WO2019042179A1 - 下电极组件及工艺腔室 - Google Patents

下电极组件及工艺腔室 Download PDF

Info

Publication number
WO2019042179A1
WO2019042179A1 PCT/CN2018/101340 CN2018101340W WO2019042179A1 WO 2019042179 A1 WO2019042179 A1 WO 2019042179A1 CN 2018101340 W CN2018101340 W CN 2018101340W WO 2019042179 A1 WO2019042179 A1 WO 2019042179A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring body
ring
electrode assembly
lower electrode
radial width
Prior art date
Application number
PCT/CN2018/101340
Other languages
English (en)
French (fr)
Inventor
赵晋荣
简师节
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710749263.6A external-priority patent/CN107610999A/zh
Priority claimed from CN201721082276.4U external-priority patent/CN207542191U/zh
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2019042179A1 publication Critical patent/WO2019042179A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the present invention relates to the field of semiconductor manufacturing technology, and in particular to a lower electrode assembly and a process chamber.
  • the plasma source can be classified into a capacitively coupled plasma (CCP), an inductive coupled plasma (ICP), and a microwave plasma (MP) according to the manner of generation.
  • CCP capacitively coupled plasma
  • ICP inductive coupled plasma
  • MP microwave plasma
  • upper and lower dual electrode assemblies are generally employed, wherein the upper electrode assembly is used to generate a plasma, such as a coil structure in an inductively coupled plasma source.
  • the lower electrode assembly is used to adjust the uniformity of the plasma distribution on the surface of the wafer and the magnitude of the electric field strength to ensure deposition uniformity or etching rate, etching selectivity ratio, etc. to meet the process requirements.
  • the capacitance of the lower electrode assembly to ground primarily refers to the equivalent capacitance formed between the pedestal and the chamber wall of the process chamber located thereunder.
  • the current lower electrode assembly cannot adjust the equivalent capacitance, which causes the following problems: due to different production batches of multiple process equipments of the same model, and errors in the assembly process, the process equipment can be caused to be lower.
  • the capacitance of the electrode assembly to the ground is inconsistent, and different grounding capacitors may cause problems such as inconsistent etching rate and uniformity of etching uniformity, so that the consistency of the same type of process equipment cannot meet the requirements, and the normal process cannot be realized.
  • the present invention aims to at least solve one of the technical problems existing in the prior art, and proposes a lower electrode assembly and a process chamber, which can adjust the capacitance of the lower electrode assembly to the ground, thereby enabling the same type of process equipment.
  • the consistency meets the requirements.
  • a lower electrode assembly comprising a base and an insulating ring disposed between the base and a bottom wall of the chamber, the insulating ring enabling the base and the chamber
  • An equivalent capacitance is formed between the bottom walls, and the equivalent capacitance is formed by parallel connection of parallel plate capacitors formed by filling at least two different media.
  • the insulating ring includes a ring body corresponding to an edge region of a bottom surface of the pedestal, and a radial width of the ring body satisfies a condition that the equivalent capacitance reaches a desired value.
  • the number of the rings is one, and the radial width of the ring is smaller than the radial width of the edge regions.
  • the radial width of the ring body satisfies the following formula:
  • L is the radial width of the ring body
  • R is the outer diameter of the edge region
  • r is the inner diameter of the edge region
  • the radial width of the ring body satisfies the following formula:
  • L is the radial width of the ring body
  • R is the outer diameter of the edge region
  • r is the inner diameter of the edge region
  • the radial width of the ring body satisfies the following formula:
  • L is the radial width of the ring body
  • R is the outer diameter of the edge region
  • r is the inner diameter of the edge region
  • the number of the rings is at least two and is a concentric ring with each other, and among the two adjacent rings, the inner diameter of the outer ring and the outer diameter of the inner ring equal;
  • the equivalent capacitance is brought to a desired value by making the radial width of one of the ring bodies constant and adjusting the radial width of the remaining ring bodies.
  • the number of the ring bodies is two, respectively a first ring body and a second ring body located outside thereof, wherein
  • the inner diameter of the first ring body is equal to the inner diameter of the edge region
  • the inner diameter of the second ring body is equal to the outer diameter of the first ring body
  • the equivalent capacitance is brought to a desired value by setting the outer diameter of the second ring body.
  • the number of the ring bodies is two, respectively a first ring body and a second ring body located inside thereof, wherein
  • the outer diameter of the first ring body is equal to the outer diameter of the edge region
  • the outer diameter of the second ring body is equal to the inner diameter of the first ring body
  • the equivalent capacitance is brought to a desired value by setting the inner diameter of the second ring body.
  • the number of the ring bodies is three, which are a first ring body, a second ring body and a third ring body, respectively,
  • a center line of the first ring body coincides with a center line of the edge area
  • the second ring body is located outside the first ring body, and an inner diameter of the second ring body is equal to an outer diameter of the first ring body;
  • the third ring body is located inside the first ring body, and an outer diameter of the third ring body is equal to an inner diameter of the first ring body;
  • the equivalent capacitance is brought to a desired value by setting the outer diameter of the second ring body and the inner diameter of the third ring body, respectively.
  • the insulating ring further includes an upper connecting ring and a lower connecting ring, wherein
  • the upper connecting ring is disposed between a top surface of the ring body and a bottom surface of the base; the upper connecting ring is fixedly connected to the base and the ring body respectively;
  • the lower connecting ring is disposed between a bottom surface of the ring body and a top surface of the bottom wall of the chamber; and the lower connecting ring is fixedly connected to the bottom wall of the chamber and the ring body, respectively.
  • the present invention also provides a process chamber comprising the above-described lower electrode assembly provided by the present invention.
