WO2019041477A1 - 添加d2d通信的分布式天线系统中功率分配方法及装置 - Google Patents

添加d2d通信的分布式天线系统中功率分配方法及装置 Download PDF

Info

Publication number
WO2019041477A1
WO2019041477A1 PCT/CN2017/106967 CN2017106967W WO2019041477A1 WO 2019041477 A1 WO2019041477 A1 WO 2019041477A1 CN 2017106967 W CN2017106967 W CN 2017106967W WO 2019041477 A1 WO2019041477 A1 WO 2019041477A1
Authority
WO
WIPO (PCT)
Prior art keywords
iterative
power
parameter
communication
iteration
Prior art date
Application number
PCT/CN2017/106967
Other languages
English (en)
French (fr)
Inventor
何春龙
李兴泉
张策
田楚
冯大权
郭重涛
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019041477A1 publication Critical patent/WO2019041477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention belongs to the technical field of base station communication, and in particular relates to a power distribution method and device in a distributed antenna system with D2D communication.
  • DAS Distributed Antenna Systems
  • CAS Co-located Antenna Systems
  • D2D Device to Device
  • D2D communication can effectively improve the communication quality of communication community and reduce energy consumption.
  • the invention provides a power distribution method and device in a distributed antenna system with D2D communication, It is intended to add D2D communication to the DAS, thereby combining the advantages of both to improve the communication quality of the communication cell and reduce the energy consumption of the cell.
  • the present invention provides a power allocation method in a distributed antenna system DAS that adds D2D communication, the power allocation method being suitable for optimal power allocation when maximizing spectral efficiency SE, the DAS including n remote access units RAU And n said RAUs are distributed in the communication cell, wherein RAU1 is located at a center of the communication cell, and the remaining n-1 RAUs are connected to the RAU1 and uniformly distributed in the communication cell, the communication
  • the cell includes one cellular user UE1 and one pair of D2D users UE2 and UE3, and the power allocation method includes:
  • Step S101 initializing an iterative parameter in the sub-gradient iterative algorithm, obtaining an initial value of the iteration parameter, letting an initial value of i be 0, and M(0) represents an initial value of the iteration parameter, and initializing the transmission of the nth RAU to UE1 power And the transmit power p d of the sender UE2 in the D2D pair,
  • Step S102 calculating according to the formula of the sub-gradient iterative algorithm and combining the iterative parameter M(i) And p d ;
  • Step S103 updating the iterative parameter M(i) according to the formula of the Lagrangian multiplier iterative algorithm, and obtaining the updated iterative parameter M(i+1);
  • Step S104 if the updated iteration parameters M(i+1) all converge, the calculated according to the convergence of the iterative parameters And p d is the optimal power, and the iterative operation is ended; otherwise, it returns to step S102.
  • the iterative parameter M(i) is the iteration parameter used for the ith iteration
  • M(i) includes ⁇ , ⁇ n , ⁇ and ⁇ , h n, 1 represents both Between the transmission channels, Representing the complex Gaussian white noise power of the cellular user;
  • p d represents the transmit power of the sender UE 2
  • h 2 , 3 represents the transport channel between the two users in the D2D pair, Represents the complex Gaussian white noise power of the D2D user.
  • the present invention also provides a power distribution apparatus in a distributed antenna system DAS that adds D2D communication, the power distribution apparatus being suitable for optimal power allocation when maximizing spectral efficiency SE, the DAS comprising n remote access units RAU, n of the RAUs are distributed in a communication cell, wherein RAU1 is located at a center of the communication cell, and the remaining n-1 RAUs are connected to the RAU1 and uniformly distributed in the communication cell,
  • the communication cell includes one cellular user UE1 and one pair of D2D users UE2 and UE3, and the power distribution device includes:
  • An initialization module is configured to initialize an iterative parameter in the sub-gradient iterative algorithm, obtain an initial value of the iteration parameter, let an initial value of i be 0, and M(0) represents an initial value of the iteration parameter, and initialize the nth RAU to UE1 Transmit power And the transmit power p d of the sender UE2 in the D2D pair,
  • a calculation module configured to calculate according to the formula of the sub-gradient iterative algorithm and the iterative parameter M(i) And p d ;
  • An iterative module configured to update the iterative parameter M(i) according to the formula of the Lagrange multiplier iterative algorithm, to obtain an updated iterative parameter M(i+1);
  • An optimal power acquisition module configured to calculate, according to the convergence of the iterative parameters, when the updated iteration parameter M(i+1) converges And p d as the optimal power, and end the iterative operation; otherwise, return to the calculation module.
  • the iterative parameter M(i) is the iteration parameter used for the ith iteration
  • M(i) includes ⁇ , ⁇ n , ⁇ and ⁇ , h n, 1 represents both Between the transmission channels, Representing the complex Gaussian white noise power of the cellular user;
  • p d represents the transmit power of the sender UE 2
  • h 2 , 3 represents the transport channel between the two users in the D2D pair, Represents the complex Gaussian white noise power of the D2D user.
  • the present invention also provides a power allocation method in a distributed antenna system DAS that adds D2D communication, the power allocation method being suitable for optimal power allocation when maximizing energy efficiency EE, the DAS comprising n remote access units RAU, n of the RAUs are distributed in a communication cell, wherein RAU1 is located at a center of the communication cell, and the remaining n-1 RAUs are connected to the RAU1 and uniformly distributed in the communication cell,
  • the communication cell includes one cellular user UE1 and one pair of D2D users UE2 and UE3, and the power allocation method includes:
  • Step S202 when G 1 ( ⁇ 1 )> ⁇ , initialize the iterative parameter in the sub-gradient iterative algorithm, and obtain an initial value of the iterative parameter, so that the initial value of i is 0, and M(0) represents the initial value of the iterative parameter. And initializing the transmit power of the nth RAU to UE1 And the transmit power p d of the sender UE2 in the D2D pair,
  • Step S203 calculating according to the formula of the sub-gradient iterative algorithm and combining the iterative parameter M(i) And p d ;
  • Step S204 updating the iterative parameter M(i) according to the formula of the Lagrangian multiplier iterative algorithm, and obtaining the updated iterative parameter M(i+1);
  • Step S205 if the updated iteration parameters M(i+1) all converge, the calculated according to the convergence of the iterative parameters And p d is the optimal power, ending the iterative operation and updating ⁇ 1 and G 1 ( ⁇ 1 ) with the optimal power; otherwise, returning to step S203.
  • the iterative parameter M(i) is the iteration parameter used for the ith iteration
  • M(i) includes ⁇ , ⁇ n , ⁇ and ⁇ , h n, 1 represents both Between the transmission channels, Representing the complex Gaussian white noise power of the cellular user;
  • p d represents the transmit power of the sender UE 2
  • h 2 , 3 represents the transport channel between the two users in the D2D pair, Represents the complex Gaussian white noise power of the D2D user.
  • the present invention also provides a power distribution device in a distributed antenna system DAS that adds D2D communication, the power distribution device being suitable for optimal power allocation when maximizing energy efficiency EE, the DAS comprising n remote access units RAU, n of the RAUs are distributed in a communication cell, wherein RAU1 is located at a center of the communication cell, and the remaining n-1 RAUs are connected to the RAU1 and uniformly distributed in the communication cell,
  • the communication cell includes one cellular user UE1 and one pair of D2D users UE2 and UE3, and the power distribution device includes:
  • a second initialization module configured to initialize an iterative parameter in the sub-gradient iterative algorithm when G 1 ( ⁇ 1 )> ⁇ , to obtain an initial value of the iterative parameter, such that an initial value of i is 0, and M(0) represents an iteration
  • the initial value of the parameter and initialize the transmit power of the nth RAU to UE1 And the transmit power p d of the sender UE2 in the D2D pair,
  • a calculation module for calculating a formula according to the sub-gradient iterative algorithm and combining iterative parameters And p d ;
  • An iterative module configured to update the iterative parameter M(i) according to the formula of the Lagrange multiplier iterative algorithm, to obtain an updated iterative parameter M(i+1);
  • An optimal power acquisition module configured to calculate, according to the convergence of the iterative parameters, when the updated iteration parameter M(i+1) converges And p d as the optimal power, ending the iterative operation and updating ⁇ 1 and G 1 ( ⁇ 1 ) with the optimal power; otherwise, returning to the calculation module.
  • the present invention has the beneficial effects that the present invention provides a power allocation method in a distributed antenna system DAS that adds D2D communication, and specifically provides the most suitable for maximizing spectral efficiency and maximizing energy efficiency.
