WO2019038919A1 - Denitrification reactor - Google Patents

Denitrification reactor Download PDF

Info

Publication number
WO2019038919A1
WO2019038919A1 PCT/JP2017/030581 JP2017030581W WO2019038919A1 WO 2019038919 A1 WO2019038919 A1 WO 2019038919A1 JP 2017030581 W JP2017030581 W JP 2017030581W WO 2019038919 A1 WO2019038919 A1 WO 2019038919A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
catalyst
inlet duct
brace
denitrification reactor
Prior art date
Application number
PCT/JP2017/030581
Other languages
French (fr)
Japanese (ja)
Inventor
悠孝 平田
政治 森井
龍二 堤
俊昭 其木
木村 修
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to PCT/JP2017/030581 priority Critical patent/WO2019038919A1/en
Publication of WO2019038919A1 publication Critical patent/WO2019038919A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • the present invention relates to a denitrification reactor.
  • a large NOx removal reactor is installed to remove nitrogen oxides (NOx) in the exhaust gas from the boiler.
  • the denitrification reactor used in the boiler plant is, for example, a large structure having a size of 25 m wide ⁇ 11 m deep, and a weight exceeding 1000 t. And about 60% of this weight is the weight of the catalyst, and the denitrification reactor is composed of a large-scale steel frame structure to support the catalyst.
  • Patent Document 1 is known as a denitrification reactor of this type.
  • the denitrification reactor described in Patent Document 1 supports an inlet duct into which exhaust gas from a boiler flows, a plurality of catalyst supporting structures disposed below the inlet duct and supporting the catalyst block, and the catalyst supporting structures. It is configured to have a plurality of pillars and the like.
  • the ceiling surface of the inlet duct is sloped downward from the upstream side to the downstream side of the exhaust gas flow path, and the exhaust gas from the boiler changes 90 degrees in the inlet duct and flows into the catalyst block of the catalyst support structure.
  • the catalyst support structure is a grid-like structure in which a catalyst support beam and a catalyst receiving beam are arranged in a grid and these are surrounded by an outer peripheral frame, and such a support structure is a plurality of column bases It is supported by That is, in Patent Document 1, the load of the catalyst block is transmitted from the support structure to the plurality of column bases, and the plurality of column bases support the load.
  • Patent Document 1 since the load of the catalyst block applied to the support structure is supported only by the plurality of column bases, the strength member of each beam of the support structure is rigid in order to withstand the load of the catalyst block. It is necessary to use high members, and the problem remains in reducing the size and weight of the NOx removal reactor.
  • the present invention aims to reduce the size and weight of the denitrification reactor.
  • a plurality of catalyst support structures arranged in a hierarchy in the vertical direction, each supporting a catalyst block with a horizontally extending support beam, and the plurality of catalyst support structures
  • the inlet duct is a truss structure having a brace provided on the upstream side in the same vertical plane and a reinforcing plate provided on the downstream side, wherein the brace is provided.
  • the support beam are connected via a hanging member extending in the vertical direction.
  • the above-described features make it possible to reduce the size and weight of the NOx removal reactor.
  • the subject except having mentioned above a structure, and an effect are clarified by description of the following embodiment.
  • FIG. 1 is a block diagram of the combination of a denitrification reactor according to an embodiment of the present invention and a boiler
  • FIG. 2 is an entire configuration diagram of the denitrification reactor according to an embodiment of the present invention
  • FIG. 3 is the denitrification reactor shown in FIG. 4 is a cross-sectional view showing the internal configuration
  • FIG. 4 is a perspective view showing the internal configuration of the denitrification reactor shown in FIG. 2
  • FIG. 5 is a layout of braces and reinforcing plates provided in the inlet duct
  • the left and right direction in FIGS. 2 and 3 is defined as the “depth direction”, and the front and back direction in the drawing is defined as the “width direction”.
  • a denitrification reactor 2 As shown in FIG. 1, a denitrification reactor 2 according to an embodiment of the present invention is connected to an exhaust gas outlet of a boiler 1 and supported by a horizontal support steel frame 3. And the denitrification reactor 2 is removing the nitrogen oxide in the waste gas which generate
  • the denitrification reactor 2 is configured to be hierarchically (three hierarchical layers in this embodiment) vertically below the inlet duct 4 connected to the exhaust gas outlet of the boiler 1 and the inlet duct 4.
  • the inlet duct 4 includes three catalyst support structures S arranged to support a large number of catalyst blocks 5 and four column bases 6 supporting the four corners of the three catalyst support structures S, respectively. Are provided at the upper ends of the four columns 6.
  • each side surface of the denitrification reactor 2 is covered with a side casing 7 (see FIG. 4).
  • the inlet duct 4 is a bend portion that allows the exhaust gas from the boiler 1 to flow into the catalyst block 5 of the catalyst support structure S.
  • the ceiling surface of the inlet duct 4 is from the upstream side to the downstream side of the exhaust gas flow path It is sloped downhill towards.
  • the exhaust gas from the boiler 1 travels obliquely downward along the inclined ceiling surface of the inlet duct 4, changes its flow by 90 degrees, and flows into the catalyst block 5.
  • a screen plate 8 is disposed on the floor surface of the inlet duct 4, and the screen plate 8 functions as a straightening vane that makes the flow of exhaust gas toward the catalyst block 5 uniform.
  • the screen plate 8 is installed with a minimum gap in the plane direction, and a rib plate 14 described later is installed in the gap.
  • the catalyst support structure S includes a plurality of first support beams 9 and a plurality of first support beams 9 which are disposed in parallel in the same horizontal plane at intervals in the width direction. And a plurality of second support beams 10 and a plurality of second support beams 10 arranged in parallel with a plurality of second support beams 10 arranged in parallel at intervals in the direction orthogonal to the direction (depth direction). It is formed by attaching a rectangular frame-shaped outer peripheral frame 11 so as to surround it, and has high rigidity that can support a large number of catalyst blocks 5.
  • H-shaped steel is used for the 1st support beam 9, the 2nd support beam 10, and the outer peripheral frame 11, the cross-sectional shape does not matter.
  • the catalyst support structure S needs to support a large load because a large number of catalyst blocks 5 are placed, but in the present embodiment, a part of the load is taken through the lifting plate (hanging member) 7 as an inlet There is a big feature in the point received by the truss structure of the duct 4. This feature is specifically described below.
  • each brace 12 and the reinforcing plate 13 are provided in the same vertical plane including the first support beam 9 of the catalyst support structure S, and a set of such braces 12 and the reinforcing plate 13 A plurality of sets are provided in the inlet duct 4 on the screen plate 8 at intervals in the width direction.