  • FIG. 1A is a structural view of a lower electrode assembly according to a first embodiment of the present invention.
  • Figure 1B is a bottom plan view of the ring body in the first embodiment of the present invention.
  • Figure 1C is a capacitance equivalent diagram of a ring body
  • Figure 1D is a capacitance equivalent diagram of another ring body
  • FIG. 2A is a bottom view of a ring body in a second embodiment of the present invention.
  • 2B is a bottom view of another ring body in the second embodiment of the present invention.
  • 2C is a bottom view of still another ring body in the second embodiment of the present invention.
  • FIG. 3A is a structural view of a lower electrode assembly according to a third embodiment of the present invention.
  • Figure 3B is an enlarged view of the area I in Figure 3A;
  • 3C is a top plan view of a ring body in a third embodiment of the present invention.
  • 3D is a top plan view of the upper connecting ring in the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a process chamber provided by the present invention.
  • a first embodiment of the present invention provides a lower electrode assembly including a base 1 and an insulating ring 3 disposed between the base 1 and the bottom wall 2 of the chamber.
  • the ring 3 enables an equivalent capacitance to be formed between the susceptor 1 and the bottom wall 2 of the chamber, which is the capacitance of the lower electrode assembly to ground.
  • the equivalent capacitance is formed by parallel connection of parallel plate capacitors formed by filling at least two different media.
  • the capacitance of the lower electrode assembly to the ground can be adjusted, so that the capacitance of the lower electrode assembly of the same type of process equipment is uniform to the ground, thereby Increasing the etch rate and the uniformity of the etch uniformity distribution, so that the consistency of the same type of process equipment can meet the requirements.
  • the insulating ring 3 includes a ring body corresponding to the edge region 11 of the bottom surface of a portion of the base 1, that is, the orthographic projection of the ring body in the plane of the edge region 11 falls within the edge region 11.
  • the number of the ring bodies may be one, and the radial width L of the ring body is smaller than the radial width (Rr)/2 of the edge region 11 except for the corresponding ring body.
  • the ring body functions not only as a support base 1, but also as a dielectric filling material between the parallel plate capacitors formed between the susceptor 1 and the chamber bottom wall 2 to increase the capacitance of the parallel plate capacitance. Since the ring body only corresponds to a part of the edge region 11, the filler in the region where the ring body is located is the parallel plate capacitor of the medium, and the remaining region forms the parallel plate capacitor with the vacuum of the filler, and the two parallel plate capacitors are connected in parallel with each other. Thus, by setting the radial width of the ring body, the adjustment of the capacitance of the lower electrode assembly to the ground can be achieved.
  • the radial width of the ring body satisfies the condition that the equivalent capacitance reaches a desired value, that is, by setting the radial width of the different ring body, the adjustment of the capacitance of the lower electrode assembly to the ground can be realized.
  • a parallel plate capacitance C in which the filler is the insulating medium 31 is formed.
  • the parallel plate capacitance C is equal to:
  • ⁇ r is the relative dielectric constant of the insulating medium 31, for example, 9.8 for ceramic, ⁇ 0 is vacuum dielectric constant, R is the outer diameter of the edge region 11, r is the inner diameter of the edge region 11, and d is the parallel plate capacitance C Pitch.
  • the radial width L of the ring body is smaller than the radial width (Rr)/2 of the edge region 11, assuming that the ring body corresponds to the intermediate portion of the edge region 11, two fillers are formed in parallel with each other.
  • the parallel plate capacitor for vacuum and a filler are parallel plate capacitors for insulating medium 32.
  • the total parallel plate capacitance Cr is equal to:
  • C1 and C3 are parallel plate capacitors in which two fillers are vacuum, and C2 is a parallel plate capacitor in which the filler is an insulating medium 32.
  • One of the parallel plates with a filling vacuum is C1 equal to:
  • the parallel plate capacitor C3 in which the other filler is vacuum is equal to:
  • the parallel plate capacitance C2 of the filler is the insulating medium 32 is equal to:
  • the filler only has the parallel plate capacitance C of the insulating medium 31 and the size of the parallel plate capacitance Cr of the vacuum and the insulating medium 32 of the filler. Therefore, by changing the radial width of the ring body, the magnitude of the above equivalent capacitance can be adjusted.
  • the radial width of the ring body satisfies the following formula:
  • the parallel plate capacitance Cr of the filler and the insulating medium 32 is 28.23% of the parallel plate capacitance C of the filler only the insulating medium 31. .
  • the radial width of the ring body satisfies the following formula:
  • the filler has a vacuum and the parallel plate capacitance Cr of the insulating medium 32 is 50.73% of the parallel plate capacitance C of the filler only the insulating medium 31. .
  • the radial width of the ring body satisfies the following formula:
  • the filler has a vacuum and the parallel plate capacitance Cr of the insulating medium 32 is 77.06% of the parallel plate capacitance C of the filler only the insulating medium 31. .
  • the ring body corresponds to the middle portion of the edge region 11, but the present invention is not limited thereto. In practical applications, the ring body may also be adjacent to the outer edge or the inner edge region 11
  • the area of the edge, or the outer diameter of the ring body is equal to the outer diameter of the edge area 11, or the inner diameter of the ring body is equal to the inner diameter of the edge area 11.
  • the lower electrode assembly provided by the second embodiment of the present invention is different from the first embodiment described above in that the number and arrangement of the rings are different.
  • the number of the rings may be at least two, and is a concentric ring with each other, and in each of the two adjacent rings, the inner diameter of the outer ring body is equal to the outer diameter of the inner ring body;
  • the number of the ring bodies is two, which are a first ring body 33 and a second ring body 34 on the outer side thereof, wherein the inner diameter and the edge area of the first ring body 33 are The inner diameter r of 11 is equal.