  • An optimal power allocation method the power allocation method is: initializing an iterative parameter in a sub-gradient iterative algorithm, and initializing a transmit power And p d ; according to the formula of the subgradient iterative algorithm combined with the iterative parameter calculation And p d ; updating the iterative parameters according to the formula of the Lagrangian multiplier iterative algorithm to obtain the updated iterative parameters; if the updated iterative parameters all converge, the calculated iteration parameters are calculated according to the convergence parameters And p d is the optimal power, and ends the iterative operation; compared with the prior art, the present invention combines the D2D communication with the DAS to fully utilize the advantages of both, and can greatly improve the communication quality of the communication cell. And reduce the energy consumption of the cell,
  • FIG. 1 is a schematic diagram of a model of a distributed antenna system DAS provided by the prior art
  • FIG. 2 is a schematic flowchart of an optimal power allocation method for maximizing SE of a DAS that adds D2D communication according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an optimal power allocation method for maximizing SE in a DAS according to an embodiment of the present invention
  • FIG. 4 is a schematic block diagram of a power distribution device in a distributed antenna system DAS with D2D communication according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of an optimal power allocation method for maximizing EE of a DAS that adds D2D communication according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of an optimal power allocation method for maximizing EE in a DAS according to an embodiment of the present invention
  • FIG. 7 is a schematic block diagram of a power distribution device in a distributed antenna system DAS with D2D communication according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a curve of an average SE as a function of maximum transmit power in different power allocation algorithms according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a curve in which an average EE according to an embodiment of the present invention changes with a maximum transmit power in different power allocation algorithms.
  • the present invention provides a power allocation method in a distributed antenna system DAS that adds D2D communication, wherein the model of the distributed antenna system DAS is as shown in FIG. 1.
  • the DAS includes n remote access units RAU (Remote Access Units, RAUs), n RAUs are distributed among communication cells, wherein RAU1 is located at the center of the communication cell, which can be regarded as a central processing unit, and the remaining n-1 RAUs are connected to the RAU1 through an optical fiber and Evenly distributed among the communication cells, all RAUs are low-power single-base station (BS), and the communication cell includes a randomly distributed 1 cellular user UE1 and 1 pair D2D user UE2 and UE3.
  • RAU Remote Access Units
  • nth RAU Indicates the transmit power of the nth RAU to UE1, and h n,1 represents the transport channel between the two. Represents the complex Gaussian white noise power of a cellular user.
  • the transmission rate of the D2D pair can be expressed as:
  • p d represents the transmit power of the sender UE2 in the D2D pair
  • h 2 , 3 represents the transport channel between the two users in the D2D pair.
  • the fading channel contains a small scale and a large-scale fading, which can be expressed as:
  • g n,1 represents small-scale fading between different RAUs to UE1, which can be reduced to independent and identically distributed complex Gaussian random variables.
  • w n,1 represents a large-scale fading independent of g n,1 , which can be expressed as:
  • c is the average path gain when the reference distance is 1 km.
  • d n,1 represents the distance between the RAU and UE1.
  • is the path fading factor and usually takes the range [3, 5].
  • s n,1 is the fading variable of the lognormal distribution, ie 10log 10 s n, the mean of 1 is 0, and the standard deviation is ⁇ sh .
  • the power optimization when maximizing the system SE is introduced; specifically, it is specifically introduced from the aspect of optimal power allocation when adding D2D communication and maximizing SE of DAS without adding D2D communication.
  • the maximum SE should meet the minimum SE requirements of the system, and the maximum transmit power limit of the cellular users and D2D users.
  • the problem can be described as:
  • ⁇ , ⁇ n , ⁇ , ⁇ are all iterative parameters, which can be updated by Lagrange multiplier iteration equation:
  • the optimal power allocation method for maximizing SE of DAS adding D2D communication includes:
  • Step S101 initializing an iterative parameter in the sub-gradient iterative algorithm, obtaining an initial value of the iteration parameter, letting an initial value of i be 0, and M(0) represents an initial value of the iteration parameter, and initializing the transmission of the nth RAU to UE1 power And the transmit power p d of the sender UE2 in the D2D pair,
  • Step S102 calculating according to the formula of the sub-gradient iterative algorithm and combining the iterative parameter M(i) And p d ;
  • M(i) is the iteration parameter used for the ith iteration
  • M(i) includes ⁇ , ⁇ n , ⁇ , and ⁇ .
  • Step S103 updating the iterative parameter M(i) according to the formula of the Lagrangian multiplier iterative algorithm to obtain a more The new iteration parameter M(i+1);
  • Step S104 if the updated iteration parameters M(i+1) all converge, the calculated according to the convergence of the iterative parameters And p d is the optimal power, and the iterative operation is ended; otherwise, it returns to step S102.
  • step S102 if the iteration parameter M(i+1) is ⁇ (i+1) , ⁇ (i+1) , And ⁇ (i+1) does not converge, then returns to step S102 to continue the calculation. And p d and continue to update the iteration parameters ⁇ (i) , ⁇ (i) , And ⁇ (i) until the iteration parameters all converge.
  • nth BS Indicates the transmit power of the nth BS to the kth UE.
  • h n,k represents the fading channel between the two.
  • the SE of the maximized system must satisfy the minimum transmission rate of the user and the maximum transmission power requirement of the BS.
  • the problem can be expressed as:
  • is a small positive iteration step.
  • Step S301 initializing an iteration parameter, and initializing a transmission power p n,k of the nth BS to the kth UE;
  • Step S302 calculating p n,k according to formula (14) and combining the iterative parameters;
  • Step S303 updating the iterative parameter according to the formula of the Lagrange multiplier iterative algorithm with Get updated iteration parameters with
  • Step S304 if the updated iteration parameter with If all convergence, the p n,k calculated according to the convergence of the iterative parameters is the optimal power, and the iterative operation is ended; otherwise, the process returns to step S302.
  • step S302 if the updated iteration parameter with If it does not converge, it returns to step S302.
  • the present invention provides a power distribution device in a distributed antenna system DAS that adds D2D communication, and the power distribution device is suitable for optimal power allocation when maximizing spectral efficiency SE, as shown in FIG. 4, including:
  • the initialization module 401 is configured to initialize an iterative parameter in the sub-gradient iterative algorithm, obtain an initial value of the iteration parameter, and let an initial value of i be 0, and M(0) represents an initial value of the iteration parameter, and initialize the n-th RAU to UE1's transmit power And the transmit power p d of the sender UE2 in the D2D pair,
  • the calculating module 402 is configured to calculate according to the formula of the sub-gradient iterative algorithm and the iterative parameter M(i) And p d ;
  • An iteration module 403, configured to update the iteration parameter M(i) according to the formula of the Lagrangian multiplier iteration algorithm, to obtain an updated iteration parameter M(i+1);
  • An optimal power obtaining module 404 configured to calculate, according to the convergence of the iterative parameters, when the updated iteration parameter M(i+1) is all converged And p d as the optimal power, and end the iterative operation; otherwise, return to the calculation module.
  • the power optimization when maximizing the system EE is introduced; specifically, it is specifically introduced from the aspect of optimal power allocation when adding D2D communication and DAS without adding D2D communication to maximize EE.
  • the total power consumption of the system P total contains three parts, which can be expressed as:
  • represents the efficiency of the radio frequency power amplifier
  • P dy and P st represent dynamic and static power losses, respectively.
  • P 0 represents the power consumed by the fiber transmission. After joining the D2D communication, the total transmission power P t rate of the system is expressed as:
  • the total transmission power P t rate of the system is expressed as:
  • R total is denoted as R D2D and transmission power is denoted as P t D2D ; when they use conventional cellular communication, R total is denoted as R c and transmission power denoted as P t c .
  • Step S202 when G 1 ( ⁇ 1 )> ⁇ , initialize the iterative parameter in the sub-gradient iterative algorithm, and obtain an initial value of the iterative parameter, so that the initial value of i is 0, and M(0) represents the initial value of the iterative parameter. And initializing the transmit power of the nth RAU to UE1 And the transmit power p d of the sender UE2 in the D2D pair;
  • Step S203 according to the formula of the sub-gradient iterative algorithm combined with the iterative parameter calculation And p d ;
  • Step S204 updating the iterative parameter M(i) according to the formula of the Lagrangian multiplier iterative algorithm, and obtaining the updated iterative parameter M(i+1);
  • Step S205 if the updated iteration parameters M(i+1) all converge, the calculated according to the convergence of the iterative parameters And p d is the optimal power, ending the iterative operation and updating ⁇ 1 and G 1 ( ⁇ 1 ) with the optimal power; otherwise, returning to step S203.
  • step S203 if the iteration parameter M(i+1) does not converge, the process returns to step S203.
  • the optimal power allocation when maximizing the EE in the downlink DAS should satisfy the minimum transmission rate of the UE and the maximum transmission power requirement of the RAU.
