WO2019037733A1 - 发送或接收上行数据的方法和装置 - Google Patents

发送或接收上行数据的方法和装置 Download PDF

Info

Publication number
WO2019037733A1
WO2019037733A1 PCT/CN2018/101658 CN2018101658W WO2019037733A1 WO 2019037733 A1 WO2019037733 A1 WO 2019037733A1 CN 2018101658 W CN2018101658 W CN 2018101658W WO 2019037733 A1 WO2019037733 A1 WO 2019037733A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal device
resource
unlicensed transmission
transport block
Prior art date
Application number
PCT/CN2018/101658
Other languages
English (en)
French (fr)
Inventor
杜振国
庄宏成
韩云博
丁志明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711479356.8A external-priority patent/CN109428680B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019037733A1 publication Critical patent/WO2019037733A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for transmitting or receiving uplink data in the field of wireless communications.
  • Unlicensed (grant-free, also called transmission without grant or grantless or grantless) transmission is the fifth generation (5 th generation, 5G)
  • 5G A transmission method in a mobile communication system, the license-free transmission, the terminal device
  • the uplink information can be directly sent without waiting for the scheduling information of the network device, and thus has the characteristics of short delay.
  • the resources used by each terminal device to send uplink information in the unlicensed transmission are selected by the respective terminal devices. Therefore, different terminal devices may use the same resource to send uplink information. In this case, the network device cannot correctly receive the uplink information. In order to overcome this disadvantage, the terminal device needs to retransmit the uplink information multiple times to improve the receiving success rate of the network device.
  • one of the disadvantages of this method is that it occupies a large amount of resources. How to reduce the resources occupied by the unlicensed transmission without affecting the success rate of the reception is an urgent problem to be solved.
  • the present application provides a method and apparatus for transmitting or receiving uplink data, where the apparatus for transmitting uplink data may determine the number of transmissions of the unlicensed transmission based on the reference information, and when the reference information indicates that the current transmission success probability is high, the apparatus for transmitting the uplink data The number of transmissions of the unlicensed transmission can be reduced. When the reference information indicates that the probability of the current transmission is low, the apparatus for transmitting the uplink data can increase the number of transmissions of the unlicensed transmission, thereby reducing the license-free without affecting the success rate of the reception. Transfer the occupied resources.
  • the first aspect provides a method for transmitting uplink data, including: determining, by the terminal device, that N, N is the number of transmissions of the transport block according to the reference information, and the reference information has a preset correspondence relationship with N, where N is greater than or equal to 1.
  • the terminal device transmits N uplink data according to the unlicensed transmission mode, where the N uplink data includes one initial transmission data and N-1 retransmission data of the transport block (it can also be understood that the terminal device transmits according to the license-free manner
  • the method sends N times of transport blocks).
  • N may be a value in a set of values, and the set of values may be information preset in the terminal device.
  • the terminal device may refer to the reference information. Selecting a value from the set of values, the value represents the number of transmissions of the transport block, and the number of transmissions may be different under different reference information, for example, when the reference information indicates that the current communication environment is good or the reliability of the current transmission is not high, The terminal device can reduce the number of transmissions of the unlicensed transmission. When the reference information indicates that the current communication environment is poor or the reliability requirement of the current transmission is high, the terminal device can increase the number of transmissions of the unlicensed transmission, thereby not affecting the reception success rate. Under the premise of reducing the resources occupied by the unauthorized transfer.
  • N is less than or equal to K
  • K is a preset maximum number of transmissions
  • K is an integer greater than or equal to 1.
  • the network device or the communication protocol may specify the maximum number of transmissions of the terminal device for the unlicensed transmission, so as to prevent the terminal device from occupying too much resources, resulting in waste of resources and avoiding degradation of transmission reliability caused by reduction of available resources of other terminal devices of the current communication system.
  • the above reference information includes a channel quality and/or a service type of the transport block.
  • the number of transmissions may be a small value.
  • the number of transmissions may be a large value; when the service type of the transport block has low requirements on transmission reliability, the transmission is performed. The number of times can be a small value.
  • the service type of the transport block requires high transmission reliability, the number of transmissions can be a large value; and the channel quality and the service type of the transport block can be comprehensively considered. Select the appropriate value to improve resource utilization while ensuring transmission reliability.
  • the reference information includes a modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • Different MCSs can correspond to different transmission times. For example, under the same conditions, when the channel quality is good, the transmission reliability is high, and the uplink data can be sent using a higher transmission rate. When the channel quality is poor, the transmission reliability is Lower, the uplink data can be sent at a lower transmission rate. Therefore, the MCS with a higher transmission rate can correspond to a smaller number of transmissions, and the MCS with a higher transmission rate can correspond to a larger number of transmissions, thereby ensuring transmission reliability. At the same time improve resource utilization.
  • the method before determining, by the terminal device, the N device, the method further includes: determining, by the terminal device, the target unlicensed transmission resource from the at least two unlicensed transmission resources according to the channel quality and/or the service type of the transport block, where the target is free of The authorization resource is used to transmit the transport block; the terminal device determines the MCS according to the target unlicensed transmission resource, and the target unlicensed transmission resource has a preset corresponding relationship with the MCS.
  • the MCS can be bound to the unlicensed transmission resource A. That is, when the terminal device selects to use the unlicensed transmission resource A to send the uplink data, it also determines that the MCS used for sending the uplink data is the MCS bound by the unlicensed transmission resource A.
  • the terminal device may select one of the plurality of unlicensed transmission resources according to the channel quality and/or the service type of the transport block, for example, when the channel quality is good, the unlicensed transmission resource with a higher transmission rate may be selected. When the channel quality is poor, the unlicensed transmission resource with a low transmission rate can be selected, so that the appropriate transmission resource can be flexibly selected to improve the resource utilization while ensuring the transmission reliability.
  • the reference information is an unlicensed transmission resource used by the transmission transport block.
  • Different unlicensed transmission resources can correspond to different transmission times.
  • the reliability of the dedicated frequency band is higher than the reliability of the public frequency band. Therefore, the number of transmissions corresponding to the dedicated frequency band can be a smaller value to reduce For small resource usage, the number of transmissions corresponding to the public frequency band can be a large value to ensure transmission reliability.
  • the method further includes: determining, by the terminal device, the sending from the at least two unlicensed transmission resources according to the channel quality and/or the service type of the transport block.
  • the unlicensed transmission resource used by the N-th transmission block, the unlicensed transmission resource used for transmitting the N-time transmission block has a preset correspondence relationship with the channel quality, and/or the unlicensed transmission resource used for transmitting the N-time transmission block and There is a preset correspondence between the service types of the transport block.
  • the terminal device can select an unlicensed transmission resource with lower reliability.
  • the terminal device can select a highly reliable unlicensed transmission resource; for example, when the transmission block
  • the terminal device can select a higher-reliability, unlicensed transmission resource.
  • the service type corresponding to the transport block belongs to a low-priority service type
  • the terminal device can select a lower reliability. Unauthorized transfer of resources.
  • the terminal device can also select an unlicensed transmission resource based on the channel quality and the type of traffic of the transport block. Therefore, the method provided in this embodiment can determine the number of transmissions of the unlicensed transmission according to the current actual situation, thereby improving resource utilization while ensuring transmission reliability.
  • the method further includes: the terminal device receiving configuration information, where the configuration information is used to configure a correspondence between the reference information and the N.
  • the correspondence between the reference information and the number of transmissions may be pre-configured in the terminal device by using the configuration information.
  • the correspondence may be the result of the relationship between the communication reliability and the number of transmissions under different conditions of the network device, and the configuration content may be updated periodically. Therefore, the terminal device can select a suitable number of unauthorized transmissions, and improve resource utilization while ensuring transmission reliability.
  • the second aspect provides a method for receiving uplink data, including: sending, by the network device, configuration information, where the configuration information is used to configure a correspondence between the reference information and the N, where N is the number of times the terminal device transmits the transport block according to the unlicensed transmission mode. And N is an integer greater than or equal to 0, and the correspondence between the reference information and N is used by the terminal device to determine N corresponding to the reference information according to a reference information; the network device receives N uplink data from the terminal device.
  • the N uplink data includes one initial transmission data and N-1 retransmission data of the transport block.
  • the network device may configure a set of values for the terminal device, where the value in the set of values is a possible value of N.
  • the terminal device may select a value from the set of values according to the reference information, the value. Representing the number of transmissions, the number of transmissions may be different under different reference information. For example, when the reference information indicates that the current communication environment is good or the reliability requirement of the current transmission is not high, the terminal device may reduce the number of transmissions of the unauthorized transmission, when the reference information When the current communication environment is inferior or the reliability requirement of the current transmission is high, the terminal device can increase the number of transmissions of the unlicensed transmission, so that the resources occupied by the unauthorized transmission can be reduced without affecting the success rate of the reception.
  • N is less than or equal to K
  • K is a preset maximum number of transmissions
  • K is an integer greater than or equal to 1.
  • the network device can ensure the fairness of transmission between the terminal devices using the unlicensed transmission resource by configuring the maximum number of transmissions corresponding to the unlicensed transmission resource, for example, in a massive machine type communications (mMTC) scenario.
  • mMTC massive machine type communications
  • the network device can set the maximum number of transmissions K, thereby ensuring the fairness of transmission between the terminal devices.
  • the reference information includes at least one of channel quality, a service type of a transport block, an MCS, and at least one unlicensed transmission resource that can be used to transport a transport block.
  • the network device can perform statistics on the relationship between the communication reliability and the number of transmissions in different channel quality scenarios, and determine the number of transmissions corresponding to different channel qualities under the premise of satisfying the communication reliability requirement according to the statistical result, and the channel quality and transmission.
  • the correspondence of the times is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate number of transmissions according to the channel quality, thereby improving resource utilization while ensuring transmission reliability.
  • the network device can also collect statistics on the relationship between the communication reliability and the number of transmissions in the scenario of different service types, and determine the number of transmissions corresponding to different service types on the premise of satisfying the communication reliability requirement according to the statistical result, and the service type and The correspondence between the number of transmissions is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate number of transmissions according to the service type corresponding to the transport block, thereby improving resource utilization while ensuring transmission reliability.
  • the network device may also perform statistics on the relationship between the communication reliability and the number of transmissions in the scenario of performing unlicensed transmission using different unlicensed transmission resources, and determine, according to the statistical result, that the license-free transmission resource corresponds to the communication reliability requirement.
  • the number of transmissions, and the correspondence between the unlicensed transmission resources and the number of transmissions is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate number of transmissions according to the unlicensed transmission resources, thereby improving resource utilization while ensuring transmission reliability. rate.
  • the network device may also perform statistics on the relationship between the communication reliability and the number of transmissions in the scenario of performing unlicensed transmission using different MCSs, and determine the number of transmissions corresponding to the MCS on the premise that the communication reliability requirements are met according to the statistical result, and The correspondence between the MCS and the number of transmissions is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate number of transmissions according to the MCS, thereby improving resource utilization while ensuring transmission reliability.
  • the correspondence between the reference information and the N, the channel quality and/or the correspondence between the service type of the transport block and the target unlicensed transmission resource, and the correspondence between the target unlicensed transmission resource and the N is one of the at least one unlicensed transmission resource, and the target unlicensed transmission resource is an unlicensed transmission resource used for transmitting the transport block.
  • the channel quality and/or the correspondence between the service type of the transport block and the N may also be an indirect correspondence, that is, a correspondence between the channel quality and/or the service type of the transport block and the unlicensed transmission resource, and the license-free transmission resource and There is a correspondence between N, thereby enhancing the flexibility of the terminal device to determine the value of N.
  • the correspondence between the target unlicensed transmission resource and the N includes: a correspondence between the unlicensed transmission resource used by the transport transport block and the MCS, and a correspondence between the MCS and the N.
  • the correspondence between the unlicensed transmission resource and the N may also be an indirect correspondence, thereby enhancing the flexibility of the terminal device to determine the value of N.
  • a third aspect provides an apparatus for transmitting uplink data, where the apparatus can implement the functions performed by the terminal device in the method related to the first aspect, and the functions can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the apparatus includes a processing unit and a communication unit, and the processing unit is configured to determine, according to the reference information, N, N, the number of transmissions of the apparatus for transmitting the uplink data for transmitting the transport block, the reference There is a preset correspondence between the information and N, and N is an integer greater than or equal to 1;
  • the communication unit is configured to send N uplink data according to an unlicensed transmission manner, where the N uplink data includes one initial transmission data and N-1 retransmission data of the transport block.
  • N is less than or equal to K
  • K is a preset maximum number of transmissions
  • K is an integer greater than or equal to one.
  • the reference information comprises at least one of channel quality, a traffic type of the transport block, a modulation and coding scheme MCS, and at least one unlicensed transmission resource that can be used to transmit the transport block.
  • the reference information includes at least two unlicensed transmission resources that can be used to transmit the transport block; the processing unit is specifically configured to:
  • the target exempt authorization resource being an unlicensed transmission resource used for transmitting the transport block
  • N Determining N according to the target unlicensed transmission resource, and there is a preset correspondence between the target unlicensed transmission resource and N.
  • the processing unit is configured to determine, according to the target unlicensed transmission resource, a preset correspondence between the target unlicensed transmission resource and the N, including:
  • the processing unit is specifically configured to determine, according to the target unlicensed transmission resource, the MCS, where the target unlicensed transmission resource has a preset correspondence with the MCS;
  • the communication unit is further configured to: before the processing unit determines N according to the reference information:
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the respective functions of the methods involved in the first aspect above.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the functions implemented by the processor can refer to the functions implemented by the processing unit described above.
  • the functions implemented by the transceiver can refer to the functions implemented by the above communication unit.
  • a fourth aspect provides an apparatus for receiving uplink data, where the apparatus can implement the functions performed by the terminal device in the method related to the second aspect, and the functions can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the apparatus includes a processing unit and a communication unit for supporting the communication unit to perform:
  • the configuration information is used to configure a correspondence between the reference information and the N, where N is the number of times the terminal device transmits the transport block according to the unlicensed transmission mode, and N is an integer greater than or equal to 1, the reference information and the N Corresponding relationship is used by the terminal device to determine N corresponding to the reference information according to a reference information;
  • N uplink data includes one initial transmission data and N-1 retransmission data of the transport block.
  • N is less than or equal to K
  • K is a preset maximum number of transmissions
  • K is an integer greater than or equal to one.
  • the reference information comprises at least one of channel quality, traffic type of a transport block, a modulation and coding scheme MCS, and at least one unlicensed transmission resource that can be used to transmit the transport block.
  • the correspondence between the reference information and N includes:
  • the target unlicensed transmission resource being the at least one One of the unlicensed transmission resources, the unlicensed transmission resource used for transmitting the transport block.
  • the corresponding relationship between the unlicensed transmission resource used by the transport block and the N is:
  • the apparatus includes a processor and a transceiver configured to support the apparatus to perform the respective functions of the methods involved in the second aspect above.
  • the transceiver is used to support communication between the device and other network elements.
  • the apparatus can also include a memory for coupling with the processor that retains the program instructions and data necessary for the apparatus.
  • the functions implemented by the processor can refer to the functions implemented by the processing unit described above.
  • the functions implemented by the transceiver can refer to the functions implemented by the above communication unit.
  • a fifth aspect provides a network system, where the network system includes the apparatus for transmitting uplink data according to the third aspect, and the apparatus for receiving the uplink data according to the fourth aspect.
  • a computer readable storage medium storing computer program code, when executed by a processing unit or a processor, causes the terminal device to perform the first aspect method.
  • a seventh aspect a computer readable storage medium storing computer program code, the computer program code being executed by a processing unit or a processor, causing the network device to perform the second aspect method.
  • a communication chip in which instructions are stored which, when run on a terminal device, cause the communication chip to perform the method of the first aspect described above.
  • a communication chip in which instructions are stored which, when run on a network device, cause the communication chip to perform the method of the second aspect above.
  • a computer program product comprising: computer program code, when the computer program code is executed by a communication unit or a transceiver of the terminal device, and a processing unit or a processor, causing the terminal device to execute The method of the above first aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit or transceiver of a network device, and a processing unit or processor, causing the network device.
  • FIG. 1 is a schematic diagram of a communication system suitable for use in the present application
  • FIG. 2 is a schematic diagram of a method for transmitting uplink data provided by the present application
  • FIG. 3 is a schematic diagram of a correspondence between a signal to noise ratio and a number of transmissions provided by the present application
  • FIG. 4 is a schematic diagram of another method for transmitting uplink data provided by the present application.
  • FIG. 5 is a schematic diagram of a correspondence between MCS and number of transmissions provided by the present application.
  • FIG. 6 is a schematic diagram of a correspondence between an MCS, an unlicensed transmission resource, and a transmission number provided by the present application;
  • FIG. 7 is a schematic diagram of an unlicensed transmission resource used for transmitting uplink data provided by the present application.
  • FIG. 8 is a schematic diagram of a method for receiving uplink data provided by the present application.
  • FIG. 9 is a schematic diagram of a possible terminal device provided by the present application.
  • FIG. 10 is a schematic diagram of another possible terminal device provided by the present application.
  • FIG. 11 is a schematic diagram of a possible network device provided by the present application.
  • FIG. 12 is a schematic diagram of another possible network device provided by the present application.
  • Figure 13 is a schematic diagram of another communication system suitable for use in the present application.
  • FIG. 14 is a schematic diagram of a possible base station provided by the present application.
  • 15 is a schematic diagram of a possible UE provided by the present application.
  • 16 is a schematic diagram of another correspondence between signal to noise ratio and number of transmissions provided by the present application.
  • 17 is a schematic diagram of another method for transmitting uplink data provided by the present application.
  • FIG. 19 is a schematic diagram of another MCS, an unlicensed transmission resource and a number of transmission times provided by the present application.
  • FIG. 20 is a schematic diagram of another unlicensed transmission resource used for transmitting uplink data provided by the present application.
  • an uplink (UL) transmission adopts a Grant-based manner, that is, a resource that a base station schedules a UE to perform UL transmission and related transmission parameters, such as a time domain used for UL transmission. , frequency domain, airspace resources, and MCS.
  • a scheduling request is first sent to the base station, the base station sends a scheduling grant based on the scheduling request, and then the UE performs UL transmission according to the resource allocation and the transmission parameter indicated in the scheduling grant.
  • the UE itself is in the RRC_IDLE state, the UE needs to perform random access (interaction process including four messages) before data can be transmitted.
  • the above Grant-based UL transmission process requires more signaling overhead, and these signaling interactions inevitably introduce delays.
  • 5G fifth-generation standard
  • 5G fifth-generation standard
  • the data generated by the mMTC service is usually small data (that is, each packet is relatively small). If the traditional Grant-based UL transmission method is adopted, the data transmission occupies much less resources than the signaling interaction before the data transmission (such as scheduling request).
  • the signalling is occupied; the URLLC service requires low latency, and the signaling interaction in the above Grant-based UL transmission process has a large delay due to RRC signaling, so the traditional Grant-based UL transmission mode is also It is difficult to meet the needs of the URLLC business.
  • 5G introduces a Grant-free transmission method in NR (New Radio) for UL transmission.
  • the so-called Grant-free transmission mode means that the UE does not need to request the UL transmission resource from the base station when the data needs to be transmitted, but selects a resource for UL transmission based on a certain rule in the Grant-free transmission resource pool pre-configured by the base station. Perform UL transmission.
  • the signaling interaction in the Grant-based UL transmission process can be omitted, thereby reducing signaling overhead and transmission delay, and is particularly suitable for packet transmission and delay sensitive services.
  • the 5G-NR standard has explicitly agreed that mMTC and URLLC support Grant-free transmission.
  • the standard also determines the time-frequency resource used by the base station to configure the Grant-free transmission, that is, configures the Grant-free transmission resource pool.
  • K times of retransmissions may be K repetitions of the same redundancy version of the same data, that is, the contents of K transmissions are identical, for example, RV0 of the same data is transmitted; K times of retransmissions may be K different of the same data.
  • the redundancy version that is, the contents of K times of transmission are different from each other, for example, RV0, RV1, RV2, ...
  • K times of retransmission may also be a combination of the above two methods, that is, in K retransmissions
  • the inclusion of retransmission data also includes duplicate data, such as RV0, RV0, RV1, RV1, ... transmitted for the same data.
  • the K retransmissions here are K transmissions including the initial transmission.
  • the network side may configure a retransmission number K for the UE performing the Grant-free transmission, the K being used for the entire cell, or for a group of UEs.
  • the channel conditions of different UEs may be different, and the K of the base station configuration may not be optimal for each UE. For example, if a UE with a good channel condition is configured with a large K, the unnecessary retransmission transmission causes waste of the Grant-free resource, and is easy to cause interference to the Grant-free transmission of other UEs; If the poor UE is configured with a small K, the transmission reliability is degraded due to insufficient retransmission times.
  • the K is configured for each UE, the network side needs to reconfigure K continuously due to UE mobility or channel change, which obviously brings a relatively large signaling overhead.
  • Figure 1 shows a communication system suitable for use in the present application.
  • the communication system includes a network device and a terminal device.
  • the network device communicates with the terminal device through a wireless network.
  • the wireless communication module of the terminal device can acquire information bits to be sent to the network device through the channel, and the information bits. For example, information bits generated by a processing module of the terminal device, received from other devices, or stored in a storage module of the terminal device.
  • a terminal device may be referred to as an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal can be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G mobile communication system.
  • the network device may be a base transceiver station (BTS) in a code division multiple access (CDMA) system, or may be a base station in a wideband code division multiple access (WCDMA) system (
  • the node B, NB) may also be an evolved base station (eNB) in a long term evolution (LTE) system, or may be a base station (gNB) in a 5G communication system, and the foregoing base station is only an example.
  • the network device can also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system to which the present application is applied is merely an example.
  • the communication system to which the present application is applied is not limited thereto.
  • the number of network devices and terminal devices included in the communication system may be other numbers.
  • the method 200 includes:
  • the terminal device determines, according to the reference information, N, N is a number of transmissions used by the terminal device to transmit a transmission block (TB), and the reference information has a preset correspondence relationship with N, where N is greater than or equal to 1. Integer.
  • the terminal device sends N uplink data according to an unlicensed transmission manner, where the N uplink data includes one initial transmission data and N-1 retransmission data of the transport block.
  • the retransmission data may be a repetition of the initial transmission data, or may be a different or the same redundancy version (RV) of the initial transmission data.
  • the initial transmission data is the RV0 of the transport block
  • the N-1 retransmission data is the repetition of the initial transmission data, that is, RV0;
  • the initial transmission data is the RV0 of the transport block
  • the N-1 retransmission data is Other RVs of the transport block, such as RV1, RV2, ...;
  • the initial transmission data is the RV0 of the transport block
  • the N-1 retransmission data is the repetition of the transport block or other RV, such as RV0, RV1, RV2, RV2. ....
  • the preset correspondence between the reference information and the N may be configured by the network device, or may be specified by the communication protocol, or may be manually configured, and the foregoing correspondence may be updated periodically or irregularly. How the device obtains the corresponding correspondence of the above presets is not limited.
  • the reference information may be one or more parameters, or may be one or more conditions.
  • the specific form and name of the reference information are not limited in this application.
  • the correspondence between the reference information and the N may be one-to-one, one-to-many, or many-to-one.
  • the reference information A may correspond to N1, and may correspond to N1 and N2, and N1 may
  • the reference information A may also correspond to the reference information B, wherein the reference information A and the reference information B are different reference information, and N1 and N2 are values of different values in the value set described in S201.
  • the terminal device can select one of the transmission times N as the transport block, and the present application does not limit how to determine N from N1 and N2.
  • the terminal device determines N according to the reference information from a set of values, where the set of values is information preset in the terminal device, and the set of values may be pre-configured by the network device, or may be The specified by the communication protocol may be manually configured.
  • the set of values may be updated periodically or irregularly. This application does not limit how the terminal device obtains the set of values.
  • the terminal device may select a value from the set of values according to the reference information, the value represents the number of transmissions of the unlicensed transmission, and the number of transmissions may be different under different reference information, for example, when the reference information indicates When the current communication environment is good or the reliability of the current transmission is not high, the terminal device can reduce the number of transmissions of the unauthorized transmission.
  • the terminal device can Increase the number of transmissions of the unlicensed transmission, so that the resources occupied by the unlicensed transmission can be reduced without affecting the success rate of the reception.
  • N is less than or equal to K
  • K is the maximum number of transmissions for unauthorized transmission.
  • the network device or the communication protocol may specify the maximum number of transmissions of the terminal device for the unlicensed transmission, so as to prevent the terminal device from occupying too much resources, causing waste of resources and causing interference to other terminal devices of the current communication system, thereby reducing the transmission reliability of the terminal devices.
  • K can be set as the maximum number of transmissions for unauthorized transmission, and K is a mandatory parameter.
  • K is a mandatory parameter.
  • all terminal devices are in When the uplink data is sent in the unlicensed transmission mode, the number of transmissions must not exceed K, so that the fairness of transmission between each terminal device can be guaranteed.
  • the above reference information includes a channel quality and/or a service type of the transport block.
  • the number of transmissions may be a small value.
  • the number of transmissions may be a large value; when the service type of the transport block has low requirements on transmission reliability, the transmission is performed. The number of times can be a small value.
  • the service type of the transport block requires high transmission reliability, the number of transmissions can be a large value; and the channel quality and the service type of the transport block can be comprehensively considered. Selecting the appropriate value can improve resource utilization efficiency while ensuring transmission reliability.
  • the channel quality can be characterized by the signal-to-noise ratio (SNR) of the measurement channel of the terminal device.
  • SNR signal-to-noise ratio
  • FIG. 3 is a schematic diagram showing the correspondence between the SNR and the number of transmissions of the unlicensed transmission provided by the present application.
