WO2019041150A1 - 一种信道切换方法、装置及通信设备 - Google Patents

一种信道切换方法、装置及通信设备 Download PDF

Info

Publication number
WO2019041150A1
WO2019041150A1 PCT/CN2017/099561 CN2017099561W WO2019041150A1 WO 2019041150 A1 WO2019041150 A1 WO 2019041150A1 CN 2017099561 W CN2017099561 W CN 2017099561W WO 2019041150 A1 WO2019041150 A1 WO 2019041150A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
interference power
subframe
channels
target
Prior art date
Application number
PCT/CN2017/099561
Other languages
English (en)
French (fr)
Inventor
马宁
陈颖
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780005959.6A priority Critical patent/CN108513734A/zh
Priority to PCT/CN2017/099561 priority patent/WO2019041150A1/zh
Publication of WO2019041150A1 publication Critical patent/WO2019041150A1/zh
Priority to US16/734,806 priority patent/US20200145890A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • H04W36/362Conditional handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel switching method, apparatus, and communication device.
  • a Clear Channel Assessment is required before a terminal transmits data to determine whether a channel is available and adaptively avoids interference to other users.
  • CCA is implemented based on the Listen Before Talk (LBT) principle, that is, the terminal needs to monitor and implement CCA on the channel before transmitting data on a certain channel, when the interference generated by the channel exceeds the LBT threshold.
  • LBT Listen Before Talk
  • the terminal can negotiate to enter another channel and monitor and implement CCA on another channel.
  • the terminal needs to continue to try to transfer to another channel, resulting in frequent channel switching. Big data transmission delay.
  • the embodiment of the invention discloses a channel switching method, device and communication device, which can avoid frequent switching of channels, improve stability and robustness of channel connection, and reduce data transmission delay.
  • an embodiment of the present invention provides a channel switching method, where the method includes:
  • an embodiment of the present invention provides a channel switching apparatus, where the apparatus includes:
  • An interference power acquisition module configured to acquire interference power of multiple channels in a communication frequency band
  • the interference power acquisition module is further configured to acquire interference power of a current channel
  • a target channel selection module configured to select a target channel according to interference power of the multiple channels, if the interference power of the current channel exceeds a preset threshold
  • a channel switching module configured to switch to the target channel for communication.
  • an embodiment of the present invention provides a communication device, including: a processor, a transceiver, and a memory, where the processor, the transceiver, and the memory are connected by a bus, and the memory is stored and executable.
  • the program code is used by the processor to invoke the executable program code to perform the channel switching method provided by the first aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the communication device, including a program designed to execute the first aspect.
  • an embodiment of the present invention provides a communication device, which has a function of implementing a behavior of a communication device in an example of a channel switching method according to the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the structure of the communication device may include a receiving unit, a processing unit, and a transmitting unit, the processing unit being configured to support the communication device to perform a corresponding function in the channel switching method of the first aspect.
  • the receiving unit and the transmitting unit are used to support communication between the communication device and other devices.
  • the communication device can also include a storage unit for coupling with the processing unit that retains program instructions and data necessary for the communication device.
  • the processing unit may be a processor
  • the receiving unit may be a receiver
  • the transmitting unit may be a transmitter
  • the storage unit may be a memory.
  • an embodiment of the present invention provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the channel switching method of the first aspect.
  • an embodiment of the present invention provides a chip system, including a processor, for a communication device to implement the functions involved in the foregoing aspects, for example, generating or processing data involved in the foregoing method and/or information.
  • the chip system further includes a memory for holding program instructions and data necessary for the communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the interference power of the multiple channels in the communication frequency band can be obtained by the embodiment of the present invention; the interference power of the current channel is obtained; and the interference power of the current channel exceeds the preset threshold, and the target channel is selected according to the interference power of the multiple channels; And switching to the target channel for communication, thereby avoiding frequent switching of channels, improving stability and robustness of channel connection, and reducing data transmission delay.
  • FIG. 1 is a schematic flowchart of a channel switching method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a channel switching method according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a channel switching method according to another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a channel switching apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a communication device according to an embodiment of the present invention.
  • the embodiment of the invention discloses a channel switching method, device and communication device, which are used for selecting a target channel according to interference power of multiple channels and switching to a target channel if the interference power of the current channel exceeds a preset threshold. Communication on the network avoids frequent switching of channels and improves the stability and robustness of the channel connection to reduce data transmission delay. The details are described below separately.
  • the communication device needs to perform Clear Channel Assessment (CCA) before transmitting data in the common frequency band to determine whether the channel is available and adaptively avoid interference with other users.
  • CCA gives the principle of Listening Before Talk (LBT).
  • the channel switching method in the embodiment of the present invention may be applied to a communication device, where the communication device may include a channel monitoring module.
  • the communication device When the communication device operates in an unlicensed spectrum (US), the communication device may be pre-agreed through the channel monitoring module. At the point in time, the sending/receiving behavior is temporarily interrupted, and the work of listening or sniffing is performed on other channels.
  • the channel monitoring module can monitor one channel in the common frequency band every time, and measure the interference power until the entire public frequency band is measured. The interference power of each channel included.
  • the communication device can process the interference power of each channel and give the best working channel of the current time period in real time.
  • the LBT is triggered, the communication device can Migrate to the best working channel at a time, avoiding high frequency channel switching and high consumption handshake overhead.
  • a communication device which may include an aircraft having a wireless communication function, a handheld device, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • Communication devices in different networks can be called different names, such as: User Equipment (English: User Equipment, abbreviation: UE), terminal equipment, mobile station, subscriber unit, station, cellular phone, personal digital assistant, wireless modem, wireless Communication equipment, handheld devices, laptops, cordless phones, wireless local loop stations, etc.
  • the communication device may refer to a wireless communication device, a wired communication device.
  • the wireless communication device can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem, which can be via a wireless access network (eg, RAN, Radio) Access Network) communicates with one or more core networks.
  • a wireless access network eg, RAN, Radio
  • FIG. 1 is a schematic flowchart of a channel switching method according to an embodiment of the present invention, including:
  • the second communication device may establish a communication connection with the first communication device.
  • the second communication device may perform CCA before transmitting data to the first communication device, that is, acquire multiple channels in the communication frequency band. Interference power.
  • the second communications device may receive the interference power of the multiple channels measured by the first communications device, where the interference power of the multiple communications is measured when the first communications device pauses transmitting data in the current channel.
  • the first communication device may suspend transmission of data on the current channel, and then measure interference power of multiple channels by using a channel monitoring module of the first communication device, and The measured interference power of the plurality of channels is transmitted to the second communication device.
  • the communication frequency band includes a first channel, a second channel, and a third channel, wherein the first communication device operates on the first channel, and the second communication device operates on the first channel, and the first communication device can be suspended in the first
  • the channel transmits data, measures interference power of the second channel and interference power of the third channel, and transmits the measured interference power of the second channel and the interference power of the second channel to the second communication device.
  • the first communication device may transmit data on the first channel every time it is paused, and measure one.
  • the interference power of the channel for example, when the first communication device arrives to suspend the pause time of transmitting data on the first channel, the interference power of the second channel can be measured; when the pause time reaches 5 ms, the transmission time of the data transmitted on the first channel is reached.
