WO2019039774A1 - Acier inoxydable ferritique ayant une ténacité à l'impact à basse température améliorée et son procédé de production - Google Patents

Acier inoxydable ferritique ayant une ténacité à l'impact à basse température améliorée et son procédé de production Download PDF

Info

Publication number
WO2019039774A1
WO2019039774A1 PCT/KR2018/008969 KR2018008969W WO2019039774A1 WO 2019039774 A1 WO2019039774 A1 WO 2019039774A1 KR 2018008969 W KR2018008969 W KR 2018008969W WO 2019039774 A1 WO2019039774 A1 WO 2019039774A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferritic stainless
stainless steel
rolling
less
temperature
Prior art date
Application number
PCT/KR2018/008969
Other languages
English (en)
Korean (ko)
Inventor
공정현
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019039774A1 publication Critical patent/WO2019039774A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel and a method of manufacturing the ferritic stainless steel, and more particularly, to a ferritic stainless steel having improved low temperature impact toughness and a method of manufacturing the ferritic stainless steel.
  • ferritic stainless steels are widely used in building materials, kitchen containers, and household appliances.
  • Ferritic stainless steels are lower in workability, toughness and high temperature strength than austenitic stainless steels, but are less expensive because they do not contain a large amount of Ni, and have recently been used in automotive exhaust system components because of their small thermal expansion.
  • ferritic stainless steels containing high Cr and containing Nb and Ti have poor workability and impact toughness as their thickness becomes thicker than those of austenitic stainless steels. Therefore, brittle brittle brittle cracks may occur during cold rolling at a target thickness after hot rolling, cracks may be generated when the plate is broken due to crack propagation, or when the final cold rolled product is formed into a predetermined shape And it is difficult to develop an aggregate structure related to workability, so that it is difficult to manufacture cold-rolled products themselves.
  • ferritic stainless steels containing Nb and Ti are firstly reacted with carbon (C) and nitrogen (N), which are interstitial elements, during precipitation of Ti in molten steel at a high temperature,
  • C carbon
  • N nitrogen
  • Embodiments of the present invention are to provide a ferritic stainless steel improved in low temperature impact toughness through grain refinement and aggregate structure control through control of an alloy component and a manufacturing process of a ferritic stainless steel and a method for manufacturing the ferritic stainless steel.
  • the ferritic stainless steel improved in low temperature impact toughness includes 17.0 to 20% of Cr, 0.05 to 1.0% of Nb, 0.05 to 0.45% of Ti, 0.03% or less of C (Excluding 0), N: not more than 0.03% (excluding 0), the balance of Fe and other unavoidable impurities, satisfies the following formulas (1) to (3) and has a thickness of 1.8 mm or more.
  • the? -Fibre (111) refers to a group of aggregates of orientations generated in a direction orthogonal to the (111) plane of the texture.
  • the ferritic stainless steel can satisfy the following formula (4).
  • a method for manufacturing a semiconductor device comprising the steps of: providing an alloy containing at most 0.6% of Si (excluding 0), 0.5% or less of Mn (excluding 0) 0.01% or less (excluding 0).
  • the ferritic stainless steel may be a cold rolled annealed steel sheet having a thickness of 1.8 to 2.2 mm.
  • the Charpy impact test value at -40 ⁇ may be 140 J / cm 2 or more.
  • the Ductile to Brittle Transition Temperature (DBTT) value may be less than -45 ° C.
  • a method of manufacturing a ferritic stainless steel having improved low temperature impact toughness includes: 17 to 20% of Cr, 0.05 to 1.0% of Nb, 0.05 to 0.45% of Ti, 0.03 to 0.03 of C, % Or less (excluding 0), N: 0.03% or less (excluding 0), the balance of Fe and other unavoidable impurities, and satisfying the following formula (1): Reheating the slab at a temperature of 1,220 ⁇ ⁇ or less and subjecting the slab to hot rolling; And cold rolling the hot rolled hot rolled sheet. In the cold rolling step, the cold rolled annealed steel sheet is cold rolled at a temperature of not higher than 1,050 ⁇ to produce a cold rolled annealed steel sheet having a final thickness of at least 2.0 mm.
  • the reduction rate in the last rolling of the rough rolling is 35% or more
  • the temperature at the rear stage of rough rolling is 950 to 1,050 ⁇ ⁇ , Lt; 0 > C or less to produce a hot-rolled steel sheet having a final sheet thickness of 5.0 to 8.0 mm.
  • hot rolling may be performed at a temperature of 1,050 ° C or lower after hot rolling.
  • the cold-rolled and annealed steel sheet may satisfy the following formulas (2) and (3).
  • the cold-rolled and annealed steel sheet may have a Charpy impact test value of 140 J / cm 2 or more at -40 ° C and a DBTT of -45 ° C or less.
  • Embodiments of the present invention provide a ferritic stainless steel improved in low temperature impact toughness which can be used in cold regions and winter months through grain refinement and aggregate structure control by controlling alloy components and manufacturing processes of ferritic stainless steels and a method for manufacturing the ferritic stainless steels can do.
  • 1 is a graph for explaining impact toughness of a ferrite stainless steel of 2 mm thickness according to an embodiment of the present invention.
  • the ferritic stainless steel improved in low temperature impact toughness includes 17.0 to 20% of Cr, 0.05 to 1.0% of Nb, 0.05 to 0.45% of Ti, 0.03% or less of C (Excluding 0), N: not more than 0.03% (excluding 0), the balance of Fe and other unavoidable impurities, satisfies the following formulas (1) to (3) and has a thickness of 1.8 mm or more.