  • the abscissa indicates the value of the SNR of the channel measured by the terminal device
  • the ordinate indicates the value of N.
  • FIG. 3 is only an example.
  • the specific form of the correspondence between the SNR and the number of transmissions is not limited in this application, and the correspondence between the SNR and the number of transmissions may also be represented by a table.
  • the network device can calculate the SNR, the number of transmissions, and the transmission reliability of the unlicensed transmission, and determine the correspondence between the SNR, the number of transmissions, and the transmission reliability according to the statistical result, and configure the corresponding relationship to the terminal device to facilitate the terminal device.
  • the number of transmissions is selected based on the transmission block's requirements for transmission reliability and the currently measured SNR.
  • the foregoing correspondence may also be configured in the terminal device by using a manually configured manner.
  • the present application does not limit how the terminal device obtains reference information.
  • FIG. 4 is a schematic diagram of another method for determining N according to channel quality provided by the present application.
  • UE1 and UE2 are two different terminal devices that communicate with the same base station. The distance between UE1 and the base station is relatively close. If UE2 is far away from the base station, UE1 can determine that the current channel quality is better and the selection is smaller. The number of transmissions, UE2 can determine that the current channel quality is poor and select a larger number of transmissions.
  • the resources used by UE1 and UE2 for unauthorized transmission may be discontinuous (as shown in Figure 4) or continuous.
  • the base station may configure the maximum number of transmissions K for the UE1 and the UE2, and the maximum number of transmissions may be at the cell level, that is, the number of transmissions of all the UEs in the cell corresponding to the base station when the unlicensed transmission is performed may not exceed K; It can also be group-level, that is, the number of transmissions of a group of UEs sharing the same unlicensed transmission resource for unlicensed transmission must not exceed K; the maximum number of transmissions can also be user-level, that is, the base station is configured for different UEs. Different maximum transmission times. It should be noted that the above K does not limit the actual number of transmissions by which the UE performs the unlicensed transmission. The UE may select a value that does not exceed K from the preset set of values as the actual number of transmissions for the unlicensed transmission.
  • the method for determining the number of transmissions of the unlicensed transmission by the terminal device according to the channel quality is described above.
  • the terminal device may also determine the number of transmissions of the unlicensed transmission according to the service type of the transport block to be transmitted.
  • the preset value set is ⁇ 1, 2, 3, 4 ⁇ , and the maximum number of transmissions configured by the network device is 3.
  • the service type corresponding to the transport block is high-reliability and low latency communications (ultra-reliable and low latency communications) , URLLC) service
  • the terminal device can determine the actual number of transmissions of the unlicensed transmission is 3 according to the set of values and the maximum number of transmissions configured by the network device, that is, select from the set of values on the premise that the maximum number of transmissions configured by the network device is satisfied.
  • the maximum value is used to ensure the transmission reliability.
  • the service type corresponding to the transport block is mMTC service
  • the terminal device can determine the actual number of transmissions of the unlicensed transmission to 2 according to the value set and the maximum number of transmissions configured by the network device.
  • the terminal device determines the number of transmissions of the unlicensed transmission according to a single factor.
  • the terminal device may further determine the number of transmissions of the unlicensed transmission according to multiple factors, that is, the network device may according to the channel quality and the service type corresponding to the transport block. Determine the number of transmissions for unauthorized transfers.
  • the preset value set is ⁇ 1, 2, 3, 4 ⁇ , and the maximum number of transmissions configured by the network device is 4.
  • the service type corresponding to the transport block is mMTC service
  • the terminal device may select 3 from the above-mentioned value set as the number of transmissions of the unlicensed transmission, and if the current SNR value falls within the interval (c, d) shown in FIG. 3,
  • the terminal device may select 2 from the above-mentioned value set as the number of transmissions of the unlicensed transmission; when the service type corresponding to the transport block is the URLLC service, if the current SNR value falls within the interval (a, b) shown in FIG.
  • the terminal device may select 4 from the above-mentioned value set as the number of transmissions of the unlicensed transmission. If the current SNR value falls within the interval (c, d) shown in FIG. 3, the terminal device may select 3 from the above-mentioned numerical value set. The number of transmissions as an unlicensed transmission.
  • the channel quality of the foregoing embodiment and/or the correspondence between the service type of the transport block and the N may be a direct correspondence or an indirect correspondence
  • the direct correspondence refers to The information other than the channel quality and/or the traffic type of the transport block determines N
  • the indirect correspondence refers to first determining the intermediate information according to the channel quality and/or the traffic type of the transport block, and then determining N according to the intermediate information, the middle
  • the information may be one or multiple, which is not limited in this application.
  • the above reference information includes an MCS.
  • MCS multi-media Subsystem
  • channel quality refers to the most suitable MCS in the current channel situation.
  • a higher MCS means a higher transmission rate.
  • MCS tends to have a corresponding relationship with SNR. Therefore, determining the target unlicensed transmission resource according to the channel quality may also be described as determining the target unlicensed transmission resource according to the MCS.
  • FIG. 5 is a schematic diagram showing the correspondence between the MCS and the number of transmissions of the unlicensed transmission provided by the present application.
  • the abscissa indicates the index number of the MCS
  • the ordinate indicates the value of N.
  • FIG. 5 is only an example.
  • the specific form of the correspondence between the MCS and the number of transmissions is not limited in this application, and the correspondence between the MCS and the number of transmissions may also be represented by a table.
  • the correspondence between the MCS and the number of transmissions may be one-to-one, one-to-many, or many-to-one. That is, one MCS may correspond to one value in a preset value set, and one MCS may also correspond to A plurality of values in the preset value set, the plurality of MCSs may also correspond to one of the preset value sets.
  • the terminal device may according to other parameters. Or the condition selects one value from the plurality of values, which is not limited in this application.
  • the network device can count the number of MCSs, the number of transmissions, and the transmission reliability of the unlicensed transmission, and determine the correspondence between the MCS, the number of transmissions, and the transmission reliability according to the statistics, and configure the corresponding relationship to the terminal device to facilitate the terminal device.
  • the number of transmissions is selected according to the transmission block's requirements for transmission reliability and the currently used MCS.
  • the foregoing correspondence may also be configured in the terminal device by using a manually configured manner.
  • the present application does not limit how the terminal device obtains reference information.
  • the method 200 further includes:
  • the terminal device determines, from the at least two unlicensed transmission resources, the target unlicensed transmission resource according to the channel quality and/or the service type of the transport block, where the target unlicensed resource is used to transmit the transport block.
  • the terminal device determines, according to the target unlicensed transmission resource, the MCS, where the target unlicensed transmission resource has a preset correspondence with the MCS.
  • the MCS When the MCS is bound to the transmission number, it can also be bound to the unlicensed transmission resource. That is, when the terminal device selects to use the unlicensed transmission resource A to send the uplink data, it also determines that the MCS used for sending the uplink data is an unauthorized transmission. The MCS bound to resource A also determines the number of transmissions of the unlicensed transmission. The terminal device may select an unlicensed transmission resource from among a plurality of unlicensed transmission resources according to the channel quality and/or the type of traffic of the transport block.
  • the terminal device may select an unlicensed transmission resource with a higher transmission rate.
  • the terminal device may select to transmit an unlicensed transmission resource with a lower transmission rate.
  • the terminal device may select an unlicensed transmission resource with a lower transmission rate, and the service type corresponding to the transport block is required for transmission reliability.
  • the terminal device can select an unlicensed transmission resource with a higher transmission rate.
  • the terminal device may select the unlicensed transmission resource A, when the channel quality is poor, and when the service type corresponding to the transport block is a service type that requires high transmission reliability, the terminal device may select the unlicensed transmission resource B, wherein the transmission rate of the unlicensed transmission resource A is greater than the transmission rate of the unlicensed transmission resource B.
  • the MCS and the channel quality are equivalent to some extent.
  • the MCS here refers to the most suitable MCS in the current channel situation. The better the channel quality, the higher the corresponding MCS; the worse the channel quality, the lower the corresponding MCS. A higher MCS means a higher transmission rate.
  • MCS tends to have a corresponding relationship with SNR. Therefore, determining the target unlicensed transmission resource according to the channel quality may also be described as determining the target unlicensed transmission resource according to the MCS.
  • the MCS bound to the unlicensed transmission resource can be determined.
  • the corresponding relationship between the MCS and the N described in the foregoing embodiment may be a direct correspondence or an indirect relationship.
  • the direct correspondence relationship means that N is not determined by information other than the MCS
  • the indirect correspondence relationship refers to first determining the intermediate information according to the MCS, and then determining N according to the intermediate information, the intermediate information may be a There may be multiple, and this application does not limit this.
  • an unlicensed transmission resource may be bound to multiple MCSs, and the terminal device may select an appropriate MCS according to other parameters or conditions, which is not limited in this application.
  • the number of transmissions of the unlicensed transmission can be determined, so that the appropriate number of transmissions can be flexibly selected according to the actual situation (for example, the channel quality and/or the service type of the transport block), and the transmission reliability is improved. Resource utilization.
  • the base station configures at least one triplet for the UE, that is, (resource, MCS, N), where the resource refers to a time-frequency resource allocation or resource index of an unlicensed transmission resource.
  • Each triple represents an unlicensed transmission resource and MCS and N bound to the unlicensed transmission resource.
  • the base station may configure at least one unlicensed transmission resource and the MCS and K corresponding to each of the unlicensed transmission resources for the UE based on the current channel condition of the UE. Then, the UE may select one of the at least one unlicensed transmission resource configured by the base station according to the actual channel condition, and use the MCS and K corresponding to the unlicensed transmission resource for transmission. For example, the base station considers that the MCS of the current most suitable UE is MCS3 according to the channel measurement, and therefore configures the bundled MCS as three unlicensed transmission resources of MCS2, MCS3, and MCS4, as shown in FIG. The unlicensed transmission resource is bound to a different N.
  • the base station may reconfigure the unlicensed transmission resource, that is, reconfigure the new unlicensed transmission resource and the corresponding MCS and N for the UE.
  • the above example is equivalent to the base station configuring a set of values ⁇ 3, 4, 5 ⁇ for the UE.
  • Each of the unlicensed transmission resources in the above embodiments may be continuous or discontinuous.
  • the so-called unlicensed transmission resource is discontinuous, meaning that multiple transmission units included in the unlicensed transmission resource are discontinuous in the time domain and/or the frequency domain.
  • each of the unlicensed transmission resources can be configured to multiple UEs at the same time, and the MCS and the N are bound to the unlicensed transmission resources, no matter which UE uses the unlicensed transmission resource, only the exemption transmission resource can be used.
  • the above reference information is an unlicensed transmission resource used by the transport transport block.
  • Different unlicensed transmission resources may correspond to different transmission times. For example, under the same conditions, the reliability of the dedicated frequency band is higher than the reliability of the public frequency band. Therefore, the transmission frequency corresponding to the dedicated frequency band (for example, the frequency band of each operator) may be Is a small value to reduce resource usage, and the number of transmissions corresponding to a common frequency band (for example, an unlicensed band in licensed-assisted access (LAA) technology) may be a larger value. To ensure transmission reliability.
  • different frequency bands of the unlicensed transmission resources are the same, different unlicensed transmission resources may be used to transmit different services, and different services have different requirements for transmission reliability, and therefore, different unlicensed transmission resources.
  • the number of transmissions of the binding may be different. For one of the unlicensed transmission resources, the number of transmissions of the unlicensed transmission resource bound to one terminal may be the same for all terminal devices using the unlicensed transmission resource, and the terminal device is guaranteed. Fairness between the two.
  • the different unlicensed transmission resources may also correspond to the same number of transmissions, wherein resource parameters (eg, subcarrier spacing) of the different unlicensed transmission resources may be different to accommodate services with different delay requirements.
  • resource parameters eg, subcarrier spacing
  • the number N of transmissions corresponding to the target unlicensed transmission resource is the number of transmissions when the terminal device transmits on the target unlicensed transmission resource.
  • the method 200 further includes:
  • the terminal device determines, from the at least two unlicensed transmission resources, an unlicensed transmission resource (ie, a target unlicensed transmission resource) used by the transmission transport block according to the channel quality and/or the service type of the transport block, the target unlicensed transmission resource. There is a preset correspondence with the channel quality, and/or the target unlicensed transmission resource has a preset correspondence with the service type of the transport block.
  • an unlicensed transmission resource ie, a target unlicensed transmission resource
  • the terminal device can select an unlicensed transmission resource with lower reliability.
  • the terminal device can select a highly reliable unlicensed transmission resource; for example, when the transmission block
  • the terminal device can select a higher-reliability, unlicensed transmission resource.
  • the service type corresponding to the transport block belongs to a low-priority service type
  • the terminal device can select a lower reliability. Unauthorized transfer of resources.
  • the terminal device can also select an unlicensed transmission resource based on the channel quality and the service type of the transport block, thereby improving resource utilization while ensuring transmission reliability.
  • the MCS and the channel quality are equivalent to some extent.
  • the MCS here refers to the most suitable MCS in the current channel situation. The better the channel quality, the higher the corresponding MCS; the worse the channel quality, the lower the corresponding MCS. A higher MCS means a higher transmission rate.
  • MCS tends to have a corresponding relationship with SNR. Therefore, determining the target unlicensed transmission resource according to the channel quality may also be described as determining the target unlicensed transmission resource according to the MCS.
  • the method 200 further includes:
  • the terminal device receives configuration information, where the configuration information is used to configure a correspondence between the reference information and the N.
  • the correspondence between the reference information and the N may be pre-configured in the terminal device by using the configuration information.
  • the corresponding relationship may be a result obtained by the network device statistics on the relationship between the communication reliability and the number of transmissions under different conditions, and the configuration content may be updated periodically.
  • the terminal device can select a suitable number of unauthorized transmissions to improve resource utilization while ensuring transmission reliability.
  • the network device may pass radio resource control (RRC) signaling, media access control (MAC) control element (CE) or physical layer signaling (eg, downlink control information) , DCI)) transmits the above configuration information to the terminal device.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI physical layer signaling
  • the specific form of the configuration information, the name of the configuration information, and the manner of sending and receiving the configuration information are not limited.
  • the base station After the UE transmits the N transport blocks on the unlicensed transmission resource, the base station needs to perform a hybrid automatic repeat request response on the N transmissions, that is, send an acknowledgement/negative (ACK/NACK) message to the UE to indicate Whether the base station correctly receives the data sent by the UE.
  • the base station may adopt a physical hybrid automatic repeat request indicator channel (PHICH), a PHICH-like type, a downlink control information (DCI), and a group common DCI (group common DCI). Equal channel or information to carry ACK/NACK.
  • PHICH physical hybrid automatic repeat request indicator channel
  • DCI downlink control information
  • group common DCI group common DCI
  • the base station uses the PHICH to carry the ACK/NACK to implement the response to the received unlicensed transmission data. 1.
  • the base station separately responds to each transmission in the N transmissions.
  • the base station responds to each of the N data of the same transport block received as one independent data.
  • This method is applicable to the case where the redundancy versions (RV) of N data are the same, because RVs other than RV0 in various RV versions are not independent and may not be decoded separately.
  • the base station can have two response methods. One method is that the base station independently determines whether to respond to an ACK or a NACK based on the reception status of each transmission in the N transmissions. Another method is that the base station responds to the ACK for all transmissions in the N transmissions as long as the data transmitted at least once in the N transmissions is correctly decoded by the base station; when all the transmissions in the N transmissions are not correctly decoded, the base station NACK is responded to all transmissions in N transmissions.
  • the base station responds separately for each transmission in N transmissions, which requires different transmissions in N transmissions to be mapped onto different PHICHs.
  • the PHICH corresponding to an uplink data is related to an index of a demodulation reference signal (DMRS) and a resource allocation index of an uplink transmission. Based on this rule, in order to map different transmissions of N transmissions to different PHICHs, there are the following methods:
  • Option 1 The PHICH corresponding to each transmission is related to the transmission unit selected for the transmission.
  • the UE selects the transmission unit 3, 8, 9, 14 to transmit the data of the 4 transmissions of the same transport block in the unlicensed transmission resource.
  • the PHICH corresponding to each transmission is related to the index of the transmission unit.
  • the PHICH corresponding to the data transmitted by the UE on the transmission unit 3 is determined by the index of the transmission unit (i.e., transmission unit 3).
  • the indexes of the DMRSs corresponding to different transmissions in the N transmissions of the same transport block may be the same or different.
  • Option 2 The PHICH corresponding to each transmission is related to the DMRS index.
  • the standard pre-defined or network-side pre-configured N transmissions of the same transport block have different DMRSs for different transmissions, and the DMRS index of the nth transmission is recorded as DMRS(n).
  • the PHICH corresponding to the data transmitted by the UE for the nth transmission can be determined by the DMRS (n).
  • the uplink resource allocation index corresponding to the N times of transmission may be the same, for example, the index of the transmission unit in the lower left corner of the unlicensed transmission resource is used (such as the transmission unit 4 in FIG. 7); the uplink resource allocation index corresponding to the N times of transmission may be Different from each other, the uplink resource allocation corresponding to the four transmissions in FIG. 7 is the transmission units 3, 8, 9, and 14, respectively.
  • the base station responds once to all transmissions in the N transmissions.
  • the base station may send the response message only once after receiving the N transmissions, indicating whether the information transmitted by the N transmissions is correctly received. In other words, N transmissions need to be mapped to the same PHICH.
  • N is not bound to the transmission resource and/or the MCS
  • the base station since the value of N is determined by the UE itself, the base station cannot determine N, so when the base station receives one data of the UE, it cannot determine that the transmission is the first few. Data transmitted at a time. Since the PHICH is determined by the DMRS index and the resource allocation index of the uplink transmission, in order to implement N times of transmission mapping to the same PHICH, the DMRS index corresponding to the N transmissions and the resource allocation index of the uplink transmission need to be the same. Therefore, the same UE should be bound to a fixed DMRS.
  • the eNB is configured with DMRS for each UE in advance, multiple UEs sharing the same unlicensed transmission resource should be configured with different DMRSs to prevent different UEs from transmitting the same PHICH. Cause a collision.
  • the resource allocation index of the N transmissions should also use the same value, such as using the index of the transmission unit in the lower left corner of the unlicensed transmission resource (such as transmission unit 4 in Fig. 7).
  • the above method is also applicable to the case where N is bound to a transmission resource and/or an MCS.
  • the transmission unit corresponding to the initial transmission may be used.
  • Index to calculate the corresponding PHICH When the base station correctly solves the data, it means that the base station must receive the data using RV0 (that is, it must know the transmission unit index used for the initial transmission), thereby calculating the corresponding PHICH based on this; if the base station does not correctly solve the data, the base station does not The PHICH is sent (ie, no response is made).
  • FIG. 8 shows a method for receiving uplink data provided by the present application.
  • the method 800 includes:
  • the network device sends configuration information, where the configuration information is used to configure a correspondence between the reference information and the N, where N is the number of times the terminal device transmits the transport block according to the unlicensed transmission mode, and N is an integer greater than or equal to 1, the reference
  • the correspondence between the information and the N is used by the terminal device to determine N corresponding to the reference information according to a reference information.
  • the network device receives N uplink data from the terminal device, where the N uplink data includes one initial transmission data and N-1 retransmission data of the transport block.
  • the network device may configure a set of values for the terminal device, where the value in the set of values is a possible value of N.
  • the terminal device may select a value from the set of values according to the reference information, the value.
  • the number of transmissions may be different under different reference information. For example, when the reference information indicates that the current communication environment is good or the reliability of the current transmission is not high, the terminal device can reduce the number of transmissions of the unauthorized transmission. When the information indicates that the current communication environment is poor or the reliability of the current transmission is high, the terminal device can increase the number of transmissions of the unlicensed transmission, so that the resources occupied by the unauthorized transmission can be reduced without affecting the success rate of the reception.
  • the network device in the method 800 is equivalent to the network device in the method 200, and the network device in the method 800 implements the function of receiving the N uplink data and the method in the method 200.
  • the processing of the functions of the uplink data corresponds to each other, and for brevity, it will not be described again.
  • N is less than or equal to K
  • K is a preset maximum number of transmissions
  • K is an integer greater than or equal to 1.
  • the network device can ensure the fairness of transmission between the terminal devices using the unlicensed transmission resource by configuring the maximum number of transmissions corresponding to the unlicensed transmission resource. For example, in the mMTC scenario, there is usually no emergency data.
  • the device can set K as a mandatory parameter, that is, the terminal device must comply with the constraint of K, so as to ensure the fairness of transmission between each terminal device.
  • the reference information includes at least one of channel quality, a service type of a transport block, an MCS, and at least one unlicensed transmission resource that can be used to transport a transport block.
  • the network device can perform statistics on the relationship between the communication reliability and the number of transmissions in different channel quality scenarios, and determine the number of transmissions corresponding to different channel qualities under the premise of satisfying the communication reliability requirement according to the statistical result, and the channel quality and transmission.
  • the correspondence of the times is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate number of transmissions according to the channel quality, thereby improving resource utilization while ensuring transmission reliability.
  • the network device can also collect statistics on the relationship between the communication reliability and the number of transmissions in the scenario of different service types, and determine the number of transmissions corresponding to different service types on the premise of satisfying the communication reliability requirement according to the statistical result, and the service type and The correspondence between the number of transmissions is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate number of transmissions according to the service type corresponding to the transport block, thereby improving resource utilization while ensuring transmission reliability.
  • the network device may also perform statistics on the relationship between the communication reliability and the number of transmissions in the scenario of performing unlicensed transmission using different unlicensed transmission resources, and determine, according to the statistical result, that the license-free transmission resource corresponds to the communication reliability requirement.
  • the number of transmissions, and the correspondence between the unlicensed transmission resources and the number of transmissions is notified to the terminal device through the configuration information, so that the terminal device can select a suitable unlicensed transmission resource according to the unlicensed transmission resource, thereby improving the transmission reliability.
  • Resource utilization may be used to perform statistics on the relationship between the communication reliability and the number of transmissions in the scenario of performing unlicensed transmission using different unlicensed transmission resources, and determine, according to the statistical result, that the license-free transmission resource corresponds to the communication reliability requirement.
  • the network device may also perform statistics on the relationship between the communication reliability and the number of transmissions in the scenario of performing unlicensed transmission using different MCSs, and determine the number of transmissions corresponding to the MCS on the premise that the communication reliability requirements are met according to the statistical result, and The correspondence between the MCS and the number of transmissions is notified to the terminal device through the configuration information, so that the terminal device can select an appropriate unlicensed transmission resource according to the MCS, thereby improving resource utilization while ensuring transmission reliability.
  • the correspondence between the reference information and the N, the channel quality and/or the correspondence between the service type of the transport block and the target unlicensed transmission resource, and the correspondence between the target unlicensed transmission resource and the N is one of the at least one unlicensed transmission resource, and the target unlicensed transmission resource is an unlicensed transmission resource used for transmitting the transport block.
  • the channel quality and/or the correspondence between the service type of the transport block and the N may also be an indirect correspondence, that is, a correspondence between the channel quality and/or the service type of the transport block and the unlicensed transmission resource, and the license-free transmission resource and There is a correspondence between N, thereby enhancing the flexibility of the terminal device to determine the value of N.
  • the correspondence between the target unlicensed transmission resource and the N including: a correspondence between the target unlicensed transmission resource and the MCS, and a correspondence between the MCS and the N.
  • the correspondence between the unlicensed transmission resource and the N may also be an indirect correspondence, thereby enhancing the flexibility of the terminal device to determine the value of N.
  • the terminal device and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the application may divide the functional units of the terminal device and the network device according to the above method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 900 includes a processing unit 902 and a communication unit 903.
  • the processing unit 902 is configured to control and manage the actions of the terminal device 900.
  • the processing unit 902 is configured to support the terminal device 900 to perform the various steps of FIG. 2 and/or other processes for the techniques described herein.
  • the communication unit 903 is configured to support communication between the terminal device 900 and other communication devices, for example, to transmit uplink data generated by the processing unit 902 to the network device.
  • the terminal device 900 may further include a storage unit 901 for storing program codes and data of the terminal device 900.
  • the processing unit 902 determines N, N is the number of transmissions of the transport block according to the reference information, the reference information has a preset correspondence with N, N is an integer greater than or equal to 1; and the communication unit 903 transmits according to the unlicensed transmission mode.
  • N uplink data the N uplink data includes one initial transmission data and N-1 retransmission data of the transport block.
  • the processing unit 902 can be a processor or a controller, such as a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit. , ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 903 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 901 can be a memory.
  • the terminal device involved in the present application may be the terminal device shown in FIG.
  • the terminal device 1000 includes a processor 1002, a transceiver 1003, and a memory 1001.
  • the transceiver 1003, the processor 1002, and the memory 1001 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 900 and the terminal device 1000 provided by the present application may select a value from a preset set of values according to the reference information, the value represents the number of transmissions of the unlicensed transmission, and the number of transmissions may be different under different reference information, for example, when When the reference information indicates that the current communication environment is good or the reliability requirement of the current transmission is not high, the terminal device 900 and the terminal device 1000 can reduce the number of transmissions of the unauthorized transmission, and the reference information indicates that the current communication environment is poor or the reliability of the current transmission. When the requirements are high, the terminal device 900 and the terminal device 1000 can increase the number of transmissions of the unlicensed transmission, so that the resources occupied by the unlicensed transmission can be reduced without affecting the success rate of the reception.
  • FIG. 11 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device 1100 includes a processing unit 1102 and a communication unit 1103.
  • the processing unit 1102 is configured to control the management of the actions of the network device 1100.
  • the processing unit 1102 is configured to support the network device 1100 to perform the various steps of FIG. 8 and/or other processes for the techniques described herein.
  • the communication unit 1103 is configured to support communication between the network device 1100 and other communication devices, for example, receiving uplink data sent by the terminal device.
  • the network device 1100 may further include a storage unit 1101 for storing program codes and data of the network device 1100.
  • the communication unit 1103 performs: sending configuration information, where the configuration information is used to configure a correspondence between the reference information and the N, where N is the number of times the terminal device transmits the transport block according to the unlicensed transmission mode, and N is an integer greater than or equal to 1.
  • Corresponding relationship between the reference information and the N is used by the terminal device to determine N corresponding to the reference information according to a reference information, and N uplink data is received from the terminal device, where the N uplink data includes the transport block One initial data and N-1 retransmission data.