  • each brace 12 is connected to a rib plate 14 attached to a beam member of the ceiling surface and the floor surface of the inlet duct 4, and the rib plate 14 is a node of the truss structure.
  • the rib plate 14 attached to the beam member of the floor surface of the inlet duct 4 is installed in the gap of the screen plate 8.
  • the reinforcing plate 13 is made of a relatively thin steel plate or the like, and the reinforcing plate 13 is attached to a triangular (saddle-shaped) area where the ceiling surface and the floor surface on the downstream side of the inlet duct 4 intersect.
  • the area of the inlet duct 4 is lower in height than the upstream side, and it is difficult to attach the brace 12 to make a truss structure as in the upstream side, but since it is a wedge-shaped portion with a low height, Even if the reinforcing plate 13 is used, the problem of buckling is less likely to occur.
  • the base of the reinforcing plate 13 in the shape of an isosceles triangle is attached to the beam member of the floor of the inlet duct 4 and one oblique side is attached to the beam of the ceiling of the inlet duct 4
  • the shape of the reinforcing plate 13 is not limited to the isosceles triangle, and may be another shape such as a right triangle.
  • each catalyst support structure S is provided with each rib plate 14 installed on the floor surface of the inlet duct 4 via a plurality of suspension plates 15 spaced apart in the depth direction, ie, It is connected with the nodes of the truss structure.
  • the hanging plate 15 is a single plate-like body suspended from the truss structure to the lowermost catalyst supporting structure S.
  • a metal plate material having a plate thickness t 20 mm, for example, is used as the hanging plate 15.
  • the width of the hanging plate 15 is selected to be a suitable size in accordance with the load applied to the catalyst support structure S.
  • the hanging plate 15 is coupled to the first support beam 9 of the catalyst support structure S.
  • the upper end portion of the suspension plate 15 is fixed to the rib plate 14 which is a node of the truss structure by welding, bolt or the like, and this suspension plate 15 is welded or bolted to the first support beam 9 of the catalyst support structure S of each layer. It is fixed by. According to this configuration, since the single supporting plate 15 can be coupled to the first support beams 9 of each layer without being cut, manufacture of the NOx removal reactor 2 is simplified.
  • the load applied to the first support beam 9 of the catalyst support structure S is supported by the both ends (column base 6), and the center portion of the beam is suspended by two It is supported at two places by the plate 15. Therefore, the bending moment applied to the entire first support beam 9 is significantly reduced, and the size of the shaped steel used as the first support beam 9 can be reduced.
  • the load applied to the first support beam 9 is transmitted to the inlet duct 4 of the truss structure at the top of the denitrification reactor 2 by the suspension plate 15 and then transmitted to the column 6 via the side casing 7 Be done. Therefore, the load applied to the first support beam 9 can be supported by the entire NOx removal reactor 2, and the load applied to the column base 6 is significantly reduced.
  • the load transfer is performed so as to transmit the load applied to the first support beam 9 to the truss structure of the inlet duct 4 installed on the upper portion of the NOx removal reactor 2 by providing the hanging plate 15
  • the load can be supported by the entire structure of the denitrification reactor 2. Therefore, the size of the first support beam 9 can be reduced, and as a result, reduction in size and weight of the denitrification reactor 2 can be realized.
  • the load of the load applied to the horizontal support steel frame 3 can be reduced.
  • the brace 12 is installed in the upstream portion of the height in the region from the upstream side to the downstream side of the inlet duct 4 to form a triangular truss structure, and an inclined ceiling surface Since the reinforcing plate 13 is fixed to the downstream portion where the space is narrowed by the above, the combination of the truss structure and the reinforcing plate 13 can firmly support the load from the suspension plate 15. Moreover, since it is possible to use a lightweight reinforcing plate 13 with a thin plate thickness, it is possible to reduce the pressure loss of the gas flowing in the inlet duct 4 and to adhere and deposit dust contained in the gas. It can be reduced.
  • the flange width of the H-shaped steel used for the first support beam 9 is the conventional 300 mm to 200 mm only by providing the suspension plate 15 as in the above embodiment.
  • the height of the web can be reduced from the conventional 900 mm to about 400 mm.
  • the height of the first support beam 9 can be reduced by about 500 mm per layer if the configuration using the hanging plate 15 is used. And the effect becomes remarkable, so that a hierarchy increases.
  • FIG. 7 is a cross-sectional view showing an internal configuration of a denitrification reactor according to another embodiment of the present invention, and the same reference numerals are given to parts corresponding to FIG.
  • the height adjustment space 16 is installed between the inlet duct 4 and the catalyst support structure S of the uppermost layer, and the lifting plate 15 is used as the height adjustment space 16.
  • the truss structure of the inlet duct 4 and the first support beam 9 of the catalyst support structure S are connected longitudinally.
  • the height adjustment space 16 has a frame structure similar to that of the catalyst support structure S supporting the catalyst block 5 and has a truss structure by a plurality of braces 17 and a hanging plate longitudinally cutting the height adjustment space 16
  • the reference numeral 15 is fixed to the node of each brace 17 by welding, bolts or the like.
  • the suspension plate 15 is coupled to all the nodes of the truss structure of the inlet duct 4 and the height adjustment space portion 16, but for example, the suspension passing through the vertex side of the triangle truss structure
  • the plate 15 may be omitted, and only the bottom side node may be connected by the lifting plate 15.
  • the denitrification reactor 2 According to the denitrification reactor 2 according to the other embodiment configured as described above, even if the height of the denitrification reactor 2 can not be lowered due to the positional relationship with the boiler 1, etc., the catalyst support for the inlet duct 4 and the uppermost layer By installing the height adjustment space portion 16 between the structure S and the structure S, the positional relationship between the boiler 1 and the denitrification reactor 2 can be properly maintained.
  • the space part 16 for height adjustment is made into a truss structure and the node of the truss structure (brace 17) and the suspension board 15 were connected, the load applied to the 1st support beam 9 of catalyst support structure S is both ends (pillar In addition to being supported by the legs 6), the central portion of the beam is supported by a plurality of suspension plates 15 at a plurality of points. Therefore, the bending moment applied to the entire first support beam 9 is significantly reduced, and the size of the shaped steel used as the first support beam 9 can be reduced.

