WO2019041816A1 - 适于锂离子电池储能系统的维护方法 - Google Patents

适于锂离子电池储能系统的维护方法 Download PDF

Info

Publication number
WO2019041816A1
WO2019041816A1 PCT/CN2018/082336 CN2018082336W WO2019041816A1 WO 2019041816 A1 WO2019041816 A1 WO 2019041816A1 CN 2018082336 W CN2018082336 W CN 2018082336W WO 2019041816 A1 WO2019041816 A1 WO 2019041816A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
maintenance
energy storage
battery unit
Prior art date
Application number
PCT/CN2018/082336
Other languages
English (en)
French (fr)
Inventor
刘璐
庄明照
贾广清
唐英
Original Assignee
北京迅力世达技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京迅力世达技术有限公司 filed Critical 北京迅力世达技术有限公司
Publication of WO2019041816A1 publication Critical patent/WO2019041816A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a maintenance method suitable for a lithium ion battery energy storage system.
  • renewable new energy sources such as wind and solar energy are an important direction for energy development and have a positive effect on solving energy shortages and protecting the environment.
  • solar energy and wind energy are used to generate electricity, and they may not be able to catch up with the peak period of electricity consumption.
  • Solving the difference in time between power generation and electricity consumption requires energy storage. This is an important technical bottleneck restricting the development of new energy sources.
  • the key to energy potential lies in energy storage technology.
  • the present invention provides a maintenance method suitable for a lithium ion battery energy storage system, which can realize the detection and maintenance of the energy storage system and contribute to the maintenance of the energy storage system. Operating status.
  • the technical solution adopted by the invention is: a maintenance method for a lithium ion battery energy storage system, comprising the following steps:
  • Dynamic maintenance of the system Perform the charging and discharging test of the system, and list the battery cells whose difference between the voltage value and the average voltage value at the end of charging or the end of the discharge exceeds the corresponding upper limit of the qualified voltage difference ⁇ V 1 as the battery unit to be processed.
  • the battery unit whose difference between the voltage value and the average voltage value at the end of charging or the end of the discharge exceeds the corresponding lower limit of the defective voltage difference ⁇ V 2 is listed as a defective battery unit;
  • Static maintenance further compare the average value of the battery unit to be processed determined in step 3) with the voltage value of the battery pack in which it is located. If the difference is lower than the corresponding lower maintenance limit V1, no treatment is required, and the difference is in the qualified battery unit. If it is located between the corresponding lower maintenance limit V1 and the upper maintenance limit V2, static maintenance is performed, and if the difference exceeds the corresponding upper maintenance limit V2, it is classified as a failed battery unit;
  • Capacity calibration replace all unqualified battery cells, perform capacity calibration according to the standard operating conditions of the energy storage system, or degrade the unqualified battery cells, and adjust the voltage threshold of charging and discharging to the lower maintenance limit V1. The corresponding voltage value is subjected to capacity calibration under this condition.
  • the invention has the beneficial effects that the detection and maintenance of the energy storage system are realized, the unqualified battery unit in the system and the battery unit to be maintained can be found, so that the replacement or maintenance can be performed in time, and the running state of the system can be confirmed and found in the topology. Problems with structure, battery box appearance, background operation, etc., for maintenance and correction; ability to re-calibrate the system after maintenance or replacement to keep the system in an efficient and good operating state.
  • the process design of the invention is reasonable, and the battery discreteness evaluation and system state evaluation provide conditions for subsequent dynamic maintenance and static maintenance, which facilitates operation.
  • the invention can be applied not only to an energy storage system for a lithium ion battery as an energy storage element, but also to other similar energy storage systems.
  • the maintenance method of the lithium ion battery energy storage system of the present invention comprises the following steps:
  • Dynamic maintenance of the system Perform the charging and discharging test of the system, and list the battery cells whose difference between the voltage value and the average voltage value at the end of charging or the end of the discharge exceeds the corresponding upper limit of the qualified voltage difference ⁇ V 1 as the battery unit to be processed.
  • the battery unit whose difference between the voltage value and the average voltage value at the end of charging or the end of the discharge exceeds the corresponding lower limit of the defective voltage difference ⁇ V 2 is listed as a defective battery unit;
  • Static maintenance Static maintenance of battery cells that require static maintenance.
  • the battery cells to be treated determined in step 3) can all be used as battery cells that require static maintenance.
  • the battery cell to be processed determined in step 3) can be further compared with the average value of the voltage of the battery pack in which it is located, and the difference is lower than the corresponding lower limit of maintenance V1, and no treatment is required, which is regarded as a qualified battery unit, and the difference is located in the corresponding maintenance. If the difference between the lower limit V1 and the upper limit of maintenance V2 is static maintenance and the difference exceeds the corresponding upper limit of maintenance V2, it is classified as a failed battery unit;
  • Capacity calibration replace all unqualified battery cells, perform capacity calibration according to the standard operating conditions of the energy storage system, or degrade the unqualified battery cells, and adjust the voltage threshold of charging and discharging to a lower level.
  • the threshold value V0 is used for capacity calibration under these conditions.
  • the battery unit may be a single battery, a battery module or a battery box, and is determined according to actual conditions of the energy storage system and detection and maintenance requirements.
  • the lower limit ⁇ V 0 of the unacceptable voltage difference may be determined according to the performance requirement of the energy storage system and the characteristics of the battery unit, and the difference between the average voltage value and the lower limit value will appear.
  • the situation in which the battery cells do not match each other causes unnecessary internal consumption.
  • the lower limit of the unacceptable voltage difference ⁇ V 0 can be set according to actual needs, that is, a certain range is set for the upper and lower pressure difference between the cell voltage and the average voltage of the battery system, and within this range, it can be left in the system to continue to be used (including After maintenance), if it is outside this range, the single battery is not suitable for staying in the system (including after maintenance) and is used in the system.
  • the range may be the same or different, and may be determined according to factors such as the influence of the voltage characteristics of the single cell on the system and the system performance requirements.
  • a battery cell of the energy storage system such as a battery cell or a plurality of battery cells, is used to evaluate the battery state dispersion of the battery system by voltage detection results.
  • a preferred example is that the voltage difference between the cell voltage of the energy storage system and the average voltage of the battery system exceeds 100 mV, and the value of continuing maintenance in the system is not maintained, and is not maintained. In the range, it should be replaced, that is, for the lithium battery cell used in the energy storage system, the lower limit of the defective voltage difference ⁇ V 0 is 100 mV.
  • step 2) the state of the entire battery energy storage system is evaluated, and the function of the energy storage battery system is detected and confirmed.
  • the state of the entire battery energy storage system is evaluated, and the function of the energy storage battery system is detected and confirmed.
  • step 3 after step 2) ensures that the relevant aspects of the system are in a good state, the charging and discharging test is performed on the energy storage battery system, and the test working condition adopts the daily operating conditions of the energy storage system. Record parameters such as battery voltage, current, and temperature.
  • the charging end point is determined according to battery characteristics or experience, and the difference between the voltage of each battery unit and the average value of the system battery unit voltage (temporarily referred to as a voltage difference) is measured at the end of charging (charging end point), and the voltage difference exceeds a predetermined value.
