WO2019041810A1 - 一种生理健康检测的操作方法和装置 - Google Patents

一种生理健康检测的操作方法和装置 Download PDF

Info

Publication number
WO2019041810A1
WO2019041810A1 PCT/CN2018/081593 CN2018081593W WO2019041810A1 WO 2019041810 A1 WO2019041810 A1 WO 2019041810A1 CN 2018081593 W CN2018081593 W CN 2018081593W WO 2019041810 A1 WO2019041810 A1 WO 2019041810A1
Authority
WO
WIPO (PCT)
Prior art keywords
body part
physiological health
semiconductor layer
source
information
Prior art date
Application number
PCT/CN2018/081593
Other languages
English (en)
French (fr)
Inventor
黄建东
Original Assignee
上海耕岩智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耕岩智能科技有限公司 filed Critical 上海耕岩智能科技有限公司
Priority to US16/643,584 priority Critical patent/US11911133B2/en
Publication of WO2019041810A1 publication Critical patent/WO2019041810A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]

Definitions

  • the present invention relates to the field of application of electronic devices, and in particular, to an operation method and an operation device for physiological health detection.
  • touch display panels have been widely used in devices that require human-computer interaction interfaces, such as operating screens of industrial computers, tablet computers, touch screens of smart phones, and the like.
  • a liquid crystal display (LCD) screen or an active array organic light emitting diode (AMOLED) display screen scans and drives a single pixel in a thin film transistor (TFT) structure to realize the display function of the on-screen pixel array.
  • the main structure for forming the TFT switching function is a semiconductor field effect transistor (FET).
  • FET semiconductor field effect transistor
  • the well-known semiconductor layer is mainly composed of amorphous silicon, polycrystalline silicon, indium gallium zinc oxide (IGZO), or an organic compound mixed with carbon nano materials. .
  • the TFT detection and scanning photodetection diodes have begun to be fabricated by the TFT array. It is produced and widely used in X-ray sensing flat panel devices, such as those described in the patents CN103829959B and CN102903721B of the People's Republic of China.
  • the TFT structure has the characteristics of photosensitive function: generally, when the TFT is operated in the off state by the gate voltage, no current flows between the source and the drain; however, when the TFT is subjected to the TFT When the light source is irradiated, since the energy of the light excites the electron-hole pair in the semiconductor, the field effect of the TFT structure separates the electron-hole pair, thereby causing the TFT to generate a leakage current.
  • leakage current characteristics make the TFT array gradually applied to the technology of light detection or infrared light detection, such as described in the patents of the People's Republic of China CN100568072C and CN105044952A. If such a well-known TFT light sensing array film is disposed in the display structure, it can be used as an implementation scheme for integrating the light detecting function into the display screen.
  • normal ambient light illumination may include more than three orders of magnitude (60dB) variation from the darkest region to the brightest region.
  • the TFT leakage current in the off-zone is used for infrared light detection. It is necessary to increase the photosensitivity of the TFT, improve the signal-to-noise ratio (SNR) of the device, and avoid increasing the complexity and power consumption of the overall system.
  • SNR signal-to-noise ratio
  • physiological health data detection mainly relies on the interaction between the terminal and the Internet of Things device. It requires the user to wear additional IoT devices (such as smart bracelets, smart watches, etc.) to detect the user's physiological health data. , increased equipment costs. If the physiological health data detection function is directly implemented on the terminal device, it is necessary to additionally place a corresponding sensor (such as a photosensitive sensor) outside the screen area of the terminal. This setting method increases the difficulty of processing and installing the terminal on the one hand, and On the one hand, it also increases the thickness of the terminal as a whole, which limits the development of the thinning of the terminal screen and the application of the curlable application.
  • the inventors provide an operation method for physiological health detection, the method being applied to an operation device for physiological health detection, the device comprising a display unit, a sensing unit and a processing unit; There is a body part identification area, and the sensing unit is disposed below the body part identification area; the method comprises the following steps:
  • the sensing unit When receiving the light source trigger signal, the sensing unit emits an optical signal, and receives an optical signal reflected by the body part of the user, captures the body part information of the user, and records the optical signal information reflected by the body part;
  • the processing unit obtains physiological health information corresponding to the body part according to the light signal information reflected by the body part, and displays the physiological health information on the display unit.
  • the capturing the body part information of the user comprises: capturing body part information when detecting that the distance between the body part and the sensing unit is less than a preset distance.
  • the receiving the optical signal reflected by the body part of the user and capturing the body part information of the user includes:
  • the sensing unit receives the detection trigger signal, is in the light detection state, and receives the light signal reflected by the body part of the user to capture the body part information of the user; the light source trigger signal and the detection trigger signal are alternately switched and conform to a preset frequency.
  • the capturing the body part information of the user includes:
  • the method further includes the steps of:
  • the prompt information includes one or more of voice prompt information, image prompt information, light prompt information, and video prompt information.
  • the sensing unit comprises a TFT image sensing array film
  • the TFT image sensing array film comprises an array formed by a photodiode or a photosensitive transistor.
  • the array formed by the photodiode or the photosensitive electro-optic tube has a light detection wavelength range including a visible light band or an infrared light band.
  • the TFT image sensing array film is an array formed by photodiodes, the array formed by the photodiodes includes a photodiode sensing region, the photodiode sensing region includes a photodiode layer, and the photodiode layer includes a p-type semiconductor layer, an i-type semiconductor layer, an n-type semiconductor layer, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer are stacked from top to bottom, and the i-type semiconductor layer is a microcrystalline silicon structure or amorphous Silicon germanium structure.
  • the microcrystalline silicon structure is a semiconductor layer formed by chemical vapor deposition of silane and hydrogen, the crystallinity of the microcrystalline silicon is greater than 40%, and the forbidden band width is less than 1.7 eV.
  • the amorphous silicon germanium structure is an amorphous semiconductor layer formed by chemical vapor deposition of silane, hydrogen and germane, and has a forbidden band width of less than 1.7 eV.
  • the upper end surface of the p-type semiconductor layer is provided with a first optical device for reducing the reflectance of light on the upper end surface of the p-type semiconductor layer or reducing the light in the p-type semiconductor The angle of refraction of the layer to increase the amount of light incident.
  • the lower end surface of the n-type semiconductor layer is further provided with a second optical device for improving the reflectance of light at the lower end surface of the n-type semiconductor layer.
  • the TFT image sensing array film is an array formed by a photosensitive electroplating tube, and the array formed by the photosensitive electroceramic tube comprises a photosensitive electro-optic tube sensing region, and the photosensitive electro-crystalline transistor sensing region is provided with photosensitive a thin film transistor including a gate, a source, a drain, an insulating layer, and a light absorbing semiconductor layer;
  • the photosensitive thin film transistor is an inverted coplanar structure, and the inverted coplanar structure includes: the gate The pole, the insulating layer and the source are longitudinally disposed from bottom to top, the drain is laterally coplanar with the source; the insulating layer encloses the gate such that the gate and the source, the gate and the drain There is no contact between them; a gap is matched between the source and the drain, and a photosensitive leakage current path is formed between the source and the drain, and the light absorbing semiconductor layer is disposed in the photosensitive leakage current channel.
  • the number of the source and the drain are both plural, the source and the source are connected in parallel with each other, and the drain and the drain are connected in parallel with each other; the source and the drain are matched with each other, and the source Forming a photosensitive leakage current path between the pole and the drain lateral direction includes: forming a first gap between adjacent sources, one drain being disposed in the first gap, and forming a second gap between adjacent drains A source is disposed in the second gap, and a source and a drain are staggered and a gap fit.
  • the display unit is an active array thin film transistor as a display for scanning driving and transmitting data, including: AMOLED display, LCD liquid crystal display, micro light emitting diode display, quantum dot display, or electronic Ink display.
  • the display unit is an LCD liquid crystal display or an electronic ink display
  • a backlight unit is disposed under the sensing unit, and the sensing unit is disposed between the backlight unit and the LCD liquid crystal display.
  • the body part identification area includes a plurality of body part identification sub-areas, and a sensing unit is disposed corresponding to a lower part of each body part identification sub-area.
  • the device further includes a sensing unit control circuit, the method further comprising:
  • the sensing unit control circuit turns on the sensing unit below the body part identification sub-area, and receives a closing instruction for the body part identification sub-area, and the sensing unit control circuit closes The body unit identifies the sensing unit below the sub-area.
  • the physiological health information includes any one or more of a blood pressure index, a blood volume, a body fat content, a blood oxygen saturation, a pulse rate, a cardiopulmonary index, and an electrocardiogram.
  • the inventors also provide an operating device for physiological health detection, the device comprising a display unit, a sensing unit and a processing unit; the display unit is provided with a body part identification area, and the sensing unit is disposed on the body Below the partial identification area;
  • the sensing unit is configured to emit an optical signal when receiving the light source trigger signal, and receive an optical signal reflected by the body part of the user, capture body part information of the user, and record optical signal information reflected by the body part;
  • the processing unit is configured to obtain physiological health information corresponding to the body part according to the light signal information reflected by the body part, and display the physiological health information on the display unit.
  • the sensing unit is configured to capture the body part information of the user, and the sensing unit is configured to capture the body part information when detecting that the distance between the body part and the sensing unit is less than a preset distance.
  • the sensing unit is configured to receive an optical signal reflected by the body part of the user, and capturing the body part information of the user includes:
  • the sensing unit is configured to receive the detection trigger signal, is in a light detection state, and is configured to receive an optical signal reflected by the body part of the user to capture the body part information of the user; the light source trigger signal and the detection trigger signal are alternately switched, and are consistent with a pre- Set the frequency.
  • the capturing the body part information of the user includes:
  • the processing unit is configured to calculate a feature value according to the body part information of the user captured by the sensing unit, and compare with the feature value of the preset body part information; when the error is less than the preset value, it is determined that the sensing unit captures the body Some of the information is successfully matched, otherwise it is determined that the body part information captured by the sensing unit fails to match.
  • the device includes a prompting unit, and the processing unit is configured to issue the prompt information when the processing unit determines that the captured body part information fails to match.
  • the prompt information includes one or more of voice prompt information, image prompt information, light prompt information, and video prompt information.
  • the sensing unit comprises a TFT image sensing array film
  • the TFT image sensing array film comprises an array formed by a photodiode or a photosensitive transistor.
  • the array formed by the photodiode or the photosensitive electro-optic tube has a light detection wavelength range including a visible light band or an infrared light band.
  • the TFT image sensing array film is an array formed by photodiodes, the array formed by the photodiodes includes a photodiode sensing region, the photodiode sensing region includes a photodiode layer, and the photodiode layer includes a p-type semiconductor layer, an i-type semiconductor layer, an n-type semiconductor layer, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer are stacked from top to bottom, and the i-type semiconductor layer is a microcrystalline silicon structure or amorphous Silicon germanium structure.
  • the microcrystalline silicon structure is a semiconductor layer formed by chemical vapor deposition of silane and hydrogen, the crystallinity of the microcrystalline silicon is greater than 40%, and the forbidden band width is less than 1.7 eV.
  • the amorphous silicon germanium structure is an amorphous semiconductor layer formed by chemical vapor deposition of silane, hydrogen and germane, and has a forbidden band width of less than 1.7 eV.
  • the upper end surface of the p-type semiconductor layer is provided with a first optical device for reducing the reflectance of light on the upper end surface of the p-type semiconductor layer or reducing the light in the p-type semiconductor The angle of refraction of the layer to increase the amount of light incident.
  • the lower end surface of the n-type semiconductor layer is further provided with a second optical device for improving the reflectance of light at the lower end surface of the n-type semiconductor layer.
  • the TFT image sensing array film is an array formed by a photosensitive electroplating tube, and the array formed by the photosensitive electroceramic tube comprises a photosensitive electro-optic tube sensing region, and the photosensitive electro-crystalline transistor sensing region is provided with photosensitive a thin film transistor including a gate, a source, a drain, an insulating layer, and a light absorbing semiconductor layer;
  • the photosensitive thin film transistor is an inverted coplanar structure, and the inverted coplanar structure includes: the gate The pole, the insulating layer and the source are longitudinally disposed from bottom to top, the drain is laterally coplanar with the source; the insulating layer encloses the gate such that the gate and the source, the gate and the drain There is no contact between them; a gap is matched between the source and the drain, and a photosensitive leakage current path is formed between the source and the drain, and the light absorbing semiconductor layer is disposed in the photosensitive leakage current channel.
