WO2019037452A1 - 舵装置及具有其的飞行器 - Google Patents

舵装置及具有其的飞行器 Download PDF

Info

Publication number
WO2019037452A1
WO2019037452A1 PCT/CN2018/083653 CN2018083653W WO2019037452A1 WO 2019037452 A1 WO2019037452 A1 WO 2019037452A1 CN 2018083653 W CN2018083653 W CN 2018083653W WO 2019037452 A1 WO2019037452 A1 WO 2019037452A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder
pivot shaft
rudder surface
pivot axis
pivot
Prior art date
Application number
PCT/CN2018/083653
Other languages
English (en)
French (fr)
Inventor
刘若鹏
陆宜
Original Assignee
成都天府新区光启未来技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都天府新区光启未来技术研究院 filed Critical 成都天府新区光启未来技术研究院
Publication of WO2019037452A1 publication Critical patent/WO2019037452A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • B64C13/28Transmitting means without power amplification or where power amplification is irrelevant mechanical
    • B64C13/30Transmitting means without power amplification or where power amplification is irrelevant mechanical using cable, chain, or rod mechanisms

Definitions

  • the utility model relates to the technical field of aviation, in particular to a rudder device and an aircraft having the same.
  • Existing fixed-wing spacecraft such as airplanes and airships are equipped with multiple steering gears for steering the rudder and the elevator.
  • the rudder is used to control the yaw and steering of the aircraft
  • the elevator is used to control the pitching motion of the aircraft.
  • the steering gear controls the movement of the steering surface by means of a tie rod or a drawstring. Due to the limitation of the rocker arm size of the steering gear, the transmission ratio of the steering surface is insufficient, and the rotation angle of the steering surface is also limited.
  • the main object of the present invention is to provide a rudder device and an aircraft therewith to solve the problem of insufficient transmission ratio of the rudder device in the prior art.
  • a rudder device comprising: a rudder surface connected to a stabilizer through a first pivot shaft, the first pivot shaft being parallel to an axial direction of the rudder surface, the rudder surface comprising a first rudder surface and a second rudder surface disposed opposite to the first pivot axis, the cross section of the rudder surface is elongated, and the cross sections of the first rudder surface and the second rudder surface are One end of the elongated cross section extends to the other end; the steering gear is fixed on the stabilizer surface, the steering gear includes a second pivot shaft parallel to the first pivot shaft; the first cable portion, the first end and the second pivot a rotating shaft connection, the second end is connected to the first rudder surface of the rudder surface; the second rope portion is connected to the second pivot shaft, the second end is connected to the second rudder surface of the rudder surface; When the pivot shaft rotates forward, the first pivot shaft being parallel to an axial direction of the rudder surface, the r
  • first support portion is fixedly connected to the rudder surface
  • second support portion is fixedly connected to the rudder surface
  • the end-to-tail connection of the rudder surface is parallel to the line connecting the first pivot axis and the second pivot axis, in the direction from the first pivot axis to the second pivot axis a position where the first cable portion bypasses the first support portion is located between the first pivot axis and the second pivot axis in a direction parallel to the first pivot axis to the second pivot axis, and the second cable portion bypasses the first
  • the position of the two support portions is located between the first pivot axis and the second pivot axis in a direction parallel to the first pivot axis to the second pivot axis.
  • the rudder device includes a rudder surface rocker arm.
  • the end-to-tail connection of the rudder surface is parallel to the line connecting the first pivot axis and the second pivot axis
  • the rudder surface rocker arm is vertical Extending in a direction of a line connecting the first pivot axis and the second pivot axis, and intersecting a line connecting the first pivot axis and the second pivot axis, the rudder surface rocker arm is perpendicular to the first point of the connection point with the rudder surface
  • An extension extending in opposite directions of the line connecting the pivot shaft and the second pivot shaft forms a first support portion and a second support portion, respectively.
  • the steering gear further includes a steering gear rocker arm, the steering gear rocker arm is coupled to the second pivot shaft and extends in a direction perpendicular to the second pivot axis, and the steering gear rocker arm includes a first rocker arm and a second rocker arm, The rocker arm and the second rocker arm are symmetrically disposed about the second pivot axis; when the rudder surface is in the equilibrium position, the end-to-tail line of the rudder surface is parallel to the line connecting the first pivot axis and the second pivot axis a first rocker arm and a second rocker arm extending in a direction perpendicular to a line connecting the first pivot axis and the second pivot axis; a first end of the first cable portion and a first rocker arm away from the second pivot axis One end is connected, and the first end of the second pull cord portion is connected to an end of the second rocker arm away from the second pivot shaft.
  • the rudder device further includes: a first guide wheel disposed on the stabilizer surface between the second pivot shaft and the first support portion in a direction along the first pivot axis to the second pivot shaft, the first drawstring The first guide wheel is bypassed and tensioned; the second guide wheel is disposed on the stabilizer surface between the second pivot shaft and the second support portion in a direction along the first pivot axis to the second pivot axis, The second drawstring portion bypasses the second guide wheel and is tensioned.
  • first guide wheel is movably disposed on the stabilizer surface in a direction from the first pivot axis to the second pivot axis
  • second guide wheel is movably disposed in the direction of the first pivot axis to the second pivot axis.
  • the rudder device further includes a guide wheel bracket disposed on the stabilizer surface and extending in a direction perpendicular to the first pivot shaft to the second pivot shaft, and the connecting line of the guide wheel bracket from the first pivot shaft to the second pivot shaft is The symmetry is symmetrically arranged, the first guide wheel is disposed at the first end of the guide wheel bracket, and the second guide wheel is disposed at the second end of the guide wheel bracket.
  • the end-to-tail connection of the rudder surface is parallel to the line connecting the first pivot axis and the second pivot axis, in the direction from the first pivot axis to the second pivot axis a first pivoting axis is located between the connection point of the first cable portion on the first rudder surface and the second pivoting axis, and the first pivoting axis is located at a connection point of the second cable portion on the second rudder surface Between the second pivot axes.
  • an aircraft in accordance with another aspect of the present invention, includes a rudder and an elevator, the rudder and/or the elevator being the rudder device described above.
  • the steering gear and the rudder surface are connected by a drawstring portion, that is, the drawstring portion is a collective name of the first drawstring portion and the second drawstring portion, and the drawstring portion bypasses the first support portion and
  • the second support portion is further connected to the rudder surface, so the angle between the rope portion and the rudder surface is increased, that is, the moment between the rope portion and the rudder surface is increased, so that the transmission between the steering gear and the rudder surface is increased.
  • the ratio increases to increase the mechanical efficiency of the rudder device.
  • Fig. 1 shows a schematic view of the structure of an embodiment of a rudder device according to the invention.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.
  • FIG. 1 is a schematic structural view of a rudder device of the present invention, wherein for the aspect representation, as shown by the coordinates in FIG. 1, the horizontal direction in FIG. 1 is defined as the X direction, and the vertical direction is defined as the Y direction. The direction perpendicular to the plane in which FIG.
  • the rudder surface 10 in FIG. 1 is a solid structure extending in the Z direction, and FIG. 1 eliminates the hatching for clarity.
  • the rudder device includes a rudder surface 10 connected to a stabilizer 100 by a first pivot shaft 11 that is parallel to the rudder
  • the rudder surface 10 includes a first rudder surface 101 and a second rudder surface 102 that are disposed opposite each other and are parallel to the first pivot shaft 11, and the cross section of the rudder surface 10 (ie, perpendicular to the first pivot)
  • the cross section of the surface of the rotating shaft 11 is elongated, and the cross section of the first rudder surface 101 and the second rudder surface 102 extends from one end of the long cross section to the other end;
  • the steering gear 20 is fixed
  • the steering gear 20 includes a second pivot shaft 21 parallel to the first pivot shaft 11; the first cable portion 31, the first end being coupled to the second pivot shaft 21, and the second end being coupled to the rudder surface 10
  • the first rudder surface 101 is connected
  • One point is the farthest distance from the first cable portion 31 to the line connecting the first pivot shaft 11 and the second pivot shaft 21; the second support portion 42 has a side on the second rudder surface 102 and away from the first The support end of the second control surface 102 , the second cable portion 32 bypasses the support end of the second support portion 42 away from the second rudder surface 102 , and the second cable portion 32 bypasses the second support portion 42 .
  • One point is the farthest distance from the second pull cord portion 32 to the line connecting the first pivot shaft 11 and the second pivot shaft 21.
  • the steering gear 20 and the rudder surface 10 of the rudder device of the present invention are connected by a drawstring portion, that is, the pull cord portion is a collective name of the first pull cord portion 31 and the second pull cord portion 32, and the drawstring portion bypasses the first
  • the support portion 41 and the second support portion 42 are further connected to the rudder surface 10, so that the angle between the rope portion and the rudder surface 10 is increased, that is, the moment between the rope portion and the rudder surface 10 is increased, so that the rudder
  • the gear ratio between the machine 20 and the rudder surface 10 is increased to increase the mechanical efficiency of the rudder device.
  • the steering gear 20 can drive the larger-sized rudder surface 10 to move with a smaller torque, so that the steering gear 20 of the rudder device of the present invention can be made small.
  • the rudder device is especially suitable for small and medium-sized micro-aircraft, such as small and medium-sized micro airships.
  • the stabilizer is divided into a horizontal stabilizer and a vertical stabilizer.
  • the horizontal stabilizer of the aircraft is the horizontal airfoil of the aircraft's tail. It is usually divided into two types: fixed and full-acting.
  • the horizontal stabilizer is to make the aircraft have appropriate pitch static stability and maintain horizontal flight. attitude.
  • the vertical stabilizer is the fixed part of the vertical tail, which acts as a balance of the heading.
  • the vertical stabilizer is to make the aircraft have proper yaw static stability and maintain a straight flight attitude.
  • the rudder surface 10 is a horizontal wing rudder surface, the X direction and the Z direction constitute a horizontal plane, and the Y direction is a vertical direction; and when the rudder device is used for an rudder of an aircraft, the rudder The face 10 is a vertical tail rudder surface, the X direction and the Y direction constitute a horizontal plane, and the Z direction is a vertical direction.
  • the rudder device of the present invention can also be applied to an aircraft employing an unconventional empennage structure, such as a stern structure in which the vertical tail is inclined.
  • the first support portion 41 is fixedly coupled to the rudder surface 10
  • the second support portion 42 is fixedly coupled to the rudder surface 10. That is, the first support portion 41 and the second support portion 42 move together with the rudder surface 10, so that the angle between the drawstring portion and the rudder surface 10 can be kept constant, that is, the torque between the drawstring portion and the rudder surface 10 is not change.
  • the position at which the first support portion 41 and the second support portion 42 are coupled to the rudder surface 10 is located between the first pivot shaft 11 and the second pivot shaft 21, specifically at the end of the rudder surface 10 near the steering gear 20. .
  • the equilibrium position of the rudder surface 10 is defined herein. As shown in FIG. 1, when the rudder surface 10 is in the equilibrium position, the end-to-tail connection of the rudder surface 10 is parallel to the line connecting the first pivot shaft 11 and the second pivot shaft 21, that is, the end of the rudder surface 10. The line to the tail is parallel to the X direction.
  • the force of the airflow flowing in the direction of the line connecting the first pivot shaft 11 and the second pivot shaft 21 (ie, the X direction) on the rudder surface 10 is also parallel to the first pivot axis 11
  • the direction of the line connecting the second pivot shaft 21 (ie, the X direction) that is, the direction of the force in the Y direction received by the first rudder surface 101 and the second rudder surface 102 is equal, so that the rudder surface 10 is in an equilibrium state.
  • the rudder device is also not subject to the torque in the Y direction.
  • the rudder device includes a rudder surface rocker arm 40, and the rudder surface rocker arm 40 is coupled to the rudder surface 10, and the connection position of the rudder surface rocker arm 40 and the rudder surface 10 is located at the first pivot shaft 11 and the second pivot shaft 21 between.
  • the connection position of the rudder surface rocker arm 40 and the rudder surface 10 is located at the first pivot shaft 11 and the second pivot shaft 21 between.
  • the rudder rocker arm 40 extends in a direction perpendicular to the line connecting the first pivot shaft 11 and the second pivot shaft 21, and the first pivot
  • the line connecting the shaft 11 and the second pivot shaft 21 intersects, and the rudder surface rocker arm 40 is perpendicular to the connection point of the rudder surface 10 and the opposite direction of the line connecting the first pivot shaft 11 and the second pivot shaft 21
  • the extended extensions form a first support portion 41 and a second support portion 42, respectively.
  • the first support portion 41 and the second support portion 42 are symmetrically disposed with respect to the line connecting the first pivot shaft 11 and the second pivot shaft 21.
  • the two symmetrical sections of the rudder surface rocker arm 40 serve as a first support portion 41 and a second support portion 42, respectively, and the drawstring portion is supported by the rudder surface rocker arm 40 and away from the rudder surface 10,
  • the rope portion is connected to the rudder surface 10 after bypassing the rudder surface rocker arm 40, so that a portion of the zipper portion that is connected to the rudder surface 10 after passing the rudder surface rocker arm 40 forms a certain angle with the rudder surface 10.
  • the moment between the rope portion and the rudder surface 10 is affected by the angle between the rope portion and the rudder surface 10 and the distance between the connection point between the rope portion and the rudder surface 10 from the first pivot shaft 11, and thus each of the above
  • the discussion of the relationship between the angle between the drawstring portion and the rudder surface 10 and the moment is based on the premise that the distance between the drawstring portion and the rudder surface 10 is constant from the first pivot shaft 11 of.
  • the steering gear 20 further includes a steering gear rocker arm 50 coupled to the second pivot shaft 21 and extending in a direction perpendicular to the second pivot shaft 21, the steering gear rocker arm 50 including the first rocker arm 51 And the second rocker arm 52, the first rocker arm 51 and the second rocker arm 52 are symmetrically disposed about the second pivot axis 21.
  • the first rocker arm 51 and the second rocker arm 52 extend in a direction parallel to the Y direction, and the first end of the first cable portion 31 and the first rocker arm 51 are away from the second pivot One end of the rotating shaft 21 is connected, and the first end of the second pulling rope portion 32 is connected to one end of the second rocking arm 52 that is away from the second pivot shaft 21.
  • the drawstring portion is coupled to the steering gear rocker arm 50, and the second pivot shaft 21 of the steering gear 20 drives the steering gear rocker arm 50 to swing, and the steering gear rocker arm 50 pulls the drawstring portion to pull
  • the rope portion drives the rudder surface 10 to rotate about the first pivot shaft 11.
  • the steering gear 20 does not provide a rocker arm, but rather acts as a hoist to pull the drawstring portion.
  • the cord portion is wound on the hoist, and the first cable portion 31 and the second cable portion 32 are respectively wound on the hoist in opposite directions, so that no matter where the hoisting is turned There is one between the two drawstrings for the wire-receiving state and the other for the pay-off state.
  • a structure of a drawstring can be employed, that is, the first pull cord portion 31 and the second pull cord portion 32 are respectively the same drawstring. Two paragraphs.
  • the rudder device further includes: a first guide wheel 61 disposed on the stabilizer 100 and located at the second pivot shaft 21 and the first support portion 41 in a direction along the first pivot shaft 11 to the second pivot shaft 21
  • the first pull cord portion 31 bypasses the first guide pulley 61 and is tensioned
  • the second guide pulley 62 is disposed on the stabilizer surface 100 and is located in the direction along the first pivot shaft 11 to the second pivot shaft 21
  • the second pull cord portion 32 bypasses the second guide pulley 62 and is tensioned.
  • the first guide wheel 61 and the second guide wheel 62 respectively provide tension and guidance for the two rope portions. Since the first guide wheel 61 and the second guide wheel 62 are disposed on the stabilizer 100, the rope portion will be guided. The wheel produces a relative movement, so that a guide wheel that can be rotated relative to the drawstring portion provides support and guidance for the drawstring portion, thereby reducing frictional losses to the drawstring portion and also reducing the overall running resistance of the rudder device.
  • the first guide wheel 61 is movably disposed on the stabilizer 100 in the direction of the first pivot axis 11 to the second pivot axis 21, and the second guide wheel 62 is along the first pivot axis 11 to the second pivot axis 21 The direction is movably disposed on the stabilizer 100.
  • both the first guide wheel 61 and the second guide wheel 62 are movable relative to the stabilizer 100 in a direction parallel to the XY plane, thereby facilitating tensioning and relaxing of the drawstring portion.
  • the rudder device further includes a guide wheel bracket 60 disposed on the stabilizer surface 100 and extending in a direction perpendicular to the first pivot shaft 11 to the second pivot shaft 21, that is, extending in the Y direction, and the guide wheel bracket 60 is A line connecting the pivot shaft 11 to the second pivot shaft 21 is symmetrically arranged, the first guide wheel 61 is disposed at the first end of the guide wheel bracket 60, and the second guide wheel 62 is disposed at the second end of the guide wheel bracket 60. .
  • the guide wheel bracket 60, the first guide wheel 61, and the second guide wheel 62 are mounted as a unitary member on the stabilizer 100 to block the drawstring portion from slipping off the first guide pulley 61 or the second guide pulley 62.
  • a guide rail, a guide groove or other fitting member may be disposed between the guide wheel bracket 60 and the stabilizer 100, for example, in a stabilizer
  • a sliding slot is disposed on the 100 in the X direction, and a slider matched with the sliding slot is disposed on the guide wheel bracket 60.
  • the slider can be slidably positioned in the X direction in the sliding slot, so that the guide wheel bracket 60 and the stabilizer 100 can be disposed between Mobile settings.
  • the first pivot shaft 11 when the rudder surface 10 is in the equilibrium position, in the direction along the first pivot axis 11 to the second pivot axis 21, the first pivot shaft 11 is located on the first rudder surface 101 of the first cable portion 31. Between the connection point and the second pivot shaft 21, the first pivot shaft 11 is located between the connection point of the second cable portion 32 on the second rudder surface 102 and the second pivot shaft 21. That is, the first pivot shaft 11 is disposed adjacent to the end of the rudder surface 10 adjacent to the second pivot shaft 21, and the first cable portion 31 and the second cable portion 32 are adjacent to the end of the rudder surface 10 remote from the second pivot shaft 21. Department settings.
  • the first pivoting shaft 11 and the second pivoting shaft 21 are horizontally disposed, both of which are parallel and in the same horizontal plane; one end of the pulling rope portion is connected to the steering rocker arm, bypassing the first guiding wheel 61 or The second guide wheel 62 and the rudder surface rocker arm are connected to the rudder surface of the rudder surface 10.
  • the rudder device has the characteristics of simple structure, high transmission ratio, scattered force points on the rudder surface, and less stress concentration.
  • an aircraft comprising a rudder and an elevator, the rudder and/or the elevator being the above-described rudder device.
  • the rudder device of the present invention can be used as a rudder or elevator for an airplane or an airship.
  • the rudder is the steerable airfoil section of the vertical empennage. Its function is to yaw the aircraft or airship to correct the heading and small angle steering of the aircraft or airship.
  • the pilot can manipulate the rudder in the vertical tail to achieve yaw.
  • An elevator is a steerable part of a horizontal tail such as an airplane or an airship. Its main function is to control the pitching motion of an aircraft or an airship. When an airplane or an airship is required to rise upwards, the driver will manipulate the elevator to deflect upwards.
  • the aerodynamic force is downward, and a head-up torque is generated for the aircraft or the airship.
  • the aircraft or the airship is lifted upwards.
  • the driver manipulates the elevator to deflect downward, the aircraft will bow under the action of the aerodynamic moment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一种舵装置及具有其的飞行器。舵装置包括:舵面(10),通过第一枢转轴(11)与安定面(100)连接,第一枢转轴(11)平行于舵面(10)的轴向,舵面(10)包括相对设置的第一舵面表面(101)和第二舵面表面(102);舵机(20),固定在安定面(100)上,舵机(20)包括第二枢转轴(21);第一拉绳部(31),第一端与第二枢转轴(21)连接,第二端与舵面(10)的第一舵面表面(101)连接;第二拉绳部(32),第一端与第二枢转轴(21)连接,第二端与舵面(10)的第二舵面表面(102)连接;第一支撑部(41),第一拉绳部(31)绕过第一支撑部(41)的远离舵面的外侧;第二支撑部(42),第二拉绳部(32)绕过所述第二支撑部(42)的远离舵面的外侧。拉绳部绕过支撑部再与舵面连接,增大了拉绳部与舵面之间的力矩,使得舵机与舵面之间的传动比增大,提高舵装置的机械效率。

Description

舵装置及具有其的飞行器 技术领域
本实用新型涉及航空技术领域,具体而言,涉及一种舵装置及具有其的飞行器。
背景技术
现有的固定翼航天飞行器如飞机、飞艇等会设置多个舵机,分别用于操控方向舵和升降舵。方向舵用于控制飞行器进行偏航、转向动作,升降舵则用于控制飞行器进行俯仰动作。
技术问题
现有技术中,舵机通过拉杆或拉绳来控制舵面的移动。由于舵机的摇臂尺寸限制,导致舵面的传动比不足,且舵面的转角也受到限制。
技术解决方案
本实用新型的主要目的在于提供一种舵装置及具有其的飞行器,以解决现有技术中的舵装置传动比不足的问题。
为了实现上述目的,根据本实用新型的一个方面,提供了一种舵装置,包括:舵面,通过第一枢转轴与安定面连接,第一枢转轴平行于舵面的轴向,舵面包括相对设置且与第一枢转轴平行的第一舵面表面和第二舵面表面,舵面的横截面的形状为长条状,第一舵面表面和第二舵面表面的横截面均从长条状的横截面的一端延伸至另一端;舵机,固定在安定面上,舵机包括平行于第一枢转轴的第二枢转轴;第一拉绳部,第一端与第二枢转轴连接,第二端与舵面的第一舵面表面连接;第二拉绳部,第一端与第二枢转轴连接,第二端与舵面的第二舵面表面连接;当第二枢转轴正转时,舵面在第一拉绳部的牵引下沿第一方向绕第一枢转轴转动;当第二枢转轴反转时,舵面在第二拉绳部的牵引下沿与第一方向相反的第二方向绕第一枢转轴转动;第一支撑部,具有位于第一舵面表面的一侧且远离第一舵面表面的支撑端部,第一拉绳部绕过第一支撑部的远离第一舵面表面的支撑端部,第一拉绳部绕过第一支撑部的一点是第一拉绳部到第一枢转轴与第二枢转轴的连线的距离最远点;第二支撑部,具有位于第二舵面表面的一侧且远离第二舵面表面的支撑端部,第二拉绳部绕过第二支撑部的远离第二舵面表面的支撑端部,第二拉绳部绕过第二支撑部的一点是第二拉绳部到第一枢转轴与第二枢转轴的连线的距离最远点。
进一步地,第一支撑部与舵面固定连接,第二支撑部与舵面固定连接。
进一步地,当舵面处于平衡位置时,舵面的端部到尾部的连线平行于第一枢转轴与第二枢转轴的连线,在沿第一枢转轴到第二枢转轴的方向上,第一拉绳部绕过第一支撑部的位置在平行于第一枢转轴到第二枢转轴的方向上位于第一枢转轴和第二枢转轴之间,第二拉绳部绕过第二支撑部的位置在平行于第一枢转轴到第二枢转轴的方向上位于第一枢转轴和第二枢转轴之间。
进一步地,舵装置包括舵面摇臂,当舵面处于平衡位置时,舵面的端部到尾部的连线平行于第一枢转轴与第二枢转轴的连线,舵面摇臂沿垂直于第一枢转轴与第二枢转轴的连线的方向延伸,且与第一枢转轴和第二枢转轴的连线相交,舵面摇臂由其与舵面的连接点向垂直于第一枢转轴与第二枢转轴的连线的相反的两个方向延伸的延伸段分别形成第一支撑部和第二支撑部。
进一步地,舵机还包括舵机摇臂,舵机摇臂与第二枢转轴连接并沿垂直于第二枢转轴的方向延伸,舵机摇臂包括第一摇臂和第二摇臂,第一摇臂和第二摇臂以第二枢转轴为中心对称设置;当舵面处于平衡位置时,舵面的端部到尾部的连线平行于第一枢转轴与第二枢转轴的连线,第一摇臂和第二摇臂沿垂直于第一枢转轴与第二枢转轴的连线的方向延伸;第一拉绳部的第一端与第一摇臂的远离第二枢转轴的一端连接,第二拉绳部的第一端与第二摇臂的远离第二枢转轴的一端连接。
进一步地,舵装置还包括:第一导轮,设置在安定面上,在沿第一枢转轴到第二枢转轴的方向上位于第二枢转轴和第一支撑部之间,第一拉绳部绕过第一导轮并被张紧;第二导轮,设置在安定面上,在沿第一枢转轴到第二枢转轴的方向上位于第二枢转轴和第二支撑部之间,第二拉绳部绕过第二导轮并被张紧。
进一步地,第一导轮沿第一枢转轴到第二枢转轴的方向可移动地设置在安定面上,第二导轮沿第一枢转轴到第二枢转轴的方向可移动地设置在安定面上。
进一步地,舵装置还包括导轮支架,设置在安定面上并沿垂直于第一枢转轴到第二枢转轴的方向延伸,导轮支架以第一枢转轴到第二枢转轴的连线为对称轴对称设置,第一导轮设置在导轮支架的第一端,第二导轮设置在导轮支架的第二端。
进一步地,当舵面处于平衡位置时,舵面的端部到尾部的连线平行于第一枢转轴与第二枢转轴的连线,在沿第一枢转轴到第二枢转轴的方向上,第一枢转轴位于第一拉绳部在第一舵面表面上的连接点与第二枢转轴之间,第一枢转轴位于第二拉绳部在第二舵面表面上的连接点与第二枢转轴之间。
根据本实用新型的另一方面,提供了一种飞行器,包括方向舵和升降舵,方向舵和/或升降舵为上述的舵装置。
有益效果
应用本实用新型的技术方案,舵机和舵面之间通过拉绳部连接,拉绳部即第一拉绳部与第二拉绳部的统称,并且拉绳部绕过第一支撑部和第二支撑部再与舵面连接,因此拉绳部与舵面之间的夹角增大,即增大了拉绳部与舵面之间的力矩,使得舵机与舵面之间的传动比增大,提高舵装置的机械效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:
图1示出了根据本实用新型的舵装置的实施例的结构示意图。
其中,上述附图包括以下附图标记:
10、舵面;11、第一枢转轴;101、第一舵面表面;102、第二舵面表面;20、舵机;21、第二枢转轴;31、第一拉绳部;32、第二拉绳部;40、舵面摇臂;41、第一支撑部;42、第二支撑部;50、舵机摇臂;51、第一摇臂;52、第二摇臂;60、导轮支架;61、第一导轮;62、第二导轮;100、安定面。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
图1示出了本实用新型的舵装置的结构示意图,其中为了方面表述,如图1中的坐标所示,将图1中的水平方向定义为X方向,并将竖直方向定义为Y方向,将垂直于图1所在的平面的方向定义为Z方向,X方向、Y方向和Z方向构成三维坐标系,即以舵面10的横截面为XY平面,垂直于XY平面的方向即第一枢转轴11的延伸方向为Z方向,XY平面上连接第一枢转轴11和第二枢转轴21的方向为X方向,垂直于X方向和Z方向的方向为Y方向,建立三维直角坐标系。需要指出的是,图1中的舵面10为沿Z方向延伸的实体结构,且图1为了更加清晰,而省却了剖面线。
根据本实用新型的一个方面,提供了一种舵装置,如图1所示,该舵装置包括:舵面10,通过第一枢转轴11与安定面100连接,第一枢转轴11平行于舵面10的轴向,舵面10包括相对设置且均与第一枢转轴11平行的第一舵面表面101和第二舵面表面102,舵面10的横截面(即由垂直于第一枢转轴11的面所切得到的截面)形状为长条状,第一舵面表面101和第二舵面表面102横截面均从长条状横截面的一端延伸至另一端;舵机20,固定在安定面100上,舵机20包括平行于第一枢转轴11的第二枢转轴21;第一拉绳部31,第一端与第二枢转轴21连接,第二端与舵面10的第一舵面表面101连接;第二拉绳部32,第一端与第二枢转轴21连接,第二端与舵面10的第二舵面表面102连接;当第二枢转轴21正转时,舵面10在第一拉绳部31的牵引下沿第一方向绕第一枢转轴11转动;当第二枢转轴21反转时,舵面10在第二拉绳部32的牵引下沿与第一方向相反的第二方向绕第一枢转轴11转动;第一支撑部41,具有位于第一舵面表面101的一侧且远离第一舵面表面101的支撑端部,第一拉绳部31绕过第一支撑部41的远离第一舵面表面101的支撑端部,第一拉绳部31绕过第一支撑部41的一点是第一拉绳部31到第一枢转轴11与第二枢转轴21的连线的距离最远点;第二支撑部42,具有位于第二舵面表面102的一侧且远离第二舵面表面102的支撑端部,第二拉绳部32绕过第二支撑部42的远离第二舵面表面102的支撑端部,第二拉绳部32绕过第二支撑部42的一点是第二拉绳部32到第一枢转轴11与第二枢转轴21的连线的距离最远点。
本实用新型的舵装置的舵机20和舵面10之间通过拉绳部连接,拉绳部即第一拉绳部31与第二拉绳部32的统称,并且拉绳部绕过第一支撑部41和第二支撑部42再与舵面10连接,因此拉绳部与舵面10之间的夹角增大,即增大了拉绳部与舵面10之间的力矩,使得舵机20与舵面10之间的传动比增大,提高舵装置的机械效率。
由于舵机20与舵面10之间的传动比增大,因此舵机20可以利用更小的力矩驱动尺寸更大的舵面10运动,因此本实用新型的舵装置的舵机20可以进行小型化设计,该舵装置特别适用于中小微型飞行器,如中小微型飞艇等。
需要说明的是,在飞行器领域,安定面分为水平安定面和垂直安定面。以飞机为例,飞机的水平安定面是飞机尾翼的水平翼面,通常分为固定式和全动式两类,水平安定面的作用是使飞机具有适当的俯仰静稳定性,保持水平飞行的姿态。垂直安定面即垂尾的固定部分,起到航向平衡的作用,垂直安定面的作用是使飞机具有适当的偏航静稳定性,保持直线飞行的姿态。
当本实用新型的舵装置应用于飞行器的升降舵时,舵面10为水平翼舵面,X方向和Z方向构成水平面,Y方向为竖直方向;而当舵装置用于飞行器的方向舵时,舵面10为垂尾舵面,X方向和Y方向构成水平面,Z方向为竖直方向。此外,本实用新型的舵装置也可以应用于采用非常规尾翼结构的飞行器,例如垂尾为倾斜设置的尾翼结构。
优选地,第一支撑部41与舵面10固定连接,第二支撑部42与舵面10固定连接。即第一支撑部41和第二支撑部42随舵面10共同运动,能够使得拉绳部与舵面10之间的夹角保持不变,即拉绳部与舵面10之间的力矩不变。
优选地,第一支撑部41和第二支撑部42与舵面10连接的位置位于第一枢转轴11和第二枢转轴21之间,具体地位于舵面10的靠近舵机20的端部。
为了便于描述舵装置的状态,在此定义舵面10的平衡位置。如图1所示,当舵面10处于平衡位置时,舵面10的端部到尾部的连线平行于第一枢转轴11与第二枢转轴21的连线,即舵面10的端部到尾部的连线平行于X方向。当舵面10处于平衡位置时,沿第一枢转轴11与第二枢转轴21的连线的方向(即X方向)流动的气流在舵面10上的作用力也平行于沿第一枢转轴11与第二枢转轴21的连线的方向(即X方向),即第一舵面表面101与第二舵面表面102受到的Y方向的力大小相等方向相反,因此舵面10处于平衡状态,舵装置也不受Y方向的力矩。
而当舵面10处于平衡位置时,即舵面10的端部到尾部的连线平行于第一枢转轴11与第二枢转轴21的连线(X方向)时,在沿第一枢转轴11到第二枢转轴21的方向上,第一拉绳部31绕过第一支撑部41的位置在平行于X轴的方向上位于第一枢转轴11和第二枢转轴21之间,第二拉绳部32绕过第二支撑部42的位置在平行于X轴的方向上位于第一枢转轴11和第二枢转轴21之间。这种结构使得舵面10的受力位置分散舵面10的相对两侧,便于平衡舵面10的受力。
优选地,舵装置包括舵面摇臂40,舵面摇臂40与所述舵面10连接,且舵面摇臂40与舵面10的连接位置位于第一枢转轴11和第二枢转轴21之间。在图1示出的实施例中,当舵面10处于平衡位置时,舵面摇臂40沿垂直于第一枢转轴11与第二枢转轴21的连线的方向延伸,且与第一枢转轴11和第二枢转轴21的连线相交,舵面摇臂40由其与舵面10的连接点向垂直与第一枢转轴11与第二枢转轴21的连线的相反的两个方向延伸的延伸段分别形成第一支撑部41和第二支撑部42。本实施例中,第一支撑部41和第二支撑部42相对于第一枢转轴11与第二枢转轴21的连线对称设置。
如图1所示的实施例中,舵面摇臂40对称的两段分别作为第一支撑部41和第二支撑部42,拉绳部由舵面摇臂40支撑并远离舵面10,拉绳部绕过舵面摇臂40后连接在舵面10上,从而使得拉绳部的绕过舵面摇臂40后与舵面10连接的一段与舵面10之间形成一定的夹角。当舵面摇臂40的长度越长,拉绳部与舵面10之间的夹角的角度越大,则拉绳部与舵面10之间的力矩越大,从而使得舵机20能够利用更小的出力驱动同等或更大的舵面10。
拉绳部与舵面10之间的力矩由拉绳部与舵面10之间的角度以及拉绳部与舵面10之间的连接点距第一枢转轴11的距离共同影响,因此上述各个描述拉绳部与舵面10之间的夹角与力矩的关系的论述,均是建立在拉绳部与舵面10之间的连接点距第一枢转轴11的距离不变的前提下进行的。
优选地,舵机20还包括舵机摇臂50,舵机摇臂50与第二枢转轴21连接并沿垂直于第二枢转轴21的方向延伸,舵机摇臂50包括第一摇臂51和第二摇臂52,第一摇臂51和第二摇臂52以第二枢转轴21为中心对称设置。当舵面10处于平衡位置时,第一摇臂51和第二摇臂52沿平行于Y方向的方向延伸,第一拉绳部31的第一端与第一摇臂51的远离第二枢转轴21的一端连接,第二拉绳部32的第一端与第二摇臂52的远离第二枢转轴21的一端连接。
在图1示出的实施例中,拉绳部连接在舵机摇臂50上,舵机20的第二枢转轴21带动舵机摇臂50摆动,舵机摇臂50拉动拉绳部,拉绳部带动舵面10绕第一枢转轴11转动。
而在另一些实施例中,舵机20不设置摇臂,而是作为卷扬拉动拉绳部。在这种实施例中,拉绳部缠绕在卷扬上,并且第一拉绳部31和第二拉绳部32分别沿相反的方向缠绕在卷扬上,从而使得无论卷扬朝向何处转动,两个拉绳部之间均有一个为收线状态,另一个为放线状态。此外,若能够保持拉绳部与卷扬之间的摩擦力足够大,则可采用一根拉绳的结构,即第一拉绳部31和第二拉绳部32分别是同一根拉绳的两段。
优选地,舵装置还包括:第一导轮61,设置在安定面100上,在沿第一枢转轴11到第二枢转轴21的方向上位于第二枢转轴21和第一支撑部41之间,第一拉绳部31绕过第一导轮61并被张紧;第二导轮62,设置在安定面100上,在沿第一枢转轴11到第二枢转轴21的方向上位于第二枢转轴21和第二支撑部42之间,第二拉绳部32绕过第二导轮62并被张紧。
第一导轮61和第二导轮62分别为两根拉绳部提供张紧和引导的作用,由于第一导轮61和第二导轮62设置在安定面100上,拉绳部会与导轮产生相对运动,因此设置可以与拉绳部相对转动的导轮为拉绳部提供支撑和导引,从而减小对拉绳部的摩擦损耗,并且也减小舵装置整体的运行阻力。
优选地,第一导轮61沿第一枢转轴11到第二枢转轴21的方向可移动地设置在安定面100上,第二导轮62沿第一枢转轴11到第二枢转轴21的方向可移动地设置在安定面100上。
针对图1示出的实施例而言,相当于第一导轮61和第二导轮62均可以沿平行于XY平面的方向相对安定面100运动,从而便于张紧以及放松拉绳部。
更优选地,舵装置还包括导轮支架60,设置在安定面100上并沿垂直于第一枢转轴11到第二枢转轴21的方向延伸,即沿Y方向延伸,导轮支架60以第一枢转轴11到第二枢转轴21的连线为对称轴对称设置,第一导轮61设置在导轮支架60的第一端,第二导轮62设置在导轮支架60的第二端。
导轮支架60、第一导轮61和第二导轮62作为一个整体的部件安装在安定面100上,可以阻挡拉绳部从第一导轮61或第二导轮62中滑脱。在优选实施例中,为了实现第一导轮61和第二导轮62可以调节位置的功能,导轮支架60和安定面100之间可以设置导轨、导槽或其他配合部件,例如在安定面100上沿X方向设置滑槽并在导轮支架60上设置与滑槽配合的滑块,滑块能够在滑槽中沿X方向滑动定位,从而使得导轮支架60与安定面100之间可移动的设置。
优选地,当舵面10处于平衡位置时,在沿第一枢转轴11到第二枢转轴21的方向上,第一枢转轴11位于第一拉绳部31在第一舵面表面101上的连接点与第二枢转轴21之间,第一枢转轴11位于第二拉绳部32在第二舵面表面102上的连接点与第二枢转轴21之间。即第一枢转轴11邻近于舵面10的靠近第二枢转轴21的端部设置,第一拉绳部31和第二拉绳部32邻近于舵面10的远离第二枢转轴21的端部设置。
以下详细介绍图1示出的本实用新型的舵装置的一种实施例。在该实施例中,第一枢转轴11和第二枢转轴21均水平设置,二者平行且位于同一水平面内;拉绳部的一端与舵机摇臂连接,绕过第一导轮61或第二导轮62、舵面摇臂后与舵面10的舵面连接。这种舵装置具有结构简单、传动比高以及舵面受力点分散、不易产生应力集中等特点。
根据本实用新型的另一个方面,还提供了一种飞行器,包括方向舵和升降舵,方向舵和/或升降舵为上述的舵装置。
本实用新型的舵装置可以作为飞机或飞艇等的方向舵或升降舵。方向舵是垂直尾翼中可操纵的翼面部分,其作用是对飞机或飞艇等进行偏航操纵,用来修正飞机或飞艇等航向和小角度转向,当我们需要控制飞机或飞艇等的航向时,飞行员就可以操纵垂直尾翼中的方向舵达到偏航的目的。升降舵是飞机或飞艇等水平尾翼可操纵的部分,主要作用是控制飞机或飞艇等的俯仰运动,当需要飞机或飞艇等抬头向上飞行时,驾驶员就会操纵升降舵向上偏转,此时升降舵所受到的气动力向下,对飞机或飞艇等产生一个抬头的力矩,飞机或飞艇等就抬头向上了,反之,如果驾驶员操纵升降舵向下偏转,飞机就会在气动力矩的作用下低头。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本实用新型的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本实用新型的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

  1. 一种舵装置,其特征在于,包括:
    舵面(10),通过第一枢转轴(11)与安定面(100)连接,所述第一枢转轴(11)平行于所述舵面(10)的轴向,所述舵面(10)包括相对设置且与所述第一枢转轴(11)平行的第一舵面表面(101)和第二舵面表面(102),所述舵面(10)的横截面的形状为长条状,所述第一舵面表面(101)和所述第二舵面表面(102)的横截面均从所述长条状的横截面的一端延伸至另一端;
    舵机(20),固定在所述安定面(100)上,所述舵机(20)包括平行于所述第一枢转轴(11)的第二枢转轴(21);
    第一拉绳部(31),第一端与所述第二枢转轴(21)连接,第二端与舵面(10)的第一舵面表面(101)连接;
    第二拉绳部(32),第一端与所述第二枢转轴(21)连接,第二端与舵面(10)的第二舵面表面(102)连接;
    当所述第二枢转轴(21)正转时,所述舵面(10)在所述第一拉绳部(31)的牵引下沿第一方向绕所述第一枢转轴(11)转动;当所述第二枢转轴(21)反转时,所述舵面(10)在所述第二拉绳部(32)的牵引下沿与所述第一方向相反的第二方向绕所述第一枢转轴(11)转动;
    第一支撑部(41),具有位于所述第一舵面表面(101)的一侧且远离所述第一舵面表面(101)的支撑端部,所述第一拉绳部(31)绕过所述第一支撑部(41)的远离所述第一舵面表面(101)的支撑端部,所述第一拉绳部(31)绕过所述第一支撑部(41)的一点是所述第一拉绳部(31)到所述第一枢转轴(11)与所述第二枢转轴(21)的连线的距离最远点;
    第二支撑部(42),具有位于所述第二舵面表面(102)的一侧且远离所述第二舵面表面(102)的支撑端部,所述第二拉绳部(32)绕过所述第二支撑部(42)的远离所述第二舵面表面(102)的支撑端部,所述第二拉绳部(32)绕过所述第二支撑部(42)的一点是所述第二拉绳部(32)到所述第一枢转轴(11)与所述第二枢转轴(21)的连线的距离最远点。
  2. 根据权利要求1所述的舵装置,其特征在于,所述第一支撑部(41)与所述舵面(10)固定连接,所述第二支撑部(42)与所述舵面(10)固定连接。
  3. 根据权利要求1所述的舵装置,其特征在于,当所述舵面(10)处于平衡位置时,所述舵面(10)的端部到尾部的连线平行于所述第一枢转轴(11)与所述第二枢转轴(21)的连线,在沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向上,所述第一拉绳部(31)绕过所述第一支撑部(41)的位置在平行于所述第一枢转轴(11)到所述第二枢转轴(21)的方向上位于所述第一枢转轴(11)和所述第二枢转轴(21)之间,所述第二拉绳部(32)绕过所述第二支撑部(42)的位置在平行于所述第一枢转轴(11)到所述第二枢转轴(21)的方向上位于所述第一枢转轴(11)和所述第二枢转轴(21)之间。
  4. 根据权利要求1至3中任一项所述的舵装置,其特征在于,所述舵装置包括舵面摇臂(40),当所述舵面(10)处于平衡位置时,所述舵面(10)的端部到尾部的连线平行于所述第一枢转轴(11)与所述第二枢转轴(21)的连线,所述舵面摇臂(40)沿垂直于所述第一枢转轴(11)与所述第二枢转轴(21)的连线的方向延伸,且与所述第一枢转轴(11)和所述第二枢转轴(21)的连线相交,所述舵面摇臂(40)由其与所述舵面(10)的连接点向垂直于所述第一枢转轴(11)与所述第二枢转轴(21)的连线的相反的两个方向延伸的延伸段分别形成所述第一支撑部(41)和所述第二支撑部(42)。
  5. 根据权利要求1所述的舵装置,其特征在于,所述舵机(20)还包括舵机摇臂(50),所述舵机摇臂(50)与所述第二枢转轴(21)连接并沿垂直于所述第二枢转轴(21)的方向延伸,所述舵机摇臂(50)包括第一摇臂(51)和第二摇臂(52),所述第一摇臂(51)和所述第二摇臂(52)以所述第二枢转轴(21)为中心对称设置;当所述舵面(10)处于平衡位置时,所述舵面(10)的端部到尾部的连线平行于所述第一枢转轴(11)与所述第二枢转轴(21)的连线,所述第一摇臂(51)和所述第二摇臂(52)沿垂直于所述第一枢转轴(11)与所述第二枢转轴(21)的连线的方向延伸;所述第一拉绳部(31)的第一端与所述第一摇臂(51)的远离所述第二枢转轴(21)的一端连接,所述第二拉绳部(32)的第一端与所述第二摇臂(52)的远离所述第二枢转轴(21)的一端连接。
  6. 根据权利要求1所述的舵装置,其特征在于,所述舵装置还包括:
    第一导轮(61),设置在所述安定面(100)上,在沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向上位于所述第二枢转轴(21)和所述第一支撑部(41)之间,所述第一拉绳部(31)绕过所述第一导轮(61)并被张紧;
    第二导轮(62),设置在所述安定面(100)上,在沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向上位于所述第二枢转轴(21)和所述第二支撑部(42)之间,所述第二拉绳部(32)绕过所述第二导轮(62)并被张紧。
  7. 根据权利要求6所述的舵装置,其特征在于,所述第一导轮(61)沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向可移动地设置在所述安定面(100)上,所述第二导轮(62)沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向可移动地设置在所述安定面(100)上。
  8. 根据权利要求6所述的舵装置,其特征在于,所述第一导轮(61)沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向可移动地设置在所述安定面(100)上,所述第二导轮(62)沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向可移动地设置在所述安定面(100)上。
  9. 根据权利要求1所述的舵装置,其特征在于,当所述舵面(10)处于平衡位置时,所述舵面(10)的端部到尾部的连线平行于所述第一枢转轴(11)与所述第二枢转轴(21)的连线,在沿所述第一枢转轴(11)到所述第二枢转轴(21)的方向上,所述第一枢转轴(11)位于所述第一拉绳部(31)在所述第一舵面表面(101)上的连接点与所述第二枢转轴(21)之间,所述第一枢转轴(11)位于所述第二拉绳部(32)在所述第二舵面表面(102)上的连接点与所述第二枢转轴(21)之间。
  10. 一种飞行器,包括方向舵和升降舵,其特征在于,所述方向舵和/或所述升降舵为权利要求1至9中任一项所述的舵装置。
PCT/CN2018/083653 2017-08-21 2018-04-19 舵装置及具有其的飞行器 WO2019037452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721058950.5U CN207141375U (zh) 2017-08-21 2017-08-21 舵装置及具有其的飞行器
CN201721058950.5 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019037452A1 true WO2019037452A1 (zh) 2019-02-28

Family

ID=61669629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083653 WO2019037452A1 (zh) 2017-08-21 2018-04-19 舵装置及具有其的飞行器

Country Status (2)

Country Link
CN (1) CN207141375U (zh)
WO (1) WO2019037452A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413100A (zh) * 2020-12-01 2021-02-26 上海航天控制技术研究所 一种长航时高速飞行器的舵轴液流冷却方法与结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207141375U (zh) * 2017-08-21 2018-03-27 成都天府新区光启未来技术研究院 舵装置及具有其的飞行器
CN112224387B (zh) * 2020-09-18 2023-08-15 北京自动化控制设备研究所 一种舵机与舵面的连接装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769284A1 (fr) * 1997-10-07 1999-04-09 Eurocopter France Dispositif de commande d'une surface aerodynamique de direction d'un helicoptere
CN103569346A (zh) * 2013-11-13 2014-02-12 中国航空工业集团公司西安飞机设计研究所 一种舰载运输类飞机的垂尾结构
CN104787304A (zh) * 2015-04-27 2015-07-22 中国航天空气动力技术研究院 一种无人机舵系统连杆机构
CN205239897U (zh) * 2015-11-18 2016-05-18 广州广鸿航空科技有限公司 一种无人机尾轮和方向舵同步操控机构
CN206068137U (zh) * 2016-09-20 2017-04-05 北京韦加无人机科技股份有限公司 一种舵面控制装置及无人机
CN207141375U (zh) * 2017-08-21 2018-03-27 成都天府新区光启未来技术研究院 舵装置及具有其的飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769284A1 (fr) * 1997-10-07 1999-04-09 Eurocopter France Dispositif de commande d'une surface aerodynamique de direction d'un helicoptere
CN103569346A (zh) * 2013-11-13 2014-02-12 中国航空工业集团公司西安飞机设计研究所 一种舰载运输类飞机的垂尾结构
CN104787304A (zh) * 2015-04-27 2015-07-22 中国航天空气动力技术研究院 一种无人机舵系统连杆机构
CN205239897U (zh) * 2015-11-18 2016-05-18 广州广鸿航空科技有限公司 一种无人机尾轮和方向舵同步操控机构
CN206068137U (zh) * 2016-09-20 2017-04-05 北京韦加无人机科技股份有限公司 一种舵面控制装置及无人机
CN207141375U (zh) * 2017-08-21 2018-03-27 成都天府新区光启未来技术研究院 舵装置及具有其的飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413100A (zh) * 2020-12-01 2021-02-26 上海航天控制技术研究所 一种长航时高速飞行器的舵轴液流冷却方法与结构
CN112413100B (zh) * 2020-12-01 2022-07-01 上海航天控制技术研究所 一种长航时高速飞行器的舵轴液流冷却方法与结构

Also Published As

Publication number Publication date
CN207141375U (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
US10919623B2 (en) Air vehicle flight mechanism and control method
US10850837B2 (en) Air vehicle flight mechanism and control method for non-sinusoidal wing flapping
WO2019037452A1 (zh) 舵装置及具有其的飞行器
WO2015117509A1 (zh) 一种变距飞行器
WO2018098993A1 (zh) 一种螺旋桨双轴矢量伺服变向装置及垂直起降固定翼无人机
CN105151280B (zh) 一种飞行器用俯仰和偏航完全解耦的尾翼调节机构
CN107985589B (zh) 带矢量推力涵道发动机的垂直起降无人机
WO2015172559A1 (zh) 多旋翼变距飞行器的控制方法和控制装置
WO2015172558A1 (zh) 变距飞行器的控制方法和控制装置
CN107352030A (zh) 一种双翼差动拍动的微型扑旋翼飞行器
US10590911B2 (en) Hybrid rolling bridle system for distributing load while permitting freedom of rotation
CN110525637B (zh) 一种角度调整装置及飞行器
CN105523172B (zh) 迎角控制系统及迎角控制方法
CN207689917U (zh) 一种非平面式八旋翼全向飞行器
CN206871342U (zh) 旋翼机尾翼总成结构
CN217864746U (zh) 一种适用于无人机的重心配平机构
CN218537079U (zh) 一种可控飞行气球
CN207060397U (zh) 旋翼机头及旋翼机
CN201880367U (zh) 玩具飞行物
CN204261338U (zh) 模型飞机
CN114802794A (zh) 一种菱形布局柔性无人机吊挂倾转系统及控制方法
CN107161324A (zh) 旋翼机尾翼总成结构
CN107344617A (zh) 旋翼机头、旋翼机及旋翼机的提升方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848911

Country of ref document: EP

Kind code of ref document: A1