  • Processing unit 1102 can be a processor or controller, such as a CPU, general purpose processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1103 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 1101 may be a memory.
  • the network device involved in the present application may be the network device shown in FIG.
  • the network device 1200 includes a processor 1202, a transceiver 1203, and a memory 1201.
  • the transceiver 1203, the processor 1202, and the memory 1201 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the network device 1100 and the network device 1200 provided by the present application may configure a value set for the terminal device, where the value in the value set is a possible value of the number of transmissions of the unlicensed transmission, and when the terminal device has a transmission block to be transmitted, the terminal
  • the device may select a value from the set of values according to the reference information, the value represents the number of transmissions, and the number of transmissions may be different under different reference information, for example, when the reference information indicates that the current communication environment is better or the reliability of the current transmission is not high.
  • the terminal device can reduce the number of transmissions of the unlicensed transmission.
  • the terminal device can increase the number of transmissions of the unauthorized transmission, thereby not affecting the reception. Reduce the resources occupied by unauthorized transfer on the premise of success rate.
  • transceivers may include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • K in the following embodiment corresponds to N in the above embodiment.
  • the parts of the following embodiments and the above-described embodiments can be understood from each other.
  • the UE determines the current number of unlicensed transmission transmissions K in ⁇ according to the situation, and may determine K in ⁇ according to the channel condition. For example, when the channel quality is good, a smaller K is selected, and when the channel quality is poor, a larger K is selected.
  • the UE may measure the channel based on the base station's synchronization signal (PSS/SSS) and/or reference signal (eg, CRS).
  • PSS/SSS base station's synchronization signal
  • CRS reference signal
  • the UE can also determine K in ⁇ based on historical transmission conditions. For example, after the UE selects the number of transmissions K, K is decremented by 1 when the transmission success probability > ⁇ 1 in the most recent predefined time period; and K is incremented by 1 if the transmission success probability ⁇ ⁇ 2 in the latest predefined time period. Where ⁇ 1 ⁇ 2.
  • the above transmission success probability may also be defined based on the transmission of the last N data, where N is a predefined value.
  • the unlicensed transmission resource or the exempt authorization resource mentioned in this application has the same meaning and may include, but is not limited to, a combination of one or more of the following resources:
  • time domain resources also referred to as time resources
  • time resources such as radio frames, subframes, symbols, etc.
  • frequency domain resources also referred to as spectrum resources
  • spectrum resources such as subcarriers, resource blocks, etc.
  • airspace resources such as transmitting antennas, beams, etc.
  • code domain resources such as sparse code multiple access (SCMA) codebook, low density signature (LDS) sequence, CDMA code, etc.;
  • SCMA sparse code multiple access
  • LDS low density signature
  • One or more unauthorized transfer units may be included in each of the unlicensed transmission resources or the unlicensed resources, and the unauthorized transfer unit may be simply referred to as a transmission unit.
  • the UE performs the unlicensed transmission, one or more transmission units may be selected for transmission in the unlicensed transmission resources configured by the base station.
  • the UE needs to select at least K transmission units for transmission.
  • each transmission in K transmissions may occupy more than one transmission unit.
  • the UE needs to select the K group transmission unit for transmission, and each group of transmission units corresponds to one transmission in K transmissions.
  • FIG. 13 shows a scenario suitable for the present application.
  • a base station (a network device) can perform data transmission with a UE (a user equipment, also referred to herein as a terminal device), and the base station is a UE. Allocate transmission resources.
  • the base station is a device with central control functions, such as a macro base station, a micro base station, a hotspot (pico), a home base station (femeto), a transfer point (TP), a relay, and an access.
  • An access point may be collectively referred to as a network device; a UE is a device capable of receiving base station scheduling and indication information, and may be a terminal device such as a mobile phone, a computer, a wristband, a smart watch, a data card, a sensor, a site ( Stations, STAs, etc., can be collectively referred to as terminal devices.
  • a side link such as a link between a wristband and a mobile phone in a wristband-handset-base station
  • the wristband can be regarded as a UE
  • the mobile phone is regarded as a base station.
  • the network element involved in the present application includes a base station (such as gNB, generation Node B, that is, a base station referred to in the 5G NR standard) and a UE.
  • a base station such as gNB, generation Node B, that is, a base station referred to in the 5G NR standard
  • UE a UE
  • the base station involved in the present application may be the base station 1400 shown in FIG.
  • the base station 1400 includes a processor 1401, a memory 1402, a transceiver 1403, and a bus 1404.
  • the processor 1401, the memory 1402, and the transceiver 1403 are connected to each other through a bus 1404.
  • the bus 1404 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus 1404 described above can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the base station 1400 provided by the present application can perform the related method steps performed by the base station in the method embodiment of the present application, the detailed description of each module or unit, and the execution of the base station in each embodiment of the method embodiment of the present application.
  • the related method steps refer to the related description in the method embodiment of the present application, and details are not described herein again.
  • the present application also provides a non-volatile storage medium (one of a computer-readable storage medium) having one or more program codes stored therein, when the processor 1401 of the base station 1400 executes the In the case of the program code, the base station 1400 performs the associated method steps performed by the base station in any of the method embodiments of the present application.
  • a non-volatile storage medium one of a computer-readable storage medium
  • the UE 1500 involved in the present application may be the UE 1500 shown in FIG.
  • the UE 1500 includes a processor 1501, a memory 1502, a transceiver 1503, and a bus 1504.
  • the processor 1501, the memory 1502, and the transceiver 1503 are connected to each other through a bus 1504.
  • the bus 1504 may be a PCI bus or an EISA bus.
  • the bus 1504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the present application also provides a non-volatile storage medium having one or more program codes stored therein.
  • the processor 1501 of the UE 1500 executes the program code, the UE 1500 performs any of the present applications.
  • Embodiment 1 of the present application maximum value of base station configuration transmission times
  • the UE transmits the number of transmissions K0, K0 ⁇ ⁇ in the ⁇ according to the actual situation.
  • Fig. 16 is a specific example of determining K0 based on SNR.
  • Fig. 16 can also be embodied in the form of a table. The UE first measures the channel, obtains the SNR, and then obtains the corresponding K0 value based on FIG.
  • the base station configures the maximum number of transmissions K for the UE, which may be cell-specific, that is, all UEs in the cell perform K0 selection based on the same ⁇ when performing unlicensed transmission; K may also be based on a group of UEs, for example, The base station configures the same K for a group of UEs sharing the same unlicensed resource; K may also be per-user, that is, the base station may configure different Ks for different UEs.
  • the base station does not indicate the number of transmissions K0 actually used in the UE transmission, but merely indicates the maximum allowable value of K0.
  • the value of K0 is determined by the UE in the range of 1 to K.
  • Embodiment 2 of the present application an unauthorized resource or MCS is associated with K
  • the unlicensed resource can be associated with K, that is, each exempted resource is bound to one (MCS, K) or K.
  • the base station configures at least one (resource, MCS, K) or (resource, K) tuple for the UE, where the resource refers to a time-frequency resource allocation or resource index of an unlicensed resource.
  • Each tuple represents an exempt license resource and (MCS, K) or K bound to the resource.
  • each of the unlicensed resources is bound to a K, that is, the number of transmissions when any UE selects the unlicensed resource transmission is the same, and is equal to K bound to the unauthorized resource.
  • FIG. 18 can also be embodied in a tabular form.
  • the base station configures at least one (resource, MCS) for the UE, and the UE can determine the corresponding K by the MCS according to the mapping relationship shown in FIG. 18.
  • the base station may configure the UE with at least one unlicensed resource and the MCS and K corresponding to each of the unlicensed resources based on the current channel condition of the UE. Then, the UE may select one of the at least one exempted resource configured by the base station to perform transmission according to the actual channel condition, and use the MCS and K corresponding to the unlicensed resource during transmission. For example, the base station considers that the most suitable MCS of a certain UE is the MCS3 according to the channel measurement. Therefore, the three unlicensed resources of the MCS2, the MCS3, and the MCS4 are respectively configured for the UE, as shown in FIG. Authorized resources are bound differently.
  • the base station may reconfigure the unlicensed resource, that is, reconfigure the new unlicensed resource and the corresponding MCS and K for the UE.
  • the resources in the embodiment shown in FIG. 19 can also be bound only to K without binding to the MCS.
  • Each of the unlicensed transmission resources in this embodiment may be continuous or discontinuous.
  • the so-called unlicensed transmission resource is discontinuous, meaning that multiple transmission units included in the unlicensed transmission resource are discontinuous in the time domain and/or the frequency domain.
  • each of the unlicensed transmission resources can be configured to multiple UEs at the same time, and the MCS and the K are bound to the unlicensed transmission resources, no matter which UE uses the unlicensed transmission resource, only the exemption transmission resource can be used.
  • the same number of transmissions on the same unlicensed transmission resource of different UEs makes the probability of collision between UEs equivalent, so the transmission reliability is also equivalent, thus ensuring the fairness of transmission of different UEs.
  • Embodiment 3 of the present application base station responds to HARQ-ACK
  • the base station After the UE performs K times of transmission of a certain data on the unlicensed resource, the base station needs to perform a HARQ-ACK response to the K transmissions, that is, send an ACK/NACK, indicating whether the base station correctly receives the data of the UE.
  • the base station may use PHICH, PHICH-like (PHICH-like), DCI, group common DCI (group public DCI), etc. to carry the response information of the unauthorized data.
  • This embodiment assumes that the base station uses the traditional PHICH channel to carry the response information of the unlicensed data, and implements a response to the K transmission of a certain data. But in terms of specific responses, there can be different specific forms. This embodiment can be used in combination with the first embodiment or in combination with the second embodiment.
  • the base station responds separately to each transmission in the K transmissions
  • the base station responds to each of the K transmissions of the same data transmitted by the UE as one independent data.
  • This method is applicable to the case where K times of transmission is a duplicate version of the same data (ie, the same RV), because the redundancy version other than RV0 in the case of the transmission version (different RV) is not independent and may not be decoded separately.
  • the base station can have two specific response methods. One method is that the base station independently determines whether to respond to an ACK or a NACK based on the reception status of each of the K transmissions. Another method is that the base station responds to ACK for all transmissions in K transmissions as long as at least one of the K transmissions is correctly decoded by the base station; when all transmissions in K transmissions are not correctly decoded, the base station pairs K All transmissions in the secondary transmission are responsive to NACK.
  • the base station responds separately for each of the K transmissions, which requires that different transmissions in K transmissions should be mapped onto different PHICH resources.
  • the PHICH resource determination method in the current standard the PHICH corresponding to one UL data is related to the resource allocation index of the n DMRS and the UL transmission. Based on this rule, in order to map different transmissions in K transmissions to different PHICH resources, there are the following methods:
  • Option 1 The corresponding PHICH resource for each transmission is related to the transmission unit selected for transmission.
  • the PHICH resource corresponding to each transmission should be related to the index of the transmission unit.
  • the PHICH resource of the data transmitted by the UE on the transmission unit 3 is determined by the index of the transmission unit (ie, the transmission unit 3).
  • the n DMRSs corresponding to different transmissions in the K transmissions of the same data may be the same or different.
  • Option 2 The corresponding PHICH resource for each transmission is related to n DMRS
  • n DMRS n DMRS (k).
  • the base station can send only one response after receiving the K transmissions, indicating whether the data to be transmitted by the K transmissions is correctly received. In other words, K transmissions need to be mapped to the same PHICH resource.
  • the base station since the value of the actual number of transmissions K0 is determined by the UE itself, the base station does not know in advance, so when the base station receives a transmission of the UE, it cannot determine that the transmission is the K0 transmission sent by the UE. The first few times. Since the PHICH resource is determined by the resource allocation index of the n DMRS and the UL transmission, in order to implement the K-time transmission mapping to the same PHICH resource, the resource allocation indexes of the n- DMRS and the UL transmission corresponding to the K-transmissions need to be the same. Therefore, the same UE should be bound to a fixed n DMRS , for example, the base station configures n DMRS for each UE in advance.
  • Multiple UEs sharing the same unlicensed resource should configure n DMRSs that are different from each other to avoid collisions between different UEs' transmissions mapped to the same PHICH resources.
  • the resource allocation index of the K transmissions should also use the same value, such as using the index of the transmission unit in the lower left corner of the unlicensed resource (such as transmission unit 4 in Fig. 20).
  • the above method is also applicable to the second embodiment.
  • the first transmission ie, RV0
  • the index of the transmission unit is used to calculate the corresponding PHICH.
  • the base station correctly solves the data, it means that the base station must receive the RV0 (that is, the transmission unit index of the RV0 must be known), so as to calculate the corresponding PHICH resource based on this; if the base station does not correctly solve the data, the base station does not send the PHICH ( That is, no response).
  • the present application also provides the following embodiments, in which the numbers of the following embodiments are not specifically related to the numbers of the foregoing embodiments, and are merely for convenience.
  • the parts of the following embodiments and the above-described embodiments can be understood from each other.
  • a data transmission method comprising:
  • the terminal device receives the unlicensed configuration information sent by the network device, where the unlicensed configuration information includes an unlicensed resource configured by the network device to the terminal device; the terminal device determines a retransmission number K0 based on the first factor, The first factor includes at least channel quality between the terminal device and the network device; the terminal device transmits K0 retransmission data of the first data to the network device in the unlicensed resource.
  • the UE determines the number of unauthorized retransmissions based on factors such as channel quality, and is more advantageous to make full use of the unlicensed resources, because the UE is more aware of the channel conditions, so that the appropriate number of retransmissions can be determined based on the channel conditions.
  • mapping relationship between the channel quality and the number of retransmissions. After the UE measures channel quality (such as SNR), the corresponding number of retransmissions can be determined based on the mapping relationship. All UEs determine the number of retransmissions based on the same mapping relationship, thereby ensuring fairness when determining the number of retransmissions between UEs.
  • channel quality such as SNR
  • the method of the embodiment 1 or 2 after the terminal device sends the K0 retransmission data of the first data to the network device in the unlicensed resource, the method includes:
  • the K0 times of the first data sent by the UE are retransmitted. Since the corresponding PHICH resources are determined based on the same unlicensed resource and the same n DMRS , the K0 retransmissions are mapped to the same PHICH resource, that is, the K0 times of the first data. Only one response is passed, reducing the response overhead.
  • the base station configures the maximum number of retransmissions to prevent the number of retransmissions of the UE from being too large, causing too much resources and causing interference to other UEs.
  • a data transmission method comprising:
  • the terminal device receives the license-free configuration information sent by the network device, where the unlicensed configuration information includes at least one unauthorized resource configured by the network device to the terminal device, and each of the at least one unauthorized resource is exempted An MCS corresponding to the authorized resource; the terminal device determines an exempted resource as the first exempted resource in the at least one exempted resource; the terminal device adopts the first in the first exempted resource
  • the first MCS corresponding to the unlicensed resource sends K retransmission data of the first data to the network device, where K is a number of retransmissions bound to the first exemption resource and/or the first MCS .
  • the UE determines the number of retransmissions that are bound to the UE based on the configured unlicensed resource or the unlicensed resource.
  • the number of retransmissions of the different UEs transmitted by using the same unlicensed resource is the same, ensuring the fairness of transmission between the UEs.
  • the binding relationship between the K and the first exempt resource and/or the first MCS is configured by the network device to the terminal device.
  • the base station configures an unlicensed resource and/or a binding relationship between the MCS and the K. This method makes the mapping relationship more flexible.
  • determining, by the terminal device, an unlicensed resource as the first exempted resource in the at least one unauthorized resource comprises:
  • the terminal device measures channel quality between the terminal device and the network device; the terminal device determines a first MCS based on the measured channel quality; and the terminal device selects the at least one unauthorized resource An unauthorized resource corresponding to the first MCS is used as the first exempt resource.
  • the UE determines the most suitable current channel quality MCS based on the channel quality, and then determines the corresponding unlicensed resource as the resource used for the current transmission based on the MCS, which is a general method for the UE to determine the unlicensed resource based on the channel quality.
  • a method of data transmission comprising:
  • the network device sends the unlicensed configuration information to the terminal device, where the unlicensed configuration information includes an unlicensed resource configured by the network device to the terminal device, where the network device receives the terminal device to send in the unauthorized resource.
  • K0 retransmission data of the first data the K0 is determined by the terminal device based on a first factor, and the first factor includes at least a channel quality between the terminal device and the network device.
  • the UE determines the number of unauthorized retransmissions based on factors such as channel quality, and is more advantageous to make full use of the unlicensed resources, because the UE is more aware of the channel conditions, so that the appropriate number of retransmissions can be determined based on the channel conditions.
  • mapping relationship between the channel quality and the number of retransmissions. After the UE measures channel quality (such as SNR), the corresponding number of retransmissions can be determined based on the mapping relationship. All UEs determine the number of retransmissions based on the same mapping relationship, thereby ensuring fairness when determining the number of retransmissions between UEs.
  • channel quality such as SNR
  • nDMRS ie, an index of a DMRS
  • the K0 times of the first data sent by the UE are retransmitted. Since the corresponding PHICH resources are determined based on the same unlicensed resource and the same n DMRS , the K0 retransmissions are mapped to the same PHICH resource, that is, the K0 times of the first data. Only one response is passed, reducing the response overhead.
  • the base station configures the maximum number of retransmissions to prevent the number of retransmissions of the UE from being too large, causing too much resources and causing interference to other UEs.
  • a method of data transmission comprising:
  • the network device sends the unlicensed configuration information to the terminal device, where the unlicensed configuration information includes at least one unauthorized resource configured by the network device to the terminal device, and each of the at least one unauthorized resource is exempted from authorization a network corresponding to the MCS; the network device, on the first unlicensed resource of the at least one unlicensed resource, receiving K retransmission data of the first data sent by the terminal device by using the first MCS, where the first The MCS is an MCS corresponding to the first exempted resource, and the K is a number of retransmissions bound to the first exempt resource and/or the first MCS.
  • the UE determines the number of retransmissions that are bound to the UE based on the configured unlicensed resource or the unlicensed resource.
  • the number of retransmissions of the different UEs transmitted by using the same unlicensed resource is the same, ensuring the fairness of transmission between the UEs.
  • the binding relationship of the K to the first MCS is predefined.
  • the binding relationship between the MCS and the K is predefined. This means that the base station only needs to configure the MCS without configuring K when configuring the relevant transmission parameters, thereby reducing the indication overhead of the configuration process.
  • the UE may have a corresponding K determined by the MCS based on the predefined mapping relationship.
  • the binding relationship of the K to the first exempt resource and/or the first MCS is that the network device is configured to the terminal device.
  • the base station configures an unlicensed resource and/or a binding relationship between the MCS and the K. This method makes the mapping relationship have maximum flexibility.
  • the network device sends a response to the first data to the terminal device in a first PHICH resource, where the first PHICH resource is determined by the first exempt resource and an n DMRS , where the n DMRS is included in The license-free configuration information.
  • the K times of retransmission of the first data sent by the UE since the corresponding PHICH resources are determined based on the same unlicensed resource and the same n DMRS , which causes the K retransmissions to be mapped to the same PHICH resource, that is, the K times of the first data. Only one response is passed, reducing the response overhead.
  • a method of data transmission comprising:
  • the terminal device receives the license-free configuration information sent by the network device, where the unlicensed configuration information includes at least one unauthorized resource configured by the network device to the terminal device, and each of the at least one unauthorized resource is exempted The number of retransmissions corresponding to the authorized resource; the terminal device determines an exempted resource as the first exempted resource in the at least one exempted resource; the terminal device sends the unlicensed resource to the network The device sends K retransmission data of the first data, where K is the number of retransmissions corresponding to the first exemption resource.
  • the UE determines the number of retransmissions bound to the UE based on the configured unlicensed resource.
  • the number of retransmissions of different UEs transmitted by using the same unlicensed resource is the same, ensuring fairness of transmission between UEs.
  • a method of data transmission comprising:
  • the network device sends the unlicensed configuration information to the terminal device, where the unlicensed configuration information includes at least one unauthorized resource configured by the network device to the terminal device, and each of the at least one unauthorized resource is exempted from authorization The number of retransmissions corresponding to the resource;
  • K Receiving, by the network device, K retransmission data of the first data sent by the terminal device, where the K is corresponding to the first unlicensed resource, on the first unlicensed resource of the at least one unlicensed resource The number of retransmissions.
  • the UE determines the number of retransmissions bound to the UE based on the configured unlicensed resource.
  • the number of retransmissions of different UEs transmitted by using the same unlicensed resource is the same, ensuring fairness of transmission between UEs.
  • a terminal device comprising:
  • a processor for receiving and transmitting data
  • the transceiver for receiving and transmitting data
  • the memory for storing instructions
  • the processor is operative to execute the instructions in the memory, performing the method of any of embodiments 1-4.
  • the receiver is configured to receive a response of the network device to send the unlicensed configuration information or the first data according to any one of Embodiments 1-4; the transmitter is configured to send as in Embodiment 1 4 any of the first data.
  • a network device comprising: a processor, a memory and a transceiver; the transceiver for receiving and transmitting data; and the memory for storing instructions;
  • the processor for executing the instructions in the memory, performing the method of any of embodiments 10-13.
  • the network device of embodiment 22, the transceiver comprising: a transmitter and a receiver; the receiver for receiving first data as described in any of embodiments 10-13 transmitted by the terminal device;
  • the transmitter is configured to transmit the unlicensed configuration information or the response of the first data as described in any of embodiments 10-13.
  • a terminal device comprising:
  • a processor for receiving and transmitting data
  • the transceiver for receiving and transmitting data
  • the memory for storing instructions
  • the processor is operative to execute the instructions in the memory and perform the method of any of embodiments 5-9.
  • the transceiver comprising:
  • the receiver is configured to receive a response of the network device to transmit the unlicensed configuration information or the first data according to any one of Embodiments 5-9; the transmitter is configured to send, as in Embodiment 5 9 any of the first data.
  • a network device comprising:
  • a processor for receiving and transmitting data
  • the transceiver for receiving and transmitting data
  • the memory for storing instructions
  • the processor configured to execute the instructions in the memory, perform the method of any of embodiments 14-17.
  • the receiver is configured to receive, by the terminal device, the first data as described in any one of Embodiments 14-17;
  • the transmitter is configured to transmit the unlicensed configuration information or the response of the first data as described in any of embodiments 14-17.
  • a terminal device comprising:
  • a processor for receiving and transmitting data
  • the transceiver for receiving and transmitting data
  • the memory for storing instructions
  • the processor is operative to execute the instructions in the memory and to perform the method as described in embodiment 18.
  • the receiver is configured to receive the unlicensed configuration information as described in Embodiment 18 sent by the network device; the transmitter is configured to send the first data as described in Embodiment 18.
  • a network device comprising:
  • a processor for receiving and transmitting data
  • the transceiver for receiving and transmitting data
  • the memory for storing instructions
  • the processor configured to execute the instructions in the memory, perform the method as described in embodiment 19.
  • the network device of embodiment 30, the transceiver comprising:
  • the receiver is configured to receive the first data that is sent by the terminal device, as described in Embodiment 19;
  • the transmitter is configured to send the unlicensed configuration information as described in Embodiment 19.
  • a computer program product comprising a computer program, which when executed on a computer, causes the computer to implement the method of any of embodiments 1-4.
  • a computer program product comprising a computer program, which when executed on a computer, causes the computer to implement the method of any of embodiments 5-9.
  • a computer program product comprising a computer program, which when executed on a computer, causes the computer to implement the method of any of embodiments 10-13.
  • a computer program product comprising a computer program which, when executed on a computer, causes the computer to implement the method of any of embodiments 14-17.
  • a computer program product comprising a computer program which, when executed on a computer, causes the computer to implement the method of embodiment 18.
  • a computer program product comprising a computer program which, when executed on a computer, causes the computer to implement the method of embodiment 19.
  • a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 1-4.
  • a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 5-9.
  • a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 10-13.
  • a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 14-17.
  • a computer program that, when executed on a computer, causes the computer to implement the method of embodiment 18.
  • a terminal device configured to perform the method of any of embodiments 1-4.
  • a terminal device configured to perform the method of any of embodiments 5-9.
  • a terminal device configured to perform the method of embodiment 18.
  • a network device configured to perform the method of any of embodiments 10-13.
  • a network device configured to perform the method of any of embodiments 14-17.
  • a network device configured to perform the method of embodiment 19.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 1-4.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 5-9.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 10-13.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of any of embodiments 14-17.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of embodiment 18.
  • a computer readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to implement the method of embodiment 19.
  • a communication system comprising the terminal device of any of embodiments 1-4 and the network device of any of embodiments 10-13.
  • a communication system comprising the terminal device of any of embodiments 5-9 and the network device of any of embodiments 14-17.
  • a communication system comprising the terminal device of embodiment 18 and the network device of any of embodiments 19.
  • a chip comprising: a processing module and a communication interface, the processing module being operative to perform the communication method of any of embodiments 1-4.
  • the chip of embodiment 59 the chip further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and is in the storage module Execution of the stored instructions causes the processing module to perform the communication method of any of embodiments 1-4.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the communication method of any of embodiments 5-9.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the communication method of any of embodiments 10-13.
  • the chip of embodiment 63 the chip further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and is in the storage module Execution of the stored instructions causes the processing module to perform the communication method of any of embodiments 10-13.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the communication method of any of embodiments 14-17.
  • the chip of embodiment 65 the chip further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and is in the storage module Execution of the stored instructions causes the processing module to perform the communication method of any of embodiments 14-17.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the communication method of embodiment 18.
  • the chip of embodiment 67 the chip further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and is in the storage module Execution of the stored instructions causes the processing module to perform the communication method described in embodiment 18.
  • a chip comprising: a processing module and a communication interface, the processing module for performing the communication method of embodiment 19.
  • the chip of embodiment 69 the chip further comprising a storage module, the storage module is configured to store an instruction, the processing module is configured to execute an instruction stored by the storage module, and is in the storage module Execution of the stored instructions causes the processing module to perform the communication method described in embodiment 19.
  • the present application provides an apparatus (which may be a communication chip) in which instructions are stored that, when run on a device (such as a terminal device or a network device), cause the device to perform one of the above method embodiments.
  • a device such as a terminal device or a network device
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • each device embodiment may refer to related methods in the related method embodiments. Partial understanding.
  • the device configuration diagrams given in the various device embodiments of the present invention show only a simplified design of the corresponding device.
  • the device may include any number of transmitters, receivers, processors, memories, etc., to implement the functions or operations performed by the device in various embodiments of the present invention, and all devices that can implement the present application All are within the scope of this application.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal device.
  • the processor and the storage medium can also exist as discrete components in the terminal device and the network device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD), or a semiconductor medium (eg, a solid state disk (SSD)). Wait.