  • the inner diameter of the second ring body 34 is equal to the outer diameter of the first ring body 33.
  • the magnitude of the equivalent capacitance can be adjusted in such a manner that the equivalent capacitance is brought to a desired value by setting the outer diameter of the second ring body 34. Further, the radial width of the first ring body 33 is fixed.
  • the radial width L1 of the second ring body 34 changes, that is, the larger the outer diameter of the second ring body 34, the second ring body
  • the larger the radial width L1 of 34 the greater the sum of the radial widths of the first ring body 33 and the second ring body 34; conversely, the smaller the outer diameter of the second ring body 34, the second ring body 34
  • the smaller the radial width L1 the smaller the sum of the radial widths of the first ring body 33 and the second ring body 34. Therefore, the adjustment of the equivalent capacitance can be realized only by setting the outer diameter of the second ring body 34, so that the adjustment difficulty can be reduced.
  • the number of the ring bodies is two, which are a first ring body 33 and a second ring body 34 located at the inner side thereof, wherein the first The outer diameter of the ring body 33 is equal to the outer diameter R of the edge region 11.
  • the outer diameter of the second ring body 34 is equal to the inner diameter of the first ring body 33.
  • the magnitude of the equivalent capacitance can be adjusted in such a manner that the equivalent capacitance is brought to a desired value by setting the inner diameter of the second ring body 34. Further, the radial width of the first ring body 33 is fixed.
  • the radial width L1 of the second ring body 34 is changed, that is, the smaller the inner diameter of the second ring body 34 is, the second ring body 34 is The larger the radial width L1, the greater the sum of the radial widths of the first ring body 33 and the second ring body 34; conversely, the larger the inner diameter of the second ring body 34, the radial width of the second ring body 34 The smaller L1 is, the smaller the sum of the radial widths of the first ring body 33 and the second ring body 34 is. Therefore, the adjustment of the equivalent capacitance can be realized only by setting the inner diameter of the second ring body 34, so that the adjustment difficulty can be reduced.
  • the number of the ring bodies may also be three, which are the first ring body 33, the second ring body 34, and the third ring body 35, respectively.
  • the center line of the first ring body 33 coincides with the center line of the edge region 11;
  • the second ring body 34 is located outside the first ring body 33, and the inner diameter of the second ring body 34 and the outer diameter of the first ring body 33 Equal;
  • the third ring body 35 is located inside the first ring body 33, and the outer diameter of the third ring body 33 is equal to the inner diameter of the first ring body 33.
  • the magnitude of the equivalent capacitance can be adjusted in such a manner that the equivalent capacitance is brought to a desired value by setting the outer diameter of the second ring body 34 and the inner diameter of the third ring body 35, respectively. Further, the radial width of the first ring body 33 is fixed. On the basis of this, the larger the outer diameter of the second ring body 34, the smaller the inner diameter of the third ring body 35, the larger the radial width L1 of the second ring body 34, and the radial width L2 of the third ring body 35.
  • the radial width of the ring body can also be changed in any other manner to achieve adjustment of the equivalent capacitance.
  • the insulating ring 3 further includes an upper connecting ring 4 and a lower connecting ring 5 on the basis of the first and second embodiments. In order to achieve the installation of the ring body.
  • the upper connecting ring 4 is disposed between the top surface of the ring body and the bottom surface of the base 1, and the upper connecting ring 4 is fixedly coupled to the base 1 and the ring body, respectively.
  • a plurality of connecting holes 41 are provided at a position close to the outer edge of the upper connecting ring 4 for fixing the upper connecting ring 4 to the base 1 by screws.
  • a plurality of connecting holes 42 are provided at appropriate positions of the upper connecting ring 4 opposite to the ring body, and a plurality of screw holes 301 are provided on the surface of the ring body opposite to the upper connecting ring 4 for being screwed up
  • the connecting ring 4 is fixedly connected to the ring body.
  • the lower connecting ring 5 is disposed between the bottom surface of the ring body and the top surface of the chamber bottom wall 2, and the lower connecting ring 5 is fixedly coupled to the chamber bottom wall 2 and the ring body, respectively.
  • a plurality of connecting holes 51 are provided at a position close to the outer edge of the lower connecting ring 5 for fixedly connecting the lower connecting ring 5 to the chamber bottom wall 2 by screws.
  • a plurality of connecting holes 52 are provided at appropriate positions of the lower connecting ring 5 opposite to the ring body, and a plurality of threaded holes 301 are provided on the surface of the ring body opposite to the lower connecting ring 5 for connecting the lower portions by screws
  • the ring 5 is fixedly connected to the ring body.
  • an annular groove 302 for mounting a sealing ring may be disposed on a surface of the ring body opposite to the upper connecting ring 4 and the lower connecting ring 5, respectively; a surface opposite to the base 1 and the ring body at the upper connecting ring 4, respectively.
  • An annular recess 43 for mounting the sealing ring is provided thereon; and an annular recess 53 for mounting the sealing ring is provided on the surface of the lower connecting ring 5 opposite to the chamber bottom wall 2 and the ring body, respectively.
  • an embodiment of the present invention further provides a process chamber 100 including the lower electrode assembly provided by the above various embodiments of the present invention.
  • the lower electrode assembly includes the susceptor 101, and a focus ring 102, a base ring 103, an isolation ring 104, and an insulating ring 105 are disposed in this order from the top to the bottom of the susceptor 101. Moreover, a bottom wall of the chamber below the bottom surface of the susceptor 101 forms an equivalent capacitance between the bottom surface of the susceptor 101 and the bottom chamber wall.
  • the process chamber provided by the embodiment of the present invention can improve the uniformity of the etching rate and the uniformity of the etching uniform by using the above-mentioned lower electrode assembly provided by the above various embodiments of the present invention, thereby enabling the same type of process equipment. Consistency meets the requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