  • the battery unit having the upper limit of the qualified voltage difference ⁇ V 1 but not exceeding the lower limit ⁇ V 2 of the unacceptable voltage difference records the voltage data of the relevant battery unit according to the magnitude of the voltage difference, and the voltage difference exceeds a predetermined value as the battery unit to be processed.
  • the battery unit of the lower limit of the voltage difference ⁇ V 2 is regarded as a defective battery unit.
  • the discharge end point is determined according to battery characteristics or experience, and the difference between the voltage of each battery cell and the average value of the system battery cell voltage (temporarily referred to as a voltage difference) is measured at the end of discharge (discharge end point), and the voltage difference is exceeded.
  • a predetermined battery voltage difference upper limit ⁇ V 1 but not exceeding the lower limit of the unacceptable voltage difference ⁇ V 2 and the voltage data of the relevant battery unit is recorded according to the magnitude of the voltage difference, as the battery unit to be processed, the voltage difference exceeds a predetermined
  • the battery unit of the lower limit of the voltage difference ⁇ V 2 of the defective voltage is referred to as a defective battery unit.
  • the battery unit to be processed recorded in the step 3) can be directly maintained as a battery unit to be maintained, or can be further subdivided, in particular, the battery unit to be processed and the battery pack in which it is located (according to the system architecture) Determine the average voltage within the system to determine the subdivision standard, that is, the maintenance lower limit V1 and the maintenance upper limit V2. The difference is less than V1 and no maintenance is required. The qualified product is used continuously. The difference is greater than V2 and maintenance is not required. The unqualified battery unit, the difference between V1 and V2, is statically maintained.
  • the static maintenance method may be: discharging and maintaining a high-voltage battery unit, and adjusting the voltage to a value below the average voltage of the system, and the adjustment range may be determined according to actual needs, taking into consideration factors such as performance and cost, for example,
  • the deltV may preferably be between 5-15 mV; the battery unit with low voltage is charged and maintained, and the voltage is adjusted to a value above the average voltage of the system, and the adjustment range deltV is preferably between 5-15 mV.
  • the battery unit After the discharge or charging of the static maintenance is completed, the battery unit is allowed to stand for 1-3 days to perform self-discharge of the battery unit, and the change in the voltage of the battery unit is detected, and the battery unit having a high self-discharge rate is listed as a defective battery unit.
  • the self-discharge rate also known as the charge retention capability, refers to the ability of the battery to maintain its power under certain conditions under open conditions. Mainly affected by factors such as battery manufacturing process, materials, storage conditions. It is an important parameter to measure the performance of the battery.
  • the self-discharge rate of the battery is attenuated due to the time and environment used, the battery life is attenuated, and the internal resistance is increased, which is higher than the self-discharge rate of the new battery.
  • the cells of the same energy storage system have the same attenuation, and the self-discharge characteristics are not much different. After standing for 1-3 days, the cell voltage data is recorded, and the cells with large voltage data changes are replaced.
  • step 5 according to the application situation of the energy storage system, the following two methods are used for processing:
  • the battery system guarantees continuous and stable operation.
  • the capacity calibration value is less than the rated capacity of the system, but it should be within the capacity range required for the operation of the corresponding energy storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂离子电池储能系统的维护方法,包括电池离散性评估、系统状态评估、系统动态维护、静态维护和容量标定等步骤,将电压值与平均电压值之差超过限度的电池单元列为不合格电池单元,将充电结束时或放电结束时电压值与平均电压值之差超过不同限度的分别列为待处理电池单元或不合格电池单元,对需要进行静态维护的电池单元进行静态维护,更换所有不合格电池单元,按照该储能系统的标准工况进行容量标定或者对不合格电池单元进行降级使用。本发明能够实现对储能系统的检测和维持,有助于维护储能系统的良好运行状态,适应于锂离子电池作为储能元件的储能系统以及其他类似的储能系统。

