WO2019042057A1 - 显示控制系统和显示屏控制器 - Google Patents

显示控制系统和显示屏控制器 Download PDF

Info

Publication number
WO2019042057A1
WO2019042057A1 PCT/CN2018/097489 CN2018097489W WO2019042057A1 WO 2019042057 A1 WO2019042057 A1 WO 2019042057A1 CN 2018097489 W CN2018097489 W CN 2018097489W WO 2019042057 A1 WO2019042057 A1 WO 2019042057A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
signal
circuit
display
driving circuit
Prior art date
Application number
PCT/CN2018/097489
Other languages
English (en)
French (fr)
Inventor
宗靖国
韦桂锋
王伙荣
Original Assignee
西安诺瓦电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710769616.9A external-priority patent/CN109427288A/zh
Priority claimed from CN201710769812.6A external-priority patent/CN109427289B/zh
Priority claimed from CN201710769784.8A external-priority patent/CN109429016B/zh
Application filed by 西安诺瓦电子科技有限公司 filed Critical 西安诺瓦电子科技有限公司
Publication of WO2019042057A1 publication Critical patent/WO2019042057A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports

Definitions

  • the present application relates to the field of display technologies, and in particular, to a display control system and a display controller.
  • a display screen such as an LED display screen is generally formed by splicing a plurality of LED boxes, each of which is equipped with a receiving card, and the receiving card enables the LED box to display image content when the power is turned on.
  • the LED display screen and the display control system at the front end usually use a network cable connection, and the effective transmission distance of the network cable is generally within 100 meters, so as the size of the LED display screen becomes larger, the LED display screen will be carried. It is increasingly difficult to meet the network connection requirements between the LED display and the front display control system, which makes it difficult to meet the connection requirements of the display control system. Poor sex.
  • the LED display needs to be matched with the display control system of the front end to display the image normally.
  • the various display devices used in the existing display control system have relatively simple functions, which leads to the need to carry a variety of LED display systems on site.
  • the need for devices with different functions, and the need for devices that carry a variety of different functions may cause inconvenience to the user to build the system on site.
  • the embodiment of the present application provides a display control system and a display controller.
  • a display control system configured to carry a display screen including a first display area and a second display area.
  • the display control system includes: a display controller; a first signal converter connected to the display controller and configured to connect the display screen to carry the first display area; and a second signal converter, Connecting the display controller and for connecting the display screen to carry the second display area.
  • the interface between the first signal converter and the second signal converter connected to the display controller is a first type interface, and the first signal converter and the second signal converter are used for connecting The interface of the display screen is a second type of interface different from the first type of interface.
  • the first signal converter and the second signal converter are for mounting on different sides of the display screen.
  • the display controller has a first master fiber interface, a first backup fiber interface, a second master fiber interface, and a second backup fiber interface, and the first master fiber interface
  • the first backup optical fiber interface is respectively connected to the first type interface of the first signal converter by using an optical fiber
  • the second main control optical fiber interface and the second backup optical fiber interface are respectively connected by using an optical fiber.
  • the first signal converter has two paths of the first type of interfaces to respectively connect the first master fiber optic interface of the display controller and the first through an optical fiber.
  • a backup optical fiber interface, the first signal converter having eight ways of the second type of interface to connect the first display area by partially or fully connecting the display screen through a network cable.
  • the display controller further includes: a video interface, a video decoding circuit, a main control circuit, a first driving circuit, and a third interface;
  • the video decoding circuit is connected to the video interface and Between the main control circuits, the first driving circuit is connected to the main control circuit and the third interface, and the third interface is connected to the first signal converter and the second signal converter The first type of interface;
  • the first signal converter includes: a signal conversion control circuit and a first type interface driving circuit and a second type interface driving circuit respectively connected to the signal conversion control circuit, the first a type interface driving circuit connected between the first type interface of the first signal converter and the signal conversion control circuit, the second type interface driving circuit being coupled to the first signal converter Between the second type of interface and the signal conversion control circuit.
  • the signal conversion control circuit includes a signal conversion unit and a connection state detecting unit, and the signal conversion unit is configured to convert the first signal input to the signal conversion control circuit by the first type interface driving circuit into a second signal Outputting to the second type interface driving circuit, the connection state detecting unit is configured to detect an external connection state of the second type interface of the first signal converter, and pass the detection result through the first
  • the type interface driving circuit and the first type interface of the first signal converter are uploaded to the display controller.
  • the display controller further includes a second driving circuit and a fourth interface, and the fourth interface is connected to the main control circuit by the second driving circuit.
  • the main control circuit includes a signal copy distribution unit, and the signal copy distribution unit is configured to copy data and package the copied data to the second drive circuit and the first part according to different signal format requirements.
  • a driving circuit the fourth interface is configured to connect to the second display screen and is a different type of interface with the third interface.
  • the display controller further includes a second driving circuit and a fourth interface, and the fourth interface is connected to the main control circuit by the second driving circuit.
  • the main control circuit includes a signal conversion control unit, and the signal conversion control unit is configured to convert a signal input to the main control circuit via the fourth interface and the second driving circuit, and output the signal to the first A driving circuit, the fourth interface and the third interface are different types of interfaces.
  • a display controller includes: a video interface, a video decoding circuit, a main control circuit, a first driving circuit, a first interface, a second driving circuit, and a second interface,
  • the first interface and the second interface are interfaces of different signal types.
  • the video decoding circuit is connected between the video interface and the main control circuit
  • the first driving circuit is connected between the first interface and the main control circuit
  • the second driving circuit is Connected between the second interface and the main control circuit.
  • the main control circuit is provided with a signal conversion control unit, and the signal conversion control unit is configured to convert a first signal input to the main control circuit via the first driving circuit into a second signal output to the first a second driving circuit, and/or the main control circuit is provided with a signal copying and allocating unit, and the video signal input by the signal copying and distributing unit for the video interface is sent to the main control via the video decoding circuit The circuit is then subjected to copy distribution for output to the first drive circuit and the second drive circuit.
  • the main control circuit includes a programmable logic device and a microcontroller connected to the programmable logic device, the video decoding circuit, the first driving circuit, and the second driving Circuits are respectively coupled to the programmable logic device, and the signal conversion control unit and/or the signal replication distribution unit are built in the programmable logic device.
  • an embodiment of the present application provides a display control system for carrying a first display screen and a second display screen.
  • the display control system includes: a first display controller and a second display controller, wherein the first display controller is provided with a first video interface, a first interface, a second interface, and a signal replication distribution unit,
  • the second display controller is provided with a second video interface, a third interface, a fourth interface, and a signal conversion control unit.
  • the first interface is connected to the third interface
  • the second interface is used to connect to the first display screen
  • the fourth interface is used to connect the second display screen
  • the signal replication distribution unit is connected
  • the first interface and the second interface, the signal conversion control unit is connected to the third interface and the fourth interface.
  • the first interface and the third interface are first type interfaces, and the second interface and the fourth interface are different from the first type of second type interfaces.
  • the first display screen controller includes a first video decoding circuit, a first main control circuit, a first driving circuit, and a second driving circuit; the first video decoding circuit, the The first driving circuit and the second driving circuit are respectively connected to the first main control circuit, the first video interface is connected to the first video decoding circuit, and the first interface is connected to the first driving circuit, The second interface is connected to the second driving circuit, and the signal copying and distributing unit is included in the first main control circuit.
  • the second display screen controller includes a second video decoding circuit, a second main control circuit, a third driving circuit, and a fourth driving circuit; the second video decoding circuit, the The third driving circuit and the fourth driving circuit are respectively connected to the second main control circuit, the second video interface is connected to the second video decoding circuit, and the third interface is connected to the third driving circuit, The fourth interface is connected to the fourth driving circuit, and the signal conversion control unit is included in the second main control circuit.
  • the first display controller is also provided with the signal conversion control unit
  • the second display controller is also provided with the signal copy distribution unit, the first display
  • the signal copy distribution unit and the signal conversion control unit of the screen controller automatically or artificially trigger the switching operation according to whether the first video interface has access to the video signal.
  • a display control system includes: a display controller; and a signal converter, including a first interface, a first driving circuit, a signal conversion control circuit, a second interface, and a second driving a circuit, the first interface is connected to the display controller, the first driving circuit is connected between the first interface and the signal conversion control circuit, and the second driving circuit is connected to the second Between the interface and the signal conversion control circuit, the signal conversion control circuit is provided with a signal conversion unit and a connection state detecting unit. The signal conversion unit is configured to convert a first signal obtained by inputting from the first interface and transmitted via the first driving circuit into a second signal output to the second driving circuit, to The second interface outputs.
  • the connection state detecting unit is configured to detect an external connection state of the second interface, and upload the detection result to the display controller through the first interface.
  • the display controller includes: a video interface, a video decoding circuit, a main control circuit, a display module, a third driving circuit, and a third interface, wherein the video decoding circuit is connected between the video interface and the main control circuit
  • the display module is connected to the main control circuit and configured to display the detection result
  • the third driving circuit is connected between the main control circuit and the third interface
  • the third interface is connected Said first interface of the signal converter.
  • At least one technical solution of the above technical solution has one of the following advantages or benefits: (a) by redesigning the entire architecture of the display control system, using a display controller combined with a plurality of signal converters to subdivide the target display On-load, which allows for a significant increase in wiring flexibility between the signal converter and the target display, and also reduces the amount of wire used during wiring; (b) through the design of signal converters and display controllers It can realize remote monitoring of the signal converter interface without changing its original hardware structure; (c) by designing the display controller, it can have signal conversion functions such as photoelectric conversion function, so that Both the function of the sending card and the signal conversion function enable the function of the display controller to be enhanced, the application is more flexible, the application range is wider, and the convenience of the user to build the system can be improved.
  • FIG. 1 is a schematic structural diagram of a display control system in a first embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a display controller according to a first embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a signal converter in a first embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display control system in a second embodiment of the present application.
  • FIG. 5 is a schematic structural view of the display controller shown in FIG. 4.
  • FIG. 6 is a schematic structural view of the main control circuit shown in FIG. 5.
  • FIG. 7 is a schematic structural view of the signal converter shown in FIG. 4.
  • FIG. 8 is a schematic structural diagram of the signal conversion control circuit shown in FIG. 7.
  • FIG. 9 is a schematic flowchart of a remote monitoring method in a third embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a display controller according to a fourth embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a main control circuit in a fourth embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a display controller according to a fifth embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a main control circuit in a fifth embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a display controller according to a sixth embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a main control circuit in a sixth embodiment of the present application.
  • 16 is a schematic structural diagram of a display control system in a seventh embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a display control system according to a first embodiment of the present application.
  • the display control system 10 is for carrying a display screen 20 including a display area 21 and a display area 22 and includes a display controller 11, a signal converter 13, and a signal converter 15.
  • the signal converter 13 is connected to the display controller 11 and is used to connect the display screen 20 to carry the display area 21.
  • the signal converter 15 is connected to the display controller 11 and is used to connect the display screen 20 to carry the display area 22.
