WO2019037795A1 - 一种煤矸石充填煤矿采空区重金属离子检测取样系统 - Google Patents

一种煤矸石充填煤矿采空区重金属离子检测取样系统 Download PDF

Info

Publication number
WO2019037795A1
WO2019037795A1 PCT/CN2018/102659 CN2018102659W WO2019037795A1 WO 2019037795 A1 WO2019037795 A1 WO 2019037795A1 CN 2018102659 W CN2018102659 W CN 2018102659W WO 2019037795 A1 WO2019037795 A1 WO 2019037795A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
water
heavy metal
goaf
collecting device
Prior art date
Application number
PCT/CN2018/102659
Other languages
English (en)
French (fr)
Inventor
黄艳利
翟文
董霁红
韩震
张吉雄
李俊孟
高华东
宋天奇
孔国强
王枫晚
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2019106067A priority Critical patent/RU2715659C1/ru
Priority to AU2018321191A priority patent/AU2018321191B2/en
Publication of WO2019037795A1 publication Critical patent/WO2019037795A1/zh
Priority to ZA2020/05350A priority patent/ZA202005350B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Water specific cations in water, e.g. heavy metals

Definitions

  • the invention relates to a coal gangue filling and sampling system for heavy metal ions in a goaf of a coal mine.
  • the technical problem to be solved by the invention is to make up for the blank existing in the prior art, and to solve the problem that the goaf is difficult to sample in a confined space, and a heavy metal ion detection sampling system for coal gangue filling coal mine gob area is proposed.
  • the system of the invention is gradually arranged with the advancement of the mining working face behind the bracket, and the sampling points are evenly distributed in the goaf, and the sampling is performed in real time.
  • the coal gangue filling coal mine gob area heavy metal ion detection sampling system of the invention comprises a plurality of collecting devices and a sampling tube such as a collecting device. Its characteristics are:
  • the collecting device is arranged in parallel in the goaf according to the set interval distance and the coal working face, and each collecting device in each row is arranged according to a set interval distance, and each collecting device is a sampling point.
  • Each of the collecting devices is connected to one of the sampling tubes, and the sampling tubes are disposed in the mining roadway and connected to the water pump outside the gob.
  • the set separation distance is preferably 30 m to 50 m.
  • the collecting device is a cylindrical tube.
  • the cylindrical tube is internally provided with a plurality of water blocking plates. Each of the water blocking plates passes through a longitudinal central axis of the cylindrical tube, and the inside of the cylindrical tube is equally divided into longitudinal passages of a plurality of fan-shaped sections.
  • a water permeable opening is formed in one of the longitudinal passages, and a water permeable net is arranged on the water permeable opening.
  • the cylindrical tube is fixed on the deck, and a water pressure monitor is arranged in the longitudinal passage at the bottom.
  • the number of collection devices in each row is less than or equal to the number of longitudinal channels in which the collection devices are separated, and each collection device of each row is sequentially connected by a connecting pipe.
  • the connecting pipe is also a cylindrical pipe and is divided into a plurality of fan-shaped longitudinal passages by a water blocking plate, and the number of channels is the same as that of the collecting device.
  • the longitudinal passages of each collecting device are correspondingly connected with the longitudinal passages of the connecting devices to form respective communication passages, and the water-permeable openings of the respective collecting devices are respectively located on different communication passages.
  • the respective sampling tubes are respectively connected at ends of the communication passages.
  • the collecting device and the connecting pipe are preferably steel pipes or strong nylon pipes.
  • the layout and sampling process of the heavy metal ion detection sampling system of the coal gangue filling coal mine in the present invention is:
  • each collecting device is A measuring point.
  • the working surface is advanced to a certain distance, a row of collecting devices is arranged, and the interval between each row is the same as the distance between adjacent collecting devices in the same row.
  • the measuring points are arranged in a square manner (the spacing of each measuring point is equal). Since the water permeable port of only one collecting device in one communication channel is located therein, only the water sample at the position of the collecting device flows into the connecting channel, and the water sample collected in the connecting channel is the water at the measuring point of the collecting device. kind.
  • the invention can extract the water accumulated in the mine from the confined space of the goaf, and can determine the concentration of heavy metal ions in each position of the goaf, and truly reflect the distribution state of heavy metal ions in the goaf, and provide sampling for further analysis of heavy metal pollution in the goaf. means.
  • FIG. 1 is a plan layout diagram of a heavy metal ion detecting and sampling system in a gob of a coal gangue filling coal mine of the present invention.
  • Figure 2 is a perspective view of the collecting device of the present invention.
  • Figure 3 is a top plan view of the collection device of the present invention.
  • Figure 4 is a side elevational view of the collection device of the present invention.
  • the coal gangue filling coal mine gob area heavy metal ion detection sampling system of the present invention comprises a plurality of collecting devices 1, a connecting pipe 2 and a sampling pipe 3 of a number such as a collecting device.
  • the collecting device 1 is arranged in parallel with the coal mining working surface in a goaf according to a set spacing distance of 40 m, and each collecting device 1 in each row is arranged at a set spacing distance of 40 m, and each collecting device is A sampling point.
  • the collecting device 1 is a cylindrical tube, which is made of a steel pipe or a strong nylon tube, has a length of 10 m and a diameter of 0.15 m.
  • the inside of the cylindrical tube is provided with a plurality of water blocking plates 4, each of which passes through the longitudinal central axis of the cylindrical tube, and divides the inside of the cylindrical tube into six longitudinal passages 7 of the sector.
  • a water permeable opening 6 is defined in one of the longitudinal passages, and a water permeable net is disposed on the water permeable opening.
  • the cylindrical tube is fixed to the cartridge 5, and a water pressure monitor 8 is disposed in the longitudinal passage at the bottom.
  • the connecting pipe 2 is also a cylindrical pipe having a length of 10 m and a diameter of 0.15 m.
  • a steel pipe or a strong nylon pipe is used, and a longitudinal passage of six fan-shaped sections is divided by a water blocking plate, and the connecting pipe 2 has no water permeable opening.
  • the longitudinal passages of each collecting device are correspondingly connected with the longitudinal passages 7 of the connecting devices to form respective communication passages, and the water permeable opening 6 having only one collecting device on one communication passage is located on the communication passage.
  • each of the four communication passages leads out one of the sampling tubes 3.
  • the sampling pipe 3 is arranged in the mining roadway and is connected to a water pump outside the goaf.
  • the layout and sampling process of the heavy metal ion detection sampling system of the coal gangue filling coal mine in the present invention is:
  • each collecting device is A measuring point.
  • the working surface is advanced to a certain distance, a row of collecting devices is arranged, and the interval between each row is the same as the distance between adjacent collecting devices in the same row.
  • the measuring points are arranged in a square manner (the spacing of each measuring point is equal). Since the water permeable port of only one collecting device in one communication channel is located therein, only the water sample at the position of the collecting device flows into the connecting channel, and the water sample collected in the connecting channel is the water at the measuring point of the collecting device. kind.