  • the? -Fibre (111) refers to a group of aggregates of orientations generated in a direction orthogonal to the (111) plane of the texture.
  • the ferritic stainless steel improved in low temperature impact toughness includes 17.0 to 20% of Cr, 0.05 to 1.0% of Nb, 0.05 to 0.45% of Ti, 0.03% or less of C (Excluding 0), N: 0.03% or less (excluding 0), the balance Fe and other unavoidable impurities.
  • Chromium (Cr) is the most important element added for securing the corrosion resistance and oxidation resistance of stainless steel. In the present invention, it is added in an amount of 17.0% or more. However, if the content is excessive, not only the production cost increases but also the intergranular corrosion occurs, so that the content is limited to 20% or less.
  • NbN is preferentially bonded with intercalation elements carbon (C) and nitrogen (N) to form a precipitate that inhibits deterioration of corrosion resistance. NbN attaches to TiN and precipitates. When NbN precipitates, TiN A small amount of a Cr-depleted region is formed so as not to affect the corrosion resistance.
  • the content of Nb is less than 0.05%, there is a problem that the high temperature strength of the material is lowered and the grain size becomes coarse because the amount of Nb contained in the material is small.
  • the content of Nb exceeds 1%, not only the raw material cost rises, Thereby impeding the propagation of the electric potential, increasing the resistance to the propagation of stress and electric potential, and degrading the plastic deformation, thereby deteriorating toughness.
  • Titanium (Ti) is an element effective in reducing the amount of solid carbon and solid nitrogen in steel by fixing carbon (C) and nitrogen (N) and improving the high temperature strength and corrosion resistance of steel. But also surface defects are formed due to the formation of Ti inclusions, and the elongation and the low-temperature impact toughness are weakened by increasing the amount of solute Ti, which is limited to 0.45% or less.
  • the carbon (C) is an interstitial element that improves the strength of the material.
  • the impurities increase and the elongation and the work hardening index (n value) DBTT) increases and the impact characteristic is weakened, so that the upper limit is limited to 0.03%.
  • the lower limit can be limited to 0.002%.
  • Nitrogen (N) is an element that accelerates recrystallization by precipitation of austenite during hot rolling.
  • n value elongation and work hardening index
  • DBTT brittle transition temperature
  • the lower limit can be limited to 0.002%.
  • the ferritic stainless steel may contain not more than 0.6% of Si (excluding 0), 0.5% or less of Mn (excluding 0), 0.5% or less of Ni (excluding 0), 0.05 to 0.4% of Cu, Al: 0.01% or less (excluding 0).
  • Silicon (Si) is an element added for deoxidation of molten steel and stabilization of ferrite during steelmaking. However, if the content is excessive, the material is hardened and ductility of the steel is deteriorated, and it is limited to 0.6% or less. Preferably, the content of Si may be 0.01 to 0.5%.
  • Manganese (Mn) may be added in an amount of 0.01% or more as an element to be added in terms of corrosion resistance. However, when 0.5% or more is exceeded, there is a problem that the impurities of the material increase and the elongation and the corrosion resistance are deteriorated.
  • the content of Mn may be 0.01 to 0.5%.
  • Ni 0.5% or less (excluding 0)
  • Nickel (Ni) is an element added to improve corrosion resistance. However, if the content is excessive, stress cracking may occur, so it is limited to 0.5% or less. Preferably, the content of Ni may be 0.1 to 0.5%.
  • Copper (Cu) may be added in an amount of 0.05% or more as an element added for improving corrosion resistance. However, if the content is excessive, the workability may deteriorate, and therefore, it is preferable to limit the content to 0.4% or less.
  • Aluminum (Al) is a powerful deoxidizer, which serves to lower the oxygen content in molten steel. However, if the content is excessive, a sleeve defect of the cold-rolled strip occurs due to the increase of non-metallic inclusions, and at the same time, the weldability is deteriorated.
  • the content of Al may be 0.001 to 0.1%.
  • P is an impurity inevitably contained in the steel, and is an element that causes grain boundary corrosion during pickling or hinders hot workability. Therefore, it is preferable to control the content as low as possible. In the present invention, the upper limit of the content of P is controlled to 0.05%.
  • S is an impurity inevitably contained in steel, and is an element that segregates in grain boundaries and is a main cause of inhibiting hot workability. Therefore, it is preferable to control the content to be as low as possible. In the present invention, the upper limit of the content of S is controlled to 0.005%.
  • ferritic stainless steels containing a large amount of Nb and Ti are firstly reacted with carbon (C) and nitrogen (N), which are interstitial elements during the cooling of Ti at a high temperature, ,
  • C carbon
  • N nitrogen
  • the propagation of the potential generated during processing interferes with resistance to the propagation of stress and the propagation of dislocations, resulting in a drastic decrease in plastic deformation.
  • Nb is contained in a larger amount than Ti
  • the surplus Nb remaining after reaction with C and N is converted into Fe (Nb), which is an intermetallic compound having a dense packed structure of Fe 2 Nb type, phase is formed and the impact toughness is weakened.
  • the reheating temperature of the material before hot rolling is lowered, the rough rolling load distribution at the time of hot rolling is moved to the rear end, and strong rolling is performed at a lower temperature, (homogeneous and fine crystals were obtained by accelerating the recrystallization and homogenization of the inner crystals during annealing after cold rolling.