  • the interface of the signal converters 13, 15 connected to the display controller 11 is a first type of interface
  • the interface of the signal converters 13, 15 for connecting the display screen 20 is a second type of interface different from the first type of interface.
  • the signal converters 13, 15 are respectively disposed on different sides of the display screen 20, such as the left and right sides of the display screen 20 shown in FIG. 1, or the left and right sides below the display screen 20 (that is, the middle dotted line of the display screen 20 in FIG. On both sides).
  • the display screen 20 is divided into a plurality of display areas such as 21, 22 and respectively carried by a plurality of signal converters such as 13, 15 so that the signal converters 13, 15 and the display screen 20 are respectively
  • the connection between the wires is more flexible and can also reduce the length of the wire.
  • FIG. 2 is a schematic diagram of a specific structure of the display controller 11.
  • the display controller 11 includes a main control circuit 111 (or main processing circuit), a video interface 113, a video decoding circuit 115, a drive circuit 117a, a fiber optic interface 119a, a drive circuit 117b, and a network port 119b.
  • the video interface 113 is used to connect an external video source to receive video signal input.
  • the number of the video interfaces 113 may be one or more, and the video interface 113 is, for example, a digital video interface, an analog video interface, or a combination thereof.
  • the video interface 113 includes, for example, an HDMI interface (High Definition Multimedia Interface), a DP (DisplayPort) interface, and a dual-link DVI interface (Digital Visual Interface).
  • the video decoding circuit 115 is connected between the video interface 113 and the main control circuit 111, which is usually provided with a video decoding chip, and the set video decoding chip is associated with the type of the video interface 113.
  • the video decoding chip uses a DVI video decoding chip
  • the video decoding chip uses a DP video decoding chip
  • the video interface 113 is an HDMI interface
  • the video decoding chip adopts HDMI video decoder chip.
  • the main control circuit 111 includes, for example, a programmable logic device 1111 and a microcontroller 1113 connected to the programmable logic device 1111 such as an MCU (Micro Controller Unit).
  • the programmable logic device 1111 is, for example, an FPGA (Field Programmable Gate Array), and the microcontroller 1113 is used, for example, to load and configure an FPGA and a controller that communicates with an external device as the display controller 11, such as a micro
  • the controller 1113 can interact with an external device through a 100 Mbps network port, a serial port, a USB port, etc., and can also connect a human-machine interaction device such as a button, an LCD (Liquid Crystal Display) screen, or the like.
  • the decoded data and control signals are transmitted to the programmable logic device 1111 of the main control circuit 111, and the programmable logic device 1111 performs the internal or external RAM. Cache and replace the clock domain and bit width conversion operations, and then output the processed data.
  • the internal logic of the programmable logic device 1111 may include a data input module, a dual port RAM and its control module, a 24-bit to 8-bit module, and a data output module; the data input module will input the video signal (including data, clock, and The energy and the field synchronization signal are allocated to the back-end dual-port RAM and its control module, and control the synchronization of the whole system.
  • the control module of the dual-port RAM controls the read and write operations of the RAM, especially to start writing, writing, and starting. Read, read and stop the control of these four states, the data output from the dual port RAM is converted to the data output module after parallel and serial conversion, and the data output module packs and outputs the received data according to a certain format.
  • the drive circuit 117a is connected between the programmable logic device 1111 of the main control circuit 111 and the optical fiber interface 119a.
  • the driving circuit 117a includes an optical module for performing photoelectric conversion.
  • the electrical signal output by the programmable logic device 1111 can be converted into an optical signal and output through the optical fiber interface 119a.
  • the optical module can be an SFP (Small Form-factor Pluggable) optical module.
  • the drive circuit 117a is typically configured with a plurality of optical modules.
  • the drive circuit 117a can be configured with four optical modules.
  • the number of the optical fiber interfaces 119a in this embodiment is not limited, and can meet the requirements of practical applications.
  • the drive circuit 117b is connected between the programmable logic device 1111 of the main control circuit 111 and the network port 119b.
  • the driving circuit 117b includes an Ethernet physical layer transceiver (PHY), and in order to enhance the signal transmission distance, a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • PHY Ethernet physical layer transceiver
  • the driving circuit 117b is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers.
  • the driving circuit 117b can be configured with sixteen.
  • the number of the network port 119b in this embodiment is not limited, and can meet the actual application requirements.
  • the arrangement of the network port 119b and the driving circuit 117b facilitates diversification of the output interface of the display controller 11, thereby improving compatibility; and in order to realize that the network port 119b has the same band as the optical fiber interface 119a.
  • the capacity ratio of the fiber interface to the network port is preferably 1:4.
  • FIG. 3 is a schematic diagram of a specific structure of the signal converter 13.
  • the signal converter 13 is, for example, a photoelectric converter, and includes a signal conversion control circuit 131, a drive circuit 133, a fiber optic interface 135, a drive circuit 137, and a network port 139.
  • the signal conversion control circuit 131 includes, for example, a programmable logic device 1311 and a microcontroller 1313 such as an MCU that connects the programmable logic device 1311.
  • Programmable logic device 1311 is used to perform signal conversion control, such as an FPGA.
  • the microcontroller 1313 is used, for example, to load and configure an FPGA and a controller that communicates with an external device as a signal converter 13.
  • the microcontroller 1313 can interact with an external device through a 100M network port, a USB port, etc. to implement a system program. Update.
  • the drive circuit 133 is connected between the fiber optic interface 135 and the programmable logic device 1311 in the signal conversion control circuit 131.
  • the driving circuit 133 includes: an optical module for performing photoelectric conversion.
  • the optical signal input through the optical fiber interface 135 can be converted into an electrical signal and input to the programmable logic device 1311.
  • the optical module can be an SFP optical module.
  • the drive circuit 133 is typically configured with a plurality of optical modules.
  • the drive circuit 133 can configure two optical modules.
  • the number of the optical fiber interfaces 135 in this embodiment is not limited, and can meet the requirements of practical applications.
  • the drive circuit 137 is connected between the network port 139 and the programmable logic device 1311 in the signal conversion control circuit 131.
  • the driving circuit 137 includes an Ethernet physical layer transceiver (PHY), and in order to enhance the signal transmission distance, a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • PHY Ethernet physical layer transceiver
  • the driving circuit 137 is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers.
  • the driving circuit 137 can be configured with eight-way Ethernet physics.
  • a combination of layer transceivers and network transformers can be configured with eight-way Ethernet physics.
  • the number of the network ports 139 in this embodiment is not limited, and can meet the actual application requirements.
  • the ratio of the number of optical interfaces to the network port is preferably 1:4.
  • the signal converter 15 can have the same structural configuration as the signal converter 13, for example, a signal conversion control circuit, a network port, a fiber optic interface and an associated driving circuit are provided, and thus will not be described herein.
  • the signal converter 13 and the signal converter 15 may have the same number of fiber interfaces and network ports, and may also have different numbers of fiber interfaces and network ports.
  • the display controller 11 is configured with four optical fiber interfaces, and the signal converters 13 and 15 are respectively configured with two optical fiber interfaces and eight network ports as an example description.
  • the display control system 10 is connected to the two optical fiber interfaces of the optical fiber connection signal converter 13 as a primary control optical fiber interface and a backup optical fiber interface.
  • the display controller 11 is connected through a fiber optic cable.
  • the two optical fiber interfaces of the signal converter 15 are respectively used as one main control optical fiber interface and one backup optical fiber interface, and some or all of the eight network ports of the signal converter 13 are connected to the display screen 20 to carry the display area 21, and the signal converter 15 Part or all of the eight-way network port is connected to the display screen 20 to carry the display area 22; the setting of the backup optical fiber interface is beneficial to make the system work more reliable.
  • the video signal is input through the video interface 113 of the display controller 11, and is video-decoded by the video decoding circuit 115, and then sent to the programmable logic device 1111 of the main control circuit 111 for processing to obtain a processed signal. After being converted into a corresponding optical signal via the driving circuit 117a, it is transmitted to the signal converters 13, 15 through the optical fiber interface 119a and the optical fiber.
  • the optical fiber interface 135 receives the optical signal from the display controller 11, and the optical signal is converted by the driving circuit 133 into a corresponding electrical signal and sent to the signal conversion control circuit 131.
  • the programmable logic device 1311 performs protocol format conversion to obtain an Ethernet data signal (which is equivalent to the programmable logic device 1311 configured with a signal conversion unit to convert an electrical signal corresponding to the optical signal into an Ethernet data signal), and then an Ethernet data signal. It is output to the network port 139 via the driving circuit 137, and then transmitted to the display area 21 of the display screen 20 by the network cable connected to the network port 139 for image display.
  • the maximum width of the resolution of the display screen 20 in the one-dimensional direction is within the range (1920, 4096) (ie, greater than 1920 and less than 4096)
  • a single signal converter eg, If there are sixteen network ports, the placement position of the single signal converter is relatively limited, and if multiple units such as two signal converters are used in the foregoing embodiment of the present application, the network cable of the display screen 20 is connected. It will be more flexible, and the length of the cable used can be significantly reduced.
  • the display controller 11 does not provide a backup optical fiber interface, so that for connecting the two signal converters 13, 15, the display controller 11 can only Two fiber interfaces 119a are provided as the master interface, and the signal converters 13, 15 can also be provided with only one fiber interface 135.
  • the display controller 11 can carry four signal converters using the four-way fiber interface 119a, taking into account that the display controller 11 is not provided with a backup fiber interface.
  • the distance between the display controller and the signal converter is usually relatively long, so that How to quickly and easily obtain the connection status between the signal converter and the display screen, and realize remote monitoring becomes more important.
  • FIG. 4 is a schematic structural diagram of a display control system according to a second embodiment of the present application.
  • the display control system 40 includes a display controller 41 and a signal converter 43.
  • the signal converter 43 is connected to the display controller 41 so that the video signal input to the display controller 41 can be transmitted to the display screen 50 via the signal converter 43 for image display.
  • the display screen 50 herein is, for example, an LED display screen, which is typically formed by splicing a plurality of LED housings configured with receiving cards (or scanning cards). It can be understood that the display screen 50 of the present embodiment may be the display area 21 or 22 in the foregoing first embodiment, but the application is not limited thereto.
  • the display controller 41 includes, for example, a main control circuit 411, a display module 412, a video interface 413, a video decoding circuit 415, a drive circuit 417a, a fiber optic interface 419a, a drive circuit 417b, and a network port 419b.
  • the video interface 413 is configured to connect an external video source to receive a video signal input.
  • the number of the video interfaces 413 may be one or more, and the video interface 413 is, for example, a digital video interface, an analog video interface, or a combination thereof.
  • video interface 413 includes, for example, an HDMI interface, a DP interface, and/or a dual link DVI interface.
  • the video decoding circuit 415 is connected between the video interface 413 and the main control circuit 411, which is usually provided with a video decoding chip, and the set video decoding chip is related to the type of the video interface 413.
  • the video decoding chip uses a DVI video decoding chip
  • the video decoding chip uses a DP video decoding chip
  • the video interface 413 is an HDMI interface
  • the video decoding chip adopts HDMI video decoder chip.
  • the main control circuit 411 includes, for example, a programmable logic device 4110 and a microcontroller 4111, such as an MCU, connected to the programmable logic device 4110, as shown in FIG. More specifically, the programmable logic device 4110 is, for example, an FPGA, and the microcontroller 4111 is used, for example, to load and configure an FPGA and a controller that communicates with an external device as the display controller 41.
  • the microcontroller 4111 can pass the 100M network.
  • the port, the serial port, the USB port and the like interact with external devices, and can also connect human-machine interaction devices such as buttons, knobs, and the like.
  • the decoded data and control signals are transmitted to the programmable logic device 4110 of the main control circuit 411, and the programmable logic device 4110 performs the internal or external RAM. Cache, and replace the clock domain and bit width conversion operations, and then copy the processed data for output.
  • the internal logic of the programmable logic device 4110 may include a data input module, a dual port RAM and its control module, a 24-bit to 8-bit module, and a data output module; the data input module will input the video signal (including data, clock, and The energy and the field synchronization signal are allocated to the back-end dual-port RAM and its control module, and control the synchronization of the whole system.
  • the control module of the dual-port RAM controls the read and write operations of the RAM, especially to start writing, writing, and starting. Read, read and stop the control of these four states; the data output from the dual port RAM is converted to the data output module after parallel and serial conversion, and the data output module packs the received data according to a certain format, for example, packaged into an optical fiber.
  • the data signal is output through the drive circuit 417a and the optical fiber interface 419a, or packaged into an Ethernet data signal and output through the drive circuit 417b and the network port 419b.