Description

适于锂离子电池储能系统的维护方法 技术领域
本发明涉及一种适于锂离子电池储能系统的维护方法。
背景技术
风能、太阳能等可再生新能源是能源发展的一个重要方向,对于解决能源短缺、保护环境等都具有积极的作用。但是,太阳能和风能用来发电,并不一定能赶上用电高峰期,解决发电与用电的时间差异就需要进行储能,这是制约新能源发展的一个重要的技术瓶颈,释放可再生能源的潜力,关键就在于储能技术。
近年来我国先后在各地建立了多个不同类型的锂离子电池化学储能系统,储能系统的主要任务是满足风电和太阳能发电并网的功能性要求,并根据供电侧需求提供电力給当地供电系统。经过多年的并网运行,同时考虑到锂离子电池的使用安全,循环寿命等特性,部分储能电池系统长期使用造成电池自身衰减,以及设备老化等其他原因已经不能正常工作。这不仅影响正常工作,更重要的是需要保证在目前状态下锂离子电池系统本身的安全性,并量化储能电池系统的实际状态能完成储能系统的工作任务的程度。
为了更好的利用多年运行的储能系统,减少资源浪费,提高系统安全性和使用效率,需要对现有储能系统进行有效的维护,以保持储能系统的良好运行状态,并及时消除安全隐患,但目前常见是等待系统出现故障不能运行时,才对出现问题的地方进行检查,缺乏行之有效的维护方法。
发明内容
为了克服现有技术的上述缺陷,本发明提供了一种适于锂离子电池储能系统的维护方法,采用该方法能够实现对储能系统的检测和维持,有助于维护储能系统的良好运行状态。
本发明采用的技术方案为:一种锂离子电池储能系统的维护方法,包括下列步骤:
1)电池离散性评估:检测系统各电池单元的电压,依据电压检测结果进行电池电压离散性评估,所述电池单元根据实际情况确定,可以为单体电池、电池模组或电池箱,将电压值与平均电压值之差超过相应的不合格电压差下限△V 0的电池单元列为不合格电池单元;
2)系统状态评估:人工检测系统的硬件组成、拓扑结构和电池箱外观,检测PCS(Power Control System)和BMS(Battery Management System)的接口匹配,检测系统显示和报警功能,对存在问题的进行修复或纠正;
3)系统动态维护:进行系统的充电和放电测试,将充电结束时或放电结束时电压值与平均电压值之差超过相应的合格电压差上限△V 1的电池单元列为待处理电池单元,将充电结束时或放电结束时电压值与平均电压值之差超过相应的不合格电压差下限△V 2的电池单元列为不合格电池单元;
4)静态维护:将步骤3)确定的待处理电池单元与其所在电池包的电压平均值进一步比较,差值低于相应的维护下限V1的,不需要处理,视为合格电池单元,差值在位于相应的维护下限V1和维护上限V2之间的,进行静态维护,差值超过相应的维护上限V2的,列为不合格电池单元;
5)容量标定:更换所有不合格电池单元,按照该储能系统的标准工况进行容量标定,或者,对不合格电池单元进行降级使用,将其充放电的电 压门限值调整为维护下限V1所对应的电压值,在此条件下进行容量标定。
本发明的有益效果为:实现了对储能系统的检测和维护,能够发现系统中的不合格电池单元和需维护的电池单元,以便及时进行更换或维护,能够确认系统的运行状态并发现在拓扑结构、电池箱外观、后台运行等方面的问题,以便加以维护和纠正;能够对维护或更换后的系统重新进行容量标定,保持系统处于有效且良好的运行的状态。
本发明的流程设计合理,电池离散性评估和系统状态评估为后续动态维护和静态维护提供了条件,方便了操作。
本发明不仅可以用于锂离子电池作为储能元件的储能系统,而且也适于其他类似的储能系统。
具体实施方式
本发明的锂离子电池储能系统的维护方法包括下列步骤:
1)电池离散性评估:检测系统各电池单元的电压,依据电压检测结果进行电池电压离散性评估,将电压值与平均电压值之差超过相应的不合格电压差下限△V 0的电池单元列为不合格电池单元;
2)系统状态评估:人工检测系统的硬件组成、拓扑结构和电池箱外观,检测PCS和BMS的接口匹配,检测系统显示和报警功能,对存在问题的进行修复或纠正;
3)系统动态维护:进行系统的充电和放电测试,将充电结束时或放电结束时电压值与平均电压值之差超过相应的合格电压差上限△V 1的电池单元列为待处理电池单元,将充电结束时或放电结束时电压值与平均电压值之差超过相应的不合格电压差下限△V 2的电池单元列为不合格电池单元;
4)静态维护:对需要进行静态维护的电池单元进行静态维护。
可以将步骤3)确定的待处理电池单元全部作为需要进行静态维护的电池单元。
可以将步骤3)确定的待处理电池单元与其所在电池包的电压平均值进一步比较,差值低于相应的维护下限V1的,不需要处理,视为合格电池单元,差值在位于相应的维护下限V1和维护上限V2之间的,进行静态维护,差值超过相应的维护上限V2的,列为不合格电池单元;
5)容量标定:更换所有不合格电池单元,按照该储能系统的标准工况进行容量标定,或者,对不合格电池单元进行降级使用,将其充放电的电压门限值调整为较低的门限值V0,在此条件下进行容量标定。
所述电池单元可以为单体电池、电池模组或电池箱,根据储能系统的实际情况以及检测和维护要求确定。