Abstract

本申请提供了一种发送上行数据的方法,包括:终端设备根据参考信息确定N,N为传输块的传输次数,该参考信息与N存在预设的对应关系,N为大于或等于1的整数;终端设备按照免授权传输方式发送N个上行数据,该N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。例如,终端设备可以从数值集合中确定N,该数值集合为预设在终端设备中的信息,当终端设备有传输块需要传输时,终端设备可以根据参考信息从数值集合中选择一个数值,该数值代表传输的次数,不同的参考信息下传输次数可能不同,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。

Description

发送或接收上行数据的方法和装置
本申请要求于2017年12月29日提交中国专利局、申请号为201711479356.8、申请名称为“发送或接收上行数据的方法和装置”的中国专利申请的优先权,以及于2017年8月30日提交中国专利局、申请号为201710765305.5、申请名称为“一种数据传输方法和设备”的中国专利申请的优先权,以及于2017年8月24日提交中国专利局、申请号为201710735426.5、申请名称为“一种数据传输方法和设备”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及无线通信领域中的一种发送或接收上行数据的方法和装置。
背景技术
免授权(grant-free,又称为transmission without grant或grant-less或grantless)传输是第五代(5 th generation,5G)移动通信系统中的一种传输方法,在免授权传输中,终端设备无需等待网络设备的调度信息即可直接发送上行信息,因而具有短时延的特点。
由于免授权传输中各个终端设备发送上行信息使用的资源都是各个终端设备自己选择的,因此不同终端设备可能选用相同的资源发送上行信息,在这种情况下网络设备无法正确接收该上行信息,为了克服这种缺点,终端设备需要多次重传上行信息以提高网络设备的接收成功率。然而,这种方法存在的一个缺点是占用了大量资源,如何在不影响接收成功率的前提下减少免授权传输占用的资源是当前亟需解决的问题。
发明内容
本申请提供了一种发送或接收上行数据的方法和装置,发送上行数据的装置可以基于参考信息确定免授权传输的传输次数,当参考信息指示当前传输成功概率较高时,发送上行数据的装置可以减少免授权传输的传输次数,当参考信息指示当前传输成功的概率较低时,发送上行数据的装置可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
第一方面,提供了一种发送上行数据的方法,包括:终端设备根据参考信息确定N,N为传输块的传输次数,该参考信息与N存在预设的对应关系,N为大于或等于1的整数;终端设备按照免授权传输方式发送N个上行数据,该N个上行数据包括所述传输块的一个初传数据和N-1个重传数据(也可理解为终端设备按照免授权传输方式发送N次传输块)。
在一种可能的实施方式中,N可以是一个数值集合中的一个数值,该数值集合可以为预设在终端设备中的信息,当终端设备有传输块需要传输时,终端设备可以根据参考信息从该数值集合中选择一个数值,该数值代表传输块的传输次数,不同的参考信息下传输次数可能不同,例如,当参考信息指示当前通信环境较好或者当前传输的 可靠性要求不高时,终端设备可以减少免授权传输的传输次数,当参考信息指示当前通信环境较差或者当前传输的可靠性要求较高时,终端设备可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
可选地,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
网络设备或者通信协议可以规定终端设备进行免授权传输的最大传输次数,以免终端设备占用过多的资源导致资源浪费以及避免当前通信系统的其它终端设备因可用资源减少导致的传输可靠性降低。
可选地,上述参考信息包括信道质量和/或传输块的业务类型。
当信道质量较好时,传输次数可以为一个较小的数值,当信道质量较差时,传输次数可以为一个较大的数值;当传输块的业务类型对传输可靠性要求较低时,传输次数可以是一个较小的数值,当传输块的业务类型对传输可靠性要求较高时,传输次数可以是一个较大的数值;还可以综合考虑信道质量和传输块的业务类型,从数值集合中选择合适的数值,从而可以在保证传输可靠性的同时提高资源利用率。
可选地,上述参考信息包括调制编码方案(modulation and coding scheme,MCS)。
不同的MCS可以对应不同的传输次数,例如,同等条件下,当信道质量较好时,传输可靠性较高,可以使用较高的传输速率发送上行数据,当信道质量较差时,传输可靠性较低,可以使用较低的传输速率发送上行数据因此,传输速率较高的MCS可以对应较小的传输次数,传输速率较高的MCS可以对应较大的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
可选地,终端设备根据MCS确定N之前,所述方法还包括:终端设备根据信道质量和/或传输块的业务类型从至少两个免授权传输资源中确定目标免授权传输资源,该目标免授权资源用于传输所述传输块;终端设备根据该目标免授权传输资源确定MCS,该目标免授权传输资源与MCS存在预设的对应关系。
MCS可以与免授权传输资源绑定在一起,即,终端设备选择使用免授权传输资源A发送上行数据时,也就确定了发送上行数据使用的MCS为免授权传输资源A绑定的MCS。终端设备可以在根据信道质量和/或传输块的业务类型从多个免授权传输资源中选择一个免授权传输资源,例如,当信道质量较好时,可以选择传输速率较高的免授权传输资源,当信道质量较差时,可以选择传输传输速率较低的免授权传输资源,从而可以灵活选择合适的传输资源,在保证传输可靠性的同时提高资源利用率。
可选地,上述参考信息为发送传输块使用的免授权传输资源。
不同的免授权传输资源可以对应不同的传输次数,例如,同等条件下,专用频段的可靠性高于公共频段的可靠性,因此,专用频段对应的传输次数可以是一个较小的数值,以减小资源使用量,公共频段对应的传输次数可以是一个较大的数值,以保证传输可靠性。
可选地,终端设备根据发送传输块使用的免授权传输资源确定N之前,所述方法还包括:终端设备根据信道质量和/或传输块的业务类型从至少两个免授权传输资源中确定发送N次传输块使用的免授权传输资源,发送所述N次传输块使用的免授权传输资源与信道质量存在预设的对应关系,和/或,发送N次传输块使用的免授权传输资源 与该传输块的业务类型存在预设的对应关系。
例如,当信道质量较好时,终端设备可以选择可靠性较低的免授权传输资源,当信道质量较差时,终端设备可以选择可靠性较高的免授权传输资源;又例如,当传输块对应的业务类型属于高优先级业务类型时,终端设备可以选择可靠性较高的免授权传输资源,当传输块对应的业务类型属于低优先级业务类型时,终端设备可以选择可靠性较低的免授权传输资源。终端设备还可以基于信道质量和传输块的业务类型选择免授权传输资源。因此,本实施例提供的方法可以根据当前实际情况确定免授权传输的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
可选地,终端设备根据参考信息确定N之前,所述方法还包括:终端设备接收配置信息,该配置信息用于配置所述参考信息与N的对应关系。
参考信息与传输次数的对应关系可以通过配置信息预先配置在终端设备中,该对应关系可以是网络设备统计不同条件下通信可靠性与传输次数的关系得出的结果,并可以定期更新配置内容,从而使得终端设备可以选择合适的免授权传输次数,在保证传输可靠性的同时提高资源利用率。
第二方面,提供了一种接收上行数据的方法,包括:网络设备发送配置信息,该配置信息用于配置参考信息与N的对应关系,N为终端设备按照免授权传输方式传输传输块的次数,且N为大于或等于0的整数,所述参考信息与N的对应关系用于所述终端设备根据一个参考信息确定与该参考信息对应的N;网络设备从该终端设备接收N个上行数据,该N个上行数据包括传输块的一个初传数据和N-1个重传数据。
网络设备可以为终端设备配置一个数值集合,该数值集合中的数值为N可能的取值,当终端设备有传输块需要传输时,终端设备可以根据参考信息从数值集合中选择一个数值,该数值代表传输次数,不同的参考信息下传输次数可能不同,例如,当参考信息指示当前通信环境较好或者当前传输的可靠性要求不高时,终端设备可以减少免授权传输的传输次数,当参考信息指示当前通信环境较差或者当前传输的可靠性要求较高时,终端设备可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
可选地,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
网络设备可以通过配置免授权传输资源对应的最大传输次数来保证使用该免授权传输资源的各个终端设备之间传输的公平性,例如,在海量机器类通信(massive machine type communications,mMTC)场景中,通常不会有紧急数据的存在,网络设备可以设置最大传输次数K,从而可以保证各个终端设备之间传输的公平性。
可选地,所述参考信息包括信道质量、传输块的业务类型、MCS以及能用于传输传输块的至少一个免授权传输资源中的至少一个。
网络设备可以对不同信道质量的场景中通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下不同信道质量对应的传输次数,并将信道质量与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据信道质量选择合适的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
网络设备也可以对不同业务类型的场景中通信可靠性与传输次数之间的关系进行 统计,根据统计结果确定在满足通信可靠性要求的前提下不同业务类型对应的传输次数,并将业务类型与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据传输块对应的业务类型选择合适的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
网络设备还可以对使用不同免授权传输资源进行免授权传输的场景中的通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下免授权传输资源对应的传输次数,并将免授权传输资源与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据免授权传输资源选择合适的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
网络设备还可以对使用不同MCS进行免授权传输的场景中的通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下MCS对应的传输次数,并将MCS与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据MCS选择合适的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
可选地,参考信息与N的对应关系,包括:信道质量和/或传输块的业务类型与目标免授权传输资源之间的对应关系,以及所述目标免授权传输资源与N的对应关系,所述目标免授权传输资源为所述至少一个免授权传输资源中的一个,所述目标免授权传输资源为传输所述传输块使用的免授权传输资源。
信道质量和/或传输块的业务类型与N的对应关系还可以是间接的对应关系,即信道质量和/或传输块的业务类型与免授权传输资源之间存在对应关系,免授权传输资源与N之间存在对应关系,从而增强了终端设备确定N的取值的灵活性。
可选地,所述目标免授权传输资源与N的对应关系,包括:传输传输块使用的免授权传输资源与MCS的对应关系,以及MCS与N的对应关系。
免授权传输资源与N的对应关系也可以是间接的对应关系,从而增强了终端设备确定N的取值的灵活性。
第三方面,提供了一种发送上行数据的装置,该装置可以实现上述第一方面所涉及的方法中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理单元和通信单元,所述处理单元用于根据参考信息确定N,N为所述发送上行数据的装置用于传输传输块的传输次数,所述参考信息与N存在预设的对应关系,N为大于或等于1的整数;
所述通信单元用于按照免授权传输方式发送N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
在一个实施例中,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
在一个实施例中,所述参考信息包括信道质量、所述传输块的业务类型、调制编码方案MCS以及能用于传输所述传输块的至少一个免授权传输资源中的至少一个。
在一个实施例中,所述参考信息包括能用于传输所述传输块的至少两个免授权传输资源;所述处理单元具体用于:
根据信道质量和/或所述传输块的业务类型从所述至少两个免授权传输资源中确定目标免授权传输资源,所述目标免授权资源为传输所述传输块使用的免授权传输资源;
根据所述目标免授权传输资源确定N,所述目标免授权传输资源与N之间存在预设的对应关系。
在一个实施例中,所述处理单元用于根据所述目标免授权传输资源确定N,所述目标免授权传输资源与N之间存在预设的对应关系,包括:
所述处理单元具体用于根据所述目标免授权传输资源确定所述MCS,所述目标免授权传输资源与所述MCS存在预设的对应关系;
根据所述MCS确定N,所述MCS与N之间存在预设的对应关系。
在一个实施例中,所述通信单元还用于在所述处理单元根据参考信息确定N之前:
接收配置信息,所述配置信息用于配置所述参考信息与N的对应关系。
在另一种可能的设计中,该装置包括处理器和收发器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。所述处理器所实现的功能可以参考上述处理单元所实现的功能。所述收发器所实现的功能可以参考上述通信单元所实现的功能。
第四方面,提供了一种接收上行数据的装置,该装置可以实现上述第二方面所涉及的方法中终端设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理单元和通信单元,所述处理单元用于支持所述通信单元执行:
发送配置信息,所述配置信息用于配置参考信息与N的对应关系,N为终端设备按照免授权传输方式传输传输块的次数,且N为大于或等于1的整数,所述参考信息与N的对应关系用于所述终端设备根据一个参考信息确定与该参考信息对应的N;
从所述终端设备接收N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
在一个实施例中,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
在一个实施例中,所述参考信息包括信道质量、传输块的业务类型、调制编码方案MCS以及能用于传输所述传输块的至少一个免授权传输资源中的至少一个。
在一个实施例中,所述参考信息与N的对应关系,包括:
信道质量和/或所述传输块的业务类型与目标免授权传输资源之间的对应关系,以及所述目标免授权传输资源与N的对应关系,所述目标免授权传输资源为所述至少一个免授权传输资源中的一个,所述目标免授权传输资源为传输所述传输块使用的免授权传输资源。
在一个实施例中,所述传输所述传输块使用的免授权传输资源与N的对应关系,包括:
所述免授权传输资源与所述MCS的对应关系,以及所述MCS与N的对应关系。
在另一种可能的设计中,该装置包括处理器和收发器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法中相应的功能。该收发器用于支持该装置与其它网元之间的通信。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。所述处理器所实现的功能可以参考上述处理单元所实现的功能。所述收发器所实现的功能可以参考上述通信单元所实现的功能。
第五方面,提供了一种网络系统,所述网络系统包括第三方面所述的发送上行数据的装置以及第四方面所述的接收该上行数据的装置。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序代码,该计算机程序代码被处理单元或处理器执行时,使得终端设备执行第一方面所述的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序代码,该计算机程序代码被处理单元或处理器执行时,使得网络设备执行第二方面所述的方法。
第八方面,提供了一种通信芯片,其中存储有指令,当其在终端设备上运行时,使得该通信芯片执行上述第一方面的方法。
第九方面,提供了一种通信芯片,其中存储有指令,当其在网络设备上运行时,使得该通信芯片执行上述第二方面的方法。
第十方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被终端设备的通信单元或收发器、以及处理单元或处理器运行时,使得终端设备执行上述第一方面的方法。
第十一方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被网络设备的通信单元或收发器、以及处理单元或处理器运行时,使得网络设备执行上述第二方面的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是本申请提供的一种发送上行数据的方法的示意图;
图3是本申请提供的一种信噪比与传输次数的对应关系的示意图;
图4是本申请提供的另一种发送上行数据的方法的示意图;
图5是本申请提供的一种MCS与传输次数的对应关系的示意图;
图6是本申请提供的MCS、免授权传输资源与传输次数的对应关系的示意图;
图7是本申请提供的一种发送上行数据使用的免授权传输资源的示意图;
图8是本申请提供的一种接收上行数据的方法的示意图;
图9是本申请提供的一种可能的终端设备的示意图;
图10是本申请提供的另一种可能的终端设备的示意图;
图11是本申请提供的一种可能的网络设备的示意图;
图12是本申请提供的另一种可能的网络设备的示意图;
图13是另一种适用于本申请的通信系统的示意图;
图14是本申请提供的一种可能的基站的示意图;
图15是本申请提供的一种可能的UE的示意图;
图16是本申请提供的另一种信噪比与传输次数的对应关系的示意图;
图17是本申请提供的另一种发送上行数据的方法的示意图;
图18是本申请提供的另一种MCS与传输次数的对应关系的示意图;
图19是本申请提供的另一种MCS、免授权传输资源与传输次数的对应关系的示意图;
图20是本申请提供的另一种发送上行数据使用的免授权传输资源的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本文中所使用到的英文缩略语及对应的英文全称和中文翻译如下:
Figure PCTCN2018101658-appb-000001
Figure PCTCN2018101658-appb-000002
传统蜂窝通信系统(如LTE)中,上行(Uplink,UL)传输中采用基于授权(Grant-based)的方式,即基站调度UE进行UL传输的资源以及相关传输参数,例如UL传输所使用时域、频域、空域资源以及MCS。这种情况下,当一个UE有上行数据需要发送时,首先向基站发出调度请求,基站基于调度请求发送调度授权,然后UE根据调度授权中所指示的资源分配以及传输参数进行UL传输。若UE本身处于RRC_IDLE(RRC空闲)状态,则UE需首先进行随机接入(包含四条消息的交互过程),然后才能传输数据。无论如何,上述Grant-based的UL传输过程都需要较多信令开销,并且这些信令交互不可避免地会带来延迟。
目前,3GPP正在制定蜂窝通信的第五代标准(5 th Generation,5G),其所考虑的场景中包括mMTC和URLLC。mMTC业务产生的数据通常是小数据(即每个数据包比较小),若采用传统Grant-based的UL传输方式,则数据传输所占据的资源远小于数据传输之前的信令交互(如调度请求和调度授权过程的信令交互,或者,随机接入过程的信令交互)所使用的资源,这导致资源利用率低下,特别是在有大量mMTC设备的情况下,系统资源将大量地被交互信令所占据;URLLC业务要求低延时,而上述Grant-based的UL传输过程中的信令交互,由于涉及RRC信令,其延迟是很大的,因此传统Grant-based的UL传输方式也很难满足URLLC业务的需求。
基于上述原因,5G在NR(New Radio)中引入了免授权(Grant-free)传输方式,用于UL传输。所谓Grant-free传输方式,是指UE有数据需要传输时无需向基站请求UL传输资源,而是在基站预先配置的Grant-free传输资源池中基于某种规则选择一个用于UL传输的资源直接进行UL传输。这样,就可以省去Grant-based的UL传输过程中的信令交互,从而降低了信令开销和传输延时,特别适合于小包传输以及延时敏感业务。
目前,5G-NR标准已经明确同意mMTC和URLLC支持Grant-free传输。另外,标准还确定由基站配置Grant-free传输所使用的时频资源,即配置Grant-free传输资源池。
为了保证Grant-free传输的可靠性,目前5G-NR标准已经同意Grant-free传输时可进行K次重传,K的取值由网络侧进行配置。K次重传可以是同一数据的同一冗余版本的K次重复,即K次传输的内容完全相同,例如传输的均为同一数据的RV0;K次重传也可以是同一数据的K个不同冗余版本,即K次传输的内容互不相同,例如传输的为同一数据的RV0、RV1、RV2、…;K次重传还可能是上述两种方式的结合,即K次重传中既包含重传数据也包括重复数据,例如传输的为同一数据的RV0、RV0、RV1、RV1、…。注意,这里的K次重传是包括初传在内的K次传输。
网络侧可以为进行Grant-free传输的UE配置重传次数K,该K用于整个小区,或用于一组UE。然而,不同UE的信道情况可能不同,基站配置的K可能并不是对于每个UE都是最优的。例如,对于信道状况较好的UE配置了较大的K,则由于不必要的重传传 输,造成了Grant-free资源的浪费,且易对其它UE的Grant-free传输造成干扰;对于信道状况较差的UE配置了较小的K,则由于重传次数不足,造成传输可靠性降低。而若网络侧针对每个UE进行K的配置,则由于UE移动或信道变化,网络侧需要不断对K进行重配置,显然会带来比较大的信令开销。
图1示出了一种适用于本申请的通信系统。该通信系统包括网络设备和终端设备,网络设备与终端设备通过无线网络进行通信,当终端设备发送信息时,终端设备的无线通信模块可获取要通过信道发送至网络设备的信息比特,这些信息比特例如是终端设备的处理模块生成的、从其它设备接收的或者在终端设备的存储模块中保存的信息比特。
在本申请中,终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G移动通信系统中的用户设备。
网络设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolved node B,eNB),还可以是5G通信系统中的基站(gNB),上述基站仅是举例说明,网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。
下面,将详细描述本申请提供的发送和接收上行数据的方法。
图2是本申请提供的一种发送上行数据的方法的示意图。该方法200包括:
S201,终端设备根据参考信息确定N,N为所述终端设备用于传输传输块(transmission block,TB)的传输次数,该参考信息与N存在预设的对应关系,N为大于或等于1的整数。
S202,终端设备按照免授权传输方式发送N个上行数据,该N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
其中,重传数据可以是初传数据的重复,也可以是初传数据的不同或相同冗余版本(redundancy version,RV)。例如,初传数据是传输块的RV0,N-1个重传数据是初传数据的重复,即都是RV0;再如,初传数据是传输块的RV0,N-1个重传数据是传输块的其它RV,如RV1、RV2、…;再如,初传数据是传输块的RV0,N-1个重传数据是传输块的重复或其它RV,如RV0、RV1、RV2、RV2、…。
本申请中,参考信息与N的预设的对应关系可以是网络设备配置的,也可以是通信协议规定的,还可以是人工配置的,上述对应关系可以定期或者不定期更新,本申请对终端设备如何获取上述预设的对应关系不做限定。
参考信息可以是一个或多个参数,也可以是一个或多个条件,本申请对参考信息 的具体形式以及名字不做限定。
需要说明的是,参考信息与N的对应关系可以是一对一,也可以是一对多,还可以是多对一,例如,参考信息A可以对应N1,也可以对应N1和N2,N1可以对应参考信息A,也可以对应参考信息B,其中,参考信息A和参考信息B为不同的参考信息,N1和N2为S201中所述的数值集合中不同取值的数值。当参考信息A对应N1和N2时,终端设备可以从中选择一个作为传输块的传输次数N,本申请对如何从N1和N2中确定N不做限定。
S201中,作为一个可选的示例,终端设备根据参考信息从一个数值集合中确定N,该数值集合为预设在终端设备中的信息,该数值集合可以是网络设备预先配置的,也可以是通信协议规定的,还可以是人工配置的,该数值集合可以定期或者不定期更新,本申请对终端设备如何获取该数值集合不做限定。
当终端设备有传输块需要传输时,终端设备可以根据参考信息从数值集合中选择一个数值,该数值代表免授权传输的传输次数,不同的参考信息下传输次数可能不同,例如,当参考信息指示当前通信环境较好或者当前传输的可靠性要求不高时,终端设备可以减少免授权传输的传输次数,当参考信息指示当前通信环境较差或者当前传输的可靠性要求较高时,终端设备可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
可选地,N小于或等于K,K为免授权传输的最大传输次数。
网络设备或者通信协议可以规定终端设备进行免授权传输的最大传输次数,以免终端设备占用过多的资源导致资源浪费以及对当前通信系统的其它终端设备造成干扰而使得这些终端设备的传输可靠性降低。
例如,在一些通信场景中,例如,在mMTC场景中,通常不会有紧急数据的存在,可以设置K为免授权传输的最大传输次数,并且K为强制执行的参数,当前所有的终端设备在按照免授权传输方式发送上行数据时传输次数均不得超过K,从而可以保证各个终端设备之间传输的公平性。
可选地,上述参考信息包括信道质量和/或传输块的业务类型。
当信道质量较好时,传输次数可以为一个较小的数值,当信道质量较差时,传输次数可以为一个较大的数值;当传输块的业务类型对传输可靠性要求较低时,传输次数可以是一个较小的数值,当传输块的业务类型对传输可靠性要求较高时,传输次数可以是一个较大的数值;还可以综合考虑信道质量和传输块的业务类型,从数值集合中选择合适的数值,从而可以在保证传输可靠性的同时提高资源利用效率。
信道质量可以通过终端设备测量信道的信噪比(signal-noise ratio,SNR)来表征,SNR越大,信道质量越好,SNR越小,信道质量越差。
图3示出了本申请提供的一种SNR与免授权传输的传输次数的对应关系的示意图。图3中,横坐标表示终端设备测得的信道的SNR的值,纵坐标表示N的取值,当SNR的值落在区间(a,b)内时,终端设备确定传输次数为4,当SNR的值落在区间(c,d)内时,终端设备设备确定传输次数为2。
图3仅是举例说明,本申请对SNR与传输次数的对应关系的具体形式不做限定,SNR与传输次数的对应关系还可以通过表格表示。
网络设备可以统计多次免授权传输的SNR、传输次数与传输可靠性,并根据统计结果确定SNR、传输次数与传输可靠性之间的对应关系,将对应关系配置给终端设备,以便于终端设备根据传输块对传输可靠性的要求以及当前测得的SNR选择传输次数。当然,上述对应关系也可以通过人工配置方式配置在终端设备中,本申请对终端设备如何获取参考信息不做限定。
图4是本申请提供的另一种根据信道质量确定N的方法的示意图。图4中,UE1和UE2为与同一个基站通信的两个不同的终端设备,UE1距离基站的距离较近,UE2距离基站的距离较远,则UE1可以确定当前信道质量较好并选择较小的传输次数,UE2可以确定当前信道质量较差并选择较大的传输次数。
UE1和UE2免授权传输使用的资源可以是不连续的(如图4所示),也可以是连续的。
基站可以为UE1和UE2配置最大传输次数K,该最大传输次数可以是小区级的,即,该基站所对应的小区内所有的UE进行免授权传输时传输次数均不得超过K;该最大传输次数也可以是小组级的,即,共享相同的免授权传输资源的一组UE进行免授权传输时传输次数均不得超过K;该最大传输次数也可以用户级的,即,基站为不同的UE配置不同的最大传输次数。需要说明的是,上述K并不限制UE进行免授权传输的实际传输次数,UE可以从预设的数值集合中选择不超过K的数值作为免授权传输的实际传输次数。
上文描述了终端设备根据信道质量确定免授权传输的传输次数的方法,终端设备还可以根据待传输的传输块的业务类型确定免授权传输的传输次数。
例如,预设的数值集合为{1,2,3,4},网络设备配置的最大传输次数为3,当传输块对应的业务类型为高可靠低时延通信(ultra-reliable and low latency communications,URLLC)业务时,终端设备可以根据数值集合以及网络设备配置的最大传输次数确定免授权传输的实际传输次数为3,即,在满足网络设备配置的最大传输次数的前提下从数值集合中选择最大的数值,以保证传输可靠性;当传输块对应的业务类型为mMTC业务时,终端设备可以根据数值集合以及网络设备配置的最大传输次数确定免授权传输的实际传输次数为2。
上文描述了终端设备根据单因子确定免授权传输的传输次数的实施例,终端设备还可以根据多因子确定免授权传输的传输次数,即,网络设备可以根据信道质量和传输块对应的业务类型确定免授权传输的传输次数。
例如,预设的数值集合为{1,2,3,4},网络设备配置的最大传输次数为4,当传输块对应的业务类型为mMTC业务时,若当前SNR的值落在图3所示的区间(a,b)内时,终端设备可以从上述数值集合中选择3作为免授权传输的传输次数,若当前SNR的值落在图3所示的区间(c,d)内时,终端设备可以从上述数值集合中选择2作为免授权传输的传输次数;当传输块对应的业务类型为URLLC业务时,若当前SNR的值落在图3所示的区间(a,b)内时,终端设备可以从上述数值集合中选择4作为免授权传输的传输次数,若当前SNR的值落在图3所示的区间(c,d)内时,终端设备可以从上述数值集合中选择3作为免授权传输的传输次数。
需要说明的是,上述实施例描述的信道质量和/或传输块的业务类型与N的对应关 系可以是直接的对应关系,也可以是间接的对应关系,直接的对应关系指的是无需通过除信道质量和/或传输块的业务类型之外的信息确定N,间接的对应关系指的是首先根据信道质量和/或传输块的业务类型确定中间信息,然后根据该中间信息确定N,该中间信息可以是一个,也可以是多个,本申请对此不做限定。
应理解,在本申请中,“当…时”指在某种客观情况下终端设备或者网络设备会做出相应的处理,并非是限定时间,也不要求终端设备或网络设备在实现相应的功能时一定要有判断的动作,也不意味着存在其它限定。
可选地,上述参考信息包括MCS。
不同的MCS可以对应不同的传输次数,MCS与信道质量在一定程度上是等价的。这里的MCS是指当前信道情况下最合适的MCS。信道质量越好,对应的MCS越高;信道质量越差,对应的MCS越低。较高的MCS意味着较高传输速率。当信道质量用SNR表征时,MCS往往和SNR具有对应关系。因此,根据信道质量确定目标免授权传输资源,也可描述为根据MCS确定目标免授权传输资源。
图5示出了本申请提供的MCS与免授权传输的传输次数的对应关系的示意图。图5中,横坐标表示MCS的索引号,纵坐标表示N的取值,当终端设备使用索引号为a的MCS进行调制编码时,终端设备可以确定免授权传输的传输次数为4,当终端设备使用索引号为d的MCS进行调制编码时,终端设备可以确定免授权传输的传输次数为1。
图5仅是举例说明,本申请对MCS与传输次数的对应关系的具体形式不做限定,MCS与传输次数的对应关系还可以通过表格表示。
MCS与传输次数的对应关系可以是一对一,也可以是一对多,还可以是多对一,也就是说,一个MCS可以对应预设的数值集合中的一个值,一个MCS也可以对应预设的数值集合中的多个值,多个MCS也可以对应预设的数值集合中的一个值,当一个MCS对应预设的数值集合中的多个值时,终端设备可以根据其它的参数或条件从该多个值中选择一个值,本申请对此不做限定。
网络设备可以统计多次免授权传输的MCS、传输次数与传输可靠性,并根据统计结果确定MCS、传输次数与传输可靠性之间的对应关系,将对应关系配置给终端设备,以便于终端设备根据传输块对传输可靠性的要求以及当前使用的MCS选择传输次数。当然,上述对应关系也可以通过人工配置方式配置在终端设备中,本申请对终端设备如何获取参考信息不做限定。
可选地,终端设备根据MCS从数值集合中确定N之前,方法200还包括:
S203,终端设备根据信道质量和/或传输块的业务类型从至少两个免授权传输资源中确定目标免授权传输资源,该目标免授权资源用于传输传输块。
S204,终端设备根据该目标免授权传输资源确定MCS,该目标免授权传输资源与MCS存在预设的对应关系。
MCS与传输次数绑定的同时还可以与免授权传输资源绑定在一起,即,终端设备选择使用免授权传输资源A发送上行数据时,也就确定了发送上行数据使用的MCS为免授权传输资源A绑定的MCS,同时也确定了免授权传输的传输次数。终端设备可以在根据信道质量和/或传输块的业务类型从多个免授权传输资源中选择一个免授权 传输资源。
例如,当信道质量较好时,终端设备可以选择传输速率较高的免授权传输资源,当信道质量较差时,终端设备可以选择传输传输速率较低的免授权传输资源。
又例如,当传输块对应的业务类型为对传输可靠性要求较高的业务类型时,终端设备可以选择传输速率较低的免授权传输资源,当传输块对应的业务类型为对传输可靠性要求较低的业务类型时,终端设备可以选择传输速率较高的免授权传输资源。
再例如,当信道质量较好时,且当传输块对应的业务类型为对传输可靠性要求较低的业务类型时,终端设备可以选择免授权传输资源A,当信道质量较差时,且当传输块对应的业务类型为对传输可靠性要求较高的业务类型时,终端设备可以选择免授权传输资源B,其中,免授权传输资源A的传输速率大于免授权传输资源B的传输速率。
需要特别说明的是,MCS与信道质量在一定程度上是等价的。这里的MCS是指当前信道情况下最合适的MCS。信道质量越好,对应的MCS越高;信道质量越差,对应的MCS越低。较高的MCS意味着较高传输速率。当信道质量用SNR表征时,MCS往往和SNR具有对应关系。因此,根据信道质量确定目标免授权传输资源,也可描述为根据MCS确定目标免授权传输资源。
终端设备确定了免授权传输资源后,即可确定该免授权传输资源绑定的MCS,需要说明的是,上述实施例描述的MCS与N的对应关系可以是直接的对应关系,也可以是间接的对应关系,直接的对应关系指的是无需通过除MCS之外的信息确定N,间接的对应关系指的是首先根据MCS确定中间信息,然后根据该中间信息确定N,该中间信息可以是一个,也可以是多个,本申请对此不做限定。例如,一个免授权传输资源也可以绑定多个MCS,终端设备可以根据其它的参数或条件选择合适的MCS,本申请对此不作限定。
终端设备确定了MCS之后即可确定免授权传输的传输次数,从而可以根据实际情况(例如,信道质量和/或传输块的业务类型)灵活选择合适的传输次数,在保证传输可靠性的同时提高资源利用率。
下面再举出一个根据MCS和免授权传输资源确定N的例子。
基站为UE配置至少一个三元组,即,(资源,MCS,N),其中,资源是指一个免授权传输资源的时频资源分配或资源索引。每个三元组代表一个免授权传输资源以及与该免授权传输资源绑定的MCS和N。
基站可以基于UE当前的信道情况,为UE配置至少一个免授权传输资源以及每个免授权传输资源对应的MCS和K。随后,UE可根据实际信道情况在基站配置的至少一个免授权传输资源中选择一个进行传输,传输时使用与该免授权传输资源对应的MCS和K。例如,基站根据信道测量,认为当前最合适UE的MCS为MCS3,因此为该UE配置了绑定的MCS分别为MCS2、MCS3和MCS4的三个免授权传输资源,如图6所示,每个免授权传输资源绑定不同N。随后,该UE在传输数据时可根据当时的实际信道情况在基站配置的三个免授权传输资源中选择合适的免授权传输资源进行传输。例如,随着该UE向小区中心方向移动,信道质量变好,可选择资源3传输,使用MCS4和N=3;随着该UE向小区边缘移动,信道质量变差,可选择资源1传输, 使用MCS2和N=5。一段时间之后,基站配置的资源可能已经不适合UE传输,此时,基站可对免授权传输资源进行重配置,即为UE重新配置新的免授权传输资源以及对应MCS和N。上述例子相当于基站为UE配置了数值集合{3,4,5}。
上述实施例中的每个免授权传输资源可以是连续的或不连续的。所谓免授权传输资源是不连续的,是指免授权传输资源所包括的多个传输单元在时域和/或频域上是不连续的。
由于每个免授权传输资源都是可以同时配置给多个UE的,而MCS以及N是与免授权传输资源绑定的,因此无论哪个UE使用该免授权传输资源,都只能采用与该免授权传输资源绑定的MCS和N。换句话说,不同UE在同一免授权传输资源上的传输次数N是相同的。这有利于UE之间传输的公平性。本实施例具有该有益效果的原因是:若不同UE在同一免授权传输资源上的传输次数不同,例如,UE1的N=1,UE2的N=2,则显然UE1的传输有较大概率与UE2的传输碰撞,造成UE1的传输可靠性比UE2低。而不同UE在同一免授权传输资源上的传输次数相同,则使得UE之间传输碰撞的概率相同,故传输可靠性也相同,保证了不同UE的传输公平性。
可选地,上述参考信息为传输传输块使用的免授权传输资源。
不同的免授权传输资源可以对应不同的传输次数,例如,同等条件下,专用频段的可靠性高于公共频段的可靠性,因此,专用频段(例如,各运营商的频段)对应的传输次数可以是一个较小的数值,以减小资源使用量,公共频段(例如,授权频谱辅助介入(licensed-assisted access,LAA)技术中的非授权频段)对应的传输次数可以是一个较大的数值,以保证传输可靠性。又例如,当不同的免授权传输资源的频段相同时,由于不同的免授权传输资源可能用于传输不同的业务,而不同的业务对传输可靠性的要求不同,因此,不同的免授权传输资源绑定的传输次数可能不同,对于其中的一个免授权传输资源来说,该免授权传输资源绑定一个传输次数可以使得使用该免授权传输资源的所有终端设备的传输次数相同,保证终端设备之间的公平性。
不同的免授权传输资源也可以对应相同的传输次数,其中,该不同的免授权传输资源的资源参数(例如,子载波间隔)可能是不同的,以适应不同时延要求的业务。
当终端设备确定了目标免授权传输资源时,该目标免授权传输资源对应的传输次数N即为终端设备在目标免授权传输资源上传输时的传输次数。
可选地,终端设备根据传输传输块使用的免授权传输资源确定N之前,方法200还包括:
S205,终端设备根据信道质量和/或传输块的业务类型从至少两个免授权传输资源中确定传输传输块使用的免授权传输资源(即,目标免授权传输资源),该目标免授权传输资源与信道质量存在预设的对应关系,和/或,该目标免授权传输资源与该传输块的业务类型存在预设的对应关系。
例如,当信道质量较好时,终端设备可以选择可靠性较低的免授权传输资源,当信道质量较差时,终端设备可以选择可靠性较高的免授权传输资源;又例如,当传输块对应的业务类型属于高优先级业务类型时,终端设备可以选择可靠性较高的免授权传输资源,当传输块对应的业务类型属于低优先级业务类型时,终端设备可以选择可靠性较低的免授权传输资源。终端设备还可以基于信道质量和传输块的业务类型选择免授权传输资源,从而可以在保证传输可靠性的同时提高资源利用率。
需要特别说明的是,MCS与信道质量在一定程度上是等价的。这里的MCS是指当前信道情况下最合适的MCS。信道质量越好,对应的MCS越高;信道质量越差,对应的MCS越低。较高的MCS意味着较高传输速率。当信道质量用SNR表征时,MCS往往和SNR具有对应关系。因此,根据信道质量确定目标免授权传输资源,也可描述为根据MCS确定目标免授权传输资源。
可选地,终端设备根据参考信息确定N之前,方法200还包括:
S206,终端设备接收配置信息,该配置信息用于配置参考信息与N的对应关系。
参考信息与N的对应关系可以通过配置信息预先配置在终端设备中,该对应关系可以是网络设备统计不同条件下通信可靠性与传输次数的关系得出的结果,并可以定期更新配置内容,从而使得终端设备可以选择合适的免授权传输次数,在保证传输可靠性的同时提高资源利用率。
网络设备可通过无线资源控制(radio resource control,RRC)信令、介质访问控制(media access control,MAC)控制元素(control element,CE)或物理层信令(如,下行控制信息(downlink control information,DCI))向终端设备传输上述配置信息。
本申请对配置信息的具体形式、配置信息的名字以及配置信息的发送接收方式均不做限定。
当UE在免授权传输资源上进行了传输了N次传输块后,基站需对这N次传输进行混合自动重传请求响应,即向该UE发送确认/否定(ACK/NACK)消息,以表示基站是否正确接收到UE发送的数据。基站可以采用物理混合自动重传请求指示信道(physical hybrid automatic repeat request indicator channel,PHICH)、类PHICH(PHICH-like)、下行指示信息(downlink control information,DCI)、组公共DCI(group common DCI)等信道或信息来携带ACK/NACK。
下面以基站采用PHICH承载ACK/NACK实现对接收到的免授权传输数据的响应。1、基站对N次传输中的每次传输单独进行响应。
基站将接收到的同一传输块的N个数据中的每个数据视为一个独立的数据进行响应。该方法适用于N个数据的冗余版本(redundancy version,RV)相同的情况,因为各种RV版本中除RV0之外其它的RV不具有独立性,可能无法单独解码。
基站可以有两种响应方法。一种方法是,基站根据N次传输中的每次传输的接收情况独立地决定响应ACK还是NACK。另一种方法是,只要N次传输中至少有一次传输的数据被基站正确解码,则基站对N次传输中的所有传输都响应ACK;当N次传输中所有传输均未正确解码时,基站对N次传输中的所有传输都响应NACK。
无论ACK还是NACK,均需由PHICH承载。基站针对N次传输中的每次传输单独进行响应,这要求N次传输中的不同传输映射到不同的PHICH上。按照当前标准中的PHICH确定方法,一个上行数据对应的PHICH与解调参考信号(demodulation reference signal,DMRS)的索引以及上行传输的资源分配索引有关。基于此规则,为了使N次传输的不同传输映射到不同PHICH上,可以有下述方法:
选项1:每次传输对应的PHICH与该次传输所选择的传输单元相关。
如图7所示,UE在免授权传输资源中选择了传输单元3、8、9、14传输同一传输块的4次传输的数据。每次传输对应的PHICH与传输单元的索引相关,例如,UE在 传输单元3上传输的数据对应的PHICH由该传输单元的索引(即传输单元3)确定。同一传输块的N次传输中的不同传输对应的DMRS的索引可以是相同的,也可以是不同的。
选项2:每次传输对应的PHICH与DMRS索引相关。
标准预定义或网络侧预配置了同一传输块的N次传输中不同次传输对应不同的DMRS,第n次传输的DMRS索引记为DMRS(n)。这样,UE第n次传输发送的数据对应的PHICH即可由DMRS(n)决定。N次传输对应的上行资源分配索引可以是相同的,如均采用免授权传输资源中左下角的传输单元的索引(如图7中的传输单元4);N次传输对应的上行资源分配索引可以是互不相同的,如图7中4次传输对应的上行资源分配分别为传输单元3、8、9、14。
2、基站对N次传输中的所有传输进行一次性响应。
由于N次传输实际上传输的是同一传输块,故基站接收到N次传输后可以只发送一次响应消息,表示是否正确接收到了这N次传输所传输的信息。换句话说,N次传输需映射到同一PHICH上。
对于N不与传输资源和/或MCS绑定的情况,由于N的取值是由UE自己决定的,基站无法确定N,故基站收到UE的一个数据时,并不能确定该传输是第几次传输的数据。由于PHICH由DMRS索引以及上行传输的资源分配索引决定,故为了实现N次传输映射到同一PHICH上,这N次传输对应的DMRS索引以及上行传输的资源分配索引均需相同。因此,同一UE应绑定固定的DMRS,如基站事先为每个UE配置DMRS,则共享同一免授权传输资源的多个UE应配置互不相同的DMRS,以免不同UE的传输映射到相同的PHICH上而造成碰撞。N次传输的的资源分配索引也应使用相同值,如使用采用免授权传输资源中左下角的传输单元的索引(如图7中的传输单元4)。当然,上述方法也适用于N与传输资源和/或MCS绑定的情况。
特别地,对于N次传输为同一数据的不同冗余版本的情况,由于除RV0之外的冗余版本不具有独立解码能力,故可以使用初次传输(即,使用RV0的传输)对应的传输单元的索引来计算对应PHICH。当基站正确解出数据时,意味着基站必然收到了使用RV0的数据(即,必然知道初次传输使用的传输单元索引),从而基于此计算对应PHICH;若基站未正确解出数据,则基站不发送PHICH(即,不进行响应)。
上文详细描述了本申请提供的发送上行信息的方法,下面,将描述本申请提供的接收上行信息的方法。
图8示出了本申请提供的一种接收上行数据的方法。该方法800包括:
S801,网络设备发送配置信息,该配置信息用于配置参考信息与N的对应关系,N为终端设备按照免授权传输方式传输传输块的次数,且N为大于或等于1的整数,所述参考信息与N的对应关系用于所述终端设备根据一个参考信息确定与该参考信息对应的N。
S802,网络设备从该终端设备接收N个上行数据,该N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
网络设备可以为终端设备配置一个数值集合,该数值集合中的数值为N可能的取值,当终端设备有传输块需要传输时,终端设备可以根据参考信息从数值集合中选择 一个数值,该数值代表传输的次数,不同的参考信息下传输次数可能不同,例如,当参考信息指示当前通信环境较好或者当前传输的可靠性要求不高时,终端设备可以减少免授权传输的传输次数,当参考信息指示当前通信环境较差或者当前传输的可靠性要求较高时,终端设备可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
本领域技术人员可以清楚的了解到:方法800中网络设备等同于方法200中的网络设备,且方法800中网络设备实现接收N个上行数据的功能的处理方式与方法200中网络设备实现发送N个上行数据的功能的处理方式相对应,为了简洁,不再赘述。
可选地,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
网络设备可以通过配置免授权传输资源对应的最大传输次数来保证使用该免授权传输资源的各个终端设备之间传输的公平性,例如,在mMTC场景中,通常不会有紧急数据的存在,网络设备可以设置K为强制参数,即,终端设备必须遵从K的约束,从而可以保证各个终端设备之间传输的公平性。
可选地,所述参考信息包括信道质量、传输块的业务类型、MCS以及能用于传输传输块的至少一个免授权传输资源中的至少一个。
网络设备可以对不同信道质量的场景中通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下不同信道质量对应的传输次数,并将信道质量与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据信道质量选择合适的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
网络设备也可以对不同业务类型的场景中通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下不同业务类型对应的传输次数,并将业务类型与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据传输块对应的业务类型选择合适的传输次数,从而可以在保证传输可靠性的同时提高资源利用率。
网络设备还可以对使用不同免授权传输资源进行免授权传输的场景中的通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下免授权传输资源对应的传输次数,并将免授权传输资源与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据免授权传输资源选择合适的免授权传输资源,从而可以在保证传输可靠性的同时提高资源利用率。
网络设备还可以对使用不同MCS进行免授权传输的场景中的通信可靠性与传输次数之间的关系进行统计,根据统计结果确定在满足通信可靠性要求的前提下MCS对应的传输次数,并将MCS与传输次数的对应关系通过配置信息告知终端设备,使终端设备可以根据MCS选择合适的免授权传输资源,从而可以在保证传输可靠性的同时提高资源利用率。
可选地,参考信息与N的对应关系,包括:信道质量和/或传输块的业务类型与目标免授权传输资源之间的对应关系,以及所述目标免授权传输资源与N的对应关系,所述目标免授权传输资源为所述至少一个免授权传输资源中的一个,所述目标免授权传输资源为传输所述传输块使用的免授权传输资源。
信道质量和/或传输块的业务类型与N的对应关系还可以是间接的对应关系,即信道质量和/或传输块的业务类型与免授权传输资源之间存在对应关系,免授权传输资源与N之间存在对应关系,从而增强了终端设备确定N的取值的灵活性。
可选地,目标免授权传输资源与N的对应关系,包括:目标免授权传输资源与MCS的对应关系,以及MCS与N的对应关系。
免授权传输资源与N的对应关系也可以是间接的对应关系,从而增强了终端设备确定N的取值的灵活性。
上文详细介绍了本申请提供的发送上行数据和接收上行数据的方法的示例。可以理解的是,终端设备和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备900包括:处理单元902和通信单元903。处理单元902用于对终端设备900的动作进行控制管理,例如,处理单元902用于支持终端设备900执行图2的各个步骤和/或用于本文所描述的技术的其它过程。通信单元903用于支持终端设备900与其它通信设备的通信,例如向网络设备发送处理单元902生成的上行数据。终端设备900还可以包括存储单元901,用于存储终端设备900的程序代码和数据。
例如,处理单元902根据参考信息确定N,N为传输块的传输次数,所述参考信息与N存在预设的对应关系,N为大于或等于1的整数;通信单元903按照免授权传输方式发送N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
处理单元902可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元903可以是收发器、收发电路等。存储单元901可以是存储器。
当处理单元902为处理器,通信单元903为收发器,存储单元901为存储器时, 本申请所涉及的终端设备可以为图10所示的终端设备。
参阅图10所示,该终端设备1000包括:处理器1002、收发器1003、存储器1001。其中,收发器1003、处理器1002以及存储器1001可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的终端设备900和终端设备1000,可以根据参考信息从预设的数值集合中选择一个数值,该数值代表免授权传输的传输次数,不同的参考信息下传输次数可能不同,例如,当参考信息指示当前通信环境较好或者当前传输的可靠性要求不高时,终端设备900和终端设备1000可以减少免授权传输的传输次数,当参考信息指示当前通信环境较差或者当前传输的可靠性要求较高时,终端设备900和终端设备1000可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备1100包括:处理单元1102和通信单元1103。处理单元1102用于对网络设备1100的动作进行控制管理,例如,处理单元1102用于支持网络设备1100执行图8的各个步骤和/或用于本文所描述的技术的其它过程。通信单元1103用于支持网络设备1100与其它通信设备的通信,例如接收终端设备发送的上行数据。网络设备1100还可以包括存储单元1101,用于存储网络设备1100的程序代码和数据。
例如,通信单元1103执行:发送配置信息,所述配置信息用于配置参考信息与N的对应关系,N为终端设备按照免授权传输方式传输传输块的次数,且N为大于或等于1的整数,所述参考信息与N的对应关系用于所述终端设备根据一个参考信息确定与该参考信息对应的N;从所述终端设备接收N个上行数据,该N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
处理单元1102可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1103可以是收发器、收发电路等。存储单元1101可以是存储器。
当处理单元1102为处理器,通信单元1103为收发器,存储单元1101为存储器时,本申请所涉及的网络设备可以为图12所示的网络设备。
参阅图12所示,该网络设备1200包括:处理器1202、收发器1203、存储器1201。其中,收发器1203、处理器1202以及存储器1201可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的网络设备1100和网络设备1200,可以为终端设备配置一个数值集合,该数值集合中的数值为免授权传输的传输次数的可能取值,当终端设备有传输块 需要传输时,终端设备可以根据参考信息从数值集合中选择一个数值,该数值代表传输的次数,不同的参考信息下传输次数可能不同,例如,当参考信息指示当前通信环境较好或者当前传输的可靠性要求不高时,终端设备可以减少免授权传输的传输次数,当参考信息指示当前通信环境较差或者当前传输的可靠性要求较高时,终端设备可以增加免授权传输的传输次数,从而可以在不影响接收成功率的前提下减少免授权传输占用的资源。
应理解,上述收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
为了便于读者理解本申请,下面,再举出一些本申请提供的发送或接收上行数据的方法和装置的实施例。下述实施例中的K相当于上述实施例中的N。下述实施例和上述实施例相关的部分可以相互参考进行理解。
在一个实施例中,基站可以为UE配置免授权传输次数的可取值集合Ω={K1,K2,…},UE根据情况在Ω中确定当前免授权传输的传输次数K,K∈Ω。
其中,UE根据情况在Ω中确定当前免授权传输传输次数K,可以是根据信道情况在Ω确定K。例如,当信道质量较好时,选择较小的K,当信道质量较差时,选择较大的K。UE可基于基站的同步信号(PSS/SSS)和/或参考信号(如CRS)测量信道。UE还可以根据历史传输情况在Ω中确定K。例如,UE选定传输次数K后,当最近一段预定义时间中传输成功概率>ω1时,则将K减1;若最近一段预定义时间中传输成功概率<ω2时,则将K加1。其中,ω1≥ω2。上述传输成功概率也可以基于最近N个数据的传输来定义,N为预定义值。
本申请提及的免授权传输资源或免授权资源具有完全相同的含义,可以包括但不限于如下资源的一种或多种的组合:
A)时域资源(也可以称为时间资源),如无线帧、子帧、符号等;
B)频域资源(也可以称为频谱资源),如子载波、资源块等;
C)空域资源,如发送天线、波束等;
D)码域资源,如稀疏码多址接入(sparse code multiple access,SCMA)码本、低密度签名(low density signature,LDS)序列、CDMA码等;
E)上行导频资源。
每个免授权传输资源或免授权资源中可包括一个或多个免授权传输单元,免授权传输单元可简称为传输单元。UE进行免授权传输时,可在基站配置的免授权传输资源中选择一个或多个传输单元进行传输。对于K次传输而言,UE至少需选择K个传输单元进行传输。当然,K次传输中的每次传输可能占据多于一个的传输单元,这种情况下UE需选择K组传输单元进行传输,每组传输单元对应K次传输中的一次传输。
图13示出了一种适用于本申请的场景,如图13所示,基站(一种网络设备)可与UE(用户设备,本文中也称之为终端设备)进行数据传输,基站为UE分配传输资源。从产品形态上来看,基站是具有中心控制功能的设备,如宏基站、微基站、热点(pico)、家庭基站(femeto)、传输点(transfer point,TP)、中继(relay)、接入点(access point,AP)等,可统称为网络设备;UE是能够接收基站调度和指示信息的设备,可以是终端设备,如 手机、电脑、手环、智能手表、数据卡、传感器、站点(station,STA)等设备,可统称为终端设备。对于副链路(sidelink),例如手环-手机-基站中手环与手机之间的链路,手环可视为UE,而手机视为基站。
本申请涉及的网元包括基站(如gNB,generation Node B,即5G NR标准中所指的基站)和UE。
本申请所涉及的基站可以为图14所示的基站1400。