  • the number of the source and the drain are both plural, the source and the source are connected in parallel with each other, and the drain and the drain are connected in parallel with each other; the source and the drain are matched with each other, and the source Forming a photosensitive leakage current path between the pole and the drain lateral direction includes: forming a first gap between adjacent sources, one drain being disposed in the first gap, and forming a second gap between adjacent drains A source is disposed in the second gap, and a source and a drain are staggered and a gap fit.
  • the display unit is an active array thin film transistor as a display for scanning driving and transmitting data, including: AMOLED display, LCD liquid crystal display, micro light emitting diode display, quantum dot display, or electronic Ink display.
  • the display unit is an LCD liquid crystal display or an electronic ink display
  • a backlight unit is disposed under the sensing unit, and the sensing unit is disposed between the backlight unit and the LCD liquid crystal display.
  • the body part identification area includes a plurality of body part identification sub-areas, and a sensing unit is disposed corresponding to a lower part of each body part identification sub-area.
  • the apparatus further includes a sensing unit control circuit for receiving an activation command for the body part identification sub-area, opening a sensing unit below the body part identification sub-area; and for receiving The closing unit of the body part identification sub-area closes the sensing unit below the body part identification sub-area.
  • the physiological health information includes any one or more of a blood pressure index, a blood volume, a body fat content, a blood oxygen saturation, a pulse rate, a cardiopulmonary index, and an electrocardiogram.
  • the present invention has the following advantages: by providing a body part identification area on the display unit and providing a sensing unit below the body part identification area so that the user brings the body part close to the body part identification area, the processing unit can reflect according to the body part The optical signal information obtains physiological health information corresponding to the body part, and displays the physiological health information on the display unit.
  • the invention facilitates the user operation and improves the user experience, and on the other hand can effectively reduce the overall thickness of the mobile device, making the mobile device thinner and lighter. To meet the needs of the market.
  • FIG. 1 is a flowchart of an operation method of physiological health detection according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a TFT image sensing film according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a TFT image sensing film according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a structure of a source and a drain according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an operation device for physiological health detection according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an application scenario of an operation device for physiological health detection according to an embodiment of the present invention.
  • FIG. 7 is a schematic view showing a distribution mode of an optical device according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of a method of fabricating a photodetecting film according to an embodiment of the present invention.
  • FIG. 9 is a schematic view showing a process of preparing a photodetecting film according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a process of preparing a photodetecting film according to another embodiment of the present invention.
  • FIG. 11 is a schematic view showing a process of preparing a photodetecting film according to another embodiment of the present invention.
  • FIG. 12 is a schematic view showing a process of preparing a photodetecting film according to another embodiment of the present invention.
  • FIG. 1 is a flowchart of an operation method of physiological health detection according to an embodiment of the present invention.
  • the method is applied to an operation device for physiological health detection, the device includes a display unit, a sensing unit, and a processing unit; the display unit is provided with a body part identification area, and the sensing unit is disposed at the body part identification Below the area.
  • the device is an electronic device with a touch display screen, such as a smart mobile device such as a mobile phone, a tablet computer, a personal digital assistant, or an electronic device such as a personal computer or a computer for industrial equipment.
  • the method includes the following steps:
  • step S101 when receiving the light source trigger signal, the sensing unit emits an optical signal, and receives an optical signal reflected by the body part of the user, captures the body part information of the user, and records the optical signal information reflected by the body part.
  • the user's body part is part of the user's body, including the head, chest, hands, feet, etc., and can be selected according to actual needs. For example, if the user wants to obtain the current pulse rate, the user only needs to close the pulse part to the body part recognition area.
  • the processing unit proceeds to step S102 to obtain physiological health information corresponding to the body part according to the light signal information reflected by the body part, and displays the physiological health information on the display unit.
  • the physiological health information includes any one or more of a blood pressure index, a blood volume, a body fat content, a blood oxygen saturation, a pulse rate, a cardiopulmonary index, and an electrocardiogram.
  • the display unit is an active array thin film transistor as a display screen for scanning driving and transmitting data, including: an AMOLED display, an LCD liquid crystal display, a micro light emitting diode display, a quantum dot display, Or an electronic ink display.
  • the processing unit can also analyze the reflected optical signal information, obtain the change information of the user's blood volume, and obtain the pulse rate data. Display on the display unit.
  • blood pressure index body fat content, blood oxygen saturation, cardiopulmonary index, electrocardiogram, etc.
  • the light signal is sent out by the sensing unit and the reflected light signal information is detected, and some organizational structure information of the current human body can be obtained, and then further analyzed and transformed by the processing unit to obtain corresponding physiological health information.
  • the capturing the body part information of the user comprises capturing body part information when detecting that the distance between the body part and the sensing unit is less than a preset distance.
  • the sensing unit can determine the distance between the body part of the current user and the sensing unit by detecting the time difference between the emitted light signal and the reflected reflected light signal. In other embodiments, the sensing unit can also determine whether the distance between the body part and the sensing unit is less than a preset distance by sensing a change in ambient light intensity. Only when the distance between the body part and the sensing unit is less than the preset distance, the sensing unit captures the body part information, which can effectively avoid the user's misoperation, more conform to the user's usage habits, and improve the user's sensory experience.
  • the capturing the body part information of the user comprises: calculating the feature value according to the captured body part information of the user, and comparing with the feature value of the preset body part information; when the error is less than the preset value When it is determined that the captured body part information is successfully matched, otherwise it is determined that the captured body part information fails to match.
  • the method further includes the step of: issuing a prompt message when it is determined that the captured body part information fails to match.
  • the prompt information includes one or more of voice prompt information, image prompt information, light prompt information, and video prompt information.
  • the voice prompt information includes voice prompt information prompting the user to close the body part to the identification area again
  • the image prompt information includes pop-up prompt information prompting the user to close the body part to the identification area again
  • the video prompt information includes prompting the user to
  • the animation prompt information that brings the body part close to the recognition area
  • the light prompt information includes changing the brightness of the screen or letting the display screen emit light of different colors.
  • the prompt information is mainly used as a warning function to inform the user that the sensing unit does not capture the body part information, so that the user can find out and process it early.
  • the sensing unit comprises a TFT image sensing array film
  • the TFT image sensing array film comprises an array formed by a photodiode or a photosensitive transistor.
  • the array formed by the photodiode or the photosensitive electro-optic tube has a light detection wavelength range including a visible light band or an infrared light band.
  • the TFT image sensing array film is composed of MxN TFT image sensing films, and each TFT image sensing film correspondingly detects one pixel, so the TFT image sensing array film can be used to detect MxN pixels to form corresponding image.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the TFT image sensing array film is an array formed by photodiodes, and the array formed by the photodiodes includes a photodiode sensing region.
  • Existing liquid crystal display (LCD) panels or organic light emitting diode (OLED) display panels are all driven by a TFT structure to scan a single pixel to realize the display function of the pixel array on the panel.
  • the main structure for forming the TFT switching function is a semiconductor field effect transistor (FET), and the well-known semiconductor layer material mainly includes amorphous silicon, polycrystalline silicon, indium gallium zinc oxide (IGZO), or an organic compound mixed with carbon nano materials. .
  • the TFT photodetecting diode (ie, the photodiode) has been produced by the TFT array preparation method.
  • the specific structure of the existing photodiode reference may be made to the description of the structure of the sensing unit in US Pat. No. 6,943,070 B2 and the patent of CN204808361U of the People's Republic of China.
  • the production process of the TFT image sensing array film is different from that of the display panel TFT in that the pixel opening area of the display panel is changed to the light sensing area in the production process.
  • the TFT can be prepared by using a thin glass substrate or a high temperature resistant plastic material as described in US Pat. No. 6,943,070 B2.
  • the existing TFT image sensing array film is susceptible to reflection or refraction of visible light emitted by ambient light or display pixels, causing optical interference, which seriously affects the TFT image sensing array film embedded under the display panel.
  • Signal-to-Noise Ratio SNR
  • the sensing unit of the present invention is further improved, so that the TFT image sensing array film can detect an infrared signal reflected by the body part of the user.
  • SNR Signal-to-Noise Ratio
  • the photodiode layer includes a p-type semiconductor layer, an i-type semiconductor layer, an n-type semiconductor layer, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer stacked from top to bottom, and the i-type semiconductor layer is micro A crystalline silicon structure or an amorphous silicon germanium structure.
  • the microcrystalline silicon structure is a semiconductor layer formed by chemical vapor deposition of silane and hydrogen. The crystallinity of the microcrystalline silicon is greater than 40%, and the forbidden band width is less than 1.7 eV.
  • the amorphous silicon germanium structure is an amorphous semiconductor layer formed by chemical vapor deposition of silane, hydrogen and germane, and has a forbidden band width of less than 1.7 eV.
  • Band gap refers to the width of a band gap (in electron volts (eV)).
  • the energy of electrons in a solid cannot be continuously valued, but some discontinuous energy bands.
  • the existence of free electrons, the energy band in which free electrons exist is called the conduction band (which can conduct electricity). If the bound electrons become free electrons, they must obtain enough energy to jump from the valence band to the conduction band.
  • the minimum value of this energy is the forbidden band width. .
  • the forbidden band width is an important characteristic parameter of the semiconductor, and its size is mainly determined by the band structure of the semiconductor, that is, the crystal structure and the bonding property of the atoms.
  • the forbidden band width of ruthenium is about 0.66 ev.
  • the silane contains yttrium element. When the yttrium element is doped, the forbidden band width of the i-type semiconductor layer is decreased. When less than 1.7 eV is satisfied, The i-type semiconductor layer can receive optical signals in the wavelength range of visible light to infrared light (or near-infrared light).
  • concentration of GeH4 deposited by chemical weather the operating wavelength range of a photodiode containing an amorphous or microcrystalline silicon germanium structure can be extended to a wavelength range of 600 nm to 2000 nm.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the amorphous silicon photodiode can also be formed by stacking a p-type/i-type/n-type structure with a double junction or more.
  • the first junction p-type/i-type/n-type material of the photodiode is still an amorphous silicon structure, and the p-type/i-type/n-type material above the second junction layer may be a microcrystalline structure, a polycrystalline structure or a doped Compound materials that extend the range of photosensitive wavelengths.
  • a plurality of sets of p-type/i-type/n-type structures can be stacked on top of each other to realize a photodiode structure.
  • the photodiode structure described in Embodiment 1 is used. .
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the p-type semiconductor layer therein may be a multilayer structure of more than two layers.
  • the p-type semiconductor layer has a three-layer structure, and includes a first p-type semiconductor layer (p1 layer), a second p-type semiconductor layer (p2 layer), and a third p-type semiconductor layer (p3 layer) from top to bottom.
  • the p1 layer can adopt an amorphous structure and is heavily doped with boron (the boron concentration is more than twice that of the standard process); p2 and p3 adopt a microcrystalline structure, and the normal doping boron (doped according to the standard process concentration) depends on
  • the thinned p2 layer and p3 layer reduce the absorption of light, so that the light enters the i layer as much as possible and is absorbed by the i layer, thereby increasing the photoelectric conversion rate; on the other hand, the p2 layer and the p3 layer are doped with normal boron. It is possible to effectively avoid deterioration of the built-in potential due to heavy doping of the p1 layer.
  • the p-type semiconductor layer includes a multilayer structure which is other layers, it is similar here, and will not be described herein.
  • the n-type semiconductor layer may also be a multilayer structure of more than two layers.
  • the n-type semiconductor layer has a three-layer structure, and includes a first n-type semiconductor layer (n1 layer), a second n-type semiconductor layer (n2 layer), and a third n-type semiconductor layer (n3 layer) from top to bottom.
  • the n3 layer can adopt an amorphous structure and is heavily doped with phosphorus (the phosphorus content is more than twice that of the standard process); n1 and n2 adopt a microcrystalline structure, and the normal doped phosphorus (according to the standard production process) depends on the thickness reduction