  • the phase fraction of the ⁇ -fiber 111 which is known to improve the toughness of the material, is increased to have a thickness of 1.8 mm or more, and a ferritic stainless steel final cooled To improve the impact resistance at low temperatures.
  • the? -Fibre (111) refers to a group of aggregates of orientations generated in a direction orthogonal to the (111) plane of the texture.
  • the ferritic stainless steel according to one embodiment of the present invention is a cold-rolled annealed steel sheet having a thickness of 1.8 mm or more, for example, a cold-rolled annealed steel sheet having a thickness of 1.8 to 2.2 mm.
  • the ferritic stainless steel satisfies the following formula (1).
  • the ferritic stainless steel satisfies the following formula (2).
  • the ⁇ -fiber (111) is a texture known to improve the toughness of the material and can increase the phase fraction of the ⁇ -fiber (111) texture by accumulating strain energy through the control of hot rolling conditions.
  • B is less than 24.0%, sufficient low temperature impact toughness desired in the present invention can not be obtained.
  • the fraction of the ⁇ -fiber (111) phase can be achieved by controlling the hot rolling condition of the present invention, and the ferritic stainless steel produced according to the conventional process has a ⁇ -fiber (111) phase fraction of less than about 20.0% And a Charpy impact test value of -40 DEG C of less than 20 J / cm < 2 > (See Table 1)
  • the ferritic stainless steel satisfies the following formula (3).
  • the ferritic stainless steel satisfies the following formula (4).
  • the ferritic stainless steel according to one embodiment of the present invention has a Charpy impact test value of 140 J / cm 2 or more at a temperature of -40 ° C, thereby improving the low-temperature impact resistance of the stainless steel.
  • the ferritic stainless steel satisfies the following formula (5).
  • DBTT Ductile to Brittle Transition Temperature
  • DBTT is a ductile brittle transition temperature, and the fracture behavior is changed from soft fracture to brittle fracture based on the DBTT temperature. Accordingly, the ferritic stainless steel according to one embodiment of the present invention has DBTT It has a value of minus 45 ° C or less and can be improved in workability even at a low temperature.
  • the slab reheating temperature, rough rolling reduction ratio, and finish rolling out temperature (FDT) should be controlled during the hot rolling process.
  • a ferritic stainless steel for producing the ferritic stainless steel according to the present invention comprises 17.0 to 20% of Cr, 0.05 to 1% of Nb, 0.05 to 0.45% of Ti, %, C: not more than 0.03% (excluding 0), N: not more than 0.03% (excluding 0), the balance Fe and other unavoidable impurities are produced in a usual manner to produce a slab.
  • the rough rolling load distribution can be shifted to the lower end temperature, which is lower than the shearing temperature.
  • the hot rolling when the hot rolling is performed at the final rolling, it is strongly pressed down to 35% or more, thereby allowing the nucleation sites to be maximally induced, thereby increasing the fine and uniform crystal grains.
  • the temperature at the downstream end of the hot rough rolling can be controlled to 950 to 1,050 ° C.
  • finishing mill delivery temperature designed to be higher than the recrystallization temperature is maintained at 920 ° C or lower so that sufficient deformation energy is given to the inside of the slab so that recrystallization may actively occur during hot rolling and annealing.
  • the finish rolling-out temperature may be 850 DEG C or less.
  • Such a low temperature hot rolling step affects the texture of the hot rolled annealed structure and the final cold rolled steel, thereby improving the workability during cold rolling and the formability of the final cold rolled annealed material.
  • the hot-rolled and annealed heat treatment is performed at a temperature of 1,050 ⁇ ⁇ or lower, whereby a hot-rolled annealed steel sheet having a final thickness of 5.0 mm or more can be produced.
  • the hot rolled annealed steel sheet is cold-rolled to a thickness of 2.0 mm
  • a cold-rolled and annealed steel sheet having a final grain thickness of 2.0 mm or more having fine and uniform crystal grains both in the width direction and the longitudinal direction of the cross-section of the work can be produced by accelerating the recrystallization and homogenization of the grain inside the work.
  • 19Cr-0.4Nb STS 430J1L Steel slabs were reheated to 1,200 ° C in a heating zone and were subjected to a rolling reduction of 35% at each of the final rolling (R4) and pre-rolling (R3) of the rough rolling,
  • the hot rolled coil was controlled to 1,020 ⁇ ⁇ and the finish rolling out temperature (FDT) was 850 ⁇ ⁇ to produce a hot rolled coil having a thickness of 5 mm.
  • Annealing heat treatment at 900 ⁇ ⁇ , cold rolling and cold annealing at 900 ⁇ ⁇ are performed to produce a cold-rolled annealed coil having a final thickness of 2.0 mm.
  • the Charpy impact values of the above Examples and Comparative Examples were measured and are shown in Table 1 below.
  • the Charpy impact value was measured by Charpy impact test according to ASTM E 23 standard.
  • FIG. 1 is a graph showing a Charpy impact test value according to temperature for explaining impact toughness of a 2 mm thick ferritic stainless steel cold-rolled annealed steel sheet according to an embodiment of the present invention.
  • FIG. 1 is a graph showing the Charpy impact energy of the embodiment and the comparative example.
  • Fig. 2 is a graph showing measured phase fractions of the texture of the hot-rolled steel sheets of the examples and comparative examples.
  • the ferritic stainless steel according to the embodiment of the present invention is improved in low temperature impact toughness and can be applied to a variety of uses such as a product material of an exhaust system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