Abstract

The purpose of the invention is to make a denitrification reactor more compact and lighter. The invention comprises: a plurality of catalyst support structures S that are disposed in layers in the vertical direction and each of which supports catalytic agent blocks 5 with support beams 9, 10 extending in the horizontal direction; a plurality of column bases 6 that support the support beams 9, 10 of the plurality of catalyst support structures S; and an inlet duct 4 that is disposed above the plurality of catalyst support structures S and the ceiling of which slopes down from the upstream side of an exhaust gas channel to the downstream side of same. The inlet duct 4 is a truss structure that has, on the same vertical plane, a brace 12 provided upstream and a reinforcement plate 13 provided downstream. The brace 12 node is connected to a support beam 9 of the catalyst support structure S via a suspended member 15 that extends in the vertical direction.

Description

脱硝反応器NOx removal reactor
 本発明は、脱硝反応器に関する。 The present invention relates to a denitrification reactor.
 例えばボイラプラントにおいて、ボイラからの排ガス中の窒素酸化物(NOx)を取り除くために、大型の脱硝反応器が設置されている。ボイラプラントに用いられる脱硝反応器は、例えば、幅25m×奥行き11mの大きさで、重量が1000tを超える大型構造物である。そして、この重量のうち約6割は触媒の重量が占めており、触媒を支持するために、脱硝反応器は大掛かりな鉄骨構造で構成される。 For example, in a boiler plant, a large NOx removal reactor is installed to remove nitrogen oxides (NOx) in the exhaust gas from the boiler. The denitrification reactor used in the boiler plant is, for example, a large structure having a size of 25 m wide × 11 m deep, and a weight exceeding 1000 t. And about 60% of this weight is the weight of the catalyst, and the denitrification reactor is composed of a large-scale steel frame structure to support the catalyst.
 この種の脱硝反応器として特許文献1が公知である。特許文献1に記載の脱硝反応器は、ボイラからの排ガスが流入する入口ダクトと、入口ダクトの下方に配置され、それぞれ触媒ブロックを支持する複数の触媒支持構造と、これら触媒支持構造を支持する複数の柱脚等を備えて構成されておいる。入口ダクトの天井面は排ガス流路の上流側から下流側に向けて下り勾配で傾斜しており、ボイラからの排ガスは、入口ダクトで90度変更して触媒支持構造の触媒ブロックに流入する。 Patent Document 1 is known as a denitrification reactor of this type. The denitrification reactor described in Patent Document 1 supports an inlet duct into which exhaust gas from a boiler flows, a plurality of catalyst supporting structures disposed below the inlet duct and supporting the catalyst block, and the catalyst supporting structures. It is configured to have a plurality of pillars and the like. The ceiling surface of the inlet duct is sloped downward from the upstream side to the downstream side of the exhaust gas flow path, and the exhaust gas from the boiler changes 90 degrees in the inlet duct and flows into the catalyst block of the catalyst support structure.
 また、触媒支持構造は、触媒支持梁と触媒受け梁とを格子状に配置し、これらの周囲を外周フレームで囲った格子状の構造体であり、このような支持構造体が複数の柱脚で支持されている。すなわち、特許文献1において、触媒ブロックの荷重は支持構造体から複数の柱脚に伝達され、複数の柱脚がこの荷重を支持するようになっている。 In addition, the catalyst support structure is a grid-like structure in which a catalyst support beam and a catalyst receiving beam are arranged in a grid and these are surrounded by an outer peripheral frame, and such a support structure is a plurality of column bases It is supported by That is, in Patent Document 1, the load of the catalyst block is transmitted from the support structure to the plurality of column bases, and the plurality of column bases support the load.
特開2002-349096号公報Japanese Patent Application Laid-Open No. 2002-349096
 ところで、触媒の性能を発揮するためには、触媒の真上に一定の空間を設ける必要がある。そのため、脱硝反応器を小型・軽量化するためには、この空間を確保しつつ、触媒ブロックを支持する支持構造体(触媒支持構造)の各梁を小型・軽量化する必要がある。 By the way, in order to exhibit the performance of the catalyst, it is necessary to provide a certain space right above the catalyst. Therefore, in order to reduce the size and weight of the denitration reactor, it is necessary to reduce the size and weight of each beam of the support structure (catalyst support structure) that supports the catalyst block while securing the space.
 しかしながら、特許文献1では、支持構造体に掛かる触媒ブロックの荷重を複数の柱脚でしか支持していないため、支持構造体の各梁の強度部材は触媒ブロックの荷重に耐え得るために剛性の高い部材を用いなければならず、脱硝反応器の小型・軽量化において課題が残る。 However, in Patent Document 1, since the load of the catalyst block applied to the support structure is supported only by the plurality of column bases, the strength member of each beam of the support structure is rigid in order to withstand the load of the catalyst block. It is necessary to use high members, and the problem remains in reducing the size and weight of the NOx removal reactor.
 そこで、本発明は、脱硝反応器の小型・軽量化を図ることを目的とする。 Therefore, the present invention aims to reduce the size and weight of the denitrification reactor.
 上記目的を達成するために、代表的な本発明は、上下方向に階層状に配置され、それぞれ触媒ブロックを水平方向に延びる支持梁で支持する複数の触媒支持構造と、前記複数の触媒支持構造の前記支持梁を支持する複数の柱脚と、前記複数の触媒支持構造の上方に配置され、その天井面が排ガス流路の上流側から下流側に向けて下り勾配で傾斜している入口ダクトと、を有する脱硝反応器であって、前記入口ダクトは、同一の鉛直面内において上流側に設けられたブレースと、下流側に設けられた補強板と、を有するトラス構造であり、前記ブレースの節点と前記支持梁とが鉛直方向に延びる吊下げ部材を介して連結されていることを特徴とする。 In order to achieve the above object, according to a typical present invention, a plurality of catalyst support structures arranged in a hierarchy in the vertical direction, each supporting a catalyst block with a horizontally extending support beam, and the plurality of catalyst support structures A plurality of column bases for supporting the support beam, and an inlet duct which is disposed above the plurality of catalyst support structures and whose ceiling surface is inclined downward from the upstream side to the downstream side of the exhaust gas flow path And the inlet duct is a truss structure having a brace provided on the upstream side in the same vertical plane and a reinforcing plate provided on the downstream side, wherein the brace is provided. And the support beam are connected via a hanging member extending in the vertical direction.
 本発明によれば、上記の特徴により脱硝反応器を小型・軽量化することができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the above-described features make it possible to reduce the size and weight of the NOx removal reactor. In addition, the subject except having mentioned above, a structure, and an effect are clarified by description of the following embodiment.