Abstract

一种煤矸石充填煤矿采空区重金属离子检测取样系统,由若干收集装置(1)和与收集装置等数量的采样管(3)构成。收集装置(1)按照设定的间隔成排布设,收集装置(1)用隔水板(4)等分为若干纵向通道(7),其中一个纵向通道(7)上开设有透水口(6)。每一排的各个收集装置(1)用连接管(2)依次连接,在管体内部形成各个连通通道,各收集装置(1)的透水口(6)分别位于不同连通通道上。各个采样管(3)分别连接在连通通道的端部与收集装置(1)和连接管形成运输管路,各采样管(3)布设在采区联络巷内并连接到采空区外的水泵。该系统能够分别从采空区各指定位置取出矿井积水,并进行存储,用于测定采空区煤矸石充填体浸泡液中的重金属离子浓度,可真实反映采空区内重金属离子的分布状态,为进一步分析采空区重金属污染提供取样手段。

Description

一种煤矸石充填煤矿采空区重金属离子检测取样系统 技术领域
本发明涉及一种煤矸石充填煤矿采空区重金属离子检测取样系统。
背景技术
近年来,煤炭开采速度提高加速了矿井资源的枯竭。由于我国“三下”(建筑物下、铁路下、水体下)压煤严重,综合机械化固体充填采煤技术是针对我国存在的“三下”压煤问题,煤矸石排放问题和土地资源问题而开发出来的绿色采煤技术之一,并在多个矿区进行了广泛应用。
矸石充入采空区后,在充填采煤液压支架后方的夯实机构作用下形成密实结构,由于井下环境比较阴暗潮湿,充入采空区的部分矸石会一直处于一个矿井水环境中,主要包括来自上覆岩层顶板裂隙渗漏的水、底板涌出的水以及煤层开采涌出的水,在采空区稳定后,煤矸石经过长期的矿井水浸泡,煤矸石中的微小颗粒会在水中成为悬浮物,其中含有的某些重金属离子经过水溶解后污染水体、围岩以及其他生态环境,对地下水环境造成一定的破坏。因此需要对煤矸石填充的煤矿采空区的水体进行重金属离子的实时和准确检测。但是由于采空区为密闭的空间,在回填后的采空区内进行水体取样是十分困难的,尤其是在采空区内部的不同点位分别取样,目前更是没有有效方法。
开发一种矸石充填采空区重金属离子的取样系统和方法,对矸石充填后矿井积水中重金属离子的检测与治理具有重要意义,也是采煤工作现实的技术需求。
发明内容
本发明所要解决的技术问题,在于弥补现有技术存在的空白,针对采空区为密闭空间取样难度大的特点,提出了一种煤矸石充填煤矿采空区重金属离子检测取样系统。本发明系统随开采工作面的推进于支架后方而逐步布设,在采空区均匀布设采样点,实时均布采样。
本发明煤矸石充填煤矿采空区重金属离子检测取样系统,由若干收集装置和与收集装置等数量的采样管构成。其特征是:
所述收集装置,在采空区内按照设定的间隔距离与采煤工作面平行成排布设,每一排中的各收集装置按照设定间隔距离布置,每个收集装置为一个采样点,每个收集装置连接一根所述的采样管,所述各采样管布设在采区回采巷道内并连接到采空区外的水泵。
所述设定的间隔距离,优选30m-50m。
所述收集装置为圆柱形管,圆柱形管内部设有若干隔水板,各隔水板均通过圆柱形 管的纵向中心轴线,将圆柱形管内部等分为若干扇形断面的纵向通道。在其中一个纵向通道上开设有透水口,透水口上设置透水网。所述圆柱形管固定在卡座上,位于底部的纵向通道内设置水压监测仪。
每一排的收集装置个数小于或等于收集装置被分隔的纵向通道个数,每一排的各个收集装置,用连接管依次连接。所述连接管也是圆柱形管且用隔水板等分为若干扇形断面的纵向通道,其通道数与收集装置相同。各收集装置的纵向通道与各连接装置的纵向通道对应连接形成各个连通通道,各收集装置的透水口分别位于不同连通通道上。所述各个采样管分别连接在连通通道的端部。
所述收集装置和连接管优选钢管或强力尼龙管。
本发明煤矸石充填煤矿采空区重金属离子检测取样系统的布设和采样过程是:
1.随采煤工作面推进,在支架后方按照设定的间隔30m-50m并且与采煤工作面平行埋设收集装置,用连接管将各个收集装置连接成一个连通的管体,各个收集装置就是一个测点。然后工作面推进到一定距离后,再布设一排收集装置,每一排的间隔与同排中相邻收集装置间的间隔距离相同。则测点按正方形(每个测点间距相等)的方式进行布置。因为一个连通通道中只有一个收集装置的透水口位于其中,因此只有该收集装置位置处的水样流入该连通通道中,在该连通通道收集到的水样就是该收集装置所处测点的水样。
2.待工作面推进完毕,利用水压监测仪监测采空区底板处水压P,根据公式P=ρgh反推出采空区积水高度h,当高度大于30厘米,利用水泵通过各个采样管在各个连通通道中抽取水样。
3.对每个测点的收集装置进行标号(例如第一排第一个为“11”第二排第一个为“21”),根据取样的间排距反推出所取试样所对应的采空区的位置。根据所得不同位置的不同浓度,分析各重金属离子的含量、迁移特征,衰减属性,来对采空区重金属离子作出评估。
本发明能够从采空区密闭空间内取出矿井积水,并能确定采空区各个位置的重金属离子浓度,真实反映采空区内重金属离子的分布状态,为进一步分析采空区重金属污染提供取样手段。
附图说明
图1是本发明煤矸石充填煤矿采空区重金属离子检测取样系统平面布置图。
图2是本发明收集装置立体示意图。
图3是本发明收集装置俯视示意图。
图4是本发明收集装置侧视示意图。
具体实施方式
下面结合附图,对本发明作进一步详细说明。
如图1所示,本发明煤矸石充填煤矿采空区重金属离子检测取样系统,由若干收集装置1、连接管2和与收集装置等数量的采样管3构成。
所述收集装置1,在采空区内按照设定的间隔距离40m与采煤工作面平行成排布设,每一排中的各收集装置1按照设定间隔距离40m布置,每个收集装置为一个采样点。
所述收集装置1为圆柱形管,采用钢管或强力尼龙管,长度为10m,直径为0.15m。圆柱形管内部设有若干隔水板4,各隔水板均通过圆柱形管的纵向中心轴线,将圆柱形管内部等分为六个扇形断面的纵向通道7。在其中一个纵向通道上开设有透水口6,透水口上设置透水网。所述圆柱形管固定在卡座5上,位于底部的纵向通道内设置水压监测仪8。
由于收集装置的纵向通道数为六个,因此每一排收集装置的数量最多是六个。本实施例,每一排设置四个收集装置,每一排的各个收集装置,用连接管2依次连接。所述连接管2也是圆柱形管,长度为10m,直径为0.15m,采用钢管或强力尼龙管,且用隔水板等分为六个扇形断面的纵向通道,连接管2无透水口。各收集装置的纵向通道与各连接装置的纵向通道7对应连接形成各个连通通道,一个连通通道上只有一个收集装置的透水口6位于该连通通道上。因此有四个连通通道有透水口6。这四个连通通道端部各引出一根所述采样管3,本实施例每排端部有四根采样管3。采样管3布置在回采巷道道内,与采空区外部的水泵连接。
本发明煤矸石充填煤矿采空区重金属离子检测取样系统的布设和采样过程是:
1.随采煤工作面推进,在支架后方按照设定的间隔30m-50m并且与采煤工作面平行埋设收集装置,用连接管将各个收集装置连接成一个连通的管体,各个收集装置就是一个测点。然后工作面推进到一定距离后,再布设一排收集装置,每一排的间隔与同排中相邻收集装置间的间隔距离相同。则测点按正方形(每个测点间距相等)的方式进行布置。因为一个连通通道中只有一个收集装置的透水口位于其中,因此只有该收集装置位置处的水样流入该连通通道中,在该连通通道收集到的水样就是该收集装置所处测点的水样。
2.待工作面推进完毕,利用水压监测仪监测采空区底板处水压P,根据公式P=ρgh反推出采空区积水高度h,当高度大于30厘米,利用水泵通过各个采样管在各个连通通道中抽取水样。
3.对每个测点的收集装置进行标号(例如第一排第一个为“11”第二排第一个为“21”),根据取样的间排距反推出所取试样所对应的采空区的位置。根据所得不同位置的不 同浓度,分析各重金属离子的含量、迁移特征,衰减属性,来对采空区重金属离子作出评估。

Claims (4)

  1. 一种煤矸石充填煤矿采空区重金属离子检测取样系统,由若干收集装置和与收集装置等数量的采样管构成;其特征是:
    所述收集装置,在采空区内根据实际工作面长度按照工作面推进方向以设定的间隔距离成排布设,每一排中的各收集装置按照与排距相等的间隔距离进行布置,收集装置随采煤工作面推进于液压支架后方进行安设,每个收集装置为一个采样点,每个收集装置连接一根所述的采样管,所述各采样管布设在工作面回采巷道内并连接到采空区外的水泵。
  2. 根据权利要求1所述的煤矸石充填煤矿采空区重金属离子检测取样系统,其特征是:所述设定的间隔距离为30m-50m。
  3. 根据权利要求1所述的煤矸石充填煤矿采空区重金属离子检测取样系统,其特征是:所述收集装置为圆柱形管,圆柱形管内部设有若干隔水板,各隔水板均通过圆柱形管的纵向中心轴线,将圆柱形管内部等分为若干扇形断面的纵向通道;在其中一个纵向通道上开设有透水口,透水口上设置透水网;所述圆柱形管固定在卡座上,位于底部的纵向通道内设置水压监测仪;
    每一排的收集装置个数小于或等于收集装置被分隔的纵向通道个数,每一排的各个收集装置,用连接管依次连接;所述连接管为圆柱形管且用隔水板等分为若干扇形断面的纵向通道,其通道数与收集装置相同;各收集装置的纵向通道与各连接装置的纵向通道对应连接形成各个连通通道,各收集装置的透水口分别位于不同连通通道上;所述各个采样管分别连接在连通通道的端部。
  4. 根据权利要求3所述的煤矸石充填煤矿采空区重金属离子检测取样系统,其特征是:所述的收集装置、采样管和连接管均为钢管或强力尼龙管。
PCT/CN2018/102659 2018-02-05 2018-08-28 一种煤矸石充填煤矿采空区重金属离子检测取样系统 WO2019037795A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019106067A RU2715659C1 (ru) 2018-02-05 2018-08-28 Система отбора проб для проверки в отношении ионов тяжелых металлов при закладке пустой угольной породой выработанного пространства угольных шахт
AU2018321191A AU2018321191B2 (en) 2018-02-05 2018-08-28 System for detecting and sampling heavy metal ions in goaf of coal mine filled with gangue
ZA2020/05350A ZA202005350B (en) 2018-02-05 2020-08-27 Coal gangue filling coal mine goaf heavy metal ion detection and sampling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810109458.9 2018-02-05
CN201810109458.9A CN108051255B (zh) 2018-02-05 2018-02-05 一种煤矸石充填煤矿采空区重金属离子检测取样系统