本发明提供一种下电极组件及工艺腔室,其包括基座以及设置在基座与腔室底壁之间的有绝缘环,该绝缘环能够在基座与腔室底壁之间形成等效电容,该等效电容由至少两种不同介质填充形成的平行板电容并联而成。本发明提供的下电极组件,可以实现对下电极组件对地电容的调节,从而可以使型号相同的工艺设备的一致性满足要求。

Description

下电极组件及工艺腔室 技术领域
本发明涉及半导体制造技术领域,具体地,涉及一种下电极组件及工艺腔室。
背景技术
等离子体源按照产生方式的不同可以分为容性耦合等离子体源(Capacitively Coupled Plasma,CCP),感应耦合等离子体源(Inductive Coupled Plasma,ICP)和微波等离子体源(Microwave Plasma,MP)。在这三种等离子体源中,一般都采用上、下双电极组件,其中,上电极组件用于产生等离子体,例如感应耦合等离子体源中的线圈结构。下电极组件用于调节晶片表面的等离子体分布的均匀性和电场强度的大小,以保证沉积均匀性或者刻蚀速率、刻蚀选择比等满足工艺要求。
随着工艺精度要求越来越高,在量产过程中,对型号相同的工艺设备的一致性要求越来越苛刻,其中,下电极组件对地电容就是影响工艺结果的关键参数之一,型号相同的多个工艺设备的对地电容不一致会直接影响到工艺结果不一致。
下电极组件对地电容主要是指在基座与位于其下方的工艺腔室的腔室壁之间形成的等效电容。目前的下电极组件无法对该等效电容进行调节,这会产生如下问题:由于型号相同的多个工艺设备的生产批次不同,以及装配过程中产生的误差均会导致多个工艺设备中下电极组件对地电容不一致,而不同的接地电容会导致刻蚀速率、刻蚀均匀性分布不一致等问题,从而造成型号相同的工艺设备的一致性无法达到要求,无法实现正常工艺。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种下电极组件及工艺腔室,其可以实现对下电极组件对地电容的调节,从而可以使型号相同的工艺设备的一致性满足要求。
为实现本发明的目的而提供一种下电极组件,包括基座以及设置在所述基座与腔室底壁之间的绝缘环,所述绝缘环能够使得所述基座与所述腔室底壁之间形成等效电容,所述等效电容由至少两种不同介质填充形成的平行板电容并联而成。
优选的,所述绝缘环包括对应一部分所述基座的底面的边缘区域的环体,且所述环体的径向宽度满足使所述等效电容达到期望值的条件。
优选的,所述环体的数量为一个,且所述环体的径向宽度小于所述边缘区域的径向宽度。
优选的,所述环体的径向宽度满足下述公式:
L=(R-r)/4
其中,L为所述环体的径向宽度,R为所述边缘区域的外径,r为所述边缘区域的内径。
优选的,所述环体的径向宽度满足下述公式:
L=(R-r)/2
其中,L为所述环体的径向宽度,R为所述边缘区域的外径,r为所述边缘区域的内径。
优选的,所述环体的径向宽度满足下述公式:
L=3*(R-r)/4
其中,L为所述环体的径向宽度,R为所述边缘区域的外径,r为所述边缘区域的内径。
优选的,所述环体的数量为至少两个,且互为同心环,并且在各个相邻的两个所述环体中,位于外侧的环体的内径与位于内侧的环体的外径相等;
通过使其中一个所述环体的径向宽度不变,且调节其余所述环体的径向宽度,来使所述等效电容达到期望值。
优选的,所述环体的数量为两个,分别为第一环体和位于其外侧的第二环体,其中,
所述第一环体的内径与所述边缘区域的内径相等;
所述第二环体的内径与所述第一环体的外径相等;
通过设定所述第二环体的外径,来使所述等效电容达到期望值。
优选的,所述环体的数量为两个,分别为第一环体和位于其内侧的第二环体,其中,
所述第一环体的外径与所述边缘区域的外径相等;
所述第二环体的外径与所述第一环体的内径相等;
通过设定所述第二环体的内径,来使所述等效电容达到期望值。
优选的,所述环体的数量为三个,分别为第一环体、第二环体和第三环体,其中,
所述第一环体的中心线与所述边缘区域的中心线重合;
所述第二环体位于所述第一环体的外侧,且所述第二环体的内径与所述第一环体的外径相等;
所述第三环体位于所述第一环体的内侧,且所述第三环体的外径与所述第一环体的内径相等;
通过分别设定所述第二环体的外径和所述第三环体的内径,来使所述等效电容达到期望值。
优选的,所述绝缘环还包括上连接环和下连接环,其中,
所述上连接环设置在所述环体的顶面与所述基座的底面之间;所述上连 接环分别与所述基座和所述环体固定连接;
所述下连接环设置在所述环体的底面与所述腔室底壁的顶面之间;所述下连接环分别与所述腔室底壁和所述环体固定连接。
优选的,在所述上连接环与所述基座之间、在所述上连接环与所述环体之间、在所述下连接环与所述腔室底壁之间以及在所述下连接环与所述环体之间均设置有密封圈。
作为另一个技术方案,本发明还提供一种工艺腔室,包括本发明提供的上述下电极组件。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1A为本发明第一实施例提供的下电极组件的结构图;