本発明の実施形態に係る脱硝反応器をボイラと組み合わせた構成図である。It is the block diagram which combined the NOx removal reactor which concerns on embodiment of this invention with a boiler. 本発明の実施形態に係る脱硝反応器の全体構成図である。It is a whole block diagram of the denitrification reactor which concerns on embodiment of this invention. 図2に示す脱硝反応器の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the denitrification reactor shown in FIG. 図2に示す脱硝反応器の内部構成を示す斜視図である。It is a perspective view which shows the internal structure of the denitrification reactor shown in FIG. 入口ダクトに設けられたブレースと補強板の配置図である。It is an arrangement | positioning figure of the brace and reinforcement board provided in the inlet duct. ブレースとリブプレートの結合状態を示す説明図である。It is explanatory drawing which shows the combined state of a brace and a rib plate. 本発明の他の実施形態に係る脱硝反応器の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the NOx removal reactor which concerns on other embodiment of this invention.
 以下、本発明の実施形態について図面を用いて説明する。図1は本発明の実施形態に係る脱硝反応器をボイラと組み合わせた構成図、図2は本発明の実施形態に係る脱硝反応器の全体構成図、図3は図2に示す脱硝反応器の内部構成を示す断面図、図4は図2に示す脱硝反応器の内部構成を示す斜視図、図5は入口ダクトに設けられたブレースと補強板の配置図、図6はブレースとリブプレートの結合状態を示す説明図である。なお、以下の説明において、図2ないし図3の左右方向のことを「奥行き方向」と定義し、同図の紙面表裏方向のことを「幅方向」と定義する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a block diagram of the combination of a denitrification reactor according to an embodiment of the present invention and a boiler, FIG. 2 is an entire configuration diagram of the denitrification reactor according to an embodiment of the present invention, and FIG. 3 is the denitrification reactor shown in FIG. 4 is a cross-sectional view showing the internal configuration, FIG. 4 is a perspective view showing the internal configuration of the denitrification reactor shown in FIG. 2, FIG. 5 is a layout of braces and reinforcing plates provided in the inlet duct, FIG. It is explanatory drawing which shows a coupling | bonding state. In the following description, the left and right direction in FIGS. 2 and 3 is defined as the “depth direction”, and the front and back direction in the drawing is defined as the “width direction”.
 図1に示すように、本発明の実施形態に係る脱硝反応器2は、ボイラ1の排ガス出口に接続され、水平支持鉄骨3によって支持されている。そして、脱硝反応器2は、ボイラ1にて発生した排ガス中の窒素酸化物を、触媒と反応させることにより除去している。 As shown in FIG. 1, a denitrification reactor 2 according to an embodiment of the present invention is connected to an exhaust gas outlet of a boiler 1 and supported by a horizontal support steel frame 3. And the denitrification reactor 2 is removing the nitrogen oxide in the waste gas which generate | occur | produced in the boiler 1 by making it react with a catalyst.
 脱硝反応器2は、図2に示すように、ボイラ1の排ガス出口に接続された入口ダクト4と、入口ダクト4の真下に上下方向に階層状(本実施形態では3階層)となるように配置され、それぞれ多数の触媒ブロック5を支持する3つの触媒支持構造Sと、3つの触媒支持構造Sの四隅部をそれぞれ支持する4本の柱脚6とを有して構成され、入口ダクト4は4本の柱脚6の上端部に設けられている。なお、図2において図示しないが、脱硝反応器2の各側面は側面ケーシング7(図4参照)で覆われている。 As shown in FIG. 2, the denitrification reactor 2 is configured to be hierarchically (three hierarchical layers in this embodiment) vertically below the inlet duct 4 connected to the exhaust gas outlet of the boiler 1 and the inlet duct 4. The inlet duct 4 includes three catalyst support structures S arranged to support a large number of catalyst blocks 5 and four column bases 6 supporting the four corners of the three catalyst support structures S, respectively. Are provided at the upper ends of the four columns 6. Although not shown in FIG. 2, each side surface of the denitrification reactor 2 is covered with a side casing 7 (see FIG. 4).
 入口ダクト4は、ボイラ1からの排ガスを触媒支持構造Sの触媒ブロック5に流入させるベンド部であり、図3に示すように、入口ダクト4の天井面は排ガス流路の上流側から下流側に向けて下り勾配で傾斜している。これにより、ボイラ1からの排ガスは、入口ダクト4の傾斜する天井面に沿って斜め下方に向かい、その流れを90度変更して触媒ブロック5に流入する。また、入口ダクト4の床面にはスクリーンプレート8が配設されており、このスクリーンプレート8は、触媒ブロック5に向かう排ガスの流れを均一にする整流板として機能する。図5に示すように、スクリーンプレート8は平面方向の隙間を最小限にして設置されており、その隙間に後述するリブプレート14が設置されている。 The inlet duct 4 is a bend portion that allows the exhaust gas from the boiler 1 to flow into the catalyst block 5 of the catalyst support structure S. As shown in FIG. 3, the ceiling surface of the inlet duct 4 is from the upstream side to the downstream side of the exhaust gas flow path It is sloped downhill towards. As a result, the exhaust gas from the boiler 1 travels obliquely downward along the inclined ceiling surface of the inlet duct 4, changes its flow by 90 degrees, and flows into the catalyst block 5. In addition, a screen plate 8 is disposed on the floor surface of the inlet duct 4, and the screen plate 8 functions as a straightening vane that makes the flow of exhaust gas toward the catalyst block 5 uniform. As shown in FIG. 5, the screen plate 8 is installed with a minimum gap in the plane direction, and a rib plate 14 described later is installed in the gap.
 図3と図4に示すように、触媒支持構造Sは、同一の水平面内において互いに幅方向に間隔を空けて平行に配置される複数の第1支持梁9と、複数の第1支持梁9と直交する方向(奥行き方向)に互いに間隔を空けて平行に配置される複数の第2支持梁10とを格子状に配置し、複数の第1支持梁9と複数の第2支持梁10を囲むように矩形枠状の外周フレーム11を取り付けて形成され、多数の触媒ブロック5を支持できる程度の高い剛性を有する。本実施形態では、第1支持梁9、第2支持梁10、及び外周フレーム11はH形鋼が用いられているが、その断面形状は問わない。 As shown in FIG. 3 and FIG. 4, the catalyst support structure S includes a plurality of first support beams 9 and a plurality of first support beams 9 which are disposed in parallel in the same horizontal plane at intervals in the width direction. And a plurality of second support beams 10 and a plurality of second support beams 10 arranged in parallel with a plurality of second support beams 10 arranged in parallel at intervals in the direction orthogonal to the direction (depth direction). It is formed by attaching a rectangular frame-shaped outer peripheral frame 11 so as to surround it, and has high rigidity that can support a large number of catalyst blocks 5. In this embodiment, although H-shaped steel is used for the 1st support beam 9, the 2nd support beam 10, and the outer peripheral frame 11, the cross-sectional shape does not matter.
 触媒支持構造Sは、多数の触媒ブロック5が載置されるため、大きな荷重を支える必要があるが、本実施形態では、その荷重の一部を吊板(吊下げ部材)7を介して入口ダクト4のトラス構造で受けている点に大きな特徴がある。この特徴について以下、具体的に説明する。 The catalyst support structure S needs to support a large load because a large number of catalyst blocks 5 are placed, but in the present embodiment, a part of the load is taken through the lifting plate (hanging member) 7 as an inlet There is a big feature in the point received by the truss structure of the duct 4. This feature is specifically described below.