  • the problem can be described as:
  • the conversion problem can be expressed as:
  • the iteration parameters ⁇ k , ⁇ n can be updated by the equations (15), (16).
  • the optimal power allocation algorithm for maximizing EE in DAS will converge to the optimal solution.
  • the step size ⁇ , ⁇ becomes a sufficiently small positive number.
  • the optimal power allocation method for maximizing EE in DAS is shown in Figure 6, which includes:
  • Step S502 when G 2 ( ⁇ 2 )> ⁇ , initialize an iteration parameter, and initialize a transmission power p n,k of the nth BS to the kth UE;
  • Step S503 calculating p n,k according to formula (27) and combining iterative parameters;
  • Step S504 updating the iterative parameter according to the formula of the Lagrange multiplier iterative algorithm with Get updated iteration parameters with
  • Step S505 if the updated iteration parameter with If all converges, then p n,k calculated according to the convergence of the iterative parameters is the optimal power, end the iterative operation and update ⁇ 2 and G 2 ( ⁇ 2 ) with the optimal power; otherwise, return to step S503 .
  • step S503 if the updated iteration parameter with If it does not converge, it returns to step S503.
  • the present invention also provides a power distribution device in a distributed antenna system DAS with D2D communication, the power distribution device being suitable for optimal power allocation when maximizing energy efficiency EE, as shown in FIG. 7, comprising:
  • the second initialization module 602 is configured to initialize the iterative parameter in the sub-gradient iterative algorithm when G 1 ( ⁇ 1 )> ⁇ , and obtain an initial value of the iteration parameter, so that the initial value of i is 0, and M(0) represents Iterating the initial value of the parameter and initializing the transmit power of the nth RAU to UE1 And the transmit power p d of the sender UE2 in the D2D pair,
  • a calculation module 603 configured to calculate according to the formula of the sub-gradient iterative algorithm and the iterative parameter And p d ;
  • the iteration module 604 is configured to update the iteration parameter M(i) according to the formula of the Lagrange multiplier iterative algorithm to obtain the updated iteration parameter M(i+1);
  • An optimal power acquisition module 605 configured to calculate, according to the convergence of the iterative parameters, when the updated iteration parameter M(i+1) converges And p d as the optimal power, ending the iterative operation and updating ⁇ 1 and G 1 ( ⁇ 1 ) with the optimal power; otherwise, returning to the calculation module.
  • the embodiment of the invention verifies the effectiveness of the algorithm through simulation experiments, and also shows that the combination of D2D communication and DAS can greatly improve the SE and EE of the communication cell.
  • the specific simulation parameters are as follows:
  • the average SE obtained by maximizing SE in the DAS with D2D communication is increased by nearly 54% compared to the average SE obtained by the same algorithm under the same algorithm; and the maximum is used in the DAS to which D2D communication is added.
  • the average SE obtained by the EE algorithm is nearly 96% higher than the average SE obtained by the single DAS under the same algorithm. This is a good indication that D2D is an effective means to improve the SE of the communication cell.
  • the average SE obtained by maximizing the SE is much better than the average SE obtained by maximizing the EE, especially when the transmission power is large.
  • FIG. 1 The variation of the average EE as a function of maximum transmit power in different power allocation algorithms is shown in FIG. This figure shows that the average EE in a DAS with D2D communication is much higher than a single DAS.
  • the average EE obtained by maximizing EE in DAS with D2D communication is nearly 170% higher than that obtained by single DAS under the same algorithm; and the maximum is used in DAS with D2D communication.
  • the average EE obtained by the EE algorithm is nearly 202% higher than the average EE obtained by using the maximized SE algorithm in a single DAS.
  • the average EE obtained by maximizing the EE algorithm in the DAS with D2D communication is much larger than that obtained in other cases, and this difference is especially noticeable when the transmission power is large.
  • the invention provides a power allocation method for a distributed antenna system DAS with D2D communication, adds D2D communication to the DAS, combines the advantages of the two to improve the performance of the communication cell, and adds D2D communication through the DAS, and
  • the spectrum efficiency and energy efficiency in this case are analyzed by using sub-gradient and fractional programming. The results show that combining the two will greatly improve the spectrum efficiency and energy efficiency of the communication cell, which can greatly improve the communication cell. Communication quality and reduce the energy of the community Consumption, which is very helpful for saving energy and improving user communication quality, the power distribution method provided by the present invention can be applied in 5G communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明适用于基站通信技术领域,提供了一种添加D2D通信的分布式天线系统DAS中功率分配方法,具体提供了适用于最大化频谱效率和最大化能量效率时的最优功率分配方法,所述功率分配方法为:初始化次梯度迭代算法中的迭代参数,并初始化发射功率式(I)和pd;根据次梯度迭代算法的公式并结合迭代参数计算式(I)和pd;根据拉格朗日乘子迭代算法的公式更新迭代参数,得到更新后的迭代参数;如果更新后的所述迭代参数全部收敛,则根据收敛的迭代参数计算出的式(I)和pd即为最优功率,并结束迭代操作,否则返回继续计算式(I)和pd并继续更新迭代参数;本发明提供的功率分配方法通过将D2D通信与DAS相结合,发挥了两者的优点,可以提高通信小区的通信质量并降低小区的能量消耗。

Description

添加D2D通信的分布式天线系统中功率分配方法及装置 技术领域
本发明属于基站通信技术领域,尤其涉及一种添加D2D通信的分布式天线系统中功率分配方法及装置。
背景技术