图1B为本发明第一实施例中环体的仰视图;
图1C为一种环体的电容等效图;
图1D为另一种环体的电容等效图;
图2A为本发明第二实施例中一种环体的仰视图;
图2B为本发明第二实施例中另一种环体的仰视图;
图2C为本发明第二实施例中又一种环体的仰视图;
图3A为本发明第三实施例提供的下电极组件的结构图;
图3B为图3A中I区域的放大图;
图3C为本发明第三实施例中环体的俯视图;
图3D为本发明第三实施例中上连接环的俯视图;
图4为本发明提供的工艺腔室的剖视图。
具体实施方式
以下将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
请一并参阅图1A和图1B,本发明第一实施例提供一种下电极组件,其包括基座1以及设置在该基座1与腔室底壁2之间的绝缘环3,该绝缘环3能够使得基座1与腔室底壁2之间形成等效电容,该等效电容即为下电极组件对地电容。
并且,等效电容由至少两种不同介质填充形成的平行板电容并联而成。通过设定介质的数量、介电常数(即介质材料)和径向宽度,可以实现对下电极组件对地电容的调节,以使型号相同的工艺设备的下电极组件对地电容一致,从而可以提高刻蚀速率、刻蚀均匀性分布的一致性,进而可以使型号相同的工艺设备的一致性满足要求。
在本实施例中,绝缘环3包括对应一部分基座1的底面的边缘区域11的环体,也就是说,该环体在边缘区域11所在平面的正投影落在边缘区域11内。具体地,如图1B所示,环体的数量可以为一个,且该环体的径向宽度L小于上述边缘区域11的径向宽度(R-r)/2,边缘区域11除对应环体之外的其余部分与腔室底壁2之间的空间,即腔室内的工艺环境(通常是真空)。该环体不仅起到支撑基座1的作用,同时作为在基座1和腔室底壁2形成的平行板电容之间的介质填充材料,以增大该平行板电容的电容值。由于环体仅对应一部分边缘区域11,这使得环体所在区域填充物为介质的平行板电容,其余区域形成了填充物为真空的平行板电容,这两个平行板电容相互并联。由此,通过设定环体的径向宽度,可以实现对下电极组件对地电容的调节。
并且,上述环体的径向宽度满足使上述等效电容达到期望值的条件,即通过设定不同的环体的径向宽度,可以实现对下电极组件对地电容的调节。
如图1C所示,若环体的径向宽度与边缘区域11的径向宽度一致,则形成填充物为绝缘介质31的平行板电容C。该平行板电容C等于:
Figure PCTCN2018101340-appb-000001
其中,ε r为绝缘介质31的相对介电常数,例如陶瓷为9.8,ε 0为真空介电常数,R为边缘区域11的外径,r为边缘区域11的内径,d为平行板电容C的间距。
如图1D所示,若环体的径向宽度L小于上述边缘区域11的径向宽度(R-r)/2,假设环体对应边缘区域11的中间区域,则形成了相互并联的两个填充物为真空的平行板电容和一个填充物为绝缘介质32的平行板电容。总平行板电容Cr等于:
Cr=C 1+C 2+C 3
其中,C1和C3为两个填充物为真空的平行板电容,C2为填充物为绝缘介质32的平行板电容。
其中一个填充物为真空的平行板电容C1等于:
Figure PCTCN2018101340-appb-000002
其中另一个填充物为真空的平行板电容C3等于:
Figure PCTCN2018101340-appb-000003
填充物为绝缘介质32的平行板电容C2等于:
Figure PCTCN2018101340-appb-000004
由上可知,填充物只有绝缘介质31的平行板电容C与填充物有真空和绝缘介质32的平行板电容Cr的大小不同。因此,通过改变环体的径向宽度, 可以调节上述等效电容的大小。
例如,环体的径向宽度满足下述公式:
L=(R-r)/4
假设边缘区域11的内径r大约为其外径R的3/4,可以估算出:填充物有真空和绝缘介质32的平行板电容Cr是填充物只有绝缘介质31的平行板电容C的28.23%。
又如,环体的径向宽度满足下述公式:
L=(R-r)/2
假设边缘区域11的内径r大约为其外径R的3/4,可以估算出:填充物有真空和绝缘介质32的平行板电容Cr是填充物只有绝缘介质31的平行板电容C的50.73%。
再如,环体的径向宽度满足下述公式:
L=3*(R-r)/4
假设边缘区域11的内径r大约为其外径R的3/4,可以估算出:填充物有真空和绝缘介质32的平行板电容Cr是填充物只有绝缘介质31的平行板电容C的77.06%。
由此可知,环体的径向宽度L越大,则平行板电容Cr越大;反之,环体的径向宽度L越小,则平行板电容Cr越小。
需要说明的是,在本实施例中,环体对应边缘区域11的中间区域,但是本发明并不局限于此,在实际应用中,也可以使环体对应边缘区域11的靠近外边缘或者内边缘的区域,或者环体的外径等于边缘区域11的外径,或者环体的内径等于边缘区域11的内径。
本发明第二实施例提供的下电极组件,其与上述第一实施例相比,其区别仅在于:环体的数量和设置方式不同。
具体地,环体的数量还可以为至少两个,且互为同心环,并且在各个相 邻的两个环体中,位于外侧的环体的内径与位于内侧的环体的外径相等;通过使其中一个环体的径向宽度不变,且调节其余环体的径向宽度,来使等效电容达到期望值,从而可以降低调节难度。
在本实施例中,如图2A所示,环体的数量为两个,分别为第一环体33和位于其外侧的第二环体34,其中,第一环体33的内径与边缘区域11的内径r相等。第二环体34的内径与第一环体33的外径相等。在这种情况下,可以采用下述方式调节等效电容的大小,即,通过设定第二环体34的外径,来使等效电容达到期望值。进一步说,第一环体33的径向宽度是固定不变的。在此基础上,设定的第二环体34的外径不同,则第二环体34的径向宽度L1会改变,即,第二环体34的外径越大,则第二环体34的径向宽度L1越大,从而第一环体33和第二环体34的径向宽度之和越大;反之,第二环体34的外径越小,则第二环体34的径向宽度L1越小,从而第一环体33和第二环体34的径向宽度之和越小。因此,仅通过设定第二环体34的外径,即可实现对等效电容的调节,从而可以降低调节难度。
与上述调节等效电容的大小的方式相类似的,如图2B所示,环体的数量为两个,分别为第一环体33和位于其内侧的第二环体34,其中,第一环体33的外径与边缘区域11的外径R相等。第二环体34的外径与第一环体33的内径相等。在这种情况下,可以采用下述方式调节等效电容的大小,即,通过设定第二环体34的内径,来使等效电容达到期望值。进一步说,第一环体33的径向宽度是固定不变的。在此基础上,设定的第二环体34的内径不同,则第二环体34的径向宽度L1会改变,即,第二环体34的内径越小,则第二环体34的径向宽度L1越大,从而第一环体33和第二环体34的径向宽度之和越大;反之,第二环体34的内径越大,则第二环体34的径向宽度L1越小,从而第一环体33和第二环体34的径向宽度之和越小。因此,仅通过设定第二环体34的内径,即可实现对等效电容的调节,从而可以降低调节 难度。
与上述调节等效电容的大小的方式相类似的,如图2C所示,环体的数量还可以为三个,分别为第一环体33、第二环体34和第三环体35,其中,第一环体33的中心线与边缘区域11的中心线重合;第二环体34位于第一环体33的外侧,且第二环体34的内径与第一环体33的外径相等;第三环体35位于第一环体33的内侧,且第三环体33的外径与第一环体33的内径相等。在这种情况下,可以采用下述方式调节等效电容的大小,即,通过分别设定第二环体34的外径和第三环体35的内径,来使等效电容达到期望值。进一步说,第一环体33的径向宽度是固定不变的。在此基础上,第二环体34的外径越大,第三环体35的内径越小,则第二环体34的径向宽度L1越大,第三环体35的径向宽度L2越大,从而第一环体33、第二环体34和第三环体35的径向宽度之和越大;反之,第二环体34的外径越小,第三环体35的内径越大,则第二环体34的径向宽度L1越小,第三环体35的径向宽度L2越小,从而第一环体33、第二环体34和第三环体35的径向宽度之和越小。因此,仅通过分别设定第二环体34的外径和第三环体35的内径,即可实现对等效电容的调节,从而可以降低调节难度。
当然,在实际应用中,还可以采用其他任意方式改变环体的径向宽度,以实现对等效电容的调节。
请一并参阅图3A~图3D,本发明第三实施例提供的下电极组件,其在上述第一、第二实施例的基础上,绝缘环3还包括上连接环4和下连接环5,以便于实现环体的安装。
具体地,上连接环4设置在环体的顶面与基座1的底面之间,并且上连接环4分别与基座1和环体固定连接。其中,在上连接环4的靠近外边缘的位置处设置有多个连接孔41,用于通过螺钉将上连接环4与基座1固定连接。在上连接环4的与环体相对的适当位置处设置有多个连接孔42,并且在环体 的与上连接环4相对的表面上设置有多个螺纹孔301,用于通过螺钉将上连接环4与环体固定连接。
下连接环5设置在环体的底面与腔室底壁2的顶面之间,并且下连接环5分别与腔室底壁2和环体固定连接。其中,在下连接环5的靠近外边缘的位置处设置有多个连接孔51,用于通过螺钉将下连接环5与腔室底壁2固定连接。在下连接环5的与环体相对的适当位置处设置有多个连接孔52,并且在环体的与下连接环5相对的表面上设置有多个螺纹孔301,用于通过螺钉将下连接环5与环体固定连接。
为了实现密封,在上连接环4与基座1之间、在上连接环4与环体之间、在下连接环5与腔室底壁2之间以及在下连接环5与环体之间均设置有密封圈。具体地,可以在环体分别与上连接环4和下连接环5相对的表面上设置用于安装密封圈的环形凹道302;在上连接环4分别与基座1和环体相对的表面上设置用于安装密封圈的环形凹道43;以及,在下连接环5分别与腔室底壁2和环体相对的表面上设置用于安装密封圈的环形凹道53。
作为另一个技术方案,如图4所示,本发明实施例还提供一种工艺腔室100,其包括本发明上述各个实施例提供的下电极组件。
在本实施例中,下电极组件包括基座101,且在该基座101的周围由上而下依次设置有聚焦环102、基环103、隔离环104和绝缘环105。而且,位于基座101的底面下方的腔室底壁,基座101的底面与该底部腔室壁之间形成等效电容。
