WO2019037484A1 - Laser scanning device calibration method, apparatus, device, and storage medium - Google Patents

Laser scanning device calibration method, apparatus, device, and storage medium Download PDF

Info

Publication number
WO2019037484A1
WO2019037484A1 PCT/CN2018/087251 CN2018087251W WO2019037484A1 WO 2019037484 A1 WO2019037484 A1 WO 2019037484A1 CN 2018087251 W CN2018087251 W CN 2018087251W WO 2019037484 A1 WO2019037484 A1 WO 2019037484A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate
cloud data
point cloud
frame
coordinate system
Prior art date
Application number
PCT/CN2018/087251
Other languages
French (fr)
Chinese (zh)
Inventor
曾超
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to KR1020197030956A priority Critical patent/KR102296723B1/en
Priority to EP18847637.8A priority patent/EP3686557A4/en
Priority to JP2020511185A priority patent/JP6906691B2/en
Publication of WO2019037484A1 publication Critical patent/WO2019037484A1/en
Priority to US16/383,358 priority patent/US20190235062A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Navigation (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A laser scanning device (101) calibration method, comprising: acquiring, on the basis of at least two frames of point cloud data obtained by scanning a target area by the laser scanning apparatus (101), the first coordinates of a ground feature element in each frame of point cloud data, the first coordinates being coordinates of the ground feature element in a laser coordinate system; determining, on the basis of map data of the target area of a vehicle, the second coordinates of the ground feature element in each frame of point cloud data in a vehicle coordinate system; determining, for each frame of point cloud data, an offset posture of each frame point cloud data according to the first coordinates and second coordinates of the ground feature element; and calculating the value of a laser external parameter of the laser scanning device (101) according to the offset postures of the at least two frames of point cloud data, so as to calibrate the laser scanning device (101).