  • the n1 layer and the n2 layer reduce the absorption of light, so that the light enters the i layer as much as possible and is absorbed by the i layer, thereby improving the photoelectric conversion rate; on the other hand, the normal phosphorus doping of the n1 layer and the n2 layer can effectively avoid The built-in potential is degraded due to heavy doping of the n3 layer.
  • the n-type semiconductor layer includes a multilayer structure which is other layers, it is similar here, and will not be described again here.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment is a further improvement of the first or second or third embodiment, as shown in FIG. 7 (a), specifically including: providing a first optical device on an upper end surface of the p-type semiconductor layer, the first An optical device is used to reduce the reflectance of light on the upper end surface of the p-type semiconductor layer or to reduce the angle of refraction of the light in the p-type semiconductor layer to increase the amount of light incident. Reducing the angle of refraction of the light in the p-type semiconductor layer allows the light to be incident into the p-type semiconductor layer as close as possible to the vertical direction, so that the light is absorbed as much as possible by the i-type semiconductor layer under the p-type semiconductor layer, thereby Further increase the photoelectric conversion rate of the photodiode.
  • the first optical device is disposed on the upper end surface of the uppermost p-type semiconductor layer.
  • the first optical device includes a photonic crystal structure or a microlens array structure in which the refractive index changes periodically, or a diffuse scattering structure in which the refractive index changes non-periodically.
  • the refractive index of the first optical device is smaller than the refractive index of the p-type semiconductor layer, so that the incident angle of the light after the first optical device is refracted is smaller than the angle of refraction, that is, the light is incident into the p-type as close as possible to the vertical direction.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment is a further improvement of the first or second or third or fourth embodiment.
  • the lower end surface of the n-type semiconductor layer is further provided with a second optical device.
  • the second optical device is for increasing the multiple reflectance of light at the lower end surface of the n-type semiconductor layer.
  • the multiple reflectance means that the light enters the i-type semiconductor layer after being reflected by the second optical device, and is again absorbed by the i-type semiconductor layer, and the absorbed light is again reflected by the second optical device and enters the i-type semiconductor layer. This is repeated several times to increase the photoelectric conversion ratio of the i-type semiconductor layer.
  • the second optical device is disposed on the lower end surface of the lowermost one of the n-type semiconductor layers.
  • the second optical device includes a photonic crystal structure whose refractive index changes periodically, or a diffuse scattering structure whose refractive index changes non-periodically, and the refractive index of the second optical device is smaller than that of the n-type semiconductor layer .
  • the light can be reflected as much as possible on the lower end surface of the n-type semiconductor layer, so that the reflected light is again absorbed by the i-type semiconductor layer, thereby appropriately amplifying the signal in the wavelength range of light that can be absorbed by the i-type semiconductor layer. Increase the photoelectric flow rate in this wavelength range.
  • the TFT image sensing array film is an array formed by photosensitive electro-optic tubes, and the array formed by the photo-electric transistors includes a photosensitive electro-optic transistor sensing region, and the photosensitive electro-optic transistor sensing region Provided is a photosensitive thin film transistor including a gate 1, a source 2, a drain 3, an insulating layer 4, and a light absorbing semiconductor layer 5; the photosensitive thin film transistor is an inverted coplanar structure, and the inverted The planar structure includes: the gate 1, the insulating layer 4, and the source 2 are longitudinally disposed from bottom to top, the drain 3 and the source 2 are laterally coplanar; the insulating layer 4 wraps the gate 1 So that the gate 1 and the source 2, the gate 1 and the drain 3 are not in contact; the gap between the source 2 and the drain 3 is matched, and the source 2 and the drain 3 form a photosensitive leakage current.
  • the light absorbing semiconductor layer 5 is disposed in the photosensitive leakage current channel.
  • the TFT when the TFT is operated in the off state by the gate voltage, no current flows between the source and the drain; however, when the TFT is irradiated by the light source, the electron-hole pair is excited by the energy of the light in the semiconductor, and the TFT The field effect of the structure separates the electron-hole pairs, which in turn causes the TFT to generate a photosensitive leakage current.
  • photosensitive leakage current characteristics allow the TFT array to be applied to the technology of light detection or light detection.
  • the present invention arranges a light absorbing semiconductor layer on an uppermost light absorbing layer in an inverted coplanar field effect transistor structure, which greatly increases photoelectron excitation and improves photoelectric conversion efficiency.
  • FIG. 8 is a flow chart showing a method of fabricating a photodetecting film according to an embodiment of the present invention. The method is used to prepare the photosensitive thin film transistor (ie, the photodetecting film) of the sixth embodiment, and specifically includes the following steps:
  • step S801 deposit a gate on the substrate of the pixel thin film transistor by magnetron sputtering.
  • the substrate of the pixel thin film transistor may be a hard plate or a flexible material such as polyimide;
  • the insulating layer is coated by chemical vapor deposition or magnetron sputtering on the gate;
  • the n-type doped semiconductor layer of the source and the drain is deposited by chemical vapor deposition over the insulating layer, and the metal layer of the source and the drain is plated by magnetron sputtering, and the yellow light is passed through the yellow light.
  • the etching process defines a source and a drain of the predetermined structure, and the source and the drain are laterally coplanar, and the gap is matched, and a photosensitive leakage current path is formed between the source and the drain;
  • step S804 a light absorbing semiconductor layer is deposited by chemical vapor deposition in the photosensitive leakage current channel.
  • the TFT as the scan driving and data transfer switch does not need to be specially designed for the structure of collecting photocurrent between the source and the drain; however, the field effect transistor is applied to the detection of the photosensitive leakage current.
  • the drift path driven by the electric field is too long, and it is very likely that the photoelectrons will re-enter the holes before they reach the electrode smoothly. Recombination, or the Dangling Bond defect of the light absorbing semiconductor layer itself, cannot effectively contribute to the photocurrent output for photodetection.
  • the source and the drain of the fourth embodiment are used in this embodiment.
  • a new step was made to propose a new structure of source and drain.
  • the source and the drain are both in plurality, the source and the source are connected in parallel with each other, and the drain and the drain are connected in parallel; the gap between the source and the drain is Cooperating, forming a photosensitive leakage current channel between the source and the drain lateral direction includes: forming a first gap between adjacent sources, one drain being disposed in the first gap, and forming a first gap between adjacent drains Two gaps, one source is placed in the second gap, and the source and the drain are staggered and gap-fitted. The distance between each source and the adjacent drain is less than the distance of electron drift, which is the distance over which electrons can survive field effect.
  • the plurality of sources belonging to the same pixel are connected in parallel, and the plurality of drains belonging to the same pixel are also connected in parallel, which can effectively reduce the probability of recombination of the photoexcited electrons and holes.
  • the successful probability of collecting photoelectrons by the electrodes under the effect of field effect is improved, and the photosensitivity of the TFT leakage current photosensitive thin film transistor is maximized.
  • the general procedure is similar to that of the photosensitive thin film transistor of the sixth embodiment.
  • the difference is that, in preparing the source and the drain, in step S803, “the source and the drain of the predetermined structure are defined by a yellow etching process, and the source and the drain are laterally coplanar, and the gap is matched, and the source is made.
  • Forming a photosensitive leakage current path between the pole and the drain lateral direction includes: defining a source electrode group and a drain electrode group by a yellow etching process, each of the source electrode groups including a plurality of sources, a source and a source Parallel to each other; each of the drain electrode groups includes a plurality of drains, and the drain and the drain are connected in parallel with each other; a first gap is formed between adjacent sources, and a drain is disposed in the first gap, A second gap is formed between adjacent drains, one source is disposed in the second gap, and the source and the drain are staggered and gap-fitted.
  • the receiving the optical signal reflected by the body part of the user and capturing the body part information of the user includes: the sensing unit receives the detection trigger signal, is in a light detecting state, and receives the light signal reflected by the body part of the user.
  • the light source trigger signal and the detection trigger signal are alternately switched and conform to a preset frequency.
  • a bias voltage including forward bias, or zero bias or negative bias
  • the TFT image sensing array film emits infrared light.
  • a forward bias or a zero bias or a negative bias, may be alternately applied between the p-type/i-type/n-type infrared photodiodes to trigger the first trigger signal or the second trigger signal.
  • a forward bias is applied to the p-type/i-type/n-type infrared photodiodes in the first period, so that the 10 columns of pixel lattices are all emitting infrared rays.
  • the light source trigger signal ie, the first trigger signal
  • the detection trigger signal ie, the second trigger signal
  • the time interval between adjacent periods may be set according to actual needs.
  • the time interval may be set to a time required for the TFT array to scan and scan each frame of the infrared photodiode array to receive at least one complete image signal. , that is, the preset frequency is switched once every time interval elapsed.
  • the sensing unit ie, the TFT image sensing array film in FIG. 6
  • the sensing unit is further provided with a backlight unit.
  • the sensing unit is disposed between the backlight unit and the LCD liquid crystal display. Since the LCD liquid crystal display is not a self-illuminating element, it is necessary to add a backlight unit below the sensing unit during installation.
  • the backlight unit may be an LCD backlight module or other electronic components having a self-luminous function.
  • the display unit is an AMOLED display screen, since the OLED display screen is a self-luminous element, there is no need to provide a backlight unit.
  • the body part identification area includes a plurality of body part identification sub-areas, and each of the body part identification sub-areas is disposed corresponding to a sensing unit.
  • the apparatus further includes a sensing unit control circuit, the method further comprising: receiving an activation command for the body part identification sub-area, the sensing unit control circuit turning on the sensing unit below the body part identification sub-area, and receiving The sensing unit control circuit closes the sensing unit below the body part identification sub-area for the closing instruction of the body part identification sub-area.
  • the two body part identification sub-areas may be evenly distributed on the screen one above or one left or one right, or may be distributed in the screen in other arrangements.
  • the two body part recognition sub-areas are covered by the entire display screen, so as to ensure that when the photodetection devices under the two body part identification sub-areas are set to the on state, the display screen is entered.
  • the optical signal can be absorbed by the underlying TFT image sensing array film (ie, the sensing unit) to capture the user's fingerprint information.
  • the two body part identification sub-areas may also constitute a range of 2/3, 3/4, etc. of the entire display screen area.
  • the user can also set the photodetection device under one of the body part recognition sub-areas to be turned on according to his or her preference, and the photodetection device under the other body part identification sub-area is turned off.
  • the photodetecting devices under the two body part identification sub-areas can also be set to the off state.
  • the underside of the photodetection device under each body part identification sub-area is turned on or off, and can be set according to the user's own preferences.
  • FIG. 5 is a schematic diagram of an operation device for physiological health detection according to an embodiment of the present invention.
  • the device includes a display unit 101, a sensing unit 102, and a processing unit 104; the display unit 101 is provided with a body part identification area, and the sensing unit 102 is disposed below the body part identification area;
  • the sensing unit 102 is configured to emit an optical signal when receiving a light source trigger signal, and receive an optical signal reflected by a body part of the user, capture body part information of the user, and record optical signal information reflected by the body part;
  • the processing unit 104 is configured to obtain physiological health information corresponding to the body part according to the light signal information reflected by the body part, and display the physiological health information on the display unit 101.
  • the apparatus includes a prompting unit 105 for issuing a prompt message when the processing unit determines that the captured body part information has failed to match.
  • the prompt information includes one or more of voice prompt information, image prompt information, light prompt information, and video prompt information.
  • the display unit is an active array thin film transistor as a display screen for scanning driving and transmitting data, including: an AMOLED display, an LCD liquid crystal display, a micro light emitting diode display, a quantum dot display, Or an electronic ink display.
  • a backlight unit is further disposed under the sensing unit, and the sensing unit is disposed on Between the backlight unit and the LCD screen. . Since the LCD liquid crystal display is not a self-illuminating element, it is necessary to add a backlight unit below the sensing unit during installation.
  • the backlight unit may be an LCD backlight module or other electronic components having a self-luminous function.
  • the display unit is an AMOLED display screen
  • the OLED display screen is a self-luminous element, there is no need to provide a backlight unit.
  • the present invention has the following advantages: by providing a body part identification area on the display unit and providing a sensing unit below the body part identification area so that the user brings the body part close to the body part identification area, the processing unit can reflect according to the body part The optical signal information obtains physiological health information corresponding to the body part, and displays the physiological health information on the display unit.
  • the invention facilitates the user operation and improves the user experience, and on the other hand can effectively reduce the overall thickness of the mobile device, making the mobile device thinner and lighter. To meet the needs of the market.

Abstract

本发明提供了一种生理健康检测的操作方法和装置,通过在显示单元上设置身体部分识别区,并在所述身体部分识别区下方设置传感单元,使得用户将身体部分靠近身体部分识别区时,传感单元可以捕捉到身体部分反射的光信号信息,处理单元可以根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。相较于现有移动设备在显示屏区域之外额外设置传感器的方式,本发明一方面方便了用户操作,提升了用户体验,另一方面可以有效缩小移动设备的整体厚度,使得移动设备更加轻薄、满足市场的需求。

Description

一种生理健康检测的操作方法和装置 技术领域
本发明涉及电子设备应用领域,特别涉及一种生理健康检测的操作方法和操作装置。
背景技术
随着科技的发展和技术的进步,触控显示面板已经广泛应用在需要进行人机交互界面的装置中,如工业计算机的操作屏幕、平板计算机、智能手机的触控屏幕等等。
液晶显示(LCD)屏或有源阵列式有机发光二极管(AMOLED)显示屏,皆是以薄膜电晶管(TFT)结构扫描并驱动单一画素,以实现屏上画素阵列之显示功能。形成TFT开关功能的主要结构为半导体场效晶体管(FET),其中熟知的半导体层主要材料有非晶硅、多晶硅、氧化铟镓锌(IGZO)、或是混有碳纳米材料之有机化合物等等。由于光侦测二极管(Photo Diode)的结构亦可采用此类半导体材料制备,且生产设备也兼容于TFT阵列的生产设备,因此近年来TFT驱动与扫描的光侦测二极管开始以TFT阵列制备方式作生产,并广泛应用在X光感测平板器件,如中华人民共和国专利CN103829959B、CN102903721B所描述。
实际上在光侦测的应用上,TFT结构即具备光敏功能的特性:一般藉由栅极电压控制TFT操作在关闭状态时,源极到漏极之间不会有电流通过;然而当TFT受光源照射时,由于光的能量在半导体激发出电子-空穴对,TFT结构的场效应作用会使电子-空穴对分离,进而使TFT产生漏电流。这样的漏电流特性让TFT阵列逐渐被应用在光侦测或红外光侦测之技术上,例如中华人民共和国专利CN100568072C、CN105044952A所描述。若将此类熟知的TFT光感测阵列薄膜配置在显示屏结构内,可作为将光侦测功能集成在显示屏之 一种实现方案。
传统的TFT器件结构设计在光侦测应用上,仍有必须要改善的特性:正常环境光的照明可能包含从最暗区域到最亮区域的3个数量级以上(60dB)的变化,使用操作在关闭区的TFT漏电流进行红外光侦测应用,需要增加TFT的光敏感度(photosensitivity)、提高器件的信号噪声比(SNR),并避免增加了整体系统的复杂性以及功耗。
综上,针对穿戴式电子装置而言,人机交互界面技术仍有众多进步空间。以生理健康数据检测为例,目前主要依赖于终端与物联网设备交互来完成,其需要用户佩戴额外的物联网设备(如智能手环、智能手表等),以便对用户的生理健康数据进行检测,增加了设备成本。而若要在终端设备上直接实现生理健康数据检测功能,则需要在终端的屏幕区域以外额外置于相应的传感器(如光敏传感器),这种设置方式一方面增加了终端加工安装的难度,另一方面也增加了终端整体的厚度,限制了终端屏幕薄型化及可卷曲式应用的发展。
发明内容
为此,需要提供一种生理健康检测的技术方案,用于解决现有的终端在实现生理健康数据检测时,由于需要在显示屏之外的区域额外设置传感器,导致终端安装难度增加、限制了终端屏幕薄型化及可卷曲式应用的发展等问题。
为实现上述目的,发明人提供了一种生理健康检测的操作方法,所述方法应用于生理健康检测的操作装置,所述装置包括显示单元、传感单元和处理单元;所述显示单元上设置有身体部分识别区,所述传感单元设置于所述身体部分识别区的下方;所述方法包括以下步骤:
传感单元在接收到光源触发信号时,发出光信号,以及接收用户身体部分反射的光信号,捕捉用户的身体部分信息,并记录身体部分反射的光信号 信息;
处理单元根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。
进一步地,所述捕捉用户的身体部分信息包括:当检测到身体部分与传感单元之间的距离小于预设距离时,捕捉身体部分信息。
进一步地,所述接收用户身体部分反射的光信号,捕捉用户的身体部分信息包括:
传感单元接收侦测触发信号,处于光侦测状态,并接收用户身体部分反射的光信号以捕捉用户的身体部分信息;光源触发信号与侦测触发信号交替切换,并符合一预设频率。
进一步地,所述捕捉用户的身体部分信息包括:
根据捕捉到的用户的身体部分信息计算其特征值,并与预设身体部分信息的特征值进行对比;当误差小于预设值时,判定为捕捉到身体部分信息匹配成功,否则判定为捕捉到的身体部分信息匹配失败。
进一步地,所述方法还包括步骤:
当判定捕捉到的身体部分信息匹配失败时,发出提示信息。
进一步地,所述提示信息包括声音提示信息、图像提示信息、光线提示信息、视频提示信息中的一种或多种。
进一步地,所述传感单元包括TFT影像感测阵列薄膜,所述TFT影像感测阵列薄膜包括光敏二极管或光敏电晶管所形成的阵列。
进一步地,所述光敏二极管或光敏电晶管所形成的阵列,其光侦测波长范围包含可见光波段或是红外光波段。
进一步地,所述TFT影像感测阵列薄膜为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区,所述光敏二极管感应区包括光敏二极管层,所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置, 所述i型半导体层为微晶硅结构或非结晶硅化锗结构。
进一步地,所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。
进一步地,所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
进一步地,所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。
进一步地,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的反射率。
进一步地,所述TFT影像感测阵列薄膜为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极、源极、漏极、绝缘层、光吸收半导体层;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极、绝缘层、源极纵向自下而上设置,所述漏极与所述源极横向共面设置;绝缘层包裹所述栅极,以使得栅极与源极、栅极与漏极之间均不接触;源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道,所述光吸收半导体层设置于光敏漏电流通道内。
进一步地,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
进一步地,所述显示单元乃是以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,包括:AMOLED显示屏、LCD液晶显示屏、微发光二极管显示屏、量子点显示屏、或是电子墨水显示屏。
进一步地,当所述显示单元为LCD液晶显示屏或电子墨水显示屏时,所述传感单元的下方还设置有背光单元,所述传感单元设置于背光单元和LCD液晶显示屏之间。
进一步地,所述身体部分识别区包括多个身体部分识别子区域,每一身体部分识别子区域的下方对应设置一传感单元。
进一步地,所述装置还包括传感单元控制电路,所述方法还包括:
接收对身体部分识别子区域的启动指令,传感单元控制电路开启所述身体部分识别子区域的下方的传感单元,以及接收对身体部分识别子区域的关闭指令,传感单元控制电路关闭所述身体部分识别子区域的下方的传感单元。
进一步地,所述生理健康信息包括血压指数、血量、体脂含量、血氧饱和度、脉率、心肺指数、心电图中的任意一种或多种。
发明人还提供了一种生理健康检测的操作装置,所述装置包括显示单元、传感单元和处理单元;所述显示单元上设置有身体部分识别区,所述传感单元设置于所述身体部分识别区的下方;
所述传感单元用于在接收到光源触发信号时,发出光信号,以及用于接收用户身体部分反射的光信号,捕捉用户的身体部分信息,并记录身体部分反射的光信号信息;
所述处理单元用于根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。
进一步地,传感单元用于捕捉用户的身体部分信息包括:传感单元用于在检测到身体部分与传感单元之间的距离小于预设距离时,捕捉身体部分信息。
进一步地,传感单元用于接收用户身体部分反射的光信号,捕捉用户的身体部分信息包括:
传感单元用于接收侦测触发信号,处于光侦测状态,并用于接收用户身体部分反射的光信号以捕捉用户的身体部分信息;光源触发信号与侦测触发 信号交替切换,并符合一预设频率。
进一步地,所述捕捉用户的身体部分信息包括:
处理单元用于根据传感单元捕捉到的用户的身体部分信息计算其特征值,并与预设身体部分信息的特征值进行对比;当误差小于预设值时,判定为传感单元捕捉到身体部分信息匹配成功,否则判定为传感单元捕捉到的身体部分信息匹配失败。
进一步地,所述装置包括提示单元,所述处理单元用于在处理单元判定捕捉到的身体部分信息匹配失败时,发出提示信息。
进一步地,所述提示信息包括声音提示信息、图像提示信息、光线提示信息、视频提示信息中的一种或多种。
进一步地,所述传感单元包括TFT影像感测阵列薄膜,所述TFT影像感测阵列薄膜包括光敏二极管或光敏电晶管所形成的阵列。
进一步地,所述光敏二极管或光敏电晶管所形成的阵列,其光侦测波长范围包含可见光波段或是红外光波段。
进一步地,所述TFT影像感测阵列薄膜为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区,所述光敏二极管感应区包括光敏二极管层,所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。
进一步地,所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。
进一步地,所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
进一步地,所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。
进一步地,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的反射率。
进一步地,所述TFT影像感测阵列薄膜为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极、源极、漏极、绝缘层、光吸收半导体层;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极、绝缘层、源极纵向自下而上设置,所述漏极与所述源极横向共面设置;绝缘层包裹所述栅极,以使得栅极与源极、栅极与漏极之间均不接触;源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道,所述光吸收半导体层设置于光敏漏电流通道内。
进一步地,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
进一步地,所述显示单元乃是以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,包括:AMOLED显示屏、LCD液晶显示屏、微发光二极管显示屏、量子点显示屏、或是电子墨水显示屏。
进一步地,当所述显示单元为LCD液晶显示屏或电子墨水显示屏时,所述传感单元的下方还设置有背光单元,所述传感单元设置于背光单元和LCD液晶显示屏之间。
进一步地,所述身体部分识别区包括多个身体部分识别子区域,每一身体部分识别子区域的下方对应设置一传感单元。
进一步地,所述装置还包括传感单元控制电路,所述传感控制电路用于接收对身体部分识别子区域的启动指令,开启身体部分识别子区域的下方的传感单元;以及用于接收对身体部分识别子区域的关闭指令,关闭所述身体 部分识别子区域的下方的传感单元。
进一步地,所述生理健康信息包括血压指数、血量、体脂含量、血氧饱和度、脉率、心肺指数、心电图中的任意一种或多种。
本发明具有以下优点:通过在显示单元上设置身体部分识别区,并在所述身体部分识别区下方设置传感单元,使得用户将身体部分靠近身体部分识别区时,处理单元可以根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。相较于现有移动设备在显示屏区域之外额外设置传感器的方式,本发明一方面方便了用户操作,提升了用户体验,另一方面可以有效缩小移动设备的整体厚度,使得移动设备更加轻薄、满足市场的需求。
附图说明
图1为本发明一实施方式涉及的生理健康检测的操作方法的流程图;
图2为本发明一实施方式涉及的TFT影像感测薄膜的结构示意图;
图3为本发明另一实施方式涉及的TFT影像感测薄膜的结构示意图;
图4为本发明一实施方式涉及的源极和漏极结构配合的示意图;
图5为本发明一实施方式涉及的生理健康检测的操作装置的示意图;
图6为本发明一实施方式涉及的生理健康检测的操作装置的应用场景的示意图;
图7为本发明一实施方式涉及的光学器件的分布方式的示意图;
图8为本发明一实施方式涉及的光侦测薄膜的制备方法的流程图;
图9为本发明一实施方式所述的光侦测薄膜制备过程中的示意图;
图10为本发明另一实施方式所述的光侦测薄膜制备过程中的示意图;
图11为本发明另一实施方式所述的光侦测薄膜制备过程中的示意图;
图12为本发明另一实施方式所述的光侦测薄膜制备过程中的示意图;
附图标记:
1、栅极;
2、源极;
3、漏极;
4、绝缘层;
5、光吸收半导体层;
101、显示单元;
102、传感单元;
103、背光单元;
104、处理单元;
105、提示单元。
具体实施方式
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。
请参阅图1,为本发明一实施方式涉及的生理健康检测的操作方法的流程图。所述方法应用于生理健康检测的操作装置,所述装置包括显示单元、传感单元和处理单元;所述显示单元上设置有身体部分识别区,所述传感单元设置于所述身体部分识别区的下方。所述装置为具有触摸显示屏的电子设备,如是手机、平板电脑、个人数字助理等智能移动设备,还可以是个人计算机、工业装备用计算机等电子设备。所述方法包括以下步骤:
首先进入步骤S101传感单元在接收到光源触发信号时,发出光信号,以及接收用户身体部分反射的光信号,捕捉用户的身体部分信息,并记录身体部分反射的光信号信息。所述用户身体部分顾名思义,为用户身体的一部分,包括头部、胸部、手部、脚部等,具体可以根据实际需要进行选择。例如用户想要获得当前自身的脉率,则只需将脉搏部位靠近身体部分识别区即可。
而后进入步骤S102处理单元根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。所述生理健康信息包括血压指数、血量、体脂含量、血氧饱和度、脉率、心肺指数、心电图中的任意一种或多种。在本实施方式中,所述显示单元乃是以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,包括:AMOLED显示屏、LCD液晶显示屏、微发光二极管显示屏、量子点显示屏、或是电子墨水显示屏。
当光线穿过人体皮肤进入到体表以下人体其他组织时,有些光线将被吸收,有些光线会发生反射、散射等情况,光路的变化取决于皮肤以下组织的构造。一般情况下,人体血液可以吸收比周围组织更多的光,因而当光信号遇到更多的血液时,反射回的光信号就越少。因此可以通过检测身体部分反射回的光信号信息,得到用户对应的血量信息。
对于脉率而言,人体的血液体积一般随着脉搏的每次跳动增加或减少,因而处理单元也可以对反射的光信号信息进行分析,得到用户血液体积的变化信息,进而获得脉率数据并在显示单元上进行显示。至于血压指数、体脂含量、血氧饱和度、心肺指数、心电图等,同理可得,此处不再赘述。简言之,通过传感单元发出光信号以及检测反射回的光信号信息,可以获得当前人体的一些组织结构信息,再经过处理单元进一步分析转换,即可得到对应的生理健康信息。
在某些实施例中,所述捕捉用户的身体部分信息包括:当检测到身体部分与传感单元之间的距离小于预设距离时,捕捉身体部分信息。传感单元可以通过检测发出光信号以及接收到反射回的光信号的时间差,来判断当前用户的身体部分与传感单元之间的距离。在另一些实施例中,传感单元还可以通过感知周围环境光强变化来判断身体部分与传感单元之间的距离是否小于预设距离。只有在身体部分与传感单元之间的距离小于预设距离时,传感单元才对身体部分信息进行捕捉,可以有效避免用户的误操作,更加符合用户 的使用习惯,提高用户的感官体验。
在某些实施例中,所述捕捉用户的身体部分信息包括:根据捕捉到的用户的身体部分信息计算其特征值,并与预设身体部分信息的特征值进行对比;当误差小于预设值时,判定为捕捉到身体部分信息匹配成功,否则判定为捕捉到的身体部分信息匹配失败。
进一步地,所述方法还包括步骤:当判定捕捉到的身体部分信息匹配失败时,发出提示信息。所述提示信息包括声音提示信息、图像提示信息、光线提示信息、视频提示信息中的一种或多种。所述声音提示信息包括提示用户再次将身体部分靠近识别区的语音提示信息,所述图像提示信息包括提示用户再次将身体部分靠近识别区的弹窗提示信息,所述视频提示信息包括提示用户再次将身体部分靠近识别区的动画提示信息,光线提示信息包括改变屏幕亮度或者让显示屏发出不同颜色的光线等。简言之,提示信息主要是起到警示作用,告知用户传感单元并未捕捉到身体部分信息,以便用户及早发现进行处理。
在某些实施例中,所述传感单元包括TFT影像感测阵列薄膜,所述TFT影像感测阵列薄膜包括光敏二极管或光敏电晶管所形成的阵列。所述光敏二极管或光敏电晶管所形成的阵列,其光侦测波长范围包含可见光波段或是红外光波段。所述TFT影像感测阵列薄膜由MxN个TFT影像感测薄膜组成,每一TFT影像感测薄膜对应侦测一个像素,因而TFT影像感测阵列薄膜可以用于侦测MxN个像素,以形成相应影像。
对于每一个TFT影像感测薄膜而言,有以下几种实现方式:
实施例一:
所述TFT影像感测阵列薄膜为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区。现有的液晶显示(LCD)面板或有机发光二极管(OLED)显示面板,皆是以TFT结构驱动扫描单一像素,以实现面板上像素阵列的显示功能。形成TFT开关功能的主要结构为半导体场效晶体管 (FET),其中熟知的半导体层材料主要有非晶硅、多晶硅、氧化铟镓锌(IGZO)、或是混有碳纳米材料之有机化合物等等。由于光感测二极管的结构亦可采用此类半导体材料制备,且生产设备也兼容于TFT阵列的生产设备,因此近年来TFT光侦测二极管(即光敏二极管)开始以TFT阵列制备方式进行生产。现有的光敏二极管的具体结构可以参考美国专利US6943070B2、中华人民共和国专利CN204808361U中对传感单元结构的描述。TFT影像感测阵列薄膜的生产工艺与显示面板TFT结构不同的是:原本在显示面板的像素开口区域,在生产工艺上改为光感测区域。其TFT制备方式可以采用薄型玻璃为基材,亦可采用耐高温塑性材料为基材,如美国专利US6943070B2所述。
现有的TFT影像感测阵列薄膜易受周围环境光或者显示屏像素所发出的可见光的反射、折射等因素影响,造成光学干扰,严重影响内嵌于显示面板下方的TFT影像感测阵列薄膜的信号噪声比(SNR),为了提高信号噪声比,如图2所示,本发明的传感单元做了进一步改进,使得TFT影像感测阵列薄膜可以侦测识别用户身体部分反射回的红外信号。具体结构如下:
所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
禁带宽度(Band gap)是指一个带隙宽度(单位是电子伏特(eV)),固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从价带跃迁到导带,这个能量的最小值就是禁带宽度。禁带宽度是半导体的一个重要特征参量,其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。
在室温下(300K),锗的禁带宽度约为0.66ev,硅烷中含有锗元素,当掺入锗元素后,会使得i型半导体层的禁带宽度下降,当满足小于1.7eV时,说明i型半导体层可以接收可见光至红外光(或近红外光)波长范围内的光信号。通过调整化学气象沉积的GeH4浓度,可以将含有非晶或微晶硅化锗结构的光敏二极管的操作波长范围扩展到光波长600nm到2000nm的范围。
实施例二:
在采用实施例一的基础上,为了提高光电转换之量子效率,非晶硅光电二极管也可采用双结以上p型/i型/n型结构堆叠形成。该光电二极管第一结层p型/i型/n型材料仍然为非晶硅结构,第二结层以上p型/i型/n型材料可以为微晶结构、多晶结构或是掺有可扩展光敏波长范围之化合物材料。简言之,可以采用多组p型/i型/n型结构上下堆叠来实现组成光敏二极管结构,对于每一个p型/i型/n型结构,则采用实施例一所描述的光敏二极管结构。
实施例三:
在采用实施例一或二的基础上,对于每一个p型/i型/n型结构而言,其中的p型半导体层可以为大于两层的多层结构。例如p型半导体层为三层结构,自上而下包括第一p型半导体层(p1层)、第二p型半导体层(p2层)、第三p型半导体层(p3层)。其中,p1层可以采用非结晶结构且重掺杂硼(含硼浓度为标准工艺的两倍以上);p2和p3采用微晶结构,且正常掺杂硼(按照标准工艺浓度掺杂),依靠厚度减薄的p2层和p3层减少对光线的吸收,使得光线尽可能多地进入i层并被i层所吸收,提高光电转换率;另一方面p2层和p3层采用正常的硼掺杂可以有效避免由于p1层的重掺杂导致劣化内建电位。当p型半导体层包括为其他层数的多层结构与此类似,此处不再赘述。
同样的,n型半导体层也可以为大于两层的多层结构。例如n型半导体层为三层结构,自上而下包括第一n型半导体层(n1层)、第二n型半导体层(n2层)、第三n型半导体层(n3层)。其中,n3层可以采用非结晶结构且重掺杂磷(含磷量为标准工艺两倍以上);n1和n2采用微晶结构,且正常掺 杂磷(按照标准生产工艺),依靠厚度减薄的n1层和n2层减少对光线的吸收,使得光线尽可能多地进入i层并被i层所吸收,提高光电转换率;另一方面n1层和n2层采用正常的磷掺杂可以有效避免由于n3层的重掺杂导致劣化内建电位。当n型半导体层包括为其他层数的多层结构与此类似,此处不再赘述。
实施例四:
本实施例是针对实施例一或二或三的进一步改进,如图7中的(a)所示,具体包括:在所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。减小光线在p型半导体层的折射角度,可以让光线尽可能地以接近于垂直方向射入p型半导体层,使得光线尽可能地被p型半导体层下方的i型半导体层所吸收,从而进一步提高光敏二极管的光电转换率。当p型半导体层为多层结构时,第一光学器件设置于最上方的一层p型半导体层的上端面。
所述第一光学器件包括折射率呈周期性变化的光子晶体结构或微透镜阵列结构、或是折射率呈非周期性变化的漫散射结构。所述第一光学器件的折射率小于p型半导体层的折射率,可以使得光线在第一光学器件发生折射后,入射角小于折射角,即光线尽可能地以接近于垂直方向射入p型半导体层。
实施例五:
本实施例是针对实施例一或二或三或四的进一步改进,如图7中的(b)(c)所示,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的多重反射率。所述多重反射率是指光线在经过第二光学器件反射后进入i型半导体层,再次被i型半导体层所吸收,吸收后的光线又再次经过第二光学器件反射后进入i型半导体层,如此反复多次,提高i型半导体层的光电转换率。当n型半导体层为多层结构时,第二光学器件设置于最下方的一层n型半导体层的下端面。
所述第二光学器件包括折射率呈周期性变化的光子晶体结构、或是折射率呈非周期性变化的漫散射结构,且所述第二光学器件的折射率小于n型半导体层的折射率。这样,可以使得光线在n型半导体层的下端面尽可能发生反射,以便反射后的光线再次被i型半导体层所吸收,进而适量放大属于i型半导体层可吸收的光波长范围内的信号,提高该波长范围内的光电流量。
实施例六:
如图3所示,所述TFT影像感测阵列薄膜为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极1、源极2、漏极3、绝缘层4、光吸收半导体层5;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极1、绝缘层4、源极2纵向自下而上设置,所述漏极3与所述源极2横向共面设置;绝缘层4包裹所述栅极1,以使得栅极1与源极2、栅极1与漏极3之间均不接触;源极2和漏极3之间间隙配合,源极2和漏极3横向之间形成光敏漏电流通道,所述光吸收半导体层5设置于光敏漏电流通道内。
一般藉由栅极电压控制TFT操作在关闭状态时,源极到漏极之间不会有电流通过;然而当TFT受光源照射时,由于光的能量在半导体激发出电子-空穴对,TFT结构的场效应作用会使电子-空穴对分离,进而使TFT产生光敏漏电流。这样的光敏漏电流特性让TFT阵列可应用在光侦测或光侦测之技术上。相较于一般采用TFT漏电流作光敏薄膜晶体管之器件,本发明以倒立共平面型场效晶体管结构将光吸收半导体层配置于最上方吸光层,大幅增加了光电子的激发,提高了光电转换效率。
如图8所示,为本发明一实施方式涉及的光侦测薄膜的制备方法的流程图。所述方法用于制备实施例六的光敏薄膜晶体管(即光侦测薄膜),具体包括以下步骤:
首先进入步骤S801在像素薄膜晶体管的基材上通过化磁控溅射镀膜出栅 极。像素薄膜晶体管的基材可以采用硬板,也可以采用柔性材料(如聚酰亚胺);
而后进入步骤S802在所述栅极的上方通过化学气相沉积或是磁控溅射镀膜出绝缘层;
而后进入步骤S803在所述绝缘层的上方通过化学气相沉积镀膜出源极和漏极的n型掺杂半导体层,并通过磁控溅射镀膜出源极和漏极的金属层,通过黄光蚀刻工艺定义出预设结构的源极和漏极,得到源极和漏极横向共面,且间隙配合,并使得源极和漏极横向之间形成光敏漏电流通道;
而后进入步骤S804在所述光敏漏电流通道内化学气相沉积镀膜出光吸收半导体层。
实施例七:
以熟知的场效晶体管结构而言,作为扫描驱动与数据传输开关的TFT不需特别针对源极和漏极之间收集光电流的结构作设计;然而对场效晶体管应用在光敏漏电流的侦测上,如果被光线激发的电子-空穴对被场效分离后,受电场驱动的飘移(Drift)路径太长,极有可能在光电子未能顺利抵达电极之前,就已经与空穴作再结合(Recombination),或是被光吸收半导体层本身的悬空键结(Dangling Bond)缺陷给捕获,无法有效地贡献作光侦测的光电流输出。
为了改善光敏漏电流受源极与漏极之间通道长度的影响,以达到可增加吸收光半导体面积却不致于劣化光电转换效率的目的,本实施例中对实施例四的源极和漏极进行一步改进,提出了一源极与漏极的新型结构。
如图4所示,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。每一源极与相邻的漏极之间的距离小于电子飘移距离,所述电子飘移距离为电子在场效作用下能够 生存的距离。这样,在每一个侦测像素里,所属同一像素的多个源极都相互并联,且所属同一像素的多个漏极也都相互并联,可以有效降低光激发电子与空穴再复合的机率,提高了场效应作用下电极收集光电子的成功机率,最大化地改善了TFT漏电流光敏薄膜晶体管的光敏度。
如图9至12所示,为逐步制备实施例七的光敏薄膜晶体管(即光侦测薄膜)的过程,其大体步骤与制备实施例六的光敏薄膜晶体管类似。区别在于,在制备源极和漏极时,步骤S803中“通过黄光蚀刻工艺定义出预设结构的源极和漏极,得到源极和漏极横向共面,且间隙配合,并使得源极和漏极横向之间形成光敏漏电流通道”包括:通过黄光蚀刻工艺定义出源极电极组和漏极电极组,每一个源极电极组包括多个源极,源极和源极之间相互并联;每一个漏极电极组包括多个漏极,漏极和漏极之间相互并联;相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
在某些实施例中,所述接收用户身体部分反射的光信号,捕捉用户的身体部分信息包括:传感单元接收侦测触发信号,处于光侦测状态,并接收用户身体部分反射的光信号以捕捉用户的身体部分信息;光源触发信号与侦测触发信号交替切换,并符合一预设频率。以传感单元为光敏二极管所形成的阵列为例,在实际应用过程中,可借由TFT作扫描驱动外加一偏压(包括正向偏压,或零偏压或负偏压)在p型/i型/n型光电二极管之间,实现TFT影像感测阵列薄膜发出红外光功能。
具体地,可交替在p型/i型/n型红外光敏二极管之间施加正向偏压,或零偏压或负偏压,以触发所述第一触发信号或第二触发信号。以红外光敏二极管所形成的阵列有10列像素点阵为例,在第一周期内对p型/i型/n型红外光敏二极管施加正向偏压,使得10列像素点阵均处于发出红外光状态;在第二周期内对p型/i型/n型红外光敏二极管施加零偏压或负偏压,使得10列像素点阵均处于红外光侦测状态,用于捕捉用户眼球反射回的红外光信息,并 生成相应的红外图像输出;在第三周期内又对p型/i型/n型红外光敏二极管施加正向偏压,使得10列像素点阵均处于发出红外光状态,反复交替,以此类推。进一步地,光源触发信号(即第一触发信号)与侦测触发信号(即第二触发信号)交替切换,切换的频率符合一预设频率。相邻的周期之间的时间间隔可以根据实际需要而设置,优选时间间隔可以设置为TFT阵列驱动扫描每一帧(Frame)红外光敏二极管阵列至少能接收到一帧完整的影像信号所需的时间,即预设频率为每经过上述时间间隔进行一次切换。
如图6所示,当所述显示单元为LCD液晶显示屏或电子墨水显示屏时,所述传感单元(即图6中的TFT影像感测阵列薄膜)的下方还设置有背光单元,所述传感单元设置于背光单元和LCD液晶显示屏之间。由于LCD液晶显示屏不属于自发光元件,因而在安装时需要在传感单元的下方增加背光单元。背光单元可以为LCD背光模组,也可以为其他具有自发光功能的电子元件。在另一些实施例中,当所述显示单元为AMOLED显示屏时,由于OLED显示屏属于自发光元件,因而无需设置背光单元。通过上述两种方案的设置,可以有效满足不同厂家的生产需求,提高终端的适用范围。
在某些实施例中,所述身体部分识别区包括多个身体部分识别子区域,每一身体部分识别子区域的下方对应设置一传感单元。所述装置还包括传感单元控制电路,所述方法还包括:接收对身体部分识别子区域的启动指令,传感单元控制电路开启所述身体部分识别子区域的下方的传感单元,以及接收对身体部分识别子区域的关闭指令,传感单元控制电路关闭所述身体部分识别子区域的下方的传感单元。
以身体部分识别子区域的数量为两个为例,两个身体部分识别子区域可以一上一下或一左一右均匀分布于屏幕中,也可以以其他排列方式分布于屏幕中。下面对具有两个身体部分识别子区域的终端的应用过程做具体说明:在使用过程中,接收用户触发的启动信号,将两个身体部分识别子区域下方的光侦测器件(即传感单元)都设置成开启状态。优选的实施例中,两个身 体部分识别子区域构成的范围覆盖了整个显示屏,这样可以保证当两个身体部分识别子区域下方的光侦测器件都设置成开启状态时,进入显示屏的光信号可以被下方的TFT影像感测阵列薄膜(即传感单元)所吸收,从而捕捉到用户的指纹信息。
在其他实施例中,两个身体部分识别子区域构成的范围也可以占整个显示屏面积的2/3、3/4等。当然,用户也可以根据自身喜好,设置某一个身体部分识别子区域下方的光侦测器件开启,另一个身体部分识别子区域下方的光侦测器件关闭。在不需要对终端进行操作时,还可以将两个身体部分识别子区域下方的光侦测器件均设置为关闭状态。简言之,各个身体部分识别子区域下方的光侦测器件下方处于开启或关闭,可以根据用户自身喜好进行设置。
如图5所示,为本发明一实施方式涉及的生理健康检测的操作装置的示意图。所述装置包括显示单元101、传感单元102和处理单元104;所述显示单元101上设置有身体部分识别区,所述传感单元102设置于所述身体部分识别区的下方;
所述传感单元102用于在接收到光源触发信号时,发出光信号,以及用于接收用户身体部分反射的光信号,捕捉用户的身体部分信息,并记录身体部分反射的光信号信息;
所述处理单元104用于根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元101上显示所述生理健康信息。
在某些实施例中,所述装置包括提示单元105,所述处理单元用于在处理单元判定捕捉到的身体部分信息匹配失败时,发出提示信息。所述提示信息包括声音提示信息、图像提示信息、光线提示信息、视频提示信息中的一种或多种。
在本实施方式中,所述显示单元乃是以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,包括:AMOLED显示屏、LCD液晶显示屏、微发光 二极管显示屏、量子点显示屏、或是电子墨水显示屏。如图6所示,在某些实施例中,当所述显示单元为LCD液晶显示屏或电子墨水显示屏时,所述传感单元的下方还设置有背光单元,所述传感单元设置于背光单元和LCD液晶显示屏之间。。由于LCD液晶显示屏不属于自发光元件,因而在安装时需要在传感单元的下方增加背光单元。背光单元可以为LCD背光模组,也可以为其他具有自发光功能的电子元件。在另一些实施例中,当所述显示单元为AMOLED显示屏时,由于OLED显示屏属于自发光元件,因而无需设置背光单元。通过上述两种方案的设置,可以有效满足不同厂家的生产需求,提高终端的适用范围。
本发明具有以下优点:通过在显示单元上设置身体部分识别区,并在所述身体部分识别区下方设置传感单元,使得用户将身体部分靠近身体部分识别区时,处理单元可以根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。相较于现有移动设备在显示屏区域之外额外设置传感器的方式,本发明一方面方便了用户操作,提升了用户体验,另一方面可以有效缩小移动设备的整体厚度,使得移动设备更加轻薄、满足市场的需求。

Claims (40)

  1. 一种生理健康检测的操作方法,其特征在于,所述方法应用于生理健康检测的操作装置,所述装置包括显示单元、传感单元和处理单元;所述显示单元上设置有身体部分识别区,所述传感单元设置于所述身体部分识别区的下方;所述方法包括以下步骤:
    传感单元在接收到光源触发信号时,发出光信号,以及接收用户身体部分反射的光信号,捕捉用户的身体部分信息,并记录身体部分反射的光信号信息;
    处理单元根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。
  2. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述捕捉用户的身体部分信息包括:当检测到身体部分与传感单元之间的距离小于预设距离时,捕捉身体部分信息。
  3. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述接收用户身体部分反射的光信号,捕捉用户的身体部分信息包括:
    传感单元接收侦测触发信号,处于光侦测状态,并接收用户身体部分反射的光信号以捕捉用户的身体部分信息;光源触发信号与侦测触发信号交替切换,并符合一预设频率。
  4. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述捕捉用户的身体部分信息包括:
    根据捕捉到的用户的身体部分信息计算其特征值,并与预设身体部分信息的特征值进行对比;当误差小于预设值时,判定为捕捉到身体部分信息匹配成功,否则判定为捕捉到的身体部分信息匹配失败。
  5. 如权利要求4所述的生理健康检测的操作方法,其特征在于,所述方法还包括步骤:
    当判定捕捉到的身体部分信息匹配失败时,发出提示信息。
  6. 如权利要求5所述的生理健康检测的操作方法,其特征在于,所述提 示信息包括声音提示信息、图像提示信息、光线提示信息、视频提示信息中的一种或多种。
  7. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述传感单元包括TFT影像感测阵列薄膜,所述TFT影像感测阵列薄膜包括光敏二极管或光敏电晶管所形成的阵列。
  8. 如权利要求7所述的生理健康检测的操作方法,其特征在于,所述光敏二极管或光敏电晶管所形成的阵列,其光侦测波长范围包含可见光波段或是红外光波段。
  9. 如权利要求7或8所述的生理健康检测的操作方法,其特征在于,所述TFT影像感测阵列薄膜为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区,所述光敏二极管感应区包括光敏二极管层,所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。
  10. 如权利要求9所述的生理健康检测的操作方法,其特征在于,所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。
  11. 如权利要求9所述的生理健康检测的操作方法,其特征在于,所述非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
  12. 如权利要求9所述的生理健康检测的操作方法,其特征在于,所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。
  13. 如权利要求9所述的生理健康检测的操作方法,其特征在于,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光 线在n型半导体层的下端面的反射率。
  14. 如权利要求7或8所述的生理健康检测的操作方法,其特征在于,所述TFT影像感测阵列薄膜为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极、源极、漏极、绝缘层、光吸收半导体层;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极、绝缘层、源极纵向自下而上设置,所述漏极与所述源极横向共面设置;绝缘层包裹所述栅极,以使得栅极与源极、栅极与漏极之间均不接触;源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道,所述光吸收半导体层设置于光敏漏电流通道内。
  15. 如权利要求14所述的生理健康检测的操作方法,其特征在于,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
  16. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述显示单元乃是以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,包括:AMOLED显示屏、LCD液晶显示屏、微发光二极管显示屏、量子点显示屏、或是电子墨水显示屏。
  17. 如权利要求16所述的生理健康检测的操作方法,其特征在于,当所述显示单元为LCD液晶显示屏或电子墨水显示屏时,所述传感单元的下方还设置有背光单元,所述传感单元设置于背光单元和LCD液晶显示屏之间。
  18. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述身体部分识别区包括多个身体部分识别子区域,每一身体部分识别子区域的下方对应设置一传感单元。
  19. 如权利要求18所述的生理健康检测的操作方法,其特征在于,所述装置还包括传感单元控制电路,所述方法还包括:
    接收对身体部分识别子区域的启动指令,传感单元控制电路开启所述身体部分识别子区域的下方的传感单元,以及接收对身体部分识别子区域的关闭指令,传感单元控制电路关闭所述身体部分识别子区域的下方的传感单元。
  20. 如权利要求1所述的生理健康检测的操作方法,其特征在于,所述生理健康信息包括血压指数、血量、体脂含量、血氧饱和度、脉率、心肺指数、心电图中的任意一种或多种。
  21. 一种生理健康检测的操作装置,其特征在于,所述装置包括显示单元、传感单元和处理单元;所述显示单元上设置有身体部分识别区,所述传感单元设置于所述身体部分识别区的下方;
    所述传感单元用于在接收到光源触发信号时,发出光信号,以及用于接收用户身体部分反射的光信号,捕捉用户的身体部分信息,并记录身体部分反射的光信号信息;
    所述处理单元用于根据身体部分反射的光信号信息,得到该身体部分对应的生理健康信息,并在显示单元上显示所述生理健康信息。
  22. 如权利要求21所述的生理健康检测的操作装置,其特征在于,传感单元用于捕捉用户的身体部分信息包括:传感单元用于在检测到身体部分与传感单元之间的距离小于预设距离时,捕捉身体部分信息。
  23. 如权利要求21所述的生理健康检测的操作装置,其特征在于,传感单元用于接收用户身体部分反射的光信号,捕捉用户的身体部分信息包括:
    传感单元用于接收侦测触发信号,处于光侦测状态,并用于接收用户身体部分反射的光信号以捕捉用户的身体部分信息;光源触发信号与侦测触发信号交替切换,并符合一预设频率。
  24. 如权利要求21所述的生理健康检测的操作装置,其特征在于,所述捕捉用户的身体部分信息包括:
    处理单元用于根据传感单元捕捉到的用户的身体部分信息计算其特征值,并与预设身体部分信息的特征值进行对比;当误差小于预设值时,判定为传感单元捕捉到身体部分信息匹配成功,否则判定为传感单元捕捉到的身体部分信息匹配失败。
  25. 如权利要求24所述的生理健康检测的操作装置,其特征在于,所述装置包括提示单元,所述处理单元用于在处理单元判定捕捉到的身体部分信息匹配失败时,发出提示信息。
  26. 如权利要求25所述的生理健康检测的操作装置,其特征在于,所述提示信息包括声音提示信息、图像提示信息、光线提示信息、视频提示信息中的一种或多种。
  27. 如权利要求21所述的生理健康检测的操作装置,其特征在于,所述传感单元包括TFT影像感测阵列薄膜,所述TFT影像感测阵列薄膜包括光敏二极管或光敏电晶管所形成的阵列。
  28. 如权利要求27所述的生理健康检测的操作装置,其特征在于,所述光敏二极管或光敏电晶管所形成的阵列,其光侦测波长范围包含可见光波段或是红外光波段。
  29. 如权利要求27或28所述的生理健康检测的操作装置,其特征在于,所述TFT影像感测阵列薄膜为光敏二极管所形成的阵列,所述光敏二极管所形成的阵列包括光敏二极管感应区,所述光敏二极管感应区包括光敏二极管层,所述光敏二极管层包括p型半导体层、i型半导体层、n型半导体层,p型半导体层、i型半导体层、n型半导体层自上而下堆叠设置,所述i型半导体层为微晶硅结构或非结晶硅化锗结构。
  30. 如权利要求29所述的生理健康检测的操作装置,其特征在于,所述微晶硅结构为硅烷与氢气通过化学气相沉积成膜的半导体层,微晶硅的结构的结晶度大于40%,且其禁带宽度小于1.7eV。
  31. 如权利要求29所述的生理健康检测的操作装置,其特征在于,所述 非结晶硅化锗结构为硅烷、氢气与锗烷通过化学气相沉积成膜的非结晶半导体层,且其禁带宽度小于1.7eV。
  32. 如权利要求29所述的生理健康检测的操作装置,其特征在于,所述p型半导体层的上端面设置有第一光学器件,所述第一光学器件用于降低光线在p型半导体层的上端面的反射率、或是减小光线在p型半导体层的折射角度以增加光入射量。
  33. 如权利要求29所述的生理健康检测的操作装置,其特征在于,所述n型半导体层的下端面还设置有第二光学器件,所述第二光学器件用于提高光线在n型半导体层的下端面的反射率。
  34. 如权利要求27或28所述的生理健康检测的操作装置,其特征在于,所述TFT影像感测阵列薄膜为光敏电晶管所形成的阵列,所述光敏电晶管所形成的阵列包括光敏电晶管感应区,所述光敏电晶管感应区设置有光敏薄膜晶体管,所述光敏薄膜晶体管包括栅极、源极、漏极、绝缘层、光吸收半导体层;所述光敏薄膜晶体管为倒立共平面式结构,所述倒立共平面式结构包括:所述栅极、绝缘层、源极纵向自下而上设置,所述漏极与所述源极横向共面设置;绝缘层包裹所述栅极,以使得栅极与源极、栅极与漏极之间均不接触;源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道,所述光吸收半导体层设置于光敏漏电流通道内。
  35. 如权利要求34所述的生理健康检测的操作装置,其特征在于,所述源极和漏极的数量均为多个,源极和源极之间相互并联,漏极和漏极之间相互并联;所述源极和漏极之间间隙配合,源极和漏极横向之间形成光敏漏电流通道包括:相邻的源极之间形成第一间隙,一个漏极置于所述第一间隙内,相邻的漏极之间形成第二间隙,一个源极置于所述第二间隙内,源极和漏极之间交错设置且间隙配合。
  36. 如权利要求21所述的生理健康检测的操作装置,其特征在于,所述显示单元乃是以有源阵列薄膜晶体管作为扫描驱动与传输数据的显示屏,包 括:AMOLED显示屏、LCD液晶显示屏、微发光二极管显示屏、量子点显示屏、或是电子墨水显示屏。
  37. 如权利要求36所述的生理健康检测的操作装置,其特征在于,当所述显示单元为LCD液晶显示屏或电子墨水显示屏时,所述传感单元的下方还设置有背光单元,所述传感单元设置于背光单元和LCD液晶显示屏之间。
  38. 如权利要求21所述的生理健康检测的操作装置,其特征在于,所述身体部分识别区包括多个身体部分识别子区域,每一身体部分识别子区域的下方对应设置一传感单元。
  39. 如权利要求38所述的生理健康检测的操作装置,其特征在于,所述装置还包括传感单元控制电路,所述传感控制电路用于接收对身体部分识别子区域的启动指令,开启身体部分识别子区域的下方的传感单元;以及用于接收对身体部分识别子区域的关闭指令,关闭所述身体部分识别子区域的下方的传感单元。
  40. 如权利要求21所述的生理健康检测的操作装置,其特征在于,所述生理健康信息包括血压指数、血量、体脂含量、血氧饱和度、脉率、心肺指数、心电图中的任意一种或多种。
PCT/CN2018/081593 2017-08-30 2018-04-02 一种生理健康检测的操作方法和装置 WO2019041810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,584 US11911133B2 (en) 2017-08-30 2018-04-02 Operation method and device for physiological health detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710760718.4A CN109427244B (zh) 2017-08-30 2017-08-30 一种生理健康检测的操作方法和装置
CN201710760718.4 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019041810A1 true WO2019041810A1 (zh) 2019-03-07

Family

ID=65502192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081593 WO2019041810A1 (zh) 2017-08-30 2018-04-02 一种生理健康检测的操作方法和装置

Country Status (4)

Country Link
US (1) US11911133B2 (zh)
CN (1) CN109427244B (zh)
TW (1) TWI688970B (zh)
WO (1) WO2019041810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538436A (zh) * 2020-04-11 2020-08-14 北京元芯碳基集成电路研究院 一种基于碳基电路的多功能显示器及其制作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037250B (zh) * 2017-06-12 2021-11-05 上海耕岩智能科技有限公司 一种影像侦测显示装置、器件及其制备方法
CN109326676B (zh) * 2017-07-31 2020-12-11 上海耕岩智能科技有限公司 一种光侦测薄膜、器件、显示装置、制备方法
CN109427916B (zh) * 2017-08-24 2021-08-17 上海耕岩智能科技有限公司 一种红外光侦测薄膜、器件、显示装置、制备方法
TWI743491B (zh) * 2019-06-12 2021-10-21 國立陽明交通大學 可撓式生理感測裝置
TWI751087B (zh) * 2019-11-04 2021-12-21 華南商業銀行股份有限公司 智慧型手錶
TWI736003B (zh) * 2019-11-04 2021-08-11 華南商業銀行股份有限公司 智慧型手錶
TWI751088B (zh) * 2019-11-04 2021-12-21 華南商業銀行股份有限公司 智慧型手錶
TWI777600B (zh) * 2019-11-04 2022-09-11 華南商業銀行股份有限公司 智慧型手錶
CN112086561A (zh) * 2020-09-07 2020-12-15 深圳市华星光电半导体显示技术有限公司 一种光感应器件及其制作方法、显示面板
CN112603282A (zh) * 2020-12-25 2021-04-06 歌尔光学科技有限公司 一种体征数据获取设备、方法、装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104706334A (zh) * 2015-03-30 2015-06-17 京东方科技集团股份有限公司 一种具有健康监测功能的显示面板及显示装置
CN105472080A (zh) * 2016-01-08 2016-04-06 深圳市普达尔科技有限公司 一种可监测人体健康状况的手机
JP2016161835A (ja) * 2015-03-03 2016-09-05 シャープ株式会社 表示装置、制御プログラム、および制御方法
JP2016181667A (ja) * 2015-03-24 2016-10-13 レイオンス カンパニー リミテッドRayence Co., Ltd. イメージセンサーおよびその製造方法
CN106773163A (zh) * 2016-12-20 2017-05-31 深圳市华星光电技术有限公司 一种液晶显示面板及液晶显示器
CN106775063A (zh) * 2016-11-25 2017-05-31 京东方科技集团股份有限公司 触控面板及其制作方法、显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560352B2 (en) * 1999-10-08 2003-05-06 Lumidigm, Inc. Apparatus and method of biometric identification or verification of individuals using optical spectroscopy
DE102005060795A1 (de) * 2005-12-16 2007-07-12 Siemens Ag Flachbilddetektor
US9123614B2 (en) * 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8886334B2 (en) * 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
EP2404171A4 (en) * 2009-03-03 2016-01-27 Mc10 Inc SYSTEMS, METHODS AND DEVICES HAVING INTEGRATED INTEGRATED CIRCUIT ELEMENTS FOR DETECTING AND ADMINISTERING THERAPY
WO2011080863A1 (ja) * 2009-12-28 2011-07-07 シャープ株式会社 フォトセンサー素子、フォトセンサー回路、薄膜トランジスタ基板及び表示パネル
US9554484B2 (en) * 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
KR102249824B1 (ko) * 2014-02-24 2021-05-10 삼성전자주식회사 신체 정보 감지장치 및 이의 신체 정보 감지방법
CN103976730B (zh) * 2014-05-22 2017-12-22 深圳源动创新科技有限公司 便携式生理参数测量仪及生理参数测量功能快速启动方法
US10383550B2 (en) * 2014-07-17 2019-08-20 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
US10279200B2 (en) * 2014-07-17 2019-05-07 Elwha Llc Monitoring and treating pain with epidermal electronics
DE212015000214U1 (de) * 2014-09-02 2017-05-12 Apple Inc. Am Körper tragbare elektronische Vorrichtung
US20160106935A1 (en) * 2014-10-17 2016-04-21 Qualcomm Incorporated Breathprint sensor systems, smart inhalers and methods for personal identification
KR102436728B1 (ko) * 2015-07-07 2022-08-26 삼성전자주식회사 생체 신호 측정 장치 및 방법
US10252145B2 (en) * 2016-05-02 2019-04-09 Bao Tran Smart device
CN107811628A (zh) * 2016-09-13 2018-03-20 深圳市岩尚科技有限公司 一种脉搏采集智能手机
CN106510659A (zh) * 2016-10-27 2017-03-22 北京雷致科技有限公司 一种血氧心率测量方法、测量装置和测量系统
CN206563971U (zh) * 2017-01-21 2017-10-17 苏州易指通智能科技有限公司 具有健康信息检测功能的指纹识别装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161835A (ja) * 2015-03-03 2016-09-05 シャープ株式会社 表示装置、制御プログラム、および制御方法
JP2016181667A (ja) * 2015-03-24 2016-10-13 レイオンス カンパニー リミテッドRayence Co., Ltd. イメージセンサーおよびその製造方法
CN104706334A (zh) * 2015-03-30 2015-06-17 京东方科技集团股份有限公司 一种具有健康监测功能的显示面板及显示装置
CN105472080A (zh) * 2016-01-08 2016-04-06 深圳市普达尔科技有限公司 一种可监测人体健康状况的手机
CN106775063A (zh) * 2016-11-25 2017-05-31 京东方科技集团股份有限公司 触控面板及其制作方法、显示装置
CN106773163A (zh) * 2016-12-20 2017-05-31 深圳市华星光电技术有限公司 一种液晶显示面板及液晶显示器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538436A (zh) * 2020-04-11 2020-08-14 北京元芯碳基集成电路研究院 一种基于碳基电路的多功能显示器及其制作方法

Also Published As

Publication number Publication date
CN109427244B (zh) 2019-11-08
US11911133B2 (en) 2024-02-27
US20200229709A1 (en) 2020-07-23
CN109427244A (zh) 2019-03-05
TW201913429A (zh) 2019-04-01
TWI688970B (zh) 2020-03-21

Similar Documents

Publication Publication Date Title
WO2019041810A1 (zh) 一种生理健康检测的操作方法和装置
TWI707277B (zh) 基於指紋識別的電子設備執行命令方法及電子設備
WO2019219061A1 (zh) 一种同步验证指纹信息的屏幕解锁方法和装置
TWI738063B (zh) 光偵測陣列薄膜、光偵測陣列薄膜的製作方法,及光偵測陣列薄膜的驅動方法
CN110349981B (zh) 一种显示屏集成红外像素的光侦测装置
TWI720484B (zh) 一種同步驗證指紋資訊的觸控元件操作方法和裝置
TWI703374B (zh) 折疊式顯示屏的觸點識別方法和裝置
US11532263B2 (en) Method and device for monitoring luminous intensity of display pixel
CN109713000B (zh) 一种光侦测装置和光侦测器件
TWI668850B (zh) Light detecting film, light detecting device, light detecting display device and preparation method of photosensitive diode
CN111863912A (zh) 具有指纹识别功能的oled显示面板、显示装置及制备方法
TWI837182B (zh) 影像偵測顯示裝置、器件及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850646

Country of ref document: EP

Kind code of ref document: A1