  • the first communication device may transmit data on the first channel; when the transmission time reaches 10 ms, that is, when the pause time of data transmission on the first channel is suspended, the first communication device may measure the interference power of the third channel; when the pause time reaches 5 ms
  • the first communication device may send the measured interference power of the second channel and the interference power of the third channel to the second communication device.
  • the second communication device may measure the interference power of one channel of the multiple channels every time the data is transmitted on the current channel, until the interference power of the multiple channels is measured. Specifically, after establishing a communication connection between the second communication device and the first communication device, the second communication device may transmit data on the current channel every time the data is paused, and then measure the interference power of one channel through the channel monitoring module of the second communication device. Until the measurement results the interference power of multiple channels in the communication band.
  • the communication frequency band includes a first channel, a second channel, and a third channel, where the second communication device operates on the first channel, and the second communication device can measure the pause time when the data is suspended on the first channel.
  • Interference power of two channels when the pause time reaches 5ms, the transmission time of the data transmitted on the first channel is reached, and the second communication device can transmit data on the first channel; when the transmission time reaches 10ms, the pause is reached on the first channel transmission.
  • the data communication pause time, the second communication device can measure the interference power of the third channel.
  • the second communication device may transmit the data on the current channel every time the data is paused, measure the interference power of one channel of the multiple channels, and receive the other ones of the plurality of channels that are measured when the first communication device pauses the data transmission on the current channel.
  • the interference power of the channel which in turn obtains the interference power of multiple channels.
  • the first communication device and the second communication device may temporarily interrupt respective transmission/reception behaviors, and perform work of listening or sniffing on other channels; the respective channel monitoring modules may monitor one channel in the communication frequency band at a time. , measure the interference power, and cover the entire communication band within a preset duration (for example, 80ms).
  • the communication frequency band includes a first channel, a second channel, and a third channel, wherein the second communication device operates on the first channel, and the second communication device can measure the second channel when the pause time for suspending transmission of data on the first channel is reached.
  • the interference power of the first communication device can measure the interference power of the third channel; when the pause time reaches 5 ms, the transmission time of the data transmitted on the first channel is reached, and the first communication device can send the interference power of the third channel to the first Two communication devices.
  • the interference power of different channels is separately measured by the communication devices at both ends, and the measurement of the interference power can be improved. Quantity efficiency.
  • the time slot of the current channel is a preset time slice in the first subframe
  • the time slot of the target channel is a second subframe
  • the second subframe is after the first subframe.
  • the first subframe may be an S subframe
  • the S subframe is a special subframe in the communication protocol, and includes a GP_LBT period
  • the GP_LBT period may be a Guard Period determined by the CCA threshold.
  • the preset time slice can be a GP_LBT time period.
  • the second subframe may be a downlink subframe immediately following the S subframe.
  • the second communication device may also acquire the interference power of the current channel, where the interference power of the current channel may be measured by the second communication device through the channel monitoring module, or may be sent by the first communication device to the second communication device.
  • the second communication device operates on the first channel, and when the pause time for suspending transmission of data on the first channel is reached, the second communication device can measure the interference power of the first channel.
  • the first communication device may measure the interference power of the first channel; when the transmission time of the data transmitted by the first channel is reached, the first communication device may measure the obtained time. The interference power of the first channel is transmitted to the second communication device.
  • step S101 and step S102 does not limit the execution sequence of step S101 and step S102.
  • the second communication device may perform step S101 first and then perform step S102; and if the second communication device may perform step S102, Step S101 is performed; and, as the second communication device, step S101 and step S102 can be performed simultaneously.
  • the second communication device may determine whether the interference power of the current channel exceeds a preset threshold. If the interference power of the current channel exceeds a preset threshold, the second communication device may determine that the current channel interference is large, which is unsuitable for communication, and further, according to the foregoing multiple The interference power of the channel is selected from the target channel.
  • the preset threshold may be an idle channel evaluation threshold.
  • the communication device may use, as the target channel, a channel with a smaller interference power when the current channel meets the first condition, where the bandwidth of the target channel does not overlap with the bandwidth of the current channel. That is to say, when the reason for triggering the channel switching is that the CCA/LBT causes the stop to transmit data on the current channel, the second communication device can select the channel that does not overlap with the current working bandwidth and has the least interference on the ground station side.
  • the communication device may be configured according to each of the multiple channels when the current channel meets the second condition.
  • the interference power of the channel acquires the interference power spectral density of the channel; the channel with the smallest interference power spectral density is used as the target channel. That is to say, when the reason for triggering the channel switching is that there is a channel with less interference power, a channel with a larger transmission power, or a lower reception performance of the current channel on the ground station side, the second communication device can select the minimum interference level on the ground station side. Channel.
  • the second communications device may determine an alternate channel that meets the preset number of thresholds, where the time slot of the candidate channel is the third subframe, and the third sub-frame
  • the frame is located after the first subframe; when the interference power of the plurality of data transmitted on the candidate channel is less than or equal to the preset threshold, the second communication device may select the target channel, and the time slot of the target channel is the fourth subframe.
  • the fourth subframe is located after the third subframe.
  • the preset duration may be 10 ms
  • the third subframe may be 1024 Ts duration
  • the fourth subframe may be a continuous downlink subframe immediately following the current data segment.
  • the current channel can be switched to the target channel for communication, and the action of frequently switching frequency points by the compliance requirement of the CCA/LBT can be avoided, and the switching to the preferred channel is performed faster. Communication, and thus improved stability and robust channel connectivity for communication devices operating in the public frequency band.
  • the interference power of the multiple channels in the communication frequency band is acquired; the interference power of the current channel is obtained; and the interference power of the current channel exceeds the preset threshold, and the target channel is selected according to the interference power of the multiple channels; And switching to the target channel for communication can avoid frequent switching of channels, improve stability and robustness of channel connection, and reduce data transmission delay.
  • FIG. 2 is a schematic flowchart diagram of a channel switching method according to another embodiment of the present invention.
  • the channel switching method described in this embodiment includes:
  • the unmanned aerial vehicle (UAV) in the embodiment of the present invention may be equivalent to the second communication device in the first embodiment, and the unmanned device may perform the function performed by the second communication device in the first embodiment; the ground station may Equivalent to the first communication device in the first embodiment, the ground station can perform the functions performed by the first communication device in the first embodiment.
  • the ground station measures interference power of multiple channels.
  • the ground station can perform frequency sweep measurement, that is, measure through the channel monitoring module of the ground station. Interference power for multiple channels in the band.
  • the ground station transmits interference power of multiple channels to the drone.
  • the ground station can transmit a GND_FREQ_MEAS message to the drone, which can include interference power for multiple channels.
  • the UAV selects a target channel according to interference power of multiple channels.
  • the criteria for selecting the target channel can be as follows:
  • the drone can select the channel that does not overlap with the current working bandwidth and has the least interference on the ground station side, and target the channel. channel.
  • the drone can select the channel with the lowest overall interference level on the ground station side and use the channel as the target channel.
  • the UAV sends the channel indication information to the ground station, where the channel indication information is used to indicate that the request is switched to the target channel for communication.
  • the channel indication information may be UAV_FREQ_SEL_INDICATION.