Description

激光扫描设备标定的方法、装置、设备及存储介质Method, device, device and storage medium for laser scanning device calibration
本申请要求于2017年08月23日提交中国专利局,申请号为201710731253.X、发明名称为“激光扫描设备标定的方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to Chinese Patent Application No. 201710731253.X, entitled "Method, Apparatus, Equipment and Storage Medium for Laser Scanning Equipment Calibration", filed on August 23, 2017, all of which is entitled The content is incorporated herein by reference.
技术领域Technical field
本申请涉及无人驾驶技术领域,特别涉及一种激光扫描设备标定的方法、装置、设备及存储介质。The present application relates to the field of driverless technology, and in particular, to a method, device, device and storage medium for calibration of a laser scanning device.
背景技术Background technique
随着无人驾驶技术的发展,无人驾驶车辆中的导航系统可以提供导航路径,以使无人驾驶车辆按照该导航路径行驶。同时,无人驾驶车辆还可以通过激光扫描设备实时扫描周围环境,得到周围环境的三维图像,从而使得无人驾驶车辆能够结合周围环境和导航路径行驶,以避开周围环境中的障碍物,进一步保证驾驶的安全性。然而,该三维图像所在的激光坐标系和导航路径所在的车辆坐标系之间存在一定的位置偏移和角度偏移,因此,使用激光扫描设备之前,还需对该激光扫描设备进行标定。With the development of driverless technology, a navigation system in an unmanned vehicle can provide a navigation path for the driverless vehicle to follow the navigation path. At the same time, the unmanned vehicle can also scan the surrounding environment in real time through the laser scanning device to obtain a three-dimensional image of the surrounding environment, so that the unmanned vehicle can travel in conjunction with the surrounding environment and the navigation path to avoid obstacles in the surrounding environment, further Ensure the safety of driving. However, there is a certain positional offset and angular offset between the laser coordinate system in which the three-dimensional image is located and the vehicle coordinate system in which the navigation path is located. Therefore, the laser scanning device needs to be calibrated before using the laser scanning device.
相关技术中,对激光扫描设备进行标定的过程为:通常在标定场中搭建标志物,并在标志物中设置多个位置明显的标定点,从而建立包括多个标定点的标定场。并在标定场中建立以无人驾驶车辆为坐标原点的车辆坐标系,通过传统测绘方式,人工测量每个标定点在车辆坐标系中的坐标。然后,建立以激光扫描设备为原点的激光坐标系,通过激光扫描设备扫描该标定场,得到一帧点云数据,该帧点云数据包括标定场中标志物的表面点的集合,以及表面点的集合中每个点在激光坐标系中的坐标。基于该帧点云数据,人工选取出表面点的集合中的多个标点定,获取该每个标定点在激光坐标系中的坐标。根据每个标定点在车辆坐标系中的坐标,以及该标定点在激光坐标系中的坐标,通过SVD(Singular Value Decomposition,奇异值分解)算法,计算出激光坐标系相对于车辆坐标系的偏移位姿,该偏移位姿包括激光坐标系相对于车辆坐标系的偏移位置的数值和偏航角的数值,直接将该偏移位姿作为激光扫描设备的激光外参数的数值。其中,该航偏角为激光坐标系的x轴(激光扫描设备正前方)与车 辆坐标系的x轴(无人驾驶车辆正前方)之间的夹角。通过该激光外参数的数值,对激光扫描设备进行标定。In the related art, the laser scanning device is calibrated by generally setting up a marker in the calibration field, and setting a plurality of calibration points with obvious positions in the marker to establish a calibration field including a plurality of calibration points. And the vehicle coordinate system with the unmanned vehicle as the coordinate origin is established in the calibration field, and the coordinates of each calibration point in the vehicle coordinate system are manually measured by the traditional surveying and mapping method. Then, a laser coordinate system with the laser scanning device as the origin is established, and the calibration field is scanned by the laser scanning device to obtain a frame of point cloud data, the frame point cloud data includes a set of surface points of the marker in the calibration field, and a surface point The coordinates of each point in the set in the laser coordinate system. Based on the frame point cloud data, a plurality of punctuation points in the set of surface points are manually selected, and coordinates of each of the calibration points in the laser coordinate system are obtained. According to the coordinates of each calibration point in the vehicle coordinate system and the coordinates of the calibration point in the laser coordinate system, the SVD (Singular Value Decomposition) algorithm is used to calculate the deviation of the laser coordinate system from the vehicle coordinate system. The shifting posture includes a numerical value of an offset position of the laser coordinate system with respect to the vehicle coordinate system and a numerical value of the yaw angle, and the offset posture is directly used as a value of a laser external parameter of the laser scanning device. The yaw angle is the angle between the x-axis of the laser coordinate system (directly in front of the laser scanning device) and the x-axis of the vehicle coordinate system (directly in front of the driverless vehicle). The laser scanning device is calibrated by the value of the external laser parameter.
在实现本申请实施例的过程中,发明人发现相关技术至少存在以下问题:In the process of implementing the embodiments of the present application, the inventors have found that the related art has at least the following problems:
上述方法需要人工建立标定场,并且后续还需通过人工测量或识别的方法,才能确定每个标定点在车辆坐标系中的坐标,以及在激光坐标系中的坐标,从而导致上述激光扫描设备标定方法效率低。The above method requires manual establishment of a calibration field, and subsequent methods of manual measurement or identification are required to determine the coordinates of each calibration point in the vehicle coordinate system and the coordinates in the laser coordinate system, thereby causing the above-mentioned laser scanning device calibration. The method is inefficient.
发明内容Summary of the invention
根据本申请的各种实施例,提供了一种激光扫描设备标定的方法、装置、设备及存储介质。In accordance with various embodiments of the present application, a method, apparatus, apparatus, and storage medium for laser scanning device calibration are provided.
一种激光扫描设备标定的方法,所述方法包括:A method of calibrating a laser scanning device, the method comprising:
基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;Acquiring at least two frame point cloud data obtained by scanning the target area by the laser scanning device, acquiring first coordinates of the feature elements in the point cloud data of each frame, wherein the first coordinates are that the feature elements are in the laser coordinate system coordinate of;
基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;Determining, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及Determining, according to the first coordinate and the second coordinate of the feature element, the offset pose of the point cloud data of each frame; and
根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And calculating, according to the offset pose of the at least two frames of point cloud data, a value of a laser external parameter of the laser scanning device to calibrate the laser scanning device.
一种激光扫描设备标定的装置,所述装置包括:A device for calibrating a laser scanning device, the device comprising:
获取模块,用于基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;An acquiring module, configured to acquire, according to at least two frame point cloud data obtained by scanning a target area by the laser scanning device, a first coordinate of the feature element in the point cloud data of each frame, where the first coordinate is the feature element The coordinates in the laser coordinate system;
第一确定模块,用于基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;a first determining module, configured to determine, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
第二确定模块,用于对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及a second determining module, configured to determine an offset pose of the point cloud data of each frame according to the first coordinate and the second coordinate of the feature element for the frame cloud data of each frame; and
计算模块,用于根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And a calculating module, configured to calculate a value of the laser external parameter of the laser scanning device according to the offset pose of the at least two frames of point cloud data to calibrate the laser scanning device.
一种计算机设备,包括存储器和处理器,所述存储器中储存有计算机可读 指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行以下步骤:A computer apparatus comprising a memory and a processor, the memory storing computer readable instructions, the computer readable instructions being executed by the processor such that the processor performs the following steps:
基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;Acquiring at least two frame point cloud data obtained by scanning the target area by the laser scanning device, acquiring first coordinates of the feature elements in the point cloud data of each frame, wherein the first coordinates are that the feature elements are in the laser coordinate system coordinate of;
基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;Determining, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及Determining, according to the first coordinate and the second coordinate of the feature element, the offset pose of the point cloud data of each frame; and
根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And calculating, according to the offset pose of the at least two frames of point cloud data, a value of a laser external parameter of the laser scanning device to calibrate the laser scanning device.
一种非易失性的计算机可读存储介质,存储有计算机可读指令,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:A non-transitory computer readable storage medium storing computer readable instructions, when executed by one or more processors, causes the one or more processors to perform the following steps:
基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;Acquiring at least two frame point cloud data obtained by scanning the target area by the laser scanning device, acquiring first coordinates of the feature elements in the point cloud data of each frame, wherein the first coordinates are that the feature elements are in the laser coordinate system coordinate of;
基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;Determining, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及Determining, according to the first coordinate and the second coordinate of the feature element, the offset pose of the point cloud data of each frame; and
根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And calculating, according to the offset pose of the at least two frames of point cloud data, a value of a laser external parameter of the laser scanning device to calibrate the laser scanning device.
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。Details of one or more embodiments of the present application are set forth in the accompanying drawings and description below. Other features, objects, and advantages of the invention will be apparent from the description and appended claims.
附图说明DRAWINGS
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present application. Other drawings may also be obtained from those of ordinary skill in the art in light of the inventive work.
图1是本申请实施例提供的一种驾驶系统示意图;1 is a schematic diagram of a driving system provided by an embodiment of the present application;
图2是本申请实施例提供的一种激光扫描设备标定的方法流程图;2 is a flow chart of a method for calibration of a laser scanning device according to an embodiment of the present application;
图3是本申请实施例提供的一种预设扫描路线示意图;3 is a schematic diagram of a preset scanning route provided by an embodiment of the present application;
图4是本申请实施例提供的一种第一距离示意图;4 is a schematic diagram of a first distance provided by an embodiment of the present application;
图5是本申请实施例提供的一种第二距离示意图;FIG. 5 is a schematic diagram of a second distance provided by an embodiment of the present application; FIG.
图6是本申请实施例提供的一种激光扫描设备标定的装置的结构示意图;6 is a schematic structural diagram of an apparatus for calibrating a laser scanning device according to an embodiment of the present application;
图7是本申请实施例提供的一种计算机设备的结构示意图。FIG. 7 is a schematic structural diagram of a computer device according to an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application are clearly and completely described in the following with reference to the drawings in the embodiments of the present application. It is obvious that the described embodiments are a part of the embodiments of the present application, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present application without departing from the inventive scope are the scope of the present application.
本申请实施例公开了对激光扫描设备进行标定的方法。其中,该激光扫描设备可以为安装在任一需要导航的驾驶器中的激光扫描设备。例如,该激光扫描设备可以安装于无人驾驶车辆、无人机或者需要导航的机器人等驾驶器中,本申请实施例对此不作具体限定。本申请实施例仅以安装在车辆中的激光扫描设备为例进行说明。The embodiment of the present application discloses a method of calibrating a laser scanning device. Wherein, the laser scanning device can be a laser scanning device installed in any driver that needs to navigate. For example, the laser scanning device may be installed in a driver such as an unmanned vehicle, a drone, or a robot that requires navigation, which is not specifically limited in the embodiment of the present application. The embodiment of the present application is described by taking only a laser scanning device installed in a vehicle as an example.
图1是本申请实施例提供的一种驾驶系统示意图,该驾驶系统包括:激光扫描设备101和导航系统102。1 is a schematic diagram of a driving system provided by an embodiment of the present application. The driving system includes: a laser scanning device 101 and a navigation system 102.
导航系统102中预先存储了地图数据,该地图数据至少包括目标区域中的每个地物要素在地图坐标系中的位置坐标。该导航系统102中包括GPS(Global Positioning System,全球定位系统)和IMU(Inertial Measurement Unit,惯性测量单元)。导航系统102可以通过GPS接收卫星信号,实时定位车辆在地图坐标系中的当前位置坐标。该导航系统102可以根据车辆的当前位置坐标和车辆的目的地位置坐标,在地图数据中确定车辆的导航路径,并将该导航路径在地图坐标系中对应的路径坐标经地心坐标系、站心坐标系转换到车辆坐标系中,以使车辆按照该车辆坐标系中的导航路径行驶。并且,该IMU中集成了加速度计和陀螺仪,车辆行驶过程中,导航系统102还可以通过IMU实时获取车辆在车辆坐标系中的航向角和行驶速度,从而实时监控车辆的行驶状态。Map data is pre-stored in the navigation system 102, and the map data includes at least position coordinates of each feature element in the target area in the map coordinate system. The navigation system 102 includes a GPS (Global Positioning System) and an IMU (Inertial Measurement Unit). The navigation system 102 can receive satellite signals via GPS and locate the current position coordinates of the vehicle in the map coordinate system in real time. The navigation system 102 can determine a navigation path of the vehicle in the map data according to the current position coordinate of the vehicle and the destination position coordinate of the vehicle, and map the corresponding path coordinate in the map coordinate system to the geocentric coordinate system and the station. The cardiac coordinate system is converted into a vehicle coordinate system to cause the vehicle to travel in accordance with a navigation path in the vehicle coordinate system. Moreover, the accelerometer and the gyroscope are integrated in the IMU. During the running of the vehicle, the navigation system 102 can also acquire the heading angle and the traveling speed of the vehicle in the vehicle coordinate system in real time through the IMU, thereby monitoring the running state of the vehicle in real time.
该驾驶系统中还包括激光扫描设备101,车辆行驶过程中,车辆还可通过激 光扫描设备101实时扫描周围环境,得到周围环境的多帧点云数据,每帧点云数据包括周围环境中的每个障碍物在激光坐标系中的位置坐标;障碍物包括但不限于周围环境中固定的地物要素以及移动的其它车辆、行人等;并基于激光扫描设备101的激光外参数,将周围环境中每个障碍物在激光坐标系中的位置坐标转换到车辆坐标系中;车辆可以结合车辆坐标系中的导航路径和周围环境中每个障碍物行驶,从而进一步保证车辆行驶的安全性。The driving system further includes a laser scanning device 101. During the running of the vehicle, the vehicle can also scan the surrounding environment in real time through the laser scanning device 101 to obtain multi-frame point cloud data of the surrounding environment, and each frame point cloud data includes each of the surrounding environments. Position coordinates of obstacles in the laser coordinate system; obstacles include, but are not limited to, fixed feature elements in the surrounding environment and other vehicles, pedestrians, etc. moving; and based on the laser external parameters of the laser scanning device 101, in the surrounding environment The position coordinates of each obstacle in the laser coordinate system are converted into the vehicle coordinate system; the vehicle can travel in conjunction with the navigation path in the vehicle coordinate system and each obstacle in the surrounding environment, thereby further ensuring the safety of the vehicle running.
下面,针对上述驾驶系统中出现的名词以及会涉及到的一些坐标系和参数等进行介绍:Below, we will introduce the nouns that appear in the above driving system and some coordinate systems and parameters that will be involved:
该地图数据可以为根据用户需要,预先设置并存储的待行驶区域的地图数据。进一步地,地图数据可以为高精地图数据。该高精地图数据为具有厘米级定位精度,且包括道路附属设施信息(如红绿灯、电子眼和交通路牌等)和动态交通信息的下一代导航地图,通过该高精地图数据可以更加准确地进行导航。The map data may be map data of a to-be-traveled area that is set and stored in advance according to user needs. Further, the map data may be high-precision map data. The high-precision map data is a next-generation navigation map with centimeter-level positioning accuracy and including road auxiliary facilities information (such as traffic lights, electronic eyes, traffic signs, etc.) and dynamic traffic information, and the navigation data can be more accurately navigated through the high-precision map data. .