La présente invention concerne un acier inoxydable ferritique ayant une ténacité à l'impact à basse température améliorée et son procédé de production. Un acier inoxydable ferritique selon un mode de réalisation de la présente invention comprend de 18,0 à 20,0 % en poids de Cr, de 0,4 à 2,0 % en poids de Nb, une proportion inférieure ou égale à 0,1 % en poids (mais non nulle) de Ti, une proportion inférieure ou égale à 0,03 % en poids de C, et une proportion inférieure ou égale à 0,03 % en poids de N, le complément étant constitué de Fe et d'autres impuretés inévitables, la fraction de la phase (111) de la fibre γ de l'acier inoxydable ferritique étant supérieure ou égale à 24,0 %, la proportion des grains cristallins d'au moins 55 μm étant inférieure ou égale à 10,0 %, et l'épaisseur étant supérieure ou égale à 1,8 mm. Par conséquent, la valeur d'essai de résilience Charpy à -40 °C est supérieure ou égale à 140 J/cm2 et la DBTT est inférieure ou égale à -45 °C, la ténacité à l'impact à basse température pouvant ainsi être améliorée.
PCT/KR2018/008969 2017-08-25 2018-08-07 Acier inoxydable ferritique ayant une ténacité à l'impact à basse température améliorée et son procédé de production WO2019039774A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0108016 2017-08-25
KR1020170108016A KR20190022127A (ko) 2017-08-25 2017-08-25 저온 충격인성이 개선된 페라이트계 스테인리스강 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019039774A1 true WO2019039774A1 (fr) 2019-02-28