  • the drone receives channel response information from the ground station, and the channel response information is used to indicate that the acknowledgment is switched to the target channel for communication.
  • the channel response information may be UAV_FREQ_SEL_CONFIRM.
  • the drone switches to the target channel for communication.
  • the unmanned aerial vehicle performs CCA/LBT monitoring; the ground station measures the interference power of the multiple channels, and transmits the interference power of the multiple channels to the drone; the drone according to the interference power of the multiple channels, Selecting the target channel and transmitting the channel indication information to the ground station; the drone receives the channel response information from the ground station, and then switches to the target channel for communication, which can avoid frequent switching of the channel and improve the stability and robustness of the channel connection. To reduce the data transmission delay.
  • FIG. 3 is a schematic flowchart of a channel switching method according to another embodiment of the present invention.
  • the channel switching method described in this embodiment includes:
  • the S subframe is a special subframe in the communication protocol, including a GP_LBT period, and the GP_LBT period may be a guard interval determined by the CCA threshold.
  • the CCA result is that the channel of the last four downlink subframes that follow the S subframe can be occupied.
  • the CCA result is that the channel following the last four downlink subframes of the S subframe can be occupied.
  • step S314 may be further performed.
  • the duration of the block being transmitted is up to 10 ms.
  • the downlink subframe immediately following the S subframe is set to allow transmission.
  • the emission when the length of the block being transmitted by the block reaches 10 ms, the emission can be forcibly within the allowable range of the Duty Cycle (for example, 10%).
  • step S308 may be further performed.
  • the frequency selection is triggered when the duration of the block being transmitted is less than 10 ms.
  • S312. Determine whether the interference power of each piece of received data does not exceed the CCA threshold.
  • the CCA result is that the channel of the consecutive downlink subframe immediately following the current data segment can be occupied.
  • the CCA result is that the channel of the consecutive downlink subframe immediately following the current data segment can be occupied.
  • the CCA result can be from the end of the Extended CCA evaluation to the next S subframe.
  • the channels of all downlink subframes can be occupied.
  • the interference power of the at least one piece of received data exceeds the CCA threshold, it is determined whether the remaining time is allowed to perform the CCA evaluation again.
  • step S302 may be performed.
  • step S309 is performed; when the remaining time does not allow the CCA evaluation to be performed again, step S302 is performed.
  • the receiving bandwidth and the receiving frequency of the CCA are configured, and the CCA data is received once in the S subframe GP_LBT period, and the interference power of the CCA data received during the GP_LBT period is calculated, when the interference power of the CCA data exceeds the CCA threshold, and the transmission is performed.
  • the duration of the block reaches 10 ms
  • the downlink subframe immediately following the S subframe is allowed to transmit, the trigger frequency is selected, the random number R is selected, and the received data of the R segment of 1024 Ts is continuously received, and the interference power of the data received by each segment of 1024 Ts is received.
  • the CCA result is that the channel of the continuous downlink subframe immediately following the current data segment can be occupied, and the data is transmitted in the downlink subframe allowed by the CCA result, which can avoid frequent switching of the channel, improve the stability of the channel connection, and improve the stability of the channel connection. Great to reduce data transmission delay.
  • FIG. 4 is a schematic structural diagram of a channel switching apparatus according to an embodiment of the present invention.
  • the channel switching apparatus described in this embodiment includes:
  • the interference power acquiring module 401 is configured to acquire interference power of multiple channels in the communication frequency band;
  • the interference power acquisition module 401 is further configured to acquire interference power of a current channel
  • the target channel selection module 402 is configured to select a target channel according to the interference power of the multiple channels, if the interference power of the current channel exceeds a preset threshold;
  • the channel switching module 403 is configured to switch to the target channel for communication.
  • the preset threshold is an idle channel assessment threshold.
  • the target channel selection module 402 is specifically configured to:
  • a channel with a small interference power is used as the target signal.
  • the bandwidth of the target channel does not overlap with the bandwidth of the current channel.
  • the target channel selection module 402 is specifically configured to:
  • a channel having the smallest interference power spectral density is used as the target channel.
  • the interference power acquiring module 401 acquires interference power of multiple channels in the communication frequency band, specifically for:
  • the interference power acquiring module 401 acquires interference power of multiple channels in the communication frequency band, specifically for:
  • the interference power of one of the plurality of channels is measured until the interference power of the plurality of channels is measured.
  • the time slot of the current channel is a preset time slice in the first subframe
  • the time slot of the target channel is a second subframe
  • the second subframe is the first subframe. At least one subsequent subframe.
  • the target channel selection module 402 is specifically configured to:
  • the time slot of the candidate channel is a third subframe, and the third subframe is located at the After the first subframe;
  • the target channel is selected, and the time slot of the target channel is the fourth subframe, and the fourth subframe Located after the third subframe.
  • the interference power acquiring module 401 acquires the interference power of the multiple channels in the communication frequency band and the interference power of the current channel; and the target channel selection module 402, in the case that the interference power of the current channel exceeds the preset threshold, according to the The interference power of the multiple channels is selected, and the channel switching module 403 switches to the target channel for communication, which avoids frequently switching channels, improves channel connection stability and robustness, and reduces data transmission delay. .
  • FIG. 5 is a schematic block diagram of a communication device according to an embodiment of the present invention.
  • a communication device in this embodiment as shown may include: at least one processor 501, such as The CPU; at least one memory 502, a transceiver 503, a channel listening module 504, the processor 501, the memory 502, the transceiver 503, and the channel monitoring module 504 are connected by a bus 505.
  • the transceiver 503 is configured to send and receive messages, and the channel monitoring module 504 is configured to monitor interference power of each channel in the communication frequency band.
  • Memory 502 is used to store instructions, and processor 501 calls program code stored in memory 502.
  • the processor 501 calls the program code stored in the memory 502 to perform the following operations:
  • the processor 501 acquires interference power of multiple channels in the communication frequency band, where the interference power of the multiple channels in the communication frequency band may be obtained by the channel monitoring module 504 and/or the transceiver 503;
  • the processor 501 acquires the interference power of the current channel through the channel monitoring module 504.
  • the processor 501 selects a target channel according to the interference power of the multiple channels;
  • the processor 501 switches to the target channel for communication.
  • the preset threshold is an idle channel assessment threshold.
  • the processor 501 selects a target channel according to the interference power of the multiple channels, and specifically:
  • the processor 501 when the current channel satisfies the first condition, uses a channel with a small interference power as the target channel, and a bandwidth of the target channel does not overlap with a bandwidth of the current channel.
  • the processor 501 selects a target channel according to the interference power of the multiple channels, and specifically:
  • the processor 501 acquires an interference power spectral density of the channel according to interference power of each channel of the multiple channels when the current channel satisfies the second condition;
  • the processor 501 uses the channel with the smallest interference power spectral density as the target channel.
  • the processor 501 acquires interference power of multiple channels in the communication frequency band, which may be specifically:
  • the processor 501 receives the interference power of the multiple channels measured by the first communication device by using the transceiver 503, where the interference power of the multiple channels is measured when the first communication device pauses transmitting data on the current channel. of.