参阅图14所示,基站1400包括:处理器1401、存储器1402、收发器1403以及总线1404。其中,处理器1401、存储器1402和收发器1403通过总线1404相互连接。其中,总线1404可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线1404可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,本申请提供的基站1400能执行本申请任一方法实施例中基站执行的相关方法步骤,其各个模块或单元的详细描述以及各个模块或单元执行本申请任一方法实施例中基站执行的相关方法步骤后所带来的技术效果可以参考本申请方法实施例中的相关描述,此处不再赘述。
本申请还提供一种非易失性存储介质(属于计算机可读存储介质的一种),该非易失性存储介质中存储有一个或多个程序代码,当基站1400的处理器1401执行该程序代码时,该基站1400执行本申请任一方法实施例中基站执行的相关方法步骤。
本申请所涉及的UE 1500可以为图15所示的UE 1500。
参阅图15所示,UE 1500包括:处理器1501、存储器1502、收发器1503以及总线1504。其中,处理器1501、存储器1502和收发器1503通过总线1504相互连接。其中,总线1504可以是PCI总线或EISA总线等。总线1504可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,本申请提供的UE 1500中各个模块的详细描述以及各个模块执行本申请任一方法实施例中UE执行的相关方法步骤后所带来的技术效果可以参考本申请方法实施例中的相关描述,此处不再赘述。
本申请还提供一种非易失性存储介质,该非易失性存储介质中存储有一个或多个程序代码,当UE 1500的处理器1501执行该程序代码时,UE 1500执行本申请任一方法实施例中UE执行的相关方法步骤。
本申请实施例一:基站配置传输次数的最大值
基站可以为UE配置免授权传输的传输次数最大值K。这相当于基站为UE配置了Ω={1,2,3,…,K}的传输次数可取值集合,UE传输时根据实际情况在Ω中确定当前传输的传输次数K0,K0∈Ω。
若UE基于信道质量在Ω中确定K0,则可等效为UE基于信道的SNR确定K0。SNR越大,信道质量越好,K0越小;SNR越小,信道质量越差,K0越大。图16是基于SNR确定K0的一个具体例子,当然,图16也可体现为表格形式。UE首先测量信道,获得SNR,然后基于图16获得对应K0值。
图17是一个具体例子,假设基站配置的传输次数最大值为K=4。UE1距离基站较近,信 道质量较好,UE1基于图17确定的传输次数为K0=2;UE2距离基站较远,信道质量较差,UE2基于图17确定的传输次数为K0=4。需要特别说明的是,图5中的免授权传输资源可以是连续的或不连续的。
本实施例中,基站为UE配置最大传输次数K,可以是小区特定的,即小区内所有UE进行免授权传输时均基于同样的Ω进行K0选择;K也可以是基于一组UE的,例如基站为共享同一免授权资源的一组UE配置相同的K;K还可以是每用户的,即基站可以为不同UE配置不同K。但无论如何,基站并不指示UE传输中实际使用的传输次数K0,而仅仅指示K0的最大允许值。K0的取值由UE在1~K范围内取定。
本申请实施例二:免授权资源或MCS与K相关联
本实施例提出,可以将免授权资源与K关联起来,即每个免授权资源绑定一个(MCS,K)或K。当UE选择某个免授权资源传输时,必须采用与该资源绑定的(MCS,K)或K。
可以有多种方式实现免授权资源与K的绑定。
一种实现方式是,基站为UE配置至少一个(资源,MCS,K)或(资源,K)元组,其中,资源是指一个免授权资源的时频资源分配或资源索引。每个元组代表一个免授权资源以及与该资源绑定的(MCS,K)或K。换句话说,每个免授权资源绑定一个K,即任何UE选择该免授权资源传输时的传输次数都是相同的,且等于与该免授权资源绑定的K。
另一种实现方式是,标准预定义或网络预配置MCS和K的映射关系,如图18所示,当然,图18也可体现为表格形式。在此基础上,基站为UE配置至少一个(资源,MCS),UE根据图18所示映射关系即可由MCS确定对应K。
在一个具体实施例中,基站可以基于UE的当前信道情况,为UE配置至少一个免授权资源以及每个免授权资源对应的MCS和K。随后,UE可根据实际信道情况在基站配置的至少一个免授权资源中选择一个进行传输,传输时使用与该免授权资源对应的MCS和K。例如,基站根据信道测量,认为某UE当前最合适的MCS为MCS3,因此为该UE配置了绑定MCS分别为MCS2、MCS3、MCS4的三个免授权资源,如图19所示,每个免授权资源绑定不同K。随后,该UE在传输数据时可根据当时的实际信道情况在基站配置的三个资源中选择合适的资源进行传输。例如,随着该UE向小区中心方向移动,信道质量变好,可选择资源3传输,使用MCS4和K=3;随着该UE向小区边缘移动,信道质量变差,可选择资源1传输,使用MCS2和K=5。一段时间之后,基站配置的资源可能已经不适合UE传输,此时,基站可对免授权资源进行重配置,即为UE重新配置新的免授权资源以及对应MCS和K。上述例子相当于基站为UE配置了Ω={3,4,5}。图19所述实施例中的资源也可只绑定K而不绑定MCS。
本实施例中的每个免授权传输资源可以是连续的或不连续的。所谓免授权传输资源是不连续的,是指免授权传输资源所包括的多个传输单元在时域和/或频域上是不连续的。
由于每个免授权传输资源都是可以同时配置给多个UE的,而MCS以及K是与免授权传输资源绑定的,因此无论哪个UE使用该免授权传输资源,都只能采用与该免授权传输资源绑定的MCS和/或K。换句话说,不同UE在同一免授权传输资源上的传输次数K是相同的。这有利于UE之间传输的公平性。若不同UE在同一免授权传输资源上的传输次数不同,例如,UE1的K=1,UE2的K=2,则显然UE1的传输有较大概率与UE2的传输碰撞,造成UE1的传输可靠性比UE2低。而不同UE同一免授 权传输资源上的传输次数相同,则使得UE之间传输碰撞的概率相当,故传输可靠性也相当,故保证了不同UE传输的公平性。
本申请实施例三:基站响应HARQ-ACK
当UE在免授权资源上进行了某个数据的K次传输后,基站需对这K次传输进行HARQ-ACK响应,即发送ACK/NACK,表示基站是否正确接收到UE的数据。基站可能采用PHICH、PHICH-like(类PHICH)、DCI、group common DCI(组公共DCI)等来携带免授权数据的响应信息。
本实施例假设基站采用传统的PHICH信道来承载免授权数据的响应信息,实现对某个数据的K次传输的响应。但在具体响应上,可以有不同具体形式。本实施例可与实施例一结合使用,也可与实施例二结合使用。
1)基站对K次传输中的每个传输单独进行响应
即基站将UE发送的同一数据的K次传输中的每个传输视为一个独立的数据进行响应。该方法适用于K次传输的是同一数据的重复版本(即相同RV)的情况,因为传输版本(不同RV)情况下除RV0之外的冗余版本不具有独立性,可能无法单独解码。
基站可以有两种具体响应方法。一种方法是,基站根据K次传输中的每个传输的接收情况独立地决定响应ACK还是NACK。另一种方法是,只要K次传输中至少有一个传输被基站正确解码,则基站对K次传输中的所有传输都响应ACK;当K次传输中所有传输均未正确解码时,基站对K次传输中的所有传输都响应NACK。
无论ACK还是NACK,均需由PHICH承载。基站针对K次传输中的每个传输单独进行响应,这要求K次传输中的不同传输应映射到不同的PHICH资源上。按照当前标准中的PHICH资源确定方法,一个UL数据对应的PHICH与n DMRS以及UL传输的资源分配索引有关。基于此规则,为了使K次传输中的不同传输映射到不同PHICH资源上,可以有下述方法:
A)选项1:每次传输对应的PHICH资源与传输所选择的传输单元有关。
如图20所示,某UE在免授权资源中选择了传输单元3、8、9、14传输同一数据的K=4次传输。每次传输对应的PHICH资源应与传输单元的索引有关,例如,UE在传输单元3上传输的数据的PHICH资源由该传输单元的索引(即传输单元3)确定。同一数据的K次传输中的不同传输对应的n DMRS可以是相同的,或者是不同的。
B)选项2:每次传输对应的PHICH资源与n DMRS有关
假设标准预定义或网络侧预配置了同一数据的K次传输中的不同传输对应了不同n DMRS,第k次传输的n DMRS记为n DMRS(k)。这样,UE第k次传输对应的PHICH资源即可由n DMRS(k)决定。K次传输对应的UL资源分配索引可以是相同的,如均采用免授权资源中左下角的传输单元的索引(如图20中的传输单元4);K次传输对应的UL资源分配索引可以是互不相同的,如图20中K=4次传输对应的UL资源分配分别为传输单元3、8、9、14。
2)基站对K次传输中的所有传输进行一次性响应
由于K次传输实际上传输的是同一数据,故基站接收到K次传输后可以只发送一次响应,表示是否正确接收到了这K次传输所要传输的数据。换句话说,K次传输需映射到同一PHICH资源上。
对于实施例一来说,由于实际传输次数K0的取值是由UE自己决定的,基站事先并不知 道,故基站收到UE的一个传输时,并不能确定该传输是UE发送的K0次传输中的第几次。由于PHICH资源由n DMRS以及UL传输的资源分配索引决定,故为了实现K次传输映射到同一PHICH资源上,这K次传输对应的n DMRS以及UL传输的资源分配索引均需相同。因此,同一UE应绑定固定的n DMRS,如基站事先为每个UE配置n DMRS。共享同一免授权资源的多个UE应配置互不相同的n DMRS,以免不同UE的传输映射到相同的PHICH资源上而造成碰撞。K次传输的的资源分配索引也应使用相同值,如使用采用免授权资源中左下角的传输单元的索引(如图20中的传输单元4)。当然,上述方法也适用于实施例二。
特别地,对于K次传输为同一数据的不同冗余版本的情况,由于除RV0之外的冗余版本不具有独立解码能力,故可以使用K次传输中的第一次传输(即RV0)对应的传输单元的索引来计算对应PHICH。当基站正确解出了数据时,意味着基站必然收到了RV0(即必然知道RV0的传输单元索引),从而基于此计算对应PHICH资源;若基站未正确解出了数据,则基站不发送PHICH(即不进行响应)。
本申请还提供了下述实施例,其中,下述各实施例的编号与前述实施例的编号之间并无特定的关系,仅为了方便表述。下述实施例和上述实施例相关的部分可以相互参考进行理解。
1.一种数据传输方法,所述方法包括:
终端设备接收网络设备发送的免授权配置信息,所述免授权配置信息包括所述网络设备配置给所述终端设备的免授权资源;所述终端设备基于第一因素确定重传次数K0,所述第一因素至少包括所述终端设备与所述网络设备之间的信道质量;所述终端设备在所述免授权资源中向所述网络设备发送第一数据的K0个重传数据。
由UE基于信道质量等因素决定免授权重传次数,更有利于充分利用免授权资源,因为UE更清楚信道情况,从而能够基于信道情况确定合适的重传次数。
2.根据实施例1所述的方法,所述信道质量与所述重传次数之间存在预设的映射关系。
信道质量和重传次数之间存在映射关系,这使得UE测得信道质量(如SNR)之后,即可基于映射关系确定对应的重传次数。所有UE均基于相同的映射关系确定重传次数,从而保证了UE之间确定重传次数时的公平性。
3.根据实施例1或2所述的方法,在所述终端设备在所述免授权资源中向所述网络设备发送第一数据的K0个重传数据之后,包括:
所述终端设备在第一PHICH资源上接收所述第一数据的响应,所述第一PHICH资源是由所述免授权资源和n DMRS决定的,所述n DMRS包括在所述免授权配置信息中。
UE发送的第一数据的K0次重传,由于均基于同一免授权资源和相同n DMRS确定对应PHICH资源,这导致K0次重传会映射到同一PHICH资源上,即第一数据的K0次重传只需一次响应,降低了响应开销。
4.根据实施例1-3任一所述的方法,所述K0≤K,所述K包括在所述免授权配置信息中。
基站配置最大重传次数,避免UE重传次数过大导致占据太多资源而对其它UE造成干扰。
5.一种数据传输方法,所述方法包括:
终端设备接收网络设备发送的免授权配置信息,所述免授权配置信息包括所述网 络设备配置给所述终端设备的至少一个免授权资源,以及与所述至少一个免授权资源中的每个免授权资源对应的MCS;所述终端设备在所述至少一个免授权资源中确定一个免授权资源作为第一免授权资源;所述终端设备在所述第一免授权资源中采用与所述第一免授权资源对应的第一MCS向所述网络设备发送第一数据的K个重传数据,所述K是与所述第一免授权资源和/或所述第一MCS绑定的重传次数。
UE基于配置的免授权资源或免授权资源对应的MCS确定与其绑定的重传次数,使用同一免授权资源传输的不同UE的重传次数是相同的,保证了UE之间传输的公平性。
6.根据实施例5所述的方法,所述K与所述第一MCS的绑定关系是预定义的。MCS和K之间的绑定关系是预定义的,这就是的基站在配置相关传输参数时,只需配置MCS而无需配置K,从而减少配置过程的指示开销。UE基于预定义的映射关系即可由MCS确定对应的K。
7.根据实施例5所述的方法,所述K与所述第一免授权资源和/或所述第一MCS的绑定关系是所述网络设备配置给所述终端设备的。
基站配置免授权资源和/或MCS与K之间的绑定关系,该方法使得映射关系具有更大的灵活性。
8.根据实施例5-7任一所述的方法,所述终端设备在所述至少一个免授权资源中确定一个免授权资源作为第一免授权资源,包括:
所述终端设备测量所述终端设备与所述网络设备之间的信道质量;所述终端设备基于所述测得的信道质量确定第一MCS;所述终端设备选择所述至少一个免授权资源中与所述第一MCS对应的免授权资源作为所述第一免授权资源。
UE基于信道质量确定最合适当前信道质量的MCS,进而基于该MCS确定对应的免授权资源作为当前传输使用的资源,是UE基于信道质量确定免授权资源的一般方法。
9.根据实施例5-8任一所述的方法,在所述终端设备在所述第一免授权资源中采用与所述当前传输资源对应的第一MCS向所述网络设备发送第一数据的K个重传数据之后,包括:
所述终端设备在第一PHICH资源上接收所述第一数据的响应,所述第一PHICH资源是由所述第一免授权资源和n DMRS决定的,所述n DMRS包括在所述免授权配置信息中。UE发送的第一数据的K次重传,由于均基于同一免授权资源和相同n DMRS确定对应PHICH资源,这导致K次重传会映射到同一PHICH资源上,即第一数据的K次重传只需一次响应,降低了响应开销。
10.一种数据传输方法,所述方法包括:
网络设备向终端设备发送免授权配置信息,所述免授权配置信息包括所述网络设备配置给所述终端设备的免授权资源;所述网络设备在所述免授权资源中接收所述终端设备发送的第一数据的K0个重传数据,所述K0是所述终端设备基于第一因素确定的,所述第一因素至少包括所述终端设备与所述网络设备之间的信道质量。
由UE基于信道质量等因素决定免授权重传次数,更有利于充分利用免授权资源,因为UE更清楚信道情况,从而能够基于信道情况确定合适的重传次数。
11.根据实施例10所述的方法,所述信道质量与所述重传次数之间存在预设的映射关系。
信道质量和重传次数之间存在映射关系,这使得UE测得信道质量(如SNR)之后,即可基于映射关系确定对应的重传次数。所有UE均基于相同的映射关系确定重传次数, 从而保证了UE之间确定重传次数时的公平性。
12.根据实施例10或11所述的方法,在所述网络设备在所述免授权资源中接收所述终端设备发送的第一数据的K0个重传数据之后,包括:
所述网络设备在第一PHICH资源上向所述终端设备发送所述第一数据的响应,所述第一PHICH资源是由所述免授权资源和n DMRS(即DMRS的索引,可以由基站配置)决定的,所述nDMRS包括在所述免授权配置信息中。
UE发送的第一数据的K0次重传,由于均基于同一免授权资源和相同n DMRS确定对应PHICH资源,这导致K0次重传会映射到同一PHICH资源上,即第一数据的K0次重传只需一次响应,降低了响应开销。
13.根据实施例10-12任一所述的方法,所述K0≤K,所述K包括在所述免授权配置信息中。
基站配置最大重传次数,避免UE重传次数过大导致占据太多资源而对其它UE造成干扰。
14.一种数据传输方法,所述方法包括:
网络设备向终端设备发送免授权配置信息,所述免授权配置信息包括所述网络设备配置给所述终端设备的至少一个免授权资源,以及与所述至少一个免授权资源中的每个免授权资源对应的MCS;所述网络设备在所述至少一个免授权资源中的第一免授权资源上接收所述终端设备采用第一MCS发送的第一数据的K个重传数据,所述第一MCS是与所述第一免授权资源对应的MCS,所述K是与所述第一免授权资源和/或所述第一MCS绑定的重传次数。
UE基于配置的免授权资源或免授权资源对应的MCS确定与其绑定的重传次数,使用同一免授权资源传输的不同UE的重传次数是相同的,保证了UE之间传输的公平性。
15.根据实施例14所述的方法,所述K与所述第一MCS的绑定关系是预定义的。
MCS和K之间的绑定关系是预定义的,这就是的基站在配置相关传输参数时,只需配置MCS而无需配置K,从而减少配置过程的指示开销。UE基于预定义的映射关系即可有MCS确定对应的K。
16.根据实施例14或15所述的方法,所述K与所述第一免授权资源和/或所述第一MCS的绑定关系是所述网络设备配置给所述终端设备的。
基站配置免授权资源和/或MCS与K之间的绑定关系,该方法使得映射关系具有最大的灵活性。
17.根据实施例14-16任一所述的方法,在所述网络设备在所述至少一个免授权资源中的第一免授权资源上接收所述终端设备采用第一MCS发送的第一数据的K个重传数据之后,包括:
所述网络设备在第一PHICH资源向所述终端设备发送所述第一数据的响应,所述第一PHICH资源是由所述第一免授权资源和n DMRS决定的,所述n DMRS包括在所述免授权配置信息中。
UE发送的第一数据的K次重传,由于均基于同一免授权资源和相同n DMRS确定对应PHICH资源,这导致K次重传会映射到同一PHICH资源上,即第一数据的K次重传只需一次响应,降低了响应开销。
18.一种数据传输方法,所述方法包括:
终端设备接收网络设备发送的免授权配置信息,所述免授权配置信息包括所述网络设备配置给所述终端设备的至少一个免授权资源,以及与所述至少一个免授权资源中的每个免授权资源对应的重传次数;所述终端设备在所述至少一个免授权资源中确定一个免授权资源作为第一免授权资源;所述终端设备在所述第一免授权资源中向所述网络设备发送第一数据的K个重传数据,所述K是与所述第一免授权资源对应的重传次数。
UE基于配置的免授权资源确定与其绑定的重传次数,使用同一免授权资源传输的不同UE的重传次数是相同的,保证了UE之间传输的公平性。
19.一种数据传输方法,所述方法包括:
网络设备向终端设备发送免授权配置信息,所述免授权配置信息包括所述网络设备配置给所述终端设备的至少一个免授权资源,以及与所述至少一个免授权资源中的每个免授权资源对应的重传次数;
所述网络设备在所述至少一个免授权资源中的第一免授权资源上接收所述终端设备发送的第一数据的K个重传数据,所述K是与所述第一免授权资源对应的重传次数。
UE基于配置的免授权资源确定与其绑定的重传次数,使用同一免授权资源传输的不同UE的重传次数是相同的,保证了UE之间传输的公平性。
20.一种终端设备,所述终端设备包括:
处理器,存储器和收发器;所述收发器,用于接收和发送数据;所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例1-4任一所述的方法。
21.根据实施例20所述的终端设备,所述收发器包括:
发送器和接收器;所述接收器用于接收网络设备发送的如实施例1-4任一所述免授权配置信息或所述第一数据的响应;所述发送器用于发送如实施例1-4任一所述第一数据。
22.一种网络设备,所述网络设备包括:处理器,存储器和收发器;所述收发器,用于接收和发送数据;所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例10-13任一所述的方法。
23.根据实施例22所述的网络设备,所述收发器包括:发送器和接收器;所述接收器用于接收终端设备发送的如实施例10-13任一所述第一数据;所述发送器用于发送如实施例10-13任一所述免授权配置信息或所述第一数据的响应。
24.一种终端设备,所述终端设备包括:
处理器,存储器和收发器;所述收发器,用于接收和发送数据;所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例5-9任一所述的方法。
25.根据实施例24所述的终端设备,所述收发器包括:
发送器和接收器;所述接收器用于接收网络设备发送的如实施例5-9任一所述免授权配置信息或所述第一数据的响应;所述发送器用于发送如实施例5-9任一所述第一数据。
26.一种网络设备,所述网络设备包括:
处理器,存储器和收发器;所述收发器,用于接收和发送数据;所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例14-17任一所述的方法。
27.根据实施例26所述的网络设备,所述收发器包括:
发送器和接收器;所述接收器用于接收终端设备发送的如实施例14-17任一所述第一数据;
所述发送器用于发送如实施例14-17任一所述免授权配置信息或所述第一数据的响应。
28.一种终端设备,所述终端设备包括:
处理器,存储器和收发器;所述收发器,用于接收和发送数据;所述存储器用于存储指令;
所述处理器用于执行所述存储器中的所述指令,执行如实施例18所述的方法。
29.根据实施例28所述的终端设备,所述收发器包括:
发送器和接收器;所述接收器用于接收网络设备发送的如实施例18所述免授权配置信息;所述发送器用于发送如实施例18所述第一数据。
30.一种网络设备,所述网络设备包括:
处理器,存储器和收发器;所述收发器,用于接收和发送数据;所述存储器,用于存储指令;
所述处理器,用于执行所述存储器中的所述指令,执行如实施例19所述的方法。
31.根据实施例30所述的网络设备,所述收发器包括:
发送器和接收器;所述接收器用于接收终端设备发送的如实施例19所述第一数据;
所述发送器用于发送如实施例19所述免授权配置信息。
32.一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-4任一所述的方法。
33.一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例5-9任一所述的方法。
34.一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例10-13任一所述的方法。
35.一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例14-17任一所述的方法。
36.一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例18所述的方法。
37.一种计算机程序产品,包括计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例19所述的方法。
38.一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-4任一所述的方法。
39.一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例5-9任一所述的方法。
40.一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例10-13任一所述的方法。
41.一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例14-17任一所述的方法。
42.一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例18所述的方法。
43.一种计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例19所述的方法。
44.一种终端设备,所述终端设备被配置为执行如实施例1-4任一所述的方法。
45.一种终端设备,所述终端设备被配置为执行如实施例5-9任一所述的方法。
46.一种终端设备,所述终端设备被配置为执行如实施例18所述的方法。
47.一种网络设备,所述网络设备被配置为执行如实施例10-13任一所述的方法。
48.一种网络设备,所述网络设备被配置为执行如实施例14-17任一所述的方法。
49.一种网络设备,所述网络设备被配置为执行如实施例19所述的方法。
50.一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-4任一所述的方法。
51.一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例5-9任一所述的方法。
52.一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例10-13任一所述的方法。
53.一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例14-17任一所述的方法。
54.一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例18所述的方法。
55.一种计算机可读存储介质,其上存储有计算机程序,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例19所述的方法。
56.一种通信系统,其特征在于,包括如实施例1-4任一所述的终端设备和如实施例10-13任一所述的网络设备。
57.一种通信系统,包括如实施例5-9任一所述的终端设备和如实施例14-17任一所述的网络设备。
58.一种通信系统,包括如实施例18所述的终端设备和如实施例19任一所述的网络设备。
59.一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例1-4中任一项所述的通信方法。
60.根据实施例59所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例1-4中任一项所述的通信方法。
61.一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例5-9中任一项所述的通信方法。
62.根据实施例61所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例5-9中任一项所述的通信方法。
63.一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例10-13中任一项所述的通信方法。
64.根据实施例63所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例10-13中任一项所述的通信方法。
65.一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例14-17中任一项所述的通信方法。
66.根据实施例65所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例14-17中任一项所述的通信方法。
67.一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例18所述的通信方法。
68.根据实施例67所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例18所述的通信方法。
69.一种芯片,包括:处理模块与通信接口,所述处理模块用于执行实施例19所述的通信方法。
70.根据实施例69所述的芯片,所述芯片还包括存储模块,所述存储模块用于存储指令,所述处理模块用于执行所述存储模块存储的指令,并且对所述存储模块中存储的指令的执行使得所述处理模块执行实施例19所述的通信方法。
本申请提供了一种装置(可以为通信芯片),其中存储有指令,当其在设备(如终端设备或网络设备)上运行时,使得该设备执行上述各方法实施例中的一种方法。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本发明各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解。
本发明各装置实施例中给出的装置结构图仅示出了对应的装置的简化设计。在实际应用中,该装置可以包含任意数量的发射器,接收器,处理器,存储器等,以实现本发明各装置实施例中该装置所执行的功能或操作,而所有可以实现本申请的装置都在本申请的保护范围之内。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可 以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备和网络设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (22)

  1. 一种发送上行数据的方法,其特征在于,包括:
    终端设备根据参考信息确定N,N为所述终端设备用于传输传输块的传输次数,所述参考信息与N存在预设的对应关系,N为大于或等于1的整数;
    所述终端设备按照免授权传输方式发送N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
  2. 根据权利要求1所述的方法,其特征在于,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述参考信息包括信道质量、所述传输块的业务类型、调制编码方案MCS以及能用于传输所述传输块的至少一个免授权传输资源中的至少一个。
  4. 根据权利要求3所述的方法,其特征在于,所述参考信息包括能用于传输所述传输块的至少两个免授权传输资源;所述终端设备根据参考信息确定N,包括:
    所述终端设备根据信道质量和/或所述传输块的业务类型从所述至少两个免授权传输资源中确定目标免授权传输资源,所述目标免授权资源为传输所述传输块使用的免授权传输资源;
    所述终端设备根据所述目标免授权传输资源确定N,所述目标免授权传输资源与N之间存在预设的对应关系。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备根据所述目标免授权传输资源确定N,所述目标免授权传输资源与N之间存在预设的对应关系,包括:
    所述终端设备根据所述目标免授权传输资源确定所述MCS,所述目标免授权传输资源与所述MCS存在预设的对应关系;
    所述终端设备根据所述MCS确定N,所述MCS与N之间存在预设的对应关系。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述终端设备根据参考信息确定N之前,所述方法还包括:
    所述终端设备接收配置信息,所述配置信息用于配置所述参考信息与N的对应关系。
  7. 一种接收上行数据的方法,其特征在于,包括:
    网络设备发送配置信息,所述配置信息用于配置参考信息与N的对应关系,N为终端设备按照免授权传输方式传输传输块的次数,且N为大于或等于1的整数,所述参考信息与N的对应关系用于所述终端设备根据一个参考信息确定与该参考信息对应的N;
    所述网络设备从所述终端设备接收N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
  8. 根据权利要求7所述的方法,其特征在于,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
  9. 根据权利要求7或8所述的方法,其特征在于,所述参考信息包括信道质量、传输块的业务类型、调制编码方案MCS以及能用于传输所述传输块的至少一个免授权传输资源中的至少一个。
  10. 根据权利要求9所述的方法,其特征在于,所述参考信息与N的对应关系,包括:
    信道质量和/或所述传输块的业务类型与目标免授权传输资源之间的对应关系,以及所述目标免授权传输资源与N的对应关系,所述目标免授权传输资源为所述至少一个免授权传输资源中的一个,所述目标免授权传输资源为传输所述传输块使用的免授权传输资源。
  11. 根据权利要求10所述的方法,其特征在于,所述目标免授权传输资源与N的对应关系,包括:
    所述目标免授权传输资源与所述MCS的对应关系,以及所述MCS与N的对应关系。
  12. 一种发送上行数据的装置,其特征在于,包括处理单元和通信单元,
    所述处理单元用于根据参考信息确定N,N为所述发送上行数据的装置用于传输传输块的传输次数,所述参考信息与N存在预设的对应关系,N为大于或等于1的整数;
    所述通信单元用于按照免授权传输方式发送N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
  13. 根据权利要求12所述的装置,其特征在于,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
  14. 根据权利要求12或13所述的装置,其特征在于,所述参考信息包括信道质量、所述传输块的业务类型、调制编码方案MCS以及能用于传输所述传输块的至少一个免授权传输资源中的至少一个。
  15. 根据权利要求14所述的装置,其特征在于,所述参考信息包括能用于传输所述传输块的至少两个免授权传输资源;所述处理单元具体用于:
    根据信道质量和/或所述传输块的业务类型从所述至少两个免授权传输资源中确定目标免授权传输资源,所述目标免授权资源为传输所述传输块使用的免授权传输资源;
    根据所述目标免授权传输资源确定N,所述目标免授权传输资源与N之间存在预设的对应关系。
  16. 根据权利要求15所述的装置,其特征在于,所述处理单元用于根据所述目标免授权传输资源确定N,所述目标免授权传输资源与N之间存在预设的对应关系,包括:
    所述处理单元具体用于根据所述目标免授权传输资源确定所述MCS,所述目标免授权传输资源与所述MCS存在预设的对应关系;
    根据所述MCS确定N,所述MCS与N之间存在预设的对应关系。
  17. 根据权利要求12至16中任一项所述的装置,其特征在于,所述通信单元还用于在所述处理单元根据参考信息确定N之前:
    接收配置信息,所述配置信息用于配置所述参考信息与N的对应关系。
  18. 一种接收上行数据的装置,其特征在于,包括处理单元和通信单元,所述处理单元用于支持所述通信单元执行:
    发送配置信息,所述配置信息用于配置参考信息与N的对应关系,N为终端设备按照免授权传输方式传输传输块的次数,且N为大于或等于1的整数,所述参考信息与N的对应关系用于所述终端设备根据一个参考信息确定与该参考信息对应的N;
    从所述终端设备接收N个上行数据,所述N个上行数据包括所述传输块的一个初传数据和N-1个重传数据。
  19. 根据权利要求18所述的装置,其特征在于,N小于或等于K,K为预设的最大传输次数,且K为大于或等于1的整数。
  20. 根据权利要求18或19所述的装置,其特征在于,所述参考信息包括信道质量、传输块的业务类型、调制编码方案MCS以及能用于传输所述传输块的至少一个免授权传输资源中的至少一个。
  21. 根据权利要求20所述的装置,其特征在于,所述参考信息与N的对应关系,包括:
    信道质量和/或所述传输块的业务类型与目标免授权传输资源之间的对应关系,以及所述目标免授权传输资源与N的对应关系,所述目标免授权传输资源为所述至少一个免授权传输资源中的一个,所述目标免授权传输资源为传输所述传输块使用的免授权传输资源。
  22. 根据权利要求21所述的装置,其特征在于,所述传输所述传输块使用的免授权传输资源与N的对应关系,包括:
    所述免授权传输资源与所述MCS的对应关系,以及所述MCS与N的对应关系。
PCT/CN2018/101658 2017-08-24 2018-08-22 发送或接收上行数据的方法和装置 WO2019037733A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710735426 2017-08-24
CN201710735426.5 2017-08-24
CN201710765305.5 2017-08-30
CN201710765305 2017-08-30
CN201711479356.8A CN109428680B (zh) 2017-08-24 2017-12-29 发送或接收上行数据的方法和装置
CN201711479356.8 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019037733A1 true WO2019037733A1 (zh) 2019-02-28