Family

ID=65439123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008969 WO2019039774A1 (fr) 2017-08-25 2018-08-07 Acier inoxydable ferritique ayant une ténacité à l'impact à basse température améliorée et son procédé de production

Country Status (2)

Country Link
KR (1) KR20190022127A (fr)
WO (1) WO2019039774A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088654A (zh) * 2021-04-06 2021-07-09 山西太钢不锈钢股份有限公司 一种改善含铌铁素体不锈钢板宏观偏析的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235450A (ja) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd 低温靭性にすぐれたフエライトステンレス鋼
JP2003138348A (ja) * 2001-10-31 2003-05-14 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2014177659A (ja) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp 低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法
US20170107593A1 (en) * 2014-03-26 2017-04-20 Nippon Steel & Sumikin Stainless Steel Corporation Rolled ferritic stainless steel sheet, method for producing the same, and flange part
JP2017088977A (ja) * 2015-11-13 2017-05-25 Jfeスチール株式会社 フェライト系ステンレス鋼

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485639B1 (ko) 2012-12-20 2015-01-22 주식회사 포스코 내리징성이 우수한 페라이트계 스테인리스강 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235450A (ja) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd 低温靭性にすぐれたフエライトステンレス鋼
JP2003138348A (ja) * 2001-10-31 2003-05-14 Kawasaki Steel Corp フェライト系ステンレス鋼板およびその製造方法
JP2014177659A (ja) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp 低温靭性に優れた耐熱フェライト系ステンレス鋼板およびその製造方法
US20170107593A1 (en) * 2014-03-26 2017-04-20 Nippon Steel & Sumikin Stainless Steel Corporation Rolled ferritic stainless steel sheet, method for producing the same, and flange part
JP2017088977A (ja) * 2015-11-13 2017-05-25 Jfeスチール株式会社 フェライト系ステンレス鋼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088654A (zh) * 2021-04-06 2021-07-09 山西太钢不锈钢股份有限公司 一种改善含铌铁素体不锈钢板宏观偏析的生产方法
CN113088654B (zh) * 2021-04-06 2022-09-13 山西太钢不锈钢股份有限公司 一种改善含铌铁素体不锈钢板宏观偏析的生产方法