其中,该车辆可以为无人驾驶车辆,该无人驾驶车辆通过导航系统102获取导航路径,以及通过激光扫描设备101获取周围环境的多帧点云数据,从而使得无人驾驶车辆可以结合车辆坐标系中的导航路径和周围环境中每个障碍物行驶,进一步保证无人驾驶车辆可以安全行驶。Wherein, the vehicle may be an unmanned vehicle that acquires a navigation path through the navigation system 102 and acquires multi-frame point cloud data of the surrounding environment by the laser scanning device 101, so that the unmanned vehicle can combine the vehicle coordinates The navigation path in the system and each obstacle in the surrounding environment further ensure that the unmanned vehicle can travel safely.
该地图坐标系一般为WGS84(World Geodetic System for 1984,1984年世界大地坐标系),每个地物要素的位置坐标即为该WGS84坐标系中该地物要素的经纬度坐标和高程坐标。The map coordinate system is generally WGS84 (World Geodetic System for 1984, 1984 World Geodetic Coordinate System), and the position coordinates of each feature element is the latitude and longitude coordinates and elevation coordinates of the feature element in the WGS84 coordinate system.
该车辆坐标系为以车辆为坐标原点,以车辆行驶的正前方为x轴正方向,以水平向左且与x轴垂直的方向为y轴正方向,以竖直向上的方向为z轴正方向。The vehicle coordinate system uses the vehicle as the coordinate origin, with the front of the vehicle running in the positive direction of the x-axis, the direction perpendicular to the left and the direction perpendicular to the x-axis being the positive direction of the y-axis, and the direction of the vertical upward being the positive z-axis. direction.
该激光坐标系为以激光扫描设备为坐标原点,以激光扫描设备的正前方为x轴正方向,以水平向左且垂直于x轴的方向为y轴正前方,以竖直向上的方向为z轴正方向的坐标系。The laser coordinate system uses the laser scanning device as the coordinate origin, with the positive direction of the laser scanning device being the positive x-axis direction, the direction horizontally to the left and perpendicular to the x-axis being directly in front of the y-axis, and the direction in the vertical direction is The coordinate system of the positive direction of the z-axis.
该地心坐标系为以地球质心为坐标原点o,以首子午面与赤道面的交线向东的方向为x轴正方向,以地球旋转轴向北的方向为z轴正方向,以与xoz平面垂直且根据右手法则确定的方向为y轴正方向,建立的空间直角坐标系。The geocentric coordinate system uses the Earth's centroid as the coordinate origin o, the direction of the intersection of the first meridional plane and the equatorial plane to the east is the positive x-axis direction, and the direction of the north of the earth's rotation axis is the positive direction of the z-axis. The xoz plane is vertical and the direction determined by the right-hand rule is the positive direction of the y-axis, and the spatial rectangular coordinate system is established.
该站心坐标系为以站心为坐标系原点,以地球椭球的长半轴向东的方向(东向)为x轴正方向,以地球椭球短的半轴向北的方向(北向)为y轴正方向,以地球椭球法线向上(天向)为z轴正方向,建立的空间直角坐标系。The center coordinate system of the station is the origin of the coordinate system, the direction of the long semi-axial direction of the earth ellipsoid (east direction) is the positive direction of the x-axis, and the direction of the semi-axis of the earth ellipsoid is north (north direction). The space is a rectangular coordinate system established by the positive direction of the y-axis and the normal direction of the ellipsoid of the earth (the sky direction) is the positive direction of the z-axis.
激光扫描设备的激光外参数为激光坐标系和车辆坐标系之间的偏移位置和偏航角。其中,偏移位置为激光坐标系相对于车辆坐标系在x轴、y轴方向上的偏移距离,该偏航角为激光坐标系的x轴与车辆坐标系的x轴之间的夹角,即激光扫描设备的正前方与该车辆行驶的正前方之间的夹角。另外,本申请还涉及到车辆的航向角。该航向角是指车辆行驶的正前方与正北方向之间的夹角。The laser external parameters of the laser scanning device are the offset position and the yaw angle between the laser coordinate system and the vehicle coordinate system. Wherein, the offset position is an offset distance of the laser coordinate system relative to the vehicle coordinate system in the x-axis and the y-axis direction, and the yaw angle is an angle between the x-axis of the laser coordinate system and the x-axis of the vehicle coordinate system. That is, the angle between the front of the laser scanning device and the front of the vehicle. In addition, the present application also relates to the heading angle of the vehicle. The heading angle refers to an angle between the front side and the true north direction of the vehicle.
图2是本申请实施例提供的一种激光扫描设备标定的方法流程图。该方法的执行主体为终端,该终端可以为车载终端或者具备数据处理功能任一终端,参见图2,该方法包括:2 is a flow chart of a method for calibration of a laser scanning device according to an embodiment of the present application. The execution body of the method is a terminal, and the terminal may be an in-vehicle terminal or any terminal having a data processing function. Referring to FIG. 2, the method includes:
201、终端通过激光扫描设备,基于预设扫描路线扫描目标区域,得到至少两帧点云数据,该目标区域为包括该地物要素的任一区域。201. The terminal scans the target area based on the preset scan route by using the laser scanning device to obtain at least two frames of point cloud data, where the target area is any area including the feature element.
其中,该激光扫描设备安装于车辆中,可以设置于车辆的前侧或侧面,用以对车辆周围的环境进行扫描。该预设扫描路线可以是为了对目标区域进行扫描以设计的行驶路线。The laser scanning device is installed in the vehicle and can be disposed on the front side or the side of the vehicle for scanning the environment around the vehicle. The preset scan route may be a travel route designed to scan the target area.
本申请实施例中,本步骤可以为:终端获取预设扫描路线,将该预设扫描路线作为车辆的行驶路线,控制车辆沿该预设扫描路线行驶。在车辆沿该预设扫描路线行驶过程中,终端每隔预设时长,控制激光扫描设备对目标区域进行一次扫描,得到一帧该目标区域的点云数据。整个行驶过程中,终端控制激光扫描设备至少进行两次扫描,得到至少两帧目标区域的点云数据。该每帧点云数据包括但不限于目标区域中每个障碍物的表面点的集合,以及每个表面点在激光坐标系中的位置坐标。其中,该预设时长可以根据用户需要设置并更改,本申请实施例对此不做具体限定。例如,该预设时长可以为100毫秒、5秒等。In this embodiment, the step may be: the terminal acquires a preset scan route, and uses the preset scan route as a travel route of the vehicle to control the vehicle to travel along the preset scan route. During the driving of the vehicle along the preset scanning route, the terminal controls the laser scanning device to scan the target area once every preset time period to obtain a frame of point cloud data of the target area. During the entire driving process, the terminal controls the laser scanning device to perform at least two scans to obtain point cloud data of at least two frames of the target area. The per-frame point cloud data includes, but is not limited to, a set of surface points of each obstacle in the target area, and position coordinates of each surface point in the laser coordinate system. The preset duration may be set and changed according to the needs of the user, which is not specifically limited in this embodiment of the present application. For example, the preset duration may be 100 milliseconds, 5 seconds, or the like.
其中,该地物要素包括但不限于:目标区域中固定的马路牙子、道路护栏、杆状地物或者交通标志牌等。由于该地物要素为目标区域中位置固定的物体,因此,以目标区域中的地物要素作为标点的基本元素,可以通过确定该地物要素在各个坐标系中的不同坐标来最终对激光扫描设备进行标定。The feature of the feature includes, but is not limited to, a fixed road tooth, a road guardrail, a rod-shaped feature or a traffic sign in the target area. Since the feature element is a fixed-position object in the target area, the ground element in the target area is used as a basic element of the punctuation, and the laser scanning can be finally performed by determining different coordinates of the feature element in each coordinate system. The device is calibrated.
本申请实施例中,该目标区域可以为包括地物要素的任一区域,为了避免环境噪声干扰,终端可以选择行人较少的空旷区域作为目标区域。激光扫描设备对该目标区域进行扫描得到的多帧点云数据中,存在的其他车辆等不必要的噪声数据较少,从而减少了环境噪声的干扰,提高了后续基于点云数据提取地物要素的第一坐标的准确性。In the embodiment of the present application, the target area may be any area including a feature element. To avoid environmental noise interference, the terminal may select an open area with fewer pedestrians as the target area. In the multi-frame point cloud data obtained by scanning the target area by the laser scanning device, unnecessary noise data of other vehicles and the like are less, thereby reducing interference of environmental noise, and improving subsequent extraction of feature elements based on point cloud data. The accuracy of the first coordinate.
本申请实施例中,该预设扫描路线可以为基于该目标区域所确定的扫描路 线,一般地,所确定的预设扫描路线为围绕该目标区域的环形路线。发明人认识到,实际作业时,由于车辆行驶过程中,其行驶方向可以为东、南、西、北等方向中的任意方向。因此,终端可控制车辆沿环状道路行驶,从而可以得到每个行驶方向上目标区域的点云数据。并且,由于车辆行驶时,需遵守交通规则靠道路一侧行驶,终端采集的每帧点云数据为偏左侧或者偏右侧的点云数据。因此,终端可以控制车辆沿环状道路往返行驶,即,控制车辆沿环状道路顺时针行驶一圈,再逆时针沿该环状道路行驶一圈,使得车辆在道路偏左侧行驶时和偏右侧行驶时均可进行扫描,提高了后续根据每帧点云数据的偏移位姿确定激光外参数的数值的准确性。In this embodiment, the preset scan route may be a scan route determined based on the target area. Generally, the determined preset scan route is a circular route around the target area. The inventor has realized that, during actual operation, the traveling direction of the vehicle may be any of the directions of east, south, west, north, etc. during the running of the vehicle. Therefore, the terminal can control the vehicle to travel along the loop road, so that point cloud data of the target area in each traveling direction can be obtained. Moreover, since the vehicle travels on the road side while observing the traffic rules, the point cloud data collected by the terminal is the point cloud data of the left side or the right side. Therefore, the terminal can control the vehicle to travel back and forth along the ring road, that is, control the vehicle to travel clockwise along the ring road, and then drive counterclockwise along the loop road, so that the vehicle is traveling on the left side of the road and biased. Scanning can be performed while driving on the right side, which improves the accuracy of determining the value of the external laser parameter according to the offset posture of the cloud data of each frame.
如图3所示,该目标区域为A区域,该预设扫描路线可以为围绕A区域的环形路线,即,终端控制车辆从起点B处沿环状道路顺时针行驶一圈,回到起点B,再从起点B处逆时针沿该环状道路行驶一圈。As shown in FIG. 3, the target area is an A area, and the preset scanning route may be a circular route around the A area, that is, the terminal controls the vehicle to travel clockwise along the ring road from the starting point B, and returns to the starting point B. Then, take a circle from the starting point B counterclockwise along the circular road.
202、对于每帧点云数据,终端提取该地物要素在该激光坐标系中的第一坐标。202. For each frame point cloud data, the terminal extracts a first coordinate of the feature element in the laser coordinate system.
本申请实施例中,由于每帧点云数据包括目标区域中每个障碍物的表面点的集合以及每个表面点在激光坐标系中的位置坐标,终端还需从每帧点云数据中提取地物要素的第一坐标,该第一坐标为该地物要素在激光坐标系中的坐标。In the embodiment of the present application, since each frame point cloud data includes a set of surface points of each obstacle in the target area and position coordinates of each surface point in the laser coordinate system, the terminal needs to extract from each frame point cloud data. The first coordinate of the feature element, the first coordinate being the coordinate of the feature element in the laser coordinate system.
对于每帧点云数据,终端通过预设提取算法,从点云数据中提取地物要素对应的点集。对于每个地物要素,将该地物要素对应的点集在激光坐标系中的位置坐标集合作为该地物要素的第一坐标;进而得到每帧点云数据包括的地物要素的第一坐标。其中,该预设提取算法可以根据用户需要设置并更改,本申请实施例对此不做具体限定。例如,该预设提取算法可以为:基于分割的提取算法或者基于检测的提取算法。For each frame of point cloud data, the terminal extracts a point set corresponding to the feature of the feature from the point cloud data by using a preset extraction algorithm. For each feature element, a set of position coordinates of the point set corresponding to the feature element in the laser coordinate system is used as the first coordinate of the feature element; and then the first feature of the feature element included in each point cloud data is obtained. coordinate. The preset extraction algorithm may be set and changed according to the user's needs, which is not specifically limited in this embodiment of the present application. For example, the preset extraction algorithm may be: a segmentation based extraction algorithm or a detection based extraction algorithm.
需要说明的是,上述步骤201-202事实上是终端基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标的具体实现方式。但是,上述具体实现方式还可以由其他实现方式替代,上述具体实现方式实际上是通过实时的扫描获取到点云数据,而在实际场景中,还可以通过从预先扫描得到的历史数据中获取该目标区域的至少两帧点云数据来实现,本申请实施例对此不做具体限定。It should be noted that the foregoing steps 201-202 are actually at least two frame point cloud data obtained by the terminal scanning the target area based on the laser scanning device, and obtaining the first coordinate of the feature element in the point cloud data of each frame. the way. However, the foregoing specific implementation manner may be replaced by other implementation manners. The foregoing specific implementation manner actually obtains point cloud data through real-time scanning, and in an actual scenario, may also obtain the historical data obtained by pre-scanning. At least two frames of point cloud data of the target area are implemented, which is not specifically limited in this embodiment of the present application.
203、终端从导航系统中获取该目标区域的地图数据,该地图数据包括该地物要素在地图坐标系中的经纬度坐标和高程坐标。203. The terminal acquires map data of the target area from the navigation system, where the map data includes latitude and longitude coordinates and elevation coordinates of the feature element in a map coordinate system.
本申请实施例中,车辆的导航系统中存储了目标区域的地图数据,终端可以根据目标区域的区域信息从导航系统中获取目标区域的地图数据。当然,导航系统中还可以存储有目标区域以外的任意区域的地图数据,该地图数据实际上是目标区域的高精地图数据,因此,该目标区域的地图数据至少包括目标区域中地物要素在地图坐标系中的位置坐标。其中,区域信息可以为目标区域的区域标识或经纬度范围。例如,该区域标识可以为该区域的名称。In the embodiment of the present application, the navigation data of the vehicle stores the map data of the target area, and the terminal may acquire the map data of the target area from the navigation system according to the area information of the target area. Certainly, the navigation system may further store map data of an arbitrary area other than the target area, where the map data is actually high-precision map data of the target area, and therefore, the map data of the target area includes at least the feature elements in the target area. The position coordinates in the map coordinate system. The area information may be an area identifier or a latitude and longitude range of the target area. For example, the zone ID can be the name of the zone.
本申请实施例中,终端需要获取该目标区域在车辆坐标系和激光坐标系之间的差异,因此,终端获取该目标区域中地物要素的第一坐标后,终端还需获取该地物要素在地图坐标系中的位置坐标,从而终端后续确定该地物要素在车辆坐标中的第二坐标。In the embodiment of the present application, the terminal needs to obtain the difference between the vehicle coordinate system and the laser coordinate system of the target area. Therefore, after the terminal acquires the first coordinate of the feature element in the target area, the terminal needs to acquire the feature of the feature. The position coordinates in the map coordinate system, so that the terminal subsequently determines the second coordinate of the feature element in the vehicle coordinates.
由于终端可以通过导航系统定位车辆在地图坐标系中的当前位置坐标,因此,对于每帧点云数据,终端获取每帧点云数据时,还需要通过导航系统中的地图数据,获取该帧点云数据包括的地物要素在地图坐标系中的位置坐标,并将该位置坐标转换为车辆坐标系中的第二坐标。Since the terminal can locate the current position coordinates of the vehicle in the map coordinate system through the navigation system, for each frame point cloud data, when the terminal acquires the point cloud data of each frame, the terminal needs to obtain the frame point through the map data in the navigation system. The position coordinates of the feature element included in the cloud coordinate system in the map coordinate system, and the position coordinate is converted into the second coordinate in the vehicle coordinate system.
在一种可能实现方式中,区域信息可以为区域标识,终端可以存储区域标识和地图数据的对应关系,相应的,终端从导航系统中获取该目标区域的地图数据的步骤可以为:终端获取目标区域的区域标识,根据该目标区域的区域标识,从区域标识和地图数据的对应关系中,获取该目标区域对应的地图数据。In a possible implementation manner, the area information may be an area identifier, and the terminal may store the correspondence between the area identifier and the map data. Correspondingly, the step of the terminal acquiring the map data of the target area from the navigation system may be: the terminal acquires the target. The area identifier of the area is obtained according to the area identifier of the target area, and the map data corresponding to the target area is obtained from the correspondence between the area identifier and the map data.
在一种可能实现方式中,区域信息可以为经纬度范围,终端存储经纬度范围和地图数据的对应关系,相应的,终端从导航系统中获取该目标区域的地图数据的步骤可以为:终端获取目标区域的经纬度范围,根据该目标区域的经纬度范围,从经纬度范围和地图数据的对应关系中,获取该目标区域对应的地图数据。In a possible implementation manner, the area information may be a latitude and longitude range, and the terminal stores the correspondence between the latitude and longitude range and the map data. Accordingly, the step of the terminal acquiring the map data of the target area from the navigation system may be: the terminal acquires the target area. The latitude and longitude range, according to the latitude and longitude range of the target area, obtains map data corresponding to the target area from the correspondence between the latitude and longitude range and the map data.
204、终端对于该每帧点云数据,根据该目标区域的地图数据,确定该地物要素在该车辆坐标系中的第二坐标。204. The terminal determines, according to the map data of the target area, the second coordinate of the feature element in the vehicle coordinate system.
由于车辆行驶过程中,终端获取每帧点云数据时,以车辆为原点的车辆坐标系也随之移动,为了确定每帧点云数据中对应的地物要素在车辆坐标系中的第二坐标,对于每帧点云数据,终端获取该帧点云数据的同时,根据该帧点云数据中包括的地物要素,从该地图数据中,获取该地物要素在地图坐标系中的经纬度坐标和高程坐标。终端根据该地物要素在地图坐标系中的经纬度坐标和高程坐标,确定该地物要素在车辆坐标系中的第二坐标。Since the vehicle acquires point cloud data for each frame during the running of the vehicle, the vehicle coordinate system with the vehicle as the origin moves accordingly, in order to determine the second coordinate of the corresponding feature element in the vehicle coordinate system of each frame point cloud data. For each frame point cloud data, the terminal acquires the frame point cloud data, and obtains the latitude and longitude coordinates of the feature element in the map coordinate system from the map data according to the feature elements included in the frame point cloud data. And elevation coordinates. The terminal determines the second coordinate of the feature element in the vehicle coordinate system according to the latitude and longitude coordinates and the elevation coordinate of the feature element in the map coordinate system.
其中,因此,终端根据该地物要素在地图坐标系中的经纬度坐标和高程坐标,确定该地物要素在车辆坐标中的第二坐标的过程可以为:终端先将该地物要素在地图坐标系中的经纬度坐标和高程坐标,转换为以地球质心为原点的地心坐标系中位置坐标,再将该地物要素在地心坐标系中的位置坐标,转换为站心坐标系中的位置坐标。终端通过导航系统中的IMU,获取车辆的航向角,终端根据该航向角,将该地物要素在站心坐标系中的位置坐标转换为车辆坐标系中的第二坐标。Therefore, the process of determining, by the terminal, the second coordinate of the feature element in the vehicle coordinate according to the latitude and longitude coordinates and the elevation coordinate of the feature element in the map coordinate system may be: the terminal first maps the feature element in map coordinates The latitude and longitude coordinates and elevation coordinates in the system are converted into position coordinates in the geocentric coordinate system with the origin of the Earth's centroid as the origin, and then the position coordinates of the feature element in the geocentric coordinate system are converted into positions in the center coordinate system. coordinate. The terminal acquires the heading angle of the vehicle through the IMU in the navigation system, and the terminal converts the position coordinates of the feature element in the station center coordinate system into the second coordinate in the vehicle coordinate system according to the heading angle.
本申请实施例中,站心坐标系与车辆坐标系的坐标原点均相同,只是x、y轴正方向不同,车辆坐标系的x轴正方向与站心坐标系的y轴正方向之间的夹角大小为车辆的航向角。因此,终端可以先将地物要素在地图坐标系中经地心坐标系转换到站心坐标系中,再根据车辆的航向角,最终获取地物要素的第二坐标。In the embodiment of the present application, the coordinates of the center coordinate system and the vehicle coordinate system are the same, except that the positive directions of the x and y axes are different, and the positive direction of the x-axis of the vehicle coordinate system and the positive direction of the y-axis of the central coordinate system are The angle is the heading angle of the vehicle. Therefore, the terminal may first convert the feature element in the map coordinate system to the center coordinate system via the geocentric coordinate system, and finally obtain the second coordinate of the feature element according to the heading angle of the vehicle.
本申请实施例中,由于通过导航系统获取的地图数据中会存在系统偏差,该系统偏差为该地图数据中地物要素在地图坐标系中的位置坐标,与实际该地物要素在地图坐标系中的位置坐标之间的位移偏差。因此,为了提高确定第二坐标的准确性,终端还需考虑该系统偏差对第二坐标的影响。具体的,终端根据该航向角,将该地物要素在站心坐标系中的位置坐标转换为车辆坐标系中的第二坐标的过程可以为:终端获取地图数据的初始系统偏差,根据该初始系统偏差,对站心坐标系中的位置坐标进行调整。终端根据该航向角,将调整后的位置坐标转换为车辆坐标系中的第二坐标。In the embodiment of the present application, since there is a systematic deviation in the map data acquired by the navigation system, the system deviation is the position coordinate of the feature element in the map coordinate system in the map data, and the actual feature element is in the map coordinate system. The displacement deviation between the position coordinates in . Therefore, in order to improve the accuracy of determining the second coordinate, the terminal also needs to consider the influence of the system deviation on the second coordinate. Specifically, the process of converting, by the terminal, the position coordinate of the feature element in the center coordinate system into the second coordinate in the vehicle coordinate system according to the heading angle may be: the initial system deviation of the terminal acquiring the map data, according to the initial System deviation, adjust the position coordinates in the center coordinate system. The terminal converts the adjusted position coordinates into the second coordinates in the vehicle coordinate system according to the heading angle.
其中,该对位置坐标进行调整的过程可以表示为以下过程:该初始系统偏差可以用(x′ 0,y′ 0)表示,即,终端将该地物要素在站心坐标系中的位置坐标,沿x轴正方向偏移x′ 0个单位距离,沿y轴正方向偏移y′ 0个单位距离。 The process of adjusting the position coordinates may be expressed as follows: the initial system deviation may be represented by (x′ 0 , y′ 0 ), that is, the position coordinates of the terminal element in the center coordinate system. , offset by x' 0 unit distance in the positive direction of the x-axis, and offset by y' 0 unit distance in the positive direction of the y-axis.
需要说明的是,上述步骤203-204事实上是终端基于该目标区域的地图数据,确定该每帧点云数据中地物要素在车辆坐标系中的第二坐标的具体实现方式。但是,上述具体实现方式还可以由其他实现方式替代,上述具体实现方式实际上是通过从导航系统中获取目标区域的地图数据进而获取第二坐标,而在实际作业时,终端还可以预先从导航系统中获取目标区域的地图数据,并将目标区域的地图数据存储在终端中,进而基于终端中已存储的目标区域的地图数据确定第二坐标,本申请实施例对此不做具体限定。It should be noted that, in the above steps 203-204, the terminal actually determines a specific implementation manner of the second coordinate of the feature element in the vehicle coordinate system in the point cloud data of each frame based on the map data of the target area. However, the foregoing specific implementation manner may be replaced by other implementation manners. The specific implementation manner is actually obtaining the second coordinate by acquiring the map data of the target area from the navigation system, and the terminal may also pre-follow the navigation during the actual operation. The map data of the target area is obtained in the system, and the map data of the target area is stored in the terminal, and the second coordinate is determined based on the map data of the target area stored in the terminal, which is not specifically limited in this embodiment of the present application.
本申请实施例中,该每帧点云数据的偏移位姿为终端获取每帧点云数据时, 该激光坐标系和车辆坐标系之间的偏移位姿,由于随着车辆的移动,该以激光扫描仪为坐标原点的激光坐标系,和以车辆为坐标原点的车辆坐标系也随之移动,导致每帧点云数据的偏移位姿可能相同,也可能不相同。因此,终端还需通过以下步骤205-207,确定每帧点云数据的偏移位姿。In the embodiment of the present application, the offset posture of the point cloud data of each frame is an offset posture between the laser coordinate system and the vehicle coordinate system when the terminal acquires the point cloud data of each frame, because the vehicle moves with the vehicle. The laser coordinate system with the laser scanner as the coordinate origin and the vehicle coordinate system with the vehicle as the coordinate origin also move, resulting in the offset posture of the point cloud data of each frame may be the same or different. Therefore, the terminal also needs to determine the offset pose of each frame point cloud data by the following steps 205-207.
205、终端获取该车辆坐标系和该激光坐标系之间的初始偏移位姿。205. The terminal acquires an initial offset pose between the vehicle coordinate system and the laser coordinate system.
本申请实施例中,该偏移位姿包括该车辆坐标系和该激光坐标系之间的偏移位置的数值和偏航角的数值。该车辆坐标系和该激光坐标系之间的偏移位置可以用激光坐标系的坐标原点在该车辆坐标系中的位置坐标表示,该偏航角可以用激光坐标系的x轴与车辆坐标系的x轴之间的夹角表示。In the embodiment of the present application, the offset pose includes a value of an offset position between the vehicle coordinate system and the laser coordinate system and a value of a yaw angle. The offset position between the vehicle coordinate system and the laser coordinate system may be represented by a position coordinate of a coordinate origin of the laser coordinate system in the vehicle coordinate system, and the yaw angle may be the x-axis of the laser coordinate system and the vehicle coordinate system. The angle between the x-axes is indicated.
本申请实施例中,先通过步骤205确定每帧点云数据的初始偏移位姿,后续再通过步骤206-207,确定每帧点云数据的偏移位姿。其中,该初始偏移位姿包括初始偏移位置的数值和初始偏航角的数值。In the embodiment of the present application, the initial offset pose of each frame point cloud data is determined by step 205, and then the offset pose of each frame point cloud data is determined through steps 206-207. Wherein, the initial offset pose includes a value of an initial offset position and a value of an initial yaw angle.
本步骤中,终端可以通过测量的方式,预先获取并存储车辆坐标系和激光坐标系之间的初始偏移位姿,将该初始偏移位姿作为该每帧点云数据的初始偏移位姿。具体的,终端可以通过卷尺等测量工具,测量该激光扫描设备在该车辆坐标系中的坐标,以及激光坐标系的x轴与车辆坐标系的x轴之间的夹角,将测量的坐标作为初始偏移位置的数值,将测量的夹角作为初始偏航角的数值。206、对于该每帧点云数据,终端根据该初始偏移位姿和该地物要素的第二坐标,确定该地物要素的第三坐标,该第三坐标为该地物要素在该激光坐标系中的坐标。In this step, the terminal may pre-acquire and store the initial offset pose between the vehicle coordinate system and the laser coordinate system by using the measurement, and use the initial offset pose as the initial offset of the point cloud data of each frame. posture. Specifically, the terminal can measure the coordinates of the laser scanning device in the vehicle coordinate system and the angle between the x-axis of the laser coordinate system and the x-axis of the vehicle coordinate system by using a measuring tool such as a tape measure, and take the measured coordinates as The value of the initial offset position, using the measured angle as the value of the initial yaw angle. 206. For each frame cloud data, the terminal determines, according to the initial offset pose and the second coordinate of the feature element, a third coordinate of the feature element, where the third coordinate is the feature element in the laser The coordinates in the coordinate system.
本步骤可以为:对于该每帧点云数据,终端根据该帧点云数据的初始偏移位姿中的初始偏移位置的数值,将该地物要素的第二坐标进行偏移位置,终端根据该帧点云数据的初始偏移位姿中的初始偏航角的数值,将偏移位置后的第二坐标进行角度偏移。终端将偏移位置和角度偏移后的位置坐标作为该地物要素的第三坐标。The step may be: for each frame cloud data, the terminal offsets the second coordinate of the feature element according to the value of the initial offset position in the initial offset posture of the frame point cloud data, and the terminal The second coordinate after the offset position is angularly offset according to the value of the initial yaw angle in the initial offset pose of the frame point cloud data. The terminal uses the position coordinate after the offset position and the angle offset as the third coordinate of the feature element.
其中,该初始偏移位置的数值可以用(dx″,dy″)表示,该初始偏航角可以用dyaw″表示,即,终端将该地物要素的第二坐标,沿x轴正方向偏移dx″个单位距离,沿y轴正方向偏移dy″个单位距离,并将偏移后的第二坐标逆时针旋转dyaw″个单位角度。Wherein, the value of the initial offset position can be represented by (dx", dy"), and the initial yaw angle can be represented by dyaw", that is, the terminal offsets the second coordinate of the feature element along the positive direction of the x-axis. Shift dx" unit distances, offset dy" unit distances in the positive direction of the y-axis, and rotate the offset second coordinates counterclockwise by dyaw" unit angles.
207、终端根据该地物要素的第一坐标和第三坐标,确定该每帧点云数据的偏移位姿。207. The terminal determines, according to the first coordinate and the third coordinate of the feature element, an offset pose of the point cloud data of each frame.
本申请实施例中,由于每帧点云数据均对应一个偏移位姿,因此,终端可以通过步骤207先确定每帧点云数据对应的偏移位姿,从而后续可以根据多帧点云数据对应的偏移位姿,确定一个能够体现一般规律的偏移位姿。In the embodiment of the present application, since each point cloud data corresponds to an offset pose, the terminal may first determine an offset pose corresponding to each frame point cloud data by using step 207, so that the subsequent frame cloud data may be subsequently Corresponding offset pose determines an offset pose that reflects the general law.
本步骤可以通过以下步骤2071-2072实现。This step can be implemented by the following steps 2071-2072.
2071、终端根据该地物要素的第一坐标和第三坐标,计算每个第一点状要素和相邻第二点状要素之间的第一距离,以及该每个第一点状要素和相邻线状要素之间的第二距离。2071. The terminal calculates, according to the first coordinate and the third coordinate of the feature element, a first distance between each first point element and an adjacent second point element, and each of the first point elements and The second distance between adjacent linear features.
本申请实施例中,在每帧点云数据中,每个地物要素由点状要素和线状要素组成,其中,该第一点状要素为该第一坐标对应的地物要素中的点状要素,该第二点状要素为该第三坐标对应的地物要素中的点状要素,该线状要素为该第三坐标对应的地物要素中的线状要素。In the embodiment of the present application, in each frame point cloud data, each feature element is composed of a point element and a line element, wherein the first point element is a point in the feature element corresponding to the first coordinate. The second element is a point element among the feature elements corresponding to the third coordinate, and the line element is a linear element among the feature elements corresponding to the third coordinate.
对于每帧点云数据,可以采取下述任一种方式计算第一点状要素与相邻要素之间的距离。For each frame of point cloud data, the distance between the first point element and the adjacent element can be calculated by any of the following methods.
第一种方式、通过计算每帧点云数据中地物要素中的第一点状要素,与第二点状要素之间的第一距离,作为后续对第一坐标和第三坐标进行匹配的参考距离。The first method, by calculating a first point of the feature element in the point cloud data of each frame, and a first distance between the second point element, as a subsequent matching of the first coordinate and the third coordinate Reference distance.
本步骤中,终端根据每个第一点状要素在激光坐标系中的位置坐标,以及与该第一点状要素相邻的第二点状要素在激光坐标系中的位置坐标,计算该第一点状要素和第二点状要素之间的第一距离。In this step, the terminal calculates the position according to the position coordinates of each first point element in the laser coordinate system and the position coordinates of the second point element adjacent to the first point element in the laser coordinate system. The first distance between the point feature and the second point feature.
需要说明的是,与该第一点状要素相邻的第二点状要素为以第一点状要素为中心,多个第二点状要素中距离第一点状要素最近的第二点状要素。It should be noted that the second point element adjacent to the first point element is a second point shape centering on the first point element and closest to the first point element among the plurality of second point elements Elements.
如图4所示,点C为第一点状要素,点D为与点C相邻的第二点状要素,终端可以计算点C和点D之间的第一距离。As shown in FIG. 4, the point C is the first point element, the point D is the second point element adjacent to the point C, and the terminal can calculate the first distance between the point C and the point D.
第二种方式、通过计算每帧点云数据中地物要素中的第一点状要素,与线状要素之间的第二距离,作为后续对第一坐标和第三坐标进行匹配的参考距离。The second method is to calculate a second distance between the first point element in the feature element of each frame point cloud data and the line element as a reference distance for matching the first coordinate and the third coordinate .
其中,该第一点状要素和相邻的线状要素之间的第二距离为该第一点状要素到该线状要素的法线距离。因此,本步骤中,终端根据每个第一点状要素在激光坐标系中的位置坐标,以及与该第一点状要素相邻的线状要素在激光坐标系中的位置坐标,计算该第一点状要素和线状要素之间的法线距离,将该法线距离作为第二距离。The second distance between the first point element and the adjacent line element is a normal distance of the first point element to the line element. Therefore, in this step, the terminal calculates the position according to the position coordinates of each first point element in the laser coordinate system and the position coordinates of the line element adjacent to the first point element in the laser coordinate system. The normal distance between the point element and the line element, and the normal distance is taken as the second distance.
需要说明的是,与该第一点状要素相邻的线状要素为以第一点状要素为中 心,多个线状要素中距离第一点状要素最近的线状要素。It is to be noted that the linear element adjacent to the first point element is a line element having the first point element as a center and the closest to the first point element among the plurality of line elements.
如图5所示,点C为第一点状要素,线条L为与点C相邻的线状要素,终端可以计算点C和线条L之间的法线距离,从而得到第二距离。As shown in FIG. 5, the point C is the first point element, the line L is a line element adjacent to the point C, and the terminal can calculate the normal distance between the point C and the line L, thereby obtaining the second distance.
本步骤中,终端通过多个第一点状要素的位置坐标和多个第二点状要素的位置坐标,确定出多个第一距离,通过多个第一点状要素的位置坐标和多个线状要素的位置坐标,确定出多个第二距离。In this step, the terminal determines a plurality of first distances by using position coordinates of the plurality of first point elements and position coordinates of the plurality of second point elements, and the position coordinates of the plurality of first point elements and the plurality of The position coordinates of the linear features determine a plurality of second distances.
2072、终端根据该第一距离和该第二距离,确定该每帧点云数据的偏移位姿。2072. The terminal determines, according to the first distance and the second distance, an offset pose of the point cloud data of each frame.
本申请实施例中,终端可以通过对该地物要素的第一坐标和第三坐标多次迭代匹配,确定该每帧点云数据的偏移位姿。In the embodiment of the present application, the terminal may determine the offset pose of the point cloud data of each frame by iteratively matching the first coordinate and the third coordinate of the feature element.
其过程包括以下步骤a-g:The process includes the following steps a-g:
步骤a:对于每帧点云数据,终端根据第一距离和第二距离,选择第一距离小于第一预设阈值的第一点状要素和与该第一点状要素对应的第二点状要素,以及选择第二距离小于第一预设阈值的第一点状要素和与该第一点状要素对应的线状要素。Step a: For each frame of point cloud data, the terminal selects, according to the first distance and the second distance, a first point element having a first distance smaller than a first preset threshold and a second point element corresponding to the first point element And an element, and selecting a first point element having a second distance smaller than the first predetermined threshold and a line element corresponding to the first point element.