  • the display module 412 is connected to the main control circuit 411, for example, to the microcontroller 4111 in the main control circuit 411.
  • the display module 412 is, for example, a liquid crystal display or other type of display screen disposed on the front panel of the display controller 41.
  • the drive circuit 417a is connected between the programmable logic device 4110 of the main control circuit 411 and the optical fiber interface 419a.
  • the driving circuit 417a includes: an optical module for performing photoelectric conversion.
  • the electrical signal output by the programmable logic device 4110 can be converted into an optical signal and output through the optical fiber interface 419a.
  • the optical module can be an SFP optical module.
  • the drive circuit 417a is typically configured with a plurality of optical modules.
  • the drive circuit 417a can be configured with four optical modules.
  • the number of the optical fiber interfaces 419a in this embodiment is not limited, and can meet the requirements of practical applications.
  • the drive circuit 417b is connected between the programmable logic device 4110 of the main control circuit 411 and the network port 419b.
  • the driving circuit 417b includes an Ethernet physical layer transceiver (PHY), and in order to enhance the signal transmission distance, a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • PHY Ethernet physical layer transceiver
  • a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • the driving circuit 417b is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers. For example, when the network port 419b is sixteen channels, the driving circuit 417b can be configured with sixteen.
  • the number of the network port 419b in this embodiment is not limited, and can meet the actual application requirements.
  • the arrangement of the different types of interfaces 419a and 419b facilitates the diversification of the interface of the display controller 41, thereby improving the compatibility thereof; and in order to realize that the network port 419b has the same band as the optical fiber interface 419a.
  • the capacity ratio of the optical fiber interface 419a and the network port 419b is preferably 1:4.
  • the number of configurations of the network port 419b and the optical fiber interface 419a is not limited to the sixteenth and fourth paths as exemplified above, and may be eight and two, respectively.
  • the signal converter 43 of the present embodiment includes, for example, a signal conversion control circuit 431, a drive circuit 433, a fiber optic interface 435, a drive circuit 437, and a network port 439.
  • the signal conversion control circuit 431 is provided with a signal conversion unit 4312 and a wiring state detecting unit 4314.
  • the signal conversion unit 4312 is configured to output a first signal (for example, an optical fiber data signal) input from the optical fiber interface 435 and transmitted through the driving circuit 433 into a second signal (for example, an Ethernet data signal), and output the signal to the driving circuit 437.
  • the output is from the network port 439.
  • the connection state detecting unit 4314 is configured to detect the external connection state of the network port 439, and upload the detection result to the display controller 41 through the fiber interface 435 for being displayed by the display controller 41 to the display module 412 for display and/or Uploaded to the upper computer display for the user to remotely monitor the external connection status of the network port 439 of the signal converter 43. For example, when it is detected that the external connection status of a certain network port 439 is “LINK UP”, it indicates that it is in the connection state. Otherwise, when its external connection status is “LINK DOWN”, it indicates that it is not connected. Or
  • the signal conversion control circuit 431 includes, for example, a programmable logic device 4310 and a microcontroller 4311 such as an MCU that connects the programmable logic device 4310.
  • the signal conversion unit 4312 and the connection state detecting unit 4314 it may be built in the programmable logic device 4310; specifically, the signal conversion unit 4312 and the wiring state detecting unit 4314 may be stored in the memory of the programmable logic device 4310 and may be Program code (or software module) executed by programmable logic device 4310.
  • the programmable logic device 4310 is, for example, an FPGA.
  • the microcontroller 4311 is used, for example, to load and configure an FPGA and a controller that communicates with an external device as a signal converter 43.
  • the microcontroller 4311 can pass a 100M network port, a USB port, etc. Interact with external devices to update system programs.
  • the drive circuit 433 is connected between the fiber optic interface 435 and the programmable logic device 4310 in the signal conversion control circuit 431.
  • the driving circuit 433 includes: an optical module for performing photoelectric conversion.
  • the optical signal input through the optical fiber interface 435 can be converted into an electrical signal and input to the programmable logic device 4310.
  • the optical module can be an SFP optical module.
  • the driving circuit 433 is typically configured with a plurality of optical modules.
  • the driving circuit 433 can be configured with four optical modules; and in order to improve system reliability, Two optical fiber interfaces 435 can be configured with two primary fiber interfaces and the other two configured as backup optical interfaces.
  • the number of the optical fiber interfaces 435 in this embodiment is not limited, and can meet the requirements of practical applications.
  • the drive circuit 437 is connected between the network port 439 and the programmable logic device 4310 in the signal conversion control circuit 431.
  • the driving circuit 437 includes an Ethernet physical layer transceiver (PHY), and in order to enhance the signal transmission distance, a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • PHY Ethernet physical layer transceiver
  • a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • the driving circuit 437 is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers. For example, when the network port 439 is sixteen channels, the driving circuit 437 can be configured with sixteen.
  • the number of the network ports 439 in this embodiment is not limited, and can meet the actual application requirements.
  • the ratio of the number of the optical interface 435 to the network port 439 is preferably 1:4.
  • the optical fiber interface 435 is two-way and the network port 439 is eight-way, or the optical fiber interface 435 is four-way and the network port 439 is sixteen-way, and so on.
  • FIG. 9 is a schematic flowchart diagram of a remote monitoring method according to a third embodiment of the present application. As shown in FIG. 9, the remote monitoring method of this embodiment includes the following steps:
  • the first device transmits the detection result to the second device via the cable through the first interface of the first device, where the first interface and the second interface are interfaces of different signal types; as well as
  • the remote monitoring method of the present embodiment is performed, for example, in the display control system 40 shown in FIG. 4, the first device is, for example, the signal converter 43 in FIG. 4, and the second device is, for example, the display screen control in FIG.
  • the device 41 and the connection cable between the first device and the second device are, for example, optical fibers.
  • step S91 for example, a register value of a physical layer transceiver (PHY) on the first device, such as signal converter 43, is read to detect the second interface of the first device, such as network port 439.
  • PHY physical layer transceiver
  • the detection result is transmitted to the second device, for example, the display controller 41, by an optical fiber in the form of an optical signal in step S93, and the detection result is, for example, in the display controller 41 in step S95.
  • Display is performed on display module 412 for viewing by the user, thereby enabling remote monitoring of the port/interface of the first device, such as signal converter 43.
  • the display control system 40 shown in FIG. 4 can perform the transmission card function and the data remote transmission function to implement video image display, in addition to the remote monitoring method shown in FIG.
  • the video signal input to the display controller 41 is also processed, transmitted to the signal converter 43 via a cable for signal conversion, and then displayed on the upper screen.
  • the functions of various devices are relatively simple, which leads to the need to carry a variety of different functions when building a display system on site, and this kind of device needs to carry a variety of different functions.
  • the requirements of the device may cause inconvenience to the user on-site construction system, and the following fourth embodiment, fifth embodiment, sixth embodiment, seventh embodiment and eighth embodiment are provided to overcome the technical problem.
  • FIG. 10 is a schematic structural diagram of a display controller according to a fourth embodiment of the present application.
  • the display controller 101 includes a main control circuit 1011, a video interface 1013, a video decoding circuit 1015, a drive circuit 1017a, an interface 1019a, a drive circuit 1017b, and an interface 1019b.
  • the video interface 1013 is configured to connect an external video source to receive a video signal input.
  • the number of video interfaces 1013 may be one or more, and the video interface 1013 is, for example, a digital video interface, an analog video interface, or a combination thereof.
  • video interface 1013 includes, for example, an HDMI interface, a DP interface, and/or a dual link DVI interface.
  • the video decoding circuit 1015 is connected between the video interface 1013 and the main control circuit 1011, which is usually provided with a video decoding chip, and the set video decoding chip is associated with the type of the video interface 1013.
  • the video decoding chip adopts a DVI video decoding chip
  • the video decoding chip uses a DP video decoding chip
  • the video interface 1013 is an HDMI interface
  • the video decoding chip adopts HDMI video decoder chip.
  • the main control circuit 1011 is provided with a signal conversion control unit 10112, and the signal conversion control unit 10112 is mainly used for signal conversion.
  • the main control circuit 1011 includes a programmable logic device 10110 and a microcontroller 10111 connected to the programmable logic device 10110, such as an MCU, and the signal conversion control unit 10112 is built in the programmable logic device 10110;
  • the signal conversion control unit 10112 is, for example, a program code (or software module) stored in the memory of the programmable logic device 10110 and executable by the programmable logic device 10110.
  • the programmable logic device 10110 is, for example, an FPGA
  • the microcontroller 10111 is used, for example, to load and configure an FPGA and as a controller for the display controller 101 to communicate with an external device, for example, the microcontroller 10111 can pass the 100M network.
  • the port, the serial port, the USB port and the like interact with external devices, and can also connect human-machine interaction devices such as buttons, LCD screens, and the like.
  • the drive circuit 1017a is connected between the programmable logic device 10110 of the master control circuit 1011 and the interface 1019a.
  • the interface 1019a is a fiber optic interface
  • the driving circuit 1017a includes an optical module for performing photoelectric conversion.
  • the electrical signal output by the programmable logic device 10110 can be converted into an optical signal and output through the optical fiber interface 1019a.
  • the optical module can be an SFP (Small Form-factor Pluggable) optical module.
  • the drive circuit 1017a is typically configured with a plurality of optical modules, for example, when the interface 1019a is four-way, the drive circuit 1017a can be configured with four optical modules.
  • the number of the interfaces 1019a in this embodiment is not limited, and can meet the actual application requirements.
  • the drive circuit 1017b is connected between the programmable logic device 10110 of the master control circuit 1011 and the interface 1019b.
  • the interface 1019b is a network port
  • the driving circuit 1017b includes an Ethernet physical layer transceiver (PHY).
  • PHY Ethernet physical layer transceiver
  • a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • the drive circuit 1017b is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers, for example, when the interface 1019b is sixteen channels, the drive circuit 1017b can be configured with sixteen channels of Ethernet.
  • the number of the interfaces 1019b in this embodiment is not limited, and can meet the actual application requirements.
  • the arrangement of different types of interfaces 1019a and interfaces 1019b facilitates diversification of the output interface of the display controller 101, thereby improving compatibility; and in order to achieve the same loading of the interface 1019b and the interface 1019a.
  • the ratio of the number of configurations of the interface 1019a to the interface 1019b is preferably 1:4.
  • the number of configurations of the interface 1019b and the interface 1019a is not limited to the sixteenth and fourth paths of the foregoing examples, and may be eight and two, respectively.
  • the signal conversion control unit 10112 is configured to convert the first signal (for example, the optical fiber data signal of the optical signal input corresponding to the interface 1019a) input to the main control circuit 1011 via the driving circuit 1017a into a second signal (for example, an ether.
  • the net data signal is output to the drive circuit 1017b for output from the interface 1019b; conversely, it can also be used to convert the Ethernet data signal into a fiber data signal.
  • the setting of the signal conversion control unit 10112 in the present embodiment causes the display controller 101 to have a photoelectric conversion function.
  • FIG. 12 is a schematic structural diagram of a display controller according to a fifth embodiment of the present application.
  • the display controller 121 includes a main control circuit 1211, a video interface 1213, a video decoding circuit 1215, a drive circuit 1217a, an interface 1219a, a drive circuit 1217b, and an interface 1219b.
  • the video interface 1213 is configured to connect an external video source to receive a video signal input.
  • the number of video interfaces 1213 may be one or more, and the video interface 1213 is, for example, a digital video interface, an analog video interface, or a combination thereof.
  • video interface 1213 includes, for example, an HDMI interface, a DP interface, and/or a dual link DVI interface.
  • the video decoding circuit 1215 is coupled between the video interface 1213 and the main control circuit 1211, which is typically provided with a video decoding chip, and the set video decoding chip is associated with the type of video interface 1213.
  • the video decoding chip adopts a DVI video decoding chip
  • the video decoding chip uses a DP video decoding chip
  • the video interface 1213 is an HDMI interface
  • the video decoding chip adopts HDMI video decoder chip.
  • the main control circuit 1211 is provided with a signal copy distribution unit 12112.
  • the main control circuit 1211 includes a programmable logic device 12110 and a microcontroller 12111 connected to the programmable logic device 12110, such as an MCU, and the signal replication distribution unit 12112 is built in the programmable logic device 12110;
  • the signal replication allocation unit 12112 is, for example, a program code (or software module) stored in the memory of the programmable logic device 12110 and executable by the programmable logic device 12110.
  • the programmable logic device 12110 is, for example, an FPGA
  • the microcontroller 12111 is used, for example, to load and configure an FPGA and as a controller for the display controller 121 to communicate with an external device, for example, the microcontroller 12111 can pass the 100M network.