Also Published As

Publication number Publication date
KR20190022127A (ko) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2012067379A2 (fr) Procédé de fabrication d'acier dp très résistant laminé à froid/laminé à chaud ayant un niveau de résistance à la traction de 590 mpa et une excellente aptitude au façonnage, ainsi que peu d'écart en termes de propriétés de matériau de celui-ci
WO2012064129A2 (fr) Procédé pour fabriquer un acier à plasticité induite par transformation laminé à froid/laminé à chaud de haute résistance ayant une résistance à la traction d'une valeur de 590 mpa, une excellente usinabilité, et un faible écart de propriété mécanique
WO2018117450A1 (fr) Matériau d'acier à paroi lourde résistant à l'acidité ayant d'excellentes caractéristiques de ténacité à basse température et de post-traitement thermique et son procédé de fabrication
WO2020111863A1 (fr) Acier à ultra-haute résistance présentant une usinabilité à froid et une résistance à la ssc excellentes et procédé de fabrication associé
WO2017222159A1 (fr) Tôle d'acier laminée à froid de haute résistance ayant une excellente aptitude au façonnage et procédé pour la fabriquer
WO2017052005A1 (fr) Acier inoxydable ferritique et son procédé de fabrication
WO2021117989A1 (fr) Tôle d'acier laminée à froid à résistance ultra-élevée et son procédé de fabrication
WO2021010599A2 (fr) Acier inoxydable austénitique ayant une résistance améliorée et procédé de fabrication associé
WO2021172604A1 (fr) Fil machine non traité thermiquement doté d'excellente aptitude à l'étirage et d'excellente résistance aux chocs, et procédé de fabrication associé
WO2020060051A1 (fr) Tôle d'acier inoxydable ferritique laminée à chaud et non recuite ayant une excellente solidité au choc, et son procédé de fabrication
WO2013154254A1 (fr) Tôle d'acier laminée à chaud à teneur élevée en carbone présentant une excellente uniformité et son procédé de fabrication
WO2019088552A1 (fr) Tôle d'acier laminée à froid à ultra-haute résistance présentant une excellente aptitude au laminage à froid et son procédé de fabrication
WO2019039774A1 (fr) Acier inoxydable ferritique ayant une ténacité à l'impact à basse température améliorée et son procédé de production
WO2019117432A1 (fr) Acier inoxydable à base de ferrite à excellente ténacité à l'impact, et son procédé de production
WO2019132179A1 (fr) Feuille d'acier laminée à chaud à haute résistance et haute robustesse et son procédé de fabrication
WO2021125564A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de fabrication
WO2018110866A1 (fr) Acier inoxydable à base de ferrite à résistance au choc améliorée, et son procédé de production
WO2020130257A1 (fr) Tôle d'acier à haute résistance ayant une excellente ductilité et une excellente aptitude au façonnage, et son procédé de fabrication
WO2020085687A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de production
WO2020130614A2 (fr) Tôle d'acier laminée à chaud et à haute résistance ayant un excellent rapport d'extension des trous et son procédé de fabrication
WO2019093689A1 (fr) Tôle d'acier laminée à froid à résistance élevée et faible ténacité ayant d'excellentes propriétés de rupture et son procédé de production
WO2023075287A1 (fr) Acier inoxydable ferritique et son procédé de fabrication
WO2019124638A1 (fr) Tôle d'acier plaquée laminée à chaud à haute résistance et son procédé de fabrication
WO2023234508A1 (fr) Composant d'estampage à chaud et procédé de fabrication associé
WO2023048495A1 (fr) Tôle d'acier laminée à froid à très haute résistance ayant une excellente extensibilité de trou et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849191

Country of ref document: EP

Kind code of ref document: A1