本发明实施例提供的工艺腔室,其通过采用本发明上述各个实施例提供的上述下电极组件,可以提高刻蚀速率、刻蚀均匀性分布的一致性,从而可以使型号相同的工艺设备的一致性满足要求。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而 言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种下电极组件,包括基座以及设置在所述基座与腔室底壁之间的绝缘环,所述绝缘环能够使得所述基座与所述腔室底壁之间形成等效电容,其特征在于,所述等效电容由至少两种不同介质填充形成的平行板电容并联而成。
  2. 根据权利要求1所述的下电极组件,其特征在于,所述绝缘环包括对应一部分所述基座的底面的边缘区域的环体,且所述环体的径向宽度满足使所述等效电容达到期望值的条件。
  3. 根据权利要求2所述的下电极组件,其特征在于,所述环体的数量为一个,且所述环体的径向宽度小于所述边缘区域的径向宽度。
  4. 根据权利要求3所述的下电极组件,其特征在于,所述环体的径向宽度满足下述公式:
    L=(R-r)/4
    其中,L为所述环体的径向宽度,R为所述边缘区域的外径,r为所述边缘区域的内径。
  5. 根据权利要求3所述的下电极组件,其特征在于,所述环体的径向宽度满足下述公式:
    L=(R-r)/2
    其中,L为所述环体的径向宽度,R为所述边缘区域的外径,r为所述边缘区域的内径。
  6. 根据权利要求3所述的下电极组件,其特征在于,所述环体的径向 宽度满足下述公式:
    L=3*(R-r)/4
    其中,L为所述环体的径向宽度,R为所述边缘区域的外径,r为所述边缘区域的内径。
  7. 根据权利要求2所述的下电极组件,其特征在于,所述环体的数量为至少两个,且互为同心环,并且在各个相邻的两个所述环体中,位于外侧的环体的内径与位于内侧的环体的外径相等;
    通过使其中一个所述环体的径向宽度不变,且调节其余所述环体的径向宽度,来使所述等效电容达到期望值。
  8. 根据权利要求7所述的下电极组件,其特征在于,所述环体的数量为两个,分别为第一环体和位于其外侧的第二环体,其中,
    所述第一环体的内径与所述边缘区域的内径相等;
    所述第二环体的内径与所述第一环体的外径相等;
    通过设定所述第二环体的外径,来使所述等效电容达到期望值。
  9. 根据权利要求7所述的下电极组件,其特征在于,所述环体的数量为两个,分别为第一环体和位于其内侧的第二环体,其中,
    所述第一环体的外径与所述边缘区域的外径相等;
    所述第二环体的外径与所述第一环体的内径相等;
    通过设定所述第二环体的内径,来使所述等效电容达到期望值。
  10. 根据权利要求7所述的下电极组件,其特征在于,所述环体的数量为三个,分别为第一环体、第二环体和第三环体,其中,
    所述第一环体的中心线与所述边缘区域的中心线重合;
    所述第二环体位于所述第一环体的外侧,且所述第二环体的内径与所述 第一环体的外径相等;
    所述第三环体位于所述第一环体的内侧,且所述第三环体的外径与所述第一环体的内径相等;
    通过分别设定所述第二环体的外径和所述第三环体的内径,来使所述等效电容达到期望值。
  11. 根据权利要求2-10任意一项所述的下电极组件,其特征在于,所述绝缘环还包括上连接环和下连接环,其中,
    所述上连接环设置在所述环体的顶面与所述基座的底面之间;所述上连接环分别与所述基座和所述环体固定连接;
    所述下连接环设置在所述环体的底面与所述腔室底壁的顶面之间;所述下连接环分别与所述腔室底壁和所述环体固定连接。
  12. 根据权利要求11所述的下电极组件,其特征在于,在所述上连接环与所述基座之间、在所述上连接环与所述环体之间、在所述下连接环与所述腔室底壁之间以及在所述下连接环与所述环体之间均设置有密封圈。
  13. 一种工艺腔室,其特征在于,包括权利要求1-12任意一项所述的下电极组件。
PCT/CN2018/101340 2017-08-28 2018-08-20 下电极组件及工艺腔室 WO2019042179A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721082276.4 2017-08-28
CN201710749263.6A CN107610999A (zh) 2017-08-28 2017-08-28 下电极机构及反应腔室
CN201721082276.4U CN207542191U (zh) 2017-08-28 2017-08-28 下电极机构及反应腔室
CN201710749263.6 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019042179A1 true WO2019042179A1 (zh) 2019-03-07