  • the processor 501 acquires interference power of multiple channels in the communication frequency band, which may be specifically:
  • the processor 501 measures the interference power of one of the plurality of channels every time the data is transmitted on the current channel, until the interference power of the plurality of channels is measured.
  • the time slot of the current channel is a preset time slice in the first subframe
  • the time slot of the target channel is a second subframe
  • the second subframe is the first subframe. At least one subsequent subframe.
  • the processor 501 selects a target channel according to the interference power of the multiple channels, and specifically:
  • the processor 501 determines an alternate channel that meets a preset number of thresholds, the time slot of the candidate channel is a third subframe, and the third sub-frame a frame is located after the first subframe;
  • the processor 501 selects a target channel, and the time slot of the target channel is a fourth subframe, where the The four subframes are located after the third subframe.
  • the processor 501 acquires interference power of multiple channels in the communication frequency band; acquires interference power of the current channel; and if the interference power of the current channel exceeds a preset threshold, according to the multiple channels Interference power, selecting a target channel; and switching to the target channel for communication can avoid frequent switching of channels, improve stability and robustness of channel connection, and reduce data transmission delay.
  • the program can be stored in a computer readable storage medium, and the storage medium can include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信道切换方法、装置及通信设备。其中,所述方法包括:获取通信频段中多个信道的干扰功率;获取当前信道的干扰功率;在当前信道的干扰功率超过预设门限的情况下,根据多个信道的干扰功率,选取目标信道;以及切换到目标信道上进行通信。通过本发明实施例可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。

Description

一种信道切换方法、装置及通信设备 技术领域
本发明涉及通信技术领域,尤其涉及一种信道切换方法、装置及通信设备。
背景技术
在无线通信系统中,终端传输数据之前需要进行空闲信道评估(Clear Channel Assessment,CCA),以确定信道是否可用并自适应避免对其他用户的干扰。CCA是基于先听后讲(Listen Before Talk,LBT)原则实现的,即终端需要在某一信道上发送数据之前,可以在该信道上监听并实施CCA,当该信道产生的干扰超过LBT门限时,终端可以协商进入另一个信道,并在另一个信道上监听并实施CCA,当另一个信道干扰较大导致不适合通信时,终端需要继续尝试转到别的信道上,导致信道切换频繁,增大数据传输时延。
发明内容
本发明实施例公开了一种信道切换方法、装置及通信设备,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
第一方面,本发明实施例提供了一种信道切换方法,该方法包括:
获取通信频段中多个信道的干扰功率;
获取当前信道的干扰功率;
在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;以及
切换到所述目标信道上进行通信。
第二方面,本发明实施例提供了一种信道切换装置,该装置包括:
干扰功率获取模块,用于获取通信频段中多个信道的干扰功率;
所述干扰功率获取模块,还用于获取当前信道的干扰功率;
目标信道选取模块,用于在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;以及
信道切换模块,用于切换到所述目标信道上进行通信。
第三方面,本发明实施例提供了一种通信设备,该通信设备包括:处理器、收发器和存储器,所述处理器、收发器和所述存储器通过总线连接,所述存储器存储有可执行程序代码,所述处理器用于调用所述可执行程序代码,执行本发明实施例第一方面提供的信道切换方法。
第四方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质用于储存为上述通信设备所用的计算机软件指令,其包括用于执行第一方面所设计的程序。
第五方面,本发明实施例提供一种通信设备,该通信设备具有实现第一方面所述的信道切换方法示例中通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一个设计方案中,通信设备的结构中可包括接收单元、处理单元和发送单元,所述处理单元被配置为支持通信设备执行第一方面所述信道切换方法中相应的功能。所述接收单元和发送单元用于支持通信设备与其他设备之间的通信。所述通信设备还可以包括存储单元,所述存储单元用于与处理单元耦合,其保存通信设备必要的程序指令和数据。作为示例,处理单元可以为处理器,接收单元可以为接收器,发送单元可以为发射器,存储单元可以为存储器。
第六方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面所述的信道切换方法。
第七方面,本发明实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的数据和/或信息。
在一个设计方案中,所述芯片系统还包括存储器,所述存储器,用于保存通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
通过本发明实施例可以获取通信频段中多个信道的干扰功率;获取当前信道的干扰功率;在当前信道的干扰功率超过预设门限的情况下,根据多个信道的干扰功率,选取目标信道;以及切换到目标信道上进行通信,从而可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种信道切换方法的流程示意图;
图2是本发明另一实施例公开的一种信道切换方法的流程示意图;
图3是本发明另一实施例公开的一种信道切换方法的流程示意图;
图4是本发明实施例公开的在一种信道切换装置的示意性框图;
图5是本发明实施例公开的一种通信设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种信道切换方法、装置及通信设备,用于在当前信道的干扰功率超过预设门限的情况下,根据多个信道的干扰功率,选取目标信道,并切换到目标信道上进行通信,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。以下分别进行详细说明。