所述步骤1)中,可以根据储能系统的性能要求以及电池单元自身特点,确定所述的不合格电压差下限△V 0,与平均电压值相差的幅度超过该下限值时,将出现电池单元之间相互不匹配的状况,造成不必要的内部消耗。可以根据实际需要设定不合格电压差下限△V 0,即对单体电池电压与电池系统平均电压的上下压差设置一定范围,在该范围之内,可以留在系统中继续使用(包括经维护后),如超出该范围,则该单体电池不适于留在(包括经维护后)留在系统中使用。对不同的系统或不同的使用要求,该范围可以相同,也可以不同,可以依据单体电池电压特性对系统的影响以及系统性能要求等因素确定。
检测储能系统的电池单元,例如单体电池或多个单体电池组成的电池 串,通过电压检测结果对电池系统的电池状态离散性进行评估。
例如,对于常见锂电池,一种优选的实例是,储能系统的单体电池电压与电池系统平均电压的上下压差超过100mV的,已不具有在该系统中继续维护使用的价值,不在维护范围内,应更换,即对于用于储能系统的锂电池单体而言,所述不合格电压差下限△V 0为100mV。
所述步骤2)中,对整个电池储能系统的状态评估,对储能电池系统的功能检测与确认。包括:
检查储能系统的拓扑结构、电池簇以及电池箱的组成,判定储能系统中各个电池簇的连接和对应关系是否正常;
检查电池箱状态,包括电池箱的外观以及内部电池模组及电池单体电特性;
检查PCS和BMS接口匹配,保证在后续调试中系统能正常运行;
检查后台数据处理系统工作状态,保证在系统运行调试过程中系统的状态能显示和报警。
所述步骤3),经过步骤2)确保使系统相关各方面处于良好状态后,对储能电池系统进行充放电测试,测试工况采用储能系统的日常操作工况。记录电池电压、电流和温度等参数。
根据电池特性或经验等确定充电终点,在充电末期(充电终点),测量各电池单元的电压与系统电池单元电压平均值之间的差(暂且称之为电压差),将该电压差超过预定的合格电压差上限△V 1但未超过不合格电压差下限△V 2的电池单元,按照该电压差的大小记录相关电池单元的电压数据,作为待处理电池单元,将该电压差超过预定的不合格电压差下限△V 2的电池单 元记为不合格电池单元。
在根据电池特性或经验等确定放电终点,在放电末期(放电终点),测量各电池单元的电压与系统电池单元电压平均值之间的差(暂且称之为电压差),将该电压差超过预定的合格电压差上限△V 1但未超过不合格电压差下限△V 2的电池单元,按照该电压差的大小记录相关电池单元的电压数据,作为待处理电池单元,将该电压差超过预定的不合格电压差下限△V 2的电池单元记为不合格电池单元。
所述步骤4)中,可以将步骤3)记录的待处理电池单元直接作为需维护的电池单元进行维护,也可以进一步细分,具体方式为将待处理电池单元与其所在电池包(依据系统架构确定)内的平均电压进行比较,确定细分标准,即维护下限V1和维护上限V2,差值小于V1不需要维护,视为合格品继续使用,差值大于V2也不需要维护,作为需要更换的不合格电池单元,差值在V1和V2之间的,进行静态维护。
所述静态维护的方法可以为:对电压高的电池单元进行放电维护,将其电压调整到系统的平均电压以下的数值,调整幅度可以根据实际需要确定,综合考虑性能及成本等因素,例如,deltV可以优选在5-15mV之间;对电压低的电池单元进行充电维护,将电压调整到系统的平均电压以上的数值,调整幅度deltV优选在5-15mV之间。
在完成静态维护的放电或充电后,静置1-3天,进行电池单元的自放电,检测该电池单元电压的变化,将自放电率高的电池单元列为不合格电池单元。
自放电率又称荷电保持能力,是指电池在开路状态下,电池所储存的电 量在一定条件下的保持能力。主要受电池制造工艺、材料、储存条件等因素影响。是衡量电池性能的重要参数,针对维护系统的电池,电池的自放电率由于使用的时间和环境,电池寿命衰减,内阻增大,比新电芯的自放电率要高。但是同一个储能系统的电芯,衰减度一致,自放电特性差别不大,静置1-3天,记录单体电压数据,电压数据变化大的电芯进行更换。
所述步骤5)中,根据储能系统的应用情况,采用下面的两种方法进行处理:
5.1)将各步骤确定的不合格电池单元进行更换,对需要维护的电池单元进行维护,对维护后的系统按照储能系统的标准工况进行容量标定,在这种情况下,实际容量值与额定容量值基本相同;
5.2)对各步骤确定的不合格电池单元进行降级使用,在充放电过程中将电池单元的充放电电压的门限值调整到较低的门限值V0,该门限值V0的确定应保证电池系统能保证持续稳定的工作,在这种情况下,容量标定值小于系统额定容量,但应保证在相应储能系统运行要求的容量范围内。
上述实施例仅表达了本发明的某种具体实施方式,其描述较为具体和详细,但不能因此理解为对本发明专利范围的限制,凡是利用本发明说明书内容所作的等效结构,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
本发明公开的各优选和可选的技术手段,除特别说明外及一个优选或可选技术手段为另一技术手段的进一步限定外,均可以任意组合,形成若干不同的技术方案。

Claims (10)

  1. 一种锂离子电池储能系统的维护方法,包括下列步骤:
    1)电池离散性评估:检测系统各电池单元的电压,依据电压检测结果进行电池电压离散性评估,将电压值与平均电压值之差超过相应的不合格电压差下限△V 0的电池单元列为不合格电池单元;
    2)系统状态评估:人工检测系统的硬件组成、拓扑结构和电池箱外观,检测PCS和BMS的接口匹配,检测系统显示和报警功能,对存在问题的进行修复或纠正;
    3)系统动态维护:进行系统的充电和放电测试,将充电结束时或放电结束时电压值与平均电压值之差超过相应的合格电压差上限△V 1的电池单元列为待处理电池单元,将充电结束时或放电结束时电压值与平均电压值之差超过相应的不合格电压差下限△V 2的电池单元列为不合格电池单元;
    4)静态维护:对需要进行静态维护的电池单元进行静态维护;
    5)容量标定:更换所有不合格电池单元,按照该储能系统的标准工况进行容量标定,或者,对不合格电池单元进行降级使用,将其充放电的电压门限值调整为维护下限V1所对应的电压值,在此条件下进行容量标定。
  2. 如权利要求1所述的方法,其特征在于所述电池单元为单体电池、电池模组或电池箱。
  3. 如权利要求1所述的方法,其特征在于所述步骤1)中,对于锂电池单体,所述不合格电压差下限△V 0为100mV。
  4. 如权利要求1所述的方法,其特征在于所述步骤2)包括:
    检查储能系统的拓扑结构、电池簇以及电池箱的组成,判定储能系统中各个电池簇的连接和对应关系是否正常;
    检查电池箱状态,包括电池箱的外观以及内部电池模组及电池单体电特性;
    检查PCS和BMS接口匹配,保证在后续调试中系统能正常运行;
    检查后台数据处理系统工作状态,保证在系统运行调试过程中系统的状态能显示和报警。
  5. 如权利要求1所述的方法,其特征在于在所述步骤3)中,应确保使系统相关各方面处于良好状态。
  6. 如权利要求5所述的方法,其特征在于在所述步骤3)中,对储能电池系统进行充放电测试的测试工况采用储能系统的日常操作工况,记录电池电压、电流和温度。
  7. 如权利要求1、5或6所述的方法,其特征在于所述步骤4)中,将步骤3)记录的待处理电池单元直接作为需维护的电池单元进行维护,或者,将步骤3)确定的待处理电池单元与其所在电池包的电压平均值进一步比较,差值低于相应的维护下限V1的,不需要处理,视为合格电池单元,差值在位于相应的维护下限V1和维护上限V2之间的,进行静态维护,差值超过相应的维护上限V2的,列为不合格电池单元。
  8. 如权利要求7所述的方法,其特征在于所述静态维护的方法为:对电压高的电池单元进行放电维护,将其电压调整到系统的平均电压以下的数值;对电压低的电池单元进行充电维护,将电压调整到系统的平均电压以上的数值。
  9. 如权利要求8所述的方法,其特征在于所述放电维护和充电维护的电压调整幅度deltV在5-15mV之间
  10. 如权利要求9所述的方法,其特征在于在完成静态维护的放电或充电后,静置1-3天,进行电池单元的自放电,检测该电池单元电压的变化,将自放电率高的电池单元列为不合格电池单元。
PCT/CN2018/082336 2017-09-04 2018-04-09 适于锂离子电池储能系统的维护方法 WO2019041816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710784286.0 2017-09-04
CN201710784286.0A CN109428131B (zh) 2017-09-04 2017-09-04 适于锂离子电池储能系统的维护方法

Publications (1)

Publication Number Publication Date
WO2019041816A1 true WO2019041816A1 (zh) 2019-03-07

Family

ID=65512875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082336 WO2019041816A1 (zh) 2017-09-04 2018-04-09 适于锂离子电池储能系统的维护方法

Country Status (2)

Country Link
CN (1) CN109428131B (zh)
WO (1) WO2019041816A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490516B (zh) * 2019-08-23 2021-12-07 上海汽车集团股份有限公司 一种动力电池保养模式生成系统和方法
CN110556599A (zh) * 2019-09-17 2019-12-10 浙江工业大学 一种储能电池组服役过程中劣化电池的维护方法
CN117438678B (zh) * 2023-12-20 2024-04-02 广东省锐驰新能源科技有限公司 基于人工智能的储能电池安全维护管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714675A (zh) * 2009-11-26 2010-05-26 林伯璋 电池组平衡系统及方法
KR20160071929A (ko) * 2014-12-12 2016-06-22 현대오트론 주식회사 배터리 관리 시스템
CN205427156U (zh) * 2015-08-28 2016-08-03 陈宇星 一种电池单体的故障检测装置
JP2017062175A (ja) * 2015-09-25 2017-03-30 トヨタ自動車株式会社 電動車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649135B2 (ja) * 2001-02-20 2005-05-18 日産自動車株式会社 組電池の異常検出装置
CN101907688B (zh) * 2010-08-02 2012-08-22 天津力神电池股份有限公司 一种锂离子电池电性能一致性的检测方法
CN103645444A (zh) * 2013-12-23 2014-03-19 中国科学院电工研究所 基于众数原理的电池一致性在线评价方法及检测电路
CN105576318B (zh) * 2016-02-23 2017-09-29 上海电力学院 确定电动汽车退役锂电池一致性的多参数综合判定方法
CN106785178B (zh) * 2017-03-16 2020-07-24 许继电源有限公司 电池模组再利用检测、筛选配组方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714675A (zh) * 2009-11-26 2010-05-26 林伯璋 电池组平衡系统及方法
KR20160071929A (ko) * 2014-12-12 2016-06-22 현대오트론 주식회사 배터리 관리 시스템
CN205427156U (zh) * 2015-08-28 2016-08-03 陈宇星 一种电池单体的故障检测装置
JP2017062175A (ja) * 2015-09-25 2017-03-30 トヨタ自動車株式会社 電動車両

Also Published As

Publication number Publication date
CN109428131A (zh) 2019-03-05
CN109428131B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Kong et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs
CN204269787U (zh) 一种锂离子电池低温性能一致性的检测系统
US20160190829A1 (en) Passive equalization method and system for lithium iron phosphate battery pack
CN205039569U (zh) 一种锂离子电池组均衡管理系统
CN105071453A (zh) 一种电池管理系统
CN103995232B (zh) 一种磷酸铁锂动力电池组峰值充放电性能的检测方法
WO2019041816A1 (zh) 适于锂离子电池储能系统的维护方法
Namor et al. Assessment of battery ageing and implementation of an ageing aware control strategy for a load leveling application of a lithium titanate battery energy storage system
US11054475B2 (en) Electric storage capacity estimation apparatus and method for operating the same
Kubiak et al. Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application
CN104316879B (zh) 一种铅酸蓄电池组寿命的预测方法
WO2018192229A1 (zh) 晶体硅太阳能电池片抗光衰能力的检测方法
CN103337669A (zh) 一种电动汽车动力电池的二次利用方法
CN112782582A (zh) 一种锂离子电池负极析锂的检测方法
Lin et al. Energy efficiency of lithium-ion batteries: Influential factors and long-term degradation
Ikeya et al. Charging operation with high energy efficiency for electric vehicle valve-regulated lead–acid battery system
Xu et al. A fast diagnosis method for accelerated degradation fault induced by overcharging of LiFePO4 batteries
CN106058338A (zh) 一种动力电池组的检测维护和均衡保养设备
Ausswamaykin et al. Design of real time battery management unit for PV-hybrid system by application of Coulomb counting method
CN206348440U (zh) 一种蓄电池巡检系统
Haiying et al. Research on the consistency of the power battery based on multi-points impedance spectrum
CN106921182A (zh) 一种提高液流电池电堆电压一致性的装置及方法
Huang et al. Substation DC system intelligent monitor and maintenance system
CN108242831A (zh) 电池管理系统控制方法
TWI528044B (zh) Elimination of battery screening methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850927

Country of ref document: EP

Kind code of ref document: A1