  • the port, the serial port, the USB port and the like interact with external devices, and can also connect human-machine interaction devices such as buttons, LCD screens, and the like.
  • the video decoding circuit 1215 obtains the input video signal from the video interface 1213
  • the decoded data and control signals are transmitted to the programmable logic device 12110 of the main control circuit 1211, and the programmable logic device 12110 performs the internal or external RAM.
  • the internal logic of the programmable logic device 12110 may include a data input module, a dual port RAM and its control module, a 24 bit to 8 bit module, a signal copy distribution unit 12112; the data input module will input the video signal (including data, clock) , enable, line sync signal) is assigned to the back-end dual-port RAM and its control module, and controls the synchronization of the whole system.
  • the control module of the dual-port RAM controls the read and write operations of the RAM, especially for starting write and write stop.
  • the data output from the dual port RAM is subjected to parallel and serial conversion and then transmitted to the signal duplication allocating unit 12112, and the signal duplication allocating unit 12112 copies the parallel converted data and
  • the copied data signals are packed for output to the drive circuits 1217a, 1217b according to different signal format requirements of the drive circuits 1217a, 1217b.
  • Driver circuit 1217a is coupled between programmable logic device 12110 of master control circuit 1211 and interface 1219a.
  • the interface 1219a is a fiber optic interface
  • the driving circuit 1217a includes an optical module for performing photoelectric conversion.
  • the electrical signal output by the programmable logic device 12110 can be converted into an optical signal and output through the interface 1219a.
  • the optical module can be an SFP optical module.
  • the drive circuit 1217a is typically configured with a plurality of optical modules, for example, when the interface 1219a is four-way, the drive circuit 1217a can be configured with four optical modules.
  • the number of the interfaces 1219a in this embodiment is not limited, and can meet the actual application requirements.
  • Driver circuit 1217b is coupled between programmable logic device 12110 of master control circuit 1211 and interface 1219b.
  • the interface 1219b is a network port
  • the driving circuit 1217b includes an Ethernet physical layer transceiver (PHY).
  • PHY Ethernet physical layer transceiver
  • a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • the driver circuit 1217b is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers, for example, when the interface 1219b is sixteen channels, the driver circuit 1217b can be configured with sixteen channels of Ethernet.
  • the number of the interfaces 1219b in this embodiment is not limited, and can meet the actual application requirements.
  • the arrangement of different types of interfaces 1219a and interfaces 1219b facilitates diversification of the output interface of the display controller 121, thereby improving compatibility; and in order to achieve the same loading of the interface 1219b and the interface 1219a.
  • the ratio of the number of configurations of the interface 1219a to the interface 1219b is preferably 1:4.
  • the number of configurations of the interface 1219b and the interface 1219a is not limited to the sixteenth and fourth paths of the foregoing examples, and may be eight and two, respectively.
  • FIG. 14 is a schematic structural diagram of a display controller according to a sixth embodiment of the present application.
  • the display controller 141 includes a main control circuit 1411, a video interface 1413, a video decoding circuit 1415, a drive circuit 1417a, an interface 1419a, a drive circuit 1417b, and an interface 1419b.
  • the video interface 1413 is configured to connect an external video source to receive a video signal input.
  • the number of video interfaces 1413 may be one or more, and the video interface 1413 is, for example, a digital video interface, an analog video interface, or a combination thereof.
  • video interface 1413 includes, for example, an HDMI interface, a DP interface, and/or a dual link DVI interface.
  • the video decoding circuit 1415 is coupled between the video interface 1413 and the main control circuit 1411, which is typically provided with a video decoding chip, and the set video decoding chip is associated with the type of video interface 1413.
  • the video decoding chip adopts a DVI video decoding chip
  • the video decoding chip uses a DP video decoding chip
  • the video interface 1413 is an HDMI interface
  • the video decoding chip adopts HDMI video decoder chip.
  • the main control circuit 1411 is provided with a signal conversion control unit 14112a and a signal copy distribution unit 14112b.
  • the main control circuit 1411 includes a programmable logic device 14110 and a microcontroller 14111 such as an MCU connected to the programmable logic device 14110, and the signal conversion control unit 14112a and the signal replication distribution unit 14112b are built in
  • the programming logic device 14110; specifically, the signal conversion control unit 14112a and the signal replication distribution unit 14112b are, for example, program codes (or software modules) respectively stored in the memory of the programmable logic device 14110 and executable by the programmable logic device 14110.
  • the programmable logic device 14110 is, for example, an FPGA
  • the microcontroller 14111 is used, for example, to load and configure an FPGA and a controller that communicates with an external device as the display controller 141.
  • the microcontroller 14111 can pass through a 100 Mbps network.
  • the port, the serial port, the USB port and the like interact with external devices, and can also connect human-machine interaction devices such as buttons, LCD screens, and the like.
  • the video decoding circuit 1415 obtains the input video signal from the video interface 1413, and transmits the decoded data and control signals to the programmable logic device 14110 of the main control circuit 1411.
  • the programmable logic device 14110 performs buffering by internal or external RAM, performs replacement clock domain and bit width conversion operations, and then copies and distributes the processed data for output.
  • the internal logic of the programmable logic device 14110 may include a data input module, a dual port RAM and its control module, a 24 bit to 8 bit module, and a signal copy distribution unit 14112b; the data input module inputs the video signal (including data, clock) , enable, line sync signal) is assigned to the back-end dual-port RAM and its control module, and controls the synchronization of the whole system.
  • the control module of the dual-port RAM controls the read and write operations of the RAM, especially for starting write and write stop.
  • the data output from the dual port RAM is subjected to parallel and serial conversion and then transmitted to the signal copying and distributing unit 14112b, and the signal copying and distributing unit 14112b copies the data after the parallel conversion and
  • the copied data signals are packed for output to the drive circuits 1417a, 1417b in accordance with different signal format requirements of the drive circuits 1417a, 1417b.
  • the signal conversion control unit 14112a may input the first signal (for example, the optical fiber data signal of the optical signal input corresponding to the interface 1419a) via the driving circuit 1417a to the main control circuit 1411.
  • the second signal (e.g., an Ethernet data signal) is output to the drive circuit 1417b for output from the interface 1419b.
  • the function execution timing of the signal conversion control unit 14112a and the signal copy distribution unit 14112b of the main control circuit 1411 in the display controller 141 it may be determined according to whether the video interface 1413 is connected with a video signal, for example, when a video signal is connected.
  • the enable signal copy distribution unit 14112b Upon entering the video interface 1413, the enable signal copy distribution unit 14112b performs the transmit card function, whereas if no video signal is connected to the video interface 1413, the enable signal conversion control unit 14112a performs the photoelectric conversion function.
  • other methods can also be used to switch the send card function and the photoelectric conversion function of the display controller 141, for example, setting a hardware button and implementing a switch by operating a hardware button (ie, artificially triggering a switch).
  • Driver circuit 1417a is coupled between programmable logic device 14110 of master control circuit 1411 and interface 1419a.
  • the interface 1419a is a fiber optic interface
  • the driving circuit 1417a includes an optical module for performing photoelectric conversion.
  • the electrical signal output by the programmable logic device 14110 can be converted into an optical signal and output through the interface 1419a.
  • the optical module can be an SFP optical module.
  • the drive circuit 1417a is typically configured with a plurality of optical modules, for example, when the interface 1419a is four-way, the drive circuit 1417a can be configured with four optical modules.
  • the number of interfaces 1419a in this embodiment is not limited, and can meet the requirements of practical applications.
  • Driver circuit 1417b is coupled between programmable logic device 14110 of master control circuit 1411 and interface 1419b.
  • the interface 1419b is a network port
  • the driving circuit 1417b includes an Ethernet physical layer transceiver (PHY).
  • PHY Ethernet physical layer transceiver
  • a network transformer may be added to the output side of the Ethernet physical layer transceiver.
  • the driver circuit 1417b is typically configured with a combination of multiple Ethernet physical layer transceivers and network transformers, such as when the interface 1419b is sixteen, the driver circuit 1417b can be configured with sixteen channels of Ethernet.
  • the number of the interfaces 1419b in this embodiment is not limited, and can meet the actual application requirements.
  • the arrangement of the different types of interfaces 1419a and 1419b facilitates the diversification of the output interface of the display controller 141, thereby improving its compatibility; and in order to achieve the same loading of the interface 1419b and the interface 1419a.
  • the ratio of the number of configurations of the interface 1419a to the interface 1419b is preferably 1:4.
  • the number of configurations of the interface 1419b and the interface 1419a is not limited to the sixteenth and fourth paths of the foregoing examples, and may be eight and two, respectively.
  • FIG. 16 is a schematic structural diagram of a display control system according to a seventh embodiment of the present application.
  • the display control system 160 includes a display controller 161 and a display controller 163.
  • the display controller 161 is provided with a video interface 1611, a signal copy distribution unit 1612, a first interface 1613, and a second interface 1615.
  • the display controller 163 is provided with a video interface 1631, a signal conversion control unit 1632, and a third interface 1633. And a fourth interface 1635.
  • the first interface 1613 is connected to the third interface 1633
  • the second interface 1615 is used to connect to the display screen 170a
  • the fourth interface 1635 is used to connect to the display screen 170b
  • the signal replication distribution unit 1612 is connected to the first interface 1613 and the second interface 1615, and the signal is converted.
  • the control unit 1632 connects the third interface 1633 and the fourth interface 1635.
  • the first interface 1613 and the third interface 1633 are first type interfaces
  • the second interface 1615 and the fourth interface 1635 are second type interfaces different from the first type interface.
  • the first interface 1613 and the third interface 1633 may be fiber optic interfaces, such that the first interface 1613 and the third interface 1633 may be connected by optical fibers, and the distance between the fibers stably transmitted by the fibers is generally greater than 100 meters (ie, More than the stable transmission signal distance of the network cable, so that the distance between the display controllers 161 and 163 can be greater than 100 meters; the second interface 1615 and the fourth interface 1635 can be network ports, so that the second interface 1615 can be connected by a network cable
  • the display screen 170a, the fourth interface 1635 can be connected to the display screen 170b by a network cable.
  • the display controller 121 shown in FIG. 12 and the display controller 101 shown in FIG. 10 can be respectively used, and thus the display controller 161
  • the display controller 161 For a detailed description of the structure and function, reference may be made to the related description in the foregoing fifth embodiment.
  • the specific structure and function description of the display controller 163 reference may be made to the related description in the foregoing fourth embodiment, and therefore no further details are provided herein.
  • the display controllers 161 and 163 may each adopt the display controller 141 shown in FIG. 14.
  • the display controllers 161 and 163 may each adopt the display controller 141 shown in FIG. 14.
  • the eighth embodiment of the present application proposes a display control method. Specifically, the display control method of this embodiment includes the following steps:
  • a) receiving a video signal using a first display controller (such as display controller 161 in FIG. 16, display controller 121 in FIG. 12, or display controller 141 shown in FIG. 14);
  • a second type of interface eg, second interface 1615 in FIG. 16, interface 1219b in FIG. 12, or interface 1419b in FIG. 14
  • Image display to the first display screen (eg, display screen 170a in FIG. 16) and through a first type of interface (eg, first interface 1613 in FIG. 16, interface 1219a in FIG. 12, or interface 1419a in FIG. 14)
  • a second display controller such as display controller 163 in FIG. 16, display controller 101 in FIG. 10, or display controller 141 shown in FIG. 14;
  • the display screen 170b) performs image display.
  • the signal conversion here is typically to convert an optical signal into an electrical signal, that is, to perform photoelectric conversion.
  • the foregoing fourth to eighth embodiments of the present application provide a novel design of the display controller so that it can have a signal conversion function such as a photoelectric conversion function, thereby enabling both a transmitting card function and a signal conversion function.
  • the function of the display controller is enhanced, the application is more flexible, the application range is wider, and the convenience of the user to build the system can be improved.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be another division manner.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.
  • Embodiments of the present application (a) by redesigning the entire architecture of the display control system, using a display controller combined with a plurality of signal converters to perform sub-regional loading on the target display, which enables the signal converter and the target display The flexibility of connection between them can be significantly improved, and the amount of wire used during wiring can be reduced; (b) the design of the signal converter and display controller can be changed without changing its original hardware structure. The remote monitoring of the signal converter interface is implemented under the premise; and/or (c) the display controller is designed such that it can have a signal conversion function such as a photoelectric conversion function, thereby enabling both a transmitting card function and a signal conversion function. In turn, the function of the display controller is enhanced, the application is more flexible, the application range is wider, and the convenience of the user on-site construction system can also be improved.
  • a signal conversion function such as a photoelectric conversion function

Abstract

一种显示控制系统(10),用于带载包含第一显示区域(21)和第二显示区域(22)的显示屏(20),其包括:显示屏控制器(11);第一信号转换器(13),连接显示屏控制器(11)且用于连接显示屏(20)以带载所述第一显示区域(21);以及第二信号转换器(15),连接显示屏控制器(11)且用于连接显示屏(20)以带载所述第二显示区域(22)。显示控制系统(10)可以提升信号转换器(13,15)与显示屏(20)之间连线的灵活性。

Description

显示控制系统和显示屏控制器 技术领域
本申请涉及显示技术领域,尤其涉及一种显示控制系统以及一种显示屏控制器。
背景技术
目前,显示屏例如LED显示屏一般都是由多个LED箱体拼接而成,每个LED箱体都安装有接收卡,上电启动时接收卡能使LED箱体显示图像内容。
一方面,LED显示屏与其前端的显示控制系统之间通常采用网线连接,而网线的有效传输距离一般在100米以内,因此随着LED显示屏的尺寸越来越大,将带载LED显示屏全部显示区域的所有网线均连接至单一设备的方案已越来越难以满足LED显示屏与前端的显示控制系统之间的网线连接需求,其导致显示控制系统的放置位置受限,使得连线灵活性差。
再一方面,显示控制系统如何方便快捷地获取其与LED显示屏之间的连接状态,实现远程监控变得越来越重要。
另一方面,LED显示屏需要搭配前端的显示控制系统才能进行图像正常显示,然而现有的显示控制系统所采用的各种设备功能比较单一,其导致在现场搭建LED显示系统时需要携带多种不同功能的设备,而该种需携带多种不同功能的设备之需求会造成用户现场搭建系统的不便利。
发明内容
因此,为克服上述一个或多个技术问题,本申请实施例提供一种显示控制系统以及一种显示屏控制器。
一方面,本申请实施例提供的一种显示控制系统,用于带载包含第一显示区域和第二显示区域的显示屏。所述显示控制系统包括:显示屏控制器;第一信号转换器,连接所述显示屏控制器且用于连接所述显示屏以带载所述第一显示区域;以及第二信号转换器,连接所述显示屏控制器且用于连接所述显示屏以带载所述第二显示区域。其中,所述第一信号转换器和所述第二信号转换器连接所述显示屏控制器的接口为第一类型接口,所述第一信号转换器和所述第二信号转换器用于连接所述显示屏的接口为不同于所述第一类型接口的第二类型接口。
在本申请的一个实施例中,所述第一信号转换器和所述第二信号转换器用于安装在所述显示屏的不同侧。
在本申请的一个实施例中,所述显示屏控制器具有第一主控光纤接口、第一备份光纤接口、第二主控光纤接口和第二备份光纤接口,所述第一主控光纤接口和所述第一备份光纤接口分别通过光纤连接所述第一信号转换器的所述第一类型接口,所述第二主控光纤接口和所述第二备份光纤接口分别通过光纤连接所述第二信号转换器的所述第一类型接口。
在本申请的一个实施例中,所述第一信号转换器具有两路所述第一类型接口以分别通过光纤连接所述显示屏控制器的所述第一主控光纤接口和所述第一备份光纤接口,所述第一信号转换器具有八路所述第二类型接口以通过网线部分或全部连接所述显示屏来带载所述第一显示区域。
在本申请的一个实施例中,所述显示屏控制器还包括:视频接口、视频解 码电路、主控电路、第一驱动电路和第三接口;所述视频解码电路连接在所述视频接口和所述主控电路之间,所述第一驱动电路连接所述主控电路和所述第三接口,且所述第三接口连接所述第一信号转换器和所述第二信号转换器的所述第一类型接口;
在本申请的一个实施例中,所述第一信号转换器包括:信号转换控制电路和分别连接所述信号转换控制电路的第一类型接口驱动电路及第二类型接口驱动电路,所述第一类型接口驱动电路连接在所述第一信号转换器的所述第一类型接口和所述信号转换控制电路之间,所述第二类型接口驱动电路连接在所述第一信号转换器的所述第二类型接口和所述信号转换控制电路之间。所述信号转换控制电路包含信号转换单元和连线状态检测单元,所述信号转换单元用于将所述第一类型接口驱动电路输入至所述信号转换控制电路的第一信号转换成第二信号输出至所述第二类型接口驱动电路,所述连线状态检测单元用于检测所述第一信号转换器的所述第二类型接口的外部连线状态、并将检测结果通过所述第一类型接口驱动电路及所述第一信号转换器的所述第一类型接口上传至所述显示屏控制器。
在本申请的一个实施例中,所述显示屏控制器还包括第二驱动电路和第四接口,且所述第四接口通过所述第二驱动电路连接所述主控电路。所述主控电路包含信号复制分配单元,所述信号复制分配单元用于对数据进行复制并对复制后的数据根据不同信号格式需求进行打包输出至所述第二驱动电路和部分所述第一驱动电路,所述第四接口用于连接第二显示屏且与所述第三接口为不同类型的接口。
在本申请的一个实施例中,所述显示屏控制器还包括第二驱动电路和第四接口,且所述第四接口通过所述第二驱动电路连接所述主控电路。所述主控电路包含信号转换控制单元,所述信号转换控制单元用于将经由所述第四接口和所述第二驱动电路输入至所述主控电路的信号进行转换后输出至所述第一驱动电路,所述第四接口与所述第三接口为不同类型的接口。
再一方面,本申请实施例提供的一种显示屏控制器,包括:视频接口、视频解码电路、主控电路、第一驱动电路、第一接口、第二驱动电路和第二接口,所述第一接口和所述第二接口为不同信号类型的接口。其中,所述视频解码电路连接在所述视频接口和所述主控电路之间,所述第一驱动电路连接在所述第一接口和所述主控电路之间,所述第二驱动电路连接在所述第二接口和所述主控电路之间。所述主控电路设置有信号转换控制单元、且所述信号转换控制单元用于将经由所述第一驱动电路输入至所述主控电路的第一信号转换成第二信号输出至所述第二驱动电路,和/或所述主控电路设置有信号复制分配单元、且所述信号复制分配单元用于对所述视频接口输入的视频信号在经由所述视频解码电路送入所述主控电路后进行复制分配、以供输出至所述第一驱动电路和所述第二驱动电路。
在本申请的一个实施例中,所述主控电路包括可编程逻辑器件和连接所述可编程逻辑器件的微控制器,所述视频解码电路、所述第一驱动电路和所述第二驱动电路分别连接所述可编程逻辑器件,且所述信号转换控制单元和/或所述信号复制分配单元内置于所述可编程逻辑器件。
另一方面,本申请实施例提供的一种显示控制系统,用于带载第一显示屏和第二显示屏。所述显示控制系统包括:第一显示屏控制器和第二显示屏控制器,所述第一显示屏控制器设置有第一视频接口、第一接口、第二接口和信号复制分配单元,所述第二显示屏控制器设置有第二视频接口、第三接口、第四 接口和信号转换控制单元。所述第一接口连接所述第三接口,所述第二接口用于连接所述第一显示屏,所述第四接口用于连接所述第二显示屏,所述信号复制分配单元连接所述第一接口和所述第二接口,所述信号转换控制单元连接所述第三接口和所述第四接口。所述第一接口和所述第三接口为第一类型接口,所述第二接口和所述第四接口为不同于所述第一类型的第二类型接口。
在本申请的一个实施例中,所述第一显示屏控制器包括第一视频解码电路、第一主控电路、第一驱动电路和第二驱动电路;所述第一视频解码电路、所述第一驱动电路和所述第二驱动电路分别连接所述第一主控电路,所述第一视频接口连接所述第一视频解码电路,所述第一接口连接所述第一驱动电路,所述第二接口连接所述第二驱动电路,所述信号复制分配单元包含于所述第一主控电路。
在本申请的一个实施例中,所述第二显示屏控制器包括第二视频解码电路、第二主控电路、第三驱动电路和第四驱动电路;所述第二视频解码电路、所述第三驱动电路和所述第四驱动电路分别连接所述第二主控电路,所述第二视频接口连接所述第二视频解码电路,所述第三接口连接所述第三驱动电路,所述第四接口连接所述第四驱动电路,所述信号转换控制单元包含于所述第二主控电路。
在本申请的一个实施例中,所述第一显示屏控制器也设置有所述信号转换控制单元,所述第二显示屏控制器也设置有所述信号复制分配单元,所述第一显示屏控制器的所述信号复制分配单元和所述信号转换控制单元根据所述第一视频接口是否有接入视频信号而自动或人为触发切换工作。
又一方面,本申请实施例提供的一种显示控制系统,包括:显示屏控制器;以及信号转换器,包括第一接口、第一驱动电路、信号转换控制电路、第二接口和第二驱动电路,所述第一接口连接所述显示屏控制器,所述第一驱动电路连接在所述第一接口和所述信号转换控制电路之间,所述第二驱动电路连接在所述第二接口和所述信号转换控制电路之间,所述信号转换控制电路设置有信号转换单元和连线状态检测单元。其中,所述信号转换单元用于将从所述第一接口输入并经由所述第一驱动电路传送后得到的第一信号转换成第二信号输出至所述第二驱动电路,以从所述第二接口输出。所述连线状态检测单元用于检测所述第二接口的外部连线状态、并将检测结果通过所述第一接口上传至所述显示屏控制器。所述显示屏控制器包括:视频接口、视频解码电路、主控电路、显示模块、第三驱动电路和第三接口,所述视频解码电路连接在所述视频接口和所述主控电路之间,所述显示模块连接所述主控电路且用于显示所述检测结果,所述第三驱动电路连接在所述主控电路和所述第三接口之间,且所述第三接口连接所述信号转换器的所述第一接口。
上述技术方案的至少一个技术方案具有如下优点或有益效果之一:(a)通过对显示控制系统的整个架构进行重新设计,利用显示屏控制器结合多台信号转换器对目标显示屏进行分区域带载,其使得信号转换器与目标显示屏之间的连线灵活性可以得到显著提升,而且还可以减少连线时线材的使用量;(b)通过信号转换器和显示屏控制器的设计,其可以在不改变其原有硬件结构的前提下实现信号转换器接口的远端监控;(c)通过对显示屏控制器进行设计,使得其可以具有信号转换功能例如光电转换功能,从而可以兼具发送卡功能和信号转换功能,进而使得显示屏控制器的功能得以增强,应用更加灵活、应用范围更广,同时也可以提升用户现场搭建系统的便利性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例中的一种显示控制系统的结构示意图。
图2为本申请第一实施例中的一种显示屏控制器的结构示意图。
图3为本申请第一实施例中的一种信号转换器的结构示意图。
图4为本申请第二实施例中的一种显示控制系统的结构示意图。
图5为图4所示显示屏控制器的一种结构示意图。
图6为图5所示主控电路的一种结构示意图。
图7为图4所示信号转换器的一种结构示意图。
图8为图7所示信号转换控制电路的一种结构示意图。
图9为本申请第三实施例中的一种远端监控方法的流程示意图。
图10为本申请第四实施例中的一种显示屏控制器的结构示意图。
图11为本申请第四实施例中的一种主控电路的结构示意图。
图12为本申请第五实施例中的一种显示屏控制器的结构示意图。
图13为本申请第五实施例中的一种主控电路的结构示意图。
图14为本申请第六实施例中的一种显示屏控制器的结构示意图。
图15为本申请第六实施例中的一种主控电路的结构示意图。
图16为本申请第七实施例中的一种显示控制系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
【第一实施例】
请参见图1,其为本申请第一实施例提供的一种显示控制系统的结构示意图。如图1所示,显示控制系统10用于带载包含显示区域21和显示区域22的显示屏20且包括:显示屏控制器11、信号转换器13和信号转换器15。
其中,信号转换器13连接显示屏控制器11、且用于连接显示屏20以带载显示区域21。信号转换器15连接显示屏控制器11、且用于连接显示屏20以带载显示区域22。信号转换器13、15连接显示屏控制器11的接口为第一类型接口,信号转换器13、15用于连接显示屏20的接口为不同于第一类型接口的第二类型接口。信号转换器13、15分设在显示屏20的不同侧,例如图1所示的显示屏20的左右两侧、或者显示屏20下方的左右两侧(也即图1中显示屏20的中间虚线的两侧)。本实施例中,将显示屏20划分成多个显示区域例如21、22并由多个信号转换器例如13、15来分别带载,这样一来,信号转换器13、15与显示屏20之间的连线(典型的为网线)灵活度较高,而且也可以减少线材的长度。
为便于理解本实施例的显示控制系统10,下面结合图2和图3对本实施例的显示控制系统10进行详细描述。
图2为显示屏控制器11的一种具体结构示意图。如图2所示,显示屏控制器11包括:主控电路111(或称主处理电路)、视频接口113、视频解码电路115、 驱动电路117a、光纤接口119a、驱动电路117b和网口119b。
视频接口113用于连接外部视频源以接收视频信号输入。本实施例中,视频接口113的数量可以是一个、也可以是多个,而且视频接口113例如是数字视频接口、模拟视频接口或其组合。举例来说,视频接口113例如包括HDMI接口(High Definition Multimedia Interface,高清晰度多媒体接口)、DP(DisplayPort)接口和双链路DVI接口(Digital Visual Interface,数字视频接口)。
视频解码电路115连接在视频接口113和主控电路111之间,其通常设置有视频解码芯片,而所设置的视频解码芯片与视频接口113的类型相关。例如当视频接口113为DVI接口,则视频解码芯片采用DVI视频解码芯片;当视频接口113为DP接口,则视频解码芯片采用DP视频解码芯片;当视频接口113为HDMI接口,则视频解码芯片采用HDMI视频解码芯片。
主控电路111例如包括可编程逻辑器件1111和连接可编程逻辑器件1111的微控制器1113例如MCU(Micro Controller Unit,微控制单元)。可编程逻辑器件1111例如是FPGA(Field Programmable Gate Array,现场可编程门阵列),微控制器1113例如用于加载及配置FPGA以及作为显示屏控制器11与外部设备进行通信的控制器,例如微控制器1113可以通过百兆网口、串口、USB口等与外部设备交互,也可以连接人机交互装置例如按键、LCD(Liquid Crystal Display,液晶显示)屏等。典型地,视频解码电路115从视频接口113获取输入的视频信号后,将解码得到的数据和控制信号传给主控电路111的可编程逻辑器件1111,可编程逻辑器件1111通过内部或外接RAM进行缓存、并进行更换时钟域和位宽变换操作,然后将处理后的数据输出。举例来说,可编程逻辑器件1111的内部逻辑可以包括数据输入模块、双口RAM及其控制模块、24bit转8bit模块、数据输出模块;数据输入模块将输入的视频信号(包括数据、时钟、使能、行场同步信号)分配给后端的双口RAM及其控制模块,并控制着整个系统的同步,双口RAM的控制模块控制RAM的读写操作,尤其是对开始写、写停、开始读、读停这四个状态的控制,从双口RAM输出的数据经过并串转换后传输给数据输出模块,数据输出模块则按照一定的格式将接收到的数据进行打包输出。
驱动电路117a连接在主控电路111的可编程逻辑器件1111与光纤接口119a之间。本实施例中,驱动电路117a包括:光模块,用于进行光电转换,例如可以将可编程逻辑器件1111输出的电信号转换成光信号、并通过光纤接口119a输出。举例来说,光模块可以是SFP(Small Form-factor Pluggable,即小封装可插拔)光模块。更具体地,针对多路光纤接口119a,驱动电路117a典型地配置有多个光模块,例如当光纤接口119a为四路时,驱动电路117a可以配置四个光模块。当然,值得一提的是,本实施例的光纤接口119a的数量并不做限制,能满足实际应用需求即可。
驱动电路117b连接在主控电路111的可编程逻辑器件1111与网口119b之间。本实施例中,驱动电路117b包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路网口119b,驱动电路117b典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当网口119b为十六路时,驱动电路117b可以配置十六路以太网物理层收发器和十六路网络变压器的组合。当然,值得一提的是,本实施例的网口119b的数量并不做限制,能满足实际应用需求即可。另外,值得说明的是,网口119b和驱动电路117b的设置,有利于显示屏控制器11的输出接口多样化,进而提升其兼容性;而且为了实现网口119b与光纤 接口119a具有相同的带载能力,光纤接口与网口的配置数量比优选为1:4。
图3为信号转换器13的一种具体结构示意图。如图3所示,信号转换器13例如为光电转换器,其包括:信号转换控制电路131、驱动电路133、光纤接口135、驱动电路137和网口139。