本申请中,通信设备在公共频段发射数据前需要进行空闲信道评估(Clear Channel Assessment,CCA),以确定信道是否可用并自适应避免对其他用户的干扰。CCA给予先听后讲(Listen Before Talk,LBT)原则实现。
本发明实施例中的信道切换方法可以应用于通信设备中,通信设备可以包括信道监听模块,当通信设备在公共频段(Unlicensed Spectrum,US)工作时,通信设备可以通过信道监听模块在预先约定的时间点,短暂中断发送/接收行为,转到其他信道上做监听或者嗅探的工作。可选的,信道监听模块可以每次监听公共频段中的一个信道,测量其干扰功率,直至测量得到整个公共频段所 包含的各个信道的干扰功率。当信道监听模块随着时间不停刷新各个信道的干扰功率时,通信设备可以对各个信道的干扰功率作处理并实时给出当前时段的最佳工作信道,当LBT被触发时,通信设备可以第一时间迁移到最佳的工作信道上,避免高频度的信道切换和高消耗的握手开销。
其中,本申请结合通信设备进行描述,该通信设备可以包括具有无线通信功能的飞行器、手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中通信设备可以叫做不同的名称,例如:用户设备(英文:User Equipment,缩写:UE),终端设备,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该通信设备可以是指无线通信设备、有线通信设备。该无线通信设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,其可以经无线接入网(如RAN,Radio Access Network)与一个或多个核心网进行通信。
请参阅图1,为本发明实施例提供的信道切换方法的流程示意图,包括:
S101、获取通信频段中多个信道的干扰功率。
具体实现中,第二通信设备可以和第一通信设备之间建立通信连接,在通信频段工作时,第二通信设备向第一通信设备发送数据之前可以进行CCA,即获取通信频段中多个信道的干扰功率。
可选的,第二通信设备可以接收第一通信设备测量得到的多个信道的干扰功率,多个信道的干扰功率是第一通信设备暂停在当前信道传输数据时测量得到的。具体的,第二通信设备和第一通信设备之间建立通信连接之后,第一通信设备可以暂停在当前信道传输数据,进而通过第一通信设备的信道监听模块测量多个信道的干扰功率,并将测量得到的多个信道的干扰功率发送给第二通信设备。举例来说,通信频段包括第一信道、第二信道和第三信道,其中第一通信设备工作在第一信道,第二通信设备工作在第一信道,则第一通信设备可以暂停在第一信道传输数据,测量第二信道的干扰功率和第三信道的干扰功率,并将测量得到的第二信道的干扰功率和第二信道的干扰功率发送给第二通信设备。可选的,第一通信设备可以每暂停一次在第一信道传输数据,测量一 个信道的干扰功率,例如第一通信设备到达暂停在第一信道传输数据的暂停时间时,可以测量第二信道的干扰功率;暂停时间到达5ms时,即到达在第一信道传输数据的传输时间,第一通信设备可以在第一信道传输数据;传输时间到达10ms时,即到达暂停在第一信道传输数据的暂停时间,第一通信设备可以测量第三信道的干扰功率;暂停时间到达5ms时,第一通信设备可以将测量得到的第二信道的干扰功率和第三信道的干扰功率发送给第二通信设备。
可选的,第二通信设备每暂停一次在当前信道传输数据,可以测量多个信道中一个信道的干扰功率,直至测量得到多个信道的干扰功率。具体的,第二通信设备和第一通信设备之间建立通信连接之后,第二通信设备可以每暂停一次在当前信道传输数据,进而通过第二通信设备的信道监听模块测量一个信道的干扰功率,直至测量得到通信频段中多个信道的干扰功率。举例来说,通信频段包括第一信道、第二信道和第三信道,其中第二通信设备工作在第一信道,第二通信设备到达暂停在第一信道传输数据的暂停时间时,可以测量第二信道的干扰功率;暂停时间到达5ms时,即到达在第一信道传输数据的传输时间,第二通信设备可以在第一信道传输数据;传输时间到达10ms时,即到达暂停在第一信道传输数据的暂停时间,第二通信设备可以测量第三信道的干扰功率。
可选的,第二通信设备可以每暂停一次在当前信道传输数据,测量多个信道中一个信道的干扰功率,并接收第一通信设备暂停在当前信道传输数据时测量得到的多个信道中其他信道的干扰功率,进而得到多个信道的干扰功率。具体的,第一通信设备和第二通信设备可以短暂中断各自的发送/接收行为,转到其他信道上做监听或者嗅探的工作;各自的信道监听模块可以每次监听通信频段中的一个信道,测量其干扰功率,并在预设时长(例如80ms)的周期内覆盖到整个通信频段。例如,通信频段包括第一信道、第二信道和第三信道,其中第二通信设备工作在第一信道,到达暂停在第一信道传输数据的暂停时间时,第二通信设备可以测量第二信道的干扰功率,第一通信设备可以测量第三信道的干扰功率;暂停时间到达5ms时,即到达在第一信道传输数据的传输时间,第一通信设备可以将第三信道的干扰功率发送给第二通信设备。本发明实施例通过两端的通信设备分别测量不同信道的干扰功率,可提高干扰功率的测 量效率。
可选的,当前信道的时隙为第一子帧中的预设时间分片,所述目标信道的时隙为第二子帧,所述第二子帧为所述第一子帧之后的至少一个子帧。示例性的,第一子帧可以为S子帧,S子帧为通信协议中的特殊子帧,包括GP_LBT时段,GP_LBT时段可以为CCA门限判断的保护间隔(Guard Period)。预设时间分片可以为GP_LBT时段。第二子帧可以为紧随S子帧的下行子帧。
S102、获取当前信道的干扰功率。
第二通信设备还可以获取当前信道的干扰功率,其中当前信道的干扰功率可以是第二通信设备通过信道监听模块测量得到的,也可以是第一通信设备发送给第二通信设备的。例如,第二通信设备工作在第一信道,到达暂停在第一信道传输数据的暂停时间时,第二通信设备可以测量第一信道的干扰功率。又如,到达暂停在第一信道传输数据的暂停时间时,第一通信设备可以测量第一信道的干扰功率;到达在第一信道传输数据的传输时间时,第一通信设备可以将测量得到的第一信道的干扰功率发送给第二通信设备。
需要说明的是,本发明实施例并不限定步骤S101和步骤S102的执行顺序,例如第二通信设备可以先执行步骤S101,再执行步骤S102;又如第二通信设备可以先执行步骤S102,再执行步骤S101;又如第二通信设备可以同时执行步骤S101和步骤S102。
S103、在当前信道的干扰功率超过预设门限的情况下,根据多个信道的干扰功率,选取目标信道。
第二通信设备可以判断当前信道的干扰功率是否超过预设门限,若当前信道的干扰功率超过预设门限,则第二通信设备可以确定当前信道干扰较大导致不适合通信,进而根据上述多个信道的干扰功率,选取目标信道。
其中,预设门限可以为空闲信道评估门限。
可选的,通信设备可以在当前信道满足第一条件时,将干扰功率较小的信道作为目标信道,其中,目标信道的带宽与当前信道的带宽不重叠。也就是说,当触发信道切换的原因是CCA/LBT导致的停止在当前信道发送数据时,第二通信设备可以选择和当前工作带宽不重叠,且地面站侧干扰最小的信道。
可选的,通信设备可以在当前信道满足第二条件时,根据多个信道中各个 信道的干扰功率,获取信道的干扰功率谱密度;将干扰功率谱密度最小的信道作为目标信道。也就是说,当触发信道切换的原因是地面站侧存在干扰功率较小的信道、发射功率较大的信道或当前信道的接收性能下降时,第二通信设备可以选择地面站侧总体干扰水平最小的信道。
可选的,当停止在当前信道传输数据的时间大于预设时长时,第二通信设备可以确定满足预设数量阈值的备选信道,备选信道的时隙为第三子帧,第三子帧位于第一子帧之后;当在备选信道上传输的多个数据的干扰功率均小于或者等于预设门限时,第二通信设备可以选取目标信道,目标信道的时隙为第四子帧,第四子帧位于第三子帧之后。示例性的,预设时长可以为10ms,第三子帧可以为1024Ts时长,第四子帧可以为紧随当前数据段的连续下行子帧。
S104、切换到目标信道上进行通信。
第二通信设备选取目标信道之后,可以由当前信道切换到目标信道,以进行通信,可避免由CCA/LBT的合规要求频繁地切换频点的动作,较快的切换到较佳信道上进行通信,并因此为在公共频段工作的通信设备提高稳定和鲁棒性的信道连接。
本发明实施例中,获取通信频段中多个信道的干扰功率;获取当前信道的干扰功率;在当前信道的干扰功率超过预设门限的情况下,根据多个信道的干扰功率,选取目标信道;以及切换到目标信道上进行通信,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
请参阅图2,为本发明另一实施例提供的一种信道切换方法的流程示意图。本实施例中所描述的信道切换方法,包括:
S201、无人机进行CCA/LBT监测。
本发明实施例中的无人机(Unmanned Aerial Vehicle,UAV)可以等同于实施例一中的第二通信设备,无人机可执行实施例一中第二通信设备所执行的功能;地面站可以等同于实施例一中的第一通信设备,地面站可以执行实施例一中第一通信设备所执行的功能。