随着数据时代的发展,大数据和多媒体服务的快速增长成为现代无线通信网络的一大挑战。为了满足不断增长的通信需求,研究人员提出了分布式天线系统(Distributed Antenna Systems,DAS),它成为了提高通信系统传输速率,满足用户通信质量和提高通信小区能量效率的一种有效手段。不同于传统的集中式天线系统(Co-located Antenna Systems,CAS),在DAS中所有基站天线都是分散分布在小区之中,有效地减小了基站与用户之间的距离,这会显著地提高通信小区的吞吐量,减少能量消耗。
随之而来的是另一种设备间(Device to Device,D2D)通信的方式,D2D通信可以很容易地建立两个设备之间的直接联系。允许一个设备与另一个在短距离通信中传输大量的数据,设备之间直接沟通,而不需要通过基站的帮助,这一优点在许多情况下可以缓解无线通信系统过载,而且还可以减少系统的能源消耗。
但是在研究当中,大多数关于D2D通信的研究都是将D2D集中在CAS之中,在CAS中,通过研究表明D2D通信可以有效地提高通信小区的通信质量,减少能量的消耗,很少有研究考虑将DAS和D2D通信用相结合的情况。
发明内容
本发明提供一种添加D2D通信的分布式天线系统中功率分配方法及装置, 旨在将D2D通信添加到DAS当中,从而将两者的优点相结合来提高通信小区的通信质量并降低小区的能量消耗。
本发明提供了一种添加D2D通信的分布式天线系统DAS中功率分配方法,所述功率分配方法适用于最大化频谱效率SE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配方法包括:
步骤S101,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000001
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000002
步骤S102,根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
Figure PCTCN2017106967-appb-000003
和pd
步骤S103,根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
步骤S104,如果更新后的所述迭代参数M(i+1)全部收敛,则根据收敛的所述迭代参数计算出的
Figure PCTCN2017106967-appb-000004
和pd即为最优功率,并结束迭代操作;否则,返回步骤S102。
进一步地,所述次梯度迭代算法的公式为:
Figure PCTCN2017106967-appb-000005
Figure PCTCN2017106967-appb-000006
其中,
Figure PCTCN2017106967-appb-000007
表示第n个RAU到UE1的发射功率,所述迭代参数M(i)为第i次 迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,hn,1表示两者之间的传输信道,
Figure PCTCN2017106967-appb-000008
表示蜂窝用户的复高斯白噪声功率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
Figure PCTCN2017106967-appb-000009
表示D2D用户的复高斯白噪声功率。
进一步地,所述拉格朗日乘子迭代算法的公式为:
Figure PCTCN2017106967-appb-000010
Figure PCTCN2017106967-appb-000011
Figure PCTCN2017106967-appb-000012
Figure PCTCN2017106967-appb-000013
其中,λ(i+1)、μ(i+1)
Figure PCTCN2017106967-appb-000014
和γ(i+1)表示更新后的迭代参数,υ、ε、δ和ζ表示很小的正的迭代步长,[x]+=max{x,0},
Figure PCTCN2017106967-appb-000015
表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道,
Figure PCTCN2017106967-appb-000016
表示蜂窝用户的复高斯白噪声功率;
Figure PCTCN2017106967-appb-000017
表示蜂窝用户的最小传输速率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
Figure PCTCN2017106967-appb-000018
表示D2D用户的复高斯白噪声功率,
Figure PCTCN2017106967-appb-000019
表示D2D对的最小传输功率,
Figure PCTCN2017106967-appb-000020
表示第n个RAU到UE1的最大发射功率,
Figure PCTCN2017106967-appb-000021
表示发送者UE2的最大发射功率。
本发明还提供了一种添加D2D通信的分布式天线系统DAS中功率分配装置,所述功率分配装置适用于最大化频谱效率SE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配装置包括:
初始化模块,用于初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000022
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000023
计算模块,用于根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
Figure PCTCN2017106967-appb-000024
和pd
迭代模块,用于根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
最优功率获取模块,用于在更新后的所述迭代参数M(i+1)全部收敛时,根据收敛的所述迭代参数计算出
Figure PCTCN2017106967-appb-000025
和pd作为最优功率,并结束迭代操作;否则,返回所述计算模块。
进一步地,述次梯度迭代算法的公式为:
Figure PCTCN2017106967-appb-000026
Figure PCTCN2017106967-appb-000027
其中,
Figure PCTCN2017106967-appb-000028
表示第n个RAU到UE1的发射功率,所述迭代参数M(i)为第i次迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,hn,1表示两者之间的传输信道,
Figure PCTCN2017106967-appb-000029
表示蜂窝用户的复高斯白噪声功率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
Figure PCTCN2017106967-appb-000030
表示D2D用户的复高斯白噪声功率。
进一步地,所述拉格朗日乘子迭代算法的公式为:
Figure PCTCN2017106967-appb-000031
Figure PCTCN2017106967-appb-000032
Figure PCTCN2017106967-appb-000033
Figure PCTCN2017106967-appb-000034
其中,λ(i+1)、μ(i+1)
Figure PCTCN2017106967-appb-000035
和γ(i+1)表示更新后的迭代参数,υ、ε、δ和ζ表示很小的正的迭代步长,[x]+=max{x,0},
Figure PCTCN2017106967-appb-000036
表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道,
Figure PCTCN2017106967-appb-000037
表示蜂窝用户的复高斯白噪声功率;
Figure PCTCN2017106967-appb-000038
表示蜂窝用户的最小传输速率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
Figure PCTCN2017106967-appb-000039
表示D2D用户的复高斯白噪声功率,
Figure PCTCN2017106967-appb-000040
表示D2D对的最小传输功率,
Figure PCTCN2017106967-appb-000041
表示第n个RAU到UE1的最大发射功率,
Figure PCTCN2017106967-appb-000042
表示发送者UE2的最大发射功率。
本发明还提供了一种添加D2D通信的分布式天线系统DAS中功率分配方法,所述功率分配方法适用于最大化能量效率EE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配方法包括:
步骤S201,初始化第一参数ω1=0.01和第二参数G11)=1000,ξ>0,ξ是一个很小的正的误差参数;
步骤S202,当G11)>ξ时,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始 化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000043
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000044
步骤S203,根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
Figure PCTCN2017106967-appb-000045
和pd
步骤S204,根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
步骤S205,如果更新后的所述迭代参数M(i+1)全部收敛,则根据收敛的所述迭代参数计算出的
Figure PCTCN2017106967-appb-000046
和pd即为最优功率,结束迭代操作并利用所述最优功率更新ω1和G11);否则,返回步骤S203。
进一步地,所述次梯度迭代算法的公式为:
Figure PCTCN2017106967-appb-000047
Figure PCTCN2017106967-appb-000048
其中,表示第n个RAU到UE1的发射功率,所述迭代参数M(i)为第i次迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,hn,1表示两者之间的传输信道,
Figure PCTCN2017106967-appb-000050
表示蜂窝用户的复高斯白噪声功率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
Figure PCTCN2017106967-appb-000051
表示D2D用户的复高斯白噪声功率。
进一步地,所述拉格朗日乘子迭代算法的公式为:
Figure PCTCN2017106967-appb-000052
Figure PCTCN2017106967-appb-000053
Figure PCTCN2017106967-appb-000054
Figure PCTCN2017106967-appb-000055
所述第一参数ω1的表达式为:
Figure PCTCN2017106967-appb-000056
所述第二参数G11)的表达式为:
Figure PCTCN2017106967-appb-000057
其中,λ(i+1)、μ(i+1)
Figure PCTCN2017106967-appb-000058
和γ(i+1)表示更新后的迭代参数,υ、ε、δ和ζ表示很小的正的迭代步长,[x]+=max{x,0},
Figure PCTCN2017106967-appb-000059
表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道,
Figure PCTCN2017106967-appb-000060
表示蜂窝用户的复高斯白噪声功率;
Figure PCTCN2017106967-appb-000061
表示蜂窝用户的最小传输速率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
Figure PCTCN2017106967-appb-000062
表示D2D用户的复高斯白噪声功率,
Figure PCTCN2017106967-appb-000063
表示D2D对的最小传输功率,
Figure PCTCN2017106967-appb-000064
表示第n个RAU到UE1的最大发射功率,
Figure PCTCN2017106967-appb-000065
表示发送者UE2的最大发射功率。
本发明还提供了一种添加D2D通信的分布式天线系统DAS中功率分配装置,所述功率分配装置适用于最大化能量效率EE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配装置包括:
第一初始化模块,用于初始化第一参数ω1=0.01和第二参数G11)=1000,ξ>0,ξ是一个很小的正的误差参数;
第二初始化模块,用于在G11)>ξ时,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000066
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000067
计算模块,用于根据所述次梯度迭代算法的公式并结合迭代参数计算
Figure PCTCN2017106967-appb-000068
和pd
迭代模块,用于根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
最优功率获取模块,用于在更新后的所述迭代参数M(i+1)全部收敛时,根据收敛的所述迭代参数计算出
Figure PCTCN2017106967-appb-000069
和pd作为最优功率,结束迭代操作并利用所述最优功率更新ω1和G11);否则,返回计算模块。
本发明与现有技术相比,有益效果在于:本发明提供了一种添加D2D通信的分布式天线系统DAS中功率分配方法,具体提供了适用于最大化频谱效率和最大化能量效率时的最优功率分配方法,所述功率分配方法为:初始化次梯度迭代算法中的迭代参数,并初始化发射功率
Figure PCTCN2017106967-appb-000070
和pd;根据次梯度迭代算法的公式并结合迭代参数计算
Figure PCTCN2017106967-appb-000071
和pd;根据拉格朗日乘子迭代算法的公式更新迭代参数,得到更新后的迭代参数;如果更新后的所述迭代参数全部收敛,则根据收敛的迭代参数计算出的
Figure PCTCN2017106967-appb-000072
和pd即为最优功率,并结束迭代操作;本发明与现有技术相比,通过将D2D通信与DAS相结合,充分发挥了两者的优点,可以极大的提高通信小区的通信质量并降低小区的能量消耗,这对于节省能量和提高用户通信质量有很大的帮助。
附图说明
图1是现有技术提供的分布式天线系统DAS的模型示意图;
图2是本发明实施例提供的添加D2D通信的DAS的最大化SE时的最优功率分配方法的流程示意图;
图3是本发明实施例提供的DAS中最大化SE时的最优功率分配方法的流程示意图;
图4是本发明实施例提供的添加D2D通信的分布式天线系统DAS中功率分配装置的模块示意图;
图5是本发明实施例提供的添加D2D通信的DAS的最大化EE时的最优功率分配方法的流程示意图;
图6是本发明实施例提供的DAS中最大化EE时的最优功率分配方法的流程示意图;
图7是本发明实施例提供的添加D2D通信的分布式天线系统DAS中功率分配装置的模块示意图;
图8是本发明实施例提供的平均SE在不同功率分配算法中随着最大发射功率的变化而变化的曲线示意图;
图9是本发明实施例提供的平均EE在不同功率分配算法中随着最大发射功率的变化而变化的曲线示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种添加D2D通信的分布式天线系统DAS中功率分配方法,其中,所述分布式天线系统DAS的模型如图1所示,具体地,本发明考虑单个小区的情况,所述DAS包括n个远程接入单元RAU(Remote Access Units, RAUs),n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,其可以看作一个中央处理单元,剩余的n-1个RAU与所述RAU1通过光纤相连并均匀分布于所述通信小区之中,所有的RAUs都是低功耗的单天线基站(Base Station,BS),所述通信小区中包括随机分布的1个蜂窝用户UE1和1对D2D用户UE2和UE3。
我们假设吃穿用户和D2D用户使用正交的信道通信,并且信道信息对于通信两端都是已知的。我们将系统的带宽设为1,则蜂窝用户的传输速率为:
Figure PCTCN2017106967-appb-000073
其中,
Figure PCTCN2017106967-appb-000074
表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道。
Figure PCTCN2017106967-appb-000075
表示蜂窝用户的复高斯白噪声功率。
D2D对的传输速率可以表示为:
Figure PCTCN2017106967-appb-000076
其中,pd表示D2D对中发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道。
Figure PCTCN2017106967-appb-000077
表示D2D用户的复高斯白噪声功率。衰落信道包含一个小规模和一个大规模衰落,可以表示为:
hn,1=gn,1wn,1      (3)
其中,gn,1表示不同RAU到UE1之间的小规模衰落,可以归结为独立同分布的复高斯随机变量。wn,1表示独立于gn,1的大规模衰落,它可以表示为:
Figure PCTCN2017106967-appb-000078
其中,c是参考距离为1km时的平均路径增益。dn,1表示RAU和UE1之间的距离。α是路径衰落因子,通常取值范围为[3,5]。sn,1是对数正态分布的衰落 变量,即10log10sn,1的均值为0,标准差为σsh
下面具体从最大化系统SE(Spectral Efficiency,频谱效率)和最大化系统EE(Energy Efficiency,能量效率)的功率优化两个方面来介绍:
首先,介绍关于最大化系统SE时的功率优化;具体地,从添加D2D通信和不添加D2D通信的DAS的最大化SE时的最优功率分配方面来具体介绍。
关于添加D2D通信的DAS的最大化SE时的最优功率分配:
首先考虑添加D2D通信的DAS中最大化SE下的最优功率分配,最大化SE应满足系统最小SE要求,蜂窝用户和D2D用户的最大发射功率限定。问题可以描述为:
Figure PCTCN2017106967-appb-000079
其中,
Figure PCTCN2017106967-appb-000080
分别表示UE1和D2D对中发送者UE2的最大发射功率;
Figure PCTCN2017106967-appb-000081
表示蜂窝用户和D2D用户的最小传输速率。通过采用次梯度迭代算法可以得到该优化问题的最优解:
Figure PCTCN2017106967-appb-000082
Figure PCTCN2017106967-appb-000083
其中,λ,αn,μ,γ都是迭代参数,可以通过拉格朗日乘子迭代等式进行更新:
Figure PCTCN2017106967-appb-000084
Figure PCTCN2017106967-appb-000085
Figure PCTCN2017106967-appb-000086
Figure PCTCN2017106967-appb-000087
其中,[x]+=max{x,0},i≥0是迭代次数,υ,ε,δ,ζ是很小的正的迭代步长。拉格朗日乘子迭代等式保证只要当步长足够小的时候迭代参数能够收敛;
Figure PCTCN2017106967-appb-000088
表示蜂窝用户的最小传输速率,
Figure PCTCN2017106967-appb-000089
表示D2D对的最小传输功率,
Figure PCTCN2017106967-appb-000090
表示第n个RAU到UE1的最大发射功率,
Figure PCTCN2017106967-appb-000091
表示发送者UE2的最大发射功率。
关于添加D2D通信的DAS的最大化SE时的最优功率分配方法,如图2所示,包括:
步骤S101,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000092
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000093
具体地,迭代参数包括λ、μ、γ和αn,令i=0,λ=0.01,μ=1,pd=0,γ=1,
Figure PCTCN2017106967-appb-000094
αn=0.01,
Figure PCTCN2017106967-appb-000095
步骤S102,根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
Figure PCTCN2017106967-appb-000096
和pd
具体地,根据公式(6)、(7)并结合所述迭代参数M(i)计算
Figure PCTCN2017106967-appb-000097
和pd,其中,
Figure PCTCN2017106967-appb-000098
表示第n个RAU到UE1的发射功率;M(i)为第i次迭代使用的迭代参数,M(i)包括λ、αn、μ和γ。
步骤S103,根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更 新后的迭代参数M(i+1);
具体地,令i=i+1,根据公式(8)、(9)、(10)和(11)更新迭代参数λ(i)、μ(i)
Figure PCTCN2017106967-appb-000099
和γ(i),得到λ(i+1)、μ(i+1)
Figure PCTCN2017106967-appb-000100
和γ(i+1)
步骤S104,如果更新后的所述迭代参数M(i+1)全部收敛,则根据收敛的所述迭代参数计算出的
Figure PCTCN2017106967-appb-000101
和pd即为最优功率,并结束迭代操作;否则,返回步骤S102。
具体地,若所述迭代参数M(i+1)即λ(i+1)、μ(i+1)
Figure PCTCN2017106967-appb-000102
和γ(i+1)不收敛,则返回步骤S102,继续计算
Figure PCTCN2017106967-appb-000103
和pd并继续更新迭代参数λ(i)、μ(i)
Figure PCTCN2017106967-appb-000104
和γ(i),直至所述迭代参数全部收敛。
关于未添加D2D通信的DAS的最大化SE时的最优功率分配:
这一部分,我们将D2D用户(UE2,UE3)当作传统的蜂窝用户进行分析,即蜂窝用户数量为K=3。同样的,所有的蜂窝用户与RAUs通信都使用正交信道,可以得出第k个用户的传输速率为:
Figure PCTCN2017106967-appb-000105
其中,
Figure PCTCN2017106967-appb-000106
表示第n个BS到第k个UE的发射功率。hn,k表示两者之间的衰落信道。在这种情况下,最大化系统的SE同时要满足用户的最小传输速率和BS最大发射功率要求。问题可以表示为:
Figure PCTCN2017106967-appb-000107
采用类似的方法可以得到最优的功率分配:
Figure PCTCN2017106967-appb-000108
其中,λk,μn是迭代参数,可以通过以下拉格朗日乘子迭代等式进行更新:
Figure PCTCN2017106967-appb-000109
Figure PCTCN2017106967-appb-000110
其中,ψ,δ是很小的正的迭代步长。
根据以上分析我们可以得出关于DAS中最大化SE时的最优功率分配方法,如图3所示,包括:
步骤S301,初始化迭代参数,并初始化第n个BS到第k个UE的发射功率pn,k
具体地,λk和μn为迭代参数,令i=0,λk=0.01,μn=1,pn,k=0,
Figure PCTCN2017106967-appb-000111
k∈[1,2,…,K]。
步骤S302,根据公式(14)并结合迭代参数计算pn,k
步骤S303,根据拉格朗日乘子迭代算法的公式更新迭代参数
Figure PCTCN2017106967-appb-000112
Figure PCTCN2017106967-appb-000113
得到更新后的迭代参数
Figure PCTCN2017106967-appb-000114
Figure PCTCN2017106967-appb-000115
具体地,令i=i+1,根据公式(15)和(16)更新迭代参数
Figure PCTCN2017106967-appb-000116
Figure PCTCN2017106967-appb-000117
得到更新后的迭代参数
Figure PCTCN2017106967-appb-000118
Figure PCTCN2017106967-appb-000119
步骤S304,如果更新后的所述迭代参数
Figure PCTCN2017106967-appb-000120
Figure PCTCN2017106967-appb-000121
全部收敛,则根据收敛的所述迭代参数计算出的pn,k即为最优功率,并结束迭代操作;否则,返回步骤S302。
具体地,若更新后的所述迭代参数
Figure PCTCN2017106967-appb-000122
Figure PCTCN2017106967-appb-000123
不收敛,则返回步骤S302。
本发明提供了一种添加D2D通信的分布式天线系统DAS中功率分配装置,所述功率分配装置适用于最大化频谱效率SE时的最优功率分配,如图4所示,包括:
初始化模块401,用于初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000124