Family

ID=65524910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101340 WO2019042179A1 (zh) 2017-08-28 2018-08-20 下电极组件及工艺腔室

Country Status (1)

Country Link
WO (1) WO2019042179A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878249B2 (en) * 2000-06-16 2005-04-12 Anelva Corporation High frequency sputtering device
CN102867727A (zh) * 2004-05-28 2013-01-09 拉姆研究有限公司 包括响应dc偏压控制的真空等离子体处理器
CN203895409U (zh) * 2013-02-12 2014-10-22 应用材料公司 边缘环组件
CN107610999A (zh) * 2017-08-28 2018-01-19 北京北方华创微电子装备有限公司 下电极机构及反应腔室
CN207542191U (zh) * 2017-08-28 2018-06-26 北京北方华创微电子装备有限公司 下电极机构及反应腔室

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878249B2 (en) * 2000-06-16 2005-04-12 Anelva Corporation High frequency sputtering device
CN102867727A (zh) * 2004-05-28 2013-01-09 拉姆研究有限公司 包括响应dc偏压控制的真空等离子体处理器
CN203895409U (zh) * 2013-02-12 2014-10-22 应用材料公司 边缘环组件
CN107610999A (zh) * 2017-08-28 2018-01-19 北京北方华创微电子装备有限公司 下电极机构及反应腔室
CN207542191U (zh) * 2017-08-28 2018-06-26 北京北方华创微电子装备有限公司 下电极机构及反应腔室

Similar Documents

Publication Publication Date Title
US20190221463A1 (en) Process kit components for use with an extended and independent rf powered cathode substrate for extreme edge tunability
US10847347B2 (en) Edge ring assembly for a substrate support in a plasma processing chamber
TWI677005B (zh) 用於感應式耦合電漿反應器的介電窗及用於處理基板之設備
TWI791027B (zh) 具有低頻射頻功率分佈調節功能的電漿反應器
WO2015085882A1 (zh) 下电极装置以及等离子体加工设备
WO2019062573A1 (zh) 工艺腔室以及电容耦合等离子体设备
TWI725336B (zh) 下電極組件及製程腔室
KR20210028137A (ko) 웨이퍼 지지대
TWI724183B (zh) 電漿處理裝置
TWI690973B (zh) 內襯、反應腔室及半導體加工設備
US11387134B2 (en) Process kit for a substrate support
US20230326779A1 (en) Susceptor and manufacturing method therefor
JP2023545445A (ja) マルチメッシュ処理チャンバ用プッシュプル電源
JP2022535285A (ja) 湾曲面を有する面板
CN207542191U (zh) 下电极机构及反应腔室
WO2019042179A1 (zh) 下电极组件及工艺腔室
CN207183210U (zh) 反应腔室及半导体加工设备
TWI822355B (zh) 提高蝕刻均勻性的靜電吸盤、電漿反應裝置
US20220344134A1 (en) Process kit for a substrate support
KR20240024334A (ko) 두께 보정을 위한 메사 높이 변조
TW201338090A (zh) 一種靜電吸盤
US11488852B2 (en) Methods and apparatus for reducing high voltage arcing in semiconductor process chambers
KR101253297B1 (ko) 유도결합 플라즈마 안테나 및 이를 이용하는 플라즈마 처리장치
JP2022544230A (ja) 制御された堆積用のチャンバ構成
WO2019033878A1 (zh) 内衬、反应腔室及半导体加工设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850982

Country of ref document: EP

Kind code of ref document: A1