S202、地面站测量多个信道的干扰功率。
具体的,地面站可以进行扫频测量,即通过地面站的信道监听模块测量通 信频段中多个信道的干扰功率。
S203、地面站将多个信道的干扰功率发送给无人机。
示例性的,地面站可以将GND_FREQ_MEAS消息发送给无人机,该GND_FREQ_MEAS消息可以包括多个信道的干扰功率。
S204、无人机根据多个信道的干扰功率,选取目标信道。
具体的,目标信道选取的准则可以如下所示:
一、如果触发目标信道选取和切换的原因是CCA/LBT导致的当前信道被频繁block,无人机可以选择和当前工作带宽不重叠,且地面站侧干扰最小的信道,并将该信道作为目标信道。
二、如果触发目标信道选取和切换的原因是地面站侧存在更优信道或接收性能下降,无人机可以选择地面站侧总体干扰水平最小的信道,并将该信道作为目标信道。
S205、无人机将信道指示信息发送给地面站,信道指示信息用于指示请求切换到目标信道进行通信。
示例性的,信道指示信息可以为UAV_FREQ_SEL_INDICATION。
S206、无人机从地面站接收信道响应信息,信道响应信息用于指示确认切换到目标信道进行通信。
示例性的,信道响应信息可以为UAV_FREQ_SEL_CONFIRM。
S207、无人机切换到目标信道进行通信。
本发明实施例中,无人机进行CCA/LBT监测;地面站测量多个信道的干扰功率,并将多个信道的干扰功率发送给无人机;无人机根据多个信道的干扰功率,选取目标信道,并将信道指示信息发送给地面站;无人机从地面站接收信道响应信息,进而切换到目标信道进行通信,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
请参阅图3,为本发明另一实施例提供的一种信道切换方法的流程示意图。本实施例中所描述的信道切换方法,包括:
S301、配置CCA的接收带宽和接收频点。
S302、在S子帧GP_LBT时段接收一次CCA数据。
其中,S子帧为通信协议中的特殊子帧,包括GP_LBT时段,GP_LBT时段可以为CCA门限判断的保护间隔。
S303、计算GP_LBT时段接收的CCA数据的干扰功率。
S304、判断CCA数据的干扰功率是否超过CCA门限。
S305、CCA结果为紧随S子帧的后4个下行子帧的信道可占用。
当CCA数据的干扰功率未超过CCA门限时,CCA结果为紧随S子帧的后4个下行子帧的信道可占用。
其中,确定CCA结果为紧随S子帧的后4个下行子帧的信道可占用之后,可以进一步执行步骤S314。
S306、判断发射被block的时长是否达到10ms。
当CCA数据的干扰功率超过CCA门限时,判断发射被block的时长是否达到10ms。
S307、设置紧随S子帧的下行子帧为允许发射。
当发射被block的时长达到10ms时,设置紧随S子帧的下行子帧为允许发射。
示例性的,当发射被block的时长达到10ms时,可以在Duty Cycle允许范围(例如10%)内强行发射。
其中,设置紧随S子帧的下行子帧为允许发射之后,可以进一步执行步骤S308。
S308、触发频率选择。
当发射被block的时长未达到10ms时,触发频率选择。
S309、选取随机数R,1≤R≤q。
S310、连续接收R段1024Ts时长的接收数据。
S311、计算每一段1024Ts接收数据的干扰功率。
S312、判断是否每段接收数据的干扰功率均未超过CCA门限。
S313、CCA结果为紧随当前数据段的连续下行子帧的信道可占用。
当每段接收数据的干扰功率均未超过CCA门限时,CCA结果为紧随当前数据段的连续下行子帧的信道可占用。
示例性的,CCA结果可以为从Extended CCA评估结束到下一个S子帧之间 的所有下行子帧的信道可占用。
可选的,当至少一段接收数据的干扰功率超过CCA门限时,判断剩余时间是否允许再次进行CCA评估。
S314、在CCA结果允许的下行子帧发送数据。
可选的,在CCA结果允许的下行子帧发送数据之后,可以执行步骤S302。
S315、判断剩余时间是否允许再次进行CCA评估。
当任一段接收数据的干扰功率超过CCA门限时,判断剩余时间是否允许再次进行CCA评估。
可选的,当剩余时间允许再次进行CCA评估时,执行步骤S309;当剩余时间不允许再次进行CCA评估时,执行步骤S302。
本发明实施例中,配置CCA的接收带宽和接收频点,在S子帧GP_LBT时段接收一次CCA数据,计算GP_LBT时段接收的CCA数据的干扰功率,当CCA数据的干扰功率超过CCA门限,且发射被block的时长达到10ms时,设置紧随S子帧的下行子帧为允许发射,触发频率选择,选取随机数R,连续接收R段1024Ts时长的接收数据,当每一段1024Ts接收数据的干扰功率均未超过CCA门限时,CCA结果为紧随当前数据段的连续下行子帧的信道可占用,在CCA结果允许的下行子帧发送数据,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
请参阅图4,为本发明实施例提供的一种信道切换装置的结构示意图。本实施例中所描述的信道切换装置,包括:
干扰功率获取模块401,用于获取通信频段中多个信道的干扰功率;
所述干扰功率获取模块401,还用于获取当前信道的干扰功率;
目标信道选取模块402,用于在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;以及
信道切换模块403,用于切换到所述目标信道上进行通信。
可选的,所述预设门限为空闲信道评估门限。
可选的,所述目标信道选取模块402,具体用于:
在所述当前信道满足第一条件时,将干扰功率较小的信道作为所述目标信 道,所述目标信道的带宽与所述当前信道的带宽不重叠。
可选的,所述目标信道选取模块402,具体用于:
在所述当前信道满足第二条件时,根据所述多个信道中各个信道的干扰功率,获取所述信道的干扰功率谱密度;
将干扰功率谱密度最小的信道作为所述目标信道。
可选的,所述干扰功率获取模块401获取所述通信频段中多个信道的干扰功率,具体用于:
接收第一通信设备测量得到的所述多个信道的干扰功率,所述多个信道的干扰功率是所述第一通信设备暂停在所述当前信道传输数据时测量得到的。
可选的,所述干扰功率获取模块401获取所述通信频段中多个信道的干扰功率,具体用于:
每暂停一次在所述当前信道传输数据,测量所述多个信道中一个信道的干扰功率,直至测量得到所述多个信道的干扰功率。
可选的,所述当前信道的时隙为第一子帧中的预设时间分片,所述目标信道的时隙为第二子帧,所述第二子帧为所述第一子帧之后的至少一个子帧。
可选的,所述目标信道选取模块402,具体用于:
当停止在所述当前信道传输数据的时间大于预设时长时,确定满足预设数量阈值的备选信道,所述备选信道的时隙为第三子帧,所述第三子帧位于所述第一子帧之后;
当在所述备选信道上传输的多个数据的干扰功率均小于或者等于所述预设门限时,选取目标信道,所述目标信道的时隙为第四子帧,所述第四子帧位于所述第三子帧之后。
本发明实施例中,干扰功率获取模块401获取通信频段中多个信道的干扰功率和当前信道的干扰功率;目标信道选取模块402在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;信道切换模块403切换到所述目标信道上进行通信,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
请参见图5,图5是本发明实施例提供的一种通信设备的示意性框图。如图所示的本实施例中的一种通信设备可以包括:至少一个处理器501,例如 CPU;至少一个存储器502,收发器503,信道监听模块504,上述处理器501、存储器502、收发器503和信道监听模块504通过总线505连接。
其中,收发器503,用于收发消息,信道监听模块504,用于监听通信频段中各个信道的干扰功率。存储器502用于存储指令,处理器501调用存储器502中存储的程序代码。
具体的,处理器501调用存储器502中存储的程序代码,执行以下操作:
处理器501获取通信频段中多个信道的干扰功率,其中通信频段中多个信道的干扰功率可以是通过信道监听模块504和/或收发器503得到的;
处理器501通过信道监听模块504获取当前信道的干扰功率;
在所述当前信道的干扰功率超过预设门限的情况下,处理器501根据所述多个信道的干扰功率,选取目标信道;以及
处理器501切换到所述目标信道上进行通信。
可选的,所述预设门限为空闲信道评估门限。
可选的,所述处理器501根据所述多个信道的干扰功率,选取目标信道,具体可以为:
处理器501在所述当前信道满足第一条件时,将干扰功率较小的信道作为所述目标信道,所述目标信道的带宽与所述当前信道的带宽不重叠。
可选的,所述处理器501根据所述多个信道的干扰功率,选取目标信道,具体可以为:
处理器501在所述当前信道满足第二条件时,根据所述多个信道中各个信道的干扰功率,获取所述信道的干扰功率谱密度;
处理器501将干扰功率谱密度最小的信道作为所述目标信道。
可选的,所述处理器501获取通信频段中多个信道的干扰功率,具体可以为:
处理器501通过收发器503接收第一通信设备测量得到的所述多个信道的干扰功率,所述多个信道的干扰功率是所述第一通信设备暂停在所述当前信道传输数据时测量得到的。
可选的,所述处理器501获取通信频段中多个信道的干扰功率,具体可以为:
处理器501每暂停一次在所述当前信道传输数据,测量所述多个信道中一个信道的干扰功率,直至测量得到所述多个信道的干扰功率。
可选的,所述当前信道的时隙为第一子帧中的预设时间分片,所述目标信道的时隙为第二子帧,所述第二子帧为所述第一子帧之后的至少一个子帧。
可选的,所述处理器501根据所述多个信道的干扰功率,选取目标信道,具体可以为:
当停止在所述当前信道传输数据的时间大于预设时长时,处理器501确定满足预设数量阈值的备选信道,所述备选信道的时隙为第三子帧,所述第三子帧位于所述第一子帧之后;
当在所述备选信道上传输的多个数据的干扰功率均小于或者等于所述预设门限时,处理器501选取目标信道,所述目标信道的时隙为第四子帧,所述第四子帧位于所述第三子帧之后。
本发明实施例中,处理器501获取通信频段中多个信道的干扰功率;获取当前信道的干扰功率;在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;以及切换到所述目标信道上进行通信,可避免频繁切换信道,提高信道连接的稳定性和鲁棒性,以降低数据传输时延。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (17)

  1. 一种信道切换方法,其特征在于,所述方法包括:
    获取通信频段中多个信道的干扰功率;
    获取当前信道的干扰功率;
    在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;以及
    切换到所述目标信道上进行通信。
  2. 如权利要求1所述的方法,其特征在于,所述预设门限为空闲信道评估门限。
  3. 如权利要求1所述的方法,其特征在于,所述根据所述多个信道的干扰功率,选取目标信道,包括:
    在所述当前信道满足第一条件时,将干扰功率较小的信道作为所述目标信道,所述目标信道的带宽与所述当前信道的带宽不重叠。
  4. 如权利要求1所述的方法,其特征在于,所述根据所述多个信道的干扰功率,选取目标信道,包括:
    在所述当前信道满足第二条件时,根据所述多个信道中各个信道的干扰功率,获取所述信道的干扰功率谱密度;
    将干扰功率谱密度最小的信道作为所述目标信道。
  5. 如权利要求1所述的方法,其特征在于,所述获取通信频段中多个信道的干扰功率,包括:
    接收第一通信设备测量得到的所述多个信道的干扰功率,所述多个信道的干扰功率是所述第一通信设备暂停在所述当前信道传输数据时测量得到的。
  6. 如权利要求1所述的方法,其特征在于,所述获取通信频段中多个信 道的干扰功率,包括:
    每暂停一次在所述当前信道传输数据,测量所述多个信道中一个信道的干扰功率,直至测量得到所述多个信道的干扰功率。
  7. 如权利要求1所述的方法,其特征在于,所述当前信道的时隙为第一子帧中的预设时间分片,所述目标信道的时隙为第二子帧,所述第二子帧为所述第一子帧之后的至少一个子帧。
  8. 如权利要求1所述的方法,其特征在于,所述根据所述多个信道的干扰功率,选取目标信道,包括:
    当停止在所述当前信道传输数据的时间大于预设时长时,确定满足预设数量阈值的备选信道,所述备选信道的时隙为第三子帧,所述第三子帧位于所述第一子帧之后;
    当在所述备选信道上传输的多个数据的干扰功率均小于或者等于所述预设门限时,选取目标信道,所述目标信道的时隙为第四子帧,所述第四子帧位于所述第三子帧之后。
  9. 一种信道切换装置,其特征在于,包括:
    干扰功率获取模块,用于获取通信频段中多个信道的干扰功率;
    所述干扰功率获取模块,还用于获取当前信道的干扰功率;
    目标信道选取模块,用于在所述当前信道的干扰功率超过预设门限的情况下,根据所述多个信道的干扰功率,选取目标信道;以及
    信道切换模块,用于切换到所述目标信道上进行通信。
  10. 如权利要求9所述的装置,其特征在于,所述预设门限为空闲信道评估门限。
  11. 如权利要求9所述的装置,其特征在于,所述目标信道选取模块,具体用于:
    在所述当前信道满足第一条件时,将干扰功率较小的信道作为所述目标信道,所述目标信道的带宽与所述当前信道的带宽不重叠。
  12. 如权利要求9所述的装置,其特征在于,所述目标信道选取模块,具体用于:
    在所述当前信道满足第二条件时,根据所述多个信道中各个信道的干扰功率,获取所述信道的干扰功率谱密度;
    将干扰功率谱密度最小的信道作为所述目标信道。
  13. 如权利要求9所述的装置,其特征在于,所述干扰功率获取模块获取所述通信频段中多个信道的干扰功率,具体用于:
    接收第一通信设备测量得到的所述多个信道的干扰功率,所述多个信道的干扰功率是所述第一通信设备暂停在所述当前信道传输数据时测量得到的。
  14. 如权利要求9所述的装置,其特征在于,所述干扰功率获取模块获取所述通信频段中多个信道的干扰功率,具体用于:
    每暂停一次在所述当前信道传输数据,测量所述多个信道中一个信道的干扰功率,直至测量得到所述多个信道的干扰功率。
  15. 如权利要求9所述的装置,其特征在于,所述当前信道的时隙为第一子帧中的预设时间分片,所述目标信道的时隙为第二子帧,所述第二子帧为所述第一子帧之后的至少一个子帧。
  16. 如权利要求9所述的方法,其特征在于,所述目标信道选取模块,具体用于:
    当停止在所述当前信道传输数据的时间大于预设时长时,确定满足预设数量阈值的备选信道,所述备选信道的时隙为第三子帧,所述第三子帧位于所述第一子帧之后;
    当在所述备选信道上传输的多个数据的干扰功率均小于或者等于所述预 设门限时,选取目标信道,所述目标信道的时隙为第四子帧,所述第四子帧位于所述第三子帧之后。
  17. 一种通信设备,其特征在于,包括:处理器、收发器和存储器,所述处理器、所述收发器和所述存储器通过总线连接,所述存储器存储有可执行程序代码,所述处理器用于调用所述可执行程序代码,执行如权利要求1~8中任一项所述的信道切换方法。
PCT/CN2017/099561 2017-08-30 2017-08-30 一种信道切换方法、装置及通信设备 WO2019041150A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780005959.6A CN108513734A (zh) 2017-08-30 2017-08-30 一种信道切换方法、装置及通信设备
PCT/CN2017/099561 WO2019041150A1 (zh) 2017-08-30 2017-08-30 一种信道切换方法、装置及通信设备
US16/734,806 US20200145890A1 (en) 2017-08-30 2020-01-06 Channel switching method and apparatus, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099561 WO2019041150A1 (zh) 2017-08-30 2017-08-30 一种信道切换方法、装置及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/734,806 Continuation US20200145890A1 (en) 2017-08-30 2020-01-06 Channel switching method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
WO2019041150A1 true WO2019041150A1 (zh) 2019-03-07

Family

ID=63375240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099561 WO2019041150A1 (zh) 2017-08-30 2017-08-30 一种信道切换方法、装置及通信设备

Country Status (3)

Country Link
US (1) US20200145890A1 (zh)
CN (1) CN108513734A (zh)
WO (1) WO2019041150A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771921A (zh) * 2020-04-17 2021-05-07 深圳市大疆创新科技有限公司 带宽切换方法、装置、无人机及计算机可读存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105744636B (zh) * 2016-01-22 2017-09-22 广州极飞科技有限公司 地面站及地面站与无人机的通信方法
