图12示出了本申请上述实施例所涉及的第一设备的一种可能的结构示意图,该第一设备可以为图1中的UE,Pcell基站或者Scell基站,图2中的第一设备。如图12所示,所述第一设备120,可包括:
处理器121,用于根据第一参数中的第i套参数,生成至少一个第一信号,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;
收发器122,用于在非授权载波上向第二设备发送所述至少一个第一信号;
处理器121,还用于根据第二参数中的第j套参数,生成至少一个第二信号,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1;
收发器122,还用于根据在授权载波上向所述第二设备发送所述至少一个第二信号,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
图13示出本申请上述实施例所涉及的第二设备的一种可能的结构示意图,该第二设备可以为图1中的UE、Pcell基站或者Scell基站,图2中的第二设备。如图13所示,所述第二设备130,包括:
收发器131,用于在非授权载波上接收第一设备发送的至少一个第一信号,所述第一信号为根据第一参数中的第i套参数所生成的,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I ≥i≥1;
收发器131,还用于在授权载波上接收所述第一设备发送的至少一个第二信号,所述第二信号为根据第二参数中的第j套参数所生成的,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1,且所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j);
处理器132,用于对所述第一信号和所述第二信号进行处理。
图14示出了本申请上述实施例所涉及的基站的一种可能的结构示意图,该基站可以是图1中的Pcell基站或者Scell基站,图2中的第一设备或者第二设备。
在本申请中,所述基站包括收发器141和控制器/处理器142。所述收发器141可以用于支持基站与上述实施例中的终端设备之间收发信息,以及支持基站与核心网设备之间进行无线电通信。
所述控制器/处理器142用于执行各种用于与终端设备和核心网设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由收发器141进行解调,并进一步由控制器/处理器142处理来恢复终端设备所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器142进行处理,并由收发器141进行调解来产生下行链路信号,并经由天线发射给UE。所述控制器/处理器142还用于执行如上述实施例描述的发送信号方法,根据第一参数中的第i套参数,生成至少一个第一信号,在非授权载波上发送所述至少一个第一信号,根据二参数中的第j套参数,生成至少一个第二信号,在授权载波上发达所述至少一个第二信号;或者,执行上述实施例描述的接收信号的方法,在非授权载载波上接收所述至少一个第一信号,在授权载波上接收所述至少一个第二信号,对所述第一信号和第二信号进行相应处理。所述控制器/处理器142还用于执行图4至图10中涉及基站的处理过程和/或用于本申请描述的技术的其它过程。所述基站还可包括存储器143,可以用于存储基站的程序代码和数据。所述基站还可包括通信单元144,用于支持基站与其他网络实体进行通信,例如,与核心网设备进行通信。
可以理解的是,图14仅仅示出了基站的简化设计。在实际应用中,基站可以包括任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本申请的基站都在本申请的保护范围内。
图15示出了本申请实施例所涉及的终端设备的一种可能的设计结构的简化示意图,该终端设备可以是图1中的Pcell基站或者Scell基站,图2中的第一设备或者第二设备。所述终端设备包括收发器151,控制器/处理器152,还可包括存储器153和调制解调处理器154。
收发器151调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。收发器151调节(例如,滤波,放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器154中,编码器1541接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1542进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解码器1543处理(例如,解交织和解码)该符号估计并提供发送给终端设备的已解码的数据和信令消息。解调器1544处理(例如 解调)该输入采样并提供符号估计。编码器1541、调制器1542、解码器1543和解调器1544可以由合成的调制解调处理器154来实现。这些单元根据无线接入网采用的无线技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器152对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理。所述终端设备可用于执行如上述实施例描述的发送信号方法,根据第一参数中的第i套参数,生成至少一个第一信号,在非授权载波上发送所述至少一个第一信号,根据二参数中的第j套参数,生成至少一个第二信号,在授权载波上发达所述至少一个第二信号;或者,执行上述实施例描述的接收信号的方法,在非授权载载波上接收所述至少一个第一信号,在授权载波上接收所述至少一个第二信号,对所述第一信号和第二信号进行相应处理。作为示例,控制器/处理器152可用于支持终端设备执行图4至图10中所涉及终端设备的内容。存储器153用于存储用于所述终端设备的程序代码和数据。
本申请的实施例还提供一种可读存储介质,包括指令,当其在通信设备上运行时,使得通信设备执行上述发送信号的方法,或接收信号的方法。
本申请的实施例还提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述接收信号的方法。
本申请的实施例还提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述发送信号的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种发送信号的方法,其特征在于,包括:
    第一设备根据第一参数中的第i套参数,生成至少一个第一信号,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号;
    所述第一设备根据第二参数中的第j套参数,生成至少一个第二信号,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1;
    所述第一设备根据在授权载波上向所述第二设备发送所述至少一个第二信号,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
  2. 根据权利要求1所述的方法,其特征在于,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2的整数次幂;
    或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和3的公倍数;
    或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和5的公倍数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备;
    在所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号之前,所述方法还包括:
    所述网络设备在授权载波上或非授权载波上向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度。
  4. 根据权利要求2所述的方法,其特征在于,在所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号之前,所述方法还包括:
    所述网络设备在非授权载波上向所述终端设备发送第二指示信息,所述第二指示信息用于指示终端设备在频域上的可用子载波X i,所述N1 i*X i<400MHz。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备;
    在所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号之前,所述方法还包括:
    所述网络设备在授权载波上接收所述终端设备的上报信息,所述上报信息中携带有所述终端设备支持非授权载波能力的字段,所述终端设备支持非授权载波能力的字段中包括所述终端设备支持非授权信道范围的参数、所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:
    所述网络设备在所述终端设备所支持的非授权信道上向所述终端设备发送所述至少一个第一信号,所述非授权信道中包括非授权载波,所述第一信号的频域范围小于等于所 述终端设备所支持的接收带宽能力。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号中包括同步块信号SS-Block,所述N2 i大于等于256;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:
    所述网络设备利用所述非授权载波中N2 i个可用子载波中心的256个子载波,向所述终端设备发送所述SS-Block。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号包括SS-Block,且所述非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带所包括子载波的数目大于等于256;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:
    所述网络设备利用每个子带中心的256个子载波向所述终端设备发送所述SS-Block。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括多个主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH,所述非授权载波中的N2 i个可用子载波中至少包括第一子带和第二子带;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:
    所述第一设备采用第一天线阵列在所述第一子带中,发送所述PSS、SSS以及PBCH;
    所述第一设备采用第二天线阵列在所述第二子带中,发送所述PSS、SSS以及PBCH,所述第一天线阵列与所述第二天线阵列不同,所述第一子带与所述第二子带不同。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号至少包括PBCH;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:
    所述网络设备在非授权载波上向所述终端设备发送所述PBCH,所述PBCH中携带有第一字段,所述第一字段为所述网络设备在授权载波上所发送的PBCH中未携带的字段,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的PBCH所携带的与所述第一字段所对应的字段。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括调度信号;
    所述第一设备在非授权载波上向第二设备发送所述至少一个第一信号,包括:
    所述网络设备在非授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;
    或者,所述第一设备为网络设备,所述第二设备为终端设备,所述第二信号包括调度信号;
    所述第一设备在授权载波上向第二设备发送所述至少一个第二信号,包括:
    所述网络设备在授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%。
  11. 根据权利要求10所述的方法,其特征在于,所述网络设备在向多个终端设备发送 调度信号后,所述方法还包括:
    所述网络设备在非授权载波上接收所述终端设备发送的第六信号,所述第六信号的带宽大于等于70%的2.16GHz;
    所述网络设备对接收到的第六信号进行解扩,获得第五信号,所述解扩的解扩因子为W,所述第五信号占用连续的P个可用子载波,所述P小于等于N2 i/W,所述P和W均为整数。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述第一信号包括上行波束训练信号。
  13. 一种接收信号的方法,其特征在于,包括:
    第二设备在非授权载波上接收第一设备发送的至少一个第一信号,所述第一信号为根据第一参数中的第i套参数所生成的,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;
    所述第二设备在授权载波上接收所述第一设备发送的至少一个第二信号,所述第二信号为根据第二参数中的第j套参数所生成的,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1,且所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
  14. 一种第一设备,其特征在于,包括:
    处理器,用于根据第一参数中的第i套参数,生成至少一个第一信号,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;
    收发器,用于在非授权载波上向第二设备发送所述至少一个第一信号;
    所述处理器,还用于根据第二参数中的第j套参数,生成至少一个第二信号,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1;
    所述收发器,还用于根据在授权载波上向所述第二设备发送所述至少一个第二信号,所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j)。
  15. 根据权利要求14所述的设备,其特征在于,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2的整数次幂;
    或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和3的公倍数;
    或者,所述N1 i=15*2 kKHz,所述k为大于等于4,小于等于8的整数,所述N3 i为2和5的公倍数。
  16. 根据权利要求15所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备;
    所述收发器还用于:在授权载波上或非授权载波上向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在非授权载波中接收所述第一信号的颗粒度。