信号转换控制电路131例如包括可编程逻辑器件1311和连接可编程逻辑器件1311的微控制器1313例如MCU。可编程逻辑器件1311用于进行信号转换控制,其例如是FPGA。微控制器1313例如用于加载及配置FPGA以及作为信号转换器13与外部设备进行通信的控制器,例如微控制器1313可以通过百兆网口、USB口等与外部设备交互来实现对系统程序进行更新。
驱动电路133连接在光纤接口135和信号转换控制电路131中的可编程逻辑器件1311之间。本实施例中,驱动电路133包括:光模块,用于进行光电转换,例如可以将通过光纤接口135输入的光信号转换成电信号输入至可编程逻辑器件1311。举例来说,光模块可以是SFP光模块。更具体地,针对多路光纤接口135,驱动电路133典型地配置有多个光模块,例如当光纤接口135为两路时,驱动电路133可以配置两个光模块。当然,值得一提的是,本实施例的光纤接口135的数量并不做限制,能满足实际应用需求即可。
驱动电路137连接在网口139和信号转换控制电路131中的可编程逻辑器件1311之间。本实施例中,驱动电路137包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路网口139,驱动电路137典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当网口139为八路时,驱动电路137可以配置八路以太网物理层收发器和网络变压器的组合。当然,值得一提的是,本实施例的网口139的数量并不做限制,能满足实际应用需求即可。另外,值得说明的是,为了实现网口139与光纤接口135具有相同的带载能力,光纤接口与网口的配置数量比优选为1:4。
至于信号转换器15,其可以与信号转换器13具有相同的结构配置,例如均配置有信号转换控制电路、网口、光纤接口和相关驱动电路,故在此不再赘述。当然,信号转换器13和信号转换器15可以具有相同数量的光纤接口和网口,也可以具有不同数量的光纤接口和网口。
另外,为了更清楚的理解本实施例的显示控制系统10,下面以显示屏控制器11配置有四路光纤接口,信号转换器13、15分别配置有两路光纤接口和八路网口作为举例描述显示控制系统10的大致工作过程,其中显示屏控制器11通过光纤连接信号转换器13的两路光纤接口分别作为一路主控光纤接口和一路备份光纤接口,类似地显示屏控制器11通过光纤连接信号转换器15的两路光纤接口分别作为一路主控光纤接口和一路备份光纤接口,信号转换器13的八路网口中的部分或全部连接显示屏20以带载显示区域21,信号转换器15的八路网口中的部分或全部连接显示屏20以带载显示区域22;备份光纤接口的设置,有利于使系统工作更加可靠。
承上述,视频信号经由显示屏控制器11的视频接口113输入,经视频解码电路115进行视频解码后送至主控电路111的可编程逻辑器件1111进行处理以得到处理后信号,该处理后信号经由驱动电路117a转换为相应的光信号后通过光纤接口119a及光纤传送至信号转换器13、15。接下来,以信号转换器13为例,其光纤接口135接收到来自显示屏控制器11的光信号,由驱动电路133将该光信号转换成相应的电信号送至信号转换控制电路131中的可编程逻辑器件1311进行协议格式转换得到以太网数据信号(其相当于可编程逻辑器件1311 配置有信号转换单元,以将对应光信号的电信号转换成以太网数据信号),之后以太网数据信号经由驱动电路137输出至网口139,再由连接至网口139的网线传送至显示屏20的显示区域21进行图像显示。举例来说,对于显示屏20的分辨率的一维方向最大宽度位于范围(1920,4096)内(也即大于1920且小于4096)的特定应用场合下,若采用单台信号转换器(例如带有十六路网口),则该单台信号转换器的放置位置比较受限,而若采用本申请前述实施例的利用多台例如两台信号转换器,则与显示屏20的网线连接就会比较灵活,而且使用的网线长度也可以明显减少。
最后,值得一提的是,在其他实施例中,也可以考虑显示屏控制器11不设置备份光纤接口,因此对于连接两个信号转换器13、15而言,则显示屏控制器11可以只设置两个光纤接口119a作为主控接口,而信号转换器13、15也可以均只设置一个光纤接口135。在另一实施例中,在考虑显示屏控制器11不设置备份光纤接口的情形下,显示屏控制器11可以利用四路光纤接口119a带载四台信号转换器。
【第二实施例】
当例如在显示屏控制器和显示屏之间利用信号转换器例如光电转换器来实现信号的长距离稳定传输时,显示屏控制器与信号转换器之间的距离通常会比较远,如此一来,如何方便快捷地获取信号转换器与显示屏之间的连接状态,实现远程监控就变得尤为重要。
请参见图4,其为本申请第二实施例提供的一种显示控制系统的结构示意图。如图4所示,显示控制系统40包括:显示屏控制器41和信号转换器43。其中,信号转换器43连接显示屏控制器41,从而输入至显示屏控制器41的视频信号可以经过信号转换器43传送至显示屏50进行图像显示。此处的显示屏50例如是LED显示屏,其典型地由多个配置有接收卡(或称扫描卡)的LED箱体拼接而成。可以理解的是,本实施例的显示屏50可以是前述第一实施例中的显示区域21或22,但本申请并不以此为限。
参见图5,显示屏控制器41例如包括:主控电路411、显示模块412、视频接口413、视频解码电路415、驱动电路417a、光纤接口419a、驱动电路417b和网口419b。
其中,视频接口413用于连接外部视频源以接收视频信号输入。本实施例中,视频接口413的数量可以是一个也可以是多个,而且视频接口413例如是数字视频接口、模拟视频接口或其组合。举例来说,视频接口413例如包括HDMI接口、DP接口和/或双链路DVI接口。
视频解码电路415连接在视频接口413和主控电路411之间,其通常设置有视频解码芯片,而所设置的视频解码芯片与视频接口413的类型相关。例如当视频接口413为DVI接口,则视频解码芯片采用DVI视频解码芯片;当视频接口413为DP接口,则视频解码芯片采用DP视频解码芯片;当视频接口413为HDMI接口,则视频解码芯片采用HDMI视频解码芯片。
主控电路411例如图6所示包括可编程逻辑器件4110和连接可编程逻辑器件4110的微控制器4111例如MCU。更具体地,可编程逻辑器件4110例如是FPGA,微控制器4111例如用于加载及配置FPGA以及作为显示屏控制器41与外部设备进行通信的控制器,例如微控制器4111可以通过百兆网口、串口、USB口等与外部设备交互,也可以连接人机交互装置例如按键、旋钮等。典型地,视频解码电路415从视频接口413获取输入的视频信号后,将解码得到的数据和控制信号传给主控电路411的可编程逻辑器件4110,可编程逻辑器件 4110通过内部或外接RAM进行缓存、并进行更换时钟域和位宽变换操作,然后将处理后的数据进行复制分配以供输出。举例来说,可编程逻辑器件4110的内部逻辑可以包括数据输入模块、双口RAM及其控制模块、24bit转8bit模块、数据输出模块;数据输入模块将输入的视频信号(包括数据、时钟、使能、行场同步信号)分配给后端的双口RAM及其控制模块,并控制着整个系统的同步,双口RAM的控制模块控制RAM的读写操作,尤其是对开始写、写停、开始读、读停这四个状态的控制;从双口RAM输出的数据经过并串转换后传输给数据输出模块,数据输出模块则按照一定的格式将接收到的数据进行打包输出,例如打包成光纤数据信号通过驱动电路417a和光纤接口419a输出,或者打包成以太网数据信号通过驱动电路417b和网口419b输出。
显示模块412连接主控电路411,例如连接主控电路411中的微控制器4111。本实施例中,显示模块412例如是设置在显示屏控制器41的前面板的液晶显示屏或者其他类型显示屏。
驱动电路417a连接在主控电路411的可编程逻辑器件4110与光纤接口419a之间。本实施例中,驱动电路417a包括:光模块,用于进行光电转换,例如可以将可编程逻辑器件4110输出的电信号转换成光信号并通过光纤接口419a输出。举例来说,光模块可以是SFP光模块。更具体地,针对多路光纤接口419a,驱动电路417a典型地配置有多个光模块,例如当光纤接口419a为四路时,驱动电路417a可以配置四个光模块。当然,值得一提的是,本实施例的光纤接口419a的数量并不做限制,能满足实际应用需求即可。
驱动电路417b连接在主控电路411的可编程逻辑器件4110与网口419b之间。本实施例中,驱动电路417b包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路网口419b,驱动电路417b典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当网口419b为十六路时,驱动电路417b可以配置十六路以太网物理层收发器和网络变压器的组合。当然,值得一提的是,本实施例的网口419b的数量并不做限制,能满足实际应用需求即可。另外,值得说明的是,不同类型的接口419a和接口419b的设置,有利于显示屏控制器41的接口多样化,进而提升其兼容性;而且为了实现网口419b与光纤接口419a具有相同的带载能力,光纤接口419a与网口419b的配置数量比优选为1:4。此外,网口419b与光纤接口419a的配置数量不限于前述举例的十六路和四路,也可以是分别是八路和两路。
参见图7,本实施例的信号转换器43例如包括:信号转换控制电路431、驱动电路433、光纤接口435、驱动电路437和网口439。
信号转换控制电路431设置有信号转换单元4312和连线状态检测单元4314。其中,信号转换单元4312用于将从光纤接口435输入并经由驱动电路433传送后得到的第一信号(例如光纤数据信号)转换成第二信号(例如以太网数据信号)输出至驱动电路437,以从网口439输出。连线状态检测单元4314用于检测网口439的外部连线状态、并将检测结果通过光纤接口435上传至显示屏控制器41,以由显示屏控制器41送至显示模块412显示和/或上传至上位机显示,以供用户远程监控信号转换器43的网口439的外部连线状态。举例来说,当检测到某个网口439的外部连线状态为“LINK UP”,则表示其处于连线状态,反之当其外部连线状态为“LINK DOWN”,则表示其处于未连接或断线状态。
进一步地,如图8所示,信号转换控制电路431例如包括可编程逻辑器件 4310和连接可编程逻辑器件4310的微控制器4311例如MCU。至于信号转换单元4312和连线状态检测单元4314则可以内置于可编程逻辑器件4310;具体而言,信号转换单元4312和连线状态检测单元4314可以是存储于可编程逻辑器件4310的存储器且可由可编程逻辑器件4310执行的程序代码(或称软件模块)。可编程逻辑器件4310例如是FPGA,微控制器4311例如用于加载及配置FPGA以及作为信号转换器43与外部设备进行通信的控制器,例如微控制器4311可以通过百兆网口、USB口等与外部设备交互来实现对系统程序进行更新。
驱动电路433连接在光纤接口435和信号转换控制电路431中的可编程逻辑器件4310之间。本实施例中,驱动电路433包括:光模块,用于进行光电转换,例如可以将通过光纤接口435输入的光信号转换成电信号输入至可编程逻辑器件4310。举例来说,光模块可以是SFP光模块。更具体地,针对多路光纤接口435,驱动电路433典型地配置有多个光模块,例如当光纤接口435为四路时,驱动电路433可以配置四个光模块;并且为了提升系统可靠性,四路光纤接口435中可以配置两路为主控光纤接口、另两路配置为备份光纤接口。当然,值得一提的是,本实施例的光纤接口435的数量并不做限制,能满足实际应用需求即可。
驱动电路437连接在网口439和信号转换控制电路431中的可编程逻辑器件4310之间。本实施例中,驱动电路437包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路网口439,驱动电路437典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当网口439为十六路时,驱动电路437可以配置十六路以太网物理层收发器和网络变压器的组合。当然,值得一提的是,本实施例的网口439的数量并不做限制,能满足实际应用需求即可。另外,值得说明一提的是,为了实现网口439与光纤接口435具有相同的带载能力,光纤接口435与网口439的配置数量比优选为1:4。例如在实际应用中,光纤接口435为两路且网口439为八路,或者光纤接口435为四路且网口439为十六路,等等。
【第三实施例】
请参见图9,其为本申请第三实施例提供的一种远程监控方法的流程示意图。如图9所示,本实施例的远程监控方法例如包括以下步骤:
S91:检测第一设备的第二接口的外部连线状态以得到检测结果;
S93:所述第一设备将所述检测结果通过所述第一设备的第一接口经由线缆传送至第二设备,其中所述第一接口和所述第二接口为不同信号类型的接口;以及
S95:在所述第二设备的显示模块上显示所述检测结果。
更具体地,本实施例的远程监控方法例如执行于图4所示的显示控制系统40,第一设备例如是图4中的信号转换器43,第二设备例如是图4中的显示屏控制器41,且第一设备与第二设备之间的连接线缆例如是光纤。相应地,在步骤S91中例如是读取所述第一设备例如信号转换器43上的物理层收发器(PHY)的寄存器值来检测所述第一设备的所述第二接口例如网口439的外部连线状态,在步骤S93中例如将检测结果以光信号形式通过光纤传送至所述第二设备例如显示屏控制器41,在步骤S95中例如是将检测结果在显示屏控制器41的显示模块412上进行显示以供用户查看,借此实现对第一设备例如信号转换器43的端口/接口的远端监控。
此外,值得一提的是,图4所示的显示控制系统40除了可以执行图9所示的远端监控方法之外,其还可以执行发送卡功能和数据远程传输功能来实现视频图像显示,也即将输入至显示屏控制器41的视频信号进行处理后,通过线缆传送给信号转换器43做信号转换,然后进行上屏显示。
接下来,针对显示控制系统所采用的各种设备(例如显示屏控制器)功能比较单一,其导致在现场搭建显示系统时需要携带多种不同功能的设备,而该种需携带多种不同功能的设备之需求会造成用户现场搭建系统的不便利,提供以下第四实施例、第五实施例、第六实施例、第七实施例和第八实施例,即为克服该种技术问题。
【第四实施例】
请参见图10,其为本申请第四实施例提供的一种显示屏控制器的结构示意图。如图10所示,显示屏控制器101包括:主控电路1011、视频接口1013、视频解码电路1015、驱动电路1017a、接口1019a、驱动电路1017b和接口1019b。
其中,视频接口1013用于连接外部视频源以接收视频信号输入。本实施例中,视频接口1013的数量可以是一个也可以是多个,而且视频接口1013例如是数字视频接口、模拟视频接口或其组合。举例来说,视频接口1013例如包括HDMI接口、DP接口和/或双链路DVI接口。
视频解码电路1015连接在视频接口1013和主控电路1011之间,其通常设置有视频解码芯片,而所设置的视频解码芯片与视频接口1013的类型相关。例如当视频接口1013为DVI接口,则视频解码芯片采用DVI视频解码芯片;当视频接口1013为DP接口,则视频解码芯片采用DP视频解码芯片;当视频接口1013为HDMI接口,则视频解码芯片采用HDMI视频解码芯片。
主控电路1011设置有信号转换控制单元10112,而信号转换控制单元10112主要用于信号转换。在一个举例中,如图11所示,主控电路1011包括可编程逻辑器件10110和连接可编程逻辑器件10110的微控制器10111例如MCU,信号转换控制单元10112内置于可编程逻辑器件10110;具体而言,信号转换控制单元10112例如是存储于可编程逻辑器件10110的存储器并可由可编程逻辑器件10110执行的程序代码(或称软件模块)。更具体地,可编程逻辑器件10110例如是FPGA,微控制器10111例如用于加载及配置FPGA以及作为显示屏控制器101与外部设备进行通信的控制器,例如微控制器10111可以通过百兆网口、串口、USB口等与外部设备交互,也可以连接人机交互装置例如按键、LCD屏等。
驱动电路1017a连接在主控电路1011的可编程逻辑器件10110与接口1019a之间。本实施例中,接口1019a为光纤接口,驱动电路1017a包括:光模块,用于进行光电转换,例如可以将可编程逻辑器件10110输出的电信号转换成光信号并通过光纤接口1019a输出。举例来说,光模块可以是SFP(Small Form-factor Pluggable,即小封装可插拔)光模块。更具体地,针对多路接口1019a,驱动电路1017a典型地配置有多个光模块,例如当接口1019a为四路时,驱动电路1017a可以配置四个光模块。当然,值得一提的是,本实施例的接口1019a的数量并不做限制,能满足实际应用需求即可。
驱动电路1017b连接在主控电路1011的可编程逻辑器件10110与接口1019b之间。本实施例中,接口1019b为网口,驱动电路1017b包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路接口1019b,驱动电路1017b典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当接口 1019b为十六路时,驱动电路1017b可以配置十六路以太网物理层收发器和网络变压器的组合。当然,值得一提的是,本实施例的接口1019b的数量并不做限制,能满足实际应用需求即可。另外,值得说明的是,不同类型的接口1019a和接口1019b的设置,有利于显示屏控制器101的输出接口多样化,进而提升其兼容性;而且为了实现接口1019b与接口1019a具有相同的带载能力,接口1019a与接口1019b的配置数量比优选为1:4。此外,接口1019b与接口1019a的配置数量不限于前述举例的十六路和四路,也可以是分别是八路和两路。
承上述,信号转换控制单元10112用于将经由驱动电路1017a输入至主控电路1011的第一信号(例如为对应接口1019a输入的光信号的光纤数据信号),转换成第二信号(例如为以太网数据信号)输出至驱动电路1017b以便于从接口1019b输出;反之也可以用于将以太网数据信号转换成光纤数据信号。简而言之,本实施例中信号转换控制单元10112的设置,使得显示屏控制器101具有光电转换功能。
【第五实施例】
请参见图12,其为本申请第五实施例提供的一种显示屏控制器的结构示意图。如图12所示,显示屏控制器121包括:主控电路1211、视频接口1213、视频解码电路1215、驱动电路1217a、接口1219a、驱动电路1217b和接口1219b。
其中,视频接口1213用于连接外部视频源以接收视频信号输入。本实施例中,视频接口1213的数量可以是一个也可以是多个,而且视频接口1213例如是数字视频接口、模拟视频接口或其组合。举例来说,视频接口1213例如包括HDMI接口、DP接口和/或双链路DVI接口。
视频解码电路1215连接在视频接口1213和主控电路1211之间,其通常设置有视频解码芯片,而所设置的视频解码芯片与视频接口1213的类型相关。例如当视频接口1213为DVI接口,则视频解码芯片采用DVI视频解码芯片;当视频接口1213为DP接口,则视频解码芯片采用DP视频解码芯片;当视频接口1213为HDMI接口,则视频解码芯片采用HDMI视频解码芯片。
主控电路1211设置有信号复制分配单元12112。在一个举例中,如图13所示,主控电路1211包括可编程逻辑器件12110和连接可编程逻辑器件12110的微控制器12111例如MCU,信号复制分配单元12112内置于可编程逻辑器件12110;具体而言,信号复制分配单元12112例如是存储于可编程逻辑器件12110的存储器并可由可编程逻辑器件12110执行的程序代码(或称软件模块)。更具体地,可编程逻辑器件12110例如是FPGA,微控制器12111例如用于加载及配置FPGA以及作为显示屏控制器121与外部设备进行通信的控制器,例如微控制器12111可以通过百兆网口、串口、USB口等与外部设备交互,也可以连接人机交互装置例如按键、LCD屏等。典型地,视频解码电路1215从视频接口1213获取输入的视频信号后,将解码得到的数据和控制信号传给主控电路1211的可编程逻辑器件12110,可编程逻辑器件12110通过内部或外接RAM进行缓存、并进行更换时钟域和位宽变换操作,然后将处理后的数据进行复制分配以供输出。举例来说,可编程逻辑器件12110的内部逻辑可以包括数据输入模块、双口RAM及其控制模块、24bit转8bit模块、信号复制分配单元12112;数据输入模块将输入的视频信号(包括数据、时钟、使能、行场同步信号)分配给后端的双口RAM及其控制模块,并控制着整个系统的同步,双口RAM的控制模块控制RAM的读写操作,尤其是对开始写、写停、开始读、读停这四个状态的控制:从双口RAM输出的数据经过并串转换后传输给信号复制分配单元12112,信号复制分配单元12112则对并串转换后的数据进行复制、并根 据驱动电路1217a、1217b的不同信号格式需求将复制后的数据信号进行打包,以供输出至驱动电路1217a、1217b。
驱动电路1217a连接在主控电路1211的可编程逻辑器件12110与接口1219a之间。本实施例中,接口1219a为光纤接口,驱动电路1217a包括:光模块,用于进行光电转换,例如可以将可编程逻辑器件12110输出的电信号转换成光信号并通过接口1219a输出。举例来说,光模块可以是SFP光模块。更具体地,针对多路接口1219a,驱动电路1217a典型地配置有多个光模块,例如当接口1219a为四路时,驱动电路1217a可以配置四个光模块。当然,值得一提的是,本实施例的接口1219a的数量并不做限制,能满足实际应用需求即可。
驱动电路1217b连接在主控电路1211的可编程逻辑器件12110与接口1219b之间。本实施例中,接口1219b为网口,驱动电路1217b包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路接口1219b,驱动电路1217b典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当接口1219b为十六路时,驱动电路1217b可以配置十六路以太网物理层收发器和网络变压器的组合。当然,值得一提的是,本实施例的接口1219b的数量并不做限制,能满足实际应用需求即可。另外,值得说明的是,不同类型的接口1219a和接口1219b的设置,有利于显示屏控制器121的输出接口多样化,进而提升其兼容性;而且为了实现接口1219b与接口1219a具有相同的带载能力,接口1219a与接口1219b的配置数量比优选为1:4。此外,接口1219b与接口1219a的配置数量不限于前述举例的十六路和四路,也可以是分别是八路和两路。
【第六实施例】
请参见图14,其为本申请第六实施例提供的一种显示屏控制器的结构示意图。如图14所示,显示屏控制器141包括:主控电路1411、视频接口1413、视频解码电路1415、驱动电路1417a、接口1419a、驱动电路1417b和接口1419b。
其中,视频接口1413用于连接外部视频源以接收视频信号输入。本实施例中,视频接口1413的数量可以是一个也可以是多个,而且视频接口1413例如是数字视频接口、模拟视频接口或其组合。举例来说,视频接口1413例如包括HDMI接口、DP接口和/或双链路DVI接口。
视频解码电路1415连接在视频接口1413和主控电路1411之间,其通常设置有视频解码芯片,而所设置的视频解码芯片与视频接口1413的类型相关。例如当视频接口1413为DVI接口,则视频解码芯片采用DVI视频解码芯片;当视频接口1413为DP接口,则视频解码芯片采用DP视频解码芯片;当视频接口1413为HDMI接口,则视频解码芯片采用HDMI视频解码芯片。
主控电路1411设置有信号转换控制单元14112a和信号复制分配单元14112b。在一个举例中,如图15所示,主控电路1411包括可编程逻辑器件14110和连接可编程逻辑器件14110的微控制器14111例如MCU,信号转换控制单元14112a和信号复制分配单元14112b内置于可编程逻辑器件14110;具体而言,信号转换控制单元14112a和信号复制分配单元14112b例如是分别存储于可编程逻辑器件14110的存储器并可由可编程逻辑器件14110执行的程序代码(或称软件模块)。更具体地,可编程逻辑器件14110例如是FPGA,微控制器14111例如用于加载及配置FPGA以及作为显示屏控制器141与外部设备进行通信的控制器,例如微控制器14111可以通过百兆网口、串口、USB口等与外部设备交互,也可以连接人机交互装置例如按键、LCD屏等。典型地,当显示 屏控制器141执行发送卡功能时,视频解码电路1415从视频接口1413获取输入的视频信号后,将解码得到的数据和控制信号传给主控电路1411的可编程逻辑器件14110,可编程逻辑器件14110通过内部或外接RAM进行缓存、并进行更换时钟域和位宽变换操作,然后将处理后的数据进行复制分配以供输出。举例来说,可编程逻辑器件14110的内部逻辑可以包括数据输入模块、双口RAM及其控制模块、24bit转8bit模块、信号复制分配单元14112b;数据输入模块将输入的视频信号(包括数据、时钟、使能、行场同步信号)分配给后端的双口RAM及其控制模块,并控制着整个系统的同步,双口RAM的控制模块控制RAM的读写操作,尤其是对开始写、写停、开始读、读停这四个状态的控制:从双口RAM输出的数据经过并串转换后传输给信号复制分配单元14112b,信号复制分配单元14112b则对并串转换后的数据进行复制、并根据驱动电路1417a、1417b的不同信号格式需求将复制后的数据信号进行打包,以供输出至驱动电路1417a、1417b。此外,当显示屏控制器141执行光电转换功能时,信号转换控制单元14112a可以将经由驱动电路1417a输入至主控电路1411的第一信号(例如为对应接口1419a输入的光信号的光纤数据信号),转换成第二信号(例如为以太网数据信号)输出至驱动电路1417b以便于从接口1419b输出。至于显示屏控制器141中的主控电路1411的信号转换控制单元14112a和信号复制分配单元14112b的功能执行时机,可以是根据视频接口1413是否接入有视频信号而定,例如当有视频信号接入视频接口1413,则启用信号复制分配单元14112b执行发送卡功能,反之无视频信号接入视频接口1413,则启用信号转换控制单元14112a执行光电转换功能。当然,也可以采用其他方式来切换显示屏控制器141的发送卡功能和光电转换功能,例如设置硬件按钮并通过操作硬件按钮来实现切换(也即人为触发切换)。
驱动电路1417a连接在主控电路1411的可编程逻辑器件14110与接口1419a之间。本实施例中,接口1419a为光纤接口,驱动电路1417a包括:光模块,用于进行光电转换,例如可以将可编程逻辑器件14110输出的电信号转换成光信号并通过接口1419a输出。举例来说,光模块可以是SFP光模块。更具体地,针对多路接口1419a,驱动电路1417a典型地配置有多个光模块,例如当接口1419a为四路时,驱动电路1417a可以配置四个光模块。当然,值得一提的是,本实施例的接口1419a的数量并不做限制,能满足实际应用需求即可。
驱动电路1417b连接在主控电路1411的可编程逻辑器件14110与接口1419b之间。本实施例中,接口1419b为网口,驱动电路1417b包括以太网物理层收发器(PHY),而为了增强信号传输距离,还可以在以太网物理层收发器的输出侧加设网络变压器。更具体地,针对多路接口1419b,驱动电路1417b典型地配置有多路以太网物理层收发器和网络变压器的组合,例如当接口1419b为十六路时,驱动电路1417b可以配置十六路以太网物理层收发器和网络变压器的组合。当然,值得一提的是,本实施例的接口1419b的数量并不做限制,能满足实际应用需求即可。另外,值得说明的是,不同类型的接口1419a和接口1419b的设置,有利于显示屏控制器141的输出接口多样化,进而提升其兼容性;而且为了实现接口1419b与接口1419a具有相同的带载能力,接口1419a与接口1419b的配置数量比优选为1:4。此外,接口1419b与接口1419a的配置数量不限于前述举例的十六路和四路,也可以是分别是八路和两路。
【第七实施例】
请参见图16,其为本申请第七实施例提供的一种显示控制系统的结构示意 图。如图16所示,显示控制系统160包括:显示屏控制器161和显示屏控制器163。
其中,显示屏控制器161设置有视频接口1611、信号复制分配单元1612、第一接口1613和第二接口1615;显示屏控制器163设置有视频接口1631、信号转换控制单元1632、第三接口1633和第四接口1635。第一接口1613连接第三接口1633,第二接口1615用于连接显示屏170a,第四接口1635用于连接显示屏170b,信号复制分配单元1612连接第一接口1613和第二接口1615,信号转换控制单元1632连接第三接口1633和第四接口1635。本实施例中,第一接口1613和第三接口1633为第一类型接口,第二接口1615和第四接口1635为不同于第一类型接口的第二类型接口。举例来说,第一接口1613和第三接口1633可以是光纤接口,从而第一接口1613和第三接口1633之间可以采用光纤相连,而且由于光纤稳定传输信号的距离一般大于100米(也即大于网线的稳定传输信号距离),从而使得显示屏控制器161和163之间的距离可以大于100米;第二接口1615和第四接口1635可以是网口,从而第二接口1615可以采用网线连接显示屏170a,第四接口1635可以采用网线连接显示屏170b。
对于本申请第七实施例中的显示屏控制器161和163,其可以分别采用图12所示的显示屏控制器121和图10所示的显示屏控制器101,因而显示屏控制器161的具体结构和功能说明可以参考前述第五实施例中的相关描述,显示屏控制器163的具体结构和功能说明可以参考前述第四实施例中的相关描述,故在此不再赘述。
在其他实施例中,显示屏控制器161和163可以均采用图14所示的显示屏控制器141,至于其具体结构和功能描述可参考前述第六实施例中的相关描述,故在此不再赘述。
【第八实施例】
本申请第八实施例提出一种的显示控制方法。具体地,本实施例的显示控制方法例如包括以下步骤:
a)利用第一显示屏控制器(例如图16中的显示屏控制器161、图12中的显示屏控制器121、或图14中所示的显示屏控制器141)接收视频信号;
b)利用所述第一显示屏控制器对接收到的视频信号进行处理生成处理后视频信号;
c)利用所述第一显示屏控制器将所述处理后视频信号通过第二类型接口(例如图16中的第二接口1615、图12中的接口1219b、或图14中的接口1419b)输出至第一显示屏(例如图16中的显示屏170a)进行图像显示以及通过第一类型接口(例如图16中的第一接口1613、图12中的接口1219a、或图14中的接口1419a)输出至第二显示屏控制器(例如图16中的显示屏控制器163、图10中的显示屏控制器101、或图14中所示的显示屏控制器141);以及
d)利用所述第二显示屏控制器对来自所述第一显示屏控制器的所述第一类型接口的所述处理后视频信号进行信号转换后输出至第二显示屏(例如图16中的显示屏170b)进行图像显示。此处的信号转换典型的是将光信号转换成电信号,也即进行光电转换。
综上所述,本申请前述第四至第八实施例通过对显示屏控制器进行新颖设计,使得其可以具有信号转换功能例如光电转换功能,从而可以兼具发送卡功能和信号转换功能,进而使得显示屏控制器的功能得以增强,应用更加灵活、应用范围更广,同时也可以提升用户现场搭建系统的便利性。
此外,可以理解的是,前述各个实施例仅为本申请的示例性说明,在技术 特征不冲突、结构不矛盾、不违背本申请的发明目的前提下,各个实施例的技术方案可以任意组合、搭配使用。
另外,值得说明的是,在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多路单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多路网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
【工业实用性】
本申请实施例:(a)通过对显示控制系统的整个架构进行重新设计,利用显示屏控制器结合多台信号转换器对目标显示屏进行分区域带载,其使得信号转换器与目标显示屏之间的连线灵活性可以得到显著提升,而且还可以减少连线时线材的使用量;(b)通过信号转换器和显示屏控制器的设计,其可以在不改变其原有硬件结构的前提下实现信号转换器接口的远端监控;和/或(c)通过对显示屏控制器进行设计,使得其可以具有信号转换功能例如光电转换功能,从而可以兼具发送卡功能和信号转换功能,进而使得显示屏控制器的功能得以增强,应用更加灵活、应用范围更广,同时也可以提升用户现场搭建系统的便利性。