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000125
计算模块402,用于根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
Figure PCTCN2017106967-appb-000126
和pd
迭代模块403,用于根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
最优功率获取模块404,用于在更新后的所述迭代参数M(i+1)全部收敛时,根据收敛的所述迭代参数计算出
Figure PCTCN2017106967-appb-000127
和pd作为最优功率,并结束迭代操作;否则,返回所述计算模块。
其次,介绍关于最大化系统EE时的功率优化;具体地,从添加D2D通信和不添加D2D通信的DAS的最大化EE时的最优功率分配方面来具体介绍。
关于EE模型:
根据已有的研究,系统的总功率消耗Ptotal包含三个部分,可以表示为:
Figure PCTCN2017106967-appb-000128
其中,τ表示射频功率放大器的效率,φ表示系统中发射数据用户的数量,当UE2和UE3使用D2D通信时,φ=N+1;当使用传统蜂窝通信时,φ=N。Pdy和Pst分别表示动态的和静态的功率损耗。P0表示光纤传输所消耗功率。在加入D2D通信之后,系统的总传输功Pt率表示为:
Figure PCTCN2017106967-appb-000129
当D2D用户UE2和UE3传统的通信方式时系统的总传输功Pt率表示为:
Figure PCTCN2017106967-appb-000130
由以上分析可以得到EE模型的表达方式如下:
Figure PCTCN2017106967-appb-000131
当UE2和UE3通信采用D2D通信时,Rtotal表示为RD2D,传输功率表示为Pt D2D;当他们使用传统蜂窝通信时,Rtotal表示为Rc,传输功率表示为Pt c
关于添加D2D通信的DAS的最大化EE时的最优功率分配:
考虑添加D2D通信的下行DAS中最大化EE时的最优功率分配问题,应满足UE1和UE2(D2D对中的发送端)最小传输速率和最大发射功率要求。优化问题可以描述为:
Figure PCTCN2017106967-appb-000132
其中,
Figure PCTCN2017106967-appb-000133
由于(21)是一个非凹非线性优化问题,我们无法采用传统的优化方法直接求得最优解,所以通过利用分式规划的相关理论将该优化问题转化为一个减法形式的优化问题:
Figure PCTCN2017106967-appb-000134
其中,
Figure PCTCN2017106967-appb-000135
根据已的相关研究表明,对于问题(21)总会存在一个等价减法形式的优化问题(22)。我们通过以下定理来表明式(21)和(22)之间的等价关系。
(定理)定义
Figure PCTCN2017106967-appb-000136
当且仅当
Figure PCTCN2017106967-appb-000137
Figure PCTCN2017106967-appb-000138
时的最优功率
Figure PCTCN2017106967-appb-000139
可以使(21)式中的EE达到最大。
因此,根据以上定理,我们可以集中于求解其等价问题来得到最优的功率分配。可以看出问题(22)可以通过次梯度迭代算法来求解,我们可以得到该问题的最优解:
Figure PCTCN2017106967-appb-000140
Figure PCTCN2017106967-appb-000141
其中λ,αn,μ,γ都是迭代参数,可以通过式(8),(9),(10),(11)进行更新。
通过以上分析我们可以得到该模型中添加D2D通信的DAS的最大化EE时的最优功率分配方法,如图5所示,包括:
步骤S201,初始化第一参数ω1=0.01和第二参数G11)=1000,ξ>0,ξ是一个很小的正的误差参数;
步骤S202,当G11)>ξ时,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000142
和D2D对中发送者UE2的发射功率pd
具体地,迭代参数包括λ、μ、γ和αn,令i=0,λ=0.01,μ=1,pd=0,γ=1,
Figure PCTCN2017106967-appb-000143
αn=0.01,
Figure PCTCN2017106967-appb-000144
步骤S203,根据所述次梯度迭代算法的公式并结合迭代参数计算
Figure PCTCN2017106967-appb-000145
和pd
具体地,根据公式(23)、(24)并结合所述迭代参数计算
Figure PCTCN2017106967-appb-000146
和pd,其中,
Figure PCTCN2017106967-appb-000147
表示第n个RAU到UE1的发射功率,pd表示D2D对中发送者UE2的发射功率。
步骤S204,根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
具体地,所述迭代参数M(i)为第i次迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,令i=i+1,根据公式(8)、(9)、(10)和(11)更新迭代参数λ(i)、μ(i)
Figure PCTCN2017106967-appb-000148
和γ(i),得到更新后的迭代参数λ(i+1)、μ(i+1)
Figure PCTCN2017106967-appb-000149
和γ(i+1)
步骤S205,如果更新后的所述迭代参数M(i+1)全部收敛,则根据收敛的所述迭代参数计算出的
Figure PCTCN2017106967-appb-000150
和pd即为最优功率,结束迭代操作并利用所述最优功率更新ω1和G11);否则,返回步骤S203。
具体地,若所述迭代参数M(i+1)不收敛,则返回步骤S203。
所述第一参数ω1的表达式为:
Figure PCTCN2017106967-appb-000151
所述第二参数G11)的表达式为:
Figure PCTCN2017106967-appb-000152
关于未添加D2D通信的DAS的最大化EE时的最优功率分配:
和添加D2D通信的DAS的最大化EE时的最优功率分配时的情况相似,下行DAS中最大化EE时的最优功率分配应满足UE的最小传输速率和RAU的最大发射功率要求。问题可以描述为:
Figure PCTCN2017106967-appb-000153
其中,
Figure PCTCN2017106967-appb-000154
采用与以上相似的方法,利用分式规划将该问题转化为一个减法形式的优化问题进行求解,转化问题可以表示为:
Figure PCTCN2017106967-appb-000155
其中,
Figure PCTCN2017106967-appb-000156
采用次梯度迭代方法可以得到该问题的最优解:
Figure PCTCN2017106967-appb-000157
其中,迭代参数λk,μn可以通过式(15),(16)进行更新。
根据以上分析,DAS中最大化EE时的最优功率分配算法将会收敛到最优解当在第i次迭代后步长ψ,δ变成足够小的正数。关于DAS中最大化EE时的最优功率分配方法如图6所示,包括:
步骤S501,初始化第三参数ω2=0.01和第四参数G22)=1000,ξ>0,ξ是一个很小的正的误差参数;
步骤S502,当G22)>ξ时,初始化迭代参数,并初始化第n个BS到第k个UE的发射功率pn,k
具体地,λk和μn为迭代参数,令i=0,λk=0.01,μn=1, pn,k=0,
Figure PCTCN2017106967-appb-000158
k∈[1,2,…,K]。
步骤S503,根据公式(27)并结合迭代参数计算pn,k
步骤S504,根据拉格朗日乘子迭代算法的公式更新迭代参数
Figure PCTCN2017106967-appb-000159
Figure PCTCN2017106967-appb-000160
得到更新后的迭代参数
Figure PCTCN2017106967-appb-000161
Figure PCTCN2017106967-appb-000162
具体地,令i=i+1,根据公式(15)和(16)更新迭代参数
Figure PCTCN2017106967-appb-000163
Figure PCTCN2017106967-appb-000164
得到更新后的迭代参数
Figure PCTCN2017106967-appb-000165
Figure PCTCN2017106967-appb-000166
步骤S505,如果更新后的所述迭代参数
Figure PCTCN2017106967-appb-000167
Figure PCTCN2017106967-appb-000168
全部收敛,则根据收敛的所述迭代参数计算出的pn,k即为最优功率,结束迭代操作并利用所述最优功率更新ω2和G22);否则,返回步骤S503。
具体地,若更新后的所述迭代参数
Figure PCTCN2017106967-appb-000169
Figure PCTCN2017106967-appb-000170
不收敛,则返回步骤S503。
所述第三参数ω2的表达式为:
Figure PCTCN2017106967-appb-000171
所述第四参数G22)的表达式为:
Figure PCTCN2017106967-appb-000172
本发明还提供了一种添加D2D通信的分布式天线系统DAS中功率分配装置,所述功率分配装置适用于最大化能量效率EE时的最优功率分配,如图7所示,包括:
第一初始化模块601,用于初始化第一参数ω1=0.01和第二参数G11)=1000,ξ>0,ξ是一个很小的正的误差参数;
第二初始化模块602,用于在G11)>ξ时,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的 初始值,并初始化第n个RAU到UE1的发射功率
Figure PCTCN2017106967-appb-000173
和D2D对中发送者UE2的发射功率pd
Figure PCTCN2017106967-appb-000174
计算模块603,用于根据所述次梯度迭代算法的公式并结合迭代参数计算
Figure PCTCN2017106967-appb-000175
和pd
迭代模块604,用于根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
最优功率获取模块605,用于在更新后的所述迭代参数M(i+1)全部收敛时,根据收敛的所述迭代参数计算出
Figure PCTCN2017106967-appb-000176
和pd作为最优功率,结束迭代操作并利用所述最优功率更新ω1和G11);否则,返回计算模块。
本发明实施例通过仿真实验验证了算法的有效性,同时也表明了D2D通信和DAS相结合可以极大地提高通信小区的SE和EE。具体仿真参数如下表:
Figure PCTCN2017106967-appb-000177
Figure PCTCN2017106967-appb-000178
图8中显示了平均SE在不同功率分配算法中随着最大发射功率的变化而出现的变化。很容易地看出添加D2D通信的DAS中的平均SE比单一的DAS要好很多。
例如,当最大发射功率为20dBm时,在添加D2D通信的DAS中采用最大化SE得到的平均SE比相同算法下单一DAS得到的平均SE提高将近54%;而且在添加D2D通信的DAS中采用最大化EE算法得到的平均SE比相同算法下单一DAS得到的平均SE提高近96%。这很好地表明了D2D是一种提高通信小区SE的有效手段,另外可以看出最大化SE得到的平均SE比最大化EE得到的平均SE要好很多,特别是当发射功率较大的时候。
图9中显示了平均EE在不同功率分配算法中随着最大发射功率的变化而出现的变化。该图表明添加D2D通信的DAS中的平均EE比单一的DAS提高了很多。
例如,当最大发射功率为20dBm时,在添加D2D通信的DAS中采用最大化EE得到的平均EE比相同算法下单一DAS得到的平均EE提高将近170%;而且在添加D2D通信的DAS中采用最大化EE算法得到的平均EE比采用最大化SE算法下单一DAS中得到的平均EE提高近202%。在添加D2D通信的DAS中采用最大化EE算法得到的平均EE远远大于其它情况下得到的结果,而且这一差别在发射功率较大时尤为明显。
显而易见的是,平均SE和EE在添加D2D通信的DAS都要好于单一的DAS,这表明将D2D通信和DAS相结合可以有效地提高通信小区的SE和EE。
本发明提供的一种添加D2D通信的分布式天线系统DAS中功率分配方法,将D2D通信添加到DAS当中,将两者的优点相结合来提高通信小区的性能,通过在DAS添加D2D通信,并通过采用次梯度和分式规划等方法分析该情况下的频谱效率和能量效率,结果表明将两者结合将会极大地提高通信小区的频谱效率和能量效率,即可以极大的提高通信小区的通信质量并降低小区的能量 消耗,这对于节省能量和提高用户通信质量有很大的帮助,本发明提供的功率分配方法可以应用在5G通信之中。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种添加D2D通信的分布式天线系统DAS中功率分配方法,其特征在于,所述功率分配方法适用于最大化频谱效率SE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配方法包括:
    步骤S101,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
    Figure PCTCN2017106967-appb-100001
    和D2D对中发送者UE2的发射功率pd
    Figure PCTCN2017106967-appb-100002
    步骤S102,根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
    Figure PCTCN2017106967-appb-100003
    和pd
    步骤S103,根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
    步骤S104,如果更新后的所述迭代参数M(i+1)全部收敛,则根据收敛的所述迭代参数计算出的
    Figure PCTCN2017106967-appb-100004
    和pd即为最优功率,并结束迭代操作;否则,返回步骤S102。
  2. 如权利要求1所述的功率分配方法,其特征在于,所述次梯度迭代算法的公式为:
    Figure PCTCN2017106967-appb-100005
    Figure PCTCN2017106967-appb-100006
    其中,
    Figure PCTCN2017106967-appb-100007
    表示第n个RAU到UE1的发射功率,所述迭代参数M(i)为第i次 迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,hn,1表示两者之间的传输信道,
    Figure PCTCN2017106967-appb-100008
    表示蜂窝用户的复高斯白噪声功率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
    Figure PCTCN2017106967-appb-100009
    表示D2D用户的复高斯白噪声功率。
  3. 如权利要求1所述的功率分配方法,其特征在于,所述拉格朗日乘子迭代算法的公式为:
    Figure PCTCN2017106967-appb-100010
    Figure PCTCN2017106967-appb-100011
    Figure PCTCN2017106967-appb-100012
    Figure PCTCN2017106967-appb-100013
    其中,λ(i+1)、μ(i+1)
    Figure PCTCN2017106967-appb-100014
    和γ(i+1)表示更新后的迭代参数,υ、ε、δ和ζ表示很小的正的迭代步长,[x]+=max{x,0},
    Figure PCTCN2017106967-appb-100015
    表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道,
    Figure PCTCN2017106967-appb-100016
    表示蜂窝用户的复高斯白噪声功率;
    Figure PCTCN2017106967-appb-100017
    表示蜂窝用户的最小传输速率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
    Figure PCTCN2017106967-appb-100018
    表示D2D用户的复高斯白噪声功率,
    Figure PCTCN2017106967-appb-100019
    表示D2D对的最小传输功率,
    Figure PCTCN2017106967-appb-100020
    表示第n个RAU到UE1的最大发射功率,
    Figure PCTCN2017106967-appb-100021
    表示发送者UE2的最大发射功率。
  4. 一种添加D2D通信的分布式天线系统DAS中功率分配装置,其特征在于,所述功率分配装置适用于最大化频谱效率SE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户 UE2和UE3,所述功率分配装置包括:
    初始化模块,用于初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
    Figure PCTCN2017106967-appb-100022
    和D2D对中发送者UE2的发射功率pd
    Figure PCTCN2017106967-appb-100023
    计算模块,用于根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
    Figure PCTCN2017106967-appb-100024
    和pd
    迭代模块,用于根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
    最优功率获取模块,用于在更新后的所述迭代参数M(i+1)全部收敛时,根据收敛的所述迭代参数计算出
    Figure PCTCN2017106967-appb-100025
    和pd作为最优功率,并结束迭代操作;否则,返回所述计算模块。
  5. 如权利要求4所述的功率分配装置,其特征在于,所述次梯度迭代算法的公式为:
    Figure PCTCN2017106967-appb-100026
    Figure PCTCN2017106967-appb-100027
    其中,
    Figure PCTCN2017106967-appb-100028
    表示第n个RAU到UE1的发射功率,所述迭代参数M(i)为第i次迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,hn,1表示两者之间的传输信道,
    Figure PCTCN2017106967-appb-100029
    表示蜂窝用户的复高斯白噪声功率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
    Figure PCTCN2017106967-appb-100030
    表示D2D用户的复高斯白噪声功率。
  6. 如权利要求4所述的功率分配装置,其特征在于,所述拉格朗日乘子迭代算法的公式为:
    Figure PCTCN2017106967-appb-100031
    Figure PCTCN2017106967-appb-100032
    Figure PCTCN2017106967-appb-100033
    Figure PCTCN2017106967-appb-100034
    其中,λ(i+1)、μ(i+1)
    Figure PCTCN2017106967-appb-100035
    和γ(i+1)表示更新后的迭代参数,υ、ε、δ和ζ表示很小的正的迭代步长,[x]+=max{x,0},
    Figure PCTCN2017106967-appb-100036
    表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道,
    Figure PCTCN2017106967-appb-100037
    表示蜂窝用户的复高斯白噪声功率;
    Figure PCTCN2017106967-appb-100038
    表示蜂窝用户的最小传输速率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
    Figure PCTCN2017106967-appb-100039
    表示D2D用户的复高斯白噪声功率,
    Figure PCTCN2017106967-appb-100040
    表示D2D对的最小传输功率,
    Figure PCTCN2017106967-appb-100041
    表示第n个RAU到UE1的最大发射功率,
    Figure PCTCN2017106967-appb-100042
    表示发送者UE2的最大发射功率。
  7. 一种添加D2D通信的分布式天线系统DAS中功率分配方法,其特征在于,所述功率分配方法适用于最大化能量效率EE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中,RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配方法包括:
    步骤S201,初始化第一参数ω1=0.01和第二参数G11)=1000,ξ>0,ξ是一个很小的正的误差参数;
    步骤S202,当G11)>ξ时,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始 化第n个RAU到UE1的发射功率
    Figure PCTCN2017106967-appb-100043
    和D2D对中发送者UE2的发射功率pd
    Figure PCTCN2017106967-appb-100044
    步骤S203,根据所述次梯度迭代算法的公式并结合迭代参数M(i)计算
    Figure PCTCN2017106967-appb-100045
    和pd
    步骤S204,根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
    步骤S205,如果更新后的所述迭代参数M(i+1)全部收敛,则根据收敛的所述迭代参数计算出的
    Figure PCTCN2017106967-appb-100046
    和pd即为最优功率,结束迭代操作并利用所述最优功率更新ω1和G11);否则,返回步骤S203。
  8. 如权利要求7所述的功率分配方法,其特征在于,所述次梯度迭代算法的公式为:
    Figure PCTCN2017106967-appb-100047
    Figure PCTCN2017106967-appb-100048
    其中,
    Figure PCTCN2017106967-appb-100049
    表示第n个RAU到UE1的发射功率,所述迭代参数M(i)为第i次迭代使用的迭代参数,M(i)包括λ、αn、μ和γ,hn,1表示两者之间的传输信道,
    Figure PCTCN2017106967-appb-100050
    表示蜂窝用户的复高斯白噪声功率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
    Figure PCTCN2017106967-appb-100051
    表示D2D用户的复高斯白噪声功率。
  9. 如权利要求7所述的功率分配方法,其特征在于,所述拉格朗日乘子迭代算法的公式为:
    Figure PCTCN2017106967-appb-100052
    Figure PCTCN2017106967-appb-100053
    Figure PCTCN2017106967-appb-100054
    Figure PCTCN2017106967-appb-100055
    所述第一参数ω1的表达式为:
    Figure PCTCN2017106967-appb-100056
    所述第二参数G11)的表达式为:
    Figure PCTCN2017106967-appb-100057
    其中,λ(i+1)、μ(i+1)
    Figure PCTCN2017106967-appb-100058
    和γ(i+1)表示更新后的迭代参数,υ、ε、δ和ζ表示很小的正的迭代步长,[x]+=max{x,0},
    Figure PCTCN2017106967-appb-100059
    表示第n个RAU到UE1的发射功率,hn,1表示两者之间的传输信道,
    Figure PCTCN2017106967-appb-100060
    表示蜂窝用户的复高斯白噪声功率;
    Figure PCTCN2017106967-appb-100061
    表示蜂窝用户的最小传输速率;pd表示发送者UE2的发射功率,h2,3表示D2D对中两用户之间的传输信道,
    Figure PCTCN2017106967-appb-100062
    表示D2D用户的复高斯白噪声功率,
    Figure PCTCN2017106967-appb-100063
    表示D2D对的最小传输功率,
    Figure PCTCN2017106967-appb-100064
    表示第n个RAU到UE1的最大发射功率,