Family

ID=65438376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101658 WO2019037733A1 (zh) 2017-08-24 2018-08-22 发送或接收上行数据的方法和装置

Country Status (1)

Country Link
WO (1) WO2019037733A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135187A1 (en) * 2013-10-31 2016-05-12 Sony Corporation Carrier allocation apparatus, method and terminal
CN106658742A (zh) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
CN106788912A (zh) * 2016-11-04 2017-05-31 北京展讯高科通信技术有限公司 基站、用户设备及上行数据传输方法
CN108365934A (zh) * 2017-01-26 2018-08-03 索尼公司 无线通信方法和无线通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135187A1 (en) * 2013-10-31 2016-05-12 Sony Corporation Carrier allocation apparatus, method and terminal
CN106658742A (zh) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
CN106788912A (zh) * 2016-11-04 2017-05-31 北京展讯高科通信技术有限公司 基站、用户设备及上行数据传输方法
CN108365934A (zh) * 2017-01-26 2018-08-03 索尼公司 无线通信方法和无线通信设备

Similar Documents

Publication Publication Date Title
US11032778B2 (en) Uplink channel power allocation method and apparatus
CN109428680B (zh) 发送或接收上行数据的方法和装置
US9913254B2 (en) Method and apparatus for indicating subframes associated with a hybrid automatic repeat request feedback
JP6159672B2 (ja) 基地局、送信方法、移動局及び再送制御方法
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
WO2018176226A1 (zh) Harq反馈方法、装置及系统
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
EP3554031A1 (en) Transmission of reference signals
CN108200780A (zh) 用于授权辅助接入的退避过程的系统和方法
US20220353043A1 (en) Sidelink information transmission method and terminal device
CN108292980A (zh) 业务传输的方法和装置
WO2020098685A1 (zh) 接收数据的方法和通信装置
US11570786B2 (en) Wireless communication method and device
WO2021155608A1 (zh) 信息传输方法及相关装置
US11431462B2 (en) Indication method, network device, and user equipment
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2019037695A1 (zh) 一种通信方法及装置
CN113490278B (zh) 下行信号传输的方法和设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
US20220256554A1 (en) Wireless communication method and apparatus and communication system
US20230026327A1 (en) Sidelink transmission method and apparatus
WO2020156180A1 (zh) 通信方法及终端设备、接入网设备
WO2019191966A1 (zh) 可靠性传输方法及相关产品
WO2018090317A1 (zh) 一种资源调度方法及相关设备、系统
WO2021155604A1 (zh) 信息处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847892

Country of ref document: EP

Kind code of ref document: A1