  17. 根据权利要求15所述的设备,其特征在于,所述收发器还用于:在非授权载波 上向所述终端设备发送第二指示信息,所述第二指示信息用于指示终端设备在频域上的可用子载波X i,所述N1 i*X i<400MHz。
  18. 根据权利要求14至17任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备;
    所述收发器还用于:在授权载波上接收所述终端设备的上报信息,所述上报信息中携带有所述终端设备支持非授权载波能力的字段,所述终端设备支持非授权载波能力的字段中包括所述终端设备支持非授权信道范围的参数、所述终端设备支持发送带宽能力的参数和所述终端设备支持接收带宽能力的参数中的至少一个;
    所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:
    在所述终端设备所支持的非授权信道上向所述终端设备发送所述至少一个第一信号,所述非授权信道中包括非授权载波,所述第一信号的频域范围小于等于所述终端设备所支持的接收带宽能力。
  19. 根据权利要求14至18任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号中包括同步块信号SS-Block,所述N2 i大于等于256;
    所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:利用所述非授权载波中N2 i个可用子载波中心的256个子载波,向所述终端设备发送所述SS-Block。
  20. 根据权利要求14至18任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,当所述第一信号为多个时,多个第一信号中包括发现信号,所述发现信号包括SS-Block,且所述非授权载波中的N2 i个可用子载波包括至少一个子带,且每个子带所包括子载波的数目大于等于256;
    所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:利用每个子带中心的256个子载波向所述终端设备发送所述SS-Block。
  21. 根据权利要求14至20任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号包括多个主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH,所述非授权载波中的N2 i个可用子载波中至少包括第一子带和第二子带;
    所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:
    采用第一天线阵列在所述第一子带中,发送所述PSS、SSS以及PBCH;
    采用第二天线阵列在所述第二子带中,发送所述PSS、SSS以及PBCH,所述第一天线阵列与所述第二天线阵列不同,所述第一子带与所述第二子带不同。
  22. 根据权利要求14至21任一项所述的设备,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备,所述第一信号至少包括PBCH;
    所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:
    在非授权载波上向所述终端设备发送所述PBCH,所述PBCH中携带有第一字段,所述第一字段为所述网络设备在授权载波上所发送的PBCH中未携带的字段,或者,所述第一字段与第二字段不同,所述第二字段为所述网络设备在授权载波上所发送的PBCH所携带的与所述第一字段所对应的字段。
  23. 根据权利要求14至22任一项所述的设备,其特征在于,所述第一设备为网络设 备,所述第二设备为终端设备,所述第一信号包括调度信号;
    所述收发器在非授权载波上向第二设备发送所述至少一个第一信号时,具体用于:
    在非授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%;
    或者,所述第一设备为网络设备,所述第二设备为终端设备,所述第二信号包括调度信号;
    所述收发器在授权载波上向第二设备发送所述至少一个第二信号时,具体用于:
    在授权载波上,向多个终端设备发送调度信号,所述调度信号用于指示所述多个终端设备在非授权载波上所发送上行信号的总带宽大于或等于2.16GHz的70%。
  24. 根据权利要求23所述的设备,其特征在于,所述收发器,还用于:在非授权载波上接收所述终端设备发送的第六信号,所述第六信号的带宽大于等于70%的2.16GHz;
    所述处理器,还用于对接收到的第六信号进行解扩,获得第五信号,所述解扩的解扩因子为W,所述第五信号占用连续的P个可用子载波,所述P小于等于N2 i/W,所述P和W均为整数。
  25. 根据权利要求14至24任一项所述的设备,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述第一信号包括上行波束训练信号。
  26. 一种第二设备,其特征在于,包括:
    收发器,用于在非授权载波上接收第一设备发送的至少一个第一信号,所述第一信号为根据第一参数中的第i套参数所生成的,所述第一参数中包括I套参数,所述第i套参数包括子载波间隔N1 iHz,可用子载波数目N2 i,离散傅里叶变换IDFT点数N3 i,I≥i≥1;
    所述收发器,还用于在授权载波上接收所述第一设备发送的至少一个第二信号,所述第二信号为根据第二参数中的第j套参数所生成的,所述第二参数中包括J套参数,所述第j套参数包括子载波间隔N4 j,可用子载波数目N5 j,IDFT点数N6 j,J≥j≥1,且所述N1 i、N2 i、N3 i、N4 j、N5 j、N6 j、I和J均为整数,N1 i*N3 i大于等于1.512GHz,max(N1 i)≥max(N4 j),max(N3 i)≤max(N6 j);
    处理器,用于对所述第一信号和所述第二信号进行处理。
  27. 一种可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至13任一项所述的方法。
  28. 一种芯片,其特征在于,所述芯片包括输入接口、输出接口、至少一个处理器和至少一个存储器,所述至少一个存储器用于存储代码,所述至少一个处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现权利要求1至13任一项所述的方法。
PCT/CN2018/102782 2017-08-29 2018-08-28 一种发送信号的方法及设备 WO2019042291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18852219.7A EP3667996A4 (en) 2017-08-29 2018-08-28 SIGNAL SENDING PROCESS AND DEVICE
US16/805,210 US20200204325A1 (en) 2017-08-29 2020-02-28 Signal Sending Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710756460.0 2017-08-29
CN201710756460.0A CN109428700B (zh) 2017-08-29 2017-08-29 一种发送信号的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/805,210 Continuation US20200204325A1 (en) 2017-08-29 2020-02-28 Signal Sending Method and Device

Publications (1)

Publication Number Publication Date
WO2019042291A1 true WO2019042291A1 (zh) 2019-03-07

Family

ID=65502039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102782 WO2019042291A1 (zh) 2017-08-29 2018-08-28 一种发送信号的方法及设备

Country Status (4)

Country Link
US (1) US20200204325A1 (zh)
EP (1) EP3667996A4 (zh)
CN (1) CN109428700B (zh)
WO (1) WO2019042291A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151015A4 (en) * 2020-05-15 2024-09-11 Nokia Technologies Oy ADAPTIVE CONFIGURATION OF GUARD BANDS OF A COMMUNICATION CHANNEL OF A USER EQUIPMENT

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015179826A1 (en) * 2014-05-22 2015-11-26 Kyocera Corporation Physical channel structure for communication in unlicensed frequency band
CN110149612B (zh) * 2018-02-11 2021-07-09 华为技术有限公司 波束确定方法及第一通信设备、第二通信设备
WO2019183972A1 (zh) * 2018-03-30 2019-10-03 Oppo广东移动通信有限公司 一种信息的指示方法及装置、计算机存储介质
EP3833076A4 (en) * 2018-08-03 2022-04-06 Fujitsu Limited DATA TRANSMISSION AND RECEPTION METHODS AND DEVICES
US11589239B2 (en) * 2019-01-04 2023-02-21 Mediatek Inc. Methods of efficient wideband operation for intra-band non-contiguous spectrum
CN110336651A (zh) * 2019-07-05 2019-10-15 北京神经元网络技术有限公司 子载波的选择方法、装置、设备及介质
JP7465289B2 (ja) * 2019-07-09 2024-04-10 オッポ広東移動通信有限公司 制御情報の伝送方法、端末装置及びネットワーク装置
EP4040830A4 (en) * 2019-10-02 2023-05-03 Ntt Docomo, Inc. COMMUNICATION TERMINAL AND METHOD
CN113497776B (zh) * 2020-04-08 2023-03-28 华为技术有限公司 一种调制方法及装置
US20230292366A1 (en) * 2020-07-17 2023-09-14 Beijing Xiaomi Mobile Software Co., Ltd. Frequency division multiplexing method, frequency division multiplexing device, and storage medium
CN116250325A (zh) * 2020-10-09 2023-06-09 华为技术有限公司 用于无线通信的灵活参考符号模式
CN112584542B (zh) * 2020-12-10 2022-07-12 紫光展锐(重庆)科技有限公司 信号生成方法、设备、装置及存储介质
CN113015259B (zh) * 2021-02-23 2023-03-07 江苏未来智慧信息科技有限公司 工具柜后台管理系统与方法
CN116938420A (zh) * 2022-04-08 2023-10-24 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792362A (zh) * 2014-12-22 2016-07-20 上海贝尔股份有限公司 一种无线资源分配方法
CN105828448A (zh) * 2015-01-09 2016-08-03 中兴通讯股份有限公司 信道占用的方法及装置
US20170201985A1 (en) * 2014-05-30 2017-07-13 Huawei Technologies Co., Ltd. Transmission Method and Communications Device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105162562B (zh) * 2014-08-25 2019-11-15 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法和装置
CN105490789B (zh) * 2014-10-10 2019-08-16 电信科学技术研究院 一种数据传输方法及装置
US10159089B2 (en) * 2015-04-20 2018-12-18 Qualcomm Incorporated Uplink listen before talk operation
CN105611541B (zh) * 2015-12-21 2019-02-12 国家无线电监测中心 实现LTE与Wi-Fi在非授权频段上公平共存的方法和系统
CN105611542B (zh) * 2015-12-30 2019-06-11 宇龙计算机通信科技(深圳)有限公司 一种基于非授权频段的通信方法、相关设备及系统
CN106358315A (zh) * 2016-09-23 2017-01-25 中国科学院上海微系统与信息技术研究所 适用于非授权频段的增强型fbe帧结构及信道接入方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201985A1 (en) * 2014-05-30 2017-07-13 Huawei Technologies Co., Ltd. Transmission Method and Communications Device
CN105792362A (zh) * 2014-12-22 2016-07-20 上海贝尔股份有限公司 一种无线资源分配方法
CN105828448A (zh) * 2015-01-09 2016-08-03 中兴通讯股份有限公司 信道占用的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RAN4#81 Meeting Report", 3GPP TSG-RAN WG4 MEETING #82 R4-1700401:, 22 February 2017 (2017-02-22), XP051237658 *
See also references of EP3667996A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151015A4 (en) * 2020-05-15 2024-09-11 Nokia Technologies Oy ADAPTIVE CONFIGURATION OF GUARD BANDS OF A COMMUNICATION CHANNEL OF A USER EQUIPMENT

Also Published As

Publication number Publication date
CN109428700B (zh) 2020-09-18
EP3667996A1 (en) 2020-06-17
US20200204325A1 (en) 2020-06-25
CN109428700A (zh) 2019-03-05
EP3667996A4 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
CN109428700B (zh) 一种发送信号的方法及设备
US20230336397A1 (en) Method for transmitting information in communication system, base station and user equipment
CA2981355C (en) System and method of waveform design for operation bandwidth extension
WO2021043137A1 (zh) 信号传输方法及通信装置
CN109644450A (zh) 时频资源传输方向的配置方法和装置
US10187238B2 (en) Wireless device, method, and computer readable media for signaling a short training field in a high-efficiency wireless local area network
KR20160046908A (ko) 데이터 전송 방법 및 이를 이용한 무선기기
US8472399B2 (en) Ranging channel structures and methods
WO2017076351A1 (zh) 数据传送方法
TW202008828A (zh) 資源配置的方法和終端設備
TW202008829A (zh) 資源配置的方法和終端設備
US10742464B2 (en) Method and system for multi-protocol transmissions
US11678379B2 (en) Physical random access channel (PRACH) transmission in new radio (NR)
RU2659480C1 (ru) Система беспроводной связи, аппарат базовой станции, терминальное устройство и способ передачи
US10868643B2 (en) Method and system for orthogonal multi-protocol transmissions
EP3833133A1 (en) Communication method for physical layer convergence procedure protocol data unit, and related apparatus
CN110061821B (zh) 随机接入前导序列发射功率确定方法、用户设备、基站和计算机可读介质
US20100177726A1 (en) Method and system for synchronization and cell identification within communication systems
KR20150065807A (ko) 무선 시스템의 수신기 및 송신기를 위한 장치들, 방법들, 및 컴퓨터 프로그램들
US10014994B2 (en) Wireless devices, computer-readable media, and methods for high-efficiency local-area network (HEW) distributed sub-carrier allocation
CN105553631B (zh) 一种基于ofdm的数据传输方法、发射站点和接收站点
CN105471567B (zh) 一种基于ofdm的数据传输方法、发射站点和接收站点
CN109716811B (zh) 用于正交多协议传输的方法和系统
US20240334347A1 (en) Extended long range wireless packet design
WO2023083036A1 (zh) 信号传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852219

Country of ref document: EP

Effective date: 20200313