US11206412B2 (en) * 2018-02-20 2021-12-21 Netgear, Inc. Band steering for a low power device
US11006128B2 (en) 2018-02-20 2021-05-11 Arlo Technologies, Inc. Camera communication channel selection
US11576127B2 (en) 2018-02-20 2023-02-07 Netgear, Inc. Mesh-based home security system
WO2020060764A1 (en) * 2018-09-20 2020-03-26 Google Llc Performing listen-before-talk procedures on bandwidth parts
CN111384980B (zh) * 2018-12-29 2021-10-26 华为技术有限公司 基于非授权频段进行通信的移动终端、芯片及其通信方法
CN110536366A (zh) * 2019-08-21 2019-12-03 青岛汇智天云科技有限公司 一种面向超视距通信有抗干扰功能的地面基站
CN110784256B (zh) * 2019-11-01 2021-11-16 重庆市亿飞智联科技有限公司 存储介质、频点切换方法、装置、通信节点及系统
WO2022003235A1 (en) * 2020-07-03 2022-01-06 Nokia Technologies Oy Estimating signal leakage for multi-channel operation
CN115334602A (zh) * 2021-05-11 2022-11-11 华为技术有限公司 无线通信抗干扰方法、电子设备、芯片及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636108A (zh) * 2014-11-07 2016-06-01 中兴通讯股份有限公司 一种非授权载波的测量方法和装置
WO2016164584A1 (en) * 2015-04-08 2016-10-13 Interdigital Patent Holdings, Inc. Systems and methods for lte operation in unlicensed bands
US20170013479A1 (en) * 2015-07-07 2017-01-12 Qualcomm Incorporated Channel clearance techniques using shared radio frequency spectrum band
CN107027127A (zh) * 2016-02-02 2017-08-08 索尼公司 信道检测装置和方法、用户设备和基站
CN107026723A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种传输上行控制信息的方法和设备
CN107027123A (zh) * 2016-02-02 2017-08-08 索尼公司 用于无线通信系统的装置和方法、频谱管理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206840B2 (en) * 2001-05-11 2007-04-17 Koninklike Philips Electronics N.V. Dynamic frequency selection scheme for IEEE 802.11 WLANs
CN106559152B (zh) * 2015-09-28 2019-04-12 辰芯科技有限公司 通信频点的动态切换方法、自组网节点及无人机遥控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105636108A (zh) * 2014-11-07 2016-06-01 中兴通讯股份有限公司 一种非授权载波的测量方法和装置
WO2016164584A1 (en) * 2015-04-08 2016-10-13 Interdigital Patent Holdings, Inc. Systems and methods for lte operation in unlicensed bands
US20170013479A1 (en) * 2015-07-07 2017-01-12 Qualcomm Incorporated Channel clearance techniques using shared radio frequency spectrum band
CN107027127A (zh) * 2016-02-02 2017-08-08 索尼公司 信道检测装置和方法、用户设备和基站
CN107026723A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种传输上行控制信息的方法和设备
CN107027123A (zh) * 2016-02-02 2017-08-08 索尼公司 用于无线通信系统的装置和方法、频谱管理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771921A (zh) * 2020-04-17 2021-05-07 深圳市大疆创新科技有限公司 带宽切换方法、装置、无人机及计算机可读存储介质
WO2021208094A1 (zh) * 2020-04-17 2021-10-21 深圳市大疆创新科技有限公司 带宽切换方法、装置、无人机及计算机可读存储介质

Also Published As

Publication number Publication date
US20200145890A1 (en) 2020-05-07
CN108513734A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019041150A1 (zh) 一种信道切换方法、装置及通信设备
US11082895B2 (en) Subband switching method, device, and system
CN110972171B (zh) 波束失败恢复请求传输方法、终端设备及网络设备
US11711711B2 (en) Method for configuring measurement gap, access network device and terminal
CA3012061C (en) Channel contention method and apparatus
CN111034162A (zh) 一种降低电磁辐射比吸收率的方法及设备
US11317418B2 (en) Communication method and communication apparatus
CN105636231A (zh) 一种信道监听方法及设备
WO2017028046A1 (zh) 间隙Gap选择方法及装置
US10779234B2 (en) Transmission mode switching method and apparatus
JP6577135B2 (ja) 信号処理方法および関連装置
JP4268984B2 (ja) サイレント測定期間を用いて無線リソースを管理する無線通信方法および装置
RU2019111364A (ru) Устройство
WO2018053766A1 (zh) 通信方法、终端设备和网络设备
CN110771234B (zh) 无线通信方法、网络侧设备及装置
CN110691391A (zh) 接入节点切换、发送信号参数信息的方法、装置及系统
WO2019128760A1 (zh) 消息接收方法及终端
US20160309488A1 (en) Method, apparatus, and system for establishing cooperative communication
CN110944401B (zh) 随机接入方法、终端设备及网络设备
CN112840692A (zh) 小区的测量方法、设备和存储介质
CN107005912B (zh) 中继方法、用户设备和基站
CN111356195B (zh) 网络选择的方法、装置、存储介质及网络设备
CN116567690A (zh) 一种邻区测量方法及相关装置
CN110431787A (zh) 信号传输方法、装置、设备及系统
CN109644344B (zh) 业务的传输方法、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923557

Country of ref document: EP

Kind code of ref document: A1