Publications (1)

Publication Number Publication Date
WO2019037795A1 true WO2019037795A1 (zh) 2019-02-28

Family

ID=62125826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102659 WO2019037795A1 (zh) 2018-02-05 2018-08-28 一种煤矸石充填煤矿采空区重金属离子检测取样系统

Country Status (5)

Country Link
CN (1) CN108051255B (zh)
AU (1) AU2018321191B2 (zh)
RU (1) RU2715659C1 (zh)
WO (1) WO2019037795A1 (zh)
ZA (1) ZA202005350B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112990350A (zh) * 2021-04-12 2021-06-18 天津美腾科技股份有限公司 目标检测网络训练方法及基于目标检测网络煤矸识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051255B (zh) * 2018-02-05 2020-08-07 中国矿业大学 一种煤矸石充填煤矿采空区重金属离子检测取样系统
CN109490499B (zh) * 2018-11-15 2021-02-05 长沙矿山研究院有限责任公司 一种充填体水质动态监测与预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769845A (zh) * 2010-01-19 2010-07-07 浙江大学 研究作物生长过程外源添加物质在土壤中淋溶迁移的装置
CN103076203A (zh) * 2013-01-11 2013-05-01 沈阳大学 一种用于矿山废弃地修复中渗滤液采集的实验装置
CN203224384U (zh) * 2013-04-19 2013-10-02 中国水稻研究所 一种稻田专用土壤渗滤液提取装置
JP2014032188A (ja) * 2012-08-01 2014-02-20 Korea Institute Of Geoscience And Mineral Resources 水質試料無人採取装置及び採取方法
CN106066262A (zh) * 2016-06-03 2016-11-02 山西大学 煤矸石渗滤液采集装置
CN108051255A (zh) * 2018-02-05 2018-05-18 中国矿业大学 一种煤矸石充填煤矿采空区重金属离子检测取样系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU673722A1 (ru) * 1974-02-20 1979-07-15 Белорусский Научно-Исследовательский Геологоразведочный Институт Устройство дл отбора проб водонасыщенного или текучего грунта
JP2005248521A (ja) * 2004-03-03 2005-09-15 Shimizu Corp 地下水取水システム
CN201071513Y (zh) * 2007-04-28 2008-06-11 卢予北 一孔多层地下水监测井
CN101487388B (zh) * 2009-02-25 2012-07-25 西安科技大学 煤矿回采采空区的气体检测方法及其装置
CN102213684A (zh) * 2011-04-01 2011-10-12 重庆大学 土壤及地下水修复原位动态采样监测方法及装置
CN103373772A (zh) * 2012-04-28 2013-10-30 周凌云 一种煤矿矿区污水处理回用系统
CN203259373U (zh) * 2012-09-24 2013-10-30 张丽颖 一种地下水分层采样管
CN203798629U (zh) * 2014-03-21 2014-08-27 江苏常环环境科技有限公司 一种地下水分层采样装置
CN104291399B (zh) * 2014-10-17 2016-06-29 中国神华能源股份有限公司 一种煤矿地下水库中水体的处理方法
CN104405431B (zh) * 2014-10-21 2016-04-06 河南理工大学 移动式采空区瓦斯快速封堵抽采装置及工艺
CN104453982B (zh) * 2014-10-30 2017-01-18 安徽理工大学 一种简便式采空区束管取气方法
CN106153384A (zh) * 2015-04-25 2016-11-23 天津市天二锻压机床有限公司 一种在线流体同截面同时多点取样装置
CN105158428A (zh) * 2015-08-21 2015-12-16 山东省水利科学研究院 地下水多层位监测管
CN205035094U (zh) * 2015-09-15 2016-02-17 常州市环境科学研究院 地下水采样及修复的多功能分层井
CN206114355U (zh) * 2016-09-28 2017-04-19 中国地质大学(北京) 一种地下水取样装置
CN206177640U (zh) * 2016-11-17 2017-05-17 张悦 环保监测用污水取样器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769845A (zh) * 2010-01-19 2010-07-07 浙江大学 研究作物生长过程外源添加物质在土壤中淋溶迁移的装置
JP2014032188A (ja) * 2012-08-01 2014-02-20 Korea Institute Of Geoscience And Mineral Resources 水質試料無人採取装置及び採取方法
CN103076203A (zh) * 2013-01-11 2013-05-01 沈阳大学 一种用于矿山废弃地修复中渗滤液采集的实验装置
CN203224384U (zh) * 2013-04-19 2013-10-02 中国水稻研究所 一种稻田专用土壤渗滤液提取装置
CN106066262A (zh) * 2016-06-03 2016-11-02 山西大学 煤矸石渗滤液采集装置
CN108051255A (zh) * 2018-02-05 2018-05-18 中国矿业大学 一种煤矸石充填煤矿采空区重金属离子检测取样系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112990350A (zh) * 2021-04-12 2021-06-18 天津美腾科技股份有限公司 目标检测网络训练方法及基于目标检测网络煤矸识别方法