其中,与该第一点状要素对应的第二点状要素为,终端计算第一距离时,与该第一点状要素相邻的第二点状要素。与该第一点状要素对应的线状要素为,终端计算第二距离时,与该第一点状要素相邻的线状要素。The second point element corresponding to the first point element is a second point element adjacent to the first point element when the terminal calculates the first distance. The linear element corresponding to the first point element is a linear element adjacent to the first point element when the terminal calculates the second distance.
步骤b:终端根据选择的第一点状要素和第二点状要素,以及第一点状要素和线状要素,基于第一坐标和第三坐标之间的均方误差表达式,确定使得该均方误差的数值最小的偏移矩阵,将使得该均方误差的数值最小的偏移矩阵作为第一坐标和第三坐标之间的中间偏移矩阵。Step b: the terminal determines, according to the selected first point element and the second point element, and the first point element and the line element, based on a mean square error expression between the first coordinate and the third coordinate The offset matrix with the smallest value of the mean square error will make the offset matrix with the smallest value of the mean square error as the intermediate offset matrix between the first coordinate and the third coordinate.
步骤c:终端根据该第一坐标和第三坐标之间的中间偏移矩阵,更新该帧点云数据的初始偏移矩阵,将更新后的初始偏移矩阵与第二坐标相乘,得到第四坐标,从而完成第一次迭代匹配。Step c: The terminal updates an initial offset matrix of the frame point cloud data according to the intermediate offset matrix between the first coordinate and the third coordinate, and multiplies the updated initial offset matrix by the second coordinate to obtain a first Four coordinates, thus completing the first iteration match.
其中,终端根据该第一坐标和第三坐标之间的中间偏移矩阵,更新该帧点云数据的初始偏移矩阵的步骤可以为:终端将该第一坐标和第三坐标之间的中间偏移矩阵,与该帧点云数据的初始偏移矩阵相乘,得到更新后的初始偏移矩阵。The step of updating the initial offset matrix of the frame point cloud data according to the intermediate offset matrix between the first coordinate and the third coordinate may be: the terminal intermediate the first coordinate and the third coordinate The offset matrix is multiplied by the initial offset matrix of the frame point cloud data to obtain an updated initial offset matrix.
需要说明的是,上述步骤c实际上是将车辆坐标系中的第二坐标再次转换到激光坐标系中的过程,其实现方式与步骤206相同,此处不再一一赘述。It should be noted that the above-mentioned step c is actually a process of converting the second coordinate in the vehicle coordinate system into the laser coordinate system again, and the implementation manner is the same as that in step 206, and details are not described herein again.
步骤d:终端根据该地物要素的第一坐标和第四坐标,计算每个第一点状要素和相邻第二点状要素之间的第三距离,以及该每个第一点状要素和相邻线状要素之间的第四距离。Step d: the terminal calculates a third distance between each first point element and the adjacent second point element according to the first coordinate and the fourth coordinate of the feature element, and each first point element And the fourth distance between adjacent linear features.
其中,步骤d实际上是根据第一坐标和再次转换到激光坐标系中的第四坐标,重新计算第一距离和第二距离的过程,其实现方式与步骤2071一致,此处不再一一赘述。Wherein, the step d is actually a process of recalculating the first distance and the second distance according to the first coordinate and the fourth coordinate converted into the laser coordinate system again, and the implementation manner is consistent with the step 2071, and the method is no longer one by one. Narration.
步骤e:通过步骤a-c中的实现方式,确定再次更新后的初始偏移矩阵,从而完成第二次迭代匹配。Step e: Determine the initial offset matrix after the update again by the implementation in steps a-c, thereby completing the second iteration matching.
步骤f:通过上述步骤a-e中的实现方式,完成多次迭代匹配。在多次迭代过程中,当中间偏移矩阵对应的均方误差最小值小于第二预设阈值时,获取根据该中间偏移矩阵更新后的初始偏移矩阵,将获取的初始偏移矩阵作为该帧点云数据的偏移矩阵。或者,当迭代匹配次数达到第三预设阈值时,获取最后一次迭代匹配过程中更新后的初始偏移矩阵,将获取的初始偏移矩阵作为该帧点云数据的偏移矩阵。Step f: Perform multiple iterations matching by the implementation in the above steps a-e. In a plurality of iterations, when the minimum mean square error corresponding to the intermediate offset matrix is smaller than the second preset threshold, the initial offset matrix updated according to the intermediate offset matrix is obtained, and the obtained initial offset matrix is taken as The offset matrix of the point cloud data. Alternatively, when the number of iterations matches the third preset threshold, the updated initial offset matrix in the last iterative matching process is obtained, and the obtained initial offset matrix is used as the offset matrix of the frame point cloud data.
步骤g:终端根据该帧点云数据的偏移矩阵,确定该帧点云数据的偏移位姿。Step g: The terminal determines an offset pose of the frame point cloud data according to the offset matrix of the frame point cloud data.
其中,步骤b具体可以为:终端根据选择的第一点状要素和与该第一点状要素对应的第二点状要素,以及第一点状要素和与该第一点状要素对应线状要素,通过以下公式一,即均方误差表达式,将使得该均方误差的数值最小的偏移矩阵作为第一坐标和第三坐标之间的中间偏移矩阵:The step b may be specifically: the terminal according to the selected first point element and the second point element corresponding to the first point element, and the first point element and the line corresponding to the first point element The element, by the following formula 1, the mean square error expression, makes the offset matrix with the smallest value of the mean square error as the intermediate offset matrix between the first coordinate and the third coordinate:
公式一:
Figure PCTCN2018087251-appb-000001
Formula one:
Figure PCTCN2018087251-appb-000001
其中,X为地物要素的第一坐标,Y为地物要素的第三坐标,E(X,Y)该地物要素的第一坐标和第三坐标之间的均方误差,x i为第一距离或第二距离不大于预设阈值的多个第一点状要素中第i个第一点状要素,y i为该第i个第一点状要素对应的第二点状要素或线状要素,m为第一距离或第二距离不大于预设阈值的第一点状要素的个数,M为第一坐标和第三坐标之间的中间偏移矩阵。 Where X is the first coordinate of the feature element, Y is the third coordinate of the feature element, E(X, Y) is the mean square error between the first coordinate and the third coordinate of the feature element, and x i is The first distance or the second distance is not greater than the preset threshold, the i-th first point element of the plurality of first point elements, and y i is the second point element corresponding to the i-th first point element or The linear element, m is the number of first point features whose first distance or second distance is not greater than a preset threshold, and M is an intermediate offset matrix between the first coordinate and the third coordinate.
本申请实施例中,该第一坐标和第三坐标之间的中间偏移矩阵可以用M表 示,
Figure PCTCN2018087251-appb-000002
该中间偏移矩阵中包括第一坐标和第三坐标之间的偏移位置的数值(dx′,dy′)和偏航角的数值dyaw′。
In this embodiment of the present application, the intermediate offset matrix between the first coordinate and the third coordinate may be represented by M.
Figure PCTCN2018087251-appb-000002
The intermediate offset matrix includes a numerical value (dx', dy') of the offset position between the first coordinate and the third coordinate and a numerical value dyaw' of the yaw angle.
其中,该第一预设阈值、第二预设阈值和第三预设阈值可以根据用户需要设置并更改,本申请实施例对此不做具体限定。例如,该第一预设阈值可以为1米、0.5米等。该第二预设阈值可以为0.1、0.3等。该第三预设阈值可以为20、100等。The first preset threshold, the second preset threshold, and the third preset threshold may be set and changed according to the user's needs, which is not specifically limited in this embodiment of the present application. For example, the first preset threshold may be 1 meter, 0.5 meter, or the like. The second preset threshold may be 0.1, 0.3, or the like. The third preset threshold may be 20, 100, or the like.
需要说明的是,上述步骤205-207事实上是终端对于该每帧点云数据,根据该地物要素的第一坐标和第二坐标,确定该每帧点云数据的偏移位姿的具体实现方式。但是,上述具体实现方式还可以由其他实现方式替代,上述具体实现方式实际上是通过将车辆坐标系中的第二坐标转换到激光坐标系中,根据第一坐标以及转换后的第三坐标,确定每帧点云数据的偏移位姿,实际作业时,终端还可以将激光坐标系中的第一坐标转换到车辆坐标系中,得到转换后的第四坐标,根据第二坐标和转换后的第四坐标,确定每帧点云数据的偏移位姿,本申请实施例对此不做具体限定。It should be noted that, in the foregoing steps 205-207, the terminal specifically determines, according to the first coordinate and the second coordinate of the feature element, the offset posture of the point cloud data of each frame. Method to realize. However, the above specific implementation manner may also be replaced by other implementation manners. The specific implementation manner is actually by converting the second coordinate in the vehicle coordinate system into the laser coordinate system, according to the first coordinate and the converted third coordinate. Determine the offset pose of each frame point cloud data. In actual operation, the terminal can also convert the first coordinate in the laser coordinate system into the vehicle coordinate system to obtain the converted fourth coordinate, according to the second coordinate and after the conversion. The fourth coordinate of the method determines the offset pose of the point cloud data of each frame, which is not specifically limited in this embodiment of the present application.
208、终端建立该至少两帧点云数据的偏移位姿与该偏移位置、该偏航角和系统偏差之间的观测方程;对于该每帧点云数据,终端获取该每帧点云数据对应的该车辆的航向角。208. The terminal establishes an observation equation between the offset pose of the at least two frames of point cloud data and the offset position, the yaw angle, and the system deviation. For each frame cloud data, the terminal acquires the point cloud of each frame. The heading angle of the vehicle corresponding to the data.
本申请实施例中,该激光扫描设备的激光外参数包括该车辆坐标系和该激光坐标系之间的偏移位置和偏航角,在步骤203-204中,由于地图数据中存在系统偏差,使得该地物要素的第二坐标与该地物要素在车辆坐标系中的实际坐标有偏差,确定每帧点云数据的偏移位姿时,考虑了该系统偏差对第二坐标的影响。因此,本步骤中,终端建立观测方程时,也需考虑该系统偏差的影响。In the embodiment of the present application, the laser external parameter of the laser scanning device includes an offset position and a yaw angle between the vehicle coordinate system and the laser coordinate system. In steps 203-204, due to system deviation in the map data, The second coordinate of the feature element is deviated from the actual coordinate of the feature element in the vehicle coordinate system, and when the offset pose of the point cloud data is determined for each frame, the influence of the system deviation on the second coordinate is considered. Therefore, in this step, when the terminal establishes the observation equation, it is also necessary to consider the influence of the system deviation.
本步骤中,终端根据该至少两帧点云数据的偏移位姿、该偏移位置、该偏航角和该系统偏差,建立观测方程如下:In this step, the terminal establishes an observation equation according to the offset pose of the at least two frames of point cloud data, the offset position, the yaw angle, and the system deviation:
Figure PCTCN2018087251-appb-000003
Figure PCTCN2018087251-appb-000003
其中,系统偏差为(x 0,y 0),偏移位置为(dx,dy),偏航角为dyaw,(dx′ i,dy′ i)为该至少两帧点云数据中第i帧点云数据的偏移位置的数值,dyaw′ i为该至少两帧点云数据中第i帧点云数据的偏航角的数值,yaw i为该至少两帧点云数据中第i帧点云数据对应的航向角,k为点云数据的总帧数。 Wherein, the system deviation is (x 0 , y 0 ), the offset position is (dx, dy), the yaw angle is dyaw, and (dx′ i , dy′ i ) is the ith frame of the at least two frames of point cloud data. The value of the offset position of the point cloud data, dyaw' i is the value of the yaw angle of the i-th point point cloud data in the at least two frames of point cloud data, and yaw i is the i-th frame point in the at least two frames of point cloud data The heading angle corresponding to the cloud data, where k is the total number of frames of point cloud data.
需要说明的是,在激光坐标系中,可将系统偏差转换到x轴方向上的投影,以及y轴方向上的投影,由于该系统偏差为地图数据中的误差,实际作业时,经站心坐标系转换到车辆坐标系中,站心坐标系和车辆坐标系均以车辆为坐标原点,其不同之处在于x轴、y轴正方向,站心坐标系的y轴正方向和车辆坐标系的x轴正方向之间的夹角的大小等于车辆的航向角。It should be noted that in the laser coordinate system, the system deviation can be converted to the projection in the x-axis direction and the projection in the y-axis direction. Since the system deviation is an error in the map data, the actual operation is performed. The coordinate system is converted into the vehicle coordinate system. The center coordinate system and the vehicle coordinate system all use the vehicle as the coordinate origin, and the difference lies in the positive direction of the x-axis and the y-axis, the positive direction of the y-axis of the center-center coordinate system and the vehicle coordinate system. The angle between the positive directions of the x-axis is equal to the heading angle of the vehicle.
因此,对于每帧点云数据,终端还需获取该帧点云数据对应的车辆的航向角,该过程可以为:终端获取每帧点云数据的同时,终端通过该导航系统中的IMU,获取该帧点云数据对应的车辆的航向角。Therefore, for each frame of point cloud data, the terminal needs to obtain the heading angle of the vehicle corresponding to the point cloud data of the frame. The process may be: when the terminal acquires the point cloud data of each frame, the terminal obtains the IMU in the navigation system. The heading angle of the vehicle corresponding to the frame point cloud data.
209、终端根据该航向角和该每帧点云数据的偏移位姿,计算该观测方程中该偏移位置的数值、该偏航角的数值。209. The terminal calculates a value of the offset position and a value of the yaw angle in the observation equation according to the heading angle and an offset posture of the point cloud data of each frame.
本步骤中,终端可以将该至少两帧点云数据的偏移位姿代入该观测方程中,从而根据该至少两帧点云数据的偏移位姿,计算出该观测方程中的该偏移位置的数值、该偏航角的数值和系统偏差的数值。In this step, the terminal may substitute the offset pose of the at least two frames of point cloud data into the observation equation, thereby calculating the offset in the observation equation according to the offset pose of the at least two frames of point cloud data. The value of the position, the value of the yaw angle, and the value of the system deviation.
其中,虽然理论上,只根据至少两帧点云数据的偏移位姿,即可确定出该观测方程中该偏移位置的数值、该偏航角的数值和该系统偏差的数值。为了减小随机噪声的影响,获得比较鲁棒的激光外参数的数值,本申请实施例中,终端可以获取n帧点云数据的偏移位姿(n为大于2的正整数),以及该n帧点云数据的偏移位姿中每帧点云数据对应的车辆的航向角,分别将每帧云数据的偏移位姿,以及对应的航向角代入该观测方程中,采用最小二乘法,计算该观测方程中的该偏移位置的数值、该偏航角的数值和该系统偏差的数值,由于通过n帧点云数据的偏移位姿,降低了每帧点云数据中可能存在的随机噪声的干扰,从而减小了误差,进而使得确定出的激光外参数的数值更加准确。Among them, although theoretically, based on the offset pose of at least two frames of point cloud data, the value of the offset position in the observation equation, the value of the yaw angle, and the value of the system deviation can be determined. In order to reduce the influence of the random noise, the value of the relatively robust external laser parameter is obtained. In the embodiment of the present application, the terminal may acquire the offset pose of the n-frame point cloud data (n is a positive integer greater than 2), and the The heading angle of the vehicle corresponding to each point cloud data in the offset pose of the n-frame point cloud data, respectively, the offset pose of each frame of cloud data, and the corresponding heading angle are substituted into the observation equation, using least squares method Calculating the value of the offset position in the observation equation, the value of the yaw angle, and the value of the system deviation. Due to the offset pose of the n-frame point cloud data, the possible existence of the point cloud data per frame is reduced. The interference of random noise reduces the error, which in turn makes the value of the determined external laser parameters more accurate.
需要说明的是,上述步骤208-209事实上是终端根据该至少两帧点云数据的偏移位姿,计算该激光扫描设备的激光外参数的数值,以标定该激光扫描设备的具体实现方式。但是,上述具体实现方式还可以由其他实现方式替代,上述具体实现方式实际上是通过建立偏移位姿与偏移位置、偏航角和系统偏差之间的观测方程确定激光外参数的数值。实际操作时,终端还可以预先建立并存储 该观测方程,或者预先编写并存储与该观测方程功能相同的程序指令,终端通过直接获取观测方程,从而确定出该激光外参数的数值;或者通过直接获取该程序指令,执行该程序指令,从而确定出该激光外参数的数值。It should be noted that, in the foregoing steps 208-209, the terminal actually calculates the value of the laser external parameter of the laser scanning device according to the offset posture of the at least two frames of point cloud data, so as to calibrate the specific implementation manner of the laser scanning device. . However, the above specific implementation manner may also be replaced by other implementation manners. The specific implementation manner described above actually determines the value of the external laser parameter by establishing an observation equation between the offset pose and the offset position, the yaw angle, and the system deviation. In actual operation, the terminal may also pre-establish and store the observation equation, or pre-write and store the same program instruction as the observation equation, and the terminal directly obtains the observation equation to determine the value of the external laser parameter; or directly The program instruction is obtained, and the program instruction is executed to determine the value of the laser external parameter.
终端确定该激光外参数的数值后,通过该激光外参数的数值,对车辆中的激光扫描设备进行标定,并且,通过确定出的系统偏差的数值,对导航系统进行标定,从而使得车辆结合标定后的激光扫描设备提供点云数据以及标定后的导航系统提供的地图数据行驶,提高了驾驶的安全性。After the terminal determines the value of the laser external parameter, the laser scanning device in the vehicle is calibrated by the value of the external laser parameter, and the navigation system is calibrated by the determined value of the system deviation, so that the vehicle is combined and calibrated. The latter laser scanning device provides point cloud data and map data provided by the calibrated navigation system to improve driving safety.
本申请实施例中,终端可以基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,该第一坐标为该地物要素在激光坐标系中的坐标;并且,终端直接基于车辆的该目标区域的地图数据,即可确定该每帧点云数据中地物要素在车辆坐标系中的第二坐标;从而直接根据该第一坐标和第二坐标进行后续过程,省略了人工建立标定场以及人工量取的过程,提高了确定第一坐标和第二坐标的效率,从而提高了对激光扫描设备进行标定的效率。并且,对于该每帧点云数据,终端根据该地物要素的第一坐标和第二坐标,确定该每帧点云数据的偏移位姿;后续继续根据该至少两帧点云数据的偏移位姿,计算该激光扫描设备的激光外参数的数值,以标定该车辆中的该激光扫描设备。由于终端根据多帧点云数据计算该激光扫描设备的激光外参数的数值,降低了每帧点云数据中的随机噪声的干扰,从而减小了误差,进而提高了确定激光外参数的准确性。In the embodiment of the present application, the terminal may acquire, according to at least two frame point cloud data obtained by scanning the target area by the laser scanning device, the first coordinate of the feature element in the point cloud data of each frame, where the first coordinate is the feature The coordinates of the element in the laser coordinate system; and the terminal directly determines the second coordinate of the feature element in the vehicle coordinate system in each point cloud data based on the map data of the target area of the vehicle; The first coordinate and the second coordinate perform subsequent processes, omitting the process of manually establishing the calibration field and the manual measurement, improving the efficiency of determining the first coordinate and the second coordinate, thereby improving the efficiency of calibration of the laser scanning device. And, for each frame point cloud data, the terminal determines an offset pose of the point cloud data of each frame according to the first coordinate and the second coordinate of the feature element; and subsequently continues to be based on the offset of the at least two frames of point cloud data. In the shifting posture, the value of the laser external parameter of the laser scanning device is calculated to calibrate the laser scanning device in the vehicle. Since the terminal calculates the value of the laser external parameter of the laser scanning device according to the multi-frame point cloud data, the interference of the random noise in the cloud data of each frame is reduced, thereby reducing the error, thereby improving the accuracy of determining the external parameters of the laser. .
图6是本申请实施例提供的一种激光扫描设备标定的装置的结构示意图。参见图6,该装置包括:获取模块601、第一确定模块602、第二确定模块603和计算模块604。FIG. 6 is a schematic structural diagram of an apparatus for calibrating a laser scanning device according to an embodiment of the present application. Referring to FIG. 6, the apparatus includes: an obtaining module 601, a first determining module 602, a second determining module 603, and a calculating module 604.
该获取模块601,用于基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,该第一坐标为该地物要素在激光坐标系中的坐标;The acquiring module 601 is configured to acquire, according to at least two frame point cloud data obtained by scanning the target area by the laser scanning device, a first coordinate of the feature element in the point cloud data of each frame, where the first coordinate is the feature element The coordinates in the laser coordinate system;
该第一确定模块602,用于基于车辆的该目标区域的地图数据,确定该每帧点云数据中地物要素在车辆坐标系中的第二坐标;The first determining module 602 is configured to determine, according to map data of the target area of the vehicle, a second coordinate of the feature element in the point coordinate data of the frame in the vehicle coordinate system;
该第二确定模块603,用于对于该每帧点云数据,根据该地物要素的第一坐标和第二坐标,确定该每帧点云数据的偏移位姿;The second determining module 603 is configured to determine, according to the first coordinate and the second coordinate of the feature element, the offset pose of each point cloud data for the frame cloud data of each frame;
该计算模块604,用于根据该至少两帧点云数据的偏移位姿,计算该激光扫描设备的激光外参数的数值,以标定该激光扫描设备。The calculating module 604 is configured to calculate a value of the laser external parameter of the laser scanning device according to the offset pose of the at least two frames of point cloud data to calibrate the laser scanning device.
可选地,该获取模块601,包括:Optionally, the obtaining module 601 includes:
扫描单元,用于通过激光扫描设备,基于预设扫描路线扫描该目标区域,得到该至少两帧点云数据,该目标区域为包括该地物要素的任一区域;a scanning unit, configured to scan the target area based on a preset scan route by using a laser scanning device, to obtain the at least two frames of point cloud data, where the target area is any area including the feature element;
提取单元,用于对于该每帧点云数据,提取该地物要素在该激光坐标系中的第一坐标。And an extracting unit, configured to extract, for each frame of point cloud data, a first coordinate of the feature element in the laser coordinate system.
可选地,该第一确定模块602,包括:Optionally, the first determining module 602 includes:
第一获取单元,用于从该车辆的导航系统中获取该目标区域的地图数据,该地图数据包括该地物要素在地图坐标系中的经纬度坐标和高程坐标;a first acquiring unit, configured to acquire map data of the target area from a navigation system of the vehicle, where the map data includes latitude and longitude coordinates and elevation coordinates of the feature element in a map coordinate system;
第一确定单元,用于对于该每帧点云数据,根据该目标区域的地图数据,确定该地物要素在该车辆坐标系中的第二坐标。The first determining unit is configured to determine, according to the map data of the target area, the second coordinate of the feature element in the vehicle coordinate system for the frame cloud data of each frame.
可选地,该第二确定模块603,包括:Optionally, the second determining module 603 includes:
第二获取单元,用于获取该车辆坐标系和该激光坐标系之间的初始偏移位姿;a second acquiring unit, configured to acquire an initial offset posture between the vehicle coordinate system and the laser coordinate system;
第二确定单元,用于对于该每帧点云数据,根据该初始偏移位姿和该地物要素的第二坐标,确定该地物要素的第三坐标,该第三坐标为该地物要素在该激光坐标系中的坐标;a second determining unit, configured to determine, according to the initial offset pose and the second coordinate of the feature element, the third coordinate of the feature element, where the third coordinate is the feature The coordinates of the feature in the laser coordinate system;
第三确定单元,用于根据该地物要素的第一坐标和第三坐标,确定该每帧点云数据的偏移位姿。And a third determining unit, configured to determine an offset pose of the point cloud data of each frame according to the first coordinate and the third coordinate of the feature element.
可选地,该第三确定单元,包括:Optionally, the third determining unit includes:
计算子单元,用于根据该地物要素的第一坐标和第三坐标,计算每个第一点状要素和相邻第二点状要素之间的第一距离,以及该每个第一点状要素和相邻线状要素之间的第二距离,该第一点状要素为该第一坐标对应的地物要素中的点状要素,该第二点状要素为该第三坐标对应的地物要素中的点状要素,该线状要素为该第三坐标对应的地物要素中的线状要素;a calculating subunit, configured to calculate a first distance between each first point element and an adjacent second point element according to the first coordinate and the third coordinate of the feature element, and each first point a second distance between the feature element and the adjacent linear element, wherein the first point element is a point element among the feature elements corresponding to the first coordinate, and the second point element is corresponding to the third coordinate a point element in the feature element, wherein the line element is a line element among the feature elements corresponding to the third coordinate;
确定子单元,用于根据该第一距离和该第二距离,确定该每帧点云数据的偏移位姿。Determining a subunit, configured to determine an offset pose of the point cloud data per frame according to the first distance and the second distance.
可选地,该激光扫描设备的激光外参数包括该车辆坐标系和该激光坐标系之间的偏移位置和偏航角,该计算模块604,包括:Optionally, the laser external parameter of the laser scanning device includes an offset position and a yaw angle between the vehicle coordinate system and the laser coordinate system, and the calculating module 604 includes:
建立单元,用于建立该至少两帧点云数据的偏移位姿与该偏移位置、该偏航角和系统偏差之间的观测方程,该系统偏差为该车辆的导航系统和该地图数据之间的偏差;Establishing a unit, configured to establish an observation equation between the offset pose of the at least two frames of point cloud data and the offset position, the yaw angle, and the system deviation, where the system deviation is a navigation system of the vehicle and the map data Deviation between
第三获取单元,用于对于该每帧点云数据,获取该每帧点云数据对应的该车辆的航向角;a third acquiring unit, configured to acquire a heading angle of the vehicle corresponding to the point cloud data of each frame for the point cloud data of each frame;
计算单元,用于根据该航向角和该每帧点云数据的偏移位姿,计算该观测方程中该偏移位置的数值和该偏航角的数值。And a calculating unit, configured to calculate a value of the offset position and a value of the yaw angle in the observation equation according to the heading angle and an offset posture of the point cloud data of each frame.
本申请实施例中,终端可以基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,该第一坐标为该地物要素在激光坐标系中的坐标;并且,终端直接基于车辆的该目标区域的地图数据,即可确定该每帧点云数据中地物要素在车辆坐标系中的第二坐标;从而直接根据该第一坐标和第二坐标进行后续过程,省略了人工建立标定场以及人工量取的过程,提高了确定第一坐标和第二坐标的效率,从而提高了对激光扫描设备进行标定的效率。并且,对于该每帧点云数据,终端根据该地物要素的第一坐标和第二坐标,确定该每帧点云数据的偏移位姿;后续继续根据该至少两帧点云数据的偏移位姿,计算该激光扫描设备的激光外参数的数值,以标定该车辆中的该激光扫描设备。由于终端根据多帧点云数据计算该激光扫描设备的激光外参数的数值,降低了每帧点云数据中的随机噪声的干扰,从而减小了误差,进而提高了确定激光外参数的准确性。In the embodiment of the present application, the terminal may acquire, according to at least two frame point cloud data obtained by scanning the target area by the laser scanning device, the first coordinate of the feature element in the point cloud data of each frame, where the first coordinate is the feature The coordinates of the element in the laser coordinate system; and the terminal directly determines the second coordinate of the feature element in the vehicle coordinate system in each point cloud data based on the map data of the target area of the vehicle; The first coordinate and the second coordinate perform subsequent processes, omitting the process of manually establishing the calibration field and the manual measurement, improving the efficiency of determining the first coordinate and the second coordinate, thereby improving the efficiency of calibration of the laser scanning device. And, for each frame point cloud data, the terminal determines an offset pose of the point cloud data of each frame according to the first coordinate and the second coordinate of the feature element; and subsequently continues to be based on the offset of the at least two frames of point cloud data. In the shifting posture, the value of the laser external parameter of the laser scanning device is calculated to calibrate the laser scanning device in the vehicle. Since the terminal calculates the value of the laser external parameter of the laser scanning device according to the multi-frame point cloud data, the interference of the random noise in the cloud data of each frame is reduced, thereby reducing the error, thereby improving the accuracy of determining the external parameters of the laser. .
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。All of the above optional technical solutions may be combined to form an optional embodiment of the present disclosure, and will not be further described herein.
需要说明的是:上述实施例提供的激光扫描设备标定的装置在激光扫描设备标定时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将终端的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的激光扫描设备标定的装置与激光扫描设备标定的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that the device for calibrating the laser scanning device provided by the above embodiment is exemplified by the division of each functional module in the laser scanning device calibration. In practical applications, the functions may be assigned differently according to requirements. The function module is completed, that is, the internal structure of the terminal is divided into different functional modules to complete all or part of the functions described above. In addition, the device for calibrating the laser scanning device provided by the above embodiment is the same as the method for calibrating the laser scanning device. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
图7是本申请实施例提供的一种计算机设备700的结构示意图。参见图7,该计算机设备700包括处理器和存储器,还可以包括通信接口和通信总线,还可以包括输入输出接口和显示设备,其中,处理器、存储器、输入输出接口、显示设备和通信接口通过通信总线完成相互间的通信。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作系统,还可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器实现激光扫描设备标定的方法。该内存储器中也可储存有计算机可读指令, 该计算机可读指令被处理器执行时,可使得处理器执行激光扫描设备标定的方法。FIG. 7 is a schematic structural diagram of a computer device 700 according to an embodiment of the present application. Referring to FIG. 7, the computer device 700 includes a processor and a memory, and may further include a communication interface and a communication bus, and may further include an input and output interface and a display device, wherein the processor, the memory, the input/output interface, the display device, and the communication interface pass The communication bus completes communication with each other. Wherein, the memory comprises a non-volatile storage medium and an internal memory. The non-volatile storage medium of the computer device stores an operating system and can also store computer readable instructions that, when executed by the processor, cause the processor to implement a method of laser scanning device calibration. The internal memory can also store computer readable instructions that, when executed by the processor, cause the processor to perform a method of laser scanning device calibration.
通信总线是连接所描述的元素的电路并且在这些元素之间实现传输。例如,处理器通过通信总线从其它元素接收到命令,解密接收到的命令,根据解密的命令执行计算或数据处理。存储器可以包括程序模块,例如内核(kernel),中间件(middleware),应用程序编程接口(Application Programming Interface,API)和应用。该程序模块可以是有软件、固件或硬件、或其中的至少两种组成。输入输出接口转发用户通过输入输出设备(例如感应器、键盘、触摸屏)输入的命令或数据。显示设备显示各种信息给用户。通信接口将该计算机设备700与其它网络设备、用户设备、网络进行连接。例如,通信接口可以通过有线或无线连接到网络以连接到外部其它的网络设备或用户设备。无线通信可以包括以下至少一种:无线保真(Wireless Fidelity,WiFi),蓝牙(Bluetooth,BT),近距离无线通信技术(Near Field Communication,NFC),全球卫星定位系统(Global Positioning System,GPS)和蜂窝通信(cellular communication)(例如,长期演进技术(Long Term Evolution,LTE),长期演进技术的后续演进(Long Term Evolution–Advanced,LTE-A),码分多址(Code Division Multiple Access,CDMA),宽带码分多址(Wideband CDMA,WCDMA),通用移动通信系统(Universal Mobile Telecommunication System,UMTS),无线宽带接入(Wireless Broadband,WiBro)和全球移动通讯系统(Global System for Mobile communication,GSM)。有线通信可以包括以下至少一种:通用串行总线(Universal Serial Bus,USB),高清晰度多媒体接口(High Definition Multimedia Interface,HDMI),异步传输标准接口(Recommended Standard 232,RS-232),和普通老式电话业务(Plain Old Telephone Service,POTS)。网络可以是电信网络和通信网络。通信网络可以为计算机网络、因特网、物联网、电话网络。计算机设备700可以通过通信接口连接网络,计算机设备700和其它网络设备通信所用的协议可以被应用、应用程序编程接口(Application Programming Interface,API)、中间件、内核和通信接口至少一个支持。A communication bus is a circuit that connects the elements described and implements transmission between these elements. For example, the processor receives commands from other elements over the communication bus, decrypts the received commands, and performs calculations or data processing in accordance with the decrypted commands. The memory may include program modules such as a kernel, middleware, an application programming interface (API), and an application. The program module can be composed of software, firmware or hardware, or at least two of them. The input and output interfaces forward commands or data entered by the user through input and output devices (eg, sensors, keyboards, touch screens). The display device displays various information to the user. The communication interface connects the computer device 700 with other network devices, user devices, networks. For example, the communication interface can be connected to the network by wired or wireless to connect to other external network devices or user devices. The wireless communication may include at least one of the following: Wireless Fidelity (WiFi), Bluetooth (BT), Near Field Communication (NFC), and Global Positioning System (GPS). And cellular communication (for example, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), Code Division Multiple Access (CDMA) ), Wideband CDMA (WCDMA), Universal Mobile Telecommunication System (UMTS), Wireless Broadband (WiBro) and Global System for Mobile communication (GSM) The wired communication may include at least one of the following: a Universal Serial Bus (USB), a High Definition Multimedia Interface (HDMI), and an asynchronous standard interface (Recommended Standard 232, RS-232). , and ordinary old-fashioned telephone business (Plain Old T Elephone Service, POTS). The network can be a telecommunication network and a communication network. The communication network can be a computer network, the Internet, an Internet of Things, a telephone network. The computer device 700 can be connected to the network through a communication interface, and the computer device 700 communicates with other network devices. The protocol can be supported by at least one of an application, an Application Programming Interface (API), a middleware, a kernel, and a communication interface.
在示例性实施例中,还提供了一种存储有计算机程序的计算机可读存储介质,例如存储有计算机可读指令的存储器,上述计算机可读指令被处理器执行时实现上述实施例中的激光扫描设备标定的方法。例如,所述计算机可读存储介质可以是只读内存(Read-Only Memory,ROM)、随机存取存储器(Random  Access Memory,RAM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。In an exemplary embodiment, there is also provided a computer readable storage medium storing a computer program, such as a memory storing computer readable instructions that, when executed by a processor, implement the laser of the above embodiments Scan the method of calibration of the device. For example, the computer readable storage medium may be a Read-Only Memory (ROM), a Random Access Memory (RAM), or a Compact Disc Read-Only Memory (CD-ROM). , tapes, floppy disks, and optical data storage devices.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。A person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium. The storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above is only the preferred embodiment of the present application, and is not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present application shall be included in the protection of the present application. Within the scope.

Claims (20)

  1. 一种激光扫描设备标定的方法,应用于计算机设备,所述方法包括:A method for calibrating a laser scanning device is applied to a computer device, the method comprising:
    基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;Acquiring at least two frame point cloud data obtained by scanning the target area by the laser scanning device, acquiring first coordinates of the feature elements in the point cloud data of each frame, wherein the first coordinates are that the feature elements are in the laser coordinate system coordinate of;
    基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;Determining, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
    对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及Determining, according to the first coordinate and the second coordinate of the feature element, the offset pose of the point cloud data of each frame; and
    根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And calculating, according to the offset pose of the at least two frames of point cloud data, a value of a laser external parameter of the laser scanning device to calibrate the laser scanning device.
  2. 根据权利要求1所述的方法,其特征在于,所述基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标包括:The method according to claim 1, wherein the first coordinates of the feature elements in the point cloud data of each frame are obtained based on the at least two frames of point cloud data obtained by scanning the target area by the laser scanning device:
    通过所述激光扫描设备,基于预设扫描路线扫描所述目标区域,得到所述至少两帧点云数据,所述目标区域为包括所述地物要素的任一区域;及And scanning, by the laser scanning device, the target area according to a preset scan route to obtain the at least two frames of point cloud data, where the target area is any area including the feature element;
    对于所述每帧点云数据,提取所述地物要素在所述激光坐标系中的第一坐标。For each frame point cloud data, the first coordinate of the feature element in the laser coordinate system is extracted.
  3. 根据权利要求1所述的方法,其特征在于,所述基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标包括:The method according to claim 1, wherein the determining, according to the map data of the target area, the second coordinates of the feature element in the vehicle coordinate system in each frame point cloud data comprises:
    从导航系统中获取所述目标区域的地图数据,所述地图数据包括所述地物要素在地图坐标系中的经纬度坐标和高程坐标;及Obtaining map data of the target area from a navigation system, the map data including latitude and longitude coordinates and elevation coordinates of the feature element in a map coordinate system; and
    对于所述每帧点云数据,根据所述目标区域的地图数据,确定所述地物要素在所述车辆坐标系中的第二坐标。For each frame point cloud data, determining a second coordinate of the feature element in the vehicle coordinate system according to the map data of the target area.
  4. 根据权利要求3所述的方法,其特征在于,所述对于所述每帧点云数据,根据所述目标区域的地图数据,确定所述地物要素在所述车辆坐标系中的第二坐标包括:The method according to claim 3, wherein said determining, for each frame of point cloud data, a second coordinate of said feature element in said vehicle coordinate system based on map data of said target area include:
    将所述地物要素在地图坐标系中的经纬度坐标和高程坐标,转换为地心坐标系中的位置坐标;Converting the latitude and longitude coordinates and elevation coordinates of the feature element in the map coordinate system to position coordinates in the geocentric coordinate system;
    将所述地物要素在地心坐标系中的位置坐标,转换为站心坐标系中的位置坐标;及Converting the position coordinates of the feature element in the geocentric coordinate system to position coordinates in the center coordinate system; and
    根据获取的车辆的航向角将所述地物要素在站心坐标系中的位置坐标转换为车辆坐标系中的第二坐标。The position coordinates of the feature element in the center coordinate system are converted into the second coordinates in the vehicle coordinate system according to the heading angle of the acquired vehicle.
  5. 根据权利要求1所述的方法,其特征在于,所述对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿包括:The method according to claim 1, wherein the determining, according to the first coordinate and the second coordinate of the feature element, the offset of the point cloud data of each frame for the frame cloud data of each frame Positions include:
    获取所述车辆坐标系和所述激光坐标系之间的初始偏移位姿;Obtaining an initial offset pose between the vehicle coordinate system and the laser coordinate system;
    对于所述每帧点云数据,根据所述初始偏移位姿和所述地物要素的第二坐标,确定所述地物要素的第三坐标,所述第三坐标为所述地物要素在所述激光坐标系中的坐标;及Determining, according to the initial offset pose and the second coordinate of the feature element, the third coordinate of the feature element, wherein the third coordinate is the feature element The coordinates in the laser coordinate system; and
    根据所述地物要素的第一坐标和第三坐标,确定所述每帧点云数据的偏移位姿。Determining an offset pose of the point cloud data per frame according to the first coordinate and the third coordinate of the feature element.
  6. 根据权利要求5所述的方法,其特征在于,所述对于所述每帧点云数据,根据所述初始偏移位姿和所述地物要素的第二坐标,确定所述地物要素的第三坐标包括:The method according to claim 5, wherein said determining, for said each point cloud data, said feature of said feature based on said initial offset pose and said second coordinate of said feature element The third coordinates include:
    对于所述每帧点云数据,根据所述初始偏移位资中的初始偏移位置的数值,将所述地物要素的第二坐标进行偏移位置,根据所述初始偏移位资中的初始偏航角的数值,将偏移位置后的第二坐标进行角度偏移;及For each frame point cloud data, the second coordinate of the feature element is offset according to the value of the initial offset position in the initial offset bit, according to the initial in the initial offset bit The value of the yaw angle, the angular offset of the second coordinate after the offset position; and
    将偏移位置和角度偏移后的位置坐标作为所述地物要素的第三坐标。The position coordinate after the offset position and the angle are offset is taken as the third coordinate of the feature element.
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述地物要素的第一坐标和第三坐标,确定所述每帧点云数据的偏移位姿包括:The method according to claim 5, wherein the determining the offset pose of the point cloud data per frame according to the first coordinate and the third coordinate of the feature element comprises:
    根据所述地物要素的第一坐标和第三坐标,计算每个第一点状要素和相邻第二点状要素之间的第一距离,以及所述每个第一点状要素和相邻线状要素之间的第二距离,所述第一点状要素为所述第一坐标对应的地物要素中的点状要素,所述第二点状要素为所述第三坐标对应的地物要素中的点状要素,所述线状要素为所述第三坐标对应的地物要素中的线状要素;及Calculating a first distance between each first point element and an adjacent second point element according to the first coordinate and the third coordinate of the feature element, and each of the first point element and phase a second distance between adjacent linear elements, wherein the first point element is a point element among the feature elements corresponding to the first coordinate, and the second point element is a third point corresponding to the third coordinate a point element in the feature element, wherein the line element is a line element among the feature elements corresponding to the third coordinate; and
    根据所述第一距离和所述第二距离,确定所述每帧点云数据的偏移位姿。Determining an offset pose of the point cloud data per frame according to the first distance and the second distance.
  8. 根据权利要求1所述的方法,其特征在于,所述激光扫描设备的激光外参数包括所述车辆坐标系和所述激光坐标系之间的偏移位置和偏航角,所 述根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值包括:The method of claim 1 wherein said laser external parameters of said laser scanning device comprise an offset position and a yaw angle between said vehicle coordinate system and said laser coordinate system, said Calculating the offset pose of the at least two frames of point cloud data, and calculating the values of the laser external parameters of the laser scanning device include:
    建立所述至少两帧点云数据的偏移位姿与所述偏移位置、所述偏航角和系统偏差之间的观测方程,所述系统偏差为所述地图数据中的系统误差;Establishing an observation equation between the offset pose of the at least two frames of point cloud data and the offset position, the yaw angle, and a system deviation, wherein the systematic deviation is a systematic error in the map data;
    对于所述每帧点云数据,获取所述每帧点云数据对应的所述车辆的航向角;及Obtaining, for each frame point cloud data, a heading angle of the vehicle corresponding to the point cloud data of each frame; and
    根据所述航向角和所述每帧点云数据的偏移位姿,计算所述观测方程中所述偏移位置的数值和所述偏航角的数值。And calculating a value of the offset position and a value of the yaw angle in the observation equation according to the heading angle and an offset pose of the point cloud data of each frame.
  9. 一种计算机设备,包括存储器和处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行以下步骤:A computer device comprising a memory and a processor, the memory storing computer readable instructions, the computer readable instructions being executed by the processor such that the processor performs the following steps:
    基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;Acquiring at least two frame point cloud data obtained by scanning the target area by the laser scanning device, acquiring first coordinates of the feature elements in the point cloud data of each frame, wherein the first coordinates are that the feature elements are in the laser coordinate system coordinate of;
    基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;Determining, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
    对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及Determining, according to the first coordinate and the second coordinate of the feature element, the offset pose of the point cloud data of each frame; and
    根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And calculating, according to the offset pose of the at least two frames of point cloud data, a value of a laser external parameter of the laser scanning device to calibrate the laser scanning device.
  10. 根据权利要求9所述的计算机设备,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标的步骤时,执行以下步骤:A computer apparatus according to claim 9, wherein said computer readable instructions are executed by said processor such that said processor performs at least said scanning of said target area by said laser scanning device When two points of point cloud data are obtained, and the first coordinate of the feature of the feature in each point cloud data is obtained, the following steps are performed:
    通过所述激光扫描设备,基于预设扫描路线扫描所述目标区域,得到所述至少两帧点云数据,所述目标区域为包括所述地物要素的任一区域;及And scanning, by the laser scanning device, the target area according to a preset scan route to obtain the at least two frames of point cloud data, where the target area is any area including the feature element;
    对于所述每帧点云数据,提取所述地物要素在所述激光坐标系中的第一坐标。For each frame point cloud data, the first coordinate of the feature element in the laser coordinate system is extracted.
  11. 根据权利要求9所述的计算机设备,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述基于所述目标区域的 地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标的步骤时,执行以下步骤:A computer apparatus according to claim 9, wherein said computer readable instructions are executed by said processor such that said processor is operative to perform said map data based on said target area When the step of the second feature of the feature element in the vehicle coordinate system in the frame point cloud data is performed, the following steps are performed:
    从导航系统中获取所述目标区域的地图数据,所述地图数据包括所述地物要素在地图坐标系中的经纬度坐标和高程坐标;及Obtaining map data of the target area from a navigation system, the map data including latitude and longitude coordinates and elevation coordinates of the feature element in a map coordinate system; and
    对于所述每帧点云数据,根据所述目标区域的地图数据,确定所述地物要素在所述车辆坐标系中的第二坐标。For each frame point cloud data, determining a second coordinate of the feature element in the vehicle coordinate system according to the map data of the target area.
  12. 根据权利要求9所述的计算机设备,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿的步骤时,执行以下步骤:The computer apparatus according to claim 9, wherein said computer readable instructions are executed by said processor such that said processor is performing said cloud data for said each frame, according to said ground When the first coordinate and the second coordinate of the object element are used to determine the offset pose of the point cloud data of each frame, the following steps are performed:
    获取所述车辆坐标系和所述激光坐标系之间的初始偏移位姿;Obtaining an initial offset pose between the vehicle coordinate system and the laser coordinate system;
    对于所述每帧点云数据,根据所述初始偏移位姿和所述地物要素的第二坐标,确定所述地物要素的第三坐标,所述第三坐标为所述地物要素在所述激光坐标系中的坐标;及Determining, according to the initial offset pose and the second coordinate of the feature element, the third coordinate of the feature element, wherein the third coordinate is the feature element The coordinates in the laser coordinate system; and
    根据所述地物要素的第一坐标和第三坐标,确定所述每帧点云数据的偏移位姿。Determining an offset pose of the point cloud data per frame according to the first coordinate and the third coordinate of the feature element.
  13. 根据权利要求12所述的计算机设备,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述根据所述地物要素的第一坐标和第三坐标,确定所述每帧点云数据的偏移位姿的步骤时,执行以下步骤:The computer apparatus according to claim 12, wherein said computer readable instructions are executed by said processor such that said processor is performing said first coordinates and said third based on said feature elements Coordinates, when determining the offset pose of each frame point cloud data, perform the following steps:
    根据所述地物要素的第一坐标和第三坐标,计算每个第一点状要素和相邻第二点状要素之间的第一距离,以及所述每个第一点状要素和相邻线状要素之间的第二距离,所述第一点状要素为所述第一坐标对应的地物要素中的点状要素,所述第二点状要素为所述第三坐标对应的地物要素中的点状要素,所述线状要素为所述第三坐标对应的地物要素中的线状要素;及Calculating a first distance between each first point element and an adjacent second point element according to the first coordinate and the third coordinate of the feature element, and each of the first point element and phase a second distance between adjacent linear elements, wherein the first point element is a point element among the feature elements corresponding to the first coordinate, and the second point element is a third point corresponding to the third coordinate a point element in the feature element, wherein the line element is a line element among the feature elements corresponding to the third coordinate; and
    根据所述第一距离和所述第二距离,确定所述每帧点云数据的偏移位姿。Determining an offset pose of the point cloud data per frame according to the first distance and the second distance.
  14. 根据权利要求11所述的计算机设备,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述激光扫描设备的激光外参数包括所述车辆坐标系和所述激光坐标系之间的偏移位置和偏航角,所述根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外 参数的数值的步骤时,执行以下步骤:A computer apparatus according to claim 11, wherein said computer readable instructions are executed by said processor such that said processor is performing said laser coordinate system with said laser coordinate system comprising said vehicle coordinate system And an offset position and a yaw angle between the laser coordinate system, wherein the step of calculating a value of a laser external parameter of the laser scanning device according to an offset posture of the at least two frames of point cloud data Perform the following steps:
    建立所述至少两帧点云数据的偏移位姿与所述偏移位置、所述偏航角和系统偏差之间的观测方程,所述系统偏差为所述地图数据中的系统误差;Establishing an observation equation between the offset pose of the at least two frames of point cloud data and the offset position, the yaw angle, and a system deviation, wherein the systematic deviation is a systematic error in the map data;
    对于所述每帧点云数据,获取所述每帧点云数据对应的所述车辆的航向角;及Obtaining, for each frame point cloud data, a heading angle of the vehicle corresponding to the point cloud data of each frame; and
    根据所述航向角和所述每帧点云数据的偏移位姿,计算所述观测方程中所述偏移位置的数值和所述偏航角的数值。And calculating a value of the offset position and a value of the yaw angle in the observation equation according to the heading angle and an offset pose of the point cloud data of each frame.
  15. 一种非易失性的计算机可读存储介质,存储有计算机可读指令,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:A non-transitory computer readable storage medium storing computer readable instructions, when executed by one or more processors, causes the one or more processors to perform the following steps:
    基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标,所述第一坐标为所述地物要素在激光坐标系中的坐标;Acquiring at least two frame point cloud data obtained by scanning the target area by the laser scanning device, acquiring first coordinates of the feature elements in the point cloud data of each frame, wherein the first coordinates are that the feature elements are in the laser coordinate system coordinate of;
    基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第二坐标;Determining, according to the map data of the target area, a second coordinate of the feature element in the frame coordinate system in the vehicle coordinate system;
    对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿;及Determining, according to the first coordinate and the second coordinate of the feature element, the offset pose of the point cloud data of each frame; and
    根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值,以标定所述激光扫描设备。And calculating, according to the offset pose of the at least two frames of point cloud data, a value of a laser external parameter of the laser scanning device to calibrate the laser scanning device.
  16. 根据权利要求15所述的计算机可读存储介质,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述基于激光扫描设备对目标区域进行扫描所得到的至少两帧点云数据,获取每帧点云数据中地物要素的第一坐标的步骤时,执行以下步骤:A computer readable storage medium according to claim 15 wherein said computer readable instructions are executed by said processor such that said processor performs scanning of said target area based on said laser scanning device Obtaining at least two frames of point cloud data, and obtaining the first coordinates of the feature elements in the point cloud data of each frame, performing the following steps:
    通过所述激光扫描设备,基于预设扫描路线扫描所述目标区域,得到所述至少两帧点云数据,所述目标区域为包括所述地物要素的任一区域;及And scanning, by the laser scanning device, the target area according to a preset scan route to obtain the at least two frames of point cloud data, where the target area is any area including the feature element;
    对于所述每帧点云数据,提取所述地物要素在所述激光坐标系中的第一坐标。For each frame point cloud data, the first coordinate of the feature element in the laser coordinate system is extracted.
  17. 根据权利要求15所述的计算机可读存储介质,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述基于所述目标区域的地图数据,确定所述每帧点云数据中地物要素在车辆坐标系中的第 二坐标的步骤时,执行以下步骤:A computer readable storage medium according to claim 15 wherein said computer readable instructions are executed by said processor such that said processor is operative to determine said map data based on said target region When the step of the second feature of the feature element in the point coordinate data of the frame in the vehicle coordinate system is performed, the following steps are performed:
    从导航系统中获取所述目标区域的地图数据,所述地图数据包括所述地物要素在地图坐标系中的经纬度坐标和高程坐标;及Obtaining map data of the target area from a navigation system, the map data including latitude and longitude coordinates and elevation coordinates of the feature element in a map coordinate system; and
    对于所述每帧点云数据,根据所述目标区域的地图数据,确定所述地物要素在所述车辆坐标系中的第二坐标。For each frame point cloud data, determining a second coordinate of the feature element in the vehicle coordinate system according to the map data of the target area.
  18. 根据权利要求15所述的计算机可读存储介质,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述对于所述每帧点云数据,根据所述地物要素的第一坐标和第二坐标,确定所述每帧点云数据的偏移位姿的步骤时,执行以下步骤:A computer readable storage medium according to claim 15 wherein said computer readable instructions are executed by said processor such that said processor is executing said point cloud data for said frame, When the first coordinate and the second coordinate of the feature element determine the offset pose of the point cloud data of each frame, the following steps are performed:
    获取所述车辆坐标系和所述激光坐标系之间的初始偏移位姿;Obtaining an initial offset pose between the vehicle coordinate system and the laser coordinate system;
    对于所述每帧点云数据,根据所述初始偏移位姿和所述地物要素的第二坐标,确定所述地物要素的第三坐标,所述第三坐标为所述地物要素在所述激光坐标系中的坐标;及Determining, according to the initial offset pose and the second coordinate of the feature element, the third coordinate of the feature element, wherein the third coordinate is the feature element The coordinates in the laser coordinate system; and
    根据所述地物要素的第一坐标和第三坐标,确定所述每帧点云数据的偏移位姿。Determining an offset pose of the point cloud data per frame according to the first coordinate and the third coordinate of the feature element.
  19. 根据权利要求18所述的计算机可读存储介质,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述根据所述地物要素的第一坐标和第三坐标,确定所述每帧点云数据的偏移位姿的步骤时,执行以下步骤:A computer readable storage medium according to claim 18, wherein said computer readable instructions are executed by said processor such that said processor is executing said first coordinate based on said feature element And the third coordinate, when determining the step of the offset pose of the point cloud data of each frame, performing the following steps:
    根据所述地物要素的第一坐标和第三坐标,计算每个第一点状要素和相邻第二点状要素之间的第一距离,以及所述每个第一点状要素和相邻线状要素之间的第二距离,所述第一点状要素为所述第一坐标对应的地物要素中的点状要素,所述第二点状要素为所述第三坐标对应的地物要素中的点状要素,所述线状要素为所述第三坐标对应的地物要素中的线状要素;及Calculating a first distance between each first point element and an adjacent second point element according to the first coordinate and the third coordinate of the feature element, and each of the first point element and phase a second distance between adjacent linear elements, wherein the first point element is a point element among the feature elements corresponding to the first coordinate, and the second point element is a third point corresponding to the third coordinate a point element in the feature element, wherein the line element is a line element among the feature elements corresponding to the third coordinate; and
    根据所述第一距离和所述第二距离,确定所述每帧点云数据的偏移位姿。Determining an offset pose of the point cloud data per frame according to the first distance and the second distance.
  20. 根据权利要求15所述的计算机可读存储介质,其特征在于,所述计算机可读指令被所述处理器执行时,使得所述处理器在执行所述激光扫描设备的激光外参数包括所述车辆坐标系和所述激光坐标系之间的偏移位置和偏航角,所述根据所述至少两帧点云数据的偏移位姿,计算所述激光扫描设备的激光外参数的数值的步骤时,执行以下步骤:A computer readable storage medium according to claim 15 wherein said computer readable instructions are executed by said processor such that said processor is performing said laser external parameters of said laser scanning device comprising said An offset position and a yaw angle between the vehicle coordinate system and the laser coordinate system, wherein the calculating the value of the laser external parameter of the laser scanning device according to the offset posture of the at least two frames of point cloud data In the steps, perform the following steps:
    建立所述至少两帧点云数据的偏移位姿与所述偏移位置、所述偏航角和系统偏差之间的观测方程,所述系统偏差为所述地图数据中的系统误差;Establishing an observation equation between the offset pose of the at least two frames of point cloud data and the offset position, the yaw angle, and a system deviation, wherein the systematic deviation is a systematic error in the map data;
    对于所述每帧点云数据,获取所述每帧点云数据对应的所述车辆的航向角;及Obtaining, for each frame point cloud data, a heading angle of the vehicle corresponding to the point cloud data of each frame; and
    根据所述航向角和所述每帧点云数据的偏移位姿,计算所述观测方程中所述偏移位置的数值和所述偏航角的数值。And calculating a value of the offset position and a value of the yaw angle in the observation equation according to the heading angle and an offset pose of the point cloud data of each frame.
PCT/CN2018/087251 2017-08-23 2018-05-17 Laser scanning device calibration method, apparatus, device, and storage medium WO2019037484A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197030956A KR102296723B1 (en) 2017-08-23 2018-05-17 Laser scanning device calibration method, apparatus, device and storage medium
EP18847637.8A EP3686557A4 (en) 2017-08-23 2018-05-17 Laser scanning device calibration method, apparatus, device, and storage medium
JP2020511185A JP6906691B2 (en) 2017-08-23 2018-05-17 Laser scanning device localization methods, devices, devices and storage media
US16/383,358 US20190235062A1 (en) 2017-08-23 2019-04-12 Method, device, and storage medium for laser scanning device calibration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710731253.X 2017-08-23
CN201710731253.XA CN109425365B (en) 2017-08-23 2017-08-23 Method, device and equipment for calibrating laser scanning equipment and storage medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/383,358 Continuation US20190235062A1 (en) 2017-08-23 2019-04-12 Method, device, and storage medium for laser scanning device calibration