 図3に示すように、入口ダクト4の天井面と床面で挟まれた領域のうち、上流側(図示左側)の約1/3部分と中央部分に、それぞれブレース12を一対ずつ架設して三角形のトラス構造を構成すると共に、下流側(図示右側)の約1/3部分に三角形状の補強板13を固定してある。図5に示すように、各ブレース12と補強板13は、触媒支持構造Sの第1支持梁9を含む同一の鉛直面内に設けられており、このようなブレース12と補強板13の組が、スクリーンプレート8上の入口ダクト4に幅方向に間隔を空けて複数組設けられている。 As shown in FIG. 3, in the region between the ceiling surface and the floor surface of the inlet duct 4, a pair of braces 12 are constructed respectively in about one-third portion and the central portion on the upstream side (left side in the figure). While forming a triangular truss structure, a triangular reinforcing plate 13 is fixed to about 1/3 of the downstream side (right side in the figure). As shown in FIG. 5, each brace 12 and the reinforcing plate 13 are provided in the same vertical plane including the first support beam 9 of the catalyst support structure S, and a set of such braces 12 and the reinforcing plate 13 A plurality of sets are provided in the inlet duct 4 on the screen plate 8 at intervals in the width direction.
 図6に示すように、各ブレース12は入口ダクト4の天井面と床面の梁部材に取り付けられたリブプレート14に結合されており、これらリブプレート14がトラス構造の節点となっている。前述したように、入口ダクト4の床面の梁部材に取り付けられたリブプレート14は、スクリーンプレート8の隙間内に設置されている。 As shown in FIG. 6, each brace 12 is connected to a rib plate 14 attached to a beam member of the ceiling surface and the floor surface of the inlet duct 4, and the rib plate 14 is a node of the truss structure. As described above, the rib plate 14 attached to the beam member of the floor surface of the inlet duct 4 is installed in the gap of the screen plate 8.
 補強板13は比較的板厚の薄い鋼板等からなり、この補強板13は入口ダクト4の下流側の天井面と床面が交差する三角形状(楔形状)の領域に取り付けられている。入口ダクト4の当該領域は上流側に比べて高さが低く、上流側のようにブレース12を取り付けてトラス構造とすることは困難であるが、楔形状で高さが低い部分であるため、補強板13を用いても座屈の問題は生じにくくなっている。なお、本実施形態では、二等辺三角形状の補強板13の底辺を入口ダクト4の床面の梁部材に取り付けると共に、一つの斜辺を入口ダクト4の天井面の梁部材に取り付けているが、補強板13の形状は二等辺三角形に限定されず、直角三角形等の他の形状であっても良い。 The reinforcing plate 13 is made of a relatively thin steel plate or the like, and the reinforcing plate 13 is attached to a triangular (saddle-shaped) area where the ceiling surface and the floor surface on the downstream side of the inlet duct 4 intersect. The area of the inlet duct 4 is lower in height than the upstream side, and it is difficult to attach the brace 12 to make a truss structure as in the upstream side, but since it is a wedge-shaped portion with a low height, Even if the reinforcing plate 13 is used, the problem of buckling is less likely to occur. In this embodiment, the base of the reinforcing plate 13 in the shape of an isosceles triangle is attached to the beam member of the floor of the inlet duct 4 and one oblique side is attached to the beam of the ceiling of the inlet duct 4 The shape of the reinforcing plate 13 is not limited to the isosceles triangle, and may be another shape such as a right triangle.
 図3と図4に示すように、各触媒支持構造Sは、奥行き方向に間隔を空けて複数配置された吊板15を介して入口ダクト4の床面に設置された各リブプレート14、すなわちトラス構造の節点と連結している。吊板15はトラス構造から最下層の触媒支持構造Sまで垂下する1枚の板状体であり、本実施形態では、吊板15として例えば板厚t=20mmの金属板材が用いられている。また、吊板15の幅は、触媒支持構造Sに掛かる荷重に応じて好適なサイズが選定されている。そして、本実施形態では、吊板15は触媒支持構造Sの第1支持梁9と結合している。 As shown in FIG. 3 and FIG. 4, each catalyst support structure S is provided with each rib plate 14 installed on the floor surface of the inlet duct 4 via a plurality of suspension plates 15 spaced apart in the depth direction, ie, It is connected with the nodes of the truss structure. The hanging plate 15 is a single plate-like body suspended from the truss structure to the lowermost catalyst supporting structure S. In the present embodiment, a metal plate material having a plate thickness t = 20 mm, for example, is used as the hanging plate 15. Further, the width of the hanging plate 15 is selected to be a suitable size in accordance with the load applied to the catalyst support structure S. And in this embodiment, the hanging plate 15 is coupled to the first support beam 9 of the catalyst support structure S.
 吊板15の上端部はトラス構造の節点であるリブプレート14に溶接やボルト等により固定されており、この吊板15は各階層の触媒支持構造Sの第1支持梁9に溶接やボルト等により固定されている。この構成により、1枚の吊板15を切断することなく、各階層の第1支持梁9と結合することができるため、脱硝反応器2の製造が簡単となる。 The upper end portion of the suspension plate 15 is fixed to the rib plate 14 which is a node of the truss structure by welding, bolt or the like, and this suspension plate 15 is welded or bolted to the first support beam 9 of the catalyst support structure S of each layer. It is fixed by. According to this configuration, since the single supporting plate 15 can be coupled to the first support beams 9 of each layer without being cut, manufacture of the NOx removal reactor 2 is simplified.
 このように構成された脱硝反応器2では、触媒支持構造Sの第1支持梁9に掛かる荷重は、両端(柱脚6)で支持されることに加えて、梁の中央部が2つの吊板15によって2箇所支持されている。そのため、第1支持梁9全体に掛かる曲げモーメントが大幅に低減され、第1支持梁9として用いられる形鋼のサイズを小さくすることができる。 In the denitrification reactor 2 configured in this way, the load applied to the first support beam 9 of the catalyst support structure S is supported by the both ends (column base 6), and the center portion of the beam is suspended by two It is supported at two places by the plate 15. Therefore, the bending moment applied to the entire first support beam 9 is significantly reduced, and the size of the shaped steel used as the first support beam 9 can be reduced.
 次に、脱硝反応器2全体に対してどのように荷重が伝達するかについて説明する。本実施形態では、第1支持梁9に掛かる荷重は、吊板15によって脱硝反応器2の上部にあるトラス構造の入口ダクト4に伝達され、その後、側面ケーシング7を介して柱脚6に伝達される。そのため、第1支持梁9に掛かる荷重を脱硝反応器2の全体で支持することができ、柱脚6に掛かる負担が大幅に低減される。 Next, how the load is transmitted to the entire NOx removal reactor 2 will be described. In the present embodiment, the load applied to the first support beam 9 is transmitted to the inlet duct 4 of the truss structure at the top of the denitrification reactor 2 by the suspension plate 15 and then transmitted to the column 6 via the side casing 7 Be done. Therefore, the load applied to the first support beam 9 can be supported by the entire NOx removal reactor 2, and the load applied to the column base 6 is significantly reduced.
 以上説明したように、本実施形態では、吊板15を設けて第1支持梁9に掛かる荷重を脱硝反応器2の上部に設置された入口ダクト4のトラス構造へと伝達するよう荷重の伝達経路を変えたことにより、当該荷重を脱硝反応器2の構造物全体で支持することができる。そのため、第1支持梁9のサイズを小さくすることができ、その結果、脱硝反応器2の小型・軽量化を実現することができる。そして、脱硝反応器2の柱脚6と水平支持鉄骨3との芯を合わせることにより、水平支持鉄骨3に作用させる荷重の負担も低減することができる。 As described above, in the present embodiment, the load transfer is performed so as to transmit the load applied to the first support beam 9 to the truss structure of the inlet duct 4 installed on the upper portion of the NOx removal reactor 2 by providing the hanging plate 15 By changing the path, the load can be supported by the entire structure of the denitrification reactor 2. Therefore, the size of the first support beam 9 can be reduced, and as a result, reduction in size and weight of the denitrification reactor 2 can be realized. And, by aligning the core 6 of the denitration reactor 2 with the horizontal support steel frame 3, the load of the load applied to the horizontal support steel frame 3 can be reduced.