Also Published As

Publication number Publication date
CN108051255A (zh) 2018-05-18
RU2715659C1 (ru) 2020-03-02
AU2018321191B2 (en) 2020-08-27
AU2018321191A1 (en) 2019-08-22
ZA202005350B (en) 2022-09-28
CN108051255B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
US10788408B2 (en) Method for determining diffusion radius of in-situ injection and remediation of contaminated soil and groundwater
WO2019037795A1 (zh) 一种煤矸石充填煤矿采空区重金属离子检测取样系统
CN107290188B (zh) 一种土壤气分层采集装置及监测方法
AU2017311614B2 (en) Detection while drilling (DWD) apparatus and method for lithological composition of roadway roof
McKay et al. Field experiments in a fractured clay till: 2. Solute and colloid transport
CN103114827B (zh) 多场耦合煤层气抽采模拟试验方法
CN105158444A (zh) 坡面壤中流流速和流量测定系统及方法
CN103335989B (zh) 一种模拟岩溶地下河污染物迁移与归宿的方法
CN105021662A (zh) 采动工作面水情实时动态监测试验装置及试验方法
CN105043820A (zh) 污染场地取样装置及渗漏污染探测系统
CN102323106A (zh) 地下水样定深采集装置及其水样采集方法
CN108318293B (zh) 用于煤矸石充填采空区重金属离子检测取样的收集装置
WO2013163709A1 (pt) Disposição aplicada em equipamento para investigação de solo
CN103594020A (zh) 一种检测喀斯特坡面产流位置的装置及方法
CN109283100B (zh) 一种土壤采集及间隙水、渗漏液收集的实验装置及其方法
CN104763406A (zh) 基于顺层钻孔瓦斯涌出特征测定抽采影响半径的方法
EP0105967B1 (de) Verfahren und Vorrichtung zum Untersuchen der Struktur und der Durchlässigkeit von Erd- und Gesteinsbereichen
CN212083426U (zh) 一种可调节式岩溶地下水土漏失模拟装置
CN216285090U (zh) 一种气相色谱仪用自动化检测装置
CN204666390U (zh) 赣南钻——人力冲击取样钻
CN103821553A (zh) 一种确定y型通风采空区瓦斯富集区域的方法
CN111443185A (zh) 一种可调节式岩溶地下水土漏失模拟装置
CN107421866B (zh) 一种模拟隧道排水渗流状态的试验装置
CN203310755U (zh) 模拟岩溶地下河污染物迁移与归宿的装置
CN116338127A (zh) 煤矿地下水库相似模拟试验系统及煤矿地下水库模拟方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018321191

Country of ref document: AU

Date of ref document: 20180828

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849109

Country of ref document: EP

Kind code of ref document: A1