    Figure PCTCN2017106967-appb-100065
    表示发送者UE2的最大发射功率。
  10. 一种添加D2D通信的分布式天线系统DAS中功率分配装置,其特征在于,所述功率分配装置适用于最大化能量效率EE时的最优功率分配,所述DAS包括n个远程接入单元RAU,n个所述RAU分布于通信小区之中,其中, RAU1位于所述通信小区的中心,剩余的n-1个RAU与所述RAU1相连并均匀分布于所述通信小区之中,所述通信小区中包括1个蜂窝用户UE1和1对D2D用户UE2和UE3,所述功率分配装置包括:
    第一初始化模块,用于初始化第一参数ω1=0.01和第二参数G11)=1000,ξ>0,ξ是一个很小的正的误差参数;
    第二初始化模块,用于在G11)>ξ时,初始化次梯度迭代算法中的迭代参数,得到迭代参数的初始值,令i的初始值为0,且M(0)表示迭代参数的初始值,并初始化第n个RAU到UE1的发射功率
    Figure PCTCN2017106967-appb-100066
    和D2D对中发送者UE2的发射功率pd
    Figure PCTCN2017106967-appb-100067
    计算模块,用于根据所述次梯度迭代算法的公式并结合迭代参数计算
    Figure PCTCN2017106967-appb-100068
    和pd
    迭代模块,用于根据拉格朗日乘子迭代算法的公式更新迭代参数M(i),得到更新后的迭代参数M(i+1);
    最优功率获取模块,用于在更新后的所述迭代参数M(i+1)全部收敛时,根据收敛的所述迭代参数计算出和pd作为最优功率,结束迭代操作并利用所述最优功率更新ω1和G11);否则,返回计算模块。
PCT/CN2017/106967 2017-08-30 2017-10-20 添加d2d通信的分布式天线系统中功率分配方法及装置 WO2019041477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710763464.1A CN107666700A (zh) 2017-08-30 2017-08-30 添加d2d通信的分布式天线系统中功率分配方法及装置
CN201710763464.1 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019041477A1 true WO2019041477A1 (zh) 2019-03-07

Family

ID=61098239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106967 WO2019041477A1 (zh) 2017-08-30 2017-10-20 添加d2d通信的分布式天线系统中功率分配方法及装置

Country Status (2)

Country Link
CN (1) CN107666700A (zh)
WO (1) WO2019041477A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108449737B (zh) * 2018-03-08 2020-12-25 南京航空航天大学 分布式天线系统中基于d2d的下行链路高能效功率分配方法
CN109495139A (zh) * 2018-10-11 2019-03-19 深圳大学 一种分布式天线系统及功率分配方法
CN109743087B (zh) * 2019-01-17 2020-12-29 南京邮电大学 高铁场景下分布式天线传输模式选择和功率优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480793A (zh) * 2010-11-29 2012-05-30 华为技术有限公司 一种分布式资源分配方法及装置
CN105813189A (zh) * 2016-03-07 2016-07-27 东南大学 一种蜂窝网中的d2d分布式功率优化方法
CN106028456A (zh) * 2016-07-11 2016-10-12 东南大学 一种5g高密度网络中虚拟小区的功率分配方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559485B2 (en) * 2010-04-08 2013-10-15 Andrew Llc Autoregressive signal processing for repeater echo cancellation
US9197358B2 (en) * 2012-05-18 2015-11-24 Dali Systems Co., Ltd. Method and system for soft frequency reuse in a distributed antenna system
EP2995156B1 (en) * 2013-05-08 2020-12-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Improved handling of simultaneous network communication transmission and d2d communication reception or simultaneous network communication reception and d2d communication transmission
KR102100837B1 (ko) * 2013-08-08 2020-04-14 삼성전자주식회사 디바이스-투-디바이스(d2d)를 위한 통신 방법 및 장치
CN103716869B (zh) * 2013-12-12 2016-12-07 浙江工业大学 一种d2d通信中基于能效优化的分布式功率控制方法
CN105871436B (zh) * 2016-04-25 2019-07-09 南京航空航天大学 一种分布式miso系统在空间相关信道下的功率分配方法
CN106255133B (zh) * 2016-08-05 2019-11-22 桂林电子科技大学 一种基于全双工双向中继d2d网络的能量效率优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480793A (zh) * 2010-11-29 2012-05-30 华为技术有限公司 一种分布式资源分配方法及装置
CN105813189A (zh) * 2016-03-07 2016-07-27 东南大学 一种蜂窝网中的d2d分布式功率优化方法
CN106028456A (zh) * 2016-07-11 2016-10-12 东南大学 一种5g高密度网络中虚拟小区的功率分配方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE, CHUNLONG ET AL.: "Distributed Antenna Systems: Resource Allocation and Energy Efficiency Optimization. ( non-official translation)", (SCIENCE CHINA (INFORMATION SCIENCES), vol. 45, no. 5, 17 August 3106 (3106-08-17), pages 591 - 606, XP055579033 *
HE, CHUNLONG: "Energy Efficiency of Distributed Massive MIMO Systems", JOURNAL OF COMMUNICATIONS AND NETWORKS, 31 August 2016 (2016-08-31), XP011624113 *

Also Published As

Publication number Publication date
CN107666700A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
Ji et al. Joint optimization for ambient backscatter communication system with energy harvesting for IoT
Zhou et al. Joint cell activation and selection for green communications in ultra-dense heterogeneous networks
CN106549697B (zh) 协作通信系统中联合波束赋形和天线选择的发射方法
CN105744628B (zh) 一种数能一体化通信网络的资源分配最优化方法
Chen et al. An energy efficient implementation of C-RAN in HetNet
CN108235419B (zh) 异构蜂窝网络中基于swipt的功率控制方法
Zhang et al. Energy efficiency maximization for device-to-device communication underlaying cellular networks on multiple bands
Peng et al. Inter-tier interference suppression in heterogeneous cloud radio access networks
CN107302766B (zh) 一种分布式天线系统中能量效率和频谱效率权衡优化的方法
CN107241799B (zh) 异构网络中能量有效的资源分配和干扰对齐联合方法
Tran et al. Dynamic radio cooperation for downlink cloud-RANs with computing resource sharing
Yang et al. Joint time allocation and power control in multicell networks with load coupling: Energy saving and rate improvement
WO2019041477A1 (zh) 添加d2d通信的分布式天线系统中功率分配方法及装置
US20230223992A1 (en) Distributed coordinated downlink precoding for multi-cell mimo wireless network virtualization
Feng et al. Energy-efficient user selection and resource allocation in mobile edge computing
Yu et al. Power allocation for energy efficient optimization of distributed MIMO system with beamforming
CN102291727B (zh) 一种分布式协作波束成形设计方法
Zhao et al. Secure energy-saving resource allocation on massive mimo-mec system
Ahmed et al. Cooperative backscatter NOMA with imperfect SIC: towards energy efficient sum rate maximization in sustainable 6G networks
Li et al. Offloading optimization and time allocation for multiuser wireless energy transfer based mobile edge computing system
Liu et al. Latency minimization for mmwave d2d mobile edge computing systems: Joint task allocation and hybrid beamforming design
Li et al. IRS-Based MEC for Delay-Constrained QoS Over RF-Powered 6G Mobile Wireless Networks
CN108521672A (zh) 一种分布式无线能量和信息传输系统的资源分配方法
Lu et al. Resource optimization in anti-interference UAV powered cooperative mobile edge computing network
Li et al. Energy efficient power allocation for co-located antenna systems with D2D communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17923178

Country of ref document: EP

Kind code of ref document: A1