 また、本実施形態では、入口ダクト4の上流側から下流側に至る領域のうち、高さのある上流側の部分にブレース12を架設して三角形のトラス構造を構成すると共に、傾斜した天井面によって空間が狭められた下流側の部分に補強板13を固定しているため、これらトラス構造と補強板13の組み合わせによって吊板15からの荷重を強固に支持することができる。しかも、板厚が薄くて軽量の補強板13を用いることが可能であるため、入口ダクト4内を流れるガスの圧力損失を低減することができると共に、ガス中に含まれるダストの付着・堆積を低減することができる。 Further, in the present embodiment, the brace 12 is installed in the upstream portion of the height in the region from the upstream side to the downstream side of the inlet duct 4 to form a triangular truss structure, and an inclined ceiling surface Since the reinforcing plate 13 is fixed to the downstream portion where the space is narrowed by the above, the combination of the truss structure and the reinforcing plate 13 can firmly support the load from the suspension plate 15. Moreover, since it is possible to use a lightweight reinforcing plate 13 with a thin plate thickness, it is possible to reduce the pressure loss of the gas flowing in the inlet duct 4 and to adhere and deposit dust contained in the gas. It can be reduced.
 本発明の効果をより具体的に説明すると、上記実施形態のように吊板15を設ける構成にするだけで、例えば、第1支持梁9に用いるH形鋼のフランジ幅を従来の300mmから200mm程度に、ウェブの高さを従来の900mmから400mm程度に軽減できる。特に、脱硝反応器2では排ガスを整流させるために、触媒ブロック5の上部には十分な空間が必要となり、脱硝反応器2の高さを低くすることは容易ではなかったが、本実施形態のように吊板15を用いる構成を用いれば、1階層当たり第1支持梁9の高さを約500mm低くすることができる。そして、その効果は、階層が多くなるほど顕著となる。 The effects of the present invention will be more specifically described. For example, the flange width of the H-shaped steel used for the first support beam 9 is the conventional 300 mm to 200 mm only by providing the suspension plate 15 as in the above embodiment. To the extent, the height of the web can be reduced from the conventional 900 mm to about 400 mm. In particular, in order to rectify the exhaust gas in the denitrification reactor 2, a sufficient space is required above the catalyst block 5, and it has not been easy to reduce the height of the denitrification reactor 2. As described above, the height of the first support beam 9 can be reduced by about 500 mm per layer if the configuration using the hanging plate 15 is used. And the effect becomes remarkable, so that a hierarchy increases.
 図7は本発明の他の実施形態に係る脱硝反応器の内部構成を示す断面図であり、図3に対応する部分には同一符号を付すことで重複説明を省略する。 FIG. 7 is a cross-sectional view showing an internal configuration of a denitrification reactor according to another embodiment of the present invention, and the same reference numerals are given to parts corresponding to FIG.
 図7に示す脱硝反応器2では、入口ダクト4と最上階層の触媒支持構造Sとの間に高さ調整用空間部16が設置されており、吊板15は高さ調整用空間部16を縦断して入口ダクト4のトラス構造と触媒支持構造Sの第1支持梁9とを結合している。高さ調整用空間部16は触媒ブロック5を支持する触媒支持構造Sと同様のフレーム構造であり、複数のブレース17によってトラス構造となっており、高さ調整用空間部16を縦断する吊板15は各ブレース17の節点に溶接やボルト等により固定されている。なお、本実施形態では、入口ダクト4と高さ調整用空間部16のトラス構造の全ての節点に吊板15が結合されているが、例えば、三角形のトラス構造の頂点側の節点を通る吊板15を省略し、底辺側の節点のみを吊板15で結合するようにしても良い。 In the denitrification reactor 2 shown in FIG. 7, the height adjustment space 16 is installed between the inlet duct 4 and the catalyst support structure S of the uppermost layer, and the lifting plate 15 is used as the height adjustment space 16. The truss structure of the inlet duct 4 and the first support beam 9 of the catalyst support structure S are connected longitudinally. The height adjustment space 16 has a frame structure similar to that of the catalyst support structure S supporting the catalyst block 5 and has a truss structure by a plurality of braces 17 and a hanging plate longitudinally cutting the height adjustment space 16 The reference numeral 15 is fixed to the node of each brace 17 by welding, bolts or the like. In the present embodiment, the suspension plate 15 is coupled to all the nodes of the truss structure of the inlet duct 4 and the height adjustment space portion 16, but for example, the suspension passing through the vertex side of the triangle truss structure The plate 15 may be omitted, and only the bottom side node may be connected by the lifting plate 15.
 このように構成された他の実施形態に係る脱硝反応器2によれば、ボイラ1との位置関係等によって脱硝反応器2の高さを低くできない場合でも、入口ダクト4と最上階層の触媒支持構造Sとの間に高さ調整用空間部16を設置することにより、ボイラ1と脱硝反応器2との位置関係を適正に保つことができる。そして、高さ調整用空間部16をトラス構造とし、そのトラス構造(ブレース17)の節点と吊板15とを結合したため、触媒支持構造Sの第1支持梁9に掛かる荷重は、両端(柱脚6)で支持されることに加えて、梁の中央部が複数の吊板15によって複数箇所支持されている。そのため、第1支持梁9全体に掛かる曲げモーメントが大幅に低減され、第1支持梁9として用いられる形鋼のサイズを小さくすることができる。 According to the denitrification reactor 2 according to the other embodiment configured as described above, even if the height of the denitrification reactor 2 can not be lowered due to the positional relationship with the boiler 1, etc., the catalyst support for the inlet duct 4 and the uppermost layer By installing the height adjustment space portion 16 between the structure S and the structure S, the positional relationship between the boiler 1 and the denitrification reactor 2 can be properly maintained. And since the space part 16 for height adjustment is made into a truss structure and the node of the truss structure (brace 17) and the suspension board 15 were connected, the load applied to the 1st support beam 9 of catalyst support structure S is both ends (pillar In addition to being supported by the legs 6), the central portion of the beam is supported by a plurality of suspension plates 15 at a plurality of points. Therefore, the bending moment applied to the entire first support beam 9 is significantly reduced, and the size of the shaped steel used as the first support beam 9 can be reduced.
 なお、本発明は上記した各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した各実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiments, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 1 ボイラ
 2 脱硝反応器
 3 水平支持鉄骨
 4 入口ダクト
 5 触媒ブロック5
 6 柱脚
 7 側面ケーシング
 8 スクリーンプレート
 9 第1支持梁(支持梁)
 10 第2支持梁(支持梁)
 11 外周フレーム
 12 ブレース
 13 補強板
 14 リブプレート
 15 吊板(吊下げ部材)
 16 高さ調整用空間部
 17 ブレース
 S 触媒支持構造
1 boiler 2 denitrification reactor 3 horizontal support steel frame 4 inlet duct 5 catalyst block 5
6 column base 7 side casing 8 screen plate 9 first support beam (support beam)
10 Second support beam (support beam)
11 perimeter frame 12 brace 13 reinforcement plate 14 rib plate 15 suspension plate (hanging member)
16 Height adjustment space 17 Brace S Catalyst support structure

Claims (3)

  1.  上下方向に階層状に配置され、それぞれ触媒ブロックを水平方向に延びる支持梁で支持する複数の触媒支持構造と、前記複数の触媒支持構造の前記支持梁を支持する複数の柱脚と、前記複数の触媒支持構造の上方に配置され、その天井面が排ガス流路の上流側から下流側に向けて下り勾配で傾斜している入口ダクトと、を有する脱硝反応器であって、
     前記入口ダクトは、同一の鉛直面内において上流側に設けられたブレースと、下流側に設けられた補強板と、を有するトラス構造であり、
     前記ブレースの節点と前記支持梁とが鉛直方向に延びる吊下げ部材を介して連結されていることを特徴とする脱硝反応器。
    A plurality of catalyst support structures arranged in a hierarchy in the vertical direction, each supporting the catalyst block with a support beam extending in the horizontal direction, a plurality of column bases supporting the support beams of the plurality of catalyst support structures, and the plurality An inlet duct which is disposed above the catalyst support structure and whose ceiling surface slopes downward from the upstream side to the downstream side of the exhaust gas flow path,
    The inlet duct is a truss structure having a brace provided on the upstream side in the same vertical plane and a reinforcing plate provided on the downstream side,
    A denitrification reactor characterized in that a node of the brace and the support beam are connected via a hanging member extending in the vertical direction.
  2.  請求項1において、
     前記入口ダクトと最上階の前記触媒支持構造との間に高さ調整用空間部が設けられており、前記吊下げ部材は前記高さ調整用空間部を縦断して前記ブレースの節点と前記支持梁に連結されていることを特徴とする脱硝反応器。
    In claim 1,
    A space for adjusting the height is provided between the inlet duct and the catalyst support structure on the top floor, and the suspending member vertically cuts the space for adjusting the height to support the node of the brace and the support A denitrification reactor characterized in that it is connected to a beam.
  3.  請求項2において、
     前記高さ調整用空間部がトラス構造であり、このトラス構造のブレースの節点と前記吊下げ部材とが結合されていることを特徴とする脱硝反応器。
     