Publications (1)

Publication Number Publication Date
WO2019037484A1 true WO2019037484A1 (en) 2019-02-28

Family

ID=65439766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087251 WO2019037484A1 (en) 2017-08-23 2018-05-17 Laser scanning device calibration method, apparatus, device, and storage medium

Country Status (7)

Country Link
US (1) US20190235062A1 (en)
EP (1) EP3686557A4 (en)
JP (1) JP6906691B2 (en)
KR (1) KR102296723B1 (en)
CN (1) CN109425365B (en)
MA (1) MA50182A (en)
WO (1) WO2019037484A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402328A (en) * 2020-03-17 2020-07-10 北京图森智途科技有限公司 Pose calculation method and device based on laser odometer
CN111784836A (en) * 2020-06-28 2020-10-16 北京百度网讯科技有限公司 High-precision map generation method, device and equipment and readable storage medium
CN111986472A (en) * 2019-05-22 2020-11-24 阿里巴巴集团控股有限公司 Vehicle speed determination method and vehicle
CN112100900A (en) * 2020-06-30 2020-12-18 北京控制工程研究所 Method for measuring initial attitude of spatial non-cooperative target point cloud
CN112596063A (en) * 2020-11-27 2021-04-02 北京迈格威科技有限公司 Point cloud descriptor construction method and device and closed loop detection method and device
CN112639882A (en) * 2019-09-12 2021-04-09 华为技术有限公司 Positioning method, device and system
CN112684432A (en) * 2019-10-18 2021-04-20 北京万集科技股份有限公司 Laser radar calibration method, device, equipment and storage medium
CN113034685A (en) * 2021-03-18 2021-06-25 北京百度网讯科技有限公司 Method and device for superposing laser point cloud and high-precision map and electronic equipment
CN113238202A (en) * 2021-06-08 2021-08-10 上海海洋大学 Coordinate system point cloud computing method of photon laser three-dimensional imaging system and application thereof
CN113739774A (en) * 2021-09-14 2021-12-03 煤炭科学研究总院 Position and attitude correction method of heading machine based on mobile laser and target cooperation
CN113984072A (en) * 2021-10-28 2022-01-28 阿波罗智能技术(北京)有限公司 Vehicle positioning method, device, equipment, storage medium and automatic driving vehicle
CN114353807A (en) * 2022-03-21 2022-04-15 沈阳吕尚科技有限公司 Robot positioning method and positioning device
CN114581379A (en) * 2022-02-14 2022-06-03 浙江华睿科技股份有限公司 Sealant detection method and device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946732B (en) * 2019-03-18 2020-12-01 李子月 Unmanned vehicle positioning method based on multi-sensor data fusion
CN110298103A (en) * 2019-06-25 2019-10-01 中国电建集团成都勘测设计研究院有限公司 The steep Dangerous Rock Body investigation method of height based on unmanned aerial vehicle onboard three-dimensional laser scanner
CN112212871A (en) * 2019-07-10 2021-01-12 阿里巴巴集团控股有限公司 Data processing method and device and robot
CN110780325B (en) * 2019-08-23 2022-07-19 腾讯科技(深圳)有限公司 Method and device for positioning moving object and electronic equipment
CN110736456B (en) * 2019-08-26 2023-05-05 广东亿嘉和科技有限公司 Two-dimensional laser real-time positioning method based on feature extraction in sparse environment
CN112630751A (en) * 2019-10-09 2021-04-09 中车时代电动汽车股份有限公司 Calibration method of laser radar
CN110794392B (en) * 2019-10-15 2024-03-19 上海创昂智能技术有限公司 Vehicle positioning method and device, vehicle and storage medium
CN110837080B (en) * 2019-10-28 2023-09-05 武汉海云空间信息技术有限公司 Rapid calibration method of laser radar mobile measurement system
CN110888120B (en) * 2019-12-03 2023-04-07 华南农业大学 Method for correcting laser radar point cloud data motion distortion based on integrated navigation system
CN111207762B (en) * 2019-12-31 2021-12-07 深圳一清创新科技有限公司 Map generation method and device, computer equipment and storage medium
CN111508021B (en) * 2020-03-24 2023-08-18 广州视源电子科技股份有限公司 Pose determining method and device, storage medium and electronic equipment
CN113748357B (en) * 2020-03-27 2023-06-30 深圳市速腾聚创科技有限公司 Attitude correction method, device and system of laser radar
CN111949816B (en) * 2020-06-22 2023-09-26 北京百度网讯科技有限公司 Positioning processing method, device, electronic equipment and storage medium
CN113866779A (en) * 2020-06-30 2021-12-31 上海商汤智能科技有限公司 Point cloud data fusion method and device, electronic equipment and storage medium
CN112068108A (en) * 2020-08-11 2020-12-11 南京航空航天大学 Laser radar external parameter calibration method based on total station
CN112595325A (en) * 2020-12-21 2021-04-02 武汉汉宁轨道交通技术有限公司 Initial position determining method and device, electronic equipment and storage medium
CN112578356A (en) * 2020-12-25 2021-03-30 上海商汤临港智能科技有限公司 External parameter calibration method and device, computer equipment and storage medium
CN112904317B (en) * 2021-01-21 2023-08-22 湖南阿波罗智行科技有限公司 Calibration method for multi-laser radar and GNSS-INS system
CN112509053B (en) * 2021-02-07 2021-06-04 深圳市智绘科技有限公司 Robot pose acquisition method and device and electronic equipment
CN113124777B (en) * 2021-04-20 2023-02-24 辽宁因泰立电子信息有限公司 Vehicle size determination method, device and system and storage medium
CN113247769B (en) * 2021-04-28 2023-06-06 三一海洋重工有限公司 Method for positioning collector card, positioning system thereof and shore bridge
CN113237896B (en) * 2021-06-08 2024-02-20 诚丰家具有限公司 Furniture board dynamic monitoring system and method based on light source scanning
CN113671527A (en) * 2021-07-23 2021-11-19 国电南瑞科技股份有限公司 Accurate operation method and device for improving distribution network live working robot
CN113362328B (en) * 2021-08-10 2021-11-09 深圳市信润富联数字科技有限公司 Point cloud picture generation method and device, electronic equipment and storage medium
CN113721255B (en) * 2021-08-17 2023-09-26 北京航空航天大学 Accurate detection method for train platform parking point based on laser radar and vision fusion
CN113743483B (en) * 2021-08-20 2022-10-21 浙江省测绘科学技术研究院 Road point cloud error scene analysis method based on spatial plane offset analysis model
CN113884278B (en) * 2021-09-16 2023-10-27 杭州海康机器人股份有限公司 System calibration method and device for line laser equipment
CN113959397B (en) * 2021-10-19 2023-10-03 广东电网有限责任公司 Electric power pole tower posture monitoring method, equipment and medium
CN114018228B (en) * 2021-11-04 2024-01-23 武汉天测测绘科技有限公司 Mobile track traffic three-dimensional data acquisition method and system
CN116246020B (en) * 2023-03-07 2023-09-08 武汉理工大学 Multi-laser-point cloud technology three-dimensional reconstruction system and method
CN117269939B (en) * 2023-10-25 2024-03-26 北京路凯智行科技有限公司 Parameter calibration system, method and storage medium for sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019829A (en) * 2014-06-09 2014-09-03 武汉克利福昇科技有限责任公司 Vehicle-mounted panorama camera based on POS (position and orientation system) and external parameter calibrating method of linear array laser scanner
CN104833372A (en) * 2015-04-13 2015-08-12 武汉海达数云技术有限公司 External parameter calibration method of high-definition panoramic camera of mobile measuring system
CN105180811A (en) * 2015-09-21 2015-12-23 武汉海达数云技术有限公司 Laser scanner calibration method, based on ground objects with characteristics of the same name, for mobile measuring system
CN105203023A (en) * 2015-07-10 2015-12-30 中国人民解放军信息工程大学 One-stop calibration method for arrangement parameters of vehicle-mounted three-dimensional laser scanning system
US20160070981A1 (en) * 2014-09-08 2016-03-10 Kabushiki Kaisha Topcon Operating device, operating system, operating method, and program therefor
CN106996795A (en) * 2016-01-22 2017-08-01 腾讯科技(深圳)有限公司 Join scaling method and device outside a kind of vehicle-mounted laser

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395393B2 (en) * 1994-08-05 2003-04-14 日産自動車株式会社 Vehicle periphery display device
JP5069439B2 (en) * 2006-09-21 2012-11-07 パナソニック株式会社 Self-position recognition system
JP2011191239A (en) * 2010-03-16 2011-09-29 Mazda Motor Corp Mobile object position detecting device
EP2523017A1 (en) * 2011-05-13 2012-11-14 Hexagon Technology Center GmbH Calibration method for a device with scan functionality
GB201116961D0 (en) * 2011-09-30 2011-11-16 Bae Systems Plc Fast calibration for lidars
US9043069B1 (en) * 2012-11-07 2015-05-26 Google Inc. Methods and systems for scan matching approaches for vehicle heading estimation
WO2014152254A2 (en) * 2013-03-15 2014-09-25 Carnegie Robotics Llc Methods, systems, and apparatus for multi-sensory stereo vision for robotics
KR102003339B1 (en) * 2013-12-06 2019-07-25 한국전자통신연구원 Apparatus and Method for Precise Recognition of Position
WO2015155292A1 (en) * 2014-04-09 2015-10-15 Continental Teves Ag & Co. Ohg Position correction of a vehicle by referencing to objects in the surroundings
DE102014211176A1 (en) * 2014-06-11 2015-12-17 Continental Teves Ag & Co. Ohg Method and system for correcting measurement data and / or navigation data of a sensor-based system
US20150362587A1 (en) * 2014-06-17 2015-12-17 Microsoft Corporation Lidar sensor calibration using surface pattern detection
US9823059B2 (en) * 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
JP6442193B2 (en) * 2014-08-26 2018-12-19 株式会社トプコン Point cloud position data processing device, point cloud position data processing system, point cloud position data processing method and program
CN104180793A (en) * 2014-08-27 2014-12-03 北京建筑大学 Device and method for obtaining mobile spatial information for digital city construction
CN104657464B (en) * 2015-02-10 2018-07-03 腾讯科技(深圳)有限公司 A kind of data processing method and device
CN106546260B (en) * 2015-09-22 2019-08-13 腾讯科技(深圳)有限公司 A kind of correcting method and system of traverse measurement data
US9916703B2 (en) * 2015-11-04 2018-03-13 Zoox, Inc. Calibration for autonomous vehicle operation
EP3182065A1 (en) * 2015-12-14 2017-06-21 Leica Geosystems AG Handheld distance measuring equipment, and method for detecting relative positions
KR102373926B1 (en) * 2016-02-05 2022-03-14 삼성전자주식회사 Vehicle and recognizing method of vehicle's position based on map
CN111108342B (en) * 2016-12-30 2023-08-15 辉达公司 Visual range method and pair alignment for high definition map creation
CN108732582B (en) * 2017-04-20 2020-07-10 百度在线网络技术(北京)有限公司 Vehicle positioning method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019829A (en) * 2014-06-09 2014-09-03 武汉克利福昇科技有限责任公司 Vehicle-mounted panorama camera based on POS (position and orientation system) and external parameter calibrating method of linear array laser scanner
US20160070981A1 (en) * 2014-09-08 2016-03-10 Kabushiki Kaisha Topcon Operating device, operating system, operating method, and program therefor
CN104833372A (en) * 2015-04-13 2015-08-12 武汉海达数云技术有限公司 External parameter calibration method of high-definition panoramic camera of mobile measuring system
CN105203023A (en) * 2015-07-10 2015-12-30 中国人民解放军信息工程大学 One-stop calibration method for arrangement parameters of vehicle-mounted three-dimensional laser scanning system
CN105180811A (en) * 2015-09-21 2015-12-23 武汉海达数云技术有限公司 Laser scanner calibration method, based on ground objects with characteristics of the same name, for mobile measuring system
CN106996795A (en) * 2016-01-22 2017-08-01 腾讯科技(深圳)有限公司 Join scaling method and device outside a kind of vehicle-mounted laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686557A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111986472A (en) * 2019-05-22 2020-11-24 阿里巴巴集团控股有限公司 Vehicle speed determination method and vehicle
CN111986472B (en) * 2019-05-22 2023-04-28 阿里巴巴集团控股有限公司 Vehicle speed determining method and vehicle
CN112639882B (en) * 2019-09-12 2021-12-14 华为技术有限公司 Positioning method, device and system
CN112639882A (en) * 2019-09-12 2021-04-09 华为技术有限公司 Positioning method, device and system
CN112684432A (en) * 2019-10-18 2021-04-20 北京万集科技股份有限公司 Laser radar calibration method, device, equipment and storage medium
CN112684432B (en) * 2019-10-18 2024-04-16 武汉万集光电技术有限公司 Laser radar calibration method, device, equipment and storage medium
CN111402328A (en) * 2020-03-17 2020-07-10 北京图森智途科技有限公司 Pose calculation method and device based on laser odometer
CN111402328B (en) * 2020-03-17 2023-11-10 北京图森智途科技有限公司 Pose calculation method and device based on laser odometer
CN111784836A (en) * 2020-06-28 2020-10-16 北京百度网讯科技有限公司 High-precision map generation method, device and equipment and readable storage medium
CN112100900A (en) * 2020-06-30 2020-12-18 北京控制工程研究所 Method for measuring initial attitude of spatial non-cooperative target point cloud
CN112100900B (en) * 2020-06-30 2024-03-26 北京控制工程研究所 Space non-cooperative target point cloud initial attitude measurement method
CN112596063A (en) * 2020-11-27 2021-04-02 北京迈格威科技有限公司 Point cloud descriptor construction method and device and closed loop detection method and device
CN112596063B (en) * 2020-11-27 2024-04-02 北京迈格威科技有限公司 Point cloud descriptor construction method and device, and closed loop detection method and device
CN113034685B (en) * 2021-03-18 2022-12-06 北京百度网讯科技有限公司 Method and device for superposing laser point cloud and high-precision map and electronic equipment
CN113034685A (en) * 2021-03-18 2021-06-25 北京百度网讯科技有限公司 Method and device for superposing laser point cloud and high-precision map and electronic equipment
CN113238202A (en) * 2021-06-08 2021-08-10 上海海洋大学 Coordinate system point cloud computing method of photon laser three-dimensional imaging system and application thereof
CN113238202B (en) * 2021-06-08 2023-08-15 上海海洋大学 Coordinate system point cloud computing method of photon laser three-dimensional imaging system and application thereof
CN113739774A (en) * 2021-09-14 2021-12-03 煤炭科学研究总院 Position and attitude correction method of heading machine based on mobile laser and target cooperation
CN113984072A (en) * 2021-10-28 2022-01-28 阿波罗智能技术(北京)有限公司 Vehicle positioning method, device, equipment, storage medium and automatic driving vehicle
CN114581379A (en) * 2022-02-14 2022-06-03 浙江华睿科技股份有限公司 Sealant detection method and device
CN114581379B (en) * 2022-02-14 2024-03-22 浙江华睿科技股份有限公司 Sealant detection method and device
CN114353807B (en) * 2022-03-21 2022-08-12 沈阳吕尚科技有限公司 Robot positioning method and positioning device
CN114353807A (en) * 2022-03-21 2022-04-15 沈阳吕尚科技有限公司 Robot positioning method and positioning device

Also Published As

Publication number Publication date
CN109425365B (en) 2022-03-11
US20190235062A1 (en) 2019-08-01
JP2020531831A (en) 2020-11-05
JP6906691B2 (en) 2021-07-21
MA50182A (en) 2020-07-29
CN109425365A (en) 2019-03-05
KR20190129978A (en) 2019-11-20
EP3686557A4 (en) 2021-08-04
EP3686557A1 (en) 2020-07-29
KR102296723B1 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2019037484A1 (en) Laser scanning device calibration method, apparatus, device, and storage medium
US11802769B2 (en) Lane line positioning method and apparatus, and storage medium thereof
WO2021139590A1 (en) Indoor localization and navigation apparatus based on bluetooth and slam, and method therefor
KR101444685B1 (en) Method and Apparatus for Determining Position and Attitude of Vehicle by Image based Multi-sensor Data
JP2020503507A (en) Positioning method, terminal and server
WO2020146039A1 (en) Robust association of traffic signs with a map
WO2020146102A1 (en) Robust lane association by projecting 2-d image into 3-d world using map information
CN110160545B (en) Enhanced positioning system and method for laser radar and GPS
KR20200064542A (en) Apparatus for measuring ground control point using unmanned aerial vehicle and method thereof
US20160379365A1 (en) Camera calibration device, camera calibration method, and camera calibration program
KR102239562B1 (en) Fusion system between airborne and terrestrial observation data
CN110031880B (en) High-precision augmented reality method and equipment based on geographical position positioning
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
CN109541570B (en) Method and device for calibrating millimeter wave scanning device
JP2022130588A (en) Registration method and apparatus for autonomous vehicle, electronic device, and vehicle
CN113295174B (en) Lane-level positioning method, related device, equipment and storage medium
JP2021143861A (en) Information processor, information processing method, and information processing system
TW201812338A (en) Localization method for rotary aerial vehicle
EP4086571A1 (en) High-density 3d environment capture to guide mixed reality
US20230266483A1 (en) Information processing device, information processing method, and program
CN114296097A (en) SLAM navigation method and system based on GNSS and LiDAR
JP7125927B2 (en) Information terminal device, method and program
JP2022034099A (en) Navigation device, navigation system, navigation method, and navigation program
KR101282917B1 (en) Navigation method and apparatus using mobile projector
JP7467190B2 (en) Position estimation device, position estimation system, and position estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030956

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020511185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847637

Country of ref document: EP

Effective date: 20200323