Claims (15)

  1. 一种显示控制系统,其特征在于,用于带载包含第一显示区域和第二显示区域的显示屏,所述显示控制系统包括:
    显示屏控制器;
    第一信号转换器,连接所述显示屏控制器且用于连接所述显示屏以带载所述第一显示区域;
    第二信号转换器,连接所述显示屏控制器且用于连接所述显示屏以带载所述第二显示区域;
    其中,所述第一信号转换器和所述第二信号转换器连接所述显示屏控制器的接口为第一类型接口,所述第一信号转换器和所述第二信号转换器用于连接所述显示屏的接口为不同于所述第一类型接口的第二类型接口。
  2. 如权利要求1所述的显示控制系统,其特征在于,所述第一信号转换器和所述第二信号转换器用于安装在所述显示屏的不同侧。
  3. 如权利要求1所述的显示控制系统,其特征在于,所述显示屏控制器具有第一主控光纤接口、第一备份光纤接口、第二主控光纤接口和第二备份光纤接口,所述第一主控光纤接口和所述第一备份光纤接口分别通过光纤连接所述第一信号转换器的所述第一类型接口,所述第二主控光纤接口和所述第二备份光纤接口分别通过光纤连接所述第二信号转换器的所述第一类型接口。
  4. 如权利要求3所述的显示控制系统,其特征在于,所述第一信号转换器具有两路所述第一类型接口以分别通过光纤连接所述显示屏控制器的所述第一主控光纤接口和所述第一备份光纤接口,所述第一信号转换器具有八路所述第二类型接口以通过网线部分或全部连接所述显示屏来带载所述第一显示区域。
  5. 如权利要求1所述的显示控制系统,其特征在于,所述显示屏控制器还包括:视频接口、视频解码电路、主控电路、第一驱动电路和第三接口;所述视频解码电路连接在所述视频接口和所述主控电路之间,所述第一驱动电路连接所述主控电路和所述第三接口,且所述第三接口连接所述第一信号转换器和所述第二信号转换器的所述第一类型接口;
  6. 如权利要求5所述的显示控制系统,其特征在于,所述第一信号转换器包括:信号转换控制电路和分别连接所述信号转换控制电路的第一类型接口驱动电路及第二类型接口驱动电路,所述第一类型接口驱动电路连接在所述第一信号转换器的所述第一类型接口和所述信号转换控制电路之间,所述第二类型接口驱动电路连接在所述第一信号转换器的所述第二类型接口和所述信号转换控制电路之间;
    所述信号转换控制电路包含信号转换单元和连线状态检测单元,所述信号转换单元用于将所述第一类型接口驱动电路输入至所述信号转换控制电路的第一信号转换成第二信号输出至所述第二类型接口驱动电路,所述连线状态检测单元用于检测所述第一信号转换器的所述第二类型接口的外部连线状态、并将 检测结果通过所述第一类型接口驱动电路及所述第一信号转换器的所述第一类型接口上传至所述显示屏控制器。
  7. 如权利要求5所述的显示控制系统,其特征在于,所述显示屏控制器还包括第二驱动电路和第四接口,且所述第四接口通过所述第二驱动电路连接所述主控电路;
    所述主控电路包含信号复制分配单元,所述信号复制分配单元用于对数据进行复制并对复制后的数据根据不同信号格式需求进行打包输出至所述第二驱动电路和部分所述第一驱动电路,所述第四接口用于连接第二显示屏且与所述第三接口为不同类型的接口。
  8. 如权利要求5所述的显示控制系统,其特征在于,所述显示屏控制器还包括第二驱动电路和第四接口,且所述第四接口通过所述第二驱动电路连接所述主控电路;
    所述主控电路包含信号转换控制单元,所述信号转换控制单元用于将经由所述第四接口和所述第二驱动电路输入至所述主控电路的信号进行转换后输出至所述第一驱动电路,所述第四接口与所述第三接口为不同类型的接口。
  9. 一种显示屏控制器,其特征在于,包括:视频接口、视频解码电路、主控电路、第一驱动电路、第一接口、第二驱动电路和第二接口,所述第一接口和所述第二接口为不同信号类型的接口;其中,
    所述视频解码电路连接在所述视频接口和所述主控电路之间,所述第一驱动电路连接在所述第一接口和所述主控电路之间,所述第二驱动电路连接在所述第二接口和所述主控电路之间;
    所述主控电路设置有信号转换控制单元、且所述信号转换控制单元用于将经由所述第一驱动电路输入至所述主控电路的第一信号转换成第二信号输出至所述第二驱动电路,和/或
    所述主控电路设置有信号复制分配单元、且所述信号复制分配单元用于对所述视频接口输入的视频信号在经由所述视频解码电路送入所述主控电路后进行复制分配、以供输出至所述第一驱动电路和所述第二驱动电路。
  10. 如权利要求9所述的显示屏控制器,其特征在于,所述主控电路包括可编程逻辑器件和连接所述可编程逻辑器件的微控制器,所述视频解码电路、所述第一驱动电路和所述第二驱动电路分别连接所述可编程逻辑器件,且所述信号转换控制单元和/或所述信号复制分配单元内置于所述可编程逻辑器件。
  11. 一种显示控制系统,其特征在于,用于带载第一显示屏和第二显示屏,所述显示控制系统包括:第一显示屏控制器和第二显示屏控制器,所述第一显示屏控制器设置有第一视频接口、第一接口、第二接口和信号复制分配单元,所述第二显示屏控制器设置有第二视频接口、第三接口、第四接口和信号转换控制单元;
    所述第一接口连接所述第三接口,所述第二接口用于连接所述第一显示屏,所述第四接口用于连接所述第二显示屏,所述信号复制分配单元连接所述第一 接口和所述第二接口,所述信号转换控制单元连接所述第三接口和所述第四接口;
    所述第一接口和所述第三接口为第一类型接口,所述第二接口和所述第四接口为不同于所述第一类型的第二类型接口。
  12. 如权利要求11所述的显示控制系统,其特征在于,所述第一显示屏控制器包括第一视频解码电路、第一主控电路、第一驱动电路和第二驱动电路;所述第一视频解码电路、所述第一驱动电路和所述第二驱动电路分别连接所述第一主控电路,所述第一视频接口连接所述第一视频解码电路,所述第一接口连接所述第一驱动电路,所述第二接口连接所述第二驱动电路,所述信号复制分配单元包含于所述第一主控电路。
  13. 如权利要求11所述的显示控制系统,其特征在于,所述第二显示屏控制器包括第二视频解码电路、第二主控电路、第三驱动电路和第四驱动电路;所述第二视频解码电路、所述第三驱动电路和所述第四驱动电路分别连接所述第二主控电路,所述第二视频接口连接所述第二视频解码电路,所述第三接口连接所述第三驱动电路,所述第四接口连接所述第四驱动电路,所述信号转换控制单元包含于所述第二主控电路。
  14. 如权利要求11所述的显示控制系统,其特征在于,所述第一显示屏控制器也设置有所述信号转换控制单元,所述第二显示屏控制器也设置有所述信号复制分配单元,所述第一显示屏控制器的所述信号复制分配单元和所述信号转换控制单元根据所述第一视频接口是否有接入视频信号而自动或人为触发切换工作。
  15. 一种显示控制系统,其特征在于,包括:
    显示屏控制器;
    信号转换器,包括第一接口、第一驱动电路、信号转换控制电路、第二接口和第二驱动电路,所述第一接口连接所述显示屏控制器,所述第一驱动电路连接在所述第一接口和所述信号转换控制电路之间,所述第二驱动电路连接在所述第二接口和所述信号转换控制电路之间,所述信号转换控制电路设置有信号转换单元和连线状态检测单元;其中,
    所述信号转换单元用于将从所述第一接口输入并经由所述第一驱动电路传送后得到的第一信号转换成第二信号输出至所述第二驱动电路,以从所述第二接口输出;
    所述连线状态检测单元用于检测所述第二接口的外部连线状态、并将检测结果通过所述第一接口上传至所述显示屏控制器;
    所述显示屏控制器包括:视频接口、视频解码电路、主控电路、显示模块、第三驱动电路和第三接口,所述视频解码电路连接在所述视频接口和所述主控电路之间,所述显示模块连接所述主控电路且用于显示所述检测结果,所述第三驱动电路连接在所述主控电路和所述第三接口之间,且所述第三接口连接所述信号转换器的所述第一接口。
PCT/CN2018/097489 2017-08-31 2018-07-27 显示控制系统和显示屏控制器 WO2019042057A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710769812.6 2017-08-31
CN201710769616.9A CN109427288A (zh) 2017-08-31 2017-08-31 显示屏控制器、显示控制系统及方法
CN201710769812.6A CN109427289B (zh) 2017-08-31 2017-08-31 显示控制系统及远端监控方法
CN201710769784.8A CN109429016B (zh) 2017-08-31 2017-08-31 显示控制系统
CN201710769616.9 2017-08-31
CN201710769784.8 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019042057A1 true WO2019042057A1 (zh) 2019-03-07

Family

ID=65524857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097489 WO2019042057A1 (zh) 2017-08-31 2018-07-27 显示控制系统和显示屏控制器

Country Status (1)

Country Link
WO (1) WO2019042057A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805541A (zh) * 2005-01-14 2006-07-19 Lg电子株式会社 多屏幕系统及其驱动方法
CN101192399A (zh) * 2006-11-29 2008-06-04 群康科技(深圳)有限公司 双屏驱动电路
CN101334991A (zh) * 2007-06-25 2008-12-31 矽统科技股份有限公司 用于显示视频画面的多屏幕显示系统与方法
CN103081003A (zh) * 2010-09-15 2013-05-01 日本电气株式会社 便携式终端、控制方法和程序
CN103337234A (zh) * 2013-03-29 2013-10-02 江苏清投视讯科技有限公司 一种基于长线驱动的超薄型多屏幕拼接显示系统及其显示方法
CN105957469A (zh) * 2016-04-27 2016-09-21 南京巨鲨显示科技有限公司 一种具有图像冻结功能的显示系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805541A (zh) * 2005-01-14 2006-07-19 Lg电子株式会社 多屏幕系统及其驱动方法
CN101192399A (zh) * 2006-11-29 2008-06-04 群康科技(深圳)有限公司 双屏驱动电路
CN101334991A (zh) * 2007-06-25 2008-12-31 矽统科技股份有限公司 用于显示视频画面的多屏幕显示系统与方法
CN103081003A (zh) * 2010-09-15 2013-05-01 日本电气株式会社 便携式终端、控制方法和程序
CN103337234A (zh) * 2013-03-29 2013-10-02 江苏清投视讯科技有限公司 一种基于长线驱动的超薄型多屏幕拼接显示系统及其显示方法
CN105957469A (zh) * 2016-04-27 2016-09-21 南京巨鲨显示科技有限公司 一种具有图像冻结功能的显示系统及方法

Similar Documents

Publication Publication Date Title
TWI325698B (zh)
US7904620B2 (en) Data transmission system with protocol conversion
US10261930B2 (en) System, device and method for transmitting signals between different communication interfaces
CN101911000B (zh) 用于连接电子装置的控制总线
CN102591291B (zh) 工业控制器与人机界面双向数据传输系统和方法
US20090234998A1 (en) Connection system
US20100023660A1 (en) Kvm system
CN109427288A (zh) 显示屏控制器、显示控制系统及方法
CN109429016B (zh) 显示控制系统
EP3142360B1 (en) Multimedia signal transmission device and transmission method thereof
CN204258960U (zh) 基于HDBaseT技术的HDMI信号长距离无压缩传输装置
CN105047134A (zh) Led灯板、灯板模组以及led显示屏控制系统
CN204130141U (zh) Led显示屏异步控制卡
WO2017166672A1 (zh) 异步收发传输器和通用串行总线接口复用电路及电路板
US20090196604A1 (en) System for combining high-definition video control signals for transmission over an optical fiber
TWI476592B (zh) 遠端管理系統及其操作方法
CN110049295A (zh) 一种单光纤多路视频传输接收器
KR20070040096A (ko) 복수개의 디지털 입력 포트를 구비한 디스플레이 장치의edid 공유 장치
CN202535382U (zh) 工业控制器与人机界面双向数据传输系统
CN111710288A (zh) 改良的led显示系统
WO2019042057A1 (zh) 显示控制系统和显示屏控制器
CN203457237U (zh) 基于hdmi的信号分配器
CN107197188B (zh) 多设备级联系统和具有视频接口的设备
WO2020041938A1 (zh) 显示控制系统
CN104035798A (zh) 一种能够有序开机的多功能电子设备及其开机方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850094

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18850094

Country of ref document: EP

Kind code of ref document: A1