    In claim 2,
    The denitrification reactor characterized in that the height adjustment space portion is a truss structure, and a node of the brace of the truss structure and the suspension member are connected.
PCT/JP2017/030581 2017-08-25 2017-08-25 Denitrification reactor WO2019038919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030581 WO2019038919A1 (en) 2017-08-25 2017-08-25 Denitrification reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030581 WO2019038919A1 (en) 2017-08-25 2017-08-25 Denitrification reactor

Publications (1)

Publication Number Publication Date
WO2019038919A1 true WO2019038919A1 (en) 2019-02-28

Family

ID=65438542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030581 WO2019038919A1 (en) 2017-08-25 2017-08-25 Denitrification reactor

Country Status (1)

Country Link
WO (1) WO2019038919A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279528U (en) * 1985-11-06 1987-05-21
JPH0620511B2 (en) * 1985-03-07 1994-03-23 ドイツチエ バブコツク ヴエルケ アクチエンゲゼルシヤフト Casing used in equipment for processing high temperature gas such as combustion gas
JPH06108575A (en) * 1992-09-30 1994-04-19 Misawa Homes Co Ltd Mansard roof structure and construction thereof
JP2002048329A (en) * 2000-08-03 2002-02-15 Babcock Hitachi Kk Exhaust gas treatment apparatus provided with straightening equipment
JP2002349096A (en) * 2001-05-22 2002-12-04 Babcock Hitachi Kk Structure with self-supported casing
US20050235595A1 (en) * 2004-04-22 2005-10-27 Bechtel Corporation Systems and methods for modular construction of large structures
WO2016133116A1 (en) * 2015-02-18 2016-08-25 三菱日立パワーシステムズ株式会社 Exhaust gas heat recovery system
WO2017094657A1 (en) * 2015-11-30 2017-06-08 三菱日立パワーシステムズ株式会社 Denitration reactor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620511B2 (en) * 1985-03-07 1994-03-23 ドイツチエ バブコツク ヴエルケ アクチエンゲゼルシヤフト Casing used in equipment for processing high temperature gas such as combustion gas
JPS6279528U (en) * 1985-11-06 1987-05-21
JPH06108575A (en) * 1992-09-30 1994-04-19 Misawa Homes Co Ltd Mansard roof structure and construction thereof
JP2002048329A (en) * 2000-08-03 2002-02-15 Babcock Hitachi Kk Exhaust gas treatment apparatus provided with straightening equipment
JP2002349096A (en) * 2001-05-22 2002-12-04 Babcock Hitachi Kk Structure with self-supported casing
US20050235595A1 (en) * 2004-04-22 2005-10-27 Bechtel Corporation Systems and methods for modular construction of large structures
WO2016133116A1 (en) * 2015-02-18 2016-08-25 三菱日立パワーシステムズ株式会社 Exhaust gas heat recovery system
WO2017094657A1 (en) * 2015-11-30 2017-06-08 三菱日立パワーシステムズ株式会社 Denitration reactor

Similar Documents

Publication Publication Date Title
EP1662198B1 (en) Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module
KR20110066876A (en) Apparatus for rigidifying radial bed catalytic conversion units
KR100952931B1 (en) Shear force reinforcing apparatus of concrete filled steel tube column-reinforced concrete flat slab joint
WO2019038919A1 (en) Denitrification reactor
KR101962788B1 (en) Temporary bridge construction method using steel girder and composite deck-plate and temporary bridge therewith
CN214696793U (en) Climb and shelve superelevation and spring layer extension and adhere to support
CN206538768U (en) A kind of assembled combines inner supporting structure
WO2017094657A1 (en) Denitration reactor
JP4318041B2 (en) Tower structure
KR101407816B1 (en) structure system using bar truss integrated asymmetry H-beam
JP2006037577A (en) Complementary rigid beam and its manufacturing method
JP7334385B2 (en) Unit building ceiling structure
CN211548375U (en) Structure for solving pipeline space by adopting cantilever beam arrangement
CN214331729U (en) Pipeline installation system suitable for large-scale steel construction factory building
JP7095836B2 (en) Building structure
JP3880810B2 (en) Denitration reactor
CN210105088U (en) Full-bolt connection node of H-shaped steel beam and floor bearing plate in fabricated building
CN211543856U (en) Whole machine adds I-beam for aircraft structure
CN218466349U (en) Device for improving rigidity of profiled steel sheet between steel box girder and steel box
CN218580877U (en) Connecting node of box column and H-shaped steel beam
CN214416062U (en) Novel marine access & exit support piece
CN207377159U (en) A kind of Super High Core Walls Structure construction level overhanging type steel hard protection device
CN213101485U (en) Grid assembly and adsorption tower
JP2019027144A (en) Truss beam extension structure
JP7127350B2 (en) Beam-column connection structure and